Linux Audio

Check our new training course

Loading...
v4.6
   1/* Driver for SanDisk SDDR-09 SmartMedia reader
 
 
   2 *
   3 *   (c) 2000, 2001 Robert Baruch (autophile@starband.net)
   4 *   (c) 2002 Andries Brouwer (aeb@cwi.nl)
   5 * Developed with the assistance of:
   6 *   (c) 2002 Alan Stern <stern@rowland.org>
   7 *
   8 * The SanDisk SDDR-09 SmartMedia reader uses the Shuttle EUSB-01 chip.
   9 * This chip is a programmable USB controller. In the SDDR-09, it has
  10 * been programmed to obey a certain limited set of SCSI commands.
  11 * This driver translates the "real" SCSI commands to the SDDR-09 SCSI
  12 * commands.
  13 *
  14 * This program is free software; you can redistribute it and/or modify it
  15 * under the terms of the GNU General Public License as published by the
  16 * Free Software Foundation; either version 2, or (at your option) any
  17 * later version.
  18 *
  19 * This program is distributed in the hope that it will be useful, but
  20 * WITHOUT ANY WARRANTY; without even the implied warranty of
  21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  22 * General Public License for more details.
  23 *
  24 * You should have received a copy of the GNU General Public License along
  25 * with this program; if not, write to the Free Software Foundation, Inc.,
  26 * 675 Mass Ave, Cambridge, MA 02139, USA.
  27 */
  28
  29/*
  30 * Known vendor commands: 12 bytes, first byte is opcode
  31 *
  32 * E7: read scatter gather
  33 * E8: read
  34 * E9: write
  35 * EA: erase
  36 * EB: reset
  37 * EC: read status
  38 * ED: read ID
  39 * EE: write CIS (?)
  40 * EF: compute checksum (?)
  41 */
  42
  43#include <linux/errno.h>
  44#include <linux/module.h>
  45#include <linux/slab.h>
  46
  47#include <scsi/scsi.h>
  48#include <scsi/scsi_cmnd.h>
  49#include <scsi/scsi_device.h>
  50
  51#include "usb.h"
  52#include "transport.h"
  53#include "protocol.h"
  54#include "debug.h"
  55#include "scsiglue.h"
  56
  57#define DRV_NAME "ums-sddr09"
  58
  59MODULE_DESCRIPTION("Driver for SanDisk SDDR-09 SmartMedia reader");
  60MODULE_AUTHOR("Andries Brouwer <aeb@cwi.nl>, Robert Baruch <autophile@starband.net>");
  61MODULE_LICENSE("GPL");
  62
  63static int usb_stor_sddr09_dpcm_init(struct us_data *us);
  64static int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us);
  65static int usb_stor_sddr09_init(struct us_data *us);
  66
  67
  68/*
  69 * The table of devices
  70 */
  71#define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \
  72		    vendorName, productName, useProtocol, useTransport, \
  73		    initFunction, flags) \
  74{ USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \
  75  .driver_info = (flags) }
  76
  77static struct usb_device_id sddr09_usb_ids[] = {
  78#	include "unusual_sddr09.h"
  79	{ }		/* Terminating entry */
  80};
  81MODULE_DEVICE_TABLE(usb, sddr09_usb_ids);
  82
  83#undef UNUSUAL_DEV
  84
  85/*
  86 * The flags table
  87 */
  88#define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \
  89		    vendor_name, product_name, use_protocol, use_transport, \
  90		    init_function, Flags) \
  91{ \
  92	.vendorName = vendor_name,	\
  93	.productName = product_name,	\
  94	.useProtocol = use_protocol,	\
  95	.useTransport = use_transport,	\
  96	.initFunction = init_function,	\
  97}
  98
  99static struct us_unusual_dev sddr09_unusual_dev_list[] = {
 100#	include "unusual_sddr09.h"
 101	{ }		/* Terminating entry */
 102};
 103
 104#undef UNUSUAL_DEV
 105
 106
 107#define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) )
 108#define LSB_of(s) ((s)&0xFF)
 109#define MSB_of(s) ((s)>>8)
 110
 111/*
 112 * First some stuff that does not belong here:
 113 * data on SmartMedia and other cards, completely
 114 * unrelated to this driver.
 115 * Similar stuff occurs in <linux/mtd/nand_ids.h>.
 116 */
 117
 118struct nand_flash_dev {
 119	int model_id;
 120	int chipshift;		/* 1<<cs bytes total capacity */
 121	char pageshift;		/* 1<<ps bytes in a page */
 122	char blockshift;	/* 1<<bs pages in an erase block */
 123	char zoneshift;		/* 1<<zs blocks in a zone */
 124				/* # of logical blocks is 125/128 of this */
 125	char pageadrlen;	/* length of an address in bytes - 1 */
 126};
 127
 128/*
 129 * NAND Flash Manufacturer ID Codes
 130 */
 131#define NAND_MFR_AMD		0x01
 132#define NAND_MFR_NATSEMI	0x8f
 133#define NAND_MFR_TOSHIBA	0x98
 134#define NAND_MFR_SAMSUNG	0xec
 135
 136static inline char *nand_flash_manufacturer(int manuf_id) {
 137	switch(manuf_id) {
 138	case NAND_MFR_AMD:
 139		return "AMD";
 140	case NAND_MFR_NATSEMI:
 141		return "NATSEMI";
 142	case NAND_MFR_TOSHIBA:
 143		return "Toshiba";
 144	case NAND_MFR_SAMSUNG:
 145		return "Samsung";
 146	default:
 147		return "unknown";
 148	}
 149}
 150
 151/*
 152 * It looks like it is unnecessary to attach manufacturer to the
 153 * remaining data: SSFDC prescribes manufacturer-independent id codes.
 154 *
 155 * 256 MB NAND flash has a 5-byte ID with 2nd byte 0xaa, 0xba, 0xca or 0xda.
 156 */
 157
 158static struct nand_flash_dev nand_flash_ids[] = {
 159	/* NAND flash */
 160	{ 0x6e, 20, 8, 4, 8, 2},	/* 1 MB */
 161	{ 0xe8, 20, 8, 4, 8, 2},	/* 1 MB */
 162	{ 0xec, 20, 8, 4, 8, 2},	/* 1 MB */
 163	{ 0x64, 21, 8, 4, 9, 2}, 	/* 2 MB */
 164	{ 0xea, 21, 8, 4, 9, 2},	/* 2 MB */
 165	{ 0x6b, 22, 9, 4, 9, 2},	/* 4 MB */
 166	{ 0xe3, 22, 9, 4, 9, 2},	/* 4 MB */
 167	{ 0xe5, 22, 9, 4, 9, 2},	/* 4 MB */
 168	{ 0xe6, 23, 9, 4, 10, 2},	/* 8 MB */
 169	{ 0x73, 24, 9, 5, 10, 2},	/* 16 MB */
 170	{ 0x75, 25, 9, 5, 10, 2},	/* 32 MB */
 171	{ 0x76, 26, 9, 5, 10, 3},	/* 64 MB */
 172	{ 0x79, 27, 9, 5, 10, 3},	/* 128 MB */
 173
 174	/* MASK ROM */
 175	{ 0x5d, 21, 9, 4, 8, 2},	/* 2 MB */
 176	{ 0xd5, 22, 9, 4, 9, 2},	/* 4 MB */
 177	{ 0xd6, 23, 9, 4, 10, 2},	/* 8 MB */
 178	{ 0x57, 24, 9, 4, 11, 2},	/* 16 MB */
 179	{ 0x58, 25, 9, 4, 12, 2},	/* 32 MB */
 180	{ 0,}
 181};
 182
 183static struct nand_flash_dev *
 184nand_find_id(unsigned char id) {
 185	int i;
 186
 187	for (i = 0; i < ARRAY_SIZE(nand_flash_ids); i++)
 188		if (nand_flash_ids[i].model_id == id)
 189			return &(nand_flash_ids[i]);
 190	return NULL;
 191}
 192
 193/*
 194 * ECC computation.
 195 */
 196static unsigned char parity[256];
 197static unsigned char ecc2[256];
 198
 199static void nand_init_ecc(void) {
 200	int i, j, a;
 201
 202	parity[0] = 0;
 203	for (i = 1; i < 256; i++)
 204		parity[i] = (parity[i&(i-1)] ^ 1);
 205
 206	for (i = 0; i < 256; i++) {
 207		a = 0;
 208		for (j = 0; j < 8; j++) {
 209			if (i & (1<<j)) {
 210				if ((j & 1) == 0)
 211					a ^= 0x04;
 212				if ((j & 2) == 0)
 213					a ^= 0x10;
 214				if ((j & 4) == 0)
 215					a ^= 0x40;
 216			}
 217		}
 218		ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0));
 219	}
 220}
 221
 222/* compute 3-byte ecc on 256 bytes */
 223static void nand_compute_ecc(unsigned char *data, unsigned char *ecc) {
 224	int i, j, a;
 225	unsigned char par = 0, bit, bits[8] = {0};
 226
 227	/* collect 16 checksum bits */
 228	for (i = 0; i < 256; i++) {
 229		par ^= data[i];
 230		bit = parity[data[i]];
 231		for (j = 0; j < 8; j++)
 232			if ((i & (1<<j)) == 0)
 233				bits[j] ^= bit;
 234	}
 235
 236	/* put 4+4+4 = 12 bits in the ecc */
 237	a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0];
 238	ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
 239
 240	a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4];
 241	ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
 242
 243	ecc[2] = ecc2[par];
 244}
 245
 246static int nand_compare_ecc(unsigned char *data, unsigned char *ecc) {
 247	return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]);
 248}
 249
 250static void nand_store_ecc(unsigned char *data, unsigned char *ecc) {
 251	memcpy(data, ecc, 3);
 252}
 253
 254/*
 255 * The actual driver starts here.
 256 */
 257
 258struct sddr09_card_info {
 259	unsigned long	capacity;	/* Size of card in bytes */
 260	int		pagesize;	/* Size of page in bytes */
 261	int		pageshift;	/* log2 of pagesize */
 262	int		blocksize;	/* Size of block in pages */
 263	int		blockshift;	/* log2 of blocksize */
 264	int		blockmask;	/* 2^blockshift - 1 */
 265	int		*lba_to_pba;	/* logical to physical map */
 266	int		*pba_to_lba;	/* physical to logical map */
 267	int		lbact;		/* number of available pages */
 268	int		flags;
 269#define	SDDR09_WP	1		/* write protected */
 270};
 271
 272/*
 273 * On my 16MB card, control blocks have size 64 (16 real control bytes,
 274 * and 48 junk bytes). In reality of course the card uses 16 control bytes,
 275 * so the reader makes up the remaining 48. Don't know whether these numbers
 276 * depend on the card. For now a constant.
 277 */
 278#define CONTROL_SHIFT 6
 279
 280/*
 281 * On my Combo CF/SM reader, the SM reader has LUN 1.
 282 * (and things fail with LUN 0).
 283 * It seems LUN is irrelevant for others.
 284 */
 285#define LUN	1
 286#define	LUNBITS	(LUN << 5)
 287
 288/*
 289 * LBA and PBA are unsigned ints. Special values.
 290 */
 291#define UNDEF    0xffffffff
 292#define SPARE    0xfffffffe
 293#define UNUSABLE 0xfffffffd
 294
 295static const int erase_bad_lba_entries = 0;
 296
 297/* send vendor interface command (0x41) */
 298/* called for requests 0, 1, 8 */
 299static int
 300sddr09_send_command(struct us_data *us,
 301		    unsigned char request,
 302		    unsigned char direction,
 303		    unsigned char *xfer_data,
 304		    unsigned int xfer_len) {
 305	unsigned int pipe;
 306	unsigned char requesttype = (0x41 | direction);
 307	int rc;
 308
 309	// Get the receive or send control pipe number
 310
 311	if (direction == USB_DIR_IN)
 312		pipe = us->recv_ctrl_pipe;
 313	else
 314		pipe = us->send_ctrl_pipe;
 315
 316	rc = usb_stor_ctrl_transfer(us, pipe, request, requesttype,
 317				   0, 0, xfer_data, xfer_len);
 318	switch (rc) {
 319		case USB_STOR_XFER_GOOD:	return 0;
 320		case USB_STOR_XFER_STALLED:	return -EPIPE;
 321		default:			return -EIO;
 322	}
 323}
 324
 325static int
 326sddr09_send_scsi_command(struct us_data *us,
 327			 unsigned char *command,
 328			 unsigned int command_len) {
 329	return sddr09_send_command(us, 0, USB_DIR_OUT, command, command_len);
 330}
 331
 332#if 0
 333/*
 334 * Test Unit Ready Command: 12 bytes.
 335 * byte 0: opcode: 00
 336 */
 337static int
 338sddr09_test_unit_ready(struct us_data *us) {
 339	unsigned char *command = us->iobuf;
 340	int result;
 341
 342	memset(command, 0, 6);
 343	command[1] = LUNBITS;
 344
 345	result = sddr09_send_scsi_command(us, command, 6);
 346
 347	usb_stor_dbg(us, "sddr09_test_unit_ready returns %d\n", result);
 348
 349	return result;
 350}
 351#endif
 352
 353/*
 354 * Request Sense Command: 12 bytes.
 355 * byte 0: opcode: 03
 356 * byte 4: data length
 357 */
 358static int
 359sddr09_request_sense(struct us_data *us, unsigned char *sensebuf, int buflen) {
 360	unsigned char *command = us->iobuf;
 361	int result;
 362
 363	memset(command, 0, 12);
 364	command[0] = 0x03;
 365	command[1] = LUNBITS;
 366	command[4] = buflen;
 367
 368	result = sddr09_send_scsi_command(us, command, 12);
 369	if (result)
 370		return result;
 371
 372	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
 373			sensebuf, buflen, NULL);
 374	return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
 375}
 376
 377/*
 378 * Read Command: 12 bytes.
 379 * byte 0: opcode: E8
 380 * byte 1: last two bits: 00: read data, 01: read blockwise control,
 381 *			10: read both, 11: read pagewise control.
 382 *	 It turns out we need values 20, 21, 22, 23 here (LUN 1).
 383 * bytes 2-5: address (interpretation depends on byte 1, see below)
 384 * bytes 10-11: count (idem)
 385 *
 386 * A page has 512 data bytes and 64 control bytes (16 control and 48 junk).
 387 * A read data command gets data in 512-byte pages.
 388 * A read control command gets control in 64-byte chunks.
 389 * A read both command gets data+control in 576-byte chunks.
 390 *
 391 * Blocks are groups of 32 pages, and read blockwise control jumps to the
 392 * next block, while read pagewise control jumps to the next page after
 393 * reading a group of 64 control bytes.
 394 * [Here 512 = 1<<pageshift, 32 = 1<<blockshift, 64 is constant?]
 395 *
 396 * (1 MB and 2 MB cards are a bit different, but I have only a 16 MB card.)
 397 */
 398
 399static int
 400sddr09_readX(struct us_data *us, int x, unsigned long fromaddress,
 401	     int nr_of_pages, int bulklen, unsigned char *buf,
 402	     int use_sg) {
 403
 404	unsigned char *command = us->iobuf;
 405	int result;
 406
 407	command[0] = 0xE8;
 408	command[1] = LUNBITS | x;
 409	command[2] = MSB_of(fromaddress>>16);
 410	command[3] = LSB_of(fromaddress>>16); 
 411	command[4] = MSB_of(fromaddress & 0xFFFF);
 412	command[5] = LSB_of(fromaddress & 0xFFFF); 
 413	command[6] = 0;
 414	command[7] = 0;
 415	command[8] = 0;
 416	command[9] = 0;
 417	command[10] = MSB_of(nr_of_pages);
 418	command[11] = LSB_of(nr_of_pages);
 419
 420	result = sddr09_send_scsi_command(us, command, 12);
 421
 422	if (result) {
 423		usb_stor_dbg(us, "Result for send_control in sddr09_read2%d %d\n",
 424			     x, result);
 425		return result;
 426	}
 427
 428	result = usb_stor_bulk_transfer_sg(us, us->recv_bulk_pipe,
 429				       buf, bulklen, use_sg, NULL);
 430
 431	if (result != USB_STOR_XFER_GOOD) {
 432		usb_stor_dbg(us, "Result for bulk_transfer in sddr09_read2%d %d\n",
 433			     x, result);
 434		return -EIO;
 435	}
 436	return 0;
 437}
 438
 439/*
 440 * Read Data
 441 *
 442 * fromaddress counts data shorts:
 443 * increasing it by 256 shifts the bytestream by 512 bytes;
 444 * the last 8 bits are ignored.
 445 *
 446 * nr_of_pages counts pages of size (1 << pageshift).
 447 */
 448static int
 449sddr09_read20(struct us_data *us, unsigned long fromaddress,
 450	      int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
 451	int bulklen = nr_of_pages << pageshift;
 452
 453	/* The last 8 bits of fromaddress are ignored. */
 454	return sddr09_readX(us, 0, fromaddress, nr_of_pages, bulklen,
 455			    buf, use_sg);
 456}
 457
 458/*
 459 * Read Blockwise Control
 460 *
 461 * fromaddress gives the starting position (as in read data;
 462 * the last 8 bits are ignored); increasing it by 32*256 shifts
 463 * the output stream by 64 bytes.
 464 *
 465 * count counts control groups of size (1 << controlshift).
 466 * For me, controlshift = 6. Is this constant?
 467 *
 468 * After getting one control group, jump to the next block
 469 * (fromaddress += 8192).
 470 */
 471static int
 472sddr09_read21(struct us_data *us, unsigned long fromaddress,
 473	      int count, int controlshift, unsigned char *buf, int use_sg) {
 474
 475	int bulklen = (count << controlshift);
 476	return sddr09_readX(us, 1, fromaddress, count, bulklen,
 477			    buf, use_sg);
 478}
 479
 480/*
 481 * Read both Data and Control
 482 *
 483 * fromaddress counts data shorts, ignoring control:
 484 * increasing it by 256 shifts the bytestream by 576 = 512+64 bytes;
 485 * the last 8 bits are ignored.
 486 *
 487 * nr_of_pages counts pages of size (1 << pageshift) + (1 << controlshift).
 488 */
 489static int
 490sddr09_read22(struct us_data *us, unsigned long fromaddress,
 491	      int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
 492
 493	int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
 494	usb_stor_dbg(us, "reading %d pages, %d bytes\n", nr_of_pages, bulklen);
 495	return sddr09_readX(us, 2, fromaddress, nr_of_pages, bulklen,
 496			    buf, use_sg);
 497}
 498
 499#if 0
 500/*
 501 * Read Pagewise Control
 502 *
 503 * fromaddress gives the starting position (as in read data;
 504 * the last 8 bits are ignored); increasing it by 256 shifts
 505 * the output stream by 64 bytes.
 506 *
 507 * count counts control groups of size (1 << controlshift).
 508 * For me, controlshift = 6. Is this constant?
 509 *
 510 * After getting one control group, jump to the next page
 511 * (fromaddress += 256).
 512 */
 513static int
 514sddr09_read23(struct us_data *us, unsigned long fromaddress,
 515	      int count, int controlshift, unsigned char *buf, int use_sg) {
 516
 517	int bulklen = (count << controlshift);
 518	return sddr09_readX(us, 3, fromaddress, count, bulklen,
 519			    buf, use_sg);
 520}
 521#endif
 522
 523/*
 524 * Erase Command: 12 bytes.
 525 * byte 0: opcode: EA
 526 * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
 527 * 
 528 * Always precisely one block is erased; bytes 2-5 and 10-11 are ignored.
 529 * The byte address being erased is 2*Eaddress.
 530 * The CIS cannot be erased.
 531 */
 532static int
 533sddr09_erase(struct us_data *us, unsigned long Eaddress) {
 534	unsigned char *command = us->iobuf;
 535	int result;
 536
 537	usb_stor_dbg(us, "erase address %lu\n", Eaddress);
 538
 539	memset(command, 0, 12);
 540	command[0] = 0xEA;
 541	command[1] = LUNBITS;
 542	command[6] = MSB_of(Eaddress>>16);
 543	command[7] = LSB_of(Eaddress>>16);
 544	command[8] = MSB_of(Eaddress & 0xFFFF);
 545	command[9] = LSB_of(Eaddress & 0xFFFF);
 546
 547	result = sddr09_send_scsi_command(us, command, 12);
 548
 549	if (result)
 550		usb_stor_dbg(us, "Result for send_control in sddr09_erase %d\n",
 551			     result);
 552
 553	return result;
 554}
 555
 556/*
 557 * Write CIS Command: 12 bytes.
 558 * byte 0: opcode: EE
 559 * bytes 2-5: write address in shorts
 560 * bytes 10-11: sector count
 561 *
 562 * This writes at the indicated address. Don't know how it differs
 563 * from E9. Maybe it does not erase? However, it will also write to
 564 * the CIS.
 565 *
 566 * When two such commands on the same page follow each other directly,
 567 * the second one is not done.
 568 */
 569
 570/*
 571 * Write Command: 12 bytes.
 572 * byte 0: opcode: E9
 573 * bytes 2-5: write address (big-endian, counting shorts, sector aligned).
 574 * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
 575 * bytes 10-11: sector count (big-endian, in 512-byte sectors).
 576 *
 577 * If write address equals erase address, the erase is done first,
 578 * otherwise the write is done first. When erase address equals zero
 579 * no erase is done?
 580 */
 581static int
 582sddr09_writeX(struct us_data *us,
 583	      unsigned long Waddress, unsigned long Eaddress,
 584	      int nr_of_pages, int bulklen, unsigned char *buf, int use_sg) {
 585
 586	unsigned char *command = us->iobuf;
 587	int result;
 588
 589	command[0] = 0xE9;
 590	command[1] = LUNBITS;
 591
 592	command[2] = MSB_of(Waddress>>16);
 593	command[3] = LSB_of(Waddress>>16);
 594	command[4] = MSB_of(Waddress & 0xFFFF);
 595	command[5] = LSB_of(Waddress & 0xFFFF);
 596
 597	command[6] = MSB_of(Eaddress>>16);
 598	command[7] = LSB_of(Eaddress>>16);
 599	command[8] = MSB_of(Eaddress & 0xFFFF);
 600	command[9] = LSB_of(Eaddress & 0xFFFF);
 601
 602	command[10] = MSB_of(nr_of_pages);
 603	command[11] = LSB_of(nr_of_pages);
 604
 605	result = sddr09_send_scsi_command(us, command, 12);
 606
 607	if (result) {
 608		usb_stor_dbg(us, "Result for send_control in sddr09_writeX %d\n",
 609			     result);
 610		return result;
 611	}
 612
 613	result = usb_stor_bulk_transfer_sg(us, us->send_bulk_pipe,
 614				       buf, bulklen, use_sg, NULL);
 615
 616	if (result != USB_STOR_XFER_GOOD) {
 617		usb_stor_dbg(us, "Result for bulk_transfer in sddr09_writeX %d\n",
 618			     result);
 619		return -EIO;
 620	}
 621	return 0;
 622}
 623
 624/* erase address, write same address */
 625static int
 626sddr09_write_inplace(struct us_data *us, unsigned long address,
 627		     int nr_of_pages, int pageshift, unsigned char *buf,
 628		     int use_sg) {
 629	int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
 630	return sddr09_writeX(us, address, address, nr_of_pages, bulklen,
 631			     buf, use_sg);
 632}
 633
 634#if 0
 635/*
 636 * Read Scatter Gather Command: 3+4n bytes.
 637 * byte 0: opcode E7
 638 * byte 2: n
 639 * bytes 4i-1,4i,4i+1: page address
 640 * byte 4i+2: page count
 641 * (i=1..n)
 642 *
 643 * This reads several pages from the card to a single memory buffer.
 644 * The last two bits of byte 1 have the same meaning as for E8.
 645 */
 646static int
 647sddr09_read_sg_test_only(struct us_data *us) {
 648	unsigned char *command = us->iobuf;
 649	int result, bulklen, nsg, ct;
 650	unsigned char *buf;
 651	unsigned long address;
 652
 653	nsg = bulklen = 0;
 654	command[0] = 0xE7;
 655	command[1] = LUNBITS;
 656	command[2] = 0;
 657	address = 040000; ct = 1;
 658	nsg++;
 659	bulklen += (ct << 9);
 660	command[4*nsg+2] = ct;
 661	command[4*nsg+1] = ((address >> 9) & 0xFF);
 662	command[4*nsg+0] = ((address >> 17) & 0xFF);
 663	command[4*nsg-1] = ((address >> 25) & 0xFF);
 664
 665	address = 0340000; ct = 1;
 666	nsg++;
 667	bulklen += (ct << 9);
 668	command[4*nsg+2] = ct;
 669	command[4*nsg+1] = ((address >> 9) & 0xFF);
 670	command[4*nsg+0] = ((address >> 17) & 0xFF);
 671	command[4*nsg-1] = ((address >> 25) & 0xFF);
 672
 673	address = 01000000; ct = 2;
 674	nsg++;
 675	bulklen += (ct << 9);
 676	command[4*nsg+2] = ct;
 677	command[4*nsg+1] = ((address >> 9) & 0xFF);
 678	command[4*nsg+0] = ((address >> 17) & 0xFF);
 679	command[4*nsg-1] = ((address >> 25) & 0xFF);
 680
 681	command[2] = nsg;
 682
 683	result = sddr09_send_scsi_command(us, command, 4*nsg+3);
 684
 685	if (result) {
 686		usb_stor_dbg(us, "Result for send_control in sddr09_read_sg %d\n",
 687			     result);
 688		return result;
 689	}
 690
 691	buf = kmalloc(bulklen, GFP_NOIO);
 692	if (!buf)
 693		return -ENOMEM;
 694
 695	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
 696				       buf, bulklen, NULL);
 697	kfree(buf);
 698	if (result != USB_STOR_XFER_GOOD) {
 699		usb_stor_dbg(us, "Result for bulk_transfer in sddr09_read_sg %d\n",
 700			     result);
 701		return -EIO;
 702	}
 703
 704	return 0;
 705}
 706#endif
 707
 708/*
 709 * Read Status Command: 12 bytes.
 710 * byte 0: opcode: EC
 711 *
 712 * Returns 64 bytes, all zero except for the first.
 713 * bit 0: 1: Error
 714 * bit 5: 1: Suspended
 715 * bit 6: 1: Ready
 716 * bit 7: 1: Not write-protected
 717 */
 718
 719static int
 720sddr09_read_status(struct us_data *us, unsigned char *status) {
 721
 722	unsigned char *command = us->iobuf;
 723	unsigned char *data = us->iobuf;
 724	int result;
 725
 726	usb_stor_dbg(us, "Reading status...\n");
 727
 728	memset(command, 0, 12);
 729	command[0] = 0xEC;
 730	command[1] = LUNBITS;
 731
 732	result = sddr09_send_scsi_command(us, command, 12);
 733	if (result)
 734		return result;
 735
 736	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
 737				       data, 64, NULL);
 738	*status = data[0];
 739	return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
 740}
 741
 742static int
 743sddr09_read_data(struct us_data *us,
 744		 unsigned long address,
 745		 unsigned int sectors) {
 746
 747	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
 748	unsigned char *buffer;
 749	unsigned int lba, maxlba, pba;
 750	unsigned int page, pages;
 751	unsigned int len, offset;
 752	struct scatterlist *sg;
 753	int result;
 754
 755	// Figure out the initial LBA and page
 756	lba = address >> info->blockshift;
 757	page = (address & info->blockmask);
 758	maxlba = info->capacity >> (info->pageshift + info->blockshift);
 759	if (lba >= maxlba)
 760		return -EIO;
 761
 762	// Since we only read in one block at a time, we have to create
 763	// a bounce buffer and move the data a piece at a time between the
 764	// bounce buffer and the actual transfer buffer.
 765
 766	len = min(sectors, (unsigned int) info->blocksize) * info->pagesize;
 767	buffer = kmalloc(len, GFP_NOIO);
 768	if (buffer == NULL) {
 769		printk(KERN_WARNING "sddr09_read_data: Out of memory\n");
 770		return -ENOMEM;
 771	}
 772
 773	// This could be made much more efficient by checking for
 774	// contiguous LBA's. Another exercise left to the student.
 775
 776	result = 0;
 777	offset = 0;
 778	sg = NULL;
 779
 780	while (sectors > 0) {
 781
 782		/* Find number of pages we can read in this block */
 783		pages = min(sectors, info->blocksize - page);
 784		len = pages << info->pageshift;
 785
 786		/* Not overflowing capacity? */
 787		if (lba >= maxlba) {
 788			usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
 789				     lba, maxlba);
 790			result = -EIO;
 791			break;
 792		}
 793
 794		/* Find where this lba lives on disk */
 795		pba = info->lba_to_pba[lba];
 796
 797		if (pba == UNDEF) {	/* this lba was never written */
 798
 799			usb_stor_dbg(us, "Read %d zero pages (LBA %d) page %d\n",
 800				     pages, lba, page);
 801
 802			/* This is not really an error. It just means
 803			   that the block has never been written.
 804			   Instead of returning an error
 805			   it is better to return all zero data. */
 
 
 806
 807			memset(buffer, 0, len);
 808
 809		} else {
 810			usb_stor_dbg(us, "Read %d pages, from PBA %d (LBA %d) page %d\n",
 811				     pages, pba, lba, page);
 812
 813			address = ((pba << info->blockshift) + page) << 
 814				info->pageshift;
 815
 816			result = sddr09_read20(us, address>>1,
 817					pages, info->pageshift, buffer, 0);
 818			if (result)
 819				break;
 820		}
 821
 822		// Store the data in the transfer buffer
 823		usb_stor_access_xfer_buf(buffer, len, us->srb,
 824				&sg, &offset, TO_XFER_BUF);
 825
 826		page = 0;
 827		lba++;
 828		sectors -= pages;
 829	}
 830
 831	kfree(buffer);
 832	return result;
 833}
 834
 835static unsigned int
 836sddr09_find_unused_pba(struct sddr09_card_info *info, unsigned int lba) {
 837	static unsigned int lastpba = 1;
 838	int zonestart, end, i;
 839
 840	zonestart = (lba/1000) << 10;
 841	end = info->capacity >> (info->blockshift + info->pageshift);
 842	end -= zonestart;
 843	if (end > 1024)
 844		end = 1024;
 845
 846	for (i = lastpba+1; i < end; i++) {
 847		if (info->pba_to_lba[zonestart+i] == UNDEF) {
 848			lastpba = i;
 849			return zonestart+i;
 850		}
 851	}
 852	for (i = 0; i <= lastpba; i++) {
 853		if (info->pba_to_lba[zonestart+i] == UNDEF) {
 854			lastpba = i;
 855			return zonestart+i;
 856		}
 857	}
 858	return 0;
 859}
 860
 861static int
 862sddr09_write_lba(struct us_data *us, unsigned int lba,
 863		 unsigned int page, unsigned int pages,
 864		 unsigned char *ptr, unsigned char *blockbuffer) {
 865
 866	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
 867	unsigned long address;
 868	unsigned int pba, lbap;
 869	unsigned int pagelen;
 870	unsigned char *bptr, *cptr, *xptr;
 871	unsigned char ecc[3];
 872	int i, result, isnew;
 873
 874	lbap = ((lba % 1000) << 1) | 0x1000;
 875	if (parity[MSB_of(lbap) ^ LSB_of(lbap)])
 876		lbap ^= 1;
 877	pba = info->lba_to_pba[lba];
 878	isnew = 0;
 879
 880	if (pba == UNDEF) {
 881		pba = sddr09_find_unused_pba(info, lba);
 882		if (!pba) {
 883			printk(KERN_WARNING
 884			       "sddr09_write_lba: Out of unused blocks\n");
 885			return -ENOSPC;
 886		}
 887		info->pba_to_lba[pba] = lba;
 888		info->lba_to_pba[lba] = pba;
 889		isnew = 1;
 890	}
 891
 892	if (pba == 1) {
 893		/* Maybe it is impossible to write to PBA 1.
 894		   Fake success, but don't do anything. */
 
 
 895		printk(KERN_WARNING "sddr09: avoid writing to pba 1\n");
 896		return 0;
 897	}
 898
 899	pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);
 900
 901	/* read old contents */
 902	address = (pba << (info->pageshift + info->blockshift));
 903	result = sddr09_read22(us, address>>1, info->blocksize,
 904			       info->pageshift, blockbuffer, 0);
 905	if (result)
 906		return result;
 907
 908	/* check old contents and fill lba */
 909	for (i = 0; i < info->blocksize; i++) {
 910		bptr = blockbuffer + i*pagelen;
 911		cptr = bptr + info->pagesize;
 912		nand_compute_ecc(bptr, ecc);
 913		if (!nand_compare_ecc(cptr+13, ecc)) {
 914			usb_stor_dbg(us, "Warning: bad ecc in page %d- of pba %d\n",
 915				     i, pba);
 916			nand_store_ecc(cptr+13, ecc);
 917		}
 918		nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
 919		if (!nand_compare_ecc(cptr+8, ecc)) {
 920			usb_stor_dbg(us, "Warning: bad ecc in page %d+ of pba %d\n",
 921				     i, pba);
 922			nand_store_ecc(cptr+8, ecc);
 923		}
 924		cptr[6] = cptr[11] = MSB_of(lbap);
 925		cptr[7] = cptr[12] = LSB_of(lbap);
 926	}
 927
 928	/* copy in new stuff and compute ECC */
 929	xptr = ptr;
 930	for (i = page; i < page+pages; i++) {
 931		bptr = blockbuffer + i*pagelen;
 932		cptr = bptr + info->pagesize;
 933		memcpy(bptr, xptr, info->pagesize);
 934		xptr += info->pagesize;
 935		nand_compute_ecc(bptr, ecc);
 936		nand_store_ecc(cptr+13, ecc);
 937		nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
 938		nand_store_ecc(cptr+8, ecc);
 939	}
 940
 941	usb_stor_dbg(us, "Rewrite PBA %d (LBA %d)\n", pba, lba);
 942
 943	result = sddr09_write_inplace(us, address>>1, info->blocksize,
 944				      info->pageshift, blockbuffer, 0);
 945
 946	usb_stor_dbg(us, "sddr09_write_inplace returns %d\n", result);
 947
 948#if 0
 949	{
 950		unsigned char status = 0;
 951		int result2 = sddr09_read_status(us, &status);
 952		if (result2)
 953			usb_stor_dbg(us, "cannot read status\n");
 954		else if (status != 0xc0)
 955			usb_stor_dbg(us, "status after write: 0x%x\n", status);
 956	}
 957#endif
 958
 959#if 0
 960	{
 961		int result2 = sddr09_test_unit_ready(us);
 962	}
 963#endif
 964
 965	return result;
 966}
 967
 968static int
 969sddr09_write_data(struct us_data *us,
 970		  unsigned long address,
 971		  unsigned int sectors) {
 972
 973	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
 974	unsigned int lba, maxlba, page, pages;
 975	unsigned int pagelen, blocklen;
 976	unsigned char *blockbuffer;
 977	unsigned char *buffer;
 978	unsigned int len, offset;
 979	struct scatterlist *sg;
 980	int result;
 981
 982	// Figure out the initial LBA and page
 983	lba = address >> info->blockshift;
 984	page = (address & info->blockmask);
 985	maxlba = info->capacity >> (info->pageshift + info->blockshift);
 986	if (lba >= maxlba)
 987		return -EIO;
 988
 989	// blockbuffer is used for reading in the old data, overwriting
 990	// with the new data, and performing ECC calculations
 
 
 991
 992	/* TODO: instead of doing kmalloc/kfree for each write,
 993	   add a bufferpointer to the info structure */
 
 
 994
 995	pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);
 996	blocklen = (pagelen << info->blockshift);
 997	blockbuffer = kmalloc(blocklen, GFP_NOIO);
 998	if (!blockbuffer) {
 999		printk(KERN_WARNING "sddr09_write_data: Out of memory\n");
1000		return -ENOMEM;
1001	}
1002
1003	// Since we don't write the user data directly to the device,
1004	// we have to create a bounce buffer and move the data a piece
1005	// at a time between the bounce buffer and the actual transfer buffer.
 
 
1006
1007	len = min(sectors, (unsigned int) info->blocksize) * info->pagesize;
1008	buffer = kmalloc(len, GFP_NOIO);
1009	if (buffer == NULL) {
1010		printk(KERN_WARNING "sddr09_write_data: Out of memory\n");
1011		kfree(blockbuffer);
1012		return -ENOMEM;
1013	}
1014
1015	result = 0;
1016	offset = 0;
1017	sg = NULL;
1018
1019	while (sectors > 0) {
1020
1021		// Write as many sectors as possible in this block
1022
1023		pages = min(sectors, info->blocksize - page);
1024		len = (pages << info->pageshift);
1025
1026		/* Not overflowing capacity? */
1027		if (lba >= maxlba) {
1028			usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
1029				     lba, maxlba);
1030			result = -EIO;
1031			break;
1032		}
1033
1034		// Get the data from the transfer buffer
1035		usb_stor_access_xfer_buf(buffer, len, us->srb,
1036				&sg, &offset, FROM_XFER_BUF);
1037
1038		result = sddr09_write_lba(us, lba, page, pages,
1039				buffer, blockbuffer);
1040		if (result)
1041			break;
1042
1043		page = 0;
1044		lba++;
1045		sectors -= pages;
1046	}
1047
1048	kfree(buffer);
1049	kfree(blockbuffer);
1050
1051	return result;
1052}
1053
1054static int
1055sddr09_read_control(struct us_data *us,
1056		unsigned long address,
1057		unsigned int blocks,
1058		unsigned char *content,
1059		int use_sg) {
1060
1061	usb_stor_dbg(us, "Read control address %lu, blocks %d\n",
1062		     address, blocks);
1063
1064	return sddr09_read21(us, address, blocks,
1065			     CONTROL_SHIFT, content, use_sg);
1066}
1067
1068/*
1069 * Read Device ID Command: 12 bytes.
1070 * byte 0: opcode: ED
1071 *
1072 * Returns 2 bytes: Manufacturer ID and Device ID.
1073 * On more recent cards 3 bytes: the third byte is an option code A5
1074 * signifying that the secret command to read an 128-bit ID is available.
1075 * On still more recent cards 4 bytes: the fourth byte C0 means that
1076 * a second read ID cmd is available.
1077 */
1078static int
1079sddr09_read_deviceID(struct us_data *us, unsigned char *deviceID) {
1080	unsigned char *command = us->iobuf;
1081	unsigned char *content = us->iobuf;
1082	int result, i;
1083
1084	memset(command, 0, 12);
1085	command[0] = 0xED;
1086	command[1] = LUNBITS;
1087
1088	result = sddr09_send_scsi_command(us, command, 12);
1089	if (result)
1090		return result;
1091
1092	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
1093			content, 64, NULL);
1094
1095	for (i = 0; i < 4; i++)
1096		deviceID[i] = content[i];
1097
1098	return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
1099}
1100
1101static int
1102sddr09_get_wp(struct us_data *us, struct sddr09_card_info *info) {
1103	int result;
1104	unsigned char status;
1105	const char *wp_fmt;
1106
1107	result = sddr09_read_status(us, &status);
1108	if (result) {
1109		usb_stor_dbg(us, "read_status fails\n");
1110		return result;
1111	}
1112	if ((status & 0x80) == 0) {
1113		info->flags |= SDDR09_WP;	/* write protected */
1114		wp_fmt = " WP";
1115	} else {
1116		wp_fmt = "";
1117	}
1118	usb_stor_dbg(us, "status 0x%02X%s%s%s%s\n", status, wp_fmt,
1119		     status & 0x40 ? " Ready" : "",
1120		     status & LUNBITS ? " Suspended" : "",
1121		     status & 0x01 ? " Error" : "");
1122
1123	return 0;
1124}
1125
1126#if 0
1127/*
1128 * Reset Command: 12 bytes.
1129 * byte 0: opcode: EB
1130 */
1131static int
1132sddr09_reset(struct us_data *us) {
1133
1134	unsigned char *command = us->iobuf;
1135
1136	memset(command, 0, 12);
1137	command[0] = 0xEB;
1138	command[1] = LUNBITS;
1139
1140	return sddr09_send_scsi_command(us, command, 12);
1141}
1142#endif
1143
1144static struct nand_flash_dev *
1145sddr09_get_cardinfo(struct us_data *us, unsigned char flags) {
1146	struct nand_flash_dev *cardinfo;
1147	unsigned char deviceID[4];
1148	char blurbtxt[256];
1149	int result;
1150
1151	usb_stor_dbg(us, "Reading capacity...\n");
1152
1153	result = sddr09_read_deviceID(us, deviceID);
1154
1155	if (result) {
1156		usb_stor_dbg(us, "Result of read_deviceID is %d\n", result);
1157		printk(KERN_WARNING "sddr09: could not read card info\n");
1158		return NULL;
1159	}
1160
1161	sprintf(blurbtxt, "sddr09: Found Flash card, ID = %4ph", deviceID);
1162
1163	/* Byte 0 is the manufacturer */
1164	sprintf(blurbtxt + strlen(blurbtxt),
1165		": Manuf. %s",
1166		nand_flash_manufacturer(deviceID[0]));
1167
1168	/* Byte 1 is the device type */
1169	cardinfo = nand_find_id(deviceID[1]);
1170	if (cardinfo) {
1171		/* MB or MiB? It is neither. A 16 MB card has
1172		   17301504 raw bytes, of which 16384000 are
1173		   usable for user data. */
 
 
1174		sprintf(blurbtxt + strlen(blurbtxt),
1175			", %d MB", 1<<(cardinfo->chipshift - 20));
1176	} else {
1177		sprintf(blurbtxt + strlen(blurbtxt),
1178			", type unrecognized");
1179	}
1180
1181	/* Byte 2 is code to signal availability of 128-bit ID */
1182	if (deviceID[2] == 0xa5) {
1183		sprintf(blurbtxt + strlen(blurbtxt),
1184			", 128-bit ID");
1185	}
1186
1187	/* Byte 3 announces the availability of another read ID command */
1188	if (deviceID[3] == 0xc0) {
1189		sprintf(blurbtxt + strlen(blurbtxt),
1190			", extra cmd");
1191	}
1192
1193	if (flags & SDDR09_WP)
1194		sprintf(blurbtxt + strlen(blurbtxt),
1195			", WP");
1196
1197	printk(KERN_WARNING "%s\n", blurbtxt);
1198
1199	return cardinfo;
1200}
1201
1202static int
1203sddr09_read_map(struct us_data *us) {
1204
1205	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
1206	int numblocks, alloc_len, alloc_blocks;
1207	int i, j, result;
1208	unsigned char *buffer, *buffer_end, *ptr;
1209	unsigned int lba, lbact;
1210
1211	if (!info->capacity)
1212		return -1;
1213
1214	// size of a block is 1 << (blockshift + pageshift) bytes
1215	// divide into the total capacity to get the number of blocks
 
 
1216
1217	numblocks = info->capacity >> (info->blockshift + info->pageshift);
1218
1219	// read 64 bytes for every block (actually 1 << CONTROL_SHIFT)
1220	// but only use a 64 KB buffer
1221	// buffer size used must be a multiple of (1 << CONTROL_SHIFT)
 
 
1222#define SDDR09_READ_MAP_BUFSZ 65536
1223
1224	alloc_blocks = min(numblocks, SDDR09_READ_MAP_BUFSZ >> CONTROL_SHIFT);
1225	alloc_len = (alloc_blocks << CONTROL_SHIFT);
1226	buffer = kmalloc(alloc_len, GFP_NOIO);
1227	if (buffer == NULL) {
1228		printk(KERN_WARNING "sddr09_read_map: out of memory\n");
1229		result = -1;
1230		goto done;
1231	}
1232	buffer_end = buffer + alloc_len;
1233
1234#undef SDDR09_READ_MAP_BUFSZ
1235
1236	kfree(info->lba_to_pba);
1237	kfree(info->pba_to_lba);
1238	info->lba_to_pba = kmalloc(numblocks*sizeof(int), GFP_NOIO);
1239	info->pba_to_lba = kmalloc(numblocks*sizeof(int), GFP_NOIO);
1240
1241	if (info->lba_to_pba == NULL || info->pba_to_lba == NULL) {
1242		printk(KERN_WARNING "sddr09_read_map: out of memory\n");
1243		result = -1;
1244		goto done;
1245	}
1246
1247	for (i = 0; i < numblocks; i++)
1248		info->lba_to_pba[i] = info->pba_to_lba[i] = UNDEF;
1249
1250	/*
1251	 * Define lba-pba translation table
1252	 */
1253
1254	ptr = buffer_end;
1255	for (i = 0; i < numblocks; i++) {
1256		ptr += (1 << CONTROL_SHIFT);
1257		if (ptr >= buffer_end) {
1258			unsigned long address;
1259
1260			address = i << (info->pageshift + info->blockshift);
1261			result = sddr09_read_control(
1262				us, address>>1,
1263				min(alloc_blocks, numblocks - i),
1264				buffer, 0);
1265			if (result) {
1266				result = -1;
1267				goto done;
1268			}
1269			ptr = buffer;
1270		}
1271
1272		if (i == 0 || i == 1) {
1273			info->pba_to_lba[i] = UNUSABLE;
1274			continue;
1275		}
1276
1277		/* special PBAs have control field 0^16 */
1278		for (j = 0; j < 16; j++)
1279			if (ptr[j] != 0)
1280				goto nonz;
1281		info->pba_to_lba[i] = UNUSABLE;
1282		printk(KERN_WARNING "sddr09: PBA %d has no logical mapping\n",
1283		       i);
1284		continue;
1285
1286	nonz:
1287		/* unwritten PBAs have control field FF^16 */
1288		for (j = 0; j < 16; j++)
1289			if (ptr[j] != 0xff)
1290				goto nonff;
1291		continue;
1292
1293	nonff:
1294		/* normal PBAs start with six FFs */
1295		if (j < 6) {
1296			printk(KERN_WARNING
1297			       "sddr09: PBA %d has no logical mapping: "
1298			       "reserved area = %02X%02X%02X%02X "
1299			       "data status %02X block status %02X\n",
1300			       i, ptr[0], ptr[1], ptr[2], ptr[3],
1301			       ptr[4], ptr[5]);
1302			info->pba_to_lba[i] = UNUSABLE;
1303			continue;
1304		}
1305
1306		if ((ptr[6] >> 4) != 0x01) {
1307			printk(KERN_WARNING
1308			       "sddr09: PBA %d has invalid address field "
1309			       "%02X%02X/%02X%02X\n",
1310			       i, ptr[6], ptr[7], ptr[11], ptr[12]);
1311			info->pba_to_lba[i] = UNUSABLE;
1312			continue;
1313		}
1314
1315		/* check even parity */
1316		if (parity[ptr[6] ^ ptr[7]]) {
1317			printk(KERN_WARNING
1318			       "sddr09: Bad parity in LBA for block %d"
1319			       " (%02X %02X)\n", i, ptr[6], ptr[7]);
1320			info->pba_to_lba[i] = UNUSABLE;
1321			continue;
1322		}
1323
1324		lba = short_pack(ptr[7], ptr[6]);
1325		lba = (lba & 0x07FF) >> 1;
1326
1327		/*
1328		 * Every 1024 physical blocks ("zone"), the LBA numbers
1329		 * go back to zero, but are within a higher block of LBA's.
1330		 * Also, there is a maximum of 1000 LBA's per zone.
1331		 * In other words, in PBA 1024-2047 you will find LBA 0-999
1332		 * which are really LBA 1000-1999. This allows for 24 bad
1333		 * or special physical blocks per zone.
1334		 */
1335
1336		if (lba >= 1000) {
1337			printk(KERN_WARNING
1338			       "sddr09: Bad low LBA %d for block %d\n",
1339			       lba, i);
1340			goto possibly_erase;
1341		}
1342
1343		lba += 1000*(i/0x400);
1344
1345		if (info->lba_to_pba[lba] != UNDEF) {
1346			printk(KERN_WARNING
1347			       "sddr09: LBA %d seen for PBA %d and %d\n",
1348			       lba, info->lba_to_pba[lba], i);
1349			goto possibly_erase;
1350		}
1351
1352		info->pba_to_lba[i] = lba;
1353		info->lba_to_pba[lba] = i;
1354		continue;
1355
1356	possibly_erase:
1357		if (erase_bad_lba_entries) {
1358			unsigned long address;
1359
1360			address = (i << (info->pageshift + info->blockshift));
1361			sddr09_erase(us, address>>1);
1362			info->pba_to_lba[i] = UNDEF;
1363		} else
1364			info->pba_to_lba[i] = UNUSABLE;
1365	}
1366
1367	/*
1368	 * Approximate capacity. This is not entirely correct yet,
1369	 * since a zone with less than 1000 usable pages leads to
1370	 * missing LBAs. Especially if it is the last zone, some
1371	 * LBAs can be past capacity.
1372	 */
1373	lbact = 0;
1374	for (i = 0; i < numblocks; i += 1024) {
1375		int ct = 0;
1376
1377		for (j = 0; j < 1024 && i+j < numblocks; j++) {
1378			if (info->pba_to_lba[i+j] != UNUSABLE) {
1379				if (ct >= 1000)
1380					info->pba_to_lba[i+j] = SPARE;
1381				else
1382					ct++;
1383			}
1384		}
1385		lbact += ct;
1386	}
1387	info->lbact = lbact;
1388	usb_stor_dbg(us, "Found %d LBA's\n", lbact);
1389	result = 0;
1390
1391 done:
1392	if (result != 0) {
1393		kfree(info->lba_to_pba);
1394		kfree(info->pba_to_lba);
1395		info->lba_to_pba = NULL;
1396		info->pba_to_lba = NULL;
1397	}
1398	kfree(buffer);
1399	return result;
1400}
1401
1402static void
1403sddr09_card_info_destructor(void *extra) {
1404	struct sddr09_card_info *info = (struct sddr09_card_info *)extra;
1405
1406	if (!info)
1407		return;
1408
1409	kfree(info->lba_to_pba);
1410	kfree(info->pba_to_lba);
1411}
1412
1413static int
1414sddr09_common_init(struct us_data *us) {
1415	int result;
1416
1417	/* set the configuration -- STALL is an acceptable response here */
1418	if (us->pusb_dev->actconfig->desc.bConfigurationValue != 1) {
1419		usb_stor_dbg(us, "active config #%d != 1 ??\n",
1420			     us->pusb_dev->actconfig->desc.bConfigurationValue);
1421		return -EINVAL;
1422	}
1423
1424	result = usb_reset_configuration(us->pusb_dev);
1425	usb_stor_dbg(us, "Result of usb_reset_configuration is %d\n", result);
1426	if (result == -EPIPE) {
1427		usb_stor_dbg(us, "-- stall on control interface\n");
1428	} else if (result != 0) {
1429		/* it's not a stall, but another error -- time to bail */
1430		usb_stor_dbg(us, "-- Unknown error.  Rejecting device\n");
1431		return -EINVAL;
1432	}
1433
1434	us->extra = kzalloc(sizeof(struct sddr09_card_info), GFP_NOIO);
1435	if (!us->extra)
1436		return -ENOMEM;
1437	us->extra_destructor = sddr09_card_info_destructor;
1438
1439	nand_init_ecc();
1440	return 0;
1441}
1442
1443
1444/*
1445 * This is needed at a very early stage. If this is not listed in the
1446 * unusual devices list but called from here then LUN 0 of the combo reader
1447 * is not recognized. But I do not know what precisely these calls do.
1448 */
1449static int
1450usb_stor_sddr09_dpcm_init(struct us_data *us) {
1451	int result;
1452	unsigned char *data = us->iobuf;
1453
1454	result = sddr09_common_init(us);
1455	if (result)
1456		return result;
1457
1458	result = sddr09_send_command(us, 0x01, USB_DIR_IN, data, 2);
1459	if (result) {
1460		usb_stor_dbg(us, "send_command fails\n");
1461		return result;
1462	}
1463
1464	usb_stor_dbg(us, "%02X %02X\n", data[0], data[1]);
1465	// get 07 02
1466
1467	result = sddr09_send_command(us, 0x08, USB_DIR_IN, data, 2);
1468	if (result) {
1469		usb_stor_dbg(us, "2nd send_command fails\n");
1470		return result;
1471	}
1472
1473	usb_stor_dbg(us, "%02X %02X\n", data[0], data[1]);
1474	// get 07 00
1475
1476	result = sddr09_request_sense(us, data, 18);
1477	if (result == 0 && data[2] != 0) {
1478		int j;
1479		for (j=0; j<18; j++)
1480			printk(" %02X", data[j]);
1481		printk("\n");
1482		// get 70 00 00 00 00 00 00 * 00 00 00 00 00 00
1483		// 70: current command
1484		// sense key 0, sense code 0, extd sense code 0
1485		// additional transfer length * = sizeof(data) - 7
1486		// Or: 70 00 06 00 00 00 00 0b 00 00 00 00 28 00 00 00 00 00
1487		// sense key 06, sense code 28: unit attention,
1488		// not ready to ready transition
1489	}
1490
1491	// test unit ready
1492
1493	return 0;		/* not result */
1494}
1495
1496/*
1497 * Transport for the Microtech DPCM-USB
1498 */
1499static int dpcm_transport(struct scsi_cmnd *srb, struct us_data *us)
1500{
1501	int ret;
1502
1503	usb_stor_dbg(us, "LUN=%d\n", (u8)srb->device->lun);
1504
1505	switch (srb->device->lun) {
1506	case 0:
1507
1508		/*
1509		 * LUN 0 corresponds to the CompactFlash card reader.
1510		 */
1511		ret = usb_stor_CB_transport(srb, us);
1512		break;
1513
1514	case 1:
1515
1516		/*
1517		 * LUN 1 corresponds to the SmartMedia card reader.
1518		 */
1519
1520		/*
1521		 * Set the LUN to 0 (just in case).
1522		 */
1523		srb->device->lun = 0;
1524		ret = sddr09_transport(srb, us);
1525		srb->device->lun = 1;
1526		break;
1527
1528	default:
1529	    usb_stor_dbg(us, "Invalid LUN %d\n", (u8)srb->device->lun);
1530		ret = USB_STOR_TRANSPORT_ERROR;
1531		break;
1532	}
1533	return ret;
1534}
1535
1536
1537/*
1538 * Transport for the Sandisk SDDR-09
1539 */
1540static int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us)
1541{
1542	static unsigned char sensekey = 0, sensecode = 0;
1543	static unsigned char havefakesense = 0;
1544	int result, i;
1545	unsigned char *ptr = us->iobuf;
1546	unsigned long capacity;
1547	unsigned int page, pages;
1548
1549	struct sddr09_card_info *info;
1550
1551	static unsigned char inquiry_response[8] = {
1552		0x00, 0x80, 0x00, 0x02, 0x1F, 0x00, 0x00, 0x00
1553	};
1554
1555	/* note: no block descriptor support */
1556	static unsigned char mode_page_01[19] = {
1557		0x00, 0x0F, 0x00, 0x0, 0x0, 0x0, 0x00,
1558		0x01, 0x0A,
1559		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
1560	};
1561
1562	info = (struct sddr09_card_info *)us->extra;
1563
1564	if (srb->cmnd[0] == REQUEST_SENSE && havefakesense) {
1565		/* for a faked command, we have to follow with a faked sense */
1566		memset(ptr, 0, 18);
1567		ptr[0] = 0x70;
1568		ptr[2] = sensekey;
1569		ptr[7] = 11;
1570		ptr[12] = sensecode;
1571		usb_stor_set_xfer_buf(ptr, 18, srb);
1572		sensekey = sensecode = havefakesense = 0;
1573		return USB_STOR_TRANSPORT_GOOD;
1574	}
1575
1576	havefakesense = 1;
1577
1578	/* Dummy up a response for INQUIRY since SDDR09 doesn't
1579	   respond to INQUIRY commands */
 
 
1580
1581	if (srb->cmnd[0] == INQUIRY) {
1582		memcpy(ptr, inquiry_response, 8);
1583		fill_inquiry_response(us, ptr, 36);
1584		return USB_STOR_TRANSPORT_GOOD;
1585	}
1586
1587	if (srb->cmnd[0] == READ_CAPACITY) {
1588		struct nand_flash_dev *cardinfo;
1589
1590		sddr09_get_wp(us, info);	/* read WP bit */
1591
1592		cardinfo = sddr09_get_cardinfo(us, info->flags);
1593		if (!cardinfo) {
1594			/* probably no media */
1595		init_error:
1596			sensekey = 0x02;	/* not ready */
1597			sensecode = 0x3a;	/* medium not present */
1598			return USB_STOR_TRANSPORT_FAILED;
1599		}
1600
1601		info->capacity = (1 << cardinfo->chipshift);
1602		info->pageshift = cardinfo->pageshift;
1603		info->pagesize = (1 << info->pageshift);
1604		info->blockshift = cardinfo->blockshift;
1605		info->blocksize = (1 << info->blockshift);
1606		info->blockmask = info->blocksize - 1;
1607
1608		// map initialization, must follow get_cardinfo()
1609		if (sddr09_read_map(us)) {
1610			/* probably out of memory */
1611			goto init_error;
1612		}
1613
1614		// Report capacity
1615
1616		capacity = (info->lbact << info->blockshift) - 1;
1617
1618		((__be32 *) ptr)[0] = cpu_to_be32(capacity);
1619
1620		// Report page size
1621
1622		((__be32 *) ptr)[1] = cpu_to_be32(info->pagesize);
1623		usb_stor_set_xfer_buf(ptr, 8, srb);
1624
1625		return USB_STOR_TRANSPORT_GOOD;
1626	}
1627
1628	if (srb->cmnd[0] == MODE_SENSE_10) {
1629		int modepage = (srb->cmnd[2] & 0x3F);
1630
1631		/* They ask for the Read/Write error recovery page,
1632		   or for all pages. */
 
 
1633		/* %% We should check DBD %% */
1634		if (modepage == 0x01 || modepage == 0x3F) {
1635			usb_stor_dbg(us, "Dummy up request for mode page 0x%x\n",
1636				     modepage);
1637
1638			memcpy(ptr, mode_page_01, sizeof(mode_page_01));
1639			((__be16*)ptr)[0] = cpu_to_be16(sizeof(mode_page_01) - 2);
1640			ptr[3] = (info->flags & SDDR09_WP) ? 0x80 : 0;
1641			usb_stor_set_xfer_buf(ptr, sizeof(mode_page_01), srb);
1642			return USB_STOR_TRANSPORT_GOOD;
1643		}
1644
1645		sensekey = 0x05;	/* illegal request */
1646		sensecode = 0x24;	/* invalid field in CDB */
1647		return USB_STOR_TRANSPORT_FAILED;
1648	}
1649
1650	if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL)
1651		return USB_STOR_TRANSPORT_GOOD;
1652
1653	havefakesense = 0;
1654
1655	if (srb->cmnd[0] == READ_10) {
1656
1657		page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1658		page <<= 16;
1659		page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1660		pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1661
1662		usb_stor_dbg(us, "READ_10: read page %d pagect %d\n",
1663			     page, pages);
1664
1665		result = sddr09_read_data(us, page, pages);
1666		return (result == 0 ? USB_STOR_TRANSPORT_GOOD :
1667				USB_STOR_TRANSPORT_ERROR);
1668	}
1669
1670	if (srb->cmnd[0] == WRITE_10) {
1671
1672		page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1673		page <<= 16;
1674		page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1675		pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1676
1677		usb_stor_dbg(us, "WRITE_10: write page %d pagect %d\n",
1678			     page, pages);
1679
1680		result = sddr09_write_data(us, page, pages);
1681		return (result == 0 ? USB_STOR_TRANSPORT_GOOD :
1682				USB_STOR_TRANSPORT_ERROR);
1683	}
1684
1685	/* catch-all for all other commands, except
 
1686	 * pass TEST_UNIT_READY and REQUEST_SENSE through
1687	 */
1688	if (srb->cmnd[0] != TEST_UNIT_READY &&
1689	    srb->cmnd[0] != REQUEST_SENSE) {
1690		sensekey = 0x05;	/* illegal request */
1691		sensecode = 0x20;	/* invalid command */
1692		havefakesense = 1;
1693		return USB_STOR_TRANSPORT_FAILED;
1694	}
1695
1696	for (; srb->cmd_len<12; srb->cmd_len++)
1697		srb->cmnd[srb->cmd_len] = 0;
1698
1699	srb->cmnd[1] = LUNBITS;
1700
1701	ptr[0] = 0;
1702	for (i=0; i<12; i++)
1703		sprintf(ptr+strlen(ptr), "%02X ", srb->cmnd[i]);
1704
1705	usb_stor_dbg(us, "Send control for command %s\n", ptr);
1706
1707	result = sddr09_send_scsi_command(us, srb->cmnd, 12);
1708	if (result) {
1709		usb_stor_dbg(us, "sddr09_send_scsi_command returns %d\n",
1710			     result);
1711		return USB_STOR_TRANSPORT_ERROR;
1712	}
1713
1714	if (scsi_bufflen(srb) == 0)
1715		return USB_STOR_TRANSPORT_GOOD;
1716
1717	if (srb->sc_data_direction == DMA_TO_DEVICE ||
1718	    srb->sc_data_direction == DMA_FROM_DEVICE) {
1719		unsigned int pipe = (srb->sc_data_direction == DMA_TO_DEVICE)
1720				? us->send_bulk_pipe : us->recv_bulk_pipe;
1721
1722		usb_stor_dbg(us, "%s %d bytes\n",
1723			     (srb->sc_data_direction == DMA_TO_DEVICE) ?
1724			     "sending" : "receiving",
1725			     scsi_bufflen(srb));
1726
1727		result = usb_stor_bulk_srb(us, pipe, srb);
1728
1729		return (result == USB_STOR_XFER_GOOD ?
1730			USB_STOR_TRANSPORT_GOOD : USB_STOR_TRANSPORT_ERROR);
1731	} 
1732
1733	return USB_STOR_TRANSPORT_GOOD;
1734}
1735
1736/*
1737 * Initialization routine for the sddr09 subdriver
1738 */
1739static int
1740usb_stor_sddr09_init(struct us_data *us) {
1741	return sddr09_common_init(us);
1742}
1743
1744static struct scsi_host_template sddr09_host_template;
1745
1746static int sddr09_probe(struct usb_interface *intf,
1747			 const struct usb_device_id *id)
1748{
1749	struct us_data *us;
1750	int result;
1751
1752	result = usb_stor_probe1(&us, intf, id,
1753			(id - sddr09_usb_ids) + sddr09_unusual_dev_list,
1754			&sddr09_host_template);
1755	if (result)
1756		return result;
1757
1758	if (us->protocol == USB_PR_DPCM_USB) {
1759		us->transport_name = "Control/Bulk-EUSB/SDDR09";
1760		us->transport = dpcm_transport;
1761		us->transport_reset = usb_stor_CB_reset;
1762		us->max_lun = 1;
1763	} else {
1764		us->transport_name = "EUSB/SDDR09";
1765		us->transport = sddr09_transport;
1766		us->transport_reset = usb_stor_CB_reset;
1767		us->max_lun = 0;
1768	}
1769
1770	result = usb_stor_probe2(us);
1771	return result;
1772}
1773
1774static struct usb_driver sddr09_driver = {
1775	.name =		DRV_NAME,
1776	.probe =	sddr09_probe,
1777	.disconnect =	usb_stor_disconnect,
1778	.suspend =	usb_stor_suspend,
1779	.resume =	usb_stor_resume,
1780	.reset_resume =	usb_stor_reset_resume,
1781	.pre_reset =	usb_stor_pre_reset,
1782	.post_reset =	usb_stor_post_reset,
1783	.id_table =	sddr09_usb_ids,
1784	.soft_unbind =	1,
1785	.no_dynamic_id = 1,
1786};
1787
1788module_usb_stor_driver(sddr09_driver, sddr09_host_template, DRV_NAME);
v4.17
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Driver for SanDisk SDDR-09 SmartMedia reader
   4 *
   5 *   (c) 2000, 2001 Robert Baruch (autophile@starband.net)
   6 *   (c) 2002 Andries Brouwer (aeb@cwi.nl)
   7 * Developed with the assistance of:
   8 *   (c) 2002 Alan Stern <stern@rowland.org>
   9 *
  10 * The SanDisk SDDR-09 SmartMedia reader uses the Shuttle EUSB-01 chip.
  11 * This chip is a programmable USB controller. In the SDDR-09, it has
  12 * been programmed to obey a certain limited set of SCSI commands.
  13 * This driver translates the "real" SCSI commands to the SDDR-09 SCSI
  14 * commands.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  15 */
  16
  17/*
  18 * Known vendor commands: 12 bytes, first byte is opcode
  19 *
  20 * E7: read scatter gather
  21 * E8: read
  22 * E9: write
  23 * EA: erase
  24 * EB: reset
  25 * EC: read status
  26 * ED: read ID
  27 * EE: write CIS (?)
  28 * EF: compute checksum (?)
  29 */
  30
  31#include <linux/errno.h>
  32#include <linux/module.h>
  33#include <linux/slab.h>
  34
  35#include <scsi/scsi.h>
  36#include <scsi/scsi_cmnd.h>
  37#include <scsi/scsi_device.h>
  38
  39#include "usb.h"
  40#include "transport.h"
  41#include "protocol.h"
  42#include "debug.h"
  43#include "scsiglue.h"
  44
  45#define DRV_NAME "ums-sddr09"
  46
  47MODULE_DESCRIPTION("Driver for SanDisk SDDR-09 SmartMedia reader");
  48MODULE_AUTHOR("Andries Brouwer <aeb@cwi.nl>, Robert Baruch <autophile@starband.net>");
  49MODULE_LICENSE("GPL");
  50
  51static int usb_stor_sddr09_dpcm_init(struct us_data *us);
  52static int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us);
  53static int usb_stor_sddr09_init(struct us_data *us);
  54
  55
  56/*
  57 * The table of devices
  58 */
  59#define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \
  60		    vendorName, productName, useProtocol, useTransport, \
  61		    initFunction, flags) \
  62{ USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \
  63  .driver_info = (flags) }
  64
  65static struct usb_device_id sddr09_usb_ids[] = {
  66#	include "unusual_sddr09.h"
  67	{ }		/* Terminating entry */
  68};
  69MODULE_DEVICE_TABLE(usb, sddr09_usb_ids);
  70
  71#undef UNUSUAL_DEV
  72
  73/*
  74 * The flags table
  75 */
  76#define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \
  77		    vendor_name, product_name, use_protocol, use_transport, \
  78		    init_function, Flags) \
  79{ \
  80	.vendorName = vendor_name,	\
  81	.productName = product_name,	\
  82	.useProtocol = use_protocol,	\
  83	.useTransport = use_transport,	\
  84	.initFunction = init_function,	\
  85}
  86
  87static struct us_unusual_dev sddr09_unusual_dev_list[] = {
  88#	include "unusual_sddr09.h"
  89	{ }		/* Terminating entry */
  90};
  91
  92#undef UNUSUAL_DEV
  93
  94
  95#define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) )
  96#define LSB_of(s) ((s)&0xFF)
  97#define MSB_of(s) ((s)>>8)
  98
  99/*
 100 * First some stuff that does not belong here:
 101 * data on SmartMedia and other cards, completely
 102 * unrelated to this driver.
 103 * Similar stuff occurs in <linux/mtd/nand_ids.h>.
 104 */
 105
 106struct nand_flash_dev {
 107	int model_id;
 108	int chipshift;		/* 1<<cs bytes total capacity */
 109	char pageshift;		/* 1<<ps bytes in a page */
 110	char blockshift;	/* 1<<bs pages in an erase block */
 111	char zoneshift;		/* 1<<zs blocks in a zone */
 112				/* # of logical blocks is 125/128 of this */
 113	char pageadrlen;	/* length of an address in bytes - 1 */
 114};
 115
 116/*
 117 * NAND Flash Manufacturer ID Codes
 118 */
 119#define NAND_MFR_AMD		0x01
 120#define NAND_MFR_NATSEMI	0x8f
 121#define NAND_MFR_TOSHIBA	0x98
 122#define NAND_MFR_SAMSUNG	0xec
 123
 124static inline char *nand_flash_manufacturer(int manuf_id) {
 125	switch(manuf_id) {
 126	case NAND_MFR_AMD:
 127		return "AMD";
 128	case NAND_MFR_NATSEMI:
 129		return "NATSEMI";
 130	case NAND_MFR_TOSHIBA:
 131		return "Toshiba";
 132	case NAND_MFR_SAMSUNG:
 133		return "Samsung";
 134	default:
 135		return "unknown";
 136	}
 137}
 138
 139/*
 140 * It looks like it is unnecessary to attach manufacturer to the
 141 * remaining data: SSFDC prescribes manufacturer-independent id codes.
 142 *
 143 * 256 MB NAND flash has a 5-byte ID with 2nd byte 0xaa, 0xba, 0xca or 0xda.
 144 */
 145
 146static struct nand_flash_dev nand_flash_ids[] = {
 147	/* NAND flash */
 148	{ 0x6e, 20, 8, 4, 8, 2},	/* 1 MB */
 149	{ 0xe8, 20, 8, 4, 8, 2},	/* 1 MB */
 150	{ 0xec, 20, 8, 4, 8, 2},	/* 1 MB */
 151	{ 0x64, 21, 8, 4, 9, 2}, 	/* 2 MB */
 152	{ 0xea, 21, 8, 4, 9, 2},	/* 2 MB */
 153	{ 0x6b, 22, 9, 4, 9, 2},	/* 4 MB */
 154	{ 0xe3, 22, 9, 4, 9, 2},	/* 4 MB */
 155	{ 0xe5, 22, 9, 4, 9, 2},	/* 4 MB */
 156	{ 0xe6, 23, 9, 4, 10, 2},	/* 8 MB */
 157	{ 0x73, 24, 9, 5, 10, 2},	/* 16 MB */
 158	{ 0x75, 25, 9, 5, 10, 2},	/* 32 MB */
 159	{ 0x76, 26, 9, 5, 10, 3},	/* 64 MB */
 160	{ 0x79, 27, 9, 5, 10, 3},	/* 128 MB */
 161
 162	/* MASK ROM */
 163	{ 0x5d, 21, 9, 4, 8, 2},	/* 2 MB */
 164	{ 0xd5, 22, 9, 4, 9, 2},	/* 4 MB */
 165	{ 0xd6, 23, 9, 4, 10, 2},	/* 8 MB */
 166	{ 0x57, 24, 9, 4, 11, 2},	/* 16 MB */
 167	{ 0x58, 25, 9, 4, 12, 2},	/* 32 MB */
 168	{ 0,}
 169};
 170
 171static struct nand_flash_dev *
 172nand_find_id(unsigned char id) {
 173	int i;
 174
 175	for (i = 0; i < ARRAY_SIZE(nand_flash_ids); i++)
 176		if (nand_flash_ids[i].model_id == id)
 177			return &(nand_flash_ids[i]);
 178	return NULL;
 179}
 180
 181/*
 182 * ECC computation.
 183 */
 184static unsigned char parity[256];
 185static unsigned char ecc2[256];
 186
 187static void nand_init_ecc(void) {
 188	int i, j, a;
 189
 190	parity[0] = 0;
 191	for (i = 1; i < 256; i++)
 192		parity[i] = (parity[i&(i-1)] ^ 1);
 193
 194	for (i = 0; i < 256; i++) {
 195		a = 0;
 196		for (j = 0; j < 8; j++) {
 197			if (i & (1<<j)) {
 198				if ((j & 1) == 0)
 199					a ^= 0x04;
 200				if ((j & 2) == 0)
 201					a ^= 0x10;
 202				if ((j & 4) == 0)
 203					a ^= 0x40;
 204			}
 205		}
 206		ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0));
 207	}
 208}
 209
 210/* compute 3-byte ecc on 256 bytes */
 211static void nand_compute_ecc(unsigned char *data, unsigned char *ecc) {
 212	int i, j, a;
 213	unsigned char par = 0, bit, bits[8] = {0};
 214
 215	/* collect 16 checksum bits */
 216	for (i = 0; i < 256; i++) {
 217		par ^= data[i];
 218		bit = parity[data[i]];
 219		for (j = 0; j < 8; j++)
 220			if ((i & (1<<j)) == 0)
 221				bits[j] ^= bit;
 222	}
 223
 224	/* put 4+4+4 = 12 bits in the ecc */
 225	a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0];
 226	ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
 227
 228	a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4];
 229	ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
 230
 231	ecc[2] = ecc2[par];
 232}
 233
 234static int nand_compare_ecc(unsigned char *data, unsigned char *ecc) {
 235	return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]);
 236}
 237
 238static void nand_store_ecc(unsigned char *data, unsigned char *ecc) {
 239	memcpy(data, ecc, 3);
 240}
 241
 242/*
 243 * The actual driver starts here.
 244 */
 245
 246struct sddr09_card_info {
 247	unsigned long	capacity;	/* Size of card in bytes */
 248	int		pagesize;	/* Size of page in bytes */
 249	int		pageshift;	/* log2 of pagesize */
 250	int		blocksize;	/* Size of block in pages */
 251	int		blockshift;	/* log2 of blocksize */
 252	int		blockmask;	/* 2^blockshift - 1 */
 253	int		*lba_to_pba;	/* logical to physical map */
 254	int		*pba_to_lba;	/* physical to logical map */
 255	int		lbact;		/* number of available pages */
 256	int		flags;
 257#define	SDDR09_WP	1		/* write protected */
 258};
 259
 260/*
 261 * On my 16MB card, control blocks have size 64 (16 real control bytes,
 262 * and 48 junk bytes). In reality of course the card uses 16 control bytes,
 263 * so the reader makes up the remaining 48. Don't know whether these numbers
 264 * depend on the card. For now a constant.
 265 */
 266#define CONTROL_SHIFT 6
 267
 268/*
 269 * On my Combo CF/SM reader, the SM reader has LUN 1.
 270 * (and things fail with LUN 0).
 271 * It seems LUN is irrelevant for others.
 272 */
 273#define LUN	1
 274#define	LUNBITS	(LUN << 5)
 275
 276/*
 277 * LBA and PBA are unsigned ints. Special values.
 278 */
 279#define UNDEF    0xffffffff
 280#define SPARE    0xfffffffe
 281#define UNUSABLE 0xfffffffd
 282
 283static const int erase_bad_lba_entries = 0;
 284
 285/* send vendor interface command (0x41) */
 286/* called for requests 0, 1, 8 */
 287static int
 288sddr09_send_command(struct us_data *us,
 289		    unsigned char request,
 290		    unsigned char direction,
 291		    unsigned char *xfer_data,
 292		    unsigned int xfer_len) {
 293	unsigned int pipe;
 294	unsigned char requesttype = (0x41 | direction);
 295	int rc;
 296
 297	// Get the receive or send control pipe number
 298
 299	if (direction == USB_DIR_IN)
 300		pipe = us->recv_ctrl_pipe;
 301	else
 302		pipe = us->send_ctrl_pipe;
 303
 304	rc = usb_stor_ctrl_transfer(us, pipe, request, requesttype,
 305				   0, 0, xfer_data, xfer_len);
 306	switch (rc) {
 307		case USB_STOR_XFER_GOOD:	return 0;
 308		case USB_STOR_XFER_STALLED:	return -EPIPE;
 309		default:			return -EIO;
 310	}
 311}
 312
 313static int
 314sddr09_send_scsi_command(struct us_data *us,
 315			 unsigned char *command,
 316			 unsigned int command_len) {
 317	return sddr09_send_command(us, 0, USB_DIR_OUT, command, command_len);
 318}
 319
 320#if 0
 321/*
 322 * Test Unit Ready Command: 12 bytes.
 323 * byte 0: opcode: 00
 324 */
 325static int
 326sddr09_test_unit_ready(struct us_data *us) {
 327	unsigned char *command = us->iobuf;
 328	int result;
 329
 330	memset(command, 0, 6);
 331	command[1] = LUNBITS;
 332
 333	result = sddr09_send_scsi_command(us, command, 6);
 334
 335	usb_stor_dbg(us, "sddr09_test_unit_ready returns %d\n", result);
 336
 337	return result;
 338}
 339#endif
 340
 341/*
 342 * Request Sense Command: 12 bytes.
 343 * byte 0: opcode: 03
 344 * byte 4: data length
 345 */
 346static int
 347sddr09_request_sense(struct us_data *us, unsigned char *sensebuf, int buflen) {
 348	unsigned char *command = us->iobuf;
 349	int result;
 350
 351	memset(command, 0, 12);
 352	command[0] = 0x03;
 353	command[1] = LUNBITS;
 354	command[4] = buflen;
 355
 356	result = sddr09_send_scsi_command(us, command, 12);
 357	if (result)
 358		return result;
 359
 360	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
 361			sensebuf, buflen, NULL);
 362	return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
 363}
 364
 365/*
 366 * Read Command: 12 bytes.
 367 * byte 0: opcode: E8
 368 * byte 1: last two bits: 00: read data, 01: read blockwise control,
 369 *			10: read both, 11: read pagewise control.
 370 *	 It turns out we need values 20, 21, 22, 23 here (LUN 1).
 371 * bytes 2-5: address (interpretation depends on byte 1, see below)
 372 * bytes 10-11: count (idem)
 373 *
 374 * A page has 512 data bytes and 64 control bytes (16 control and 48 junk).
 375 * A read data command gets data in 512-byte pages.
 376 * A read control command gets control in 64-byte chunks.
 377 * A read both command gets data+control in 576-byte chunks.
 378 *
 379 * Blocks are groups of 32 pages, and read blockwise control jumps to the
 380 * next block, while read pagewise control jumps to the next page after
 381 * reading a group of 64 control bytes.
 382 * [Here 512 = 1<<pageshift, 32 = 1<<blockshift, 64 is constant?]
 383 *
 384 * (1 MB and 2 MB cards are a bit different, but I have only a 16 MB card.)
 385 */
 386
 387static int
 388sddr09_readX(struct us_data *us, int x, unsigned long fromaddress,
 389	     int nr_of_pages, int bulklen, unsigned char *buf,
 390	     int use_sg) {
 391
 392	unsigned char *command = us->iobuf;
 393	int result;
 394
 395	command[0] = 0xE8;
 396	command[1] = LUNBITS | x;
 397	command[2] = MSB_of(fromaddress>>16);
 398	command[3] = LSB_of(fromaddress>>16); 
 399	command[4] = MSB_of(fromaddress & 0xFFFF);
 400	command[5] = LSB_of(fromaddress & 0xFFFF); 
 401	command[6] = 0;
 402	command[7] = 0;
 403	command[8] = 0;
 404	command[9] = 0;
 405	command[10] = MSB_of(nr_of_pages);
 406	command[11] = LSB_of(nr_of_pages);
 407
 408	result = sddr09_send_scsi_command(us, command, 12);
 409
 410	if (result) {
 411		usb_stor_dbg(us, "Result for send_control in sddr09_read2%d %d\n",
 412			     x, result);
 413		return result;
 414	}
 415
 416	result = usb_stor_bulk_transfer_sg(us, us->recv_bulk_pipe,
 417				       buf, bulklen, use_sg, NULL);
 418
 419	if (result != USB_STOR_XFER_GOOD) {
 420		usb_stor_dbg(us, "Result for bulk_transfer in sddr09_read2%d %d\n",
 421			     x, result);
 422		return -EIO;
 423	}
 424	return 0;
 425}
 426
 427/*
 428 * Read Data
 429 *
 430 * fromaddress counts data shorts:
 431 * increasing it by 256 shifts the bytestream by 512 bytes;
 432 * the last 8 bits are ignored.
 433 *
 434 * nr_of_pages counts pages of size (1 << pageshift).
 435 */
 436static int
 437sddr09_read20(struct us_data *us, unsigned long fromaddress,
 438	      int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
 439	int bulklen = nr_of_pages << pageshift;
 440
 441	/* The last 8 bits of fromaddress are ignored. */
 442	return sddr09_readX(us, 0, fromaddress, nr_of_pages, bulklen,
 443			    buf, use_sg);
 444}
 445
 446/*
 447 * Read Blockwise Control
 448 *
 449 * fromaddress gives the starting position (as in read data;
 450 * the last 8 bits are ignored); increasing it by 32*256 shifts
 451 * the output stream by 64 bytes.
 452 *
 453 * count counts control groups of size (1 << controlshift).
 454 * For me, controlshift = 6. Is this constant?
 455 *
 456 * After getting one control group, jump to the next block
 457 * (fromaddress += 8192).
 458 */
 459static int
 460sddr09_read21(struct us_data *us, unsigned long fromaddress,
 461	      int count, int controlshift, unsigned char *buf, int use_sg) {
 462
 463	int bulklen = (count << controlshift);
 464	return sddr09_readX(us, 1, fromaddress, count, bulklen,
 465			    buf, use_sg);
 466}
 467
 468/*
 469 * Read both Data and Control
 470 *
 471 * fromaddress counts data shorts, ignoring control:
 472 * increasing it by 256 shifts the bytestream by 576 = 512+64 bytes;
 473 * the last 8 bits are ignored.
 474 *
 475 * nr_of_pages counts pages of size (1 << pageshift) + (1 << controlshift).
 476 */
 477static int
 478sddr09_read22(struct us_data *us, unsigned long fromaddress,
 479	      int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
 480
 481	int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
 482	usb_stor_dbg(us, "reading %d pages, %d bytes\n", nr_of_pages, bulklen);
 483	return sddr09_readX(us, 2, fromaddress, nr_of_pages, bulklen,
 484			    buf, use_sg);
 485}
 486
 487#if 0
 488/*
 489 * Read Pagewise Control
 490 *
 491 * fromaddress gives the starting position (as in read data;
 492 * the last 8 bits are ignored); increasing it by 256 shifts
 493 * the output stream by 64 bytes.
 494 *
 495 * count counts control groups of size (1 << controlshift).
 496 * For me, controlshift = 6. Is this constant?
 497 *
 498 * After getting one control group, jump to the next page
 499 * (fromaddress += 256).
 500 */
 501static int
 502sddr09_read23(struct us_data *us, unsigned long fromaddress,
 503	      int count, int controlshift, unsigned char *buf, int use_sg) {
 504
 505	int bulklen = (count << controlshift);
 506	return sddr09_readX(us, 3, fromaddress, count, bulklen,
 507			    buf, use_sg);
 508}
 509#endif
 510
 511/*
 512 * Erase Command: 12 bytes.
 513 * byte 0: opcode: EA
 514 * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
 515 * 
 516 * Always precisely one block is erased; bytes 2-5 and 10-11 are ignored.
 517 * The byte address being erased is 2*Eaddress.
 518 * The CIS cannot be erased.
 519 */
 520static int
 521sddr09_erase(struct us_data *us, unsigned long Eaddress) {
 522	unsigned char *command = us->iobuf;
 523	int result;
 524
 525	usb_stor_dbg(us, "erase address %lu\n", Eaddress);
 526
 527	memset(command, 0, 12);
 528	command[0] = 0xEA;
 529	command[1] = LUNBITS;
 530	command[6] = MSB_of(Eaddress>>16);
 531	command[7] = LSB_of(Eaddress>>16);
 532	command[8] = MSB_of(Eaddress & 0xFFFF);
 533	command[9] = LSB_of(Eaddress & 0xFFFF);
 534
 535	result = sddr09_send_scsi_command(us, command, 12);
 536
 537	if (result)
 538		usb_stor_dbg(us, "Result for send_control in sddr09_erase %d\n",
 539			     result);
 540
 541	return result;
 542}
 543
 544/*
 545 * Write CIS Command: 12 bytes.
 546 * byte 0: opcode: EE
 547 * bytes 2-5: write address in shorts
 548 * bytes 10-11: sector count
 549 *
 550 * This writes at the indicated address. Don't know how it differs
 551 * from E9. Maybe it does not erase? However, it will also write to
 552 * the CIS.
 553 *
 554 * When two such commands on the same page follow each other directly,
 555 * the second one is not done.
 556 */
 557
 558/*
 559 * Write Command: 12 bytes.
 560 * byte 0: opcode: E9
 561 * bytes 2-5: write address (big-endian, counting shorts, sector aligned).
 562 * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
 563 * bytes 10-11: sector count (big-endian, in 512-byte sectors).
 564 *
 565 * If write address equals erase address, the erase is done first,
 566 * otherwise the write is done first. When erase address equals zero
 567 * no erase is done?
 568 */
 569static int
 570sddr09_writeX(struct us_data *us,
 571	      unsigned long Waddress, unsigned long Eaddress,
 572	      int nr_of_pages, int bulklen, unsigned char *buf, int use_sg) {
 573
 574	unsigned char *command = us->iobuf;
 575	int result;
 576
 577	command[0] = 0xE9;
 578	command[1] = LUNBITS;
 579
 580	command[2] = MSB_of(Waddress>>16);
 581	command[3] = LSB_of(Waddress>>16);
 582	command[4] = MSB_of(Waddress & 0xFFFF);
 583	command[5] = LSB_of(Waddress & 0xFFFF);
 584
 585	command[6] = MSB_of(Eaddress>>16);
 586	command[7] = LSB_of(Eaddress>>16);
 587	command[8] = MSB_of(Eaddress & 0xFFFF);
 588	command[9] = LSB_of(Eaddress & 0xFFFF);
 589
 590	command[10] = MSB_of(nr_of_pages);
 591	command[11] = LSB_of(nr_of_pages);
 592
 593	result = sddr09_send_scsi_command(us, command, 12);
 594
 595	if (result) {
 596		usb_stor_dbg(us, "Result for send_control in sddr09_writeX %d\n",
 597			     result);
 598		return result;
 599	}
 600
 601	result = usb_stor_bulk_transfer_sg(us, us->send_bulk_pipe,
 602				       buf, bulklen, use_sg, NULL);
 603
 604	if (result != USB_STOR_XFER_GOOD) {
 605		usb_stor_dbg(us, "Result for bulk_transfer in sddr09_writeX %d\n",
 606			     result);
 607		return -EIO;
 608	}
 609	return 0;
 610}
 611
 612/* erase address, write same address */
 613static int
 614sddr09_write_inplace(struct us_data *us, unsigned long address,
 615		     int nr_of_pages, int pageshift, unsigned char *buf,
 616		     int use_sg) {
 617	int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
 618	return sddr09_writeX(us, address, address, nr_of_pages, bulklen,
 619			     buf, use_sg);
 620}
 621
 622#if 0
 623/*
 624 * Read Scatter Gather Command: 3+4n bytes.
 625 * byte 0: opcode E7
 626 * byte 2: n
 627 * bytes 4i-1,4i,4i+1: page address
 628 * byte 4i+2: page count
 629 * (i=1..n)
 630 *
 631 * This reads several pages from the card to a single memory buffer.
 632 * The last two bits of byte 1 have the same meaning as for E8.
 633 */
 634static int
 635sddr09_read_sg_test_only(struct us_data *us) {
 636	unsigned char *command = us->iobuf;
 637	int result, bulklen, nsg, ct;
 638	unsigned char *buf;
 639	unsigned long address;
 640
 641	nsg = bulklen = 0;
 642	command[0] = 0xE7;
 643	command[1] = LUNBITS;
 644	command[2] = 0;
 645	address = 040000; ct = 1;
 646	nsg++;
 647	bulklen += (ct << 9);
 648	command[4*nsg+2] = ct;
 649	command[4*nsg+1] = ((address >> 9) & 0xFF);
 650	command[4*nsg+0] = ((address >> 17) & 0xFF);
 651	command[4*nsg-1] = ((address >> 25) & 0xFF);
 652
 653	address = 0340000; ct = 1;
 654	nsg++;
 655	bulklen += (ct << 9);
 656	command[4*nsg+2] = ct;
 657	command[4*nsg+1] = ((address >> 9) & 0xFF);
 658	command[4*nsg+0] = ((address >> 17) & 0xFF);
 659	command[4*nsg-1] = ((address >> 25) & 0xFF);
 660
 661	address = 01000000; ct = 2;
 662	nsg++;
 663	bulklen += (ct << 9);
 664	command[4*nsg+2] = ct;
 665	command[4*nsg+1] = ((address >> 9) & 0xFF);
 666	command[4*nsg+0] = ((address >> 17) & 0xFF);
 667	command[4*nsg-1] = ((address >> 25) & 0xFF);
 668
 669	command[2] = nsg;
 670
 671	result = sddr09_send_scsi_command(us, command, 4*nsg+3);
 672
 673	if (result) {
 674		usb_stor_dbg(us, "Result for send_control in sddr09_read_sg %d\n",
 675			     result);
 676		return result;
 677	}
 678
 679	buf = kmalloc(bulklen, GFP_NOIO);
 680	if (!buf)
 681		return -ENOMEM;
 682
 683	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
 684				       buf, bulklen, NULL);
 685	kfree(buf);
 686	if (result != USB_STOR_XFER_GOOD) {
 687		usb_stor_dbg(us, "Result for bulk_transfer in sddr09_read_sg %d\n",
 688			     result);
 689		return -EIO;
 690	}
 691
 692	return 0;
 693}
 694#endif
 695
 696/*
 697 * Read Status Command: 12 bytes.
 698 * byte 0: opcode: EC
 699 *
 700 * Returns 64 bytes, all zero except for the first.
 701 * bit 0: 1: Error
 702 * bit 5: 1: Suspended
 703 * bit 6: 1: Ready
 704 * bit 7: 1: Not write-protected
 705 */
 706
 707static int
 708sddr09_read_status(struct us_data *us, unsigned char *status) {
 709
 710	unsigned char *command = us->iobuf;
 711	unsigned char *data = us->iobuf;
 712	int result;
 713
 714	usb_stor_dbg(us, "Reading status...\n");
 715
 716	memset(command, 0, 12);
 717	command[0] = 0xEC;
 718	command[1] = LUNBITS;
 719
 720	result = sddr09_send_scsi_command(us, command, 12);
 721	if (result)
 722		return result;
 723
 724	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
 725				       data, 64, NULL);
 726	*status = data[0];
 727	return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
 728}
 729
 730static int
 731sddr09_read_data(struct us_data *us,
 732		 unsigned long address,
 733		 unsigned int sectors) {
 734
 735	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
 736	unsigned char *buffer;
 737	unsigned int lba, maxlba, pba;
 738	unsigned int page, pages;
 739	unsigned int len, offset;
 740	struct scatterlist *sg;
 741	int result;
 742
 743	// Figure out the initial LBA and page
 744	lba = address >> info->blockshift;
 745	page = (address & info->blockmask);
 746	maxlba = info->capacity >> (info->pageshift + info->blockshift);
 747	if (lba >= maxlba)
 748		return -EIO;
 749
 750	// Since we only read in one block at a time, we have to create
 751	// a bounce buffer and move the data a piece at a time between the
 752	// bounce buffer and the actual transfer buffer.
 753
 754	len = min(sectors, (unsigned int) info->blocksize) * info->pagesize;
 755	buffer = kmalloc(len, GFP_NOIO);
 756	if (!buffer)
 
 757		return -ENOMEM;
 
 758
 759	// This could be made much more efficient by checking for
 760	// contiguous LBA's. Another exercise left to the student.
 761
 762	result = 0;
 763	offset = 0;
 764	sg = NULL;
 765
 766	while (sectors > 0) {
 767
 768		/* Find number of pages we can read in this block */
 769		pages = min(sectors, info->blocksize - page);
 770		len = pages << info->pageshift;
 771
 772		/* Not overflowing capacity? */
 773		if (lba >= maxlba) {
 774			usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
 775				     lba, maxlba);
 776			result = -EIO;
 777			break;
 778		}
 779
 780		/* Find where this lba lives on disk */
 781		pba = info->lba_to_pba[lba];
 782
 783		if (pba == UNDEF) {	/* this lba was never written */
 784
 785			usb_stor_dbg(us, "Read %d zero pages (LBA %d) page %d\n",
 786				     pages, lba, page);
 787
 788			/*
 789			 * This is not really an error. It just means
 790			 * that the block has never been written.
 791			 * Instead of returning an error
 792			 * it is better to return all zero data.
 793			 */
 794
 795			memset(buffer, 0, len);
 796
 797		} else {
 798			usb_stor_dbg(us, "Read %d pages, from PBA %d (LBA %d) page %d\n",
 799				     pages, pba, lba, page);
 800
 801			address = ((pba << info->blockshift) + page) << 
 802				info->pageshift;
 803
 804			result = sddr09_read20(us, address>>1,
 805					pages, info->pageshift, buffer, 0);
 806			if (result)
 807				break;
 808		}
 809
 810		// Store the data in the transfer buffer
 811		usb_stor_access_xfer_buf(buffer, len, us->srb,
 812				&sg, &offset, TO_XFER_BUF);
 813
 814		page = 0;
 815		lba++;
 816		sectors -= pages;
 817	}
 818
 819	kfree(buffer);
 820	return result;
 821}
 822
 823static unsigned int
 824sddr09_find_unused_pba(struct sddr09_card_info *info, unsigned int lba) {
 825	static unsigned int lastpba = 1;
 826	int zonestart, end, i;
 827
 828	zonestart = (lba/1000) << 10;
 829	end = info->capacity >> (info->blockshift + info->pageshift);
 830	end -= zonestart;
 831	if (end > 1024)
 832		end = 1024;
 833
 834	for (i = lastpba+1; i < end; i++) {
 835		if (info->pba_to_lba[zonestart+i] == UNDEF) {
 836			lastpba = i;
 837			return zonestart+i;
 838		}
 839	}
 840	for (i = 0; i <= lastpba; i++) {
 841		if (info->pba_to_lba[zonestart+i] == UNDEF) {
 842			lastpba = i;
 843			return zonestart+i;
 844		}
 845	}
 846	return 0;
 847}
 848
 849static int
 850sddr09_write_lba(struct us_data *us, unsigned int lba,
 851		 unsigned int page, unsigned int pages,
 852		 unsigned char *ptr, unsigned char *blockbuffer) {
 853
 854	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
 855	unsigned long address;
 856	unsigned int pba, lbap;
 857	unsigned int pagelen;
 858	unsigned char *bptr, *cptr, *xptr;
 859	unsigned char ecc[3];
 860	int i, result;
 861
 862	lbap = ((lba % 1000) << 1) | 0x1000;
 863	if (parity[MSB_of(lbap) ^ LSB_of(lbap)])
 864		lbap ^= 1;
 865	pba = info->lba_to_pba[lba];
 
 866
 867	if (pba == UNDEF) {
 868		pba = sddr09_find_unused_pba(info, lba);
 869		if (!pba) {
 870			printk(KERN_WARNING
 871			       "sddr09_write_lba: Out of unused blocks\n");
 872			return -ENOSPC;
 873		}
 874		info->pba_to_lba[pba] = lba;
 875		info->lba_to_pba[lba] = pba;
 
 876	}
 877
 878	if (pba == 1) {
 879		/*
 880		 * Maybe it is impossible to write to PBA 1.
 881		 * Fake success, but don't do anything.
 882		 */
 883		printk(KERN_WARNING "sddr09: avoid writing to pba 1\n");
 884		return 0;
 885	}
 886
 887	pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);
 888
 889	/* read old contents */
 890	address = (pba << (info->pageshift + info->blockshift));
 891	result = sddr09_read22(us, address>>1, info->blocksize,
 892			       info->pageshift, blockbuffer, 0);
 893	if (result)
 894		return result;
 895
 896	/* check old contents and fill lba */
 897	for (i = 0; i < info->blocksize; i++) {
 898		bptr = blockbuffer + i*pagelen;
 899		cptr = bptr + info->pagesize;
 900		nand_compute_ecc(bptr, ecc);
 901		if (!nand_compare_ecc(cptr+13, ecc)) {
 902			usb_stor_dbg(us, "Warning: bad ecc in page %d- of pba %d\n",
 903				     i, pba);
 904			nand_store_ecc(cptr+13, ecc);
 905		}
 906		nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
 907		if (!nand_compare_ecc(cptr+8, ecc)) {
 908			usb_stor_dbg(us, "Warning: bad ecc in page %d+ of pba %d\n",
 909				     i, pba);
 910			nand_store_ecc(cptr+8, ecc);
 911		}
 912		cptr[6] = cptr[11] = MSB_of(lbap);
 913		cptr[7] = cptr[12] = LSB_of(lbap);
 914	}
 915
 916	/* copy in new stuff and compute ECC */
 917	xptr = ptr;
 918	for (i = page; i < page+pages; i++) {
 919		bptr = blockbuffer + i*pagelen;
 920		cptr = bptr + info->pagesize;
 921		memcpy(bptr, xptr, info->pagesize);
 922		xptr += info->pagesize;
 923		nand_compute_ecc(bptr, ecc);
 924		nand_store_ecc(cptr+13, ecc);
 925		nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
 926		nand_store_ecc(cptr+8, ecc);
 927	}
 928
 929	usb_stor_dbg(us, "Rewrite PBA %d (LBA %d)\n", pba, lba);
 930
 931	result = sddr09_write_inplace(us, address>>1, info->blocksize,
 932				      info->pageshift, blockbuffer, 0);
 933
 934	usb_stor_dbg(us, "sddr09_write_inplace returns %d\n", result);
 935
 936#if 0
 937	{
 938		unsigned char status = 0;
 939		int result2 = sddr09_read_status(us, &status);
 940		if (result2)
 941			usb_stor_dbg(us, "cannot read status\n");
 942		else if (status != 0xc0)
 943			usb_stor_dbg(us, "status after write: 0x%x\n", status);
 944	}
 945#endif
 946
 947#if 0
 948	{
 949		int result2 = sddr09_test_unit_ready(us);
 950	}
 951#endif
 952
 953	return result;
 954}
 955
 956static int
 957sddr09_write_data(struct us_data *us,
 958		  unsigned long address,
 959		  unsigned int sectors) {
 960
 961	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
 962	unsigned int lba, maxlba, page, pages;
 963	unsigned int pagelen, blocklen;
 964	unsigned char *blockbuffer;
 965	unsigned char *buffer;
 966	unsigned int len, offset;
 967	struct scatterlist *sg;
 968	int result;
 969
 970	/* Figure out the initial LBA and page */
 971	lba = address >> info->blockshift;
 972	page = (address & info->blockmask);
 973	maxlba = info->capacity >> (info->pageshift + info->blockshift);
 974	if (lba >= maxlba)
 975		return -EIO;
 976
 977	/*
 978	 * blockbuffer is used for reading in the old data, overwriting
 979	 * with the new data, and performing ECC calculations
 980	 */
 981
 982	/*
 983	 * TODO: instead of doing kmalloc/kfree for each write,
 984	 * add a bufferpointer to the info structure
 985	 */
 986
 987	pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);
 988	blocklen = (pagelen << info->blockshift);
 989	blockbuffer = kmalloc(blocklen, GFP_NOIO);
 990	if (!blockbuffer)
 
 991		return -ENOMEM;
 
 992
 993	/*
 994	 * Since we don't write the user data directly to the device,
 995	 * we have to create a bounce buffer and move the data a piece
 996	 * at a time between the bounce buffer and the actual transfer buffer.
 997	 */
 998
 999	len = min(sectors, (unsigned int) info->blocksize) * info->pagesize;
1000	buffer = kmalloc(len, GFP_NOIO);
1001	if (!buffer) {
 
1002		kfree(blockbuffer);
1003		return -ENOMEM;
1004	}
1005
1006	result = 0;
1007	offset = 0;
1008	sg = NULL;
1009
1010	while (sectors > 0) {
1011
1012		/* Write as many sectors as possible in this block */
1013
1014		pages = min(sectors, info->blocksize - page);
1015		len = (pages << info->pageshift);
1016
1017		/* Not overflowing capacity? */
1018		if (lba >= maxlba) {
1019			usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
1020				     lba, maxlba);
1021			result = -EIO;
1022			break;
1023		}
1024
1025		/* Get the data from the transfer buffer */
1026		usb_stor_access_xfer_buf(buffer, len, us->srb,
1027				&sg, &offset, FROM_XFER_BUF);
1028
1029		result = sddr09_write_lba(us, lba, page, pages,
1030				buffer, blockbuffer);
1031		if (result)
1032			break;
1033
1034		page = 0;
1035		lba++;
1036		sectors -= pages;
1037	}
1038
1039	kfree(buffer);
1040	kfree(blockbuffer);
1041
1042	return result;
1043}
1044
1045static int
1046sddr09_read_control(struct us_data *us,
1047		unsigned long address,
1048		unsigned int blocks,
1049		unsigned char *content,
1050		int use_sg) {
1051
1052	usb_stor_dbg(us, "Read control address %lu, blocks %d\n",
1053		     address, blocks);
1054
1055	return sddr09_read21(us, address, blocks,
1056			     CONTROL_SHIFT, content, use_sg);
1057}
1058
1059/*
1060 * Read Device ID Command: 12 bytes.
1061 * byte 0: opcode: ED
1062 *
1063 * Returns 2 bytes: Manufacturer ID and Device ID.
1064 * On more recent cards 3 bytes: the third byte is an option code A5
1065 * signifying that the secret command to read an 128-bit ID is available.
1066 * On still more recent cards 4 bytes: the fourth byte C0 means that
1067 * a second read ID cmd is available.
1068 */
1069static int
1070sddr09_read_deviceID(struct us_data *us, unsigned char *deviceID) {
1071	unsigned char *command = us->iobuf;
1072	unsigned char *content = us->iobuf;
1073	int result, i;
1074
1075	memset(command, 0, 12);
1076	command[0] = 0xED;
1077	command[1] = LUNBITS;
1078
1079	result = sddr09_send_scsi_command(us, command, 12);
1080	if (result)
1081		return result;
1082
1083	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
1084			content, 64, NULL);
1085
1086	for (i = 0; i < 4; i++)
1087		deviceID[i] = content[i];
1088
1089	return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
1090}
1091
1092static int
1093sddr09_get_wp(struct us_data *us, struct sddr09_card_info *info) {
1094	int result;
1095	unsigned char status;
1096	const char *wp_fmt;
1097
1098	result = sddr09_read_status(us, &status);
1099	if (result) {
1100		usb_stor_dbg(us, "read_status fails\n");
1101		return result;
1102	}
1103	if ((status & 0x80) == 0) {
1104		info->flags |= SDDR09_WP;	/* write protected */
1105		wp_fmt = " WP";
1106	} else {
1107		wp_fmt = "";
1108	}
1109	usb_stor_dbg(us, "status 0x%02X%s%s%s%s\n", status, wp_fmt,
1110		     status & 0x40 ? " Ready" : "",
1111		     status & LUNBITS ? " Suspended" : "",
1112		     status & 0x01 ? " Error" : "");
1113
1114	return 0;
1115}
1116
1117#if 0
1118/*
1119 * Reset Command: 12 bytes.
1120 * byte 0: opcode: EB
1121 */
1122static int
1123sddr09_reset(struct us_data *us) {
1124
1125	unsigned char *command = us->iobuf;
1126
1127	memset(command, 0, 12);
1128	command[0] = 0xEB;
1129	command[1] = LUNBITS;
1130
1131	return sddr09_send_scsi_command(us, command, 12);
1132}
1133#endif
1134
1135static struct nand_flash_dev *
1136sddr09_get_cardinfo(struct us_data *us, unsigned char flags) {
1137	struct nand_flash_dev *cardinfo;
1138	unsigned char deviceID[4];
1139	char blurbtxt[256];
1140	int result;
1141
1142	usb_stor_dbg(us, "Reading capacity...\n");
1143
1144	result = sddr09_read_deviceID(us, deviceID);
1145
1146	if (result) {
1147		usb_stor_dbg(us, "Result of read_deviceID is %d\n", result);
1148		printk(KERN_WARNING "sddr09: could not read card info\n");
1149		return NULL;
1150	}
1151
1152	sprintf(blurbtxt, "sddr09: Found Flash card, ID = %4ph", deviceID);
1153
1154	/* Byte 0 is the manufacturer */
1155	sprintf(blurbtxt + strlen(blurbtxt),
1156		": Manuf. %s",
1157		nand_flash_manufacturer(deviceID[0]));
1158
1159	/* Byte 1 is the device type */
1160	cardinfo = nand_find_id(deviceID[1]);
1161	if (cardinfo) {
1162		/*
1163		 * MB or MiB? It is neither. A 16 MB card has
1164		 * 17301504 raw bytes, of which 16384000 are
1165		 * usable for user data.
1166		 */
1167		sprintf(blurbtxt + strlen(blurbtxt),
1168			", %d MB", 1<<(cardinfo->chipshift - 20));
1169	} else {
1170		sprintf(blurbtxt + strlen(blurbtxt),
1171			", type unrecognized");
1172	}
1173
1174	/* Byte 2 is code to signal availability of 128-bit ID */
1175	if (deviceID[2] == 0xa5) {
1176		sprintf(blurbtxt + strlen(blurbtxt),
1177			", 128-bit ID");
1178	}
1179
1180	/* Byte 3 announces the availability of another read ID command */
1181	if (deviceID[3] == 0xc0) {
1182		sprintf(blurbtxt + strlen(blurbtxt),
1183			", extra cmd");
1184	}
1185
1186	if (flags & SDDR09_WP)
1187		sprintf(blurbtxt + strlen(blurbtxt),
1188			", WP");
1189
1190	printk(KERN_WARNING "%s\n", blurbtxt);
1191
1192	return cardinfo;
1193}
1194
1195static int
1196sddr09_read_map(struct us_data *us) {
1197
1198	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
1199	int numblocks, alloc_len, alloc_blocks;
1200	int i, j, result;
1201	unsigned char *buffer, *buffer_end, *ptr;
1202	unsigned int lba, lbact;
1203
1204	if (!info->capacity)
1205		return -1;
1206
1207	/*
1208	 * size of a block is 1 << (blockshift + pageshift) bytes
1209	 * divide into the total capacity to get the number of blocks
1210	 */
1211
1212	numblocks = info->capacity >> (info->blockshift + info->pageshift);
1213
1214	/*
1215	 * read 64 bytes for every block (actually 1 << CONTROL_SHIFT)
1216	 * but only use a 64 KB buffer
1217	 * buffer size used must be a multiple of (1 << CONTROL_SHIFT)
1218	 */
1219#define SDDR09_READ_MAP_BUFSZ 65536
1220
1221	alloc_blocks = min(numblocks, SDDR09_READ_MAP_BUFSZ >> CONTROL_SHIFT);
1222	alloc_len = (alloc_blocks << CONTROL_SHIFT);
1223	buffer = kmalloc(alloc_len, GFP_NOIO);
1224	if (!buffer) {
 
1225		result = -1;
1226		goto done;
1227	}
1228	buffer_end = buffer + alloc_len;
1229
1230#undef SDDR09_READ_MAP_BUFSZ
1231
1232	kfree(info->lba_to_pba);
1233	kfree(info->pba_to_lba);
1234	info->lba_to_pba = kmalloc(numblocks*sizeof(int), GFP_NOIO);
1235	info->pba_to_lba = kmalloc(numblocks*sizeof(int), GFP_NOIO);
1236
1237	if (info->lba_to_pba == NULL || info->pba_to_lba == NULL) {
1238		printk(KERN_WARNING "sddr09_read_map: out of memory\n");
1239		result = -1;
1240		goto done;
1241	}
1242
1243	for (i = 0; i < numblocks; i++)
1244		info->lba_to_pba[i] = info->pba_to_lba[i] = UNDEF;
1245
1246	/*
1247	 * Define lba-pba translation table
1248	 */
1249
1250	ptr = buffer_end;
1251	for (i = 0; i < numblocks; i++) {
1252		ptr += (1 << CONTROL_SHIFT);
1253		if (ptr >= buffer_end) {
1254			unsigned long address;
1255
1256			address = i << (info->pageshift + info->blockshift);
1257			result = sddr09_read_control(
1258				us, address>>1,
1259				min(alloc_blocks, numblocks - i),
1260				buffer, 0);
1261			if (result) {
1262				result = -1;
1263				goto done;
1264			}
1265			ptr = buffer;
1266		}
1267
1268		if (i == 0 || i == 1) {
1269			info->pba_to_lba[i] = UNUSABLE;
1270			continue;
1271		}
1272
1273		/* special PBAs have control field 0^16 */
1274		for (j = 0; j < 16; j++)
1275			if (ptr[j] != 0)
1276				goto nonz;
1277		info->pba_to_lba[i] = UNUSABLE;
1278		printk(KERN_WARNING "sddr09: PBA %d has no logical mapping\n",
1279		       i);
1280		continue;
1281
1282	nonz:
1283		/* unwritten PBAs have control field FF^16 */
1284		for (j = 0; j < 16; j++)
1285			if (ptr[j] != 0xff)
1286				goto nonff;
1287		continue;
1288
1289	nonff:
1290		/* normal PBAs start with six FFs */
1291		if (j < 6) {
1292			printk(KERN_WARNING
1293			       "sddr09: PBA %d has no logical mapping: "
1294			       "reserved area = %02X%02X%02X%02X "
1295			       "data status %02X block status %02X\n",
1296			       i, ptr[0], ptr[1], ptr[2], ptr[3],
1297			       ptr[4], ptr[5]);
1298			info->pba_to_lba[i] = UNUSABLE;
1299			continue;
1300		}
1301
1302		if ((ptr[6] >> 4) != 0x01) {
1303			printk(KERN_WARNING
1304			       "sddr09: PBA %d has invalid address field "
1305			       "%02X%02X/%02X%02X\n",
1306			       i, ptr[6], ptr[7], ptr[11], ptr[12]);
1307			info->pba_to_lba[i] = UNUSABLE;
1308			continue;
1309		}
1310
1311		/* check even parity */
1312		if (parity[ptr[6] ^ ptr[7]]) {
1313			printk(KERN_WARNING
1314			       "sddr09: Bad parity in LBA for block %d"
1315			       " (%02X %02X)\n", i, ptr[6], ptr[7]);
1316			info->pba_to_lba[i] = UNUSABLE;
1317			continue;
1318		}
1319
1320		lba = short_pack(ptr[7], ptr[6]);
1321		lba = (lba & 0x07FF) >> 1;
1322
1323		/*
1324		 * Every 1024 physical blocks ("zone"), the LBA numbers
1325		 * go back to zero, but are within a higher block of LBA's.
1326		 * Also, there is a maximum of 1000 LBA's per zone.
1327		 * In other words, in PBA 1024-2047 you will find LBA 0-999
1328		 * which are really LBA 1000-1999. This allows for 24 bad
1329		 * or special physical blocks per zone.
1330		 */
1331
1332		if (lba >= 1000) {
1333			printk(KERN_WARNING
1334			       "sddr09: Bad low LBA %d for block %d\n",
1335			       lba, i);
1336			goto possibly_erase;
1337		}
1338
1339		lba += 1000*(i/0x400);
1340
1341		if (info->lba_to_pba[lba] != UNDEF) {
1342			printk(KERN_WARNING
1343			       "sddr09: LBA %d seen for PBA %d and %d\n",
1344			       lba, info->lba_to_pba[lba], i);
1345			goto possibly_erase;
1346		}
1347
1348		info->pba_to_lba[i] = lba;
1349		info->lba_to_pba[lba] = i;
1350		continue;
1351
1352	possibly_erase:
1353		if (erase_bad_lba_entries) {
1354			unsigned long address;
1355
1356			address = (i << (info->pageshift + info->blockshift));
1357			sddr09_erase(us, address>>1);
1358			info->pba_to_lba[i] = UNDEF;
1359		} else
1360			info->pba_to_lba[i] = UNUSABLE;
1361	}
1362
1363	/*
1364	 * Approximate capacity. This is not entirely correct yet,
1365	 * since a zone with less than 1000 usable pages leads to
1366	 * missing LBAs. Especially if it is the last zone, some
1367	 * LBAs can be past capacity.
1368	 */
1369	lbact = 0;
1370	for (i = 0; i < numblocks; i += 1024) {
1371		int ct = 0;
1372
1373		for (j = 0; j < 1024 && i+j < numblocks; j++) {
1374			if (info->pba_to_lba[i+j] != UNUSABLE) {
1375				if (ct >= 1000)
1376					info->pba_to_lba[i+j] = SPARE;
1377				else
1378					ct++;
1379			}
1380		}
1381		lbact += ct;
1382	}
1383	info->lbact = lbact;
1384	usb_stor_dbg(us, "Found %d LBA's\n", lbact);
1385	result = 0;
1386
1387 done:
1388	if (result != 0) {
1389		kfree(info->lba_to_pba);
1390		kfree(info->pba_to_lba);
1391		info->lba_to_pba = NULL;
1392		info->pba_to_lba = NULL;
1393	}
1394	kfree(buffer);
1395	return result;
1396}
1397
1398static void
1399sddr09_card_info_destructor(void *extra) {
1400	struct sddr09_card_info *info = (struct sddr09_card_info *)extra;
1401
1402	if (!info)
1403		return;
1404
1405	kfree(info->lba_to_pba);
1406	kfree(info->pba_to_lba);
1407}
1408
1409static int
1410sddr09_common_init(struct us_data *us) {
1411	int result;
1412
1413	/* set the configuration -- STALL is an acceptable response here */
1414	if (us->pusb_dev->actconfig->desc.bConfigurationValue != 1) {
1415		usb_stor_dbg(us, "active config #%d != 1 ??\n",
1416			     us->pusb_dev->actconfig->desc.bConfigurationValue);
1417		return -EINVAL;
1418	}
1419
1420	result = usb_reset_configuration(us->pusb_dev);
1421	usb_stor_dbg(us, "Result of usb_reset_configuration is %d\n", result);
1422	if (result == -EPIPE) {
1423		usb_stor_dbg(us, "-- stall on control interface\n");
1424	} else if (result != 0) {
1425		/* it's not a stall, but another error -- time to bail */
1426		usb_stor_dbg(us, "-- Unknown error.  Rejecting device\n");
1427		return -EINVAL;
1428	}
1429
1430	us->extra = kzalloc(sizeof(struct sddr09_card_info), GFP_NOIO);
1431	if (!us->extra)
1432		return -ENOMEM;
1433	us->extra_destructor = sddr09_card_info_destructor;
1434
1435	nand_init_ecc();
1436	return 0;
1437}
1438
1439
1440/*
1441 * This is needed at a very early stage. If this is not listed in the
1442 * unusual devices list but called from here then LUN 0 of the combo reader
1443 * is not recognized. But I do not know what precisely these calls do.
1444 */
1445static int
1446usb_stor_sddr09_dpcm_init(struct us_data *us) {
1447	int result;
1448	unsigned char *data = us->iobuf;
1449
1450	result = sddr09_common_init(us);
1451	if (result)
1452		return result;
1453
1454	result = sddr09_send_command(us, 0x01, USB_DIR_IN, data, 2);
1455	if (result) {
1456		usb_stor_dbg(us, "send_command fails\n");
1457		return result;
1458	}
1459
1460	usb_stor_dbg(us, "%02X %02X\n", data[0], data[1]);
1461	// get 07 02
1462
1463	result = sddr09_send_command(us, 0x08, USB_DIR_IN, data, 2);
1464	if (result) {
1465		usb_stor_dbg(us, "2nd send_command fails\n");
1466		return result;
1467	}
1468
1469	usb_stor_dbg(us, "%02X %02X\n", data[0], data[1]);
1470	// get 07 00
1471
1472	result = sddr09_request_sense(us, data, 18);
1473	if (result == 0 && data[2] != 0) {
1474		int j;
1475		for (j=0; j<18; j++)
1476			printk(" %02X", data[j]);
1477		printk("\n");
1478		// get 70 00 00 00 00 00 00 * 00 00 00 00 00 00
1479		// 70: current command
1480		// sense key 0, sense code 0, extd sense code 0
1481		// additional transfer length * = sizeof(data) - 7
1482		// Or: 70 00 06 00 00 00 00 0b 00 00 00 00 28 00 00 00 00 00
1483		// sense key 06, sense code 28: unit attention,
1484		// not ready to ready transition
1485	}
1486
1487	// test unit ready
1488
1489	return 0;		/* not result */
1490}
1491
1492/*
1493 * Transport for the Microtech DPCM-USB
1494 */
1495static int dpcm_transport(struct scsi_cmnd *srb, struct us_data *us)
1496{
1497	int ret;
1498
1499	usb_stor_dbg(us, "LUN=%d\n", (u8)srb->device->lun);
1500
1501	switch (srb->device->lun) {
1502	case 0:
1503
1504		/*
1505		 * LUN 0 corresponds to the CompactFlash card reader.
1506		 */
1507		ret = usb_stor_CB_transport(srb, us);
1508		break;
1509
1510	case 1:
1511
1512		/*
1513		 * LUN 1 corresponds to the SmartMedia card reader.
1514		 */
1515
1516		/*
1517		 * Set the LUN to 0 (just in case).
1518		 */
1519		srb->device->lun = 0;
1520		ret = sddr09_transport(srb, us);
1521		srb->device->lun = 1;
1522		break;
1523
1524	default:
1525	    usb_stor_dbg(us, "Invalid LUN %d\n", (u8)srb->device->lun);
1526		ret = USB_STOR_TRANSPORT_ERROR;
1527		break;
1528	}
1529	return ret;
1530}
1531
1532
1533/*
1534 * Transport for the Sandisk SDDR-09
1535 */
1536static int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us)
1537{
1538	static unsigned char sensekey = 0, sensecode = 0;
1539	static unsigned char havefakesense = 0;
1540	int result, i;
1541	unsigned char *ptr = us->iobuf;
1542	unsigned long capacity;
1543	unsigned int page, pages;
1544
1545	struct sddr09_card_info *info;
1546
1547	static unsigned char inquiry_response[8] = {
1548		0x00, 0x80, 0x00, 0x02, 0x1F, 0x00, 0x00, 0x00
1549	};
1550
1551	/* note: no block descriptor support */
1552	static unsigned char mode_page_01[19] = {
1553		0x00, 0x0F, 0x00, 0x0, 0x0, 0x0, 0x00,
1554		0x01, 0x0A,
1555		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
1556	};
1557
1558	info = (struct sddr09_card_info *)us->extra;
1559
1560	if (srb->cmnd[0] == REQUEST_SENSE && havefakesense) {
1561		/* for a faked command, we have to follow with a faked sense */
1562		memset(ptr, 0, 18);
1563		ptr[0] = 0x70;
1564		ptr[2] = sensekey;
1565		ptr[7] = 11;
1566		ptr[12] = sensecode;
1567		usb_stor_set_xfer_buf(ptr, 18, srb);
1568		sensekey = sensecode = havefakesense = 0;
1569		return USB_STOR_TRANSPORT_GOOD;
1570	}
1571
1572	havefakesense = 1;
1573
1574	/*
1575	 * Dummy up a response for INQUIRY since SDDR09 doesn't
1576	 * respond to INQUIRY commands
1577	 */
1578
1579	if (srb->cmnd[0] == INQUIRY) {
1580		memcpy(ptr, inquiry_response, 8);
1581		fill_inquiry_response(us, ptr, 36);
1582		return USB_STOR_TRANSPORT_GOOD;
1583	}
1584
1585	if (srb->cmnd[0] == READ_CAPACITY) {
1586		struct nand_flash_dev *cardinfo;
1587
1588		sddr09_get_wp(us, info);	/* read WP bit */
1589
1590		cardinfo = sddr09_get_cardinfo(us, info->flags);
1591		if (!cardinfo) {
1592			/* probably no media */
1593		init_error:
1594			sensekey = 0x02;	/* not ready */
1595			sensecode = 0x3a;	/* medium not present */
1596			return USB_STOR_TRANSPORT_FAILED;
1597		}
1598
1599		info->capacity = (1 << cardinfo->chipshift);
1600		info->pageshift = cardinfo->pageshift;
1601		info->pagesize = (1 << info->pageshift);
1602		info->blockshift = cardinfo->blockshift;
1603		info->blocksize = (1 << info->blockshift);
1604		info->blockmask = info->blocksize - 1;
1605
1606		// map initialization, must follow get_cardinfo()
1607		if (sddr09_read_map(us)) {
1608			/* probably out of memory */
1609			goto init_error;
1610		}
1611
1612		// Report capacity
1613
1614		capacity = (info->lbact << info->blockshift) - 1;
1615
1616		((__be32 *) ptr)[0] = cpu_to_be32(capacity);
1617
1618		// Report page size
1619
1620		((__be32 *) ptr)[1] = cpu_to_be32(info->pagesize);
1621		usb_stor_set_xfer_buf(ptr, 8, srb);
1622
1623		return USB_STOR_TRANSPORT_GOOD;
1624	}
1625
1626	if (srb->cmnd[0] == MODE_SENSE_10) {
1627		int modepage = (srb->cmnd[2] & 0x3F);
1628
1629		/*
1630		 * They ask for the Read/Write error recovery page,
1631		 * or for all pages.
1632		 */
1633		/* %% We should check DBD %% */
1634		if (modepage == 0x01 || modepage == 0x3F) {
1635			usb_stor_dbg(us, "Dummy up request for mode page 0x%x\n",
1636				     modepage);
1637
1638			memcpy(ptr, mode_page_01, sizeof(mode_page_01));
1639			((__be16*)ptr)[0] = cpu_to_be16(sizeof(mode_page_01) - 2);
1640			ptr[3] = (info->flags & SDDR09_WP) ? 0x80 : 0;
1641			usb_stor_set_xfer_buf(ptr, sizeof(mode_page_01), srb);
1642			return USB_STOR_TRANSPORT_GOOD;
1643		}
1644
1645		sensekey = 0x05;	/* illegal request */
1646		sensecode = 0x24;	/* invalid field in CDB */
1647		return USB_STOR_TRANSPORT_FAILED;
1648	}
1649
1650	if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL)
1651		return USB_STOR_TRANSPORT_GOOD;
1652
1653	havefakesense = 0;
1654
1655	if (srb->cmnd[0] == READ_10) {
1656
1657		page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1658		page <<= 16;
1659		page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1660		pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1661
1662		usb_stor_dbg(us, "READ_10: read page %d pagect %d\n",
1663			     page, pages);
1664
1665		result = sddr09_read_data(us, page, pages);
1666		return (result == 0 ? USB_STOR_TRANSPORT_GOOD :
1667				USB_STOR_TRANSPORT_ERROR);
1668	}
1669
1670	if (srb->cmnd[0] == WRITE_10) {
1671
1672		page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1673		page <<= 16;
1674		page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1675		pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1676
1677		usb_stor_dbg(us, "WRITE_10: write page %d pagect %d\n",
1678			     page, pages);
1679
1680		result = sddr09_write_data(us, page, pages);
1681		return (result == 0 ? USB_STOR_TRANSPORT_GOOD :
1682				USB_STOR_TRANSPORT_ERROR);
1683	}
1684
1685	/*
1686	 * catch-all for all other commands, except
1687	 * pass TEST_UNIT_READY and REQUEST_SENSE through
1688	 */
1689	if (srb->cmnd[0] != TEST_UNIT_READY &&
1690	    srb->cmnd[0] != REQUEST_SENSE) {
1691		sensekey = 0x05;	/* illegal request */
1692		sensecode = 0x20;	/* invalid command */
1693		havefakesense = 1;
1694		return USB_STOR_TRANSPORT_FAILED;
1695	}
1696
1697	for (; srb->cmd_len<12; srb->cmd_len++)
1698		srb->cmnd[srb->cmd_len] = 0;
1699
1700	srb->cmnd[1] = LUNBITS;
1701
1702	ptr[0] = 0;
1703	for (i=0; i<12; i++)
1704		sprintf(ptr+strlen(ptr), "%02X ", srb->cmnd[i]);
1705
1706	usb_stor_dbg(us, "Send control for command %s\n", ptr);
1707
1708	result = sddr09_send_scsi_command(us, srb->cmnd, 12);
1709	if (result) {
1710		usb_stor_dbg(us, "sddr09_send_scsi_command returns %d\n",
1711			     result);
1712		return USB_STOR_TRANSPORT_ERROR;
1713	}
1714
1715	if (scsi_bufflen(srb) == 0)
1716		return USB_STOR_TRANSPORT_GOOD;
1717
1718	if (srb->sc_data_direction == DMA_TO_DEVICE ||
1719	    srb->sc_data_direction == DMA_FROM_DEVICE) {
1720		unsigned int pipe = (srb->sc_data_direction == DMA_TO_DEVICE)
1721				? us->send_bulk_pipe : us->recv_bulk_pipe;
1722
1723		usb_stor_dbg(us, "%s %d bytes\n",
1724			     (srb->sc_data_direction == DMA_TO_DEVICE) ?
1725			     "sending" : "receiving",
1726			     scsi_bufflen(srb));
1727
1728		result = usb_stor_bulk_srb(us, pipe, srb);
1729
1730		return (result == USB_STOR_XFER_GOOD ?
1731			USB_STOR_TRANSPORT_GOOD : USB_STOR_TRANSPORT_ERROR);
1732	} 
1733
1734	return USB_STOR_TRANSPORT_GOOD;
1735}
1736
1737/*
1738 * Initialization routine for the sddr09 subdriver
1739 */
1740static int
1741usb_stor_sddr09_init(struct us_data *us) {
1742	return sddr09_common_init(us);
1743}
1744
1745static struct scsi_host_template sddr09_host_template;
1746
1747static int sddr09_probe(struct usb_interface *intf,
1748			 const struct usb_device_id *id)
1749{
1750	struct us_data *us;
1751	int result;
1752
1753	result = usb_stor_probe1(&us, intf, id,
1754			(id - sddr09_usb_ids) + sddr09_unusual_dev_list,
1755			&sddr09_host_template);
1756	if (result)
1757		return result;
1758
1759	if (us->protocol == USB_PR_DPCM_USB) {
1760		us->transport_name = "Control/Bulk-EUSB/SDDR09";
1761		us->transport = dpcm_transport;
1762		us->transport_reset = usb_stor_CB_reset;
1763		us->max_lun = 1;
1764	} else {
1765		us->transport_name = "EUSB/SDDR09";
1766		us->transport = sddr09_transport;
1767		us->transport_reset = usb_stor_CB_reset;
1768		us->max_lun = 0;
1769	}
1770
1771	result = usb_stor_probe2(us);
1772	return result;
1773}
1774
1775static struct usb_driver sddr09_driver = {
1776	.name =		DRV_NAME,
1777	.probe =	sddr09_probe,
1778	.disconnect =	usb_stor_disconnect,
1779	.suspend =	usb_stor_suspend,
1780	.resume =	usb_stor_resume,
1781	.reset_resume =	usb_stor_reset_resume,
1782	.pre_reset =	usb_stor_pre_reset,
1783	.post_reset =	usb_stor_post_reset,
1784	.id_table =	sddr09_usb_ids,
1785	.soft_unbind =	1,
1786	.no_dynamic_id = 1,
1787};
1788
1789module_usb_stor_driver(sddr09_driver, sddr09_host_template, DRV_NAME);