Linux Audio

Check our new training course

Loading...
v4.6
  1/*
  2 *  sun4m SMP support.
  3 *
  4 * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu)
  5 */
  6
  7#include <linux/clockchips.h>
  8#include <linux/interrupt.h>
  9#include <linux/profile.h>
 10#include <linux/delay.h>
 11#include <linux/sched.h>
 12#include <linux/cpu.h>
 13
 14#include <asm/cacheflush.h>
 15#include <asm/switch_to.h>
 16#include <asm/tlbflush.h>
 17#include <asm/timer.h>
 18#include <asm/oplib.h>
 19
 20#include "irq.h"
 21#include "kernel.h"
 22
 23#define IRQ_IPI_SINGLE		12
 24#define IRQ_IPI_MASK		13
 25#define IRQ_IPI_RESCHED		14
 26#define IRQ_CROSS_CALL		15
 27
 28static inline unsigned long
 29swap_ulong(volatile unsigned long *ptr, unsigned long val)
 30{
 31	__asm__ __volatile__("swap [%1], %0\n\t" :
 32			     "=&r" (val), "=&r" (ptr) :
 33			     "0" (val), "1" (ptr));
 34	return val;
 35}
 36
 37void sun4m_cpu_pre_starting(void *arg)
 38{
 39}
 40
 41void sun4m_cpu_pre_online(void *arg)
 42{
 43	int cpuid = hard_smp_processor_id();
 44
 45	/* Allow master to continue. The master will then give us the
 46	 * go-ahead by setting the smp_commenced_mask and will wait without
 47	 * timeouts until our setup is completed fully (signified by
 48	 * our bit being set in the cpu_online_mask).
 49	 */
 50	swap_ulong(&cpu_callin_map[cpuid], 1);
 51
 52	/* XXX: What's up with all the flushes? */
 53	local_ops->cache_all();
 54	local_ops->tlb_all();
 55
 56	/* Fix idle thread fields. */
 57	__asm__ __volatile__("ld [%0], %%g6\n\t"
 58			     : : "r" (&current_set[cpuid])
 59			     : "memory" /* paranoid */);
 60
 61	/* Attach to the address space of init_task. */
 62	atomic_inc(&init_mm.mm_count);
 63	current->active_mm = &init_mm;
 64
 65	while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
 66		mb();
 67}
 68
 69/*
 70 *	Cycle through the processors asking the PROM to start each one.
 71 */
 72void __init smp4m_boot_cpus(void)
 73{
 74	sun4m_unmask_profile_irq();
 75	local_ops->cache_all();
 76}
 77
 78int smp4m_boot_one_cpu(int i, struct task_struct *idle)
 79{
 80	unsigned long *entry = &sun4m_cpu_startup;
 81	int timeout;
 82	int cpu_node;
 83
 84	cpu_find_by_mid(i, &cpu_node);
 85	current_set[i] = task_thread_info(idle);
 86
 87	/* See trampoline.S for details... */
 88	entry += ((i - 1) * 3);
 89
 90	/*
 91	 * Initialize the contexts table
 92	 * Since the call to prom_startcpu() trashes the structure,
 93	 * we need to re-initialize it for each cpu
 94	 */
 95	smp_penguin_ctable.which_io = 0;
 96	smp_penguin_ctable.phys_addr = (unsigned int) srmmu_ctx_table_phys;
 97	smp_penguin_ctable.reg_size = 0;
 98
 99	/* whirrr, whirrr, whirrrrrrrrr... */
100	printk(KERN_INFO "Starting CPU %d at %p\n", i, entry);
101	local_ops->cache_all();
102	prom_startcpu(cpu_node, &smp_penguin_ctable, 0, (char *)entry);
103
104	/* wheee... it's going... */
105	for (timeout = 0; timeout < 10000; timeout++) {
106		if (cpu_callin_map[i])
107			break;
108		udelay(200);
109	}
110
111	if (!(cpu_callin_map[i])) {
112		printk(KERN_ERR "Processor %d is stuck.\n", i);
113		return -ENODEV;
114	}
115
116	local_ops->cache_all();
117	return 0;
118}
119
120void __init smp4m_smp_done(void)
121{
122	int i, first;
123	int *prev;
124
125	/* setup cpu list for irq rotation */
126	first = 0;
127	prev = &first;
128	for_each_online_cpu(i) {
129		*prev = i;
130		prev = &cpu_data(i).next;
131	}
132	*prev = first;
133	local_ops->cache_all();
134
135	/* Ok, they are spinning and ready to go. */
136}
137
138static void sun4m_send_ipi(int cpu, int level)
139{
140	sbus_writel(SUN4M_SOFT_INT(level), &sun4m_irq_percpu[cpu]->set);
141}
142
143static void sun4m_ipi_resched(int cpu)
144{
145	sun4m_send_ipi(cpu, IRQ_IPI_RESCHED);
146}
147
148static void sun4m_ipi_single(int cpu)
149{
150	sun4m_send_ipi(cpu, IRQ_IPI_SINGLE);
151}
152
153static void sun4m_ipi_mask_one(int cpu)
154{
155	sun4m_send_ipi(cpu, IRQ_IPI_MASK);
156}
157
158static struct smp_funcall {
159	smpfunc_t func;
160	unsigned long arg1;
161	unsigned long arg2;
162	unsigned long arg3;
163	unsigned long arg4;
164	unsigned long arg5;
165	unsigned long processors_in[SUN4M_NCPUS];  /* Set when ipi entered. */
166	unsigned long processors_out[SUN4M_NCPUS]; /* Set when ipi exited. */
167} ccall_info;
168
169static DEFINE_SPINLOCK(cross_call_lock);
170
171/* Cross calls must be serialized, at least currently. */
172static void sun4m_cross_call(smpfunc_t func, cpumask_t mask, unsigned long arg1,
173			     unsigned long arg2, unsigned long arg3,
174			     unsigned long arg4)
175{
176		register int ncpus = SUN4M_NCPUS;
177		unsigned long flags;
178
179		spin_lock_irqsave(&cross_call_lock, flags);
180
181		/* Init function glue. */
182		ccall_info.func = func;
183		ccall_info.arg1 = arg1;
184		ccall_info.arg2 = arg2;
185		ccall_info.arg3 = arg3;
186		ccall_info.arg4 = arg4;
187		ccall_info.arg5 = 0;
188
189		/* Init receive/complete mapping, plus fire the IPI's off. */
190		{
191			register int i;
192
193			cpumask_clear_cpu(smp_processor_id(), &mask);
194			cpumask_and(&mask, cpu_online_mask, &mask);
195			for (i = 0; i < ncpus; i++) {
196				if (cpumask_test_cpu(i, &mask)) {
197					ccall_info.processors_in[i] = 0;
198					ccall_info.processors_out[i] = 0;
199					sun4m_send_ipi(i, IRQ_CROSS_CALL);
200				} else {
201					ccall_info.processors_in[i] = 1;
202					ccall_info.processors_out[i] = 1;
203				}
204			}
205		}
206
207		{
208			register int i;
209
210			i = 0;
211			do {
212				if (!cpumask_test_cpu(i, &mask))
213					continue;
214				while (!ccall_info.processors_in[i])
215					barrier();
216			} while (++i < ncpus);
217
218			i = 0;
219			do {
220				if (!cpumask_test_cpu(i, &mask))
221					continue;
222				while (!ccall_info.processors_out[i])
223					barrier();
224			} while (++i < ncpus);
225		}
226		spin_unlock_irqrestore(&cross_call_lock, flags);
227}
228
229/* Running cross calls. */
230void smp4m_cross_call_irq(void)
231{
232	int i = smp_processor_id();
233
234	ccall_info.processors_in[i] = 1;
235	ccall_info.func(ccall_info.arg1, ccall_info.arg2, ccall_info.arg3,
236			ccall_info.arg4, ccall_info.arg5);
237	ccall_info.processors_out[i] = 1;
238}
239
240void smp4m_percpu_timer_interrupt(struct pt_regs *regs)
241{
242	struct pt_regs *old_regs;
243	struct clock_event_device *ce;
244	int cpu = smp_processor_id();
245
246	old_regs = set_irq_regs(regs);
247
248	ce = &per_cpu(sparc32_clockevent, cpu);
249
250	if (clockevent_state_periodic(ce))
251		sun4m_clear_profile_irq(cpu);
252	else
253		sparc_config.load_profile_irq(cpu, 0); /* Is this needless? */
254
255	irq_enter();
256	ce->event_handler(ce);
257	irq_exit();
258
259	set_irq_regs(old_regs);
260}
261
262static const struct sparc32_ipi_ops sun4m_ipi_ops = {
263	.cross_call = sun4m_cross_call,
264	.resched    = sun4m_ipi_resched,
265	.single     = sun4m_ipi_single,
266	.mask_one   = sun4m_ipi_mask_one,
267};
268
269void __init sun4m_init_smp(void)
270{
271	sparc32_ipi_ops = &sun4m_ipi_ops;
272}
v3.15
  1/*
  2 *  sun4m SMP support.
  3 *
  4 * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu)
  5 */
  6
  7#include <linux/clockchips.h>
  8#include <linux/interrupt.h>
  9#include <linux/profile.h>
 10#include <linux/delay.h>
 11#include <linux/sched.h>
 12#include <linux/cpu.h>
 13
 14#include <asm/cacheflush.h>
 15#include <asm/switch_to.h>
 16#include <asm/tlbflush.h>
 17#include <asm/timer.h>
 18#include <asm/oplib.h>
 19
 20#include "irq.h"
 21#include "kernel.h"
 22
 23#define IRQ_IPI_SINGLE		12
 24#define IRQ_IPI_MASK		13
 25#define IRQ_IPI_RESCHED		14
 26#define IRQ_CROSS_CALL		15
 27
 28static inline unsigned long
 29swap_ulong(volatile unsigned long *ptr, unsigned long val)
 30{
 31	__asm__ __volatile__("swap [%1], %0\n\t" :
 32			     "=&r" (val), "=&r" (ptr) :
 33			     "0" (val), "1" (ptr));
 34	return val;
 35}
 36
 37void sun4m_cpu_pre_starting(void *arg)
 38{
 39}
 40
 41void sun4m_cpu_pre_online(void *arg)
 42{
 43	int cpuid = hard_smp_processor_id();
 44
 45	/* Allow master to continue. The master will then give us the
 46	 * go-ahead by setting the smp_commenced_mask and will wait without
 47	 * timeouts until our setup is completed fully (signified by
 48	 * our bit being set in the cpu_online_mask).
 49	 */
 50	swap_ulong(&cpu_callin_map[cpuid], 1);
 51
 52	/* XXX: What's up with all the flushes? */
 53	local_ops->cache_all();
 54	local_ops->tlb_all();
 55
 56	/* Fix idle thread fields. */
 57	__asm__ __volatile__("ld [%0], %%g6\n\t"
 58			     : : "r" (&current_set[cpuid])
 59			     : "memory" /* paranoid */);
 60
 61	/* Attach to the address space of init_task. */
 62	atomic_inc(&init_mm.mm_count);
 63	current->active_mm = &init_mm;
 64
 65	while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
 66		mb();
 67}
 68
 69/*
 70 *	Cycle through the processors asking the PROM to start each one.
 71 */
 72void __init smp4m_boot_cpus(void)
 73{
 74	sun4m_unmask_profile_irq();
 75	local_ops->cache_all();
 76}
 77
 78int smp4m_boot_one_cpu(int i, struct task_struct *idle)
 79{
 80	unsigned long *entry = &sun4m_cpu_startup;
 81	int timeout;
 82	int cpu_node;
 83
 84	cpu_find_by_mid(i, &cpu_node);
 85	current_set[i] = task_thread_info(idle);
 86
 87	/* See trampoline.S for details... */
 88	entry += ((i - 1) * 3);
 89
 90	/*
 91	 * Initialize the contexts table
 92	 * Since the call to prom_startcpu() trashes the structure,
 93	 * we need to re-initialize it for each cpu
 94	 */
 95	smp_penguin_ctable.which_io = 0;
 96	smp_penguin_ctable.phys_addr = (unsigned int) srmmu_ctx_table_phys;
 97	smp_penguin_ctable.reg_size = 0;
 98
 99	/* whirrr, whirrr, whirrrrrrrrr... */
100	printk(KERN_INFO "Starting CPU %d at %p\n", i, entry);
101	local_ops->cache_all();
102	prom_startcpu(cpu_node, &smp_penguin_ctable, 0, (char *)entry);
103
104	/* wheee... it's going... */
105	for (timeout = 0; timeout < 10000; timeout++) {
106		if (cpu_callin_map[i])
107			break;
108		udelay(200);
109	}
110
111	if (!(cpu_callin_map[i])) {
112		printk(KERN_ERR "Processor %d is stuck.\n", i);
113		return -ENODEV;
114	}
115
116	local_ops->cache_all();
117	return 0;
118}
119
120void __init smp4m_smp_done(void)
121{
122	int i, first;
123	int *prev;
124
125	/* setup cpu list for irq rotation */
126	first = 0;
127	prev = &first;
128	for_each_online_cpu(i) {
129		*prev = i;
130		prev = &cpu_data(i).next;
131	}
132	*prev = first;
133	local_ops->cache_all();
134
135	/* Ok, they are spinning and ready to go. */
136}
137
138static void sun4m_send_ipi(int cpu, int level)
139{
140	sbus_writel(SUN4M_SOFT_INT(level), &sun4m_irq_percpu[cpu]->set);
141}
142
143static void sun4m_ipi_resched(int cpu)
144{
145	sun4m_send_ipi(cpu, IRQ_IPI_RESCHED);
146}
147
148static void sun4m_ipi_single(int cpu)
149{
150	sun4m_send_ipi(cpu, IRQ_IPI_SINGLE);
151}
152
153static void sun4m_ipi_mask_one(int cpu)
154{
155	sun4m_send_ipi(cpu, IRQ_IPI_MASK);
156}
157
158static struct smp_funcall {
159	smpfunc_t func;
160	unsigned long arg1;
161	unsigned long arg2;
162	unsigned long arg3;
163	unsigned long arg4;
164	unsigned long arg5;
165	unsigned long processors_in[SUN4M_NCPUS];  /* Set when ipi entered. */
166	unsigned long processors_out[SUN4M_NCPUS]; /* Set when ipi exited. */
167} ccall_info;
168
169static DEFINE_SPINLOCK(cross_call_lock);
170
171/* Cross calls must be serialized, at least currently. */
172static void sun4m_cross_call(smpfunc_t func, cpumask_t mask, unsigned long arg1,
173			     unsigned long arg2, unsigned long arg3,
174			     unsigned long arg4)
175{
176		register int ncpus = SUN4M_NCPUS;
177		unsigned long flags;
178
179		spin_lock_irqsave(&cross_call_lock, flags);
180
181		/* Init function glue. */
182		ccall_info.func = func;
183		ccall_info.arg1 = arg1;
184		ccall_info.arg2 = arg2;
185		ccall_info.arg3 = arg3;
186		ccall_info.arg4 = arg4;
187		ccall_info.arg5 = 0;
188
189		/* Init receive/complete mapping, plus fire the IPI's off. */
190		{
191			register int i;
192
193			cpumask_clear_cpu(smp_processor_id(), &mask);
194			cpumask_and(&mask, cpu_online_mask, &mask);
195			for (i = 0; i < ncpus; i++) {
196				if (cpumask_test_cpu(i, &mask)) {
197					ccall_info.processors_in[i] = 0;
198					ccall_info.processors_out[i] = 0;
199					sun4m_send_ipi(i, IRQ_CROSS_CALL);
200				} else {
201					ccall_info.processors_in[i] = 1;
202					ccall_info.processors_out[i] = 1;
203				}
204			}
205		}
206
207		{
208			register int i;
209
210			i = 0;
211			do {
212				if (!cpumask_test_cpu(i, &mask))
213					continue;
214				while (!ccall_info.processors_in[i])
215					barrier();
216			} while (++i < ncpus);
217
218			i = 0;
219			do {
220				if (!cpumask_test_cpu(i, &mask))
221					continue;
222				while (!ccall_info.processors_out[i])
223					barrier();
224			} while (++i < ncpus);
225		}
226		spin_unlock_irqrestore(&cross_call_lock, flags);
227}
228
229/* Running cross calls. */
230void smp4m_cross_call_irq(void)
231{
232	int i = smp_processor_id();
233
234	ccall_info.processors_in[i] = 1;
235	ccall_info.func(ccall_info.arg1, ccall_info.arg2, ccall_info.arg3,
236			ccall_info.arg4, ccall_info.arg5);
237	ccall_info.processors_out[i] = 1;
238}
239
240void smp4m_percpu_timer_interrupt(struct pt_regs *regs)
241{
242	struct pt_regs *old_regs;
243	struct clock_event_device *ce;
244	int cpu = smp_processor_id();
245
246	old_regs = set_irq_regs(regs);
247
248	ce = &per_cpu(sparc32_clockevent, cpu);
249
250	if (ce->mode & CLOCK_EVT_MODE_PERIODIC)
251		sun4m_clear_profile_irq(cpu);
252	else
253		sparc_config.load_profile_irq(cpu, 0); /* Is this needless? */
254
255	irq_enter();
256	ce->event_handler(ce);
257	irq_exit();
258
259	set_irq_regs(old_regs);
260}
261
262static const struct sparc32_ipi_ops sun4m_ipi_ops = {
263	.cross_call = sun4m_cross_call,
264	.resched    = sun4m_ipi_resched,
265	.single     = sun4m_ipi_single,
266	.mask_one   = sun4m_ipi_mask_one,
267};
268
269void __init sun4m_init_smp(void)
270{
271	sparc32_ipi_ops = &sun4m_ipi_ops;
272}