Linux Audio

Check our new training course

Real-Time Linux with PREEMPT_RT training

Feb 18-20, 2025
Register
Loading...
v4.6
   1/* Driver for SanDisk SDDR-09 SmartMedia reader
   2 *
   3 *   (c) 2000, 2001 Robert Baruch (autophile@starband.net)
   4 *   (c) 2002 Andries Brouwer (aeb@cwi.nl)
   5 * Developed with the assistance of:
   6 *   (c) 2002 Alan Stern <stern@rowland.org>
   7 *
   8 * The SanDisk SDDR-09 SmartMedia reader uses the Shuttle EUSB-01 chip.
   9 * This chip is a programmable USB controller. In the SDDR-09, it has
  10 * been programmed to obey a certain limited set of SCSI commands.
  11 * This driver translates the "real" SCSI commands to the SDDR-09 SCSI
  12 * commands.
  13 *
  14 * This program is free software; you can redistribute it and/or modify it
  15 * under the terms of the GNU General Public License as published by the
  16 * Free Software Foundation; either version 2, or (at your option) any
  17 * later version.
  18 *
  19 * This program is distributed in the hope that it will be useful, but
  20 * WITHOUT ANY WARRANTY; without even the implied warranty of
  21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  22 * General Public License for more details.
  23 *
  24 * You should have received a copy of the GNU General Public License along
  25 * with this program; if not, write to the Free Software Foundation, Inc.,
  26 * 675 Mass Ave, Cambridge, MA 02139, USA.
  27 */
  28
  29/*
  30 * Known vendor commands: 12 bytes, first byte is opcode
  31 *
  32 * E7: read scatter gather
  33 * E8: read
  34 * E9: write
  35 * EA: erase
  36 * EB: reset
  37 * EC: read status
  38 * ED: read ID
  39 * EE: write CIS (?)
  40 * EF: compute checksum (?)
  41 */
  42
  43#include <linux/errno.h>
  44#include <linux/module.h>
  45#include <linux/slab.h>
  46
  47#include <scsi/scsi.h>
  48#include <scsi/scsi_cmnd.h>
  49#include <scsi/scsi_device.h>
  50
  51#include "usb.h"
  52#include "transport.h"
  53#include "protocol.h"
  54#include "debug.h"
  55#include "scsiglue.h"
  56
  57#define DRV_NAME "ums-sddr09"
  58
  59MODULE_DESCRIPTION("Driver for SanDisk SDDR-09 SmartMedia reader");
  60MODULE_AUTHOR("Andries Brouwer <aeb@cwi.nl>, Robert Baruch <autophile@starband.net>");
  61MODULE_LICENSE("GPL");
  62
  63static int usb_stor_sddr09_dpcm_init(struct us_data *us);
  64static int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us);
  65static int usb_stor_sddr09_init(struct us_data *us);
  66
  67
  68/*
  69 * The table of devices
  70 */
  71#define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \
  72		    vendorName, productName, useProtocol, useTransport, \
  73		    initFunction, flags) \
  74{ USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \
  75  .driver_info = (flags) }
  76
  77static struct usb_device_id sddr09_usb_ids[] = {
  78#	include "unusual_sddr09.h"
  79	{ }		/* Terminating entry */
  80};
  81MODULE_DEVICE_TABLE(usb, sddr09_usb_ids);
  82
  83#undef UNUSUAL_DEV
  84
  85/*
  86 * The flags table
  87 */
  88#define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \
  89		    vendor_name, product_name, use_protocol, use_transport, \
  90		    init_function, Flags) \
  91{ \
  92	.vendorName = vendor_name,	\
  93	.productName = product_name,	\
  94	.useProtocol = use_protocol,	\
  95	.useTransport = use_transport,	\
  96	.initFunction = init_function,	\
  97}
  98
  99static struct us_unusual_dev sddr09_unusual_dev_list[] = {
 100#	include "unusual_sddr09.h"
 101	{ }		/* Terminating entry */
 102};
 103
 104#undef UNUSUAL_DEV
 105
 106
 107#define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) )
 108#define LSB_of(s) ((s)&0xFF)
 109#define MSB_of(s) ((s)>>8)
 110
 111/*
 112 * First some stuff that does not belong here:
 113 * data on SmartMedia and other cards, completely
 114 * unrelated to this driver.
 115 * Similar stuff occurs in <linux/mtd/nand_ids.h>.
 116 */
 117
 118struct nand_flash_dev {
 119	int model_id;
 120	int chipshift;		/* 1<<cs bytes total capacity */
 121	char pageshift;		/* 1<<ps bytes in a page */
 122	char blockshift;	/* 1<<bs pages in an erase block */
 123	char zoneshift;		/* 1<<zs blocks in a zone */
 124				/* # of logical blocks is 125/128 of this */
 125	char pageadrlen;	/* length of an address in bytes - 1 */
 126};
 127
 128/*
 129 * NAND Flash Manufacturer ID Codes
 130 */
 131#define NAND_MFR_AMD		0x01
 132#define NAND_MFR_NATSEMI	0x8f
 133#define NAND_MFR_TOSHIBA	0x98
 134#define NAND_MFR_SAMSUNG	0xec
 135
 136static inline char *nand_flash_manufacturer(int manuf_id) {
 137	switch(manuf_id) {
 138	case NAND_MFR_AMD:
 139		return "AMD";
 140	case NAND_MFR_NATSEMI:
 141		return "NATSEMI";
 142	case NAND_MFR_TOSHIBA:
 143		return "Toshiba";
 144	case NAND_MFR_SAMSUNG:
 145		return "Samsung";
 146	default:
 147		return "unknown";
 148	}
 149}
 150
 151/*
 152 * It looks like it is unnecessary to attach manufacturer to the
 153 * remaining data: SSFDC prescribes manufacturer-independent id codes.
 154 *
 155 * 256 MB NAND flash has a 5-byte ID with 2nd byte 0xaa, 0xba, 0xca or 0xda.
 156 */
 157
 158static struct nand_flash_dev nand_flash_ids[] = {
 159	/* NAND flash */
 160	{ 0x6e, 20, 8, 4, 8, 2},	/* 1 MB */
 161	{ 0xe8, 20, 8, 4, 8, 2},	/* 1 MB */
 162	{ 0xec, 20, 8, 4, 8, 2},	/* 1 MB */
 163	{ 0x64, 21, 8, 4, 9, 2}, 	/* 2 MB */
 164	{ 0xea, 21, 8, 4, 9, 2},	/* 2 MB */
 165	{ 0x6b, 22, 9, 4, 9, 2},	/* 4 MB */
 166	{ 0xe3, 22, 9, 4, 9, 2},	/* 4 MB */
 167	{ 0xe5, 22, 9, 4, 9, 2},	/* 4 MB */
 168	{ 0xe6, 23, 9, 4, 10, 2},	/* 8 MB */
 169	{ 0x73, 24, 9, 5, 10, 2},	/* 16 MB */
 170	{ 0x75, 25, 9, 5, 10, 2},	/* 32 MB */
 171	{ 0x76, 26, 9, 5, 10, 3},	/* 64 MB */
 172	{ 0x79, 27, 9, 5, 10, 3},	/* 128 MB */
 173
 174	/* MASK ROM */
 175	{ 0x5d, 21, 9, 4, 8, 2},	/* 2 MB */
 176	{ 0xd5, 22, 9, 4, 9, 2},	/* 4 MB */
 177	{ 0xd6, 23, 9, 4, 10, 2},	/* 8 MB */
 178	{ 0x57, 24, 9, 4, 11, 2},	/* 16 MB */
 179	{ 0x58, 25, 9, 4, 12, 2},	/* 32 MB */
 180	{ 0,}
 181};
 182
 183static struct nand_flash_dev *
 184nand_find_id(unsigned char id) {
 185	int i;
 186
 187	for (i = 0; i < ARRAY_SIZE(nand_flash_ids); i++)
 188		if (nand_flash_ids[i].model_id == id)
 189			return &(nand_flash_ids[i]);
 190	return NULL;
 191}
 192
 193/*
 194 * ECC computation.
 195 */
 196static unsigned char parity[256];
 197static unsigned char ecc2[256];
 198
 199static void nand_init_ecc(void) {
 200	int i, j, a;
 201
 202	parity[0] = 0;
 203	for (i = 1; i < 256; i++)
 204		parity[i] = (parity[i&(i-1)] ^ 1);
 205
 206	for (i = 0; i < 256; i++) {
 207		a = 0;
 208		for (j = 0; j < 8; j++) {
 209			if (i & (1<<j)) {
 210				if ((j & 1) == 0)
 211					a ^= 0x04;
 212				if ((j & 2) == 0)
 213					a ^= 0x10;
 214				if ((j & 4) == 0)
 215					a ^= 0x40;
 216			}
 217		}
 218		ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0));
 219	}
 220}
 221
 222/* compute 3-byte ecc on 256 bytes */
 223static void nand_compute_ecc(unsigned char *data, unsigned char *ecc) {
 224	int i, j, a;
 225	unsigned char par = 0, bit, bits[8] = {0};
 226
 227	/* collect 16 checksum bits */
 228	for (i = 0; i < 256; i++) {
 229		par ^= data[i];
 230		bit = parity[data[i]];
 231		for (j = 0; j < 8; j++)
 232			if ((i & (1<<j)) == 0)
 233				bits[j] ^= bit;
 234	}
 235
 236	/* put 4+4+4 = 12 bits in the ecc */
 237	a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0];
 238	ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
 239
 240	a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4];
 241	ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
 242
 243	ecc[2] = ecc2[par];
 244}
 245
 246static int nand_compare_ecc(unsigned char *data, unsigned char *ecc) {
 247	return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]);
 248}
 249
 250static void nand_store_ecc(unsigned char *data, unsigned char *ecc) {
 251	memcpy(data, ecc, 3);
 252}
 253
 254/*
 255 * The actual driver starts here.
 256 */
 257
 258struct sddr09_card_info {
 259	unsigned long	capacity;	/* Size of card in bytes */
 260	int		pagesize;	/* Size of page in bytes */
 261	int		pageshift;	/* log2 of pagesize */
 262	int		blocksize;	/* Size of block in pages */
 263	int		blockshift;	/* log2 of blocksize */
 264	int		blockmask;	/* 2^blockshift - 1 */
 265	int		*lba_to_pba;	/* logical to physical map */
 266	int		*pba_to_lba;	/* physical to logical map */
 267	int		lbact;		/* number of available pages */
 268	int		flags;
 269#define	SDDR09_WP	1		/* write protected */
 270};
 271
 272/*
 273 * On my 16MB card, control blocks have size 64 (16 real control bytes,
 274 * and 48 junk bytes). In reality of course the card uses 16 control bytes,
 275 * so the reader makes up the remaining 48. Don't know whether these numbers
 276 * depend on the card. For now a constant.
 277 */
 278#define CONTROL_SHIFT 6
 279
 280/*
 281 * On my Combo CF/SM reader, the SM reader has LUN 1.
 282 * (and things fail with LUN 0).
 283 * It seems LUN is irrelevant for others.
 284 */
 285#define LUN	1
 286#define	LUNBITS	(LUN << 5)
 287
 288/*
 289 * LBA and PBA are unsigned ints. Special values.
 290 */
 291#define UNDEF    0xffffffff
 292#define SPARE    0xfffffffe
 293#define UNUSABLE 0xfffffffd
 294
 295static const int erase_bad_lba_entries = 0;
 296
 297/* send vendor interface command (0x41) */
 298/* called for requests 0, 1, 8 */
 299static int
 300sddr09_send_command(struct us_data *us,
 301		    unsigned char request,
 302		    unsigned char direction,
 303		    unsigned char *xfer_data,
 304		    unsigned int xfer_len) {
 305	unsigned int pipe;
 306	unsigned char requesttype = (0x41 | direction);
 307	int rc;
 308
 309	// Get the receive or send control pipe number
 310
 311	if (direction == USB_DIR_IN)
 312		pipe = us->recv_ctrl_pipe;
 313	else
 314		pipe = us->send_ctrl_pipe;
 315
 316	rc = usb_stor_ctrl_transfer(us, pipe, request, requesttype,
 317				   0, 0, xfer_data, xfer_len);
 318	switch (rc) {
 319		case USB_STOR_XFER_GOOD:	return 0;
 320		case USB_STOR_XFER_STALLED:	return -EPIPE;
 321		default:			return -EIO;
 322	}
 323}
 324
 325static int
 326sddr09_send_scsi_command(struct us_data *us,
 327			 unsigned char *command,
 328			 unsigned int command_len) {
 329	return sddr09_send_command(us, 0, USB_DIR_OUT, command, command_len);
 330}
 331
 332#if 0
 333/*
 334 * Test Unit Ready Command: 12 bytes.
 335 * byte 0: opcode: 00
 336 */
 337static int
 338sddr09_test_unit_ready(struct us_data *us) {
 339	unsigned char *command = us->iobuf;
 340	int result;
 341
 342	memset(command, 0, 6);
 343	command[1] = LUNBITS;
 344
 345	result = sddr09_send_scsi_command(us, command, 6);
 346
 347	usb_stor_dbg(us, "sddr09_test_unit_ready returns %d\n", result);
 348
 349	return result;
 350}
 351#endif
 352
 353/*
 354 * Request Sense Command: 12 bytes.
 355 * byte 0: opcode: 03
 356 * byte 4: data length
 357 */
 358static int
 359sddr09_request_sense(struct us_data *us, unsigned char *sensebuf, int buflen) {
 360	unsigned char *command = us->iobuf;
 361	int result;
 362
 363	memset(command, 0, 12);
 364	command[0] = 0x03;
 365	command[1] = LUNBITS;
 366	command[4] = buflen;
 367
 368	result = sddr09_send_scsi_command(us, command, 12);
 369	if (result)
 370		return result;
 371
 372	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
 373			sensebuf, buflen, NULL);
 374	return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
 375}
 376
 377/*
 378 * Read Command: 12 bytes.
 379 * byte 0: opcode: E8
 380 * byte 1: last two bits: 00: read data, 01: read blockwise control,
 381 *			10: read both, 11: read pagewise control.
 382 *	 It turns out we need values 20, 21, 22, 23 here (LUN 1).
 383 * bytes 2-5: address (interpretation depends on byte 1, see below)
 384 * bytes 10-11: count (idem)
 385 *
 386 * A page has 512 data bytes and 64 control bytes (16 control and 48 junk).
 387 * A read data command gets data in 512-byte pages.
 388 * A read control command gets control in 64-byte chunks.
 389 * A read both command gets data+control in 576-byte chunks.
 390 *
 391 * Blocks are groups of 32 pages, and read blockwise control jumps to the
 392 * next block, while read pagewise control jumps to the next page after
 393 * reading a group of 64 control bytes.
 394 * [Here 512 = 1<<pageshift, 32 = 1<<blockshift, 64 is constant?]
 395 *
 396 * (1 MB and 2 MB cards are a bit different, but I have only a 16 MB card.)
 397 */
 398
 399static int
 400sddr09_readX(struct us_data *us, int x, unsigned long fromaddress,
 401	     int nr_of_pages, int bulklen, unsigned char *buf,
 402	     int use_sg) {
 403
 404	unsigned char *command = us->iobuf;
 405	int result;
 406
 407	command[0] = 0xE8;
 408	command[1] = LUNBITS | x;
 409	command[2] = MSB_of(fromaddress>>16);
 410	command[3] = LSB_of(fromaddress>>16); 
 411	command[4] = MSB_of(fromaddress & 0xFFFF);
 412	command[5] = LSB_of(fromaddress & 0xFFFF); 
 413	command[6] = 0;
 414	command[7] = 0;
 415	command[8] = 0;
 416	command[9] = 0;
 417	command[10] = MSB_of(nr_of_pages);
 418	command[11] = LSB_of(nr_of_pages);
 419
 420	result = sddr09_send_scsi_command(us, command, 12);
 421
 422	if (result) {
 423		usb_stor_dbg(us, "Result for send_control in sddr09_read2%d %d\n",
 424			     x, result);
 425		return result;
 426	}
 427
 428	result = usb_stor_bulk_transfer_sg(us, us->recv_bulk_pipe,
 429				       buf, bulklen, use_sg, NULL);
 430
 431	if (result != USB_STOR_XFER_GOOD) {
 432		usb_stor_dbg(us, "Result for bulk_transfer in sddr09_read2%d %d\n",
 433			     x, result);
 434		return -EIO;
 435	}
 436	return 0;
 437}
 438
 439/*
 440 * Read Data
 441 *
 442 * fromaddress counts data shorts:
 443 * increasing it by 256 shifts the bytestream by 512 bytes;
 444 * the last 8 bits are ignored.
 445 *
 446 * nr_of_pages counts pages of size (1 << pageshift).
 447 */
 448static int
 449sddr09_read20(struct us_data *us, unsigned long fromaddress,
 450	      int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
 451	int bulklen = nr_of_pages << pageshift;
 452
 453	/* The last 8 bits of fromaddress are ignored. */
 454	return sddr09_readX(us, 0, fromaddress, nr_of_pages, bulklen,
 455			    buf, use_sg);
 456}
 457
 458/*
 459 * Read Blockwise Control
 460 *
 461 * fromaddress gives the starting position (as in read data;
 462 * the last 8 bits are ignored); increasing it by 32*256 shifts
 463 * the output stream by 64 bytes.
 464 *
 465 * count counts control groups of size (1 << controlshift).
 466 * For me, controlshift = 6. Is this constant?
 467 *
 468 * After getting one control group, jump to the next block
 469 * (fromaddress += 8192).
 470 */
 471static int
 472sddr09_read21(struct us_data *us, unsigned long fromaddress,
 473	      int count, int controlshift, unsigned char *buf, int use_sg) {
 474
 475	int bulklen = (count << controlshift);
 476	return sddr09_readX(us, 1, fromaddress, count, bulklen,
 477			    buf, use_sg);
 478}
 479
 480/*
 481 * Read both Data and Control
 482 *
 483 * fromaddress counts data shorts, ignoring control:
 484 * increasing it by 256 shifts the bytestream by 576 = 512+64 bytes;
 485 * the last 8 bits are ignored.
 486 *
 487 * nr_of_pages counts pages of size (1 << pageshift) + (1 << controlshift).
 488 */
 489static int
 490sddr09_read22(struct us_data *us, unsigned long fromaddress,
 491	      int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
 492
 493	int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
 494	usb_stor_dbg(us, "reading %d pages, %d bytes\n", nr_of_pages, bulklen);
 495	return sddr09_readX(us, 2, fromaddress, nr_of_pages, bulklen,
 496			    buf, use_sg);
 497}
 498
 499#if 0
 500/*
 501 * Read Pagewise Control
 502 *
 503 * fromaddress gives the starting position (as in read data;
 504 * the last 8 bits are ignored); increasing it by 256 shifts
 505 * the output stream by 64 bytes.
 506 *
 507 * count counts control groups of size (1 << controlshift).
 508 * For me, controlshift = 6. Is this constant?
 509 *
 510 * After getting one control group, jump to the next page
 511 * (fromaddress += 256).
 512 */
 513static int
 514sddr09_read23(struct us_data *us, unsigned long fromaddress,
 515	      int count, int controlshift, unsigned char *buf, int use_sg) {
 516
 517	int bulklen = (count << controlshift);
 518	return sddr09_readX(us, 3, fromaddress, count, bulklen,
 519			    buf, use_sg);
 520}
 521#endif
 522
 523/*
 524 * Erase Command: 12 bytes.
 525 * byte 0: opcode: EA
 526 * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
 527 * 
 528 * Always precisely one block is erased; bytes 2-5 and 10-11 are ignored.
 529 * The byte address being erased is 2*Eaddress.
 530 * The CIS cannot be erased.
 531 */
 532static int
 533sddr09_erase(struct us_data *us, unsigned long Eaddress) {
 534	unsigned char *command = us->iobuf;
 535	int result;
 536
 537	usb_stor_dbg(us, "erase address %lu\n", Eaddress);
 538
 539	memset(command, 0, 12);
 540	command[0] = 0xEA;
 541	command[1] = LUNBITS;
 542	command[6] = MSB_of(Eaddress>>16);
 543	command[7] = LSB_of(Eaddress>>16);
 544	command[8] = MSB_of(Eaddress & 0xFFFF);
 545	command[9] = LSB_of(Eaddress & 0xFFFF);
 546
 547	result = sddr09_send_scsi_command(us, command, 12);
 548
 549	if (result)
 550		usb_stor_dbg(us, "Result for send_control in sddr09_erase %d\n",
 551			     result);
 552
 553	return result;
 554}
 555
 556/*
 557 * Write CIS Command: 12 bytes.
 558 * byte 0: opcode: EE
 559 * bytes 2-5: write address in shorts
 560 * bytes 10-11: sector count
 561 *
 562 * This writes at the indicated address. Don't know how it differs
 563 * from E9. Maybe it does not erase? However, it will also write to
 564 * the CIS.
 565 *
 566 * When two such commands on the same page follow each other directly,
 567 * the second one is not done.
 568 */
 569
 570/*
 571 * Write Command: 12 bytes.
 572 * byte 0: opcode: E9
 573 * bytes 2-5: write address (big-endian, counting shorts, sector aligned).
 574 * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
 575 * bytes 10-11: sector count (big-endian, in 512-byte sectors).
 576 *
 577 * If write address equals erase address, the erase is done first,
 578 * otherwise the write is done first. When erase address equals zero
 579 * no erase is done?
 580 */
 581static int
 582sddr09_writeX(struct us_data *us,
 583	      unsigned long Waddress, unsigned long Eaddress,
 584	      int nr_of_pages, int bulklen, unsigned char *buf, int use_sg) {
 585
 586	unsigned char *command = us->iobuf;
 587	int result;
 588
 589	command[0] = 0xE9;
 590	command[1] = LUNBITS;
 591
 592	command[2] = MSB_of(Waddress>>16);
 593	command[3] = LSB_of(Waddress>>16);
 594	command[4] = MSB_of(Waddress & 0xFFFF);
 595	command[5] = LSB_of(Waddress & 0xFFFF);
 596
 597	command[6] = MSB_of(Eaddress>>16);
 598	command[7] = LSB_of(Eaddress>>16);
 599	command[8] = MSB_of(Eaddress & 0xFFFF);
 600	command[9] = LSB_of(Eaddress & 0xFFFF);
 601
 602	command[10] = MSB_of(nr_of_pages);
 603	command[11] = LSB_of(nr_of_pages);
 604
 605	result = sddr09_send_scsi_command(us, command, 12);
 606
 607	if (result) {
 608		usb_stor_dbg(us, "Result for send_control in sddr09_writeX %d\n",
 609			     result);
 610		return result;
 611	}
 612
 613	result = usb_stor_bulk_transfer_sg(us, us->send_bulk_pipe,
 614				       buf, bulklen, use_sg, NULL);
 615
 616	if (result != USB_STOR_XFER_GOOD) {
 617		usb_stor_dbg(us, "Result for bulk_transfer in sddr09_writeX %d\n",
 618			     result);
 619		return -EIO;
 620	}
 621	return 0;
 622}
 623
 624/* erase address, write same address */
 625static int
 626sddr09_write_inplace(struct us_data *us, unsigned long address,
 627		     int nr_of_pages, int pageshift, unsigned char *buf,
 628		     int use_sg) {
 629	int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
 630	return sddr09_writeX(us, address, address, nr_of_pages, bulklen,
 631			     buf, use_sg);
 632}
 633
 634#if 0
 635/*
 636 * Read Scatter Gather Command: 3+4n bytes.
 637 * byte 0: opcode E7
 638 * byte 2: n
 639 * bytes 4i-1,4i,4i+1: page address
 640 * byte 4i+2: page count
 641 * (i=1..n)
 642 *
 643 * This reads several pages from the card to a single memory buffer.
 644 * The last two bits of byte 1 have the same meaning as for E8.
 645 */
 646static int
 647sddr09_read_sg_test_only(struct us_data *us) {
 648	unsigned char *command = us->iobuf;
 649	int result, bulklen, nsg, ct;
 650	unsigned char *buf;
 651	unsigned long address;
 652
 653	nsg = bulklen = 0;
 654	command[0] = 0xE7;
 655	command[1] = LUNBITS;
 656	command[2] = 0;
 657	address = 040000; ct = 1;
 658	nsg++;
 659	bulklen += (ct << 9);
 660	command[4*nsg+2] = ct;
 661	command[4*nsg+1] = ((address >> 9) & 0xFF);
 662	command[4*nsg+0] = ((address >> 17) & 0xFF);
 663	command[4*nsg-1] = ((address >> 25) & 0xFF);
 664
 665	address = 0340000; ct = 1;
 666	nsg++;
 667	bulklen += (ct << 9);
 668	command[4*nsg+2] = ct;
 669	command[4*nsg+1] = ((address >> 9) & 0xFF);
 670	command[4*nsg+0] = ((address >> 17) & 0xFF);
 671	command[4*nsg-1] = ((address >> 25) & 0xFF);
 672
 673	address = 01000000; ct = 2;
 674	nsg++;
 675	bulklen += (ct << 9);
 676	command[4*nsg+2] = ct;
 677	command[4*nsg+1] = ((address >> 9) & 0xFF);
 678	command[4*nsg+0] = ((address >> 17) & 0xFF);
 679	command[4*nsg-1] = ((address >> 25) & 0xFF);
 680
 681	command[2] = nsg;
 682
 683	result = sddr09_send_scsi_command(us, command, 4*nsg+3);
 684
 685	if (result) {
 686		usb_stor_dbg(us, "Result for send_control in sddr09_read_sg %d\n",
 687			     result);
 688		return result;
 689	}
 690
 691	buf = kmalloc(bulklen, GFP_NOIO);
 692	if (!buf)
 693		return -ENOMEM;
 694
 695	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
 696				       buf, bulklen, NULL);
 697	kfree(buf);
 698	if (result != USB_STOR_XFER_GOOD) {
 699		usb_stor_dbg(us, "Result for bulk_transfer in sddr09_read_sg %d\n",
 700			     result);
 701		return -EIO;
 702	}
 703
 704	return 0;
 705}
 706#endif
 707
 708/*
 709 * Read Status Command: 12 bytes.
 710 * byte 0: opcode: EC
 711 *
 712 * Returns 64 bytes, all zero except for the first.
 713 * bit 0: 1: Error
 714 * bit 5: 1: Suspended
 715 * bit 6: 1: Ready
 716 * bit 7: 1: Not write-protected
 717 */
 718
 719static int
 720sddr09_read_status(struct us_data *us, unsigned char *status) {
 721
 722	unsigned char *command = us->iobuf;
 723	unsigned char *data = us->iobuf;
 724	int result;
 725
 726	usb_stor_dbg(us, "Reading status...\n");
 727
 728	memset(command, 0, 12);
 729	command[0] = 0xEC;
 730	command[1] = LUNBITS;
 731
 732	result = sddr09_send_scsi_command(us, command, 12);
 733	if (result)
 734		return result;
 735
 736	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
 737				       data, 64, NULL);
 738	*status = data[0];
 739	return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
 740}
 741
 742static int
 743sddr09_read_data(struct us_data *us,
 744		 unsigned long address,
 745		 unsigned int sectors) {
 746
 747	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
 748	unsigned char *buffer;
 749	unsigned int lba, maxlba, pba;
 750	unsigned int page, pages;
 751	unsigned int len, offset;
 752	struct scatterlist *sg;
 753	int result;
 754
 755	// Figure out the initial LBA and page
 756	lba = address >> info->blockshift;
 757	page = (address & info->blockmask);
 758	maxlba = info->capacity >> (info->pageshift + info->blockshift);
 759	if (lba >= maxlba)
 760		return -EIO;
 761
 762	// Since we only read in one block at a time, we have to create
 763	// a bounce buffer and move the data a piece at a time between the
 764	// bounce buffer and the actual transfer buffer.
 765
 766	len = min(sectors, (unsigned int) info->blocksize) * info->pagesize;
 767	buffer = kmalloc(len, GFP_NOIO);
 768	if (buffer == NULL) {
 769		printk(KERN_WARNING "sddr09_read_data: Out of memory\n");
 770		return -ENOMEM;
 771	}
 772
 773	// This could be made much more efficient by checking for
 774	// contiguous LBA's. Another exercise left to the student.
 775
 776	result = 0;
 777	offset = 0;
 778	sg = NULL;
 779
 780	while (sectors > 0) {
 781
 782		/* Find number of pages we can read in this block */
 783		pages = min(sectors, info->blocksize - page);
 784		len = pages << info->pageshift;
 785
 786		/* Not overflowing capacity? */
 787		if (lba >= maxlba) {
 788			usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
 789				     lba, maxlba);
 790			result = -EIO;
 791			break;
 792		}
 793
 794		/* Find where this lba lives on disk */
 795		pba = info->lba_to_pba[lba];
 796
 797		if (pba == UNDEF) {	/* this lba was never written */
 798
 799			usb_stor_dbg(us, "Read %d zero pages (LBA %d) page %d\n",
 800				     pages, lba, page);
 801
 802			/* This is not really an error. It just means
 803			   that the block has never been written.
 804			   Instead of returning an error
 805			   it is better to return all zero data. */
 806
 807			memset(buffer, 0, len);
 808
 809		} else {
 810			usb_stor_dbg(us, "Read %d pages, from PBA %d (LBA %d) page %d\n",
 811				     pages, pba, lba, page);
 812
 813			address = ((pba << info->blockshift) + page) << 
 814				info->pageshift;
 815
 816			result = sddr09_read20(us, address>>1,
 817					pages, info->pageshift, buffer, 0);
 818			if (result)
 819				break;
 820		}
 821
 822		// Store the data in the transfer buffer
 823		usb_stor_access_xfer_buf(buffer, len, us->srb,
 824				&sg, &offset, TO_XFER_BUF);
 825
 826		page = 0;
 827		lba++;
 828		sectors -= pages;
 829	}
 830
 831	kfree(buffer);
 832	return result;
 833}
 834
 835static unsigned int
 836sddr09_find_unused_pba(struct sddr09_card_info *info, unsigned int lba) {
 837	static unsigned int lastpba = 1;
 838	int zonestart, end, i;
 839
 840	zonestart = (lba/1000) << 10;
 841	end = info->capacity >> (info->blockshift + info->pageshift);
 842	end -= zonestart;
 843	if (end > 1024)
 844		end = 1024;
 845
 846	for (i = lastpba+1; i < end; i++) {
 847		if (info->pba_to_lba[zonestart+i] == UNDEF) {
 848			lastpba = i;
 849			return zonestart+i;
 850		}
 851	}
 852	for (i = 0; i <= lastpba; i++) {
 853		if (info->pba_to_lba[zonestart+i] == UNDEF) {
 854			lastpba = i;
 855			return zonestart+i;
 856		}
 857	}
 858	return 0;
 859}
 860
 861static int
 862sddr09_write_lba(struct us_data *us, unsigned int lba,
 863		 unsigned int page, unsigned int pages,
 864		 unsigned char *ptr, unsigned char *blockbuffer) {
 865
 866	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
 867	unsigned long address;
 868	unsigned int pba, lbap;
 869	unsigned int pagelen;
 870	unsigned char *bptr, *cptr, *xptr;
 871	unsigned char ecc[3];
 872	int i, result, isnew;
 873
 874	lbap = ((lba % 1000) << 1) | 0x1000;
 875	if (parity[MSB_of(lbap) ^ LSB_of(lbap)])
 876		lbap ^= 1;
 877	pba = info->lba_to_pba[lba];
 878	isnew = 0;
 879
 880	if (pba == UNDEF) {
 881		pba = sddr09_find_unused_pba(info, lba);
 882		if (!pba) {
 883			printk(KERN_WARNING
 884			       "sddr09_write_lba: Out of unused blocks\n");
 885			return -ENOSPC;
 886		}
 887		info->pba_to_lba[pba] = lba;
 888		info->lba_to_pba[lba] = pba;
 889		isnew = 1;
 890	}
 891
 892	if (pba == 1) {
 893		/* Maybe it is impossible to write to PBA 1.
 894		   Fake success, but don't do anything. */
 895		printk(KERN_WARNING "sddr09: avoid writing to pba 1\n");
 896		return 0;
 897	}
 898
 899	pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);
 900
 901	/* read old contents */
 902	address = (pba << (info->pageshift + info->blockshift));
 903	result = sddr09_read22(us, address>>1, info->blocksize,
 904			       info->pageshift, blockbuffer, 0);
 905	if (result)
 906		return result;
 907
 908	/* check old contents and fill lba */
 909	for (i = 0; i < info->blocksize; i++) {
 910		bptr = blockbuffer + i*pagelen;
 911		cptr = bptr + info->pagesize;
 912		nand_compute_ecc(bptr, ecc);
 913		if (!nand_compare_ecc(cptr+13, ecc)) {
 914			usb_stor_dbg(us, "Warning: bad ecc in page %d- of pba %d\n",
 915				     i, pba);
 916			nand_store_ecc(cptr+13, ecc);
 917		}
 918		nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
 919		if (!nand_compare_ecc(cptr+8, ecc)) {
 920			usb_stor_dbg(us, "Warning: bad ecc in page %d+ of pba %d\n",
 921				     i, pba);
 922			nand_store_ecc(cptr+8, ecc);
 923		}
 924		cptr[6] = cptr[11] = MSB_of(lbap);
 925		cptr[7] = cptr[12] = LSB_of(lbap);
 926	}
 927
 928	/* copy in new stuff and compute ECC */
 929	xptr = ptr;
 930	for (i = page; i < page+pages; i++) {
 931		bptr = blockbuffer + i*pagelen;
 932		cptr = bptr + info->pagesize;
 933		memcpy(bptr, xptr, info->pagesize);
 934		xptr += info->pagesize;
 935		nand_compute_ecc(bptr, ecc);
 936		nand_store_ecc(cptr+13, ecc);
 937		nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
 938		nand_store_ecc(cptr+8, ecc);
 939	}
 940
 941	usb_stor_dbg(us, "Rewrite PBA %d (LBA %d)\n", pba, lba);
 942
 943	result = sddr09_write_inplace(us, address>>1, info->blocksize,
 944				      info->pageshift, blockbuffer, 0);
 945
 946	usb_stor_dbg(us, "sddr09_write_inplace returns %d\n", result);
 947
 948#if 0
 949	{
 950		unsigned char status = 0;
 951		int result2 = sddr09_read_status(us, &status);
 952		if (result2)
 953			usb_stor_dbg(us, "cannot read status\n");
 954		else if (status != 0xc0)
 955			usb_stor_dbg(us, "status after write: 0x%x\n", status);
 956	}
 957#endif
 958
 959#if 0
 960	{
 961		int result2 = sddr09_test_unit_ready(us);
 962	}
 963#endif
 964
 965	return result;
 966}
 967
 968static int
 969sddr09_write_data(struct us_data *us,
 970		  unsigned long address,
 971		  unsigned int sectors) {
 972
 973	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
 974	unsigned int lba, maxlba, page, pages;
 975	unsigned int pagelen, blocklen;
 976	unsigned char *blockbuffer;
 977	unsigned char *buffer;
 978	unsigned int len, offset;
 979	struct scatterlist *sg;
 980	int result;
 981
 982	// Figure out the initial LBA and page
 983	lba = address >> info->blockshift;
 984	page = (address & info->blockmask);
 985	maxlba = info->capacity >> (info->pageshift + info->blockshift);
 986	if (lba >= maxlba)
 987		return -EIO;
 988
 989	// blockbuffer is used for reading in the old data, overwriting
 990	// with the new data, and performing ECC calculations
 991
 992	/* TODO: instead of doing kmalloc/kfree for each write,
 993	   add a bufferpointer to the info structure */
 994
 995	pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);
 996	blocklen = (pagelen << info->blockshift);
 997	blockbuffer = kmalloc(blocklen, GFP_NOIO);
 998	if (!blockbuffer) {
 999		printk(KERN_WARNING "sddr09_write_data: Out of memory\n");
1000		return -ENOMEM;
1001	}
1002
1003	// Since we don't write the user data directly to the device,
1004	// we have to create a bounce buffer and move the data a piece
1005	// at a time between the bounce buffer and the actual transfer buffer.
1006
1007	len = min(sectors, (unsigned int) info->blocksize) * info->pagesize;
1008	buffer = kmalloc(len, GFP_NOIO);
1009	if (buffer == NULL) {
1010		printk(KERN_WARNING "sddr09_write_data: Out of memory\n");
1011		kfree(blockbuffer);
1012		return -ENOMEM;
1013	}
1014
1015	result = 0;
1016	offset = 0;
1017	sg = NULL;
1018
1019	while (sectors > 0) {
1020
1021		// Write as many sectors as possible in this block
1022
1023		pages = min(sectors, info->blocksize - page);
1024		len = (pages << info->pageshift);
1025
1026		/* Not overflowing capacity? */
1027		if (lba >= maxlba) {
1028			usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
1029				     lba, maxlba);
1030			result = -EIO;
1031			break;
1032		}
1033
1034		// Get the data from the transfer buffer
1035		usb_stor_access_xfer_buf(buffer, len, us->srb,
1036				&sg, &offset, FROM_XFER_BUF);
1037
1038		result = sddr09_write_lba(us, lba, page, pages,
1039				buffer, blockbuffer);
1040		if (result)
1041			break;
1042
1043		page = 0;
1044		lba++;
1045		sectors -= pages;
1046	}
1047
1048	kfree(buffer);
1049	kfree(blockbuffer);
1050
1051	return result;
1052}
1053
1054static int
1055sddr09_read_control(struct us_data *us,
1056		unsigned long address,
1057		unsigned int blocks,
1058		unsigned char *content,
1059		int use_sg) {
1060
1061	usb_stor_dbg(us, "Read control address %lu, blocks %d\n",
1062		     address, blocks);
1063
1064	return sddr09_read21(us, address, blocks,
1065			     CONTROL_SHIFT, content, use_sg);
1066}
1067
1068/*
1069 * Read Device ID Command: 12 bytes.
1070 * byte 0: opcode: ED
1071 *
1072 * Returns 2 bytes: Manufacturer ID and Device ID.
1073 * On more recent cards 3 bytes: the third byte is an option code A5
1074 * signifying that the secret command to read an 128-bit ID is available.
1075 * On still more recent cards 4 bytes: the fourth byte C0 means that
1076 * a second read ID cmd is available.
1077 */
1078static int
1079sddr09_read_deviceID(struct us_data *us, unsigned char *deviceID) {
1080	unsigned char *command = us->iobuf;
1081	unsigned char *content = us->iobuf;
1082	int result, i;
1083
1084	memset(command, 0, 12);
1085	command[0] = 0xED;
1086	command[1] = LUNBITS;
1087
1088	result = sddr09_send_scsi_command(us, command, 12);
1089	if (result)
1090		return result;
1091
1092	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
1093			content, 64, NULL);
1094
1095	for (i = 0; i < 4; i++)
1096		deviceID[i] = content[i];
1097
1098	return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
1099}
1100
1101static int
1102sddr09_get_wp(struct us_data *us, struct sddr09_card_info *info) {
1103	int result;
1104	unsigned char status;
1105	const char *wp_fmt;
1106
1107	result = sddr09_read_status(us, &status);
1108	if (result) {
1109		usb_stor_dbg(us, "read_status fails\n");
1110		return result;
1111	}
 
1112	if ((status & 0x80) == 0) {
1113		info->flags |= SDDR09_WP;	/* write protected */
1114		wp_fmt = " WP";
1115	} else {
1116		wp_fmt = "";
1117	}
1118	usb_stor_dbg(us, "status 0x%02X%s%s%s%s\n", status, wp_fmt,
1119		     status & 0x40 ? " Ready" : "",
1120		     status & LUNBITS ? " Suspended" : "",
1121		     status & 0x01 ? " Error" : "");
1122
 
 
1123	return 0;
1124}
1125
1126#if 0
1127/*
1128 * Reset Command: 12 bytes.
1129 * byte 0: opcode: EB
1130 */
1131static int
1132sddr09_reset(struct us_data *us) {
1133
1134	unsigned char *command = us->iobuf;
1135
1136	memset(command, 0, 12);
1137	command[0] = 0xEB;
1138	command[1] = LUNBITS;
1139
1140	return sddr09_send_scsi_command(us, command, 12);
1141}
1142#endif
1143
1144static struct nand_flash_dev *
1145sddr09_get_cardinfo(struct us_data *us, unsigned char flags) {
1146	struct nand_flash_dev *cardinfo;
1147	unsigned char deviceID[4];
1148	char blurbtxt[256];
1149	int result;
1150
1151	usb_stor_dbg(us, "Reading capacity...\n");
1152
1153	result = sddr09_read_deviceID(us, deviceID);
1154
1155	if (result) {
1156		usb_stor_dbg(us, "Result of read_deviceID is %d\n", result);
1157		printk(KERN_WARNING "sddr09: could not read card info\n");
1158		return NULL;
1159	}
1160
1161	sprintf(blurbtxt, "sddr09: Found Flash card, ID = %4ph", deviceID);
 
1162
1163	/* Byte 0 is the manufacturer */
1164	sprintf(blurbtxt + strlen(blurbtxt),
1165		": Manuf. %s",
1166		nand_flash_manufacturer(deviceID[0]));
1167
1168	/* Byte 1 is the device type */
1169	cardinfo = nand_find_id(deviceID[1]);
1170	if (cardinfo) {
1171		/* MB or MiB? It is neither. A 16 MB card has
1172		   17301504 raw bytes, of which 16384000 are
1173		   usable for user data. */
1174		sprintf(blurbtxt + strlen(blurbtxt),
1175			", %d MB", 1<<(cardinfo->chipshift - 20));
1176	} else {
1177		sprintf(blurbtxt + strlen(blurbtxt),
1178			", type unrecognized");
1179	}
1180
1181	/* Byte 2 is code to signal availability of 128-bit ID */
1182	if (deviceID[2] == 0xa5) {
1183		sprintf(blurbtxt + strlen(blurbtxt),
1184			", 128-bit ID");
1185	}
1186
1187	/* Byte 3 announces the availability of another read ID command */
1188	if (deviceID[3] == 0xc0) {
1189		sprintf(blurbtxt + strlen(blurbtxt),
1190			", extra cmd");
1191	}
1192
1193	if (flags & SDDR09_WP)
1194		sprintf(blurbtxt + strlen(blurbtxt),
1195			", WP");
1196
1197	printk(KERN_WARNING "%s\n", blurbtxt);
1198
1199	return cardinfo;
1200}
1201
1202static int
1203sddr09_read_map(struct us_data *us) {
1204
1205	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
1206	int numblocks, alloc_len, alloc_blocks;
1207	int i, j, result;
1208	unsigned char *buffer, *buffer_end, *ptr;
1209	unsigned int lba, lbact;
1210
1211	if (!info->capacity)
1212		return -1;
1213
1214	// size of a block is 1 << (blockshift + pageshift) bytes
1215	// divide into the total capacity to get the number of blocks
1216
1217	numblocks = info->capacity >> (info->blockshift + info->pageshift);
1218
1219	// read 64 bytes for every block (actually 1 << CONTROL_SHIFT)
1220	// but only use a 64 KB buffer
1221	// buffer size used must be a multiple of (1 << CONTROL_SHIFT)
1222#define SDDR09_READ_MAP_BUFSZ 65536
1223
1224	alloc_blocks = min(numblocks, SDDR09_READ_MAP_BUFSZ >> CONTROL_SHIFT);
1225	alloc_len = (alloc_blocks << CONTROL_SHIFT);
1226	buffer = kmalloc(alloc_len, GFP_NOIO);
1227	if (buffer == NULL) {
1228		printk(KERN_WARNING "sddr09_read_map: out of memory\n");
1229		result = -1;
1230		goto done;
1231	}
1232	buffer_end = buffer + alloc_len;
1233
1234#undef SDDR09_READ_MAP_BUFSZ
1235
1236	kfree(info->lba_to_pba);
1237	kfree(info->pba_to_lba);
1238	info->lba_to_pba = kmalloc(numblocks*sizeof(int), GFP_NOIO);
1239	info->pba_to_lba = kmalloc(numblocks*sizeof(int), GFP_NOIO);
1240
1241	if (info->lba_to_pba == NULL || info->pba_to_lba == NULL) {
1242		printk(KERN_WARNING "sddr09_read_map: out of memory\n");
1243		result = -1;
1244		goto done;
1245	}
1246
1247	for (i = 0; i < numblocks; i++)
1248		info->lba_to_pba[i] = info->pba_to_lba[i] = UNDEF;
1249
1250	/*
1251	 * Define lba-pba translation table
1252	 */
1253
1254	ptr = buffer_end;
1255	for (i = 0; i < numblocks; i++) {
1256		ptr += (1 << CONTROL_SHIFT);
1257		if (ptr >= buffer_end) {
1258			unsigned long address;
1259
1260			address = i << (info->pageshift + info->blockshift);
1261			result = sddr09_read_control(
1262				us, address>>1,
1263				min(alloc_blocks, numblocks - i),
1264				buffer, 0);
1265			if (result) {
1266				result = -1;
1267				goto done;
1268			}
1269			ptr = buffer;
1270		}
1271
1272		if (i == 0 || i == 1) {
1273			info->pba_to_lba[i] = UNUSABLE;
1274			continue;
1275		}
1276
1277		/* special PBAs have control field 0^16 */
1278		for (j = 0; j < 16; j++)
1279			if (ptr[j] != 0)
1280				goto nonz;
1281		info->pba_to_lba[i] = UNUSABLE;
1282		printk(KERN_WARNING "sddr09: PBA %d has no logical mapping\n",
1283		       i);
1284		continue;
1285
1286	nonz:
1287		/* unwritten PBAs have control field FF^16 */
1288		for (j = 0; j < 16; j++)
1289			if (ptr[j] != 0xff)
1290				goto nonff;
1291		continue;
1292
1293	nonff:
1294		/* normal PBAs start with six FFs */
1295		if (j < 6) {
1296			printk(KERN_WARNING
1297			       "sddr09: PBA %d has no logical mapping: "
1298			       "reserved area = %02X%02X%02X%02X "
1299			       "data status %02X block status %02X\n",
1300			       i, ptr[0], ptr[1], ptr[2], ptr[3],
1301			       ptr[4], ptr[5]);
1302			info->pba_to_lba[i] = UNUSABLE;
1303			continue;
1304		}
1305
1306		if ((ptr[6] >> 4) != 0x01) {
1307			printk(KERN_WARNING
1308			       "sddr09: PBA %d has invalid address field "
1309			       "%02X%02X/%02X%02X\n",
1310			       i, ptr[6], ptr[7], ptr[11], ptr[12]);
1311			info->pba_to_lba[i] = UNUSABLE;
1312			continue;
1313		}
1314
1315		/* check even parity */
1316		if (parity[ptr[6] ^ ptr[7]]) {
1317			printk(KERN_WARNING
1318			       "sddr09: Bad parity in LBA for block %d"
1319			       " (%02X %02X)\n", i, ptr[6], ptr[7]);
1320			info->pba_to_lba[i] = UNUSABLE;
1321			continue;
1322		}
1323
1324		lba = short_pack(ptr[7], ptr[6]);
1325		lba = (lba & 0x07FF) >> 1;
1326
1327		/*
1328		 * Every 1024 physical blocks ("zone"), the LBA numbers
1329		 * go back to zero, but are within a higher block of LBA's.
1330		 * Also, there is a maximum of 1000 LBA's per zone.
1331		 * In other words, in PBA 1024-2047 you will find LBA 0-999
1332		 * which are really LBA 1000-1999. This allows for 24 bad
1333		 * or special physical blocks per zone.
1334		 */
1335
1336		if (lba >= 1000) {
1337			printk(KERN_WARNING
1338			       "sddr09: Bad low LBA %d for block %d\n",
1339			       lba, i);
1340			goto possibly_erase;
1341		}
1342
1343		lba += 1000*(i/0x400);
1344
1345		if (info->lba_to_pba[lba] != UNDEF) {
1346			printk(KERN_WARNING
1347			       "sddr09: LBA %d seen for PBA %d and %d\n",
1348			       lba, info->lba_to_pba[lba], i);
1349			goto possibly_erase;
1350		}
1351
1352		info->pba_to_lba[i] = lba;
1353		info->lba_to_pba[lba] = i;
1354		continue;
1355
1356	possibly_erase:
1357		if (erase_bad_lba_entries) {
1358			unsigned long address;
1359
1360			address = (i << (info->pageshift + info->blockshift));
1361			sddr09_erase(us, address>>1);
1362			info->pba_to_lba[i] = UNDEF;
1363		} else
1364			info->pba_to_lba[i] = UNUSABLE;
1365	}
1366
1367	/*
1368	 * Approximate capacity. This is not entirely correct yet,
1369	 * since a zone with less than 1000 usable pages leads to
1370	 * missing LBAs. Especially if it is the last zone, some
1371	 * LBAs can be past capacity.
1372	 */
1373	lbact = 0;
1374	for (i = 0; i < numblocks; i += 1024) {
1375		int ct = 0;
1376
1377		for (j = 0; j < 1024 && i+j < numblocks; j++) {
1378			if (info->pba_to_lba[i+j] != UNUSABLE) {
1379				if (ct >= 1000)
1380					info->pba_to_lba[i+j] = SPARE;
1381				else
1382					ct++;
1383			}
1384		}
1385		lbact += ct;
1386	}
1387	info->lbact = lbact;
1388	usb_stor_dbg(us, "Found %d LBA's\n", lbact);
1389	result = 0;
1390
1391 done:
1392	if (result != 0) {
1393		kfree(info->lba_to_pba);
1394		kfree(info->pba_to_lba);
1395		info->lba_to_pba = NULL;
1396		info->pba_to_lba = NULL;
1397	}
1398	kfree(buffer);
1399	return result;
1400}
1401
1402static void
1403sddr09_card_info_destructor(void *extra) {
1404	struct sddr09_card_info *info = (struct sddr09_card_info *)extra;
1405
1406	if (!info)
1407		return;
1408
1409	kfree(info->lba_to_pba);
1410	kfree(info->pba_to_lba);
1411}
1412
1413static int
1414sddr09_common_init(struct us_data *us) {
1415	int result;
1416
1417	/* set the configuration -- STALL is an acceptable response here */
1418	if (us->pusb_dev->actconfig->desc.bConfigurationValue != 1) {
1419		usb_stor_dbg(us, "active config #%d != 1 ??\n",
1420			     us->pusb_dev->actconfig->desc.bConfigurationValue);
1421		return -EINVAL;
1422	}
1423
1424	result = usb_reset_configuration(us->pusb_dev);
1425	usb_stor_dbg(us, "Result of usb_reset_configuration is %d\n", result);
1426	if (result == -EPIPE) {
1427		usb_stor_dbg(us, "-- stall on control interface\n");
1428	} else if (result != 0) {
1429		/* it's not a stall, but another error -- time to bail */
1430		usb_stor_dbg(us, "-- Unknown error.  Rejecting device\n");
1431		return -EINVAL;
1432	}
1433
1434	us->extra = kzalloc(sizeof(struct sddr09_card_info), GFP_NOIO);
1435	if (!us->extra)
1436		return -ENOMEM;
1437	us->extra_destructor = sddr09_card_info_destructor;
1438
1439	nand_init_ecc();
1440	return 0;
1441}
1442
1443
1444/*
1445 * This is needed at a very early stage. If this is not listed in the
1446 * unusual devices list but called from here then LUN 0 of the combo reader
1447 * is not recognized. But I do not know what precisely these calls do.
1448 */
1449static int
1450usb_stor_sddr09_dpcm_init(struct us_data *us) {
1451	int result;
1452	unsigned char *data = us->iobuf;
1453
1454	result = sddr09_common_init(us);
1455	if (result)
1456		return result;
1457
1458	result = sddr09_send_command(us, 0x01, USB_DIR_IN, data, 2);
1459	if (result) {
1460		usb_stor_dbg(us, "send_command fails\n");
1461		return result;
1462	}
1463
1464	usb_stor_dbg(us, "%02X %02X\n", data[0], data[1]);
1465	// get 07 02
1466
1467	result = sddr09_send_command(us, 0x08, USB_DIR_IN, data, 2);
1468	if (result) {
1469		usb_stor_dbg(us, "2nd send_command fails\n");
1470		return result;
1471	}
1472
1473	usb_stor_dbg(us, "%02X %02X\n", data[0], data[1]);
1474	// get 07 00
1475
1476	result = sddr09_request_sense(us, data, 18);
1477	if (result == 0 && data[2] != 0) {
1478		int j;
1479		for (j=0; j<18; j++)
1480			printk(" %02X", data[j]);
1481		printk("\n");
1482		// get 70 00 00 00 00 00 00 * 00 00 00 00 00 00
1483		// 70: current command
1484		// sense key 0, sense code 0, extd sense code 0
1485		// additional transfer length * = sizeof(data) - 7
1486		// Or: 70 00 06 00 00 00 00 0b 00 00 00 00 28 00 00 00 00 00
1487		// sense key 06, sense code 28: unit attention,
1488		// not ready to ready transition
1489	}
1490
1491	// test unit ready
1492
1493	return 0;		/* not result */
1494}
1495
1496/*
1497 * Transport for the Microtech DPCM-USB
1498 */
1499static int dpcm_transport(struct scsi_cmnd *srb, struct us_data *us)
1500{
1501	int ret;
1502
1503	usb_stor_dbg(us, "LUN=%d\n", (u8)srb->device->lun);
1504
1505	switch (srb->device->lun) {
1506	case 0:
1507
1508		/*
1509		 * LUN 0 corresponds to the CompactFlash card reader.
1510		 */
1511		ret = usb_stor_CB_transport(srb, us);
1512		break;
1513
1514	case 1:
1515
1516		/*
1517		 * LUN 1 corresponds to the SmartMedia card reader.
1518		 */
1519
1520		/*
1521		 * Set the LUN to 0 (just in case).
1522		 */
1523		srb->device->lun = 0;
1524		ret = sddr09_transport(srb, us);
1525		srb->device->lun = 1;
1526		break;
1527
1528	default:
1529	    usb_stor_dbg(us, "Invalid LUN %d\n", (u8)srb->device->lun);
1530		ret = USB_STOR_TRANSPORT_ERROR;
1531		break;
1532	}
1533	return ret;
1534}
1535
1536
1537/*
1538 * Transport for the Sandisk SDDR-09
1539 */
1540static int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us)
1541{
1542	static unsigned char sensekey = 0, sensecode = 0;
1543	static unsigned char havefakesense = 0;
1544	int result, i;
1545	unsigned char *ptr = us->iobuf;
1546	unsigned long capacity;
1547	unsigned int page, pages;
1548
1549	struct sddr09_card_info *info;
1550
1551	static unsigned char inquiry_response[8] = {
1552		0x00, 0x80, 0x00, 0x02, 0x1F, 0x00, 0x00, 0x00
1553	};
1554
1555	/* note: no block descriptor support */
1556	static unsigned char mode_page_01[19] = {
1557		0x00, 0x0F, 0x00, 0x0, 0x0, 0x0, 0x00,
1558		0x01, 0x0A,
1559		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
1560	};
1561
1562	info = (struct sddr09_card_info *)us->extra;
1563
1564	if (srb->cmnd[0] == REQUEST_SENSE && havefakesense) {
1565		/* for a faked command, we have to follow with a faked sense */
1566		memset(ptr, 0, 18);
1567		ptr[0] = 0x70;
1568		ptr[2] = sensekey;
1569		ptr[7] = 11;
1570		ptr[12] = sensecode;
1571		usb_stor_set_xfer_buf(ptr, 18, srb);
1572		sensekey = sensecode = havefakesense = 0;
1573		return USB_STOR_TRANSPORT_GOOD;
1574	}
1575
1576	havefakesense = 1;
1577
1578	/* Dummy up a response for INQUIRY since SDDR09 doesn't
1579	   respond to INQUIRY commands */
1580
1581	if (srb->cmnd[0] == INQUIRY) {
1582		memcpy(ptr, inquiry_response, 8);
1583		fill_inquiry_response(us, ptr, 36);
1584		return USB_STOR_TRANSPORT_GOOD;
1585	}
1586
1587	if (srb->cmnd[0] == READ_CAPACITY) {
1588		struct nand_flash_dev *cardinfo;
1589
1590		sddr09_get_wp(us, info);	/* read WP bit */
1591
1592		cardinfo = sddr09_get_cardinfo(us, info->flags);
1593		if (!cardinfo) {
1594			/* probably no media */
1595		init_error:
1596			sensekey = 0x02;	/* not ready */
1597			sensecode = 0x3a;	/* medium not present */
1598			return USB_STOR_TRANSPORT_FAILED;
1599		}
1600
1601		info->capacity = (1 << cardinfo->chipshift);
1602		info->pageshift = cardinfo->pageshift;
1603		info->pagesize = (1 << info->pageshift);
1604		info->blockshift = cardinfo->blockshift;
1605		info->blocksize = (1 << info->blockshift);
1606		info->blockmask = info->blocksize - 1;
1607
1608		// map initialization, must follow get_cardinfo()
1609		if (sddr09_read_map(us)) {
1610			/* probably out of memory */
1611			goto init_error;
1612		}
1613
1614		// Report capacity
1615
1616		capacity = (info->lbact << info->blockshift) - 1;
1617
1618		((__be32 *) ptr)[0] = cpu_to_be32(capacity);
1619
1620		// Report page size
1621
1622		((__be32 *) ptr)[1] = cpu_to_be32(info->pagesize);
1623		usb_stor_set_xfer_buf(ptr, 8, srb);
1624
1625		return USB_STOR_TRANSPORT_GOOD;
1626	}
1627
1628	if (srb->cmnd[0] == MODE_SENSE_10) {
1629		int modepage = (srb->cmnd[2] & 0x3F);
1630
1631		/* They ask for the Read/Write error recovery page,
1632		   or for all pages. */
1633		/* %% We should check DBD %% */
1634		if (modepage == 0x01 || modepage == 0x3F) {
1635			usb_stor_dbg(us, "Dummy up request for mode page 0x%x\n",
1636				     modepage);
1637
1638			memcpy(ptr, mode_page_01, sizeof(mode_page_01));
1639			((__be16*)ptr)[0] = cpu_to_be16(sizeof(mode_page_01) - 2);
1640			ptr[3] = (info->flags & SDDR09_WP) ? 0x80 : 0;
1641			usb_stor_set_xfer_buf(ptr, sizeof(mode_page_01), srb);
1642			return USB_STOR_TRANSPORT_GOOD;
1643		}
1644
1645		sensekey = 0x05;	/* illegal request */
1646		sensecode = 0x24;	/* invalid field in CDB */
1647		return USB_STOR_TRANSPORT_FAILED;
1648	}
1649
1650	if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL)
1651		return USB_STOR_TRANSPORT_GOOD;
1652
1653	havefakesense = 0;
1654
1655	if (srb->cmnd[0] == READ_10) {
1656
1657		page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1658		page <<= 16;
1659		page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1660		pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1661
1662		usb_stor_dbg(us, "READ_10: read page %d pagect %d\n",
1663			     page, pages);
1664
1665		result = sddr09_read_data(us, page, pages);
1666		return (result == 0 ? USB_STOR_TRANSPORT_GOOD :
1667				USB_STOR_TRANSPORT_ERROR);
1668	}
1669
1670	if (srb->cmnd[0] == WRITE_10) {
1671
1672		page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1673		page <<= 16;
1674		page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1675		pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1676
1677		usb_stor_dbg(us, "WRITE_10: write page %d pagect %d\n",
1678			     page, pages);
1679
1680		result = sddr09_write_data(us, page, pages);
1681		return (result == 0 ? USB_STOR_TRANSPORT_GOOD :
1682				USB_STOR_TRANSPORT_ERROR);
1683	}
1684
1685	/* catch-all for all other commands, except
1686	 * pass TEST_UNIT_READY and REQUEST_SENSE through
1687	 */
1688	if (srb->cmnd[0] != TEST_UNIT_READY &&
1689	    srb->cmnd[0] != REQUEST_SENSE) {
1690		sensekey = 0x05;	/* illegal request */
1691		sensecode = 0x20;	/* invalid command */
1692		havefakesense = 1;
1693		return USB_STOR_TRANSPORT_FAILED;
1694	}
1695
1696	for (; srb->cmd_len<12; srb->cmd_len++)
1697		srb->cmnd[srb->cmd_len] = 0;
1698
1699	srb->cmnd[1] = LUNBITS;
1700
1701	ptr[0] = 0;
1702	for (i=0; i<12; i++)
1703		sprintf(ptr+strlen(ptr), "%02X ", srb->cmnd[i]);
1704
1705	usb_stor_dbg(us, "Send control for command %s\n", ptr);
1706
1707	result = sddr09_send_scsi_command(us, srb->cmnd, 12);
1708	if (result) {
1709		usb_stor_dbg(us, "sddr09_send_scsi_command returns %d\n",
1710			     result);
1711		return USB_STOR_TRANSPORT_ERROR;
1712	}
1713
1714	if (scsi_bufflen(srb) == 0)
1715		return USB_STOR_TRANSPORT_GOOD;
1716
1717	if (srb->sc_data_direction == DMA_TO_DEVICE ||
1718	    srb->sc_data_direction == DMA_FROM_DEVICE) {
1719		unsigned int pipe = (srb->sc_data_direction == DMA_TO_DEVICE)
1720				? us->send_bulk_pipe : us->recv_bulk_pipe;
1721
1722		usb_stor_dbg(us, "%s %d bytes\n",
1723			     (srb->sc_data_direction == DMA_TO_DEVICE) ?
1724			     "sending" : "receiving",
1725			     scsi_bufflen(srb));
1726
1727		result = usb_stor_bulk_srb(us, pipe, srb);
1728
1729		return (result == USB_STOR_XFER_GOOD ?
1730			USB_STOR_TRANSPORT_GOOD : USB_STOR_TRANSPORT_ERROR);
1731	} 
1732
1733	return USB_STOR_TRANSPORT_GOOD;
1734}
1735
1736/*
1737 * Initialization routine for the sddr09 subdriver
1738 */
1739static int
1740usb_stor_sddr09_init(struct us_data *us) {
1741	return sddr09_common_init(us);
1742}
1743
1744static struct scsi_host_template sddr09_host_template;
1745
1746static int sddr09_probe(struct usb_interface *intf,
1747			 const struct usb_device_id *id)
1748{
1749	struct us_data *us;
1750	int result;
1751
1752	result = usb_stor_probe1(&us, intf, id,
1753			(id - sddr09_usb_ids) + sddr09_unusual_dev_list,
1754			&sddr09_host_template);
1755	if (result)
1756		return result;
1757
1758	if (us->protocol == USB_PR_DPCM_USB) {
1759		us->transport_name = "Control/Bulk-EUSB/SDDR09";
1760		us->transport = dpcm_transport;
1761		us->transport_reset = usb_stor_CB_reset;
1762		us->max_lun = 1;
1763	} else {
1764		us->transport_name = "EUSB/SDDR09";
1765		us->transport = sddr09_transport;
1766		us->transport_reset = usb_stor_CB_reset;
1767		us->max_lun = 0;
1768	}
1769
1770	result = usb_stor_probe2(us);
1771	return result;
1772}
1773
1774static struct usb_driver sddr09_driver = {
1775	.name =		DRV_NAME,
1776	.probe =	sddr09_probe,
1777	.disconnect =	usb_stor_disconnect,
1778	.suspend =	usb_stor_suspend,
1779	.resume =	usb_stor_resume,
1780	.reset_resume =	usb_stor_reset_resume,
1781	.pre_reset =	usb_stor_pre_reset,
1782	.post_reset =	usb_stor_post_reset,
1783	.id_table =	sddr09_usb_ids,
1784	.soft_unbind =	1,
1785	.no_dynamic_id = 1,
1786};
1787
1788module_usb_stor_driver(sddr09_driver, sddr09_host_template, DRV_NAME);
v3.15
   1/* Driver for SanDisk SDDR-09 SmartMedia reader
   2 *
   3 *   (c) 2000, 2001 Robert Baruch (autophile@starband.net)
   4 *   (c) 2002 Andries Brouwer (aeb@cwi.nl)
   5 * Developed with the assistance of:
   6 *   (c) 2002 Alan Stern <stern@rowland.org>
   7 *
   8 * The SanDisk SDDR-09 SmartMedia reader uses the Shuttle EUSB-01 chip.
   9 * This chip is a programmable USB controller. In the SDDR-09, it has
  10 * been programmed to obey a certain limited set of SCSI commands.
  11 * This driver translates the "real" SCSI commands to the SDDR-09 SCSI
  12 * commands.
  13 *
  14 * This program is free software; you can redistribute it and/or modify it
  15 * under the terms of the GNU General Public License as published by the
  16 * Free Software Foundation; either version 2, or (at your option) any
  17 * later version.
  18 *
  19 * This program is distributed in the hope that it will be useful, but
  20 * WITHOUT ANY WARRANTY; without even the implied warranty of
  21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  22 * General Public License for more details.
  23 *
  24 * You should have received a copy of the GNU General Public License along
  25 * with this program; if not, write to the Free Software Foundation, Inc.,
  26 * 675 Mass Ave, Cambridge, MA 02139, USA.
  27 */
  28
  29/*
  30 * Known vendor commands: 12 bytes, first byte is opcode
  31 *
  32 * E7: read scatter gather
  33 * E8: read
  34 * E9: write
  35 * EA: erase
  36 * EB: reset
  37 * EC: read status
  38 * ED: read ID
  39 * EE: write CIS (?)
  40 * EF: compute checksum (?)
  41 */
  42
  43#include <linux/errno.h>
  44#include <linux/module.h>
  45#include <linux/slab.h>
  46
  47#include <scsi/scsi.h>
  48#include <scsi/scsi_cmnd.h>
  49#include <scsi/scsi_device.h>
  50
  51#include "usb.h"
  52#include "transport.h"
  53#include "protocol.h"
  54#include "debug.h"
 
 
 
  55
  56MODULE_DESCRIPTION("Driver for SanDisk SDDR-09 SmartMedia reader");
  57MODULE_AUTHOR("Andries Brouwer <aeb@cwi.nl>, Robert Baruch <autophile@starband.net>");
  58MODULE_LICENSE("GPL");
  59
  60static int usb_stor_sddr09_dpcm_init(struct us_data *us);
  61static int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us);
  62static int usb_stor_sddr09_init(struct us_data *us);
  63
  64
  65/*
  66 * The table of devices
  67 */
  68#define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \
  69		    vendorName, productName, useProtocol, useTransport, \
  70		    initFunction, flags) \
  71{ USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \
  72  .driver_info = (flags) }
  73
  74static struct usb_device_id sddr09_usb_ids[] = {
  75#	include "unusual_sddr09.h"
  76	{ }		/* Terminating entry */
  77};
  78MODULE_DEVICE_TABLE(usb, sddr09_usb_ids);
  79
  80#undef UNUSUAL_DEV
  81
  82/*
  83 * The flags table
  84 */
  85#define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \
  86		    vendor_name, product_name, use_protocol, use_transport, \
  87		    init_function, Flags) \
  88{ \
  89	.vendorName = vendor_name,	\
  90	.productName = product_name,	\
  91	.useProtocol = use_protocol,	\
  92	.useTransport = use_transport,	\
  93	.initFunction = init_function,	\
  94}
  95
  96static struct us_unusual_dev sddr09_unusual_dev_list[] = {
  97#	include "unusual_sddr09.h"
  98	{ }		/* Terminating entry */
  99};
 100
 101#undef UNUSUAL_DEV
 102
 103
 104#define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) )
 105#define LSB_of(s) ((s)&0xFF)
 106#define MSB_of(s) ((s)>>8)
 107
 108/*
 109 * First some stuff that does not belong here:
 110 * data on SmartMedia and other cards, completely
 111 * unrelated to this driver.
 112 * Similar stuff occurs in <linux/mtd/nand_ids.h>.
 113 */
 114
 115struct nand_flash_dev {
 116	int model_id;
 117	int chipshift;		/* 1<<cs bytes total capacity */
 118	char pageshift;		/* 1<<ps bytes in a page */
 119	char blockshift;	/* 1<<bs pages in an erase block */
 120	char zoneshift;		/* 1<<zs blocks in a zone */
 121				/* # of logical blocks is 125/128 of this */
 122	char pageadrlen;	/* length of an address in bytes - 1 */
 123};
 124
 125/*
 126 * NAND Flash Manufacturer ID Codes
 127 */
 128#define NAND_MFR_AMD		0x01
 129#define NAND_MFR_NATSEMI	0x8f
 130#define NAND_MFR_TOSHIBA	0x98
 131#define NAND_MFR_SAMSUNG	0xec
 132
 133static inline char *nand_flash_manufacturer(int manuf_id) {
 134	switch(manuf_id) {
 135	case NAND_MFR_AMD:
 136		return "AMD";
 137	case NAND_MFR_NATSEMI:
 138		return "NATSEMI";
 139	case NAND_MFR_TOSHIBA:
 140		return "Toshiba";
 141	case NAND_MFR_SAMSUNG:
 142		return "Samsung";
 143	default:
 144		return "unknown";
 145	}
 146}
 147
 148/*
 149 * It looks like it is unnecessary to attach manufacturer to the
 150 * remaining data: SSFDC prescribes manufacturer-independent id codes.
 151 *
 152 * 256 MB NAND flash has a 5-byte ID with 2nd byte 0xaa, 0xba, 0xca or 0xda.
 153 */
 154
 155static struct nand_flash_dev nand_flash_ids[] = {
 156	/* NAND flash */
 157	{ 0x6e, 20, 8, 4, 8, 2},	/* 1 MB */
 158	{ 0xe8, 20, 8, 4, 8, 2},	/* 1 MB */
 159	{ 0xec, 20, 8, 4, 8, 2},	/* 1 MB */
 160	{ 0x64, 21, 8, 4, 9, 2}, 	/* 2 MB */
 161	{ 0xea, 21, 8, 4, 9, 2},	/* 2 MB */
 162	{ 0x6b, 22, 9, 4, 9, 2},	/* 4 MB */
 163	{ 0xe3, 22, 9, 4, 9, 2},	/* 4 MB */
 164	{ 0xe5, 22, 9, 4, 9, 2},	/* 4 MB */
 165	{ 0xe6, 23, 9, 4, 10, 2},	/* 8 MB */
 166	{ 0x73, 24, 9, 5, 10, 2},	/* 16 MB */
 167	{ 0x75, 25, 9, 5, 10, 2},	/* 32 MB */
 168	{ 0x76, 26, 9, 5, 10, 3},	/* 64 MB */
 169	{ 0x79, 27, 9, 5, 10, 3},	/* 128 MB */
 170
 171	/* MASK ROM */
 172	{ 0x5d, 21, 9, 4, 8, 2},	/* 2 MB */
 173	{ 0xd5, 22, 9, 4, 9, 2},	/* 4 MB */
 174	{ 0xd6, 23, 9, 4, 10, 2},	/* 8 MB */
 175	{ 0x57, 24, 9, 4, 11, 2},	/* 16 MB */
 176	{ 0x58, 25, 9, 4, 12, 2},	/* 32 MB */
 177	{ 0,}
 178};
 179
 180static struct nand_flash_dev *
 181nand_find_id(unsigned char id) {
 182	int i;
 183
 184	for (i = 0; i < ARRAY_SIZE(nand_flash_ids); i++)
 185		if (nand_flash_ids[i].model_id == id)
 186			return &(nand_flash_ids[i]);
 187	return NULL;
 188}
 189
 190/*
 191 * ECC computation.
 192 */
 193static unsigned char parity[256];
 194static unsigned char ecc2[256];
 195
 196static void nand_init_ecc(void) {
 197	int i, j, a;
 198
 199	parity[0] = 0;
 200	for (i = 1; i < 256; i++)
 201		parity[i] = (parity[i&(i-1)] ^ 1);
 202
 203	for (i = 0; i < 256; i++) {
 204		a = 0;
 205		for (j = 0; j < 8; j++) {
 206			if (i & (1<<j)) {
 207				if ((j & 1) == 0)
 208					a ^= 0x04;
 209				if ((j & 2) == 0)
 210					a ^= 0x10;
 211				if ((j & 4) == 0)
 212					a ^= 0x40;
 213			}
 214		}
 215		ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0));
 216	}
 217}
 218
 219/* compute 3-byte ecc on 256 bytes */
 220static void nand_compute_ecc(unsigned char *data, unsigned char *ecc) {
 221	int i, j, a;
 222	unsigned char par = 0, bit, bits[8] = {0};
 223
 224	/* collect 16 checksum bits */
 225	for (i = 0; i < 256; i++) {
 226		par ^= data[i];
 227		bit = parity[data[i]];
 228		for (j = 0; j < 8; j++)
 229			if ((i & (1<<j)) == 0)
 230				bits[j] ^= bit;
 231	}
 232
 233	/* put 4+4+4 = 12 bits in the ecc */
 234	a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0];
 235	ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
 236
 237	a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4];
 238	ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
 239
 240	ecc[2] = ecc2[par];
 241}
 242
 243static int nand_compare_ecc(unsigned char *data, unsigned char *ecc) {
 244	return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]);
 245}
 246
 247static void nand_store_ecc(unsigned char *data, unsigned char *ecc) {
 248	memcpy(data, ecc, 3);
 249}
 250
 251/*
 252 * The actual driver starts here.
 253 */
 254
 255struct sddr09_card_info {
 256	unsigned long	capacity;	/* Size of card in bytes */
 257	int		pagesize;	/* Size of page in bytes */
 258	int		pageshift;	/* log2 of pagesize */
 259	int		blocksize;	/* Size of block in pages */
 260	int		blockshift;	/* log2 of blocksize */
 261	int		blockmask;	/* 2^blockshift - 1 */
 262	int		*lba_to_pba;	/* logical to physical map */
 263	int		*pba_to_lba;	/* physical to logical map */
 264	int		lbact;		/* number of available pages */
 265	int		flags;
 266#define	SDDR09_WP	1		/* write protected */
 267};
 268
 269/*
 270 * On my 16MB card, control blocks have size 64 (16 real control bytes,
 271 * and 48 junk bytes). In reality of course the card uses 16 control bytes,
 272 * so the reader makes up the remaining 48. Don't know whether these numbers
 273 * depend on the card. For now a constant.
 274 */
 275#define CONTROL_SHIFT 6
 276
 277/*
 278 * On my Combo CF/SM reader, the SM reader has LUN 1.
 279 * (and things fail with LUN 0).
 280 * It seems LUN is irrelevant for others.
 281 */
 282#define LUN	1
 283#define	LUNBITS	(LUN << 5)
 284
 285/*
 286 * LBA and PBA are unsigned ints. Special values.
 287 */
 288#define UNDEF    0xffffffff
 289#define SPARE    0xfffffffe
 290#define UNUSABLE 0xfffffffd
 291
 292static const int erase_bad_lba_entries = 0;
 293
 294/* send vendor interface command (0x41) */
 295/* called for requests 0, 1, 8 */
 296static int
 297sddr09_send_command(struct us_data *us,
 298		    unsigned char request,
 299		    unsigned char direction,
 300		    unsigned char *xfer_data,
 301		    unsigned int xfer_len) {
 302	unsigned int pipe;
 303	unsigned char requesttype = (0x41 | direction);
 304	int rc;
 305
 306	// Get the receive or send control pipe number
 307
 308	if (direction == USB_DIR_IN)
 309		pipe = us->recv_ctrl_pipe;
 310	else
 311		pipe = us->send_ctrl_pipe;
 312
 313	rc = usb_stor_ctrl_transfer(us, pipe, request, requesttype,
 314				   0, 0, xfer_data, xfer_len);
 315	switch (rc) {
 316		case USB_STOR_XFER_GOOD:	return 0;
 317		case USB_STOR_XFER_STALLED:	return -EPIPE;
 318		default:			return -EIO;
 319	}
 320}
 321
 322static int
 323sddr09_send_scsi_command(struct us_data *us,
 324			 unsigned char *command,
 325			 unsigned int command_len) {
 326	return sddr09_send_command(us, 0, USB_DIR_OUT, command, command_len);
 327}
 328
 329#if 0
 330/*
 331 * Test Unit Ready Command: 12 bytes.
 332 * byte 0: opcode: 00
 333 */
 334static int
 335sddr09_test_unit_ready(struct us_data *us) {
 336	unsigned char *command = us->iobuf;
 337	int result;
 338
 339	memset(command, 0, 6);
 340	command[1] = LUNBITS;
 341
 342	result = sddr09_send_scsi_command(us, command, 6);
 343
 344	usb_stor_dbg(us, "sddr09_test_unit_ready returns %d\n", result);
 345
 346	return result;
 347}
 348#endif
 349
 350/*
 351 * Request Sense Command: 12 bytes.
 352 * byte 0: opcode: 03
 353 * byte 4: data length
 354 */
 355static int
 356sddr09_request_sense(struct us_data *us, unsigned char *sensebuf, int buflen) {
 357	unsigned char *command = us->iobuf;
 358	int result;
 359
 360	memset(command, 0, 12);
 361	command[0] = 0x03;
 362	command[1] = LUNBITS;
 363	command[4] = buflen;
 364
 365	result = sddr09_send_scsi_command(us, command, 12);
 366	if (result)
 367		return result;
 368
 369	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
 370			sensebuf, buflen, NULL);
 371	return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
 372}
 373
 374/*
 375 * Read Command: 12 bytes.
 376 * byte 0: opcode: E8
 377 * byte 1: last two bits: 00: read data, 01: read blockwise control,
 378 *			10: read both, 11: read pagewise control.
 379 *	 It turns out we need values 20, 21, 22, 23 here (LUN 1).
 380 * bytes 2-5: address (interpretation depends on byte 1, see below)
 381 * bytes 10-11: count (idem)
 382 *
 383 * A page has 512 data bytes and 64 control bytes (16 control and 48 junk).
 384 * A read data command gets data in 512-byte pages.
 385 * A read control command gets control in 64-byte chunks.
 386 * A read both command gets data+control in 576-byte chunks.
 387 *
 388 * Blocks are groups of 32 pages, and read blockwise control jumps to the
 389 * next block, while read pagewise control jumps to the next page after
 390 * reading a group of 64 control bytes.
 391 * [Here 512 = 1<<pageshift, 32 = 1<<blockshift, 64 is constant?]
 392 *
 393 * (1 MB and 2 MB cards are a bit different, but I have only a 16 MB card.)
 394 */
 395
 396static int
 397sddr09_readX(struct us_data *us, int x, unsigned long fromaddress,
 398	     int nr_of_pages, int bulklen, unsigned char *buf,
 399	     int use_sg) {
 400
 401	unsigned char *command = us->iobuf;
 402	int result;
 403
 404	command[0] = 0xE8;
 405	command[1] = LUNBITS | x;
 406	command[2] = MSB_of(fromaddress>>16);
 407	command[3] = LSB_of(fromaddress>>16); 
 408	command[4] = MSB_of(fromaddress & 0xFFFF);
 409	command[5] = LSB_of(fromaddress & 0xFFFF); 
 410	command[6] = 0;
 411	command[7] = 0;
 412	command[8] = 0;
 413	command[9] = 0;
 414	command[10] = MSB_of(nr_of_pages);
 415	command[11] = LSB_of(nr_of_pages);
 416
 417	result = sddr09_send_scsi_command(us, command, 12);
 418
 419	if (result) {
 420		usb_stor_dbg(us, "Result for send_control in sddr09_read2%d %d\n",
 421			     x, result);
 422		return result;
 423	}
 424
 425	result = usb_stor_bulk_transfer_sg(us, us->recv_bulk_pipe,
 426				       buf, bulklen, use_sg, NULL);
 427
 428	if (result != USB_STOR_XFER_GOOD) {
 429		usb_stor_dbg(us, "Result for bulk_transfer in sddr09_read2%d %d\n",
 430			     x, result);
 431		return -EIO;
 432	}
 433	return 0;
 434}
 435
 436/*
 437 * Read Data
 438 *
 439 * fromaddress counts data shorts:
 440 * increasing it by 256 shifts the bytestream by 512 bytes;
 441 * the last 8 bits are ignored.
 442 *
 443 * nr_of_pages counts pages of size (1 << pageshift).
 444 */
 445static int
 446sddr09_read20(struct us_data *us, unsigned long fromaddress,
 447	      int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
 448	int bulklen = nr_of_pages << pageshift;
 449
 450	/* The last 8 bits of fromaddress are ignored. */
 451	return sddr09_readX(us, 0, fromaddress, nr_of_pages, bulklen,
 452			    buf, use_sg);
 453}
 454
 455/*
 456 * Read Blockwise Control
 457 *
 458 * fromaddress gives the starting position (as in read data;
 459 * the last 8 bits are ignored); increasing it by 32*256 shifts
 460 * the output stream by 64 bytes.
 461 *
 462 * count counts control groups of size (1 << controlshift).
 463 * For me, controlshift = 6. Is this constant?
 464 *
 465 * After getting one control group, jump to the next block
 466 * (fromaddress += 8192).
 467 */
 468static int
 469sddr09_read21(struct us_data *us, unsigned long fromaddress,
 470	      int count, int controlshift, unsigned char *buf, int use_sg) {
 471
 472	int bulklen = (count << controlshift);
 473	return sddr09_readX(us, 1, fromaddress, count, bulklen,
 474			    buf, use_sg);
 475}
 476
 477/*
 478 * Read both Data and Control
 479 *
 480 * fromaddress counts data shorts, ignoring control:
 481 * increasing it by 256 shifts the bytestream by 576 = 512+64 bytes;
 482 * the last 8 bits are ignored.
 483 *
 484 * nr_of_pages counts pages of size (1 << pageshift) + (1 << controlshift).
 485 */
 486static int
 487sddr09_read22(struct us_data *us, unsigned long fromaddress,
 488	      int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
 489
 490	int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
 491	usb_stor_dbg(us, "reading %d pages, %d bytes\n", nr_of_pages, bulklen);
 492	return sddr09_readX(us, 2, fromaddress, nr_of_pages, bulklen,
 493			    buf, use_sg);
 494}
 495
 496#if 0
 497/*
 498 * Read Pagewise Control
 499 *
 500 * fromaddress gives the starting position (as in read data;
 501 * the last 8 bits are ignored); increasing it by 256 shifts
 502 * the output stream by 64 bytes.
 503 *
 504 * count counts control groups of size (1 << controlshift).
 505 * For me, controlshift = 6. Is this constant?
 506 *
 507 * After getting one control group, jump to the next page
 508 * (fromaddress += 256).
 509 */
 510static int
 511sddr09_read23(struct us_data *us, unsigned long fromaddress,
 512	      int count, int controlshift, unsigned char *buf, int use_sg) {
 513
 514	int bulklen = (count << controlshift);
 515	return sddr09_readX(us, 3, fromaddress, count, bulklen,
 516			    buf, use_sg);
 517}
 518#endif
 519
 520/*
 521 * Erase Command: 12 bytes.
 522 * byte 0: opcode: EA
 523 * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
 524 * 
 525 * Always precisely one block is erased; bytes 2-5 and 10-11 are ignored.
 526 * The byte address being erased is 2*Eaddress.
 527 * The CIS cannot be erased.
 528 */
 529static int
 530sddr09_erase(struct us_data *us, unsigned long Eaddress) {
 531	unsigned char *command = us->iobuf;
 532	int result;
 533
 534	usb_stor_dbg(us, "erase address %lu\n", Eaddress);
 535
 536	memset(command, 0, 12);
 537	command[0] = 0xEA;
 538	command[1] = LUNBITS;
 539	command[6] = MSB_of(Eaddress>>16);
 540	command[7] = LSB_of(Eaddress>>16);
 541	command[8] = MSB_of(Eaddress & 0xFFFF);
 542	command[9] = LSB_of(Eaddress & 0xFFFF);
 543
 544	result = sddr09_send_scsi_command(us, command, 12);
 545
 546	if (result)
 547		usb_stor_dbg(us, "Result for send_control in sddr09_erase %d\n",
 548			     result);
 549
 550	return result;
 551}
 552
 553/*
 554 * Write CIS Command: 12 bytes.
 555 * byte 0: opcode: EE
 556 * bytes 2-5: write address in shorts
 557 * bytes 10-11: sector count
 558 *
 559 * This writes at the indicated address. Don't know how it differs
 560 * from E9. Maybe it does not erase? However, it will also write to
 561 * the CIS.
 562 *
 563 * When two such commands on the same page follow each other directly,
 564 * the second one is not done.
 565 */
 566
 567/*
 568 * Write Command: 12 bytes.
 569 * byte 0: opcode: E9
 570 * bytes 2-5: write address (big-endian, counting shorts, sector aligned).
 571 * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
 572 * bytes 10-11: sector count (big-endian, in 512-byte sectors).
 573 *
 574 * If write address equals erase address, the erase is done first,
 575 * otherwise the write is done first. When erase address equals zero
 576 * no erase is done?
 577 */
 578static int
 579sddr09_writeX(struct us_data *us,
 580	      unsigned long Waddress, unsigned long Eaddress,
 581	      int nr_of_pages, int bulklen, unsigned char *buf, int use_sg) {
 582
 583	unsigned char *command = us->iobuf;
 584	int result;
 585
 586	command[0] = 0xE9;
 587	command[1] = LUNBITS;
 588
 589	command[2] = MSB_of(Waddress>>16);
 590	command[3] = LSB_of(Waddress>>16);
 591	command[4] = MSB_of(Waddress & 0xFFFF);
 592	command[5] = LSB_of(Waddress & 0xFFFF);
 593
 594	command[6] = MSB_of(Eaddress>>16);
 595	command[7] = LSB_of(Eaddress>>16);
 596	command[8] = MSB_of(Eaddress & 0xFFFF);
 597	command[9] = LSB_of(Eaddress & 0xFFFF);
 598
 599	command[10] = MSB_of(nr_of_pages);
 600	command[11] = LSB_of(nr_of_pages);
 601
 602	result = sddr09_send_scsi_command(us, command, 12);
 603
 604	if (result) {
 605		usb_stor_dbg(us, "Result for send_control in sddr09_writeX %d\n",
 606			     result);
 607		return result;
 608	}
 609
 610	result = usb_stor_bulk_transfer_sg(us, us->send_bulk_pipe,
 611				       buf, bulklen, use_sg, NULL);
 612
 613	if (result != USB_STOR_XFER_GOOD) {
 614		usb_stor_dbg(us, "Result for bulk_transfer in sddr09_writeX %d\n",
 615			     result);
 616		return -EIO;
 617	}
 618	return 0;
 619}
 620
 621/* erase address, write same address */
 622static int
 623sddr09_write_inplace(struct us_data *us, unsigned long address,
 624		     int nr_of_pages, int pageshift, unsigned char *buf,
 625		     int use_sg) {
 626	int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
 627	return sddr09_writeX(us, address, address, nr_of_pages, bulklen,
 628			     buf, use_sg);
 629}
 630
 631#if 0
 632/*
 633 * Read Scatter Gather Command: 3+4n bytes.
 634 * byte 0: opcode E7
 635 * byte 2: n
 636 * bytes 4i-1,4i,4i+1: page address
 637 * byte 4i+2: page count
 638 * (i=1..n)
 639 *
 640 * This reads several pages from the card to a single memory buffer.
 641 * The last two bits of byte 1 have the same meaning as for E8.
 642 */
 643static int
 644sddr09_read_sg_test_only(struct us_data *us) {
 645	unsigned char *command = us->iobuf;
 646	int result, bulklen, nsg, ct;
 647	unsigned char *buf;
 648	unsigned long address;
 649
 650	nsg = bulklen = 0;
 651	command[0] = 0xE7;
 652	command[1] = LUNBITS;
 653	command[2] = 0;
 654	address = 040000; ct = 1;
 655	nsg++;
 656	bulklen += (ct << 9);
 657	command[4*nsg+2] = ct;
 658	command[4*nsg+1] = ((address >> 9) & 0xFF);
 659	command[4*nsg+0] = ((address >> 17) & 0xFF);
 660	command[4*nsg-1] = ((address >> 25) & 0xFF);
 661
 662	address = 0340000; ct = 1;
 663	nsg++;
 664	bulklen += (ct << 9);
 665	command[4*nsg+2] = ct;
 666	command[4*nsg+1] = ((address >> 9) & 0xFF);
 667	command[4*nsg+0] = ((address >> 17) & 0xFF);
 668	command[4*nsg-1] = ((address >> 25) & 0xFF);
 669
 670	address = 01000000; ct = 2;
 671	nsg++;
 672	bulklen += (ct << 9);
 673	command[4*nsg+2] = ct;
 674	command[4*nsg+1] = ((address >> 9) & 0xFF);
 675	command[4*nsg+0] = ((address >> 17) & 0xFF);
 676	command[4*nsg-1] = ((address >> 25) & 0xFF);
 677
 678	command[2] = nsg;
 679
 680	result = sddr09_send_scsi_command(us, command, 4*nsg+3);
 681
 682	if (result) {
 683		usb_stor_dbg(us, "Result for send_control in sddr09_read_sg %d\n",
 684			     result);
 685		return result;
 686	}
 687
 688	buf = kmalloc(bulklen, GFP_NOIO);
 689	if (!buf)
 690		return -ENOMEM;
 691
 692	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
 693				       buf, bulklen, NULL);
 694	kfree(buf);
 695	if (result != USB_STOR_XFER_GOOD) {
 696		usb_stor_dbg(us, "Result for bulk_transfer in sddr09_read_sg %d\n",
 697			     result);
 698		return -EIO;
 699	}
 700
 701	return 0;
 702}
 703#endif
 704
 705/*
 706 * Read Status Command: 12 bytes.
 707 * byte 0: opcode: EC
 708 *
 709 * Returns 64 bytes, all zero except for the first.
 710 * bit 0: 1: Error
 711 * bit 5: 1: Suspended
 712 * bit 6: 1: Ready
 713 * bit 7: 1: Not write-protected
 714 */
 715
 716static int
 717sddr09_read_status(struct us_data *us, unsigned char *status) {
 718
 719	unsigned char *command = us->iobuf;
 720	unsigned char *data = us->iobuf;
 721	int result;
 722
 723	usb_stor_dbg(us, "Reading status...\n");
 724
 725	memset(command, 0, 12);
 726	command[0] = 0xEC;
 727	command[1] = LUNBITS;
 728
 729	result = sddr09_send_scsi_command(us, command, 12);
 730	if (result)
 731		return result;
 732
 733	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
 734				       data, 64, NULL);
 735	*status = data[0];
 736	return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
 737}
 738
 739static int
 740sddr09_read_data(struct us_data *us,
 741		 unsigned long address,
 742		 unsigned int sectors) {
 743
 744	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
 745	unsigned char *buffer;
 746	unsigned int lba, maxlba, pba;
 747	unsigned int page, pages;
 748	unsigned int len, offset;
 749	struct scatterlist *sg;
 750	int result;
 751
 752	// Figure out the initial LBA and page
 753	lba = address >> info->blockshift;
 754	page = (address & info->blockmask);
 755	maxlba = info->capacity >> (info->pageshift + info->blockshift);
 756	if (lba >= maxlba)
 757		return -EIO;
 758
 759	// Since we only read in one block at a time, we have to create
 760	// a bounce buffer and move the data a piece at a time between the
 761	// bounce buffer and the actual transfer buffer.
 762
 763	len = min(sectors, (unsigned int) info->blocksize) * info->pagesize;
 764	buffer = kmalloc(len, GFP_NOIO);
 765	if (buffer == NULL) {
 766		printk(KERN_WARNING "sddr09_read_data: Out of memory\n");
 767		return -ENOMEM;
 768	}
 769
 770	// This could be made much more efficient by checking for
 771	// contiguous LBA's. Another exercise left to the student.
 772
 773	result = 0;
 774	offset = 0;
 775	sg = NULL;
 776
 777	while (sectors > 0) {
 778
 779		/* Find number of pages we can read in this block */
 780		pages = min(sectors, info->blocksize - page);
 781		len = pages << info->pageshift;
 782
 783		/* Not overflowing capacity? */
 784		if (lba >= maxlba) {
 785			usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
 786				     lba, maxlba);
 787			result = -EIO;
 788			break;
 789		}
 790
 791		/* Find where this lba lives on disk */
 792		pba = info->lba_to_pba[lba];
 793
 794		if (pba == UNDEF) {	/* this lba was never written */
 795
 796			usb_stor_dbg(us, "Read %d zero pages (LBA %d) page %d\n",
 797				     pages, lba, page);
 798
 799			/* This is not really an error. It just means
 800			   that the block has never been written.
 801			   Instead of returning an error
 802			   it is better to return all zero data. */
 803
 804			memset(buffer, 0, len);
 805
 806		} else {
 807			usb_stor_dbg(us, "Read %d pages, from PBA %d (LBA %d) page %d\n",
 808				     pages, pba, lba, page);
 809
 810			address = ((pba << info->blockshift) + page) << 
 811				info->pageshift;
 812
 813			result = sddr09_read20(us, address>>1,
 814					pages, info->pageshift, buffer, 0);
 815			if (result)
 816				break;
 817		}
 818
 819		// Store the data in the transfer buffer
 820		usb_stor_access_xfer_buf(buffer, len, us->srb,
 821				&sg, &offset, TO_XFER_BUF);
 822
 823		page = 0;
 824		lba++;
 825		sectors -= pages;
 826	}
 827
 828	kfree(buffer);
 829	return result;
 830}
 831
 832static unsigned int
 833sddr09_find_unused_pba(struct sddr09_card_info *info, unsigned int lba) {
 834	static unsigned int lastpba = 1;
 835	int zonestart, end, i;
 836
 837	zonestart = (lba/1000) << 10;
 838	end = info->capacity >> (info->blockshift + info->pageshift);
 839	end -= zonestart;
 840	if (end > 1024)
 841		end = 1024;
 842
 843	for (i = lastpba+1; i < end; i++) {
 844		if (info->pba_to_lba[zonestart+i] == UNDEF) {
 845			lastpba = i;
 846			return zonestart+i;
 847		}
 848	}
 849	for (i = 0; i <= lastpba; i++) {
 850		if (info->pba_to_lba[zonestart+i] == UNDEF) {
 851			lastpba = i;
 852			return zonestart+i;
 853		}
 854	}
 855	return 0;
 856}
 857
 858static int
 859sddr09_write_lba(struct us_data *us, unsigned int lba,
 860		 unsigned int page, unsigned int pages,
 861		 unsigned char *ptr, unsigned char *blockbuffer) {
 862
 863	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
 864	unsigned long address;
 865	unsigned int pba, lbap;
 866	unsigned int pagelen;
 867	unsigned char *bptr, *cptr, *xptr;
 868	unsigned char ecc[3];
 869	int i, result, isnew;
 870
 871	lbap = ((lba % 1000) << 1) | 0x1000;
 872	if (parity[MSB_of(lbap) ^ LSB_of(lbap)])
 873		lbap ^= 1;
 874	pba = info->lba_to_pba[lba];
 875	isnew = 0;
 876
 877	if (pba == UNDEF) {
 878		pba = sddr09_find_unused_pba(info, lba);
 879		if (!pba) {
 880			printk(KERN_WARNING
 881			       "sddr09_write_lba: Out of unused blocks\n");
 882			return -ENOSPC;
 883		}
 884		info->pba_to_lba[pba] = lba;
 885		info->lba_to_pba[lba] = pba;
 886		isnew = 1;
 887	}
 888
 889	if (pba == 1) {
 890		/* Maybe it is impossible to write to PBA 1.
 891		   Fake success, but don't do anything. */
 892		printk(KERN_WARNING "sddr09: avoid writing to pba 1\n");
 893		return 0;
 894	}
 895
 896	pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);
 897
 898	/* read old contents */
 899	address = (pba << (info->pageshift + info->blockshift));
 900	result = sddr09_read22(us, address>>1, info->blocksize,
 901			       info->pageshift, blockbuffer, 0);
 902	if (result)
 903		return result;
 904
 905	/* check old contents and fill lba */
 906	for (i = 0; i < info->blocksize; i++) {
 907		bptr = blockbuffer + i*pagelen;
 908		cptr = bptr + info->pagesize;
 909		nand_compute_ecc(bptr, ecc);
 910		if (!nand_compare_ecc(cptr+13, ecc)) {
 911			usb_stor_dbg(us, "Warning: bad ecc in page %d- of pba %d\n",
 912				     i, pba);
 913			nand_store_ecc(cptr+13, ecc);
 914		}
 915		nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
 916		if (!nand_compare_ecc(cptr+8, ecc)) {
 917			usb_stor_dbg(us, "Warning: bad ecc in page %d+ of pba %d\n",
 918				     i, pba);
 919			nand_store_ecc(cptr+8, ecc);
 920		}
 921		cptr[6] = cptr[11] = MSB_of(lbap);
 922		cptr[7] = cptr[12] = LSB_of(lbap);
 923	}
 924
 925	/* copy in new stuff and compute ECC */
 926	xptr = ptr;
 927	for (i = page; i < page+pages; i++) {
 928		bptr = blockbuffer + i*pagelen;
 929		cptr = bptr + info->pagesize;
 930		memcpy(bptr, xptr, info->pagesize);
 931		xptr += info->pagesize;
 932		nand_compute_ecc(bptr, ecc);
 933		nand_store_ecc(cptr+13, ecc);
 934		nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
 935		nand_store_ecc(cptr+8, ecc);
 936	}
 937
 938	usb_stor_dbg(us, "Rewrite PBA %d (LBA %d)\n", pba, lba);
 939
 940	result = sddr09_write_inplace(us, address>>1, info->blocksize,
 941				      info->pageshift, blockbuffer, 0);
 942
 943	usb_stor_dbg(us, "sddr09_write_inplace returns %d\n", result);
 944
 945#if 0
 946	{
 947		unsigned char status = 0;
 948		int result2 = sddr09_read_status(us, &status);
 949		if (result2)
 950			usb_stor_dbg(us, "cannot read status\n");
 951		else if (status != 0xc0)
 952			usb_stor_dbg(us, "status after write: 0x%x\n", status);
 953	}
 954#endif
 955
 956#if 0
 957	{
 958		int result2 = sddr09_test_unit_ready(us);
 959	}
 960#endif
 961
 962	return result;
 963}
 964
 965static int
 966sddr09_write_data(struct us_data *us,
 967		  unsigned long address,
 968		  unsigned int sectors) {
 969
 970	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
 971	unsigned int lba, maxlba, page, pages;
 972	unsigned int pagelen, blocklen;
 973	unsigned char *blockbuffer;
 974	unsigned char *buffer;
 975	unsigned int len, offset;
 976	struct scatterlist *sg;
 977	int result;
 978
 979	// Figure out the initial LBA and page
 980	lba = address >> info->blockshift;
 981	page = (address & info->blockmask);
 982	maxlba = info->capacity >> (info->pageshift + info->blockshift);
 983	if (lba >= maxlba)
 984		return -EIO;
 985
 986	// blockbuffer is used for reading in the old data, overwriting
 987	// with the new data, and performing ECC calculations
 988
 989	/* TODO: instead of doing kmalloc/kfree for each write,
 990	   add a bufferpointer to the info structure */
 991
 992	pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);
 993	blocklen = (pagelen << info->blockshift);
 994	blockbuffer = kmalloc(blocklen, GFP_NOIO);
 995	if (!blockbuffer) {
 996		printk(KERN_WARNING "sddr09_write_data: Out of memory\n");
 997		return -ENOMEM;
 998	}
 999
1000	// Since we don't write the user data directly to the device,
1001	// we have to create a bounce buffer and move the data a piece
1002	// at a time between the bounce buffer and the actual transfer buffer.
1003
1004	len = min(sectors, (unsigned int) info->blocksize) * info->pagesize;
1005	buffer = kmalloc(len, GFP_NOIO);
1006	if (buffer == NULL) {
1007		printk(KERN_WARNING "sddr09_write_data: Out of memory\n");
1008		kfree(blockbuffer);
1009		return -ENOMEM;
1010	}
1011
1012	result = 0;
1013	offset = 0;
1014	sg = NULL;
1015
1016	while (sectors > 0) {
1017
1018		// Write as many sectors as possible in this block
1019
1020		pages = min(sectors, info->blocksize - page);
1021		len = (pages << info->pageshift);
1022
1023		/* Not overflowing capacity? */
1024		if (lba >= maxlba) {
1025			usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
1026				     lba, maxlba);
1027			result = -EIO;
1028			break;
1029		}
1030
1031		// Get the data from the transfer buffer
1032		usb_stor_access_xfer_buf(buffer, len, us->srb,
1033				&sg, &offset, FROM_XFER_BUF);
1034
1035		result = sddr09_write_lba(us, lba, page, pages,
1036				buffer, blockbuffer);
1037		if (result)
1038			break;
1039
1040		page = 0;
1041		lba++;
1042		sectors -= pages;
1043	}
1044
1045	kfree(buffer);
1046	kfree(blockbuffer);
1047
1048	return result;
1049}
1050
1051static int
1052sddr09_read_control(struct us_data *us,
1053		unsigned long address,
1054		unsigned int blocks,
1055		unsigned char *content,
1056		int use_sg) {
1057
1058	usb_stor_dbg(us, "Read control address %lu, blocks %d\n",
1059		     address, blocks);
1060
1061	return sddr09_read21(us, address, blocks,
1062			     CONTROL_SHIFT, content, use_sg);
1063}
1064
1065/*
1066 * Read Device ID Command: 12 bytes.
1067 * byte 0: opcode: ED
1068 *
1069 * Returns 2 bytes: Manufacturer ID and Device ID.
1070 * On more recent cards 3 bytes: the third byte is an option code A5
1071 * signifying that the secret command to read an 128-bit ID is available.
1072 * On still more recent cards 4 bytes: the fourth byte C0 means that
1073 * a second read ID cmd is available.
1074 */
1075static int
1076sddr09_read_deviceID(struct us_data *us, unsigned char *deviceID) {
1077	unsigned char *command = us->iobuf;
1078	unsigned char *content = us->iobuf;
1079	int result, i;
1080
1081	memset(command, 0, 12);
1082	command[0] = 0xED;
1083	command[1] = LUNBITS;
1084
1085	result = sddr09_send_scsi_command(us, command, 12);
1086	if (result)
1087		return result;
1088
1089	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
1090			content, 64, NULL);
1091
1092	for (i = 0; i < 4; i++)
1093		deviceID[i] = content[i];
1094
1095	return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
1096}
1097
1098static int
1099sddr09_get_wp(struct us_data *us, struct sddr09_card_info *info) {
1100	int result;
1101	unsigned char status;
 
1102
1103	result = sddr09_read_status(us, &status);
1104	if (result) {
1105		usb_stor_dbg(us, "read_status fails\n");
1106		return result;
1107	}
1108	usb_stor_dbg(us, "status 0x%02X", status);
1109	if ((status & 0x80) == 0) {
1110		info->flags |= SDDR09_WP;	/* write protected */
1111		US_DEBUGPX(" WP");
 
 
1112	}
1113	if (status & 0x40)
1114		US_DEBUGPX(" Ready");
1115	if (status & LUNBITS)
1116		US_DEBUGPX(" Suspended");
1117	if (status & 0x1)
1118		US_DEBUGPX(" Error");
1119	US_DEBUGPX("\n");
1120	return 0;
1121}
1122
1123#if 0
1124/*
1125 * Reset Command: 12 bytes.
1126 * byte 0: opcode: EB
1127 */
1128static int
1129sddr09_reset(struct us_data *us) {
1130
1131	unsigned char *command = us->iobuf;
1132
1133	memset(command, 0, 12);
1134	command[0] = 0xEB;
1135	command[1] = LUNBITS;
1136
1137	return sddr09_send_scsi_command(us, command, 12);
1138}
1139#endif
1140
1141static struct nand_flash_dev *
1142sddr09_get_cardinfo(struct us_data *us, unsigned char flags) {
1143	struct nand_flash_dev *cardinfo;
1144	unsigned char deviceID[4];
1145	char blurbtxt[256];
1146	int result;
1147
1148	usb_stor_dbg(us, "Reading capacity...\n");
1149
1150	result = sddr09_read_deviceID(us, deviceID);
1151
1152	if (result) {
1153		usb_stor_dbg(us, "Result of read_deviceID is %d\n", result);
1154		printk(KERN_WARNING "sddr09: could not read card info\n");
1155		return NULL;
1156	}
1157
1158	sprintf(blurbtxt, "sddr09: Found Flash card, ID = %02X %02X %02X %02X",
1159		deviceID[0], deviceID[1], deviceID[2], deviceID[3]);
1160
1161	/* Byte 0 is the manufacturer */
1162	sprintf(blurbtxt + strlen(blurbtxt),
1163		": Manuf. %s",
1164		nand_flash_manufacturer(deviceID[0]));
1165
1166	/* Byte 1 is the device type */
1167	cardinfo = nand_find_id(deviceID[1]);
1168	if (cardinfo) {
1169		/* MB or MiB? It is neither. A 16 MB card has
1170		   17301504 raw bytes, of which 16384000 are
1171		   usable for user data. */
1172		sprintf(blurbtxt + strlen(blurbtxt),
1173			", %d MB", 1<<(cardinfo->chipshift - 20));
1174	} else {
1175		sprintf(blurbtxt + strlen(blurbtxt),
1176			", type unrecognized");
1177	}
1178
1179	/* Byte 2 is code to signal availability of 128-bit ID */
1180	if (deviceID[2] == 0xa5) {
1181		sprintf(blurbtxt + strlen(blurbtxt),
1182			", 128-bit ID");
1183	}
1184
1185	/* Byte 3 announces the availability of another read ID command */
1186	if (deviceID[3] == 0xc0) {
1187		sprintf(blurbtxt + strlen(blurbtxt),
1188			", extra cmd");
1189	}
1190
1191	if (flags & SDDR09_WP)
1192		sprintf(blurbtxt + strlen(blurbtxt),
1193			", WP");
1194
1195	printk(KERN_WARNING "%s\n", blurbtxt);
1196
1197	return cardinfo;
1198}
1199
1200static int
1201sddr09_read_map(struct us_data *us) {
1202
1203	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
1204	int numblocks, alloc_len, alloc_blocks;
1205	int i, j, result;
1206	unsigned char *buffer, *buffer_end, *ptr;
1207	unsigned int lba, lbact;
1208
1209	if (!info->capacity)
1210		return -1;
1211
1212	// size of a block is 1 << (blockshift + pageshift) bytes
1213	// divide into the total capacity to get the number of blocks
1214
1215	numblocks = info->capacity >> (info->blockshift + info->pageshift);
1216
1217	// read 64 bytes for every block (actually 1 << CONTROL_SHIFT)
1218	// but only use a 64 KB buffer
1219	// buffer size used must be a multiple of (1 << CONTROL_SHIFT)
1220#define SDDR09_READ_MAP_BUFSZ 65536
1221
1222	alloc_blocks = min(numblocks, SDDR09_READ_MAP_BUFSZ >> CONTROL_SHIFT);
1223	alloc_len = (alloc_blocks << CONTROL_SHIFT);
1224	buffer = kmalloc(alloc_len, GFP_NOIO);
1225	if (buffer == NULL) {
1226		printk(KERN_WARNING "sddr09_read_map: out of memory\n");
1227		result = -1;
1228		goto done;
1229	}
1230	buffer_end = buffer + alloc_len;
1231
1232#undef SDDR09_READ_MAP_BUFSZ
1233
1234	kfree(info->lba_to_pba);
1235	kfree(info->pba_to_lba);
1236	info->lba_to_pba = kmalloc(numblocks*sizeof(int), GFP_NOIO);
1237	info->pba_to_lba = kmalloc(numblocks*sizeof(int), GFP_NOIO);
1238
1239	if (info->lba_to_pba == NULL || info->pba_to_lba == NULL) {
1240		printk(KERN_WARNING "sddr09_read_map: out of memory\n");
1241		result = -1;
1242		goto done;
1243	}
1244
1245	for (i = 0; i < numblocks; i++)
1246		info->lba_to_pba[i] = info->pba_to_lba[i] = UNDEF;
1247
1248	/*
1249	 * Define lba-pba translation table
1250	 */
1251
1252	ptr = buffer_end;
1253	for (i = 0; i < numblocks; i++) {
1254		ptr += (1 << CONTROL_SHIFT);
1255		if (ptr >= buffer_end) {
1256			unsigned long address;
1257
1258			address = i << (info->pageshift + info->blockshift);
1259			result = sddr09_read_control(
1260				us, address>>1,
1261				min(alloc_blocks, numblocks - i),
1262				buffer, 0);
1263			if (result) {
1264				result = -1;
1265				goto done;
1266			}
1267			ptr = buffer;
1268		}
1269
1270		if (i == 0 || i == 1) {
1271			info->pba_to_lba[i] = UNUSABLE;
1272			continue;
1273		}
1274
1275		/* special PBAs have control field 0^16 */
1276		for (j = 0; j < 16; j++)
1277			if (ptr[j] != 0)
1278				goto nonz;
1279		info->pba_to_lba[i] = UNUSABLE;
1280		printk(KERN_WARNING "sddr09: PBA %d has no logical mapping\n",
1281		       i);
1282		continue;
1283
1284	nonz:
1285		/* unwritten PBAs have control field FF^16 */
1286		for (j = 0; j < 16; j++)
1287			if (ptr[j] != 0xff)
1288				goto nonff;
1289		continue;
1290
1291	nonff:
1292		/* normal PBAs start with six FFs */
1293		if (j < 6) {
1294			printk(KERN_WARNING
1295			       "sddr09: PBA %d has no logical mapping: "
1296			       "reserved area = %02X%02X%02X%02X "
1297			       "data status %02X block status %02X\n",
1298			       i, ptr[0], ptr[1], ptr[2], ptr[3],
1299			       ptr[4], ptr[5]);
1300			info->pba_to_lba[i] = UNUSABLE;
1301			continue;
1302		}
1303
1304		if ((ptr[6] >> 4) != 0x01) {
1305			printk(KERN_WARNING
1306			       "sddr09: PBA %d has invalid address field "
1307			       "%02X%02X/%02X%02X\n",
1308			       i, ptr[6], ptr[7], ptr[11], ptr[12]);
1309			info->pba_to_lba[i] = UNUSABLE;
1310			continue;
1311		}
1312
1313		/* check even parity */
1314		if (parity[ptr[6] ^ ptr[7]]) {
1315			printk(KERN_WARNING
1316			       "sddr09: Bad parity in LBA for block %d"
1317			       " (%02X %02X)\n", i, ptr[6], ptr[7]);
1318			info->pba_to_lba[i] = UNUSABLE;
1319			continue;
1320		}
1321
1322		lba = short_pack(ptr[7], ptr[6]);
1323		lba = (lba & 0x07FF) >> 1;
1324
1325		/*
1326		 * Every 1024 physical blocks ("zone"), the LBA numbers
1327		 * go back to zero, but are within a higher block of LBA's.
1328		 * Also, there is a maximum of 1000 LBA's per zone.
1329		 * In other words, in PBA 1024-2047 you will find LBA 0-999
1330		 * which are really LBA 1000-1999. This allows for 24 bad
1331		 * or special physical blocks per zone.
1332		 */
1333
1334		if (lba >= 1000) {
1335			printk(KERN_WARNING
1336			       "sddr09: Bad low LBA %d for block %d\n",
1337			       lba, i);
1338			goto possibly_erase;
1339		}
1340
1341		lba += 1000*(i/0x400);
1342
1343		if (info->lba_to_pba[lba] != UNDEF) {
1344			printk(KERN_WARNING
1345			       "sddr09: LBA %d seen for PBA %d and %d\n",
1346			       lba, info->lba_to_pba[lba], i);
1347			goto possibly_erase;
1348		}
1349
1350		info->pba_to_lba[i] = lba;
1351		info->lba_to_pba[lba] = i;
1352		continue;
1353
1354	possibly_erase:
1355		if (erase_bad_lba_entries) {
1356			unsigned long address;
1357
1358			address = (i << (info->pageshift + info->blockshift));
1359			sddr09_erase(us, address>>1);
1360			info->pba_to_lba[i] = UNDEF;
1361		} else
1362			info->pba_to_lba[i] = UNUSABLE;
1363	}
1364
1365	/*
1366	 * Approximate capacity. This is not entirely correct yet,
1367	 * since a zone with less than 1000 usable pages leads to
1368	 * missing LBAs. Especially if it is the last zone, some
1369	 * LBAs can be past capacity.
1370	 */
1371	lbact = 0;
1372	for (i = 0; i < numblocks; i += 1024) {
1373		int ct = 0;
1374
1375		for (j = 0; j < 1024 && i+j < numblocks; j++) {
1376			if (info->pba_to_lba[i+j] != UNUSABLE) {
1377				if (ct >= 1000)
1378					info->pba_to_lba[i+j] = SPARE;
1379				else
1380					ct++;
1381			}
1382		}
1383		lbact += ct;
1384	}
1385	info->lbact = lbact;
1386	usb_stor_dbg(us, "Found %d LBA's\n", lbact);
1387	result = 0;
1388
1389 done:
1390	if (result != 0) {
1391		kfree(info->lba_to_pba);
1392		kfree(info->pba_to_lba);
1393		info->lba_to_pba = NULL;
1394		info->pba_to_lba = NULL;
1395	}
1396	kfree(buffer);
1397	return result;
1398}
1399
1400static void
1401sddr09_card_info_destructor(void *extra) {
1402	struct sddr09_card_info *info = (struct sddr09_card_info *)extra;
1403
1404	if (!info)
1405		return;
1406
1407	kfree(info->lba_to_pba);
1408	kfree(info->pba_to_lba);
1409}
1410
1411static int
1412sddr09_common_init(struct us_data *us) {
1413	int result;
1414
1415	/* set the configuration -- STALL is an acceptable response here */
1416	if (us->pusb_dev->actconfig->desc.bConfigurationValue != 1) {
1417		usb_stor_dbg(us, "active config #%d != 1 ??\n",
1418			     us->pusb_dev->actconfig->desc.bConfigurationValue);
1419		return -EINVAL;
1420	}
1421
1422	result = usb_reset_configuration(us->pusb_dev);
1423	usb_stor_dbg(us, "Result of usb_reset_configuration is %d\n", result);
1424	if (result == -EPIPE) {
1425		usb_stor_dbg(us, "-- stall on control interface\n");
1426	} else if (result != 0) {
1427		/* it's not a stall, but another error -- time to bail */
1428		usb_stor_dbg(us, "-- Unknown error.  Rejecting device\n");
1429		return -EINVAL;
1430	}
1431
1432	us->extra = kzalloc(sizeof(struct sddr09_card_info), GFP_NOIO);
1433	if (!us->extra)
1434		return -ENOMEM;
1435	us->extra_destructor = sddr09_card_info_destructor;
1436
1437	nand_init_ecc();
1438	return 0;
1439}
1440
1441
1442/*
1443 * This is needed at a very early stage. If this is not listed in the
1444 * unusual devices list but called from here then LUN 0 of the combo reader
1445 * is not recognized. But I do not know what precisely these calls do.
1446 */
1447static int
1448usb_stor_sddr09_dpcm_init(struct us_data *us) {
1449	int result;
1450	unsigned char *data = us->iobuf;
1451
1452	result = sddr09_common_init(us);
1453	if (result)
1454		return result;
1455
1456	result = sddr09_send_command(us, 0x01, USB_DIR_IN, data, 2);
1457	if (result) {
1458		usb_stor_dbg(us, "send_command fails\n");
1459		return result;
1460	}
1461
1462	usb_stor_dbg(us, "%02X %02X\n", data[0], data[1]);
1463	// get 07 02
1464
1465	result = sddr09_send_command(us, 0x08, USB_DIR_IN, data, 2);
1466	if (result) {
1467		usb_stor_dbg(us, "2nd send_command fails\n");
1468		return result;
1469	}
1470
1471	usb_stor_dbg(us, "%02X %02X\n", data[0], data[1]);
1472	// get 07 00
1473
1474	result = sddr09_request_sense(us, data, 18);
1475	if (result == 0 && data[2] != 0) {
1476		int j;
1477		for (j=0; j<18; j++)
1478			printk(" %02X", data[j]);
1479		printk("\n");
1480		// get 70 00 00 00 00 00 00 * 00 00 00 00 00 00
1481		// 70: current command
1482		// sense key 0, sense code 0, extd sense code 0
1483		// additional transfer length * = sizeof(data) - 7
1484		// Or: 70 00 06 00 00 00 00 0b 00 00 00 00 28 00 00 00 00 00
1485		// sense key 06, sense code 28: unit attention,
1486		// not ready to ready transition
1487	}
1488
1489	// test unit ready
1490
1491	return 0;		/* not result */
1492}
1493
1494/*
1495 * Transport for the Microtech DPCM-USB
1496 */
1497static int dpcm_transport(struct scsi_cmnd *srb, struct us_data *us)
1498{
1499	int ret;
1500
1501	usb_stor_dbg(us, "LUN=%d\n", srb->device->lun);
1502
1503	switch (srb->device->lun) {
1504	case 0:
1505
1506		/*
1507		 * LUN 0 corresponds to the CompactFlash card reader.
1508		 */
1509		ret = usb_stor_CB_transport(srb, us);
1510		break;
1511
1512	case 1:
1513
1514		/*
1515		 * LUN 1 corresponds to the SmartMedia card reader.
1516		 */
1517
1518		/*
1519		 * Set the LUN to 0 (just in case).
1520		 */
1521		srb->device->lun = 0;
1522		ret = sddr09_transport(srb, us);
1523		srb->device->lun = 1;
1524		break;
1525
1526	default:
1527		usb_stor_dbg(us, "Invalid LUN %d\n", srb->device->lun);
1528		ret = USB_STOR_TRANSPORT_ERROR;
1529		break;
1530	}
1531	return ret;
1532}
1533
1534
1535/*
1536 * Transport for the Sandisk SDDR-09
1537 */
1538static int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us)
1539{
1540	static unsigned char sensekey = 0, sensecode = 0;
1541	static unsigned char havefakesense = 0;
1542	int result, i;
1543	unsigned char *ptr = us->iobuf;
1544	unsigned long capacity;
1545	unsigned int page, pages;
1546
1547	struct sddr09_card_info *info;
1548
1549	static unsigned char inquiry_response[8] = {
1550		0x00, 0x80, 0x00, 0x02, 0x1F, 0x00, 0x00, 0x00
1551	};
1552
1553	/* note: no block descriptor support */
1554	static unsigned char mode_page_01[19] = {
1555		0x00, 0x0F, 0x00, 0x0, 0x0, 0x0, 0x00,
1556		0x01, 0x0A,
1557		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
1558	};
1559
1560	info = (struct sddr09_card_info *)us->extra;
1561
1562	if (srb->cmnd[0] == REQUEST_SENSE && havefakesense) {
1563		/* for a faked command, we have to follow with a faked sense */
1564		memset(ptr, 0, 18);
1565		ptr[0] = 0x70;
1566		ptr[2] = sensekey;
1567		ptr[7] = 11;
1568		ptr[12] = sensecode;
1569		usb_stor_set_xfer_buf(ptr, 18, srb);
1570		sensekey = sensecode = havefakesense = 0;
1571		return USB_STOR_TRANSPORT_GOOD;
1572	}
1573
1574	havefakesense = 1;
1575
1576	/* Dummy up a response for INQUIRY since SDDR09 doesn't
1577	   respond to INQUIRY commands */
1578
1579	if (srb->cmnd[0] == INQUIRY) {
1580		memcpy(ptr, inquiry_response, 8);
1581		fill_inquiry_response(us, ptr, 36);
1582		return USB_STOR_TRANSPORT_GOOD;
1583	}
1584
1585	if (srb->cmnd[0] == READ_CAPACITY) {
1586		struct nand_flash_dev *cardinfo;
1587
1588		sddr09_get_wp(us, info);	/* read WP bit */
1589
1590		cardinfo = sddr09_get_cardinfo(us, info->flags);
1591		if (!cardinfo) {
1592			/* probably no media */
1593		init_error:
1594			sensekey = 0x02;	/* not ready */
1595			sensecode = 0x3a;	/* medium not present */
1596			return USB_STOR_TRANSPORT_FAILED;
1597		}
1598
1599		info->capacity = (1 << cardinfo->chipshift);
1600		info->pageshift = cardinfo->pageshift;
1601		info->pagesize = (1 << info->pageshift);
1602		info->blockshift = cardinfo->blockshift;
1603		info->blocksize = (1 << info->blockshift);
1604		info->blockmask = info->blocksize - 1;
1605
1606		// map initialization, must follow get_cardinfo()
1607		if (sddr09_read_map(us)) {
1608			/* probably out of memory */
1609			goto init_error;
1610		}
1611
1612		// Report capacity
1613
1614		capacity = (info->lbact << info->blockshift) - 1;
1615
1616		((__be32 *) ptr)[0] = cpu_to_be32(capacity);
1617
1618		// Report page size
1619
1620		((__be32 *) ptr)[1] = cpu_to_be32(info->pagesize);
1621		usb_stor_set_xfer_buf(ptr, 8, srb);
1622
1623		return USB_STOR_TRANSPORT_GOOD;
1624	}
1625
1626	if (srb->cmnd[0] == MODE_SENSE_10) {
1627		int modepage = (srb->cmnd[2] & 0x3F);
1628
1629		/* They ask for the Read/Write error recovery page,
1630		   or for all pages. */
1631		/* %% We should check DBD %% */
1632		if (modepage == 0x01 || modepage == 0x3F) {
1633			usb_stor_dbg(us, "Dummy up request for mode page 0x%x\n",
1634				     modepage);
1635
1636			memcpy(ptr, mode_page_01, sizeof(mode_page_01));
1637			((__be16*)ptr)[0] = cpu_to_be16(sizeof(mode_page_01) - 2);
1638			ptr[3] = (info->flags & SDDR09_WP) ? 0x80 : 0;
1639			usb_stor_set_xfer_buf(ptr, sizeof(mode_page_01), srb);
1640			return USB_STOR_TRANSPORT_GOOD;
1641		}
1642
1643		sensekey = 0x05;	/* illegal request */
1644		sensecode = 0x24;	/* invalid field in CDB */
1645		return USB_STOR_TRANSPORT_FAILED;
1646	}
1647
1648	if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL)
1649		return USB_STOR_TRANSPORT_GOOD;
1650
1651	havefakesense = 0;
1652
1653	if (srb->cmnd[0] == READ_10) {
1654
1655		page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1656		page <<= 16;
1657		page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1658		pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1659
1660		usb_stor_dbg(us, "READ_10: read page %d pagect %d\n",
1661			     page, pages);
1662
1663		result = sddr09_read_data(us, page, pages);
1664		return (result == 0 ? USB_STOR_TRANSPORT_GOOD :
1665				USB_STOR_TRANSPORT_ERROR);
1666	}
1667
1668	if (srb->cmnd[0] == WRITE_10) {
1669
1670		page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1671		page <<= 16;
1672		page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1673		pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1674
1675		usb_stor_dbg(us, "WRITE_10: write page %d pagect %d\n",
1676			     page, pages);
1677
1678		result = sddr09_write_data(us, page, pages);
1679		return (result == 0 ? USB_STOR_TRANSPORT_GOOD :
1680				USB_STOR_TRANSPORT_ERROR);
1681	}
1682
1683	/* catch-all for all other commands, except
1684	 * pass TEST_UNIT_READY and REQUEST_SENSE through
1685	 */
1686	if (srb->cmnd[0] != TEST_UNIT_READY &&
1687	    srb->cmnd[0] != REQUEST_SENSE) {
1688		sensekey = 0x05;	/* illegal request */
1689		sensecode = 0x20;	/* invalid command */
1690		havefakesense = 1;
1691		return USB_STOR_TRANSPORT_FAILED;
1692	}
1693
1694	for (; srb->cmd_len<12; srb->cmd_len++)
1695		srb->cmnd[srb->cmd_len] = 0;
1696
1697	srb->cmnd[1] = LUNBITS;
1698
1699	ptr[0] = 0;
1700	for (i=0; i<12; i++)
1701		sprintf(ptr+strlen(ptr), "%02X ", srb->cmnd[i]);
1702
1703	usb_stor_dbg(us, "Send control for command %s\n", ptr);
1704
1705	result = sddr09_send_scsi_command(us, srb->cmnd, 12);
1706	if (result) {
1707		usb_stor_dbg(us, "sddr09_send_scsi_command returns %d\n",
1708			     result);
1709		return USB_STOR_TRANSPORT_ERROR;
1710	}
1711
1712	if (scsi_bufflen(srb) == 0)
1713		return USB_STOR_TRANSPORT_GOOD;
1714
1715	if (srb->sc_data_direction == DMA_TO_DEVICE ||
1716	    srb->sc_data_direction == DMA_FROM_DEVICE) {
1717		unsigned int pipe = (srb->sc_data_direction == DMA_TO_DEVICE)
1718				? us->send_bulk_pipe : us->recv_bulk_pipe;
1719
1720		usb_stor_dbg(us, "%s %d bytes\n",
1721			     (srb->sc_data_direction == DMA_TO_DEVICE) ?
1722			     "sending" : "receiving",
1723			     scsi_bufflen(srb));
1724
1725		result = usb_stor_bulk_srb(us, pipe, srb);
1726
1727		return (result == USB_STOR_XFER_GOOD ?
1728			USB_STOR_TRANSPORT_GOOD : USB_STOR_TRANSPORT_ERROR);
1729	} 
1730
1731	return USB_STOR_TRANSPORT_GOOD;
1732}
1733
1734/*
1735 * Initialization routine for the sddr09 subdriver
1736 */
1737static int
1738usb_stor_sddr09_init(struct us_data *us) {
1739	return sddr09_common_init(us);
1740}
1741
 
 
1742static int sddr09_probe(struct usb_interface *intf,
1743			 const struct usb_device_id *id)
1744{
1745	struct us_data *us;
1746	int result;
1747
1748	result = usb_stor_probe1(&us, intf, id,
1749			(id - sddr09_usb_ids) + sddr09_unusual_dev_list);
 
1750	if (result)
1751		return result;
1752
1753	if (us->protocol == USB_PR_DPCM_USB) {
1754		us->transport_name = "Control/Bulk-EUSB/SDDR09";
1755		us->transport = dpcm_transport;
1756		us->transport_reset = usb_stor_CB_reset;
1757		us->max_lun = 1;
1758	} else {
1759		us->transport_name = "EUSB/SDDR09";
1760		us->transport = sddr09_transport;
1761		us->transport_reset = usb_stor_CB_reset;
1762		us->max_lun = 0;
1763	}
1764
1765	result = usb_stor_probe2(us);
1766	return result;
1767}
1768
1769static struct usb_driver sddr09_driver = {
1770	.name =		"ums-sddr09",
1771	.probe =	sddr09_probe,
1772	.disconnect =	usb_stor_disconnect,
1773	.suspend =	usb_stor_suspend,
1774	.resume =	usb_stor_resume,
1775	.reset_resume =	usb_stor_reset_resume,
1776	.pre_reset =	usb_stor_pre_reset,
1777	.post_reset =	usb_stor_post_reset,
1778	.id_table =	sddr09_usb_ids,
1779	.soft_unbind =	1,
1780	.no_dynamic_id = 1,
1781};
1782
1783module_usb_driver(sddr09_driver);