Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 | /* * sun4m SMP support. * * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu) */ #include <linux/clockchips.h> #include <linux/interrupt.h> #include <linux/profile.h> #include <linux/delay.h> #include <linux/sched.h> #include <linux/cpu.h> #include <asm/cacheflush.h> #include <asm/switch_to.h> #include <asm/tlbflush.h> #include <asm/timer.h> #include <asm/oplib.h> #include "irq.h" #include "kernel.h" #define IRQ_IPI_SINGLE 12 #define IRQ_IPI_MASK 13 #define IRQ_IPI_RESCHED 14 #define IRQ_CROSS_CALL 15 static inline unsigned long swap_ulong(volatile unsigned long *ptr, unsigned long val) { __asm__ __volatile__("swap [%1], %0\n\t" : "=&r" (val), "=&r" (ptr) : "0" (val), "1" (ptr)); return val; } void sun4m_cpu_pre_starting(void *arg) { } void sun4m_cpu_pre_online(void *arg) { int cpuid = hard_smp_processor_id(); /* Allow master to continue. The master will then give us the * go-ahead by setting the smp_commenced_mask and will wait without * timeouts until our setup is completed fully (signified by * our bit being set in the cpu_online_mask). */ swap_ulong(&cpu_callin_map[cpuid], 1); /* XXX: What's up with all the flushes? */ local_ops->cache_all(); local_ops->tlb_all(); /* Fix idle thread fields. */ __asm__ __volatile__("ld [%0], %%g6\n\t" : : "r" (¤t_set[cpuid]) : "memory" /* paranoid */); /* Attach to the address space of init_task. */ atomic_inc(&init_mm.mm_count); current->active_mm = &init_mm; while (!cpumask_test_cpu(cpuid, &smp_commenced_mask)) mb(); } /* * Cycle through the processors asking the PROM to start each one. */ void __init smp4m_boot_cpus(void) { sun4m_unmask_profile_irq(); local_ops->cache_all(); } int smp4m_boot_one_cpu(int i, struct task_struct *idle) { unsigned long *entry = &sun4m_cpu_startup; int timeout; int cpu_node; cpu_find_by_mid(i, &cpu_node); current_set[i] = task_thread_info(idle); /* See trampoline.S for details... */ entry += ((i - 1) * 3); /* * Initialize the contexts table * Since the call to prom_startcpu() trashes the structure, * we need to re-initialize it for each cpu */ smp_penguin_ctable.which_io = 0; smp_penguin_ctable.phys_addr = (unsigned int) srmmu_ctx_table_phys; smp_penguin_ctable.reg_size = 0; /* whirrr, whirrr, whirrrrrrrrr... */ printk(KERN_INFO "Starting CPU %d at %p\n", i, entry); local_ops->cache_all(); prom_startcpu(cpu_node, &smp_penguin_ctable, 0, (char *)entry); /* wheee... it's going... */ for (timeout = 0; timeout < 10000; timeout++) { if (cpu_callin_map[i]) break; udelay(200); } if (!(cpu_callin_map[i])) { printk(KERN_ERR "Processor %d is stuck.\n", i); return -ENODEV; } local_ops->cache_all(); return 0; } void __init smp4m_smp_done(void) { int i, first; int *prev; /* setup cpu list for irq rotation */ first = 0; prev = &first; for_each_online_cpu(i) { *prev = i; prev = &cpu_data(i).next; } *prev = first; local_ops->cache_all(); /* Ok, they are spinning and ready to go. */ } static void sun4m_send_ipi(int cpu, int level) { sbus_writel(SUN4M_SOFT_INT(level), &sun4m_irq_percpu[cpu]->set); } static void sun4m_ipi_resched(int cpu) { sun4m_send_ipi(cpu, IRQ_IPI_RESCHED); } static void sun4m_ipi_single(int cpu) { sun4m_send_ipi(cpu, IRQ_IPI_SINGLE); } static void sun4m_ipi_mask_one(int cpu) { sun4m_send_ipi(cpu, IRQ_IPI_MASK); } static struct smp_funcall { smpfunc_t func; unsigned long arg1; unsigned long arg2; unsigned long arg3; unsigned long arg4; unsigned long arg5; unsigned long processors_in[SUN4M_NCPUS]; /* Set when ipi entered. */ unsigned long processors_out[SUN4M_NCPUS]; /* Set when ipi exited. */ } ccall_info; static DEFINE_SPINLOCK(cross_call_lock); /* Cross calls must be serialized, at least currently. */ static void sun4m_cross_call(smpfunc_t func, cpumask_t mask, unsigned long arg1, unsigned long arg2, unsigned long arg3, unsigned long arg4) { register int ncpus = SUN4M_NCPUS; unsigned long flags; spin_lock_irqsave(&cross_call_lock, flags); /* Init function glue. */ ccall_info.func = func; ccall_info.arg1 = arg1; ccall_info.arg2 = arg2; ccall_info.arg3 = arg3; ccall_info.arg4 = arg4; ccall_info.arg5 = 0; /* Init receive/complete mapping, plus fire the IPI's off. */ { register int i; cpumask_clear_cpu(smp_processor_id(), &mask); cpumask_and(&mask, cpu_online_mask, &mask); for (i = 0; i < ncpus; i++) { if (cpumask_test_cpu(i, &mask)) { ccall_info.processors_in[i] = 0; ccall_info.processors_out[i] = 0; sun4m_send_ipi(i, IRQ_CROSS_CALL); } else { ccall_info.processors_in[i] = 1; ccall_info.processors_out[i] = 1; } } } { register int i; i = 0; do { if (!cpumask_test_cpu(i, &mask)) continue; while (!ccall_info.processors_in[i]) barrier(); } while (++i < ncpus); i = 0; do { if (!cpumask_test_cpu(i, &mask)) continue; while (!ccall_info.processors_out[i]) barrier(); } while (++i < ncpus); } spin_unlock_irqrestore(&cross_call_lock, flags); } /* Running cross calls. */ void smp4m_cross_call_irq(void) { int i = smp_processor_id(); ccall_info.processors_in[i] = 1; ccall_info.func(ccall_info.arg1, ccall_info.arg2, ccall_info.arg3, ccall_info.arg4, ccall_info.arg5); ccall_info.processors_out[i] = 1; } void smp4m_percpu_timer_interrupt(struct pt_regs *regs) { struct pt_regs *old_regs; struct clock_event_device *ce; int cpu = smp_processor_id(); old_regs = set_irq_regs(regs); ce = &per_cpu(sparc32_clockevent, cpu); if (ce->mode & CLOCK_EVT_MODE_PERIODIC) sun4m_clear_profile_irq(cpu); else sparc_config.load_profile_irq(cpu, 0); /* Is this needless? */ irq_enter(); ce->event_handler(ce); irq_exit(); set_irq_regs(old_regs); } static const struct sparc32_ipi_ops sun4m_ipi_ops = { .cross_call = sun4m_cross_call, .resched = sun4m_ipi_resched, .single = sun4m_ipi_single, .mask_one = sun4m_ipi_mask_one, }; void __init sun4m_init_smp(void) { sparc32_ipi_ops = &sun4m_ipi_ops; } |