Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * SLUB: A slab allocator that limits cache line use instead of queuing
   3 * objects in per cpu and per node lists.
   4 *
   5 * The allocator synchronizes using per slab locks or atomic operatios
   6 * and only uses a centralized lock to manage a pool of partial slabs.
   7 *
   8 * (C) 2007 SGI, Christoph Lameter
   9 * (C) 2011 Linux Foundation, Christoph Lameter
  10 */
  11
  12#include <linux/mm.h>
  13#include <linux/swap.h> /* struct reclaim_state */
  14#include <linux/module.h>
  15#include <linux/bit_spinlock.h>
  16#include <linux/interrupt.h>
  17#include <linux/bitops.h>
  18#include <linux/slab.h>
  19#include "slab.h"
  20#include <linux/proc_fs.h>
  21#include <linux/notifier.h>
  22#include <linux/seq_file.h>
  23#include <linux/kasan.h>
  24#include <linux/kmemcheck.h>
  25#include <linux/cpu.h>
  26#include <linux/cpuset.h>
  27#include <linux/mempolicy.h>
  28#include <linux/ctype.h>
  29#include <linux/debugobjects.h>
  30#include <linux/kallsyms.h>
  31#include <linux/memory.h>
  32#include <linux/math64.h>
  33#include <linux/fault-inject.h>
  34#include <linux/stacktrace.h>
  35#include <linux/prefetch.h>
  36#include <linux/memcontrol.h>
  37
  38#include <trace/events/kmem.h>
  39
  40#include "internal.h"
  41
  42/*
  43 * Lock order:
  44 *   1. slab_mutex (Global Mutex)
  45 *   2. node->list_lock
  46 *   3. slab_lock(page) (Only on some arches and for debugging)
  47 *
  48 *   slab_mutex
  49 *
  50 *   The role of the slab_mutex is to protect the list of all the slabs
  51 *   and to synchronize major metadata changes to slab cache structures.
  52 *
  53 *   The slab_lock is only used for debugging and on arches that do not
  54 *   have the ability to do a cmpxchg_double. It only protects the second
  55 *   double word in the page struct. Meaning
  56 *	A. page->freelist	-> List of object free in a page
  57 *	B. page->counters	-> Counters of objects
  58 *	C. page->frozen		-> frozen state
  59 *
  60 *   If a slab is frozen then it is exempt from list management. It is not
  61 *   on any list. The processor that froze the slab is the one who can
  62 *   perform list operations on the page. Other processors may put objects
  63 *   onto the freelist but the processor that froze the slab is the only
  64 *   one that can retrieve the objects from the page's freelist.
  65 *
  66 *   The list_lock protects the partial and full list on each node and
  67 *   the partial slab counter. If taken then no new slabs may be added or
  68 *   removed from the lists nor make the number of partial slabs be modified.
  69 *   (Note that the total number of slabs is an atomic value that may be
  70 *   modified without taking the list lock).
  71 *
  72 *   The list_lock is a centralized lock and thus we avoid taking it as
  73 *   much as possible. As long as SLUB does not have to handle partial
  74 *   slabs, operations can continue without any centralized lock. F.e.
  75 *   allocating a long series of objects that fill up slabs does not require
  76 *   the list lock.
  77 *   Interrupts are disabled during allocation and deallocation in order to
  78 *   make the slab allocator safe to use in the context of an irq. In addition
  79 *   interrupts are disabled to ensure that the processor does not change
  80 *   while handling per_cpu slabs, due to kernel preemption.
  81 *
  82 * SLUB assigns one slab for allocation to each processor.
  83 * Allocations only occur from these slabs called cpu slabs.
  84 *
  85 * Slabs with free elements are kept on a partial list and during regular
  86 * operations no list for full slabs is used. If an object in a full slab is
  87 * freed then the slab will show up again on the partial lists.
  88 * We track full slabs for debugging purposes though because otherwise we
  89 * cannot scan all objects.
  90 *
  91 * Slabs are freed when they become empty. Teardown and setup is
  92 * minimal so we rely on the page allocators per cpu caches for
  93 * fast frees and allocs.
  94 *
  95 * Overloading of page flags that are otherwise used for LRU management.
  96 *
  97 * PageActive 		The slab is frozen and exempt from list processing.
  98 * 			This means that the slab is dedicated to a purpose
  99 * 			such as satisfying allocations for a specific
 100 * 			processor. Objects may be freed in the slab while
 101 * 			it is frozen but slab_free will then skip the usual
 102 * 			list operations. It is up to the processor holding
 103 * 			the slab to integrate the slab into the slab lists
 104 * 			when the slab is no longer needed.
 105 *
 106 * 			One use of this flag is to mark slabs that are
 107 * 			used for allocations. Then such a slab becomes a cpu
 108 * 			slab. The cpu slab may be equipped with an additional
 109 * 			freelist that allows lockless access to
 110 * 			free objects in addition to the regular freelist
 111 * 			that requires the slab lock.
 112 *
 113 * PageError		Slab requires special handling due to debug
 114 * 			options set. This moves	slab handling out of
 115 * 			the fast path and disables lockless freelists.
 116 */
 117
 
 
 
 118static inline int kmem_cache_debug(struct kmem_cache *s)
 119{
 120#ifdef CONFIG_SLUB_DEBUG
 121	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
 122#else
 123	return 0;
 124#endif
 125}
 126
 127static inline void *fixup_red_left(struct kmem_cache *s, void *p)
 128{
 129	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
 130		p += s->red_left_pad;
 131
 132	return p;
 133}
 134
 135static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
 136{
 137#ifdef CONFIG_SLUB_CPU_PARTIAL
 138	return !kmem_cache_debug(s);
 139#else
 140	return false;
 141#endif
 142}
 143
 144/*
 145 * Issues still to be resolved:
 146 *
 147 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 148 *
 149 * - Variable sizing of the per node arrays
 150 */
 151
 152/* Enable to test recovery from slab corruption on boot */
 153#undef SLUB_RESILIENCY_TEST
 154
 155/* Enable to log cmpxchg failures */
 156#undef SLUB_DEBUG_CMPXCHG
 157
 158/*
 159 * Mininum number of partial slabs. These will be left on the partial
 160 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 161 */
 162#define MIN_PARTIAL 5
 163
 164/*
 165 * Maximum number of desirable partial slabs.
 166 * The existence of more partial slabs makes kmem_cache_shrink
 167 * sort the partial list by the number of objects in use.
 168 */
 169#define MAX_PARTIAL 10
 170
 171#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
 172				SLAB_POISON | SLAB_STORE_USER)
 173
 174/*
 175 * These debug flags cannot use CMPXCHG because there might be consistency
 176 * issues when checking or reading debug information
 177 */
 178#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
 179				SLAB_TRACE)
 180
 181
 182/*
 183 * Debugging flags that require metadata to be stored in the slab.  These get
 184 * disabled when slub_debug=O is used and a cache's min order increases with
 185 * metadata.
 186 */
 187#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
 188
 
 
 
 
 
 
 
 
 
 
 189#define OO_SHIFT	16
 190#define OO_MASK		((1 << OO_SHIFT) - 1)
 191#define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
 192
 193/* Internal SLUB flags */
 194#define __OBJECT_POISON		0x80000000UL /* Poison object */
 195#define __CMPXCHG_DOUBLE	0x40000000UL /* Use cmpxchg_double */
 196
 
 
 197#ifdef CONFIG_SMP
 198static struct notifier_block slab_notifier;
 199#endif
 200
 
 
 
 
 
 
 
 
 
 
 
 201/*
 202 * Tracking user of a slab.
 203 */
 204#define TRACK_ADDRS_COUNT 16
 205struct track {
 206	unsigned long addr;	/* Called from address */
 207#ifdef CONFIG_STACKTRACE
 208	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
 209#endif
 210	int cpu;		/* Was running on cpu */
 211	int pid;		/* Pid context */
 212	unsigned long when;	/* When did the operation occur */
 213};
 214
 215enum track_item { TRACK_ALLOC, TRACK_FREE };
 216
 217#ifdef CONFIG_SYSFS
 218static int sysfs_slab_add(struct kmem_cache *);
 219static int sysfs_slab_alias(struct kmem_cache *, const char *);
 220static void memcg_propagate_slab_attrs(struct kmem_cache *s);
 
 221#else
 222static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
 223static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
 224							{ return 0; }
 225static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
 
 
 
 
 
 226#endif
 227
 228static inline void stat(const struct kmem_cache *s, enum stat_item si)
 229{
 230#ifdef CONFIG_SLUB_STATS
 231	/*
 232	 * The rmw is racy on a preemptible kernel but this is acceptable, so
 233	 * avoid this_cpu_add()'s irq-disable overhead.
 234	 */
 235	raw_cpu_inc(s->cpu_slab->stat[si]);
 236#endif
 237}
 238
 239/********************************************************************
 240 * 			Core slab cache functions
 241 *******************************************************************/
 242
 243static inline void *get_freepointer(struct kmem_cache *s, void *object)
 244{
 245	return *(void **)(object + s->offset);
 246}
 247
 248static void prefetch_freepointer(const struct kmem_cache *s, void *object)
 249{
 250	prefetch(object + s->offset);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 251}
 252
 253static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
 254{
 255	void *p;
 256
 257	if (!debug_pagealloc_enabled())
 258		return get_freepointer(s, object);
 259
 260	probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
 
 
 
 261	return p;
 262}
 263
 264static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
 265{
 266	*(void **)(object + s->offset) = fp;
 267}
 268
 269/* Loop over all objects in a slab */
 270#define for_each_object(__p, __s, __addr, __objects) \
 271	for (__p = fixup_red_left(__s, __addr); \
 272		__p < (__addr) + (__objects) * (__s)->size; \
 273		__p += (__s)->size)
 274
 275#define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
 276	for (__p = fixup_red_left(__s, __addr), __idx = 1; \
 277		__idx <= __objects; \
 278		__p += (__s)->size, __idx++)
 279
 280/* Determine object index from a given position */
 281static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
 282{
 283	return (p - addr) / s->size;
 284}
 285
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 286static inline int order_objects(int order, unsigned long size, int reserved)
 287{
 288	return ((PAGE_SIZE << order) - reserved) / size;
 289}
 290
 291static inline struct kmem_cache_order_objects oo_make(int order,
 292		unsigned long size, int reserved)
 293{
 294	struct kmem_cache_order_objects x = {
 295		(order << OO_SHIFT) + order_objects(order, size, reserved)
 296	};
 297
 298	return x;
 299}
 300
 301static inline int oo_order(struct kmem_cache_order_objects x)
 302{
 303	return x.x >> OO_SHIFT;
 304}
 305
 306static inline int oo_objects(struct kmem_cache_order_objects x)
 307{
 308	return x.x & OO_MASK;
 309}
 310
 311/*
 312 * Per slab locking using the pagelock
 313 */
 314static __always_inline void slab_lock(struct page *page)
 315{
 316	VM_BUG_ON_PAGE(PageTail(page), page);
 317	bit_spin_lock(PG_locked, &page->flags);
 318}
 319
 320static __always_inline void slab_unlock(struct page *page)
 321{
 322	VM_BUG_ON_PAGE(PageTail(page), page);
 323	__bit_spin_unlock(PG_locked, &page->flags);
 324}
 325
 326static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
 327{
 328	struct page tmp;
 329	tmp.counters = counters_new;
 330	/*
 331	 * page->counters can cover frozen/inuse/objects as well
 332	 * as page->_count.  If we assign to ->counters directly
 333	 * we run the risk of losing updates to page->_count, so
 334	 * be careful and only assign to the fields we need.
 335	 */
 336	page->frozen  = tmp.frozen;
 337	page->inuse   = tmp.inuse;
 338	page->objects = tmp.objects;
 339}
 340
 341/* Interrupts must be disabled (for the fallback code to work right) */
 342static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
 343		void *freelist_old, unsigned long counters_old,
 344		void *freelist_new, unsigned long counters_new,
 345		const char *n)
 346{
 347	VM_BUG_ON(!irqs_disabled());
 348#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
 349    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
 350	if (s->flags & __CMPXCHG_DOUBLE) {
 351		if (cmpxchg_double(&page->freelist, &page->counters,
 352				   freelist_old, counters_old,
 353				   freelist_new, counters_new))
 354			return true;
 355	} else
 356#endif
 357	{
 358		slab_lock(page);
 359		if (page->freelist == freelist_old &&
 360					page->counters == counters_old) {
 361			page->freelist = freelist_new;
 362			set_page_slub_counters(page, counters_new);
 363			slab_unlock(page);
 364			return true;
 365		}
 366		slab_unlock(page);
 367	}
 368
 369	cpu_relax();
 370	stat(s, CMPXCHG_DOUBLE_FAIL);
 371
 372#ifdef SLUB_DEBUG_CMPXCHG
 373	pr_info("%s %s: cmpxchg double redo ", n, s->name);
 374#endif
 375
 376	return false;
 377}
 378
 379static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
 380		void *freelist_old, unsigned long counters_old,
 381		void *freelist_new, unsigned long counters_new,
 382		const char *n)
 383{
 384#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
 385    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
 386	if (s->flags & __CMPXCHG_DOUBLE) {
 387		if (cmpxchg_double(&page->freelist, &page->counters,
 388				   freelist_old, counters_old,
 389				   freelist_new, counters_new))
 390			return true;
 391	} else
 392#endif
 393	{
 394		unsigned long flags;
 395
 396		local_irq_save(flags);
 397		slab_lock(page);
 398		if (page->freelist == freelist_old &&
 399					page->counters == counters_old) {
 400			page->freelist = freelist_new;
 401			set_page_slub_counters(page, counters_new);
 402			slab_unlock(page);
 403			local_irq_restore(flags);
 404			return true;
 405		}
 406		slab_unlock(page);
 407		local_irq_restore(flags);
 408	}
 409
 410	cpu_relax();
 411	stat(s, CMPXCHG_DOUBLE_FAIL);
 412
 413#ifdef SLUB_DEBUG_CMPXCHG
 414	pr_info("%s %s: cmpxchg double redo ", n, s->name);
 415#endif
 416
 417	return false;
 418}
 419
 420#ifdef CONFIG_SLUB_DEBUG
 421/*
 422 * Determine a map of object in use on a page.
 423 *
 424 * Node listlock must be held to guarantee that the page does
 425 * not vanish from under us.
 426 */
 427static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
 428{
 429	void *p;
 430	void *addr = page_address(page);
 431
 432	for (p = page->freelist; p; p = get_freepointer(s, p))
 433		set_bit(slab_index(p, s, addr), map);
 434}
 435
 436static inline int size_from_object(struct kmem_cache *s)
 437{
 438	if (s->flags & SLAB_RED_ZONE)
 439		return s->size - s->red_left_pad;
 440
 441	return s->size;
 442}
 443
 444static inline void *restore_red_left(struct kmem_cache *s, void *p)
 445{
 446	if (s->flags & SLAB_RED_ZONE)
 447		p -= s->red_left_pad;
 448
 449	return p;
 450}
 451
 452/*
 453 * Debug settings:
 454 */
 455#if defined(CONFIG_SLUB_DEBUG_ON)
 456static int slub_debug = DEBUG_DEFAULT_FLAGS;
 457#elif defined(CONFIG_KASAN)
 458static int slub_debug = SLAB_STORE_USER;
 459#else
 460static int slub_debug;
 461#endif
 462
 463static char *slub_debug_slabs;
 464static int disable_higher_order_debug;
 465
 466/*
 467 * slub is about to manipulate internal object metadata.  This memory lies
 468 * outside the range of the allocated object, so accessing it would normally
 469 * be reported by kasan as a bounds error.  metadata_access_enable() is used
 470 * to tell kasan that these accesses are OK.
 471 */
 472static inline void metadata_access_enable(void)
 473{
 474	kasan_disable_current();
 475}
 476
 477static inline void metadata_access_disable(void)
 478{
 479	kasan_enable_current();
 480}
 481
 482/*
 483 * Object debugging
 484 */
 485
 486/* Verify that a pointer has an address that is valid within a slab page */
 487static inline int check_valid_pointer(struct kmem_cache *s,
 488				struct page *page, void *object)
 489{
 490	void *base;
 491
 492	if (!object)
 493		return 1;
 494
 495	base = page_address(page);
 496	object = restore_red_left(s, object);
 497	if (object < base || object >= base + page->objects * s->size ||
 498		(object - base) % s->size) {
 499		return 0;
 500	}
 501
 502	return 1;
 503}
 504
 505static void print_section(char *text, u8 *addr, unsigned int length)
 506{
 507	metadata_access_enable();
 508	print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
 509			length, 1);
 510	metadata_access_disable();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 511}
 512
 513static struct track *get_track(struct kmem_cache *s, void *object,
 514	enum track_item alloc)
 515{
 516	struct track *p;
 517
 518	if (s->offset)
 519		p = object + s->offset + sizeof(void *);
 520	else
 521		p = object + s->inuse;
 522
 523	return p + alloc;
 524}
 525
 526static void set_track(struct kmem_cache *s, void *object,
 527			enum track_item alloc, unsigned long addr)
 528{
 529	struct track *p = get_track(s, object, alloc);
 530
 531	if (addr) {
 532#ifdef CONFIG_STACKTRACE
 533		struct stack_trace trace;
 534		int i;
 535
 536		trace.nr_entries = 0;
 537		trace.max_entries = TRACK_ADDRS_COUNT;
 538		trace.entries = p->addrs;
 539		trace.skip = 3;
 540		metadata_access_enable();
 541		save_stack_trace(&trace);
 542		metadata_access_disable();
 543
 544		/* See rant in lockdep.c */
 545		if (trace.nr_entries != 0 &&
 546		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
 547			trace.nr_entries--;
 548
 549		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
 550			p->addrs[i] = 0;
 551#endif
 552		p->addr = addr;
 553		p->cpu = smp_processor_id();
 554		p->pid = current->pid;
 555		p->when = jiffies;
 556	} else
 557		memset(p, 0, sizeof(struct track));
 558}
 559
 560static void init_tracking(struct kmem_cache *s, void *object)
 561{
 562	if (!(s->flags & SLAB_STORE_USER))
 563		return;
 564
 565	set_track(s, object, TRACK_FREE, 0UL);
 566	set_track(s, object, TRACK_ALLOC, 0UL);
 567}
 568
 569static void print_track(const char *s, struct track *t)
 570{
 571	if (!t->addr)
 572		return;
 573
 574	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
 575	       s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
 576#ifdef CONFIG_STACKTRACE
 577	{
 578		int i;
 579		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
 580			if (t->addrs[i])
 581				pr_err("\t%pS\n", (void *)t->addrs[i]);
 582			else
 583				break;
 584	}
 585#endif
 586}
 587
 588static void print_tracking(struct kmem_cache *s, void *object)
 589{
 590	if (!(s->flags & SLAB_STORE_USER))
 591		return;
 592
 593	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
 594	print_track("Freed", get_track(s, object, TRACK_FREE));
 595}
 596
 597static void print_page_info(struct page *page)
 598{
 599	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
 600	       page, page->objects, page->inuse, page->freelist, page->flags);
 601
 602}
 603
 604static void slab_bug(struct kmem_cache *s, char *fmt, ...)
 605{
 606	struct va_format vaf;
 607	va_list args;
 
 608
 609	va_start(args, fmt);
 610	vaf.fmt = fmt;
 611	vaf.va = &args;
 612	pr_err("=============================================================================\n");
 613	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
 614	pr_err("-----------------------------------------------------------------------------\n\n");
 615
 616	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 617	va_end(args);
 
 
 
 
 
 618}
 619
 620static void slab_fix(struct kmem_cache *s, char *fmt, ...)
 621{
 622	struct va_format vaf;
 623	va_list args;
 
 624
 625	va_start(args, fmt);
 626	vaf.fmt = fmt;
 627	vaf.va = &args;
 628	pr_err("FIX %s: %pV\n", s->name, &vaf);
 629	va_end(args);
 
 630}
 631
 632static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
 633{
 634	unsigned int off;	/* Offset of last byte */
 635	u8 *addr = page_address(page);
 636
 637	print_tracking(s, p);
 638
 639	print_page_info(page);
 640
 641	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
 642	       p, p - addr, get_freepointer(s, p));
 643
 644	if (s->flags & SLAB_RED_ZONE)
 645		print_section("Redzone ", p - s->red_left_pad, s->red_left_pad);
 646	else if (p > addr + 16)
 647		print_section("Bytes b4 ", p - 16, 16);
 648
 649	print_section("Object ", p, min_t(unsigned long, s->object_size,
 650				PAGE_SIZE));
 651	if (s->flags & SLAB_RED_ZONE)
 652		print_section("Redzone ", p + s->object_size,
 653			s->inuse - s->object_size);
 654
 655	if (s->offset)
 656		off = s->offset + sizeof(void *);
 657	else
 658		off = s->inuse;
 659
 660	if (s->flags & SLAB_STORE_USER)
 661		off += 2 * sizeof(struct track);
 662
 663	if (off != size_from_object(s))
 664		/* Beginning of the filler is the free pointer */
 665		print_section("Padding ", p + off, size_from_object(s) - off);
 666
 667	dump_stack();
 668}
 669
 670void object_err(struct kmem_cache *s, struct page *page,
 671			u8 *object, char *reason)
 672{
 673	slab_bug(s, "%s", reason);
 674	print_trailer(s, page, object);
 675}
 676
 677static void slab_err(struct kmem_cache *s, struct page *page,
 678			const char *fmt, ...)
 679{
 680	va_list args;
 681	char buf[100];
 682
 683	va_start(args, fmt);
 684	vsnprintf(buf, sizeof(buf), fmt, args);
 685	va_end(args);
 686	slab_bug(s, "%s", buf);
 687	print_page_info(page);
 688	dump_stack();
 689}
 690
 691static void init_object(struct kmem_cache *s, void *object, u8 val)
 692{
 693	u8 *p = object;
 694
 695	if (s->flags & SLAB_RED_ZONE)
 696		memset(p - s->red_left_pad, val, s->red_left_pad);
 697
 698	if (s->flags & __OBJECT_POISON) {
 699		memset(p, POISON_FREE, s->object_size - 1);
 700		p[s->object_size - 1] = POISON_END;
 701	}
 702
 703	if (s->flags & SLAB_RED_ZONE)
 704		memset(p + s->object_size, val, s->inuse - s->object_size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 705}
 706
 707static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
 708						void *from, void *to)
 709{
 710	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
 711	memset(from, data, to - from);
 712}
 713
 714static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
 715			u8 *object, char *what,
 716			u8 *start, unsigned int value, unsigned int bytes)
 717{
 718	u8 *fault;
 719	u8 *end;
 720
 721	metadata_access_enable();
 722	fault = memchr_inv(start, value, bytes);
 723	metadata_access_disable();
 724	if (!fault)
 725		return 1;
 726
 727	end = start + bytes;
 728	while (end > fault && end[-1] == value)
 729		end--;
 730
 731	slab_bug(s, "%s overwritten", what);
 732	pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
 733					fault, end - 1, fault[0], value);
 734	print_trailer(s, page, object);
 735
 736	restore_bytes(s, what, value, fault, end);
 737	return 0;
 738}
 739
 740/*
 741 * Object layout:
 742 *
 743 * object address
 744 * 	Bytes of the object to be managed.
 745 * 	If the freepointer may overlay the object then the free
 746 * 	pointer is the first word of the object.
 747 *
 748 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
 749 * 	0xa5 (POISON_END)
 750 *
 751 * object + s->object_size
 752 * 	Padding to reach word boundary. This is also used for Redzoning.
 753 * 	Padding is extended by another word if Redzoning is enabled and
 754 * 	object_size == inuse.
 755 *
 756 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 757 * 	0xcc (RED_ACTIVE) for objects in use.
 758 *
 759 * object + s->inuse
 760 * 	Meta data starts here.
 761 *
 762 * 	A. Free pointer (if we cannot overwrite object on free)
 763 * 	B. Tracking data for SLAB_STORE_USER
 764 * 	C. Padding to reach required alignment boundary or at mininum
 765 * 		one word if debugging is on to be able to detect writes
 766 * 		before the word boundary.
 767 *
 768 *	Padding is done using 0x5a (POISON_INUSE)
 769 *
 770 * object + s->size
 771 * 	Nothing is used beyond s->size.
 772 *
 773 * If slabcaches are merged then the object_size and inuse boundaries are mostly
 774 * ignored. And therefore no slab options that rely on these boundaries
 775 * may be used with merged slabcaches.
 776 */
 777
 778static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
 779{
 780	unsigned long off = s->inuse;	/* The end of info */
 781
 782	if (s->offset)
 783		/* Freepointer is placed after the object. */
 784		off += sizeof(void *);
 785
 786	if (s->flags & SLAB_STORE_USER)
 787		/* We also have user information there */
 788		off += 2 * sizeof(struct track);
 789
 790	if (size_from_object(s) == off)
 791		return 1;
 792
 793	return check_bytes_and_report(s, page, p, "Object padding",
 794			p + off, POISON_INUSE, size_from_object(s) - off);
 795}
 796
 797/* Check the pad bytes at the end of a slab page */
 798static int slab_pad_check(struct kmem_cache *s, struct page *page)
 799{
 800	u8 *start;
 801	u8 *fault;
 802	u8 *end;
 803	int length;
 804	int remainder;
 805
 806	if (!(s->flags & SLAB_POISON))
 807		return 1;
 808
 809	start = page_address(page);
 810	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
 811	end = start + length;
 812	remainder = length % s->size;
 813	if (!remainder)
 814		return 1;
 815
 816	metadata_access_enable();
 817	fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
 818	metadata_access_disable();
 819	if (!fault)
 820		return 1;
 821	while (end > fault && end[-1] == POISON_INUSE)
 822		end--;
 823
 824	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
 825	print_section("Padding ", end - remainder, remainder);
 826
 827	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
 828	return 0;
 829}
 830
 831static int check_object(struct kmem_cache *s, struct page *page,
 832					void *object, u8 val)
 833{
 834	u8 *p = object;
 835	u8 *endobject = object + s->object_size;
 836
 837	if (s->flags & SLAB_RED_ZONE) {
 838		if (!check_bytes_and_report(s, page, object, "Redzone",
 839			object - s->red_left_pad, val, s->red_left_pad))
 840			return 0;
 841
 842		if (!check_bytes_and_report(s, page, object, "Redzone",
 843			endobject, val, s->inuse - s->object_size))
 844			return 0;
 845	} else {
 846		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
 847			check_bytes_and_report(s, page, p, "Alignment padding",
 848				endobject, POISON_INUSE,
 849				s->inuse - s->object_size);
 850		}
 851	}
 852
 853	if (s->flags & SLAB_POISON) {
 854		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
 855			(!check_bytes_and_report(s, page, p, "Poison", p,
 856					POISON_FREE, s->object_size - 1) ||
 857			 !check_bytes_and_report(s, page, p, "Poison",
 858				p + s->object_size - 1, POISON_END, 1)))
 859			return 0;
 860		/*
 861		 * check_pad_bytes cleans up on its own.
 862		 */
 863		check_pad_bytes(s, page, p);
 864	}
 865
 866	if (!s->offset && val == SLUB_RED_ACTIVE)
 867		/*
 868		 * Object and freepointer overlap. Cannot check
 869		 * freepointer while object is allocated.
 870		 */
 871		return 1;
 872
 873	/* Check free pointer validity */
 874	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
 875		object_err(s, page, p, "Freepointer corrupt");
 876		/*
 877		 * No choice but to zap it and thus lose the remainder
 878		 * of the free objects in this slab. May cause
 879		 * another error because the object count is now wrong.
 880		 */
 881		set_freepointer(s, p, NULL);
 882		return 0;
 883	}
 884	return 1;
 885}
 886
 887static int check_slab(struct kmem_cache *s, struct page *page)
 888{
 889	int maxobj;
 890
 891	VM_BUG_ON(!irqs_disabled());
 892
 893	if (!PageSlab(page)) {
 894		slab_err(s, page, "Not a valid slab page");
 895		return 0;
 896	}
 897
 898	maxobj = order_objects(compound_order(page), s->size, s->reserved);
 899	if (page->objects > maxobj) {
 900		slab_err(s, page, "objects %u > max %u",
 901			page->objects, maxobj);
 902		return 0;
 903	}
 904	if (page->inuse > page->objects) {
 905		slab_err(s, page, "inuse %u > max %u",
 906			page->inuse, page->objects);
 907		return 0;
 908	}
 909	/* Slab_pad_check fixes things up after itself */
 910	slab_pad_check(s, page);
 911	return 1;
 912}
 913
 914/*
 915 * Determine if a certain object on a page is on the freelist. Must hold the
 916 * slab lock to guarantee that the chains are in a consistent state.
 917 */
 918static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
 919{
 920	int nr = 0;
 921	void *fp;
 922	void *object = NULL;
 923	int max_objects;
 924
 925	fp = page->freelist;
 926	while (fp && nr <= page->objects) {
 927		if (fp == search)
 928			return 1;
 929		if (!check_valid_pointer(s, page, fp)) {
 930			if (object) {
 931				object_err(s, page, object,
 932					"Freechain corrupt");
 933				set_freepointer(s, object, NULL);
 
 934			} else {
 935				slab_err(s, page, "Freepointer corrupt");
 936				page->freelist = NULL;
 937				page->inuse = page->objects;
 938				slab_fix(s, "Freelist cleared");
 939				return 0;
 940			}
 941			break;
 942		}
 943		object = fp;
 944		fp = get_freepointer(s, object);
 945		nr++;
 946	}
 947
 948	max_objects = order_objects(compound_order(page), s->size, s->reserved);
 949	if (max_objects > MAX_OBJS_PER_PAGE)
 950		max_objects = MAX_OBJS_PER_PAGE;
 951
 952	if (page->objects != max_objects) {
 953		slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
 954			 page->objects, max_objects);
 955		page->objects = max_objects;
 956		slab_fix(s, "Number of objects adjusted.");
 957	}
 958	if (page->inuse != page->objects - nr) {
 959		slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
 960			 page->inuse, page->objects - nr);
 961		page->inuse = page->objects - nr;
 962		slab_fix(s, "Object count adjusted.");
 963	}
 964	return search == NULL;
 965}
 966
 967static void trace(struct kmem_cache *s, struct page *page, void *object,
 968								int alloc)
 969{
 970	if (s->flags & SLAB_TRACE) {
 971		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
 972			s->name,
 973			alloc ? "alloc" : "free",
 974			object, page->inuse,
 975			page->freelist);
 976
 977		if (!alloc)
 978			print_section("Object ", (void *)object,
 979					s->object_size);
 980
 981		dump_stack();
 982	}
 983}
 984
 985/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 986 * Tracking of fully allocated slabs for debugging purposes.
 
 
 987 */
 988static void add_full(struct kmem_cache *s,
 989	struct kmem_cache_node *n, struct page *page)
 990{
 991	if (!(s->flags & SLAB_STORE_USER))
 992		return;
 993
 994	lockdep_assert_held(&n->list_lock);
 995	list_add(&page->lru, &n->full);
 996}
 997
 998static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
 
 
 
 999{
1000	if (!(s->flags & SLAB_STORE_USER))
1001		return;
1002
1003	lockdep_assert_held(&n->list_lock);
1004	list_del(&page->lru);
1005}
1006
1007/* Tracking of the number of slabs for debugging purposes */
1008static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1009{
1010	struct kmem_cache_node *n = get_node(s, node);
1011
1012	return atomic_long_read(&n->nr_slabs);
1013}
1014
1015static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1016{
1017	return atomic_long_read(&n->nr_slabs);
1018}
1019
1020static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1021{
1022	struct kmem_cache_node *n = get_node(s, node);
1023
1024	/*
1025	 * May be called early in order to allocate a slab for the
1026	 * kmem_cache_node structure. Solve the chicken-egg
1027	 * dilemma by deferring the increment of the count during
1028	 * bootstrap (see early_kmem_cache_node_alloc).
1029	 */
1030	if (likely(n)) {
1031		atomic_long_inc(&n->nr_slabs);
1032		atomic_long_add(objects, &n->total_objects);
1033	}
1034}
1035static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1036{
1037	struct kmem_cache_node *n = get_node(s, node);
1038
1039	atomic_long_dec(&n->nr_slabs);
1040	atomic_long_sub(objects, &n->total_objects);
1041}
1042
1043/* Object debug checks for alloc/free paths */
1044static void setup_object_debug(struct kmem_cache *s, struct page *page,
1045								void *object)
1046{
1047	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1048		return;
1049
1050	init_object(s, object, SLUB_RED_INACTIVE);
1051	init_tracking(s, object);
1052}
1053
1054static inline int alloc_consistency_checks(struct kmem_cache *s,
1055					struct page *page,
1056					void *object, unsigned long addr)
1057{
1058	if (!check_slab(s, page))
1059		return 0;
1060
1061	if (!check_valid_pointer(s, page, object)) {
1062		object_err(s, page, object, "Freelist Pointer check fails");
1063		return 0;
1064	}
1065
1066	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1067		return 0;
1068
1069	return 1;
1070}
1071
1072static noinline int alloc_debug_processing(struct kmem_cache *s,
1073					struct page *page,
1074					void *object, unsigned long addr)
1075{
1076	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1077		if (!alloc_consistency_checks(s, page, object, addr))
1078			goto bad;
1079	}
1080
1081	/* Success perform special debug activities for allocs */
1082	if (s->flags & SLAB_STORE_USER)
1083		set_track(s, object, TRACK_ALLOC, addr);
1084	trace(s, page, object, 1);
1085	init_object(s, object, SLUB_RED_ACTIVE);
1086	return 1;
1087
1088bad:
1089	if (PageSlab(page)) {
1090		/*
1091		 * If this is a slab page then lets do the best we can
1092		 * to avoid issues in the future. Marking all objects
1093		 * as used avoids touching the remaining objects.
1094		 */
1095		slab_fix(s, "Marking all objects used");
1096		page->inuse = page->objects;
1097		page->freelist = NULL;
1098	}
1099	return 0;
1100}
1101
1102static inline int free_consistency_checks(struct kmem_cache *s,
1103		struct page *page, void *object, unsigned long addr)
1104{
 
 
 
 
 
 
 
 
 
1105	if (!check_valid_pointer(s, page, object)) {
1106		slab_err(s, page, "Invalid object pointer 0x%p", object);
1107		return 0;
1108	}
1109
1110	if (on_freelist(s, page, object)) {
1111		object_err(s, page, object, "Object already free");
1112		return 0;
1113	}
1114
1115	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1116		return 0;
1117
1118	if (unlikely(s != page->slab_cache)) {
1119		if (!PageSlab(page)) {
1120			slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1121				 object);
1122		} else if (!page->slab_cache) {
1123			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1124			       object);
 
1125			dump_stack();
1126		} else
1127			object_err(s, page, object,
1128					"page slab pointer corrupt.");
1129		return 0;
1130	}
1131	return 1;
1132}
1133
1134/* Supports checking bulk free of a constructed freelist */
1135static noinline int free_debug_processing(
1136	struct kmem_cache *s, struct page *page,
1137	void *head, void *tail, int bulk_cnt,
1138	unsigned long addr)
1139{
1140	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1141	void *object = head;
1142	int cnt = 0;
1143	unsigned long uninitialized_var(flags);
1144	int ret = 0;
1145
1146	spin_lock_irqsave(&n->list_lock, flags);
1147	slab_lock(page);
1148
1149	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1150		if (!check_slab(s, page))
1151			goto out;
1152	}
1153
1154next_object:
1155	cnt++;
1156
1157	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1158		if (!free_consistency_checks(s, page, object, addr))
1159			goto out;
1160	}
1161
1162	if (s->flags & SLAB_STORE_USER)
1163		set_track(s, object, TRACK_FREE, addr);
1164	trace(s, page, object, 0);
1165	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1166	init_object(s, object, SLUB_RED_INACTIVE);
1167
1168	/* Reached end of constructed freelist yet? */
1169	if (object != tail) {
1170		object = get_freepointer(s, object);
1171		goto next_object;
1172	}
1173	ret = 1;
1174
1175out:
1176	if (cnt != bulk_cnt)
1177		slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1178			 bulk_cnt, cnt);
1179
1180	slab_unlock(page);
1181	spin_unlock_irqrestore(&n->list_lock, flags);
1182	if (!ret)
1183		slab_fix(s, "Object at 0x%p not freed", object);
1184	return ret;
 
 
1185}
1186
1187static int __init setup_slub_debug(char *str)
1188{
1189	slub_debug = DEBUG_DEFAULT_FLAGS;
1190	if (*str++ != '=' || !*str)
1191		/*
1192		 * No options specified. Switch on full debugging.
1193		 */
1194		goto out;
1195
1196	if (*str == ',')
1197		/*
1198		 * No options but restriction on slabs. This means full
1199		 * debugging for slabs matching a pattern.
1200		 */
1201		goto check_slabs;
1202
 
 
 
 
 
 
 
 
 
1203	slub_debug = 0;
1204	if (*str == '-')
1205		/*
1206		 * Switch off all debugging measures.
1207		 */
1208		goto out;
1209
1210	/*
1211	 * Determine which debug features should be switched on
1212	 */
1213	for (; *str && *str != ','; str++) {
1214		switch (tolower(*str)) {
1215		case 'f':
1216			slub_debug |= SLAB_CONSISTENCY_CHECKS;
1217			break;
1218		case 'z':
1219			slub_debug |= SLAB_RED_ZONE;
1220			break;
1221		case 'p':
1222			slub_debug |= SLAB_POISON;
1223			break;
1224		case 'u':
1225			slub_debug |= SLAB_STORE_USER;
1226			break;
1227		case 't':
1228			slub_debug |= SLAB_TRACE;
1229			break;
1230		case 'a':
1231			slub_debug |= SLAB_FAILSLAB;
1232			break;
1233		case 'o':
1234			/*
1235			 * Avoid enabling debugging on caches if its minimum
1236			 * order would increase as a result.
1237			 */
1238			disable_higher_order_debug = 1;
1239			break;
1240		default:
1241			pr_err("slub_debug option '%c' unknown. skipped\n",
1242			       *str);
1243		}
1244	}
1245
1246check_slabs:
1247	if (*str == ',')
1248		slub_debug_slabs = str + 1;
1249out:
1250	return 1;
1251}
1252
1253__setup("slub_debug", setup_slub_debug);
1254
1255unsigned long kmem_cache_flags(unsigned long object_size,
1256	unsigned long flags, const char *name,
1257	void (*ctor)(void *))
1258{
1259	/*
1260	 * Enable debugging if selected on the kernel commandline.
1261	 */
1262	if (slub_debug && (!slub_debug_slabs || (name &&
1263		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1264		flags |= slub_debug;
1265
1266	return flags;
1267}
1268#else /* !CONFIG_SLUB_DEBUG */
1269static inline void setup_object_debug(struct kmem_cache *s,
1270			struct page *page, void *object) {}
1271
1272static inline int alloc_debug_processing(struct kmem_cache *s,
1273	struct page *page, void *object, unsigned long addr) { return 0; }
1274
1275static inline int free_debug_processing(
1276	struct kmem_cache *s, struct page *page,
1277	void *head, void *tail, int bulk_cnt,
1278	unsigned long addr) { return 0; }
1279
1280static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1281			{ return 1; }
1282static inline int check_object(struct kmem_cache *s, struct page *page,
1283			void *object, u8 val) { return 1; }
1284static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1285					struct page *page) {}
1286static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1287					struct page *page) {}
1288unsigned long kmem_cache_flags(unsigned long object_size,
1289	unsigned long flags, const char *name,
1290	void (*ctor)(void *))
1291{
1292	return flags;
1293}
1294#define slub_debug 0
1295
1296#define disable_higher_order_debug 0
1297
1298static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1299							{ return 0; }
1300static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1301							{ return 0; }
1302static inline void inc_slabs_node(struct kmem_cache *s, int node,
1303							int objects) {}
1304static inline void dec_slabs_node(struct kmem_cache *s, int node,
1305							int objects) {}
1306
1307#endif /* CONFIG_SLUB_DEBUG */
1308
1309/*
1310 * Hooks for other subsystems that check memory allocations. In a typical
1311 * production configuration these hooks all should produce no code at all.
1312 */
1313static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1314{
1315	kmemleak_alloc(ptr, size, 1, flags);
1316	kasan_kmalloc_large(ptr, size, flags);
1317}
1318
1319static inline void kfree_hook(const void *x)
1320{
1321	kmemleak_free(x);
1322	kasan_kfree_large(x);
1323}
1324
1325static inline void slab_free_hook(struct kmem_cache *s, void *x)
1326{
1327	kmemleak_free_recursive(x, s->flags);
1328
1329	/*
1330	 * Trouble is that we may no longer disable interrupts in the fast path
1331	 * So in order to make the debug calls that expect irqs to be
1332	 * disabled we need to disable interrupts temporarily.
1333	 */
1334#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1335	{
1336		unsigned long flags;
1337
1338		local_irq_save(flags);
1339		kmemcheck_slab_free(s, x, s->object_size);
1340		debug_check_no_locks_freed(x, s->object_size);
1341		local_irq_restore(flags);
1342	}
1343#endif
1344	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1345		debug_check_no_obj_freed(x, s->object_size);
1346
1347	kasan_slab_free(s, x);
1348}
1349
1350static inline void slab_free_freelist_hook(struct kmem_cache *s,
1351					   void *head, void *tail)
1352{
1353/*
1354 * Compiler cannot detect this function can be removed if slab_free_hook()
1355 * evaluates to nothing.  Thus, catch all relevant config debug options here.
1356 */
1357#if defined(CONFIG_KMEMCHECK) ||		\
1358	defined(CONFIG_LOCKDEP)	||		\
1359	defined(CONFIG_DEBUG_KMEMLEAK) ||	\
1360	defined(CONFIG_DEBUG_OBJECTS_FREE) ||	\
1361	defined(CONFIG_KASAN)
1362
1363	void *object = head;
1364	void *tail_obj = tail ? : head;
1365
1366	do {
1367		slab_free_hook(s, object);
1368	} while ((object != tail_obj) &&
1369		 (object = get_freepointer(s, object)));
1370#endif
1371}
1372
1373static void setup_object(struct kmem_cache *s, struct page *page,
1374				void *object)
1375{
1376	setup_object_debug(s, page, object);
1377	if (unlikely(s->ctor)) {
1378		kasan_unpoison_object_data(s, object);
1379		s->ctor(object);
1380		kasan_poison_object_data(s, object);
1381	}
1382}
1383
1384/*
1385 * Slab allocation and freeing
1386 */
1387static inline struct page *alloc_slab_page(struct kmem_cache *s,
1388		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1389{
1390	struct page *page;
1391	int order = oo_order(oo);
1392
1393	flags |= __GFP_NOTRACK;
1394
1395	if (node == NUMA_NO_NODE)
1396		page = alloc_pages(flags, order);
1397	else
1398		page = __alloc_pages_node(node, flags, order);
1399
1400	if (page && memcg_charge_slab(page, flags, order, s)) {
1401		__free_pages(page, order);
1402		page = NULL;
1403	}
1404
1405	return page;
1406}
1407
1408static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1409{
1410	struct page *page;
1411	struct kmem_cache_order_objects oo = s->oo;
1412	gfp_t alloc_gfp;
1413	void *start, *p;
1414	int idx, order;
1415
1416	flags &= gfp_allowed_mask;
1417
1418	if (gfpflags_allow_blocking(flags))
1419		local_irq_enable();
1420
1421	flags |= s->allocflags;
1422
1423	/*
1424	 * Let the initial higher-order allocation fail under memory pressure
1425	 * so we fall-back to the minimum order allocation.
1426	 */
1427	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1428	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1429		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1430
1431	page = alloc_slab_page(s, alloc_gfp, node, oo);
1432	if (unlikely(!page)) {
1433		oo = s->min;
1434		alloc_gfp = flags;
1435		/*
1436		 * Allocation may have failed due to fragmentation.
1437		 * Try a lower order alloc if possible
1438		 */
1439		page = alloc_slab_page(s, alloc_gfp, node, oo);
1440		if (unlikely(!page))
1441			goto out;
1442		stat(s, ORDER_FALLBACK);
1443	}
1444
1445	if (kmemcheck_enabled &&
1446	    !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
 
 
 
 
 
 
1447		int pages = 1 << oo_order(oo);
1448
1449		kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
1450
1451		/*
1452		 * Objects from caches that have a constructor don't get
1453		 * cleared when they're allocated, so we need to do it here.
1454		 */
1455		if (s->ctor)
1456			kmemcheck_mark_uninitialized_pages(page, pages);
1457		else
1458			kmemcheck_mark_unallocated_pages(page, pages);
1459	}
1460
1461	page->objects = oo_objects(oo);
1462
1463	order = compound_order(page);
1464	page->slab_cache = s;
1465	__SetPageSlab(page);
1466	if (page_is_pfmemalloc(page))
1467		SetPageSlabPfmemalloc(page);
1468
1469	start = page_address(page);
1470
1471	if (unlikely(s->flags & SLAB_POISON))
1472		memset(start, POISON_INUSE, PAGE_SIZE << order);
1473
1474	kasan_poison_slab(page);
1475
1476	for_each_object_idx(p, idx, s, start, page->objects) {
1477		setup_object(s, page, p);
1478		if (likely(idx < page->objects))
1479			set_freepointer(s, p, p + s->size);
1480		else
1481			set_freepointer(s, p, NULL);
1482	}
1483
1484	page->freelist = fixup_red_left(s, start);
1485	page->inuse = page->objects;
1486	page->frozen = 1;
1487
1488out:
1489	if (gfpflags_allow_blocking(flags))
1490		local_irq_disable();
1491	if (!page)
1492		return NULL;
1493
1494	mod_zone_page_state(page_zone(page),
1495		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1496		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1497		1 << oo_order(oo));
1498
1499	inc_slabs_node(s, page_to_nid(page), page->objects);
1500
1501	return page;
1502}
1503
 
 
 
 
 
 
 
 
1504static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1505{
1506	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1507		pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
1508		BUG();
1509	}
1510
1511	return allocate_slab(s,
 
 
1512		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1513}
1514
1515static void __free_slab(struct kmem_cache *s, struct page *page)
1516{
1517	int order = compound_order(page);
1518	int pages = 1 << order;
1519
1520	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1521		void *p;
1522
1523		slab_pad_check(s, page);
1524		for_each_object(p, s, page_address(page),
1525						page->objects)
1526			check_object(s, page, p, SLUB_RED_INACTIVE);
1527	}
1528
1529	kmemcheck_free_shadow(page, compound_order(page));
1530
1531	mod_zone_page_state(page_zone(page),
1532		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1533		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1534		-pages);
1535
1536	__ClearPageSlabPfmemalloc(page);
1537	__ClearPageSlab(page);
1538
1539	page_mapcount_reset(page);
1540	if (current->reclaim_state)
1541		current->reclaim_state->reclaimed_slab += pages;
1542	memcg_uncharge_slab(page, order, s);
1543	__free_pages(page, order);
1544}
1545
1546#define need_reserve_slab_rcu						\
1547	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1548
1549static void rcu_free_slab(struct rcu_head *h)
1550{
1551	struct page *page;
1552
1553	if (need_reserve_slab_rcu)
1554		page = virt_to_head_page(h);
1555	else
1556		page = container_of((struct list_head *)h, struct page, lru);
1557
1558	__free_slab(page->slab_cache, page);
1559}
1560
1561static void free_slab(struct kmem_cache *s, struct page *page)
1562{
1563	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1564		struct rcu_head *head;
1565
1566		if (need_reserve_slab_rcu) {
1567			int order = compound_order(page);
1568			int offset = (PAGE_SIZE << order) - s->reserved;
1569
1570			VM_BUG_ON(s->reserved != sizeof(*head));
1571			head = page_address(page) + offset;
1572		} else {
1573			head = &page->rcu_head;
 
 
 
1574		}
1575
1576		call_rcu(head, rcu_free_slab);
1577	} else
1578		__free_slab(s, page);
1579}
1580
1581static void discard_slab(struct kmem_cache *s, struct page *page)
1582{
1583	dec_slabs_node(s, page_to_nid(page), page->objects);
1584	free_slab(s, page);
1585}
1586
1587/*
1588 * Management of partially allocated slabs.
 
 
1589 */
1590static inline void
1591__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1592{
1593	n->nr_partial++;
1594	if (tail == DEACTIVATE_TO_TAIL)
1595		list_add_tail(&page->lru, &n->partial);
1596	else
1597		list_add(&page->lru, &n->partial);
1598}
1599
1600static inline void add_partial(struct kmem_cache_node *n,
1601				struct page *page, int tail)
1602{
1603	lockdep_assert_held(&n->list_lock);
1604	__add_partial(n, page, tail);
1605}
1606
1607static inline void remove_partial(struct kmem_cache_node *n,
1608					struct page *page)
1609{
1610	lockdep_assert_held(&n->list_lock);
1611	list_del(&page->lru);
1612	n->nr_partial--;
1613}
1614
1615/*
1616 * Remove slab from the partial list, freeze it and
1617 * return the pointer to the freelist.
1618 *
1619 * Returns a list of objects or NULL if it fails.
1620 */
1621static inline void *acquire_slab(struct kmem_cache *s,
1622		struct kmem_cache_node *n, struct page *page,
1623		int mode, int *objects)
1624{
1625	void *freelist;
1626	unsigned long counters;
1627	struct page new;
1628
1629	lockdep_assert_held(&n->list_lock);
1630
1631	/*
1632	 * Zap the freelist and set the frozen bit.
1633	 * The old freelist is the list of objects for the
1634	 * per cpu allocation list.
1635	 */
1636	freelist = page->freelist;
1637	counters = page->counters;
1638	new.counters = counters;
1639	*objects = new.objects - new.inuse;
1640	if (mode) {
1641		new.inuse = page->objects;
1642		new.freelist = NULL;
1643	} else {
1644		new.freelist = freelist;
1645	}
1646
1647	VM_BUG_ON(new.frozen);
1648	new.frozen = 1;
1649
1650	if (!__cmpxchg_double_slab(s, page,
1651			freelist, counters,
1652			new.freelist, new.counters,
1653			"acquire_slab"))
1654		return NULL;
1655
1656	remove_partial(n, page);
1657	WARN_ON(!freelist);
1658	return freelist;
1659}
1660
1661static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1662static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1663
1664/*
1665 * Try to allocate a partial slab from a specific node.
1666 */
1667static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1668				struct kmem_cache_cpu *c, gfp_t flags)
1669{
1670	struct page *page, *page2;
1671	void *object = NULL;
1672	int available = 0;
1673	int objects;
1674
1675	/*
1676	 * Racy check. If we mistakenly see no partial slabs then we
1677	 * just allocate an empty slab. If we mistakenly try to get a
1678	 * partial slab and there is none available then get_partials()
1679	 * will return NULL.
1680	 */
1681	if (!n || !n->nr_partial)
1682		return NULL;
1683
1684	spin_lock(&n->list_lock);
1685	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1686		void *t;
1687
1688		if (!pfmemalloc_match(page, flags))
1689			continue;
1690
1691		t = acquire_slab(s, n, page, object == NULL, &objects);
1692		if (!t)
1693			break;
1694
1695		available += objects;
1696		if (!object) {
1697			c->page = page;
1698			stat(s, ALLOC_FROM_PARTIAL);
1699			object = t;
1700		} else {
1701			put_cpu_partial(s, page, 0);
1702			stat(s, CPU_PARTIAL_NODE);
1703		}
1704		if (!kmem_cache_has_cpu_partial(s)
1705			|| available > s->cpu_partial / 2)
1706			break;
1707
1708	}
1709	spin_unlock(&n->list_lock);
1710	return object;
1711}
1712
1713/*
1714 * Get a page from somewhere. Search in increasing NUMA distances.
1715 */
1716static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1717		struct kmem_cache_cpu *c)
1718{
1719#ifdef CONFIG_NUMA
1720	struct zonelist *zonelist;
1721	struct zoneref *z;
1722	struct zone *zone;
1723	enum zone_type high_zoneidx = gfp_zone(flags);
1724	void *object;
1725	unsigned int cpuset_mems_cookie;
1726
1727	/*
1728	 * The defrag ratio allows a configuration of the tradeoffs between
1729	 * inter node defragmentation and node local allocations. A lower
1730	 * defrag_ratio increases the tendency to do local allocations
1731	 * instead of attempting to obtain partial slabs from other nodes.
1732	 *
1733	 * If the defrag_ratio is set to 0 then kmalloc() always
1734	 * returns node local objects. If the ratio is higher then kmalloc()
1735	 * may return off node objects because partial slabs are obtained
1736	 * from other nodes and filled up.
1737	 *
1738	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1739	 * defrag_ratio = 1000) then every (well almost) allocation will
1740	 * first attempt to defrag slab caches on other nodes. This means
1741	 * scanning over all nodes to look for partial slabs which may be
1742	 * expensive if we do it every time we are trying to find a slab
1743	 * with available objects.
1744	 */
1745	if (!s->remote_node_defrag_ratio ||
1746			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1747		return NULL;
1748
1749	do {
1750		cpuset_mems_cookie = read_mems_allowed_begin();
1751		zonelist = node_zonelist(mempolicy_slab_node(), flags);
1752		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1753			struct kmem_cache_node *n;
1754
1755			n = get_node(s, zone_to_nid(zone));
1756
1757			if (n && cpuset_zone_allowed(zone, flags) &&
1758					n->nr_partial > s->min_partial) {
1759				object = get_partial_node(s, n, c, flags);
1760				if (object) {
1761					/*
1762					 * Don't check read_mems_allowed_retry()
1763					 * here - if mems_allowed was updated in
1764					 * parallel, that was a harmless race
1765					 * between allocation and the cpuset
1766					 * update
1767					 */
1768					return object;
1769				}
1770			}
1771		}
1772	} while (read_mems_allowed_retry(cpuset_mems_cookie));
 
1773#endif
1774	return NULL;
1775}
1776
1777/*
1778 * Get a partial page, lock it and return it.
1779 */
1780static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1781		struct kmem_cache_cpu *c)
1782{
1783	void *object;
1784	int searchnode = node;
1785
1786	if (node == NUMA_NO_NODE)
1787		searchnode = numa_mem_id();
1788	else if (!node_present_pages(node))
1789		searchnode = node_to_mem_node(node);
1790
1791	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1792	if (object || node != NUMA_NO_NODE)
1793		return object;
1794
1795	return get_any_partial(s, flags, c);
1796}
1797
1798#ifdef CONFIG_PREEMPT
1799/*
1800 * Calculate the next globally unique transaction for disambiguiation
1801 * during cmpxchg. The transactions start with the cpu number and are then
1802 * incremented by CONFIG_NR_CPUS.
1803 */
1804#define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
1805#else
1806/*
1807 * No preemption supported therefore also no need to check for
1808 * different cpus.
1809 */
1810#define TID_STEP 1
1811#endif
1812
1813static inline unsigned long next_tid(unsigned long tid)
1814{
1815	return tid + TID_STEP;
1816}
1817
1818static inline unsigned int tid_to_cpu(unsigned long tid)
1819{
1820	return tid % TID_STEP;
1821}
1822
1823static inline unsigned long tid_to_event(unsigned long tid)
1824{
1825	return tid / TID_STEP;
1826}
1827
1828static inline unsigned int init_tid(int cpu)
1829{
1830	return cpu;
1831}
1832
1833static inline void note_cmpxchg_failure(const char *n,
1834		const struct kmem_cache *s, unsigned long tid)
1835{
1836#ifdef SLUB_DEBUG_CMPXCHG
1837	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1838
1839	pr_info("%s %s: cmpxchg redo ", n, s->name);
1840
1841#ifdef CONFIG_PREEMPT
1842	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1843		pr_warn("due to cpu change %d -> %d\n",
1844			tid_to_cpu(tid), tid_to_cpu(actual_tid));
1845	else
1846#endif
1847	if (tid_to_event(tid) != tid_to_event(actual_tid))
1848		pr_warn("due to cpu running other code. Event %ld->%ld\n",
1849			tid_to_event(tid), tid_to_event(actual_tid));
1850	else
1851		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1852			actual_tid, tid, next_tid(tid));
1853#endif
1854	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1855}
1856
1857static void init_kmem_cache_cpus(struct kmem_cache *s)
1858{
1859	int cpu;
1860
1861	for_each_possible_cpu(cpu)
1862		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1863}
 
 
 
1864
1865/*
1866 * Remove the cpu slab
1867 */
1868static void deactivate_slab(struct kmem_cache *s, struct page *page,
1869				void *freelist)
1870{
1871	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
 
1872	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1873	int lock = 0;
1874	enum slab_modes l = M_NONE, m = M_NONE;
 
1875	void *nextfree;
1876	int tail = DEACTIVATE_TO_HEAD;
1877	struct page new;
1878	struct page old;
1879
1880	if (page->freelist) {
1881		stat(s, DEACTIVATE_REMOTE_FREES);
1882		tail = DEACTIVATE_TO_TAIL;
1883	}
1884
 
 
 
 
 
1885	/*
1886	 * Stage one: Free all available per cpu objects back
1887	 * to the page freelist while it is still frozen. Leave the
1888	 * last one.
1889	 *
1890	 * There is no need to take the list->lock because the page
1891	 * is still frozen.
1892	 */
1893	while (freelist && (nextfree = get_freepointer(s, freelist))) {
1894		void *prior;
1895		unsigned long counters;
1896
1897		do {
1898			prior = page->freelist;
1899			counters = page->counters;
1900			set_freepointer(s, freelist, prior);
1901			new.counters = counters;
1902			new.inuse--;
1903			VM_BUG_ON(!new.frozen);
1904
1905		} while (!__cmpxchg_double_slab(s, page,
1906			prior, counters,
1907			freelist, new.counters,
1908			"drain percpu freelist"));
1909
1910		freelist = nextfree;
1911	}
1912
1913	/*
1914	 * Stage two: Ensure that the page is unfrozen while the
1915	 * list presence reflects the actual number of objects
1916	 * during unfreeze.
1917	 *
1918	 * We setup the list membership and then perform a cmpxchg
1919	 * with the count. If there is a mismatch then the page
1920	 * is not unfrozen but the page is on the wrong list.
1921	 *
1922	 * Then we restart the process which may have to remove
1923	 * the page from the list that we just put it on again
1924	 * because the number of objects in the slab may have
1925	 * changed.
1926	 */
1927redo:
1928
1929	old.freelist = page->freelist;
1930	old.counters = page->counters;
1931	VM_BUG_ON(!old.frozen);
1932
1933	/* Determine target state of the slab */
1934	new.counters = old.counters;
1935	if (freelist) {
1936		new.inuse--;
1937		set_freepointer(s, freelist, old.freelist);
1938		new.freelist = freelist;
1939	} else
1940		new.freelist = old.freelist;
1941
1942	new.frozen = 0;
1943
1944	if (!new.inuse && n->nr_partial >= s->min_partial)
1945		m = M_FREE;
1946	else if (new.freelist) {
1947		m = M_PARTIAL;
1948		if (!lock) {
1949			lock = 1;
1950			/*
1951			 * Taking the spinlock removes the possiblity
1952			 * that acquire_slab() will see a slab page that
1953			 * is frozen
1954			 */
1955			spin_lock(&n->list_lock);
1956		}
1957	} else {
1958		m = M_FULL;
1959		if (kmem_cache_debug(s) && !lock) {
1960			lock = 1;
1961			/*
1962			 * This also ensures that the scanning of full
1963			 * slabs from diagnostic functions will not see
1964			 * any frozen slabs.
1965			 */
1966			spin_lock(&n->list_lock);
1967		}
1968	}
1969
1970	if (l != m) {
1971
1972		if (l == M_PARTIAL)
1973
1974			remove_partial(n, page);
1975
1976		else if (l == M_FULL)
1977
1978			remove_full(s, n, page);
1979
1980		if (m == M_PARTIAL) {
1981
1982			add_partial(n, page, tail);
1983			stat(s, tail);
1984
1985		} else if (m == M_FULL) {
1986
1987			stat(s, DEACTIVATE_FULL);
1988			add_full(s, n, page);
1989
1990		}
1991	}
1992
1993	l = m;
1994	if (!__cmpxchg_double_slab(s, page,
1995				old.freelist, old.counters,
1996				new.freelist, new.counters,
1997				"unfreezing slab"))
1998		goto redo;
1999
2000	if (lock)
2001		spin_unlock(&n->list_lock);
2002
2003	if (m == M_FREE) {
2004		stat(s, DEACTIVATE_EMPTY);
2005		discard_slab(s, page);
2006		stat(s, FREE_SLAB);
2007	}
2008}
2009
2010/*
2011 * Unfreeze all the cpu partial slabs.
2012 *
2013 * This function must be called with interrupts disabled
2014 * for the cpu using c (or some other guarantee must be there
2015 * to guarantee no concurrent accesses).
2016 */
2017static void unfreeze_partials(struct kmem_cache *s,
2018		struct kmem_cache_cpu *c)
2019{
2020#ifdef CONFIG_SLUB_CPU_PARTIAL
2021	struct kmem_cache_node *n = NULL, *n2 = NULL;
2022	struct page *page, *discard_page = NULL;
2023
2024	while ((page = c->partial)) {
2025		struct page new;
2026		struct page old;
2027
2028		c->partial = page->next;
2029
2030		n2 = get_node(s, page_to_nid(page));
2031		if (n != n2) {
2032			if (n)
2033				spin_unlock(&n->list_lock);
2034
2035			n = n2;
2036			spin_lock(&n->list_lock);
2037		}
2038
2039		do {
2040
2041			old.freelist = page->freelist;
2042			old.counters = page->counters;
2043			VM_BUG_ON(!old.frozen);
2044
2045			new.counters = old.counters;
2046			new.freelist = old.freelist;
2047
2048			new.frozen = 0;
2049
2050		} while (!__cmpxchg_double_slab(s, page,
2051				old.freelist, old.counters,
2052				new.freelist, new.counters,
2053				"unfreezing slab"));
2054
2055		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2056			page->next = discard_page;
2057			discard_page = page;
2058		} else {
2059			add_partial(n, page, DEACTIVATE_TO_TAIL);
2060			stat(s, FREE_ADD_PARTIAL);
2061		}
2062	}
2063
2064	if (n)
2065		spin_unlock(&n->list_lock);
2066
2067	while (discard_page) {
2068		page = discard_page;
2069		discard_page = discard_page->next;
2070
2071		stat(s, DEACTIVATE_EMPTY);
2072		discard_slab(s, page);
2073		stat(s, FREE_SLAB);
2074	}
2075#endif
2076}
2077
2078/*
2079 * Put a page that was just frozen (in __slab_free) into a partial page
2080 * slot if available. This is done without interrupts disabled and without
2081 * preemption disabled. The cmpxchg is racy and may put the partial page
2082 * onto a random cpus partial slot.
2083 *
2084 * If we did not find a slot then simply move all the partials to the
2085 * per node partial list.
2086 */
2087static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2088{
2089#ifdef CONFIG_SLUB_CPU_PARTIAL
2090	struct page *oldpage;
2091	int pages;
2092	int pobjects;
2093
2094	preempt_disable();
2095	do {
2096		pages = 0;
2097		pobjects = 0;
2098		oldpage = this_cpu_read(s->cpu_slab->partial);
2099
2100		if (oldpage) {
2101			pobjects = oldpage->pobjects;
2102			pages = oldpage->pages;
2103			if (drain && pobjects > s->cpu_partial) {
2104				unsigned long flags;
2105				/*
2106				 * partial array is full. Move the existing
2107				 * set to the per node partial list.
2108				 */
2109				local_irq_save(flags);
2110				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2111				local_irq_restore(flags);
2112				oldpage = NULL;
2113				pobjects = 0;
2114				pages = 0;
2115				stat(s, CPU_PARTIAL_DRAIN);
2116			}
2117		}
2118
2119		pages++;
2120		pobjects += page->objects - page->inuse;
2121
2122		page->pages = pages;
2123		page->pobjects = pobjects;
2124		page->next = oldpage;
2125
2126	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2127								!= oldpage);
2128	if (unlikely(!s->cpu_partial)) {
2129		unsigned long flags;
2130
2131		local_irq_save(flags);
2132		unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2133		local_irq_restore(flags);
2134	}
2135	preempt_enable();
2136#endif
2137}
2138
2139static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2140{
2141	stat(s, CPUSLAB_FLUSH);
2142	deactivate_slab(s, c->page, c->freelist);
2143
2144	c->tid = next_tid(c->tid);
2145	c->page = NULL;
2146	c->freelist = NULL;
2147}
2148
2149/*
2150 * Flush cpu slab.
2151 *
2152 * Called from IPI handler with interrupts disabled.
2153 */
2154static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2155{
2156	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2157
2158	if (likely(c)) {
2159		if (c->page)
2160			flush_slab(s, c);
2161
2162		unfreeze_partials(s, c);
2163	}
2164}
2165
2166static void flush_cpu_slab(void *d)
2167{
2168	struct kmem_cache *s = d;
2169
2170	__flush_cpu_slab(s, smp_processor_id());
2171}
2172
2173static bool has_cpu_slab(int cpu, void *info)
2174{
2175	struct kmem_cache *s = info;
2176	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2177
2178	return c->page || c->partial;
2179}
2180
2181static void flush_all(struct kmem_cache *s)
2182{
2183	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2184}
2185
2186/*
2187 * Check if the objects in a per cpu structure fit numa
2188 * locality expectations.
2189 */
2190static inline int node_match(struct page *page, int node)
2191{
2192#ifdef CONFIG_NUMA
2193	if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2194		return 0;
2195#endif
2196	return 1;
2197}
2198
2199#ifdef CONFIG_SLUB_DEBUG
2200static int count_free(struct page *page)
2201{
2202	return page->objects - page->inuse;
2203}
2204
2205static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2206{
2207	return atomic_long_read(&n->total_objects);
2208}
2209#endif /* CONFIG_SLUB_DEBUG */
2210
2211#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2212static unsigned long count_partial(struct kmem_cache_node *n,
2213					int (*get_count)(struct page *))
2214{
2215	unsigned long flags;
2216	unsigned long x = 0;
2217	struct page *page;
2218
2219	spin_lock_irqsave(&n->list_lock, flags);
2220	list_for_each_entry(page, &n->partial, lru)
2221		x += get_count(page);
2222	spin_unlock_irqrestore(&n->list_lock, flags);
2223	return x;
2224}
2225#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
 
 
 
 
 
 
 
 
2226
2227static noinline void
2228slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2229{
2230#ifdef CONFIG_SLUB_DEBUG
2231	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2232				      DEFAULT_RATELIMIT_BURST);
2233	int node;
2234	struct kmem_cache_node *n;
2235
2236	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2237		return;
2238
2239	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2240		nid, gfpflags, &gfpflags);
2241	pr_warn("  cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2242		s->name, s->object_size, s->size, oo_order(s->oo),
2243		oo_order(s->min));
2244
2245	if (oo_order(s->min) > get_order(s->object_size))
2246		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
2247			s->name);
 
2248
2249	for_each_kmem_cache_node(s, node, n) {
 
2250		unsigned long nr_slabs;
2251		unsigned long nr_objs;
2252		unsigned long nr_free;
2253
 
 
 
2254		nr_free  = count_partial(n, count_free);
2255		nr_slabs = node_nr_slabs(n);
2256		nr_objs  = node_nr_objs(n);
2257
2258		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
 
2259			node, nr_slabs, nr_objs, nr_free);
2260	}
2261#endif
2262}
2263
2264static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2265			int node, struct kmem_cache_cpu **pc)
2266{
2267	void *freelist;
2268	struct kmem_cache_cpu *c = *pc;
2269	struct page *page;
2270
2271	freelist = get_partial(s, flags, node, c);
2272
2273	if (freelist)
2274		return freelist;
2275
2276	page = new_slab(s, flags, node);
2277	if (page) {
2278		c = raw_cpu_ptr(s->cpu_slab);
2279		if (c->page)
2280			flush_slab(s, c);
2281
2282		/*
2283		 * No other reference to the page yet so we can
2284		 * muck around with it freely without cmpxchg
2285		 */
2286		freelist = page->freelist;
2287		page->freelist = NULL;
2288
2289		stat(s, ALLOC_SLAB);
2290		c->page = page;
2291		*pc = c;
2292	} else
2293		freelist = NULL;
2294
2295	return freelist;
2296}
2297
2298static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2299{
2300	if (unlikely(PageSlabPfmemalloc(page)))
2301		return gfp_pfmemalloc_allowed(gfpflags);
2302
2303	return true;
2304}
2305
2306/*
2307 * Check the page->freelist of a page and either transfer the freelist to the
2308 * per cpu freelist or deactivate the page.
2309 *
2310 * The page is still frozen if the return value is not NULL.
2311 *
2312 * If this function returns NULL then the page has been unfrozen.
2313 *
2314 * This function must be called with interrupt disabled.
2315 */
2316static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2317{
2318	struct page new;
2319	unsigned long counters;
2320	void *freelist;
2321
2322	do {
2323		freelist = page->freelist;
2324		counters = page->counters;
2325
2326		new.counters = counters;
2327		VM_BUG_ON(!new.frozen);
2328
2329		new.inuse = page->objects;
2330		new.frozen = freelist != NULL;
2331
2332	} while (!__cmpxchg_double_slab(s, page,
2333		freelist, counters,
2334		NULL, new.counters,
2335		"get_freelist"));
2336
2337	return freelist;
2338}
2339
2340/*
2341 * Slow path. The lockless freelist is empty or we need to perform
2342 * debugging duties.
2343 *
 
 
2344 * Processing is still very fast if new objects have been freed to the
2345 * regular freelist. In that case we simply take over the regular freelist
2346 * as the lockless freelist and zap the regular freelist.
2347 *
2348 * If that is not working then we fall back to the partial lists. We take the
2349 * first element of the freelist as the object to allocate now and move the
2350 * rest of the freelist to the lockless freelist.
2351 *
2352 * And if we were unable to get a new slab from the partial slab lists then
2353 * we need to allocate a new slab. This is the slowest path since it involves
2354 * a call to the page allocator and the setup of a new slab.
2355 *
2356 * Version of __slab_alloc to use when we know that interrupts are
2357 * already disabled (which is the case for bulk allocation).
2358 */
2359static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2360			  unsigned long addr, struct kmem_cache_cpu *c)
2361{
2362	void *freelist;
2363	struct page *page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2364
2365	page = c->page;
2366	if (!page)
2367		goto new_slab;
2368redo:
2369
2370	if (unlikely(!node_match(page, node))) {
2371		int searchnode = node;
 
 
 
2372
2373		if (node != NUMA_NO_NODE && !node_present_pages(node))
2374			searchnode = node_to_mem_node(node);
2375
2376		if (unlikely(!node_match(page, searchnode))) {
2377			stat(s, ALLOC_NODE_MISMATCH);
2378			deactivate_slab(s, page, c->freelist);
2379			c->page = NULL;
2380			c->freelist = NULL;
2381			goto new_slab;
2382		}
2383	}
2384
2385	/*
2386	 * By rights, we should be searching for a slab page that was
2387	 * PFMEMALLOC but right now, we are losing the pfmemalloc
2388	 * information when the page leaves the per-cpu allocator
2389	 */
2390	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2391		deactivate_slab(s, page, c->freelist);
2392		c->page = NULL;
2393		c->freelist = NULL;
2394		goto new_slab;
2395	}
2396
2397	/* must check again c->freelist in case of cpu migration or IRQ */
2398	freelist = c->freelist;
2399	if (freelist)
2400		goto load_freelist;
2401
2402	freelist = get_freelist(s, page);
 
 
 
2403
2404	if (!freelist) {
2405		c->page = NULL;
2406		stat(s, DEACTIVATE_BYPASS);
2407		goto new_slab;
2408	}
2409
2410	stat(s, ALLOC_REFILL);
2411
2412load_freelist:
2413	/*
2414	 * freelist is pointing to the list of objects to be used.
2415	 * page is pointing to the page from which the objects are obtained.
2416	 * That page must be frozen for per cpu allocations to work.
2417	 */
2418	VM_BUG_ON(!c->page->frozen);
2419	c->freelist = get_freepointer(s, freelist);
2420	c->tid = next_tid(c->tid);
2421	return freelist;
 
2422
2423new_slab:
 
 
 
 
2424
2425	if (c->partial) {
2426		page = c->page = c->partial;
2427		c->partial = page->next;
2428		stat(s, CPU_PARTIAL_ALLOC);
2429		c->freelist = NULL;
2430		goto redo;
2431	}
2432
2433	freelist = new_slab_objects(s, gfpflags, node, &c);
2434
2435	if (unlikely(!freelist)) {
2436		slab_out_of_memory(s, gfpflags, node);
2437		return NULL;
2438	}
2439
2440	page = c->page;
2441	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2442		goto load_freelist;
2443
2444	/* Only entered in the debug case */
2445	if (kmem_cache_debug(s) &&
2446			!alloc_debug_processing(s, page, freelist, addr))
2447		goto new_slab;	/* Slab failed checks. Next slab needed */
 
 
 
2448
2449	deactivate_slab(s, page, get_freepointer(s, freelist));
2450	c->page = NULL;
2451	c->freelist = NULL;
2452	return freelist;
2453}
2454
2455/*
2456 * Another one that disabled interrupt and compensates for possible
2457 * cpu changes by refetching the per cpu area pointer.
2458 */
2459static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2460			  unsigned long addr, struct kmem_cache_cpu *c)
2461{
2462	void *p;
2463	unsigned long flags;
2464
2465	local_irq_save(flags);
2466#ifdef CONFIG_PREEMPT
2467	/*
2468	 * We may have been preempted and rescheduled on a different
2469	 * cpu before disabling interrupts. Need to reload cpu area
2470	 * pointer.
2471	 */
2472	c = this_cpu_ptr(s->cpu_slab);
2473#endif
2474
2475	p = ___slab_alloc(s, gfpflags, node, addr, c);
 
 
 
2476	local_irq_restore(flags);
2477	return p;
2478}
2479
2480/*
2481 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2482 * have the fastpath folded into their functions. So no function call
2483 * overhead for requests that can be satisfied on the fastpath.
2484 *
2485 * The fastpath works by first checking if the lockless freelist can be used.
2486 * If not then __slab_alloc is called for slow processing.
2487 *
2488 * Otherwise we can simply pick the next object from the lockless free list.
2489 */
2490static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2491		gfp_t gfpflags, int node, unsigned long addr)
2492{
2493	void *object;
2494	struct kmem_cache_cpu *c;
2495	struct page *page;
2496	unsigned long tid;
2497
2498	s = slab_pre_alloc_hook(s, gfpflags);
2499	if (!s)
2500		return NULL;
 
2501redo:
 
2502	/*
2503	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2504	 * enabled. We may switch back and forth between cpus while
2505	 * reading from one cpu area. That does not matter as long
2506	 * as we end up on the original cpu again when doing the cmpxchg.
2507	 *
2508	 * We should guarantee that tid and kmem_cache are retrieved on
2509	 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2510	 * to check if it is matched or not.
2511	 */
2512	do {
2513		tid = this_cpu_read(s->cpu_slab->tid);
2514		c = raw_cpu_ptr(s->cpu_slab);
2515	} while (IS_ENABLED(CONFIG_PREEMPT) &&
2516		 unlikely(tid != READ_ONCE(c->tid)));
2517
2518	/*
2519	 * Irqless object alloc/free algorithm used here depends on sequence
2520	 * of fetching cpu_slab's data. tid should be fetched before anything
2521	 * on c to guarantee that object and page associated with previous tid
2522	 * won't be used with current tid. If we fetch tid first, object and
2523	 * page could be one associated with next tid and our alloc/free
2524	 * request will be failed. In this case, we will retry. So, no problem.
2525	 */
2526	barrier();
2527
2528	/*
2529	 * The transaction ids are globally unique per cpu and per operation on
2530	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2531	 * occurs on the right processor and that there was no operation on the
2532	 * linked list in between.
2533	 */
 
 
2534
2535	object = c->freelist;
2536	page = c->page;
2537	if (unlikely(!object || !node_match(page, node))) {
2538		object = __slab_alloc(s, gfpflags, node, addr, c);
2539		stat(s, ALLOC_SLOWPATH);
2540	} else {
2541		void *next_object = get_freepointer_safe(s, object);
2542
 
2543		/*
2544		 * The cmpxchg will only match if there was no additional
2545		 * operation and if we are on the right processor.
2546		 *
2547		 * The cmpxchg does the following atomically (without lock
2548		 * semantics!)
2549		 * 1. Relocate first pointer to the current per cpu area.
2550		 * 2. Verify that tid and freelist have not been changed
2551		 * 3. If they were not changed replace tid and freelist
2552		 *
2553		 * Since this is without lock semantics the protection is only
2554		 * against code executing on this cpu *not* from access by
2555		 * other cpus.
2556		 */
2557		if (unlikely(!this_cpu_cmpxchg_double(
2558				s->cpu_slab->freelist, s->cpu_slab->tid,
2559				object, tid,
2560				next_object, next_tid(tid)))) {
2561
2562			note_cmpxchg_failure("slab_alloc", s, tid);
2563			goto redo;
2564		}
2565		prefetch_freepointer(s, next_object);
2566		stat(s, ALLOC_FASTPATH);
2567	}
2568
2569	if (unlikely(gfpflags & __GFP_ZERO) && object)
2570		memset(object, 0, s->object_size);
2571
2572	slab_post_alloc_hook(s, gfpflags, 1, &object);
2573
2574	return object;
2575}
2576
2577static __always_inline void *slab_alloc(struct kmem_cache *s,
2578		gfp_t gfpflags, unsigned long addr)
2579{
2580	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2581}
2582
2583void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2584{
2585	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2586
2587	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2588				s->size, gfpflags);
2589
2590	return ret;
2591}
2592EXPORT_SYMBOL(kmem_cache_alloc);
2593
2594#ifdef CONFIG_TRACING
2595void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2596{
2597	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2598	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2599	kasan_kmalloc(s, ret, size, gfpflags);
2600	return ret;
2601}
2602EXPORT_SYMBOL(kmem_cache_alloc_trace);
 
 
 
 
 
 
 
 
2603#endif
2604
2605#ifdef CONFIG_NUMA
2606void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2607{
2608	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2609
2610	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2611				    s->object_size, s->size, gfpflags, node);
2612
2613	return ret;
2614}
2615EXPORT_SYMBOL(kmem_cache_alloc_node);
2616
2617#ifdef CONFIG_TRACING
2618void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2619				    gfp_t gfpflags,
2620				    int node, size_t size)
2621{
2622	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2623
2624	trace_kmalloc_node(_RET_IP_, ret,
2625			   size, s->size, gfpflags, node);
2626
2627	kasan_kmalloc(s, ret, size, gfpflags);
2628	return ret;
2629}
2630EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2631#endif
2632#endif
2633
2634/*
2635 * Slow path handling. This may still be called frequently since objects
2636 * have a longer lifetime than the cpu slabs in most processing loads.
2637 *
2638 * So we still attempt to reduce cache line usage. Just take the slab
2639 * lock and free the item. If there is no additional partial page
2640 * handling required then we can return immediately.
2641 */
2642static void __slab_free(struct kmem_cache *s, struct page *page,
2643			void *head, void *tail, int cnt,
2644			unsigned long addr)
2645
2646{
2647	void *prior;
 
2648	int was_frozen;
 
2649	struct page new;
2650	unsigned long counters;
2651	struct kmem_cache_node *n = NULL;
2652	unsigned long uninitialized_var(flags);
2653
2654	stat(s, FREE_SLOWPATH);
2655
2656	if (kmem_cache_debug(s) &&
2657	    !free_debug_processing(s, page, head, tail, cnt, addr))
2658		return;
2659
2660	do {
2661		if (unlikely(n)) {
2662			spin_unlock_irqrestore(&n->list_lock, flags);
2663			n = NULL;
2664		}
2665		prior = page->freelist;
2666		counters = page->counters;
2667		set_freepointer(s, tail, prior);
2668		new.counters = counters;
2669		was_frozen = new.frozen;
2670		new.inuse -= cnt;
2671		if ((!new.inuse || !prior) && !was_frozen) {
2672
2673			if (kmem_cache_has_cpu_partial(s) && !prior) {
2674
2675				/*
2676				 * Slab was on no list before and will be
2677				 * partially empty
2678				 * We can defer the list move and instead
2679				 * freeze it.
2680				 */
2681				new.frozen = 1;
2682
2683			} else { /* Needs to be taken off a list */
2684
2685				n = get_node(s, page_to_nid(page));
2686				/*
2687				 * Speculatively acquire the list_lock.
2688				 * If the cmpxchg does not succeed then we may
2689				 * drop the list_lock without any processing.
2690				 *
2691				 * Otherwise the list_lock will synchronize with
2692				 * other processors updating the list of slabs.
2693				 */
2694				spin_lock_irqsave(&n->list_lock, flags);
2695
2696			}
2697		}
 
2698
2699	} while (!cmpxchg_double_slab(s, page,
2700		prior, counters,
2701		head, new.counters,
2702		"__slab_free"));
2703
2704	if (likely(!n)) {
2705
2706		/*
2707		 * If we just froze the page then put it onto the
2708		 * per cpu partial list.
2709		 */
2710		if (new.frozen && !was_frozen) {
2711			put_cpu_partial(s, page, 1);
2712			stat(s, CPU_PARTIAL_FREE);
2713		}
2714		/*
2715		 * The list lock was not taken therefore no list
2716		 * activity can be necessary.
2717		 */
2718		if (was_frozen)
2719			stat(s, FREE_FROZEN);
2720		return;
2721	}
2722
2723	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2724		goto slab_empty;
2725
2726	/*
2727	 * Objects left in the slab. If it was not on the partial list before
2728	 * then add it.
2729	 */
2730	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2731		if (kmem_cache_debug(s))
2732			remove_full(s, n, page);
2733		add_partial(n, page, DEACTIVATE_TO_TAIL);
2734		stat(s, FREE_ADD_PARTIAL);
 
 
 
 
 
 
 
 
 
 
2735	}
2736	spin_unlock_irqrestore(&n->list_lock, flags);
2737	return;
2738
2739slab_empty:
2740	if (prior) {
2741		/*
2742		 * Slab on the partial list.
2743		 */
2744		remove_partial(n, page);
2745		stat(s, FREE_REMOVE_PARTIAL);
2746	} else {
2747		/* Slab must be on the full list */
2748		remove_full(s, n, page);
2749	}
2750
2751	spin_unlock_irqrestore(&n->list_lock, flags);
2752	stat(s, FREE_SLAB);
2753	discard_slab(s, page);
2754}
2755
2756/*
2757 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2758 * can perform fastpath freeing without additional function calls.
2759 *
2760 * The fastpath is only possible if we are freeing to the current cpu slab
2761 * of this processor. This typically the case if we have just allocated
2762 * the item before.
2763 *
2764 * If fastpath is not possible then fall back to __slab_free where we deal
2765 * with all sorts of special processing.
2766 *
2767 * Bulk free of a freelist with several objects (all pointing to the
2768 * same page) possible by specifying head and tail ptr, plus objects
2769 * count (cnt). Bulk free indicated by tail pointer being set.
2770 */
2771static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2772				      void *head, void *tail, int cnt,
2773				      unsigned long addr)
2774{
2775	void *tail_obj = tail ? : head;
2776	struct kmem_cache_cpu *c;
2777	unsigned long tid;
2778
2779	slab_free_freelist_hook(s, head, tail);
2780
2781redo:
 
2782	/*
2783	 * Determine the currently cpus per cpu slab.
2784	 * The cpu may change afterward. However that does not matter since
2785	 * data is retrieved via this pointer. If we are on the same cpu
2786	 * during the cmpxchg then the free will succeed.
2787	 */
2788	do {
2789		tid = this_cpu_read(s->cpu_slab->tid);
2790		c = raw_cpu_ptr(s->cpu_slab);
2791	} while (IS_ENABLED(CONFIG_PREEMPT) &&
2792		 unlikely(tid != READ_ONCE(c->tid)));
2793
2794	/* Same with comment on barrier() in slab_alloc_node() */
2795	barrier();
2796
2797	if (likely(page == c->page)) {
2798		set_freepointer(s, tail_obj, c->freelist);
2799
2800		if (unlikely(!this_cpu_cmpxchg_double(
2801				s->cpu_slab->freelist, s->cpu_slab->tid,
2802				c->freelist, tid,
2803				head, next_tid(tid)))) {
2804
2805			note_cmpxchg_failure("slab_free", s, tid);
2806			goto redo;
2807		}
2808		stat(s, FREE_FASTPATH);
2809	} else
2810		__slab_free(s, page, head, tail_obj, cnt, addr);
2811
2812}
2813
2814void kmem_cache_free(struct kmem_cache *s, void *x)
2815{
2816	s = cache_from_obj(s, x);
2817	if (!s)
2818		return;
2819	slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
2820	trace_kmem_cache_free(_RET_IP_, x);
2821}
2822EXPORT_SYMBOL(kmem_cache_free);
2823
2824struct detached_freelist {
2825	struct page *page;
2826	void *tail;
2827	void *freelist;
2828	int cnt;
2829	struct kmem_cache *s;
2830};
2831
2832/*
2833 * This function progressively scans the array with free objects (with
2834 * a limited look ahead) and extract objects belonging to the same
2835 * page.  It builds a detached freelist directly within the given
2836 * page/objects.  This can happen without any need for
2837 * synchronization, because the objects are owned by running process.
2838 * The freelist is build up as a single linked list in the objects.
2839 * The idea is, that this detached freelist can then be bulk
2840 * transferred to the real freelist(s), but only requiring a single
2841 * synchronization primitive.  Look ahead in the array is limited due
2842 * to performance reasons.
2843 */
2844static inline
2845int build_detached_freelist(struct kmem_cache *s, size_t size,
2846			    void **p, struct detached_freelist *df)
2847{
2848	size_t first_skipped_index = 0;
2849	int lookahead = 3;
2850	void *object;
2851	struct page *page;
2852
2853	/* Always re-init detached_freelist */
2854	df->page = NULL;
2855
2856	do {
2857		object = p[--size];
2858		/* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
2859	} while (!object && size);
2860
2861	if (!object)
2862		return 0;
2863
2864	page = virt_to_head_page(object);
2865	if (!s) {
2866		/* Handle kalloc'ed objects */
2867		if (unlikely(!PageSlab(page))) {
2868			BUG_ON(!PageCompound(page));
2869			kfree_hook(object);
2870			__free_kmem_pages(page, compound_order(page));
2871			p[size] = NULL; /* mark object processed */
2872			return size;
2873		}
2874		/* Derive kmem_cache from object */
2875		df->s = page->slab_cache;
2876	} else {
2877		df->s = cache_from_obj(s, object); /* Support for memcg */
2878	}
2879
2880	/* Start new detached freelist */
2881	df->page = page;
2882	set_freepointer(df->s, object, NULL);
2883	df->tail = object;
2884	df->freelist = object;
2885	p[size] = NULL; /* mark object processed */
2886	df->cnt = 1;
2887
2888	while (size) {
2889		object = p[--size];
2890		if (!object)
2891			continue; /* Skip processed objects */
2892
2893		/* df->page is always set at this point */
2894		if (df->page == virt_to_head_page(object)) {
2895			/* Opportunity build freelist */
2896			set_freepointer(df->s, object, df->freelist);
2897			df->freelist = object;
2898			df->cnt++;
2899			p[size] = NULL; /* mark object processed */
2900
2901			continue;
2902		}
2903
2904		/* Limit look ahead search */
2905		if (!--lookahead)
2906			break;
2907
2908		if (!first_skipped_index)
2909			first_skipped_index = size + 1;
2910	}
2911
2912	return first_skipped_index;
2913}
2914
2915/* Note that interrupts must be enabled when calling this function. */
2916void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
2917{
2918	if (WARN_ON(!size))
2919		return;
2920
2921	do {
2922		struct detached_freelist df;
2923
2924		size = build_detached_freelist(s, size, p, &df);
2925		if (unlikely(!df.page))
2926			continue;
2927
2928		slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
2929	} while (likely(size));
2930}
2931EXPORT_SYMBOL(kmem_cache_free_bulk);
2932
2933/* Note that interrupts must be enabled when calling this function. */
2934int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
2935			  void **p)
2936{
2937	struct kmem_cache_cpu *c;
2938	int i;
2939
2940	/* memcg and kmem_cache debug support */
2941	s = slab_pre_alloc_hook(s, flags);
2942	if (unlikely(!s))
2943		return false;
2944	/*
2945	 * Drain objects in the per cpu slab, while disabling local
2946	 * IRQs, which protects against PREEMPT and interrupts
2947	 * handlers invoking normal fastpath.
2948	 */
2949	local_irq_disable();
2950	c = this_cpu_ptr(s->cpu_slab);
2951
2952	for (i = 0; i < size; i++) {
2953		void *object = c->freelist;
2954
2955		if (unlikely(!object)) {
2956			/*
2957			 * Invoking slow path likely have side-effect
2958			 * of re-populating per CPU c->freelist
2959			 */
2960			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
2961					    _RET_IP_, c);
2962			if (unlikely(!p[i]))
2963				goto error;
2964
2965			c = this_cpu_ptr(s->cpu_slab);
2966			continue; /* goto for-loop */
2967		}
2968		c->freelist = get_freepointer(s, object);
2969		p[i] = object;
2970	}
2971	c->tid = next_tid(c->tid);
2972	local_irq_enable();
2973
2974	/* Clear memory outside IRQ disabled fastpath loop */
2975	if (unlikely(flags & __GFP_ZERO)) {
2976		int j;
2977
2978		for (j = 0; j < i; j++)
2979			memset(p[j], 0, s->object_size);
2980	}
2981
2982	/* memcg and kmem_cache debug support */
2983	slab_post_alloc_hook(s, flags, size, p);
2984	return i;
2985error:
2986	local_irq_enable();
2987	slab_post_alloc_hook(s, flags, i, p);
2988	__kmem_cache_free_bulk(s, i, p);
2989	return 0;
2990}
2991EXPORT_SYMBOL(kmem_cache_alloc_bulk);
2992
2993
2994/*
2995 * Object placement in a slab is made very easy because we always start at
2996 * offset 0. If we tune the size of the object to the alignment then we can
2997 * get the required alignment by putting one properly sized object after
2998 * another.
2999 *
3000 * Notice that the allocation order determines the sizes of the per cpu
3001 * caches. Each processor has always one slab available for allocations.
3002 * Increasing the allocation order reduces the number of times that slabs
3003 * must be moved on and off the partial lists and is therefore a factor in
3004 * locking overhead.
3005 */
3006
3007/*
3008 * Mininum / Maximum order of slab pages. This influences locking overhead
3009 * and slab fragmentation. A higher order reduces the number of partial slabs
3010 * and increases the number of allocations possible without having to
3011 * take the list_lock.
3012 */
3013static int slub_min_order;
3014static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3015static int slub_min_objects;
3016
3017/*
 
 
 
 
 
 
3018 * Calculate the order of allocation given an slab object size.
3019 *
3020 * The order of allocation has significant impact on performance and other
3021 * system components. Generally order 0 allocations should be preferred since
3022 * order 0 does not cause fragmentation in the page allocator. Larger objects
3023 * be problematic to put into order 0 slabs because there may be too much
3024 * unused space left. We go to a higher order if more than 1/16th of the slab
3025 * would be wasted.
3026 *
3027 * In order to reach satisfactory performance we must ensure that a minimum
3028 * number of objects is in one slab. Otherwise we may generate too much
3029 * activity on the partial lists which requires taking the list_lock. This is
3030 * less a concern for large slabs though which are rarely used.
3031 *
3032 * slub_max_order specifies the order where we begin to stop considering the
3033 * number of objects in a slab as critical. If we reach slub_max_order then
3034 * we try to keep the page order as low as possible. So we accept more waste
3035 * of space in favor of a small page order.
3036 *
3037 * Higher order allocations also allow the placement of more objects in a
3038 * slab and thereby reduce object handling overhead. If the user has
3039 * requested a higher mininum order then we start with that one instead of
3040 * the smallest order which will fit the object.
3041 */
3042static inline int slab_order(int size, int min_objects,
3043				int max_order, int fract_leftover, int reserved)
3044{
3045	int order;
3046	int rem;
3047	int min_order = slub_min_order;
3048
3049	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
3050		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3051
3052	for (order = max(min_order, get_order(min_objects * size + reserved));
 
3053			order <= max_order; order++) {
3054
3055		unsigned long slab_size = PAGE_SIZE << order;
3056
 
 
 
3057		rem = (slab_size - reserved) % size;
3058
3059		if (rem <= slab_size / fract_leftover)
3060			break;
 
3061	}
3062
3063	return order;
3064}
3065
3066static inline int calculate_order(int size, int reserved)
3067{
3068	int order;
3069	int min_objects;
3070	int fraction;
3071	int max_objects;
3072
3073	/*
3074	 * Attempt to find best configuration for a slab. This
3075	 * works by first attempting to generate a layout with
3076	 * the best configuration and backing off gradually.
3077	 *
3078	 * First we increase the acceptable waste in a slab. Then
3079	 * we reduce the minimum objects required in a slab.
3080	 */
3081	min_objects = slub_min_objects;
3082	if (!min_objects)
3083		min_objects = 4 * (fls(nr_cpu_ids) + 1);
3084	max_objects = order_objects(slub_max_order, size, reserved);
3085	min_objects = min(min_objects, max_objects);
3086
3087	while (min_objects > 1) {
3088		fraction = 16;
3089		while (fraction >= 4) {
3090			order = slab_order(size, min_objects,
3091					slub_max_order, fraction, reserved);
3092			if (order <= slub_max_order)
3093				return order;
3094			fraction /= 2;
3095		}
3096		min_objects--;
3097	}
3098
3099	/*
3100	 * We were unable to place multiple objects in a slab. Now
3101	 * lets see if we can place a single object there.
3102	 */
3103	order = slab_order(size, 1, slub_max_order, 1, reserved);
3104	if (order <= slub_max_order)
3105		return order;
3106
3107	/*
3108	 * Doh this slab cannot be placed using slub_max_order.
3109	 */
3110	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
3111	if (order < MAX_ORDER)
3112		return order;
3113	return -ENOSYS;
3114}
3115
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3116static void
3117init_kmem_cache_node(struct kmem_cache_node *n)
3118{
3119	n->nr_partial = 0;
3120	spin_lock_init(&n->list_lock);
3121	INIT_LIST_HEAD(&n->partial);
3122#ifdef CONFIG_SLUB_DEBUG
3123	atomic_long_set(&n->nr_slabs, 0);
3124	atomic_long_set(&n->total_objects, 0);
3125	INIT_LIST_HEAD(&n->full);
3126#endif
3127}
3128
3129static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3130{
3131	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3132			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3133
3134	/*
3135	 * Must align to double word boundary for the double cmpxchg
3136	 * instructions to work; see __pcpu_double_call_return_bool().
3137	 */
3138	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3139				     2 * sizeof(void *));
3140
3141	if (!s->cpu_slab)
3142		return 0;
3143
3144	init_kmem_cache_cpus(s);
3145
3146	return 1;
3147}
3148
3149static struct kmem_cache *kmem_cache_node;
3150
3151/*
3152 * No kmalloc_node yet so do it by hand. We know that this is the first
3153 * slab on the node for this slabcache. There are no concurrent accesses
3154 * possible.
3155 *
3156 * Note that this function only works on the kmem_cache_node
3157 * when allocating for the kmem_cache_node. This is used for bootstrapping
3158 * memory on a fresh node that has no slab structures yet.
3159 */
3160static void early_kmem_cache_node_alloc(int node)
3161{
3162	struct page *page;
3163	struct kmem_cache_node *n;
3164
3165	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3166
3167	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3168
3169	BUG_ON(!page);
3170	if (page_to_nid(page) != node) {
3171		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3172		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
 
 
3173	}
3174
3175	n = page->freelist;
3176	BUG_ON(!n);
3177	page->freelist = get_freepointer(kmem_cache_node, n);
3178	page->inuse = 1;
3179	page->frozen = 0;
3180	kmem_cache_node->node[node] = n;
3181#ifdef CONFIG_SLUB_DEBUG
3182	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3183	init_tracking(kmem_cache_node, n);
3184#endif
3185	kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3186		      GFP_KERNEL);
3187	init_kmem_cache_node(n);
3188	inc_slabs_node(kmem_cache_node, node, page->objects);
3189
3190	/*
3191	 * No locks need to be taken here as it has just been
3192	 * initialized and there is no concurrent access.
3193	 */
3194	__add_partial(n, page, DEACTIVATE_TO_HEAD);
3195}
3196
3197static void free_kmem_cache_nodes(struct kmem_cache *s)
3198{
3199	int node;
3200	struct kmem_cache_node *n;
3201
3202	for_each_kmem_cache_node(s, node, n) {
3203		kmem_cache_free(kmem_cache_node, n);
 
 
 
 
3204		s->node[node] = NULL;
3205	}
3206}
3207
3208void __kmem_cache_release(struct kmem_cache *s)
3209{
3210	free_percpu(s->cpu_slab);
3211	free_kmem_cache_nodes(s);
3212}
3213
3214static int init_kmem_cache_nodes(struct kmem_cache *s)
3215{
3216	int node;
3217
3218	for_each_node_state(node, N_NORMAL_MEMORY) {
3219		struct kmem_cache_node *n;
3220
3221		if (slab_state == DOWN) {
3222			early_kmem_cache_node_alloc(node);
3223			continue;
3224		}
3225		n = kmem_cache_alloc_node(kmem_cache_node,
3226						GFP_KERNEL, node);
3227
3228		if (!n) {
3229			free_kmem_cache_nodes(s);
3230			return 0;
3231		}
3232
3233		s->node[node] = n;
3234		init_kmem_cache_node(n);
3235	}
3236	return 1;
3237}
3238
3239static void set_min_partial(struct kmem_cache *s, unsigned long min)
3240{
3241	if (min < MIN_PARTIAL)
3242		min = MIN_PARTIAL;
3243	else if (min > MAX_PARTIAL)
3244		min = MAX_PARTIAL;
3245	s->min_partial = min;
3246}
3247
3248/*
3249 * calculate_sizes() determines the order and the distribution of data within
3250 * a slab object.
3251 */
3252static int calculate_sizes(struct kmem_cache *s, int forced_order)
3253{
3254	unsigned long flags = s->flags;
3255	unsigned long size = s->object_size;
 
3256	int order;
3257
3258	/*
3259	 * Round up object size to the next word boundary. We can only
3260	 * place the free pointer at word boundaries and this determines
3261	 * the possible location of the free pointer.
3262	 */
3263	size = ALIGN(size, sizeof(void *));
3264
3265#ifdef CONFIG_SLUB_DEBUG
3266	/*
3267	 * Determine if we can poison the object itself. If the user of
3268	 * the slab may touch the object after free or before allocation
3269	 * then we should never poison the object itself.
3270	 */
3271	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
3272			!s->ctor)
3273		s->flags |= __OBJECT_POISON;
3274	else
3275		s->flags &= ~__OBJECT_POISON;
3276
3277
3278	/*
3279	 * If we are Redzoning then check if there is some space between the
3280	 * end of the object and the free pointer. If not then add an
3281	 * additional word to have some bytes to store Redzone information.
3282	 */
3283	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3284		size += sizeof(void *);
3285#endif
3286
3287	/*
3288	 * With that we have determined the number of bytes in actual use
3289	 * by the object. This is the potential offset to the free pointer.
3290	 */
3291	s->inuse = size;
3292
3293	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
3294		s->ctor)) {
3295		/*
3296		 * Relocate free pointer after the object if it is not
3297		 * permitted to overwrite the first word of the object on
3298		 * kmem_cache_free.
3299		 *
3300		 * This is the case if we do RCU, have a constructor or
3301		 * destructor or are poisoning the objects.
3302		 */
3303		s->offset = size;
3304		size += sizeof(void *);
3305	}
3306
3307#ifdef CONFIG_SLUB_DEBUG
3308	if (flags & SLAB_STORE_USER)
3309		/*
3310		 * Need to store information about allocs and frees after
3311		 * the object.
3312		 */
3313		size += 2 * sizeof(struct track);
3314
3315	if (flags & SLAB_RED_ZONE) {
3316		/*
3317		 * Add some empty padding so that we can catch
3318		 * overwrites from earlier objects rather than let
3319		 * tracking information or the free pointer be
3320		 * corrupted if a user writes before the start
3321		 * of the object.
3322		 */
3323		size += sizeof(void *);
3324
3325		s->red_left_pad = sizeof(void *);
3326		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3327		size += s->red_left_pad;
3328	}
3329#endif
3330
3331	/*
 
 
 
 
 
 
 
 
3332	 * SLUB stores one object immediately after another beginning from
3333	 * offset 0. In order to align the objects we have to simply size
3334	 * each object to conform to the alignment.
3335	 */
3336	size = ALIGN(size, s->align);
3337	s->size = size;
3338	if (forced_order >= 0)
3339		order = forced_order;
3340	else
3341		order = calculate_order(size, s->reserved);
3342
3343	if (order < 0)
3344		return 0;
3345
3346	s->allocflags = 0;
3347	if (order)
3348		s->allocflags |= __GFP_COMP;
3349
3350	if (s->flags & SLAB_CACHE_DMA)
3351		s->allocflags |= GFP_DMA;
3352
3353	if (s->flags & SLAB_RECLAIM_ACCOUNT)
3354		s->allocflags |= __GFP_RECLAIMABLE;
3355
3356	/*
3357	 * Determine the number of objects per slab
3358	 */
3359	s->oo = oo_make(order, size, s->reserved);
3360	s->min = oo_make(get_order(size), size, s->reserved);
3361	if (oo_objects(s->oo) > oo_objects(s->max))
3362		s->max = s->oo;
3363
3364	return !!oo_objects(s->oo);
 
3365}
3366
3367static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3368{
3369	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
 
 
 
 
 
 
 
 
3370	s->reserved = 0;
3371
3372	if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3373		s->reserved = sizeof(struct rcu_head);
3374
3375	if (!calculate_sizes(s, -1))
3376		goto error;
3377	if (disable_higher_order_debug) {
3378		/*
3379		 * Disable debugging flags that store metadata if the min slab
3380		 * order increased.
3381		 */
3382		if (get_order(s->size) > get_order(s->object_size)) {
3383			s->flags &= ~DEBUG_METADATA_FLAGS;
3384			s->offset = 0;
3385			if (!calculate_sizes(s, -1))
3386				goto error;
3387		}
3388	}
3389
3390#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3391    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3392	if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3393		/* Enable fast mode */
3394		s->flags |= __CMPXCHG_DOUBLE;
3395#endif
3396
3397	/*
3398	 * The larger the object size is, the more pages we want on the partial
3399	 * list to avoid pounding the page allocator excessively.
3400	 */
3401	set_min_partial(s, ilog2(s->size) / 2);
3402
3403	/*
3404	 * cpu_partial determined the maximum number of objects kept in the
3405	 * per cpu partial lists of a processor.
3406	 *
3407	 * Per cpu partial lists mainly contain slabs that just have one
3408	 * object freed. If they are used for allocation then they can be
3409	 * filled up again with minimal effort. The slab will never hit the
3410	 * per node partial lists and therefore no locking will be required.
3411	 *
3412	 * This setting also determines
3413	 *
3414	 * A) The number of objects from per cpu partial slabs dumped to the
3415	 *    per node list when we reach the limit.
3416	 * B) The number of objects in cpu partial slabs to extract from the
3417	 *    per node list when we run out of per cpu objects. We only fetch
3418	 *    50% to keep some capacity around for frees.
3419	 */
3420	if (!kmem_cache_has_cpu_partial(s))
3421		s->cpu_partial = 0;
3422	else if (s->size >= PAGE_SIZE)
3423		s->cpu_partial = 2;
3424	else if (s->size >= 1024)
3425		s->cpu_partial = 6;
3426	else if (s->size >= 256)
3427		s->cpu_partial = 13;
3428	else
3429		s->cpu_partial = 30;
3430
3431#ifdef CONFIG_NUMA
3432	s->remote_node_defrag_ratio = 1000;
3433#endif
3434	if (!init_kmem_cache_nodes(s))
3435		goto error;
3436
3437	if (alloc_kmem_cache_cpus(s))
3438		return 0;
3439
3440	free_kmem_cache_nodes(s);
3441error:
3442	if (flags & SLAB_PANIC)
3443		panic("Cannot create slab %s size=%lu realsize=%u order=%u offset=%u flags=%lx\n",
3444		      s->name, (unsigned long)s->size, s->size,
3445		      oo_order(s->oo), s->offset, flags);
3446	return -EINVAL;
 
3447}
3448
 
 
 
 
 
 
 
 
 
3449static void list_slab_objects(struct kmem_cache *s, struct page *page,
3450							const char *text)
3451{
3452#ifdef CONFIG_SLUB_DEBUG
3453	void *addr = page_address(page);
3454	void *p;
3455	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3456				     sizeof(long), GFP_ATOMIC);
3457	if (!map)
3458		return;
3459	slab_err(s, page, text, s->name);
3460	slab_lock(page);
3461
3462	get_map(s, page, map);
3463	for_each_object(p, s, addr, page->objects) {
3464
3465		if (!test_bit(slab_index(p, s, addr), map)) {
3466			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
 
3467			print_tracking(s, p);
3468		}
3469	}
3470	slab_unlock(page);
3471	kfree(map);
3472#endif
3473}
3474
3475/*
3476 * Attempt to free all partial slabs on a node.
3477 * This is called from __kmem_cache_shutdown(). We must take list_lock
3478 * because sysfs file might still access partial list after the shutdowning.
3479 */
3480static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3481{
 
3482	struct page *page, *h;
3483
3484	BUG_ON(irqs_disabled());
3485	spin_lock_irq(&n->list_lock);
3486	list_for_each_entry_safe(page, h, &n->partial, lru) {
3487		if (!page->inuse) {
3488			remove_partial(n, page);
3489			discard_slab(s, page);
3490		} else {
3491			list_slab_objects(s, page,
3492			"Objects remaining in %s on __kmem_cache_shutdown()");
3493		}
3494	}
3495	spin_unlock_irq(&n->list_lock);
3496}
3497
3498/*
3499 * Release all resources used by a slab cache.
3500 */
3501int __kmem_cache_shutdown(struct kmem_cache *s)
3502{
3503	int node;
3504	struct kmem_cache_node *n;
3505
3506	flush_all(s);
 
3507	/* Attempt to free all objects */
3508	for_each_kmem_cache_node(s, node, n) {
 
 
3509		free_partial(s, n);
3510		if (n->nr_partial || slabs_node(s, node))
3511			return 1;
3512	}
 
3513	return 0;
3514}
3515
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3516/********************************************************************
3517 *		Kmalloc subsystem
3518 *******************************************************************/
3519
 
 
 
 
 
 
 
 
 
3520static int __init setup_slub_min_order(char *str)
3521{
3522	get_option(&str, &slub_min_order);
3523
3524	return 1;
3525}
3526
3527__setup("slub_min_order=", setup_slub_min_order);
3528
3529static int __init setup_slub_max_order(char *str)
3530{
3531	get_option(&str, &slub_max_order);
3532	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3533
3534	return 1;
3535}
3536
3537__setup("slub_max_order=", setup_slub_max_order);
3538
3539static int __init setup_slub_min_objects(char *str)
3540{
3541	get_option(&str, &slub_min_objects);
3542
3543	return 1;
3544}
3545
3546__setup("slub_min_objects=", setup_slub_min_objects);
3547
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3548void *__kmalloc(size_t size, gfp_t flags)
3549{
3550	struct kmem_cache *s;
3551	void *ret;
3552
3553	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3554		return kmalloc_large(size, flags);
3555
3556	s = kmalloc_slab(size, flags);
3557
3558	if (unlikely(ZERO_OR_NULL_PTR(s)))
3559		return s;
3560
3561	ret = slab_alloc(s, flags, _RET_IP_);
3562
3563	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3564
3565	kasan_kmalloc(s, ret, size, flags);
3566
3567	return ret;
3568}
3569EXPORT_SYMBOL(__kmalloc);
3570
3571#ifdef CONFIG_NUMA
3572static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3573{
3574	struct page *page;
3575	void *ptr = NULL;
3576
3577	flags |= __GFP_COMP | __GFP_NOTRACK;
3578	page = alloc_kmem_pages_node(node, flags, get_order(size));
3579	if (page)
3580		ptr = page_address(page);
3581
3582	kmalloc_large_node_hook(ptr, size, flags);
3583	return ptr;
3584}
3585
3586void *__kmalloc_node(size_t size, gfp_t flags, int node)
3587{
3588	struct kmem_cache *s;
3589	void *ret;
3590
3591	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3592		ret = kmalloc_large_node(size, flags, node);
3593
3594		trace_kmalloc_node(_RET_IP_, ret,
3595				   size, PAGE_SIZE << get_order(size),
3596				   flags, node);
3597
3598		return ret;
3599	}
3600
3601	s = kmalloc_slab(size, flags);
3602
3603	if (unlikely(ZERO_OR_NULL_PTR(s)))
3604		return s;
3605
3606	ret = slab_alloc_node(s, flags, node, _RET_IP_);
3607
3608	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3609
3610	kasan_kmalloc(s, ret, size, flags);
3611
3612	return ret;
3613}
3614EXPORT_SYMBOL(__kmalloc_node);
3615#endif
3616
3617static size_t __ksize(const void *object)
3618{
3619	struct page *page;
3620
3621	if (unlikely(object == ZERO_SIZE_PTR))
3622		return 0;
3623
3624	page = virt_to_head_page(object);
3625
3626	if (unlikely(!PageSlab(page))) {
3627		WARN_ON(!PageCompound(page));
3628		return PAGE_SIZE << compound_order(page);
3629	}
3630
3631	return slab_ksize(page->slab_cache);
3632}
 
3633
3634size_t ksize(const void *object)
 
3635{
3636	size_t size = __ksize(object);
3637	/* We assume that ksize callers could use whole allocated area,
3638	   so we need unpoison this area. */
3639	kasan_krealloc(object, size, GFP_NOWAIT);
3640	return size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3641}
3642EXPORT_SYMBOL(ksize);
 
3643
3644void kfree(const void *x)
3645{
3646	struct page *page;
3647	void *object = (void *)x;
3648
3649	trace_kfree(_RET_IP_, x);
3650
3651	if (unlikely(ZERO_OR_NULL_PTR(x)))
3652		return;
3653
3654	page = virt_to_head_page(x);
3655	if (unlikely(!PageSlab(page))) {
3656		BUG_ON(!PageCompound(page));
3657		kfree_hook(x);
3658		__free_kmem_pages(page, compound_order(page));
3659		return;
3660	}
3661	slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
3662}
3663EXPORT_SYMBOL(kfree);
3664
3665#define SHRINK_PROMOTE_MAX 32
3666
3667/*
3668 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3669 * up most to the head of the partial lists. New allocations will then
3670 * fill those up and thus they can be removed from the partial lists.
 
3671 *
3672 * The slabs with the least items are placed last. This results in them
3673 * being allocated from last increasing the chance that the last objects
3674 * are freed in them.
3675 */
3676int __kmem_cache_shrink(struct kmem_cache *s, bool deactivate)
3677{
3678	int node;
3679	int i;
3680	struct kmem_cache_node *n;
3681	struct page *page;
3682	struct page *t;
3683	struct list_head discard;
3684	struct list_head promote[SHRINK_PROMOTE_MAX];
 
3685	unsigned long flags;
3686	int ret = 0;
3687
3688	if (deactivate) {
3689		/*
3690		 * Disable empty slabs caching. Used to avoid pinning offline
3691		 * memory cgroups by kmem pages that can be freed.
3692		 */
3693		s->cpu_partial = 0;
3694		s->min_partial = 0;
3695
3696		/*
3697		 * s->cpu_partial is checked locklessly (see put_cpu_partial),
3698		 * so we have to make sure the change is visible.
3699		 */
3700		kick_all_cpus_sync();
3701	}
3702
3703	flush_all(s);
3704	for_each_kmem_cache_node(s, node, n) {
3705		INIT_LIST_HEAD(&discard);
3706		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3707			INIT_LIST_HEAD(promote + i);
 
 
 
 
3708
3709		spin_lock_irqsave(&n->list_lock, flags);
3710
3711		/*
3712		 * Build lists of slabs to discard or promote.
3713		 *
3714		 * Note that concurrent frees may occur while we hold the
3715		 * list_lock. page->inuse here is the upper limit.
3716		 */
3717		list_for_each_entry_safe(page, t, &n->partial, lru) {
3718			int free = page->objects - page->inuse;
3719
3720			/* Do not reread page->inuse */
3721			barrier();
3722
3723			/* We do not keep full slabs on the list */
3724			BUG_ON(free <= 0);
3725
3726			if (free == page->objects) {
3727				list_move(&page->lru, &discard);
3728				n->nr_partial--;
3729			} else if (free <= SHRINK_PROMOTE_MAX)
3730				list_move(&page->lru, promote + free - 1);
3731		}
3732
3733		/*
3734		 * Promote the slabs filled up most to the head of the
3735		 * partial list.
3736		 */
3737		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3738			list_splice(promote + i, &n->partial);
3739
3740		spin_unlock_irqrestore(&n->list_lock, flags);
3741
3742		/* Release empty slabs */
3743		list_for_each_entry_safe(page, t, &discard, lru)
3744			discard_slab(s, page);
3745
3746		if (slabs_node(s, node))
3747			ret = 1;
3748	}
3749
3750	return ret;
 
3751}
 
3752
 
3753static int slab_mem_going_offline_callback(void *arg)
3754{
3755	struct kmem_cache *s;
3756
3757	mutex_lock(&slab_mutex);
3758	list_for_each_entry(s, &slab_caches, list)
3759		__kmem_cache_shrink(s, false);
3760	mutex_unlock(&slab_mutex);
3761
3762	return 0;
3763}
3764
3765static void slab_mem_offline_callback(void *arg)
3766{
3767	struct kmem_cache_node *n;
3768	struct kmem_cache *s;
3769	struct memory_notify *marg = arg;
3770	int offline_node;
3771
3772	offline_node = marg->status_change_nid_normal;
3773
3774	/*
3775	 * If the node still has available memory. we need kmem_cache_node
3776	 * for it yet.
3777	 */
3778	if (offline_node < 0)
3779		return;
3780
3781	mutex_lock(&slab_mutex);
3782	list_for_each_entry(s, &slab_caches, list) {
3783		n = get_node(s, offline_node);
3784		if (n) {
3785			/*
3786			 * if n->nr_slabs > 0, slabs still exist on the node
3787			 * that is going down. We were unable to free them,
3788			 * and offline_pages() function shouldn't call this
3789			 * callback. So, we must fail.
3790			 */
3791			BUG_ON(slabs_node(s, offline_node));
3792
3793			s->node[offline_node] = NULL;
3794			kmem_cache_free(kmem_cache_node, n);
3795		}
3796	}
3797	mutex_unlock(&slab_mutex);
3798}
3799
3800static int slab_mem_going_online_callback(void *arg)
3801{
3802	struct kmem_cache_node *n;
3803	struct kmem_cache *s;
3804	struct memory_notify *marg = arg;
3805	int nid = marg->status_change_nid_normal;
3806	int ret = 0;
3807
3808	/*
3809	 * If the node's memory is already available, then kmem_cache_node is
3810	 * already created. Nothing to do.
3811	 */
3812	if (nid < 0)
3813		return 0;
3814
3815	/*
3816	 * We are bringing a node online. No memory is available yet. We must
3817	 * allocate a kmem_cache_node structure in order to bring the node
3818	 * online.
3819	 */
3820	mutex_lock(&slab_mutex);
3821	list_for_each_entry(s, &slab_caches, list) {
3822		/*
3823		 * XXX: kmem_cache_alloc_node will fallback to other nodes
3824		 *      since memory is not yet available from the node that
3825		 *      is brought up.
3826		 */
3827		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3828		if (!n) {
3829			ret = -ENOMEM;
3830			goto out;
3831		}
3832		init_kmem_cache_node(n);
3833		s->node[nid] = n;
3834	}
3835out:
3836	mutex_unlock(&slab_mutex);
3837	return ret;
3838}
3839
3840static int slab_memory_callback(struct notifier_block *self,
3841				unsigned long action, void *arg)
3842{
3843	int ret = 0;
3844
3845	switch (action) {
3846	case MEM_GOING_ONLINE:
3847		ret = slab_mem_going_online_callback(arg);
3848		break;
3849	case MEM_GOING_OFFLINE:
3850		ret = slab_mem_going_offline_callback(arg);
3851		break;
3852	case MEM_OFFLINE:
3853	case MEM_CANCEL_ONLINE:
3854		slab_mem_offline_callback(arg);
3855		break;
3856	case MEM_ONLINE:
3857	case MEM_CANCEL_OFFLINE:
3858		break;
3859	}
3860	if (ret)
3861		ret = notifier_from_errno(ret);
3862	else
3863		ret = NOTIFY_OK;
3864	return ret;
3865}
3866
3867static struct notifier_block slab_memory_callback_nb = {
3868	.notifier_call = slab_memory_callback,
3869	.priority = SLAB_CALLBACK_PRI,
3870};
3871
3872/********************************************************************
3873 *			Basic setup of slabs
3874 *******************************************************************/
3875
3876/*
3877 * Used for early kmem_cache structures that were allocated using
3878 * the page allocator. Allocate them properly then fix up the pointers
3879 * that may be pointing to the wrong kmem_cache structure.
3880 */
3881
3882static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3883{
3884	int node;
3885	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
3886	struct kmem_cache_node *n;
3887
3888	memcpy(s, static_cache, kmem_cache->object_size);
 
3889
3890	/*
3891	 * This runs very early, and only the boot processor is supposed to be
3892	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
3893	 * IPIs around.
3894	 */
3895	__flush_cpu_slab(s, smp_processor_id());
3896	for_each_kmem_cache_node(s, node, n) {
3897		struct page *p;
3898
3899		list_for_each_entry(p, &n->partial, lru)
3900			p->slab_cache = s;
 
3901
3902#ifdef CONFIG_SLUB_DEBUG
3903		list_for_each_entry(p, &n->full, lru)
3904			p->slab_cache = s;
3905#endif
 
3906	}
3907	slab_init_memcg_params(s);
3908	list_add(&s->list, &slab_caches);
3909	return s;
3910}
3911
3912void __init kmem_cache_init(void)
3913{
3914	static __initdata struct kmem_cache boot_kmem_cache,
3915		boot_kmem_cache_node;
 
 
 
 
3916
3917	if (debug_guardpage_minorder())
3918		slub_max_order = 0;
3919
3920	kmem_cache_node = &boot_kmem_cache_node;
3921	kmem_cache = &boot_kmem_cache;
 
 
3922
3923	create_boot_cache(kmem_cache_node, "kmem_cache_node",
3924		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
 
 
 
 
3925
3926	register_hotmemory_notifier(&slab_memory_callback_nb);
 
 
 
 
3927
3928	/* Able to allocate the per node structures */
3929	slab_state = PARTIAL;
3930
3931	create_boot_cache(kmem_cache, "kmem_cache",
3932			offsetof(struct kmem_cache, node) +
3933				nr_node_ids * sizeof(struct kmem_cache_node *),
3934		       SLAB_HWCACHE_ALIGN);
3935
3936	kmem_cache = bootstrap(&boot_kmem_cache);
3937
3938	/*
3939	 * Allocate kmem_cache_node properly from the kmem_cache slab.
3940	 * kmem_cache_node is separately allocated so no need to
3941	 * update any list pointers.
3942	 */
3943	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
 
 
 
 
 
 
 
 
 
 
 
3944
3945	/* Now we can use the kmem_cache to allocate kmalloc slabs */
3946	setup_kmalloc_cache_index_table();
3947	create_kmalloc_caches(0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3948
3949#ifdef CONFIG_SMP
3950	register_cpu_notifier(&slab_notifier);
3951#endif
3952
3953	pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
3954		cache_line_size(),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3955		slub_min_order, slub_max_order, slub_min_objects,
3956		nr_cpu_ids, nr_node_ids);
3957}
3958
3959void __init kmem_cache_init_late(void)
3960{
3961}
3962
3963struct kmem_cache *
3964__kmem_cache_alias(const char *name, size_t size, size_t align,
3965		   unsigned long flags, void (*ctor)(void *))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3966{
3967	struct kmem_cache *s, *c;
 
 
 
 
3968
 
3969	s = find_mergeable(size, align, flags, name, ctor);
3970	if (s) {
3971		s->refcount++;
3972
3973		/*
3974		 * Adjust the object sizes so that we clear
3975		 * the complete object on kzalloc.
3976		 */
3977		s->object_size = max(s->object_size, (int)size);
3978		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3979
3980		for_each_memcg_cache(c, s) {
3981			c->object_size = s->object_size;
3982			c->inuse = max_t(int, c->inuse,
3983					 ALIGN(size, sizeof(void *)));
3984		}
3985
3986		if (sysfs_slab_alias(s, name)) {
3987			s->refcount--;
3988			s = NULL;
3989		}
 
 
3990	}
3991
3992	return s;
3993}
 
3994
3995int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3996{
3997	int err;
3998
3999	err = kmem_cache_open(s, flags);
4000	if (err)
4001		return err;
4002
4003	/* Mutex is not taken during early boot */
4004	if (slab_state <= UP)
4005		return 0;
4006
4007	memcg_propagate_slab_attrs(s);
4008	err = sysfs_slab_add(s);
4009	if (err)
4010		__kmem_cache_release(s);
 
 
 
4011
4012	return err;
 
 
 
 
4013}
 
4014
4015#ifdef CONFIG_SMP
4016/*
4017 * Use the cpu notifier to insure that the cpu slabs are flushed when
4018 * necessary.
4019 */
4020static int slab_cpuup_callback(struct notifier_block *nfb,
4021		unsigned long action, void *hcpu)
4022{
4023	long cpu = (long)hcpu;
4024	struct kmem_cache *s;
4025	unsigned long flags;
4026
4027	switch (action) {
4028	case CPU_UP_CANCELED:
4029	case CPU_UP_CANCELED_FROZEN:
4030	case CPU_DEAD:
4031	case CPU_DEAD_FROZEN:
4032		mutex_lock(&slab_mutex);
4033		list_for_each_entry(s, &slab_caches, list) {
4034			local_irq_save(flags);
4035			__flush_cpu_slab(s, cpu);
4036			local_irq_restore(flags);
4037		}
4038		mutex_unlock(&slab_mutex);
4039		break;
4040	default:
4041		break;
4042	}
4043	return NOTIFY_OK;
4044}
4045
4046static struct notifier_block slab_notifier = {
4047	.notifier_call = slab_cpuup_callback
4048};
4049
4050#endif
4051
4052void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4053{
4054	struct kmem_cache *s;
4055	void *ret;
4056
4057	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4058		return kmalloc_large(size, gfpflags);
4059
4060	s = kmalloc_slab(size, gfpflags);
4061
4062	if (unlikely(ZERO_OR_NULL_PTR(s)))
4063		return s;
4064
4065	ret = slab_alloc(s, gfpflags, caller);
4066
4067	/* Honor the call site pointer we received. */
4068	trace_kmalloc(caller, ret, size, s->size, gfpflags);
4069
4070	return ret;
4071}
4072
4073#ifdef CONFIG_NUMA
4074void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4075					int node, unsigned long caller)
4076{
4077	struct kmem_cache *s;
4078	void *ret;
4079
4080	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4081		ret = kmalloc_large_node(size, gfpflags, node);
4082
4083		trace_kmalloc_node(caller, ret,
4084				   size, PAGE_SIZE << get_order(size),
4085				   gfpflags, node);
4086
4087		return ret;
4088	}
4089
4090	s = kmalloc_slab(size, gfpflags);
4091
4092	if (unlikely(ZERO_OR_NULL_PTR(s)))
4093		return s;
4094
4095	ret = slab_alloc_node(s, gfpflags, node, caller);
4096
4097	/* Honor the call site pointer we received. */
4098	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4099
4100	return ret;
4101}
4102#endif
4103
4104#ifdef CONFIG_SYSFS
4105static int count_inuse(struct page *page)
4106{
4107	return page->inuse;
4108}
4109
4110static int count_total(struct page *page)
4111{
4112	return page->objects;
4113}
4114#endif
4115
4116#ifdef CONFIG_SLUB_DEBUG
4117static int validate_slab(struct kmem_cache *s, struct page *page,
4118						unsigned long *map)
4119{
4120	void *p;
4121	void *addr = page_address(page);
4122
4123	if (!check_slab(s, page) ||
4124			!on_freelist(s, page, NULL))
4125		return 0;
4126
4127	/* Now we know that a valid freelist exists */
4128	bitmap_zero(map, page->objects);
4129
4130	get_map(s, page, map);
4131	for_each_object(p, s, addr, page->objects) {
4132		if (test_bit(slab_index(p, s, addr), map))
4133			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4134				return 0;
4135	}
4136
4137	for_each_object(p, s, addr, page->objects)
4138		if (!test_bit(slab_index(p, s, addr), map))
4139			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4140				return 0;
4141	return 1;
4142}
4143
4144static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4145						unsigned long *map)
4146{
4147	slab_lock(page);
4148	validate_slab(s, page, map);
4149	slab_unlock(page);
4150}
4151
4152static int validate_slab_node(struct kmem_cache *s,
4153		struct kmem_cache_node *n, unsigned long *map)
4154{
4155	unsigned long count = 0;
4156	struct page *page;
4157	unsigned long flags;
4158
4159	spin_lock_irqsave(&n->list_lock, flags);
4160
4161	list_for_each_entry(page, &n->partial, lru) {
4162		validate_slab_slab(s, page, map);
4163		count++;
4164	}
4165	if (count != n->nr_partial)
4166		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4167		       s->name, count, n->nr_partial);
4168
4169	if (!(s->flags & SLAB_STORE_USER))
4170		goto out;
4171
4172	list_for_each_entry(page, &n->full, lru) {
4173		validate_slab_slab(s, page, map);
4174		count++;
4175	}
4176	if (count != atomic_long_read(&n->nr_slabs))
4177		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4178		       s->name, count, atomic_long_read(&n->nr_slabs));
 
4179
4180out:
4181	spin_unlock_irqrestore(&n->list_lock, flags);
4182	return count;
4183}
4184
4185static long validate_slab_cache(struct kmem_cache *s)
4186{
4187	int node;
4188	unsigned long count = 0;
4189	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4190				sizeof(unsigned long), GFP_KERNEL);
4191	struct kmem_cache_node *n;
4192
4193	if (!map)
4194		return -ENOMEM;
4195
4196	flush_all(s);
4197	for_each_kmem_cache_node(s, node, n)
 
 
4198		count += validate_slab_node(s, n, map);
 
4199	kfree(map);
4200	return count;
4201}
4202/*
4203 * Generate lists of code addresses where slabcache objects are allocated
4204 * and freed.
4205 */
4206
4207struct location {
4208	unsigned long count;
4209	unsigned long addr;
4210	long long sum_time;
4211	long min_time;
4212	long max_time;
4213	long min_pid;
4214	long max_pid;
4215	DECLARE_BITMAP(cpus, NR_CPUS);
4216	nodemask_t nodes;
4217};
4218
4219struct loc_track {
4220	unsigned long max;
4221	unsigned long count;
4222	struct location *loc;
4223};
4224
4225static void free_loc_track(struct loc_track *t)
4226{
4227	if (t->max)
4228		free_pages((unsigned long)t->loc,
4229			get_order(sizeof(struct location) * t->max));
4230}
4231
4232static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4233{
4234	struct location *l;
4235	int order;
4236
4237	order = get_order(sizeof(struct location) * max);
4238
4239	l = (void *)__get_free_pages(flags, order);
4240	if (!l)
4241		return 0;
4242
4243	if (t->count) {
4244		memcpy(l, t->loc, sizeof(struct location) * t->count);
4245		free_loc_track(t);
4246	}
4247	t->max = max;
4248	t->loc = l;
4249	return 1;
4250}
4251
4252static int add_location(struct loc_track *t, struct kmem_cache *s,
4253				const struct track *track)
4254{
4255	long start, end, pos;
4256	struct location *l;
4257	unsigned long caddr;
4258	unsigned long age = jiffies - track->when;
4259
4260	start = -1;
4261	end = t->count;
4262
4263	for ( ; ; ) {
4264		pos = start + (end - start + 1) / 2;
4265
4266		/*
4267		 * There is nothing at "end". If we end up there
4268		 * we need to add something to before end.
4269		 */
4270		if (pos == end)
4271			break;
4272
4273		caddr = t->loc[pos].addr;
4274		if (track->addr == caddr) {
4275
4276			l = &t->loc[pos];
4277			l->count++;
4278			if (track->when) {
4279				l->sum_time += age;
4280				if (age < l->min_time)
4281					l->min_time = age;
4282				if (age > l->max_time)
4283					l->max_time = age;
4284
4285				if (track->pid < l->min_pid)
4286					l->min_pid = track->pid;
4287				if (track->pid > l->max_pid)
4288					l->max_pid = track->pid;
4289
4290				cpumask_set_cpu(track->cpu,
4291						to_cpumask(l->cpus));
4292			}
4293			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4294			return 1;
4295		}
4296
4297		if (track->addr < caddr)
4298			end = pos;
4299		else
4300			start = pos;
4301	}
4302
4303	/*
4304	 * Not found. Insert new tracking element.
4305	 */
4306	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4307		return 0;
4308
4309	l = t->loc + pos;
4310	if (pos < t->count)
4311		memmove(l + 1, l,
4312			(t->count - pos) * sizeof(struct location));
4313	t->count++;
4314	l->count = 1;
4315	l->addr = track->addr;
4316	l->sum_time = age;
4317	l->min_time = age;
4318	l->max_time = age;
4319	l->min_pid = track->pid;
4320	l->max_pid = track->pid;
4321	cpumask_clear(to_cpumask(l->cpus));
4322	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4323	nodes_clear(l->nodes);
4324	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4325	return 1;
4326}
4327
4328static void process_slab(struct loc_track *t, struct kmem_cache *s,
4329		struct page *page, enum track_item alloc,
4330		unsigned long *map)
4331{
4332	void *addr = page_address(page);
4333	void *p;
4334
4335	bitmap_zero(map, page->objects);
4336	get_map(s, page, map);
4337
4338	for_each_object(p, s, addr, page->objects)
4339		if (!test_bit(slab_index(p, s, addr), map))
4340			add_location(t, s, get_track(s, p, alloc));
4341}
4342
4343static int list_locations(struct kmem_cache *s, char *buf,
4344					enum track_item alloc)
4345{
4346	int len = 0;
4347	unsigned long i;
4348	struct loc_track t = { 0, 0, NULL };
4349	int node;
4350	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4351				     sizeof(unsigned long), GFP_KERNEL);
4352	struct kmem_cache_node *n;
4353
4354	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4355				     GFP_TEMPORARY)) {
4356		kfree(map);
4357		return sprintf(buf, "Out of memory\n");
4358	}
4359	/* Push back cpu slabs */
4360	flush_all(s);
4361
4362	for_each_kmem_cache_node(s, node, n) {
 
4363		unsigned long flags;
4364		struct page *page;
4365
4366		if (!atomic_long_read(&n->nr_slabs))
4367			continue;
4368
4369		spin_lock_irqsave(&n->list_lock, flags);
4370		list_for_each_entry(page, &n->partial, lru)
4371			process_slab(&t, s, page, alloc, map);
4372		list_for_each_entry(page, &n->full, lru)
4373			process_slab(&t, s, page, alloc, map);
4374		spin_unlock_irqrestore(&n->list_lock, flags);
4375	}
4376
4377	for (i = 0; i < t.count; i++) {
4378		struct location *l = &t.loc[i];
4379
4380		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4381			break;
4382		len += sprintf(buf + len, "%7ld ", l->count);
4383
4384		if (l->addr)
4385			len += sprintf(buf + len, "%pS", (void *)l->addr);
4386		else
4387			len += sprintf(buf + len, "<not-available>");
4388
4389		if (l->sum_time != l->min_time) {
4390			len += sprintf(buf + len, " age=%ld/%ld/%ld",
4391				l->min_time,
4392				(long)div_u64(l->sum_time, l->count),
4393				l->max_time);
4394		} else
4395			len += sprintf(buf + len, " age=%ld",
4396				l->min_time);
4397
4398		if (l->min_pid != l->max_pid)
4399			len += sprintf(buf + len, " pid=%ld-%ld",
4400				l->min_pid, l->max_pid);
4401		else
4402			len += sprintf(buf + len, " pid=%ld",
4403				l->min_pid);
4404
4405		if (num_online_cpus() > 1 &&
4406				!cpumask_empty(to_cpumask(l->cpus)) &&
4407				len < PAGE_SIZE - 60)
4408			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4409					 " cpus=%*pbl",
4410					 cpumask_pr_args(to_cpumask(l->cpus)));
 
4411
4412		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4413				len < PAGE_SIZE - 60)
4414			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4415					 " nodes=%*pbl",
4416					 nodemask_pr_args(&l->nodes));
 
4417
4418		len += sprintf(buf + len, "\n");
4419	}
4420
4421	free_loc_track(&t);
4422	kfree(map);
4423	if (!t.count)
4424		len += sprintf(buf, "No data\n");
4425	return len;
4426}
4427#endif
4428
4429#ifdef SLUB_RESILIENCY_TEST
4430static void __init resiliency_test(void)
4431{
4432	u8 *p;
4433
4434	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4435
4436	pr_err("SLUB resiliency testing\n");
4437	pr_err("-----------------------\n");
4438	pr_err("A. Corruption after allocation\n");
4439
4440	p = kzalloc(16, GFP_KERNEL);
4441	p[16] = 0x12;
4442	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4443	       p + 16);
4444
4445	validate_slab_cache(kmalloc_caches[4]);
4446
4447	/* Hmmm... The next two are dangerous */
4448	p = kzalloc(32, GFP_KERNEL);
4449	p[32 + sizeof(void *)] = 0x34;
4450	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4451	       p);
4452	pr_err("If allocated object is overwritten then not detectable\n\n");
 
4453
4454	validate_slab_cache(kmalloc_caches[5]);
4455	p = kzalloc(64, GFP_KERNEL);
4456	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4457	*p = 0x56;
4458	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4459	       p);
4460	pr_err("If allocated object is overwritten then not detectable\n\n");
 
4461	validate_slab_cache(kmalloc_caches[6]);
4462
4463	pr_err("\nB. Corruption after free\n");
4464	p = kzalloc(128, GFP_KERNEL);
4465	kfree(p);
4466	*p = 0x78;
4467	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4468	validate_slab_cache(kmalloc_caches[7]);
4469
4470	p = kzalloc(256, GFP_KERNEL);
4471	kfree(p);
4472	p[50] = 0x9a;
4473	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
 
4474	validate_slab_cache(kmalloc_caches[8]);
4475
4476	p = kzalloc(512, GFP_KERNEL);
4477	kfree(p);
4478	p[512] = 0xab;
4479	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4480	validate_slab_cache(kmalloc_caches[9]);
4481}
4482#else
4483#ifdef CONFIG_SYSFS
4484static void resiliency_test(void) {};
4485#endif
4486#endif
4487
4488#ifdef CONFIG_SYSFS
4489enum slab_stat_type {
4490	SL_ALL,			/* All slabs */
4491	SL_PARTIAL,		/* Only partially allocated slabs */
4492	SL_CPU,			/* Only slabs used for cpu caches */
4493	SL_OBJECTS,		/* Determine allocated objects not slabs */
4494	SL_TOTAL		/* Determine object capacity not slabs */
4495};
4496
4497#define SO_ALL		(1 << SL_ALL)
4498#define SO_PARTIAL	(1 << SL_PARTIAL)
4499#define SO_CPU		(1 << SL_CPU)
4500#define SO_OBJECTS	(1 << SL_OBJECTS)
4501#define SO_TOTAL	(1 << SL_TOTAL)
4502
4503static ssize_t show_slab_objects(struct kmem_cache *s,
4504			    char *buf, unsigned long flags)
4505{
4506	unsigned long total = 0;
4507	int node;
4508	int x;
4509	unsigned long *nodes;
 
4510
4511	nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4512	if (!nodes)
4513		return -ENOMEM;
 
4514
4515	if (flags & SO_CPU) {
4516		int cpu;
4517
4518		for_each_possible_cpu(cpu) {
4519			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4520							       cpu);
4521			int node;
4522			struct page *page;
4523
4524			page = READ_ONCE(c->page);
4525			if (!page)
4526				continue;
4527
4528			node = page_to_nid(page);
4529			if (flags & SO_TOTAL)
4530				x = page->objects;
4531			else if (flags & SO_OBJECTS)
4532				x = page->inuse;
4533			else
4534				x = 1;
4535
4536			total += x;
4537			nodes[node] += x;
4538
4539			page = READ_ONCE(c->partial);
4540			if (page) {
4541				node = page_to_nid(page);
4542				if (flags & SO_TOTAL)
4543					WARN_ON_ONCE(1);
4544				else if (flags & SO_OBJECTS)
4545					WARN_ON_ONCE(1);
4546				else
4547					x = page->pages;
 
4548				total += x;
4549				nodes[node] += x;
4550			}
 
4551		}
4552	}
4553
4554	get_online_mems();
4555#ifdef CONFIG_SLUB_DEBUG
4556	if (flags & SO_ALL) {
4557		struct kmem_cache_node *n;
 
4558
4559		for_each_kmem_cache_node(s, node, n) {
 
 
 
 
4560
4561			if (flags & SO_TOTAL)
4562				x = atomic_long_read(&n->total_objects);
4563			else if (flags & SO_OBJECTS)
4564				x = atomic_long_read(&n->total_objects) -
4565					count_partial(n, count_free);
4566			else
4567				x = atomic_long_read(&n->nr_slabs);
4568			total += x;
4569			nodes[node] += x;
4570		}
4571
4572	} else
4573#endif
4574	if (flags & SO_PARTIAL) {
4575		struct kmem_cache_node *n;
 
4576
4577		for_each_kmem_cache_node(s, node, n) {
4578			if (flags & SO_TOTAL)
4579				x = count_partial(n, count_total);
4580			else if (flags & SO_OBJECTS)
4581				x = count_partial(n, count_inuse);
4582			else
4583				x = n->nr_partial;
4584			total += x;
4585			nodes[node] += x;
4586		}
4587	}
4588	x = sprintf(buf, "%lu", total);
4589#ifdef CONFIG_NUMA
4590	for (node = 0; node < nr_node_ids; node++)
4591		if (nodes[node])
4592			x += sprintf(buf + x, " N%d=%lu",
4593					node, nodes[node]);
4594#endif
4595	put_online_mems();
4596	kfree(nodes);
4597	return x + sprintf(buf + x, "\n");
4598}
4599
4600#ifdef CONFIG_SLUB_DEBUG
4601static int any_slab_objects(struct kmem_cache *s)
4602{
4603	int node;
4604	struct kmem_cache_node *n;
4605
4606	for_each_kmem_cache_node(s, node, n)
 
 
 
 
 
4607		if (atomic_long_read(&n->total_objects))
4608			return 1;
4609
4610	return 0;
4611}
4612#endif
4613
4614#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4615#define to_slab(n) container_of(n, struct kmem_cache, kobj)
4616
4617struct slab_attribute {
4618	struct attribute attr;
4619	ssize_t (*show)(struct kmem_cache *s, char *buf);
4620	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4621};
4622
4623#define SLAB_ATTR_RO(_name) \
4624	static struct slab_attribute _name##_attr = \
4625	__ATTR(_name, 0400, _name##_show, NULL)
4626
4627#define SLAB_ATTR(_name) \
4628	static struct slab_attribute _name##_attr =  \
4629	__ATTR(_name, 0600, _name##_show, _name##_store)
4630
4631static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4632{
4633	return sprintf(buf, "%d\n", s->size);
4634}
4635SLAB_ATTR_RO(slab_size);
4636
4637static ssize_t align_show(struct kmem_cache *s, char *buf)
4638{
4639	return sprintf(buf, "%d\n", s->align);
4640}
4641SLAB_ATTR_RO(align);
4642
4643static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4644{
4645	return sprintf(buf, "%d\n", s->object_size);
4646}
4647SLAB_ATTR_RO(object_size);
4648
4649static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4650{
4651	return sprintf(buf, "%d\n", oo_objects(s->oo));
4652}
4653SLAB_ATTR_RO(objs_per_slab);
4654
4655static ssize_t order_store(struct kmem_cache *s,
4656				const char *buf, size_t length)
4657{
4658	unsigned long order;
4659	int err;
4660
4661	err = kstrtoul(buf, 10, &order);
4662	if (err)
4663		return err;
4664
4665	if (order > slub_max_order || order < slub_min_order)
4666		return -EINVAL;
4667
4668	calculate_sizes(s, order);
4669	return length;
4670}
4671
4672static ssize_t order_show(struct kmem_cache *s, char *buf)
4673{
4674	return sprintf(buf, "%d\n", oo_order(s->oo));
4675}
4676SLAB_ATTR(order);
4677
4678static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4679{
4680	return sprintf(buf, "%lu\n", s->min_partial);
4681}
4682
4683static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4684				 size_t length)
4685{
4686	unsigned long min;
4687	int err;
4688
4689	err = kstrtoul(buf, 10, &min);
4690	if (err)
4691		return err;
4692
4693	set_min_partial(s, min);
4694	return length;
4695}
4696SLAB_ATTR(min_partial);
4697
4698static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4699{
4700	return sprintf(buf, "%u\n", s->cpu_partial);
4701}
4702
4703static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4704				 size_t length)
4705{
4706	unsigned long objects;
4707	int err;
4708
4709	err = kstrtoul(buf, 10, &objects);
4710	if (err)
4711		return err;
4712	if (objects && !kmem_cache_has_cpu_partial(s))
4713		return -EINVAL;
4714
4715	s->cpu_partial = objects;
4716	flush_all(s);
4717	return length;
4718}
4719SLAB_ATTR(cpu_partial);
4720
4721static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4722{
4723	if (!s->ctor)
4724		return 0;
4725	return sprintf(buf, "%pS\n", s->ctor);
4726}
4727SLAB_ATTR_RO(ctor);
4728
4729static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4730{
4731	return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
4732}
4733SLAB_ATTR_RO(aliases);
4734
4735static ssize_t partial_show(struct kmem_cache *s, char *buf)
4736{
4737	return show_slab_objects(s, buf, SO_PARTIAL);
4738}
4739SLAB_ATTR_RO(partial);
4740
4741static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4742{
4743	return show_slab_objects(s, buf, SO_CPU);
4744}
4745SLAB_ATTR_RO(cpu_slabs);
4746
4747static ssize_t objects_show(struct kmem_cache *s, char *buf)
4748{
4749	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4750}
4751SLAB_ATTR_RO(objects);
4752
4753static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4754{
4755	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4756}
4757SLAB_ATTR_RO(objects_partial);
4758
4759static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4760{
4761	int objects = 0;
4762	int pages = 0;
4763	int cpu;
4764	int len;
4765
4766	for_each_online_cpu(cpu) {
4767		struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4768
4769		if (page) {
4770			pages += page->pages;
4771			objects += page->pobjects;
4772		}
4773	}
4774
4775	len = sprintf(buf, "%d(%d)", objects, pages);
4776
4777#ifdef CONFIG_SMP
4778	for_each_online_cpu(cpu) {
4779		struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4780
4781		if (page && len < PAGE_SIZE - 20)
4782			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4783				page->pobjects, page->pages);
4784	}
4785#endif
4786	return len + sprintf(buf + len, "\n");
4787}
4788SLAB_ATTR_RO(slabs_cpu_partial);
4789
4790static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4791{
4792	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4793}
4794
4795static ssize_t reclaim_account_store(struct kmem_cache *s,
4796				const char *buf, size_t length)
4797{
4798	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4799	if (buf[0] == '1')
4800		s->flags |= SLAB_RECLAIM_ACCOUNT;
4801	return length;
4802}
4803SLAB_ATTR(reclaim_account);
4804
4805static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4806{
4807	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4808}
4809SLAB_ATTR_RO(hwcache_align);
4810
4811#ifdef CONFIG_ZONE_DMA
4812static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4813{
4814	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4815}
4816SLAB_ATTR_RO(cache_dma);
4817#endif
4818
4819static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4820{
4821	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4822}
4823SLAB_ATTR_RO(destroy_by_rcu);
4824
4825static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4826{
4827	return sprintf(buf, "%d\n", s->reserved);
4828}
4829SLAB_ATTR_RO(reserved);
4830
4831#ifdef CONFIG_SLUB_DEBUG
4832static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4833{
4834	return show_slab_objects(s, buf, SO_ALL);
4835}
4836SLAB_ATTR_RO(slabs);
4837
4838static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4839{
4840	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4841}
4842SLAB_ATTR_RO(total_objects);
4843
4844static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4845{
4846	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
4847}
4848
4849static ssize_t sanity_checks_store(struct kmem_cache *s,
4850				const char *buf, size_t length)
4851{
4852	s->flags &= ~SLAB_CONSISTENCY_CHECKS;
4853	if (buf[0] == '1') {
4854		s->flags &= ~__CMPXCHG_DOUBLE;
4855		s->flags |= SLAB_CONSISTENCY_CHECKS;
4856	}
4857	return length;
4858}
4859SLAB_ATTR(sanity_checks);
4860
4861static ssize_t trace_show(struct kmem_cache *s, char *buf)
4862{
4863	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4864}
4865
4866static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4867							size_t length)
4868{
4869	/*
4870	 * Tracing a merged cache is going to give confusing results
4871	 * as well as cause other issues like converting a mergeable
4872	 * cache into an umergeable one.
4873	 */
4874	if (s->refcount > 1)
4875		return -EINVAL;
4876
4877	s->flags &= ~SLAB_TRACE;
4878	if (buf[0] == '1') {
4879		s->flags &= ~__CMPXCHG_DOUBLE;
4880		s->flags |= SLAB_TRACE;
4881	}
4882	return length;
4883}
4884SLAB_ATTR(trace);
4885
4886static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4887{
4888	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4889}
4890
4891static ssize_t red_zone_store(struct kmem_cache *s,
4892				const char *buf, size_t length)
4893{
4894	if (any_slab_objects(s))
4895		return -EBUSY;
4896
4897	s->flags &= ~SLAB_RED_ZONE;
4898	if (buf[0] == '1') {
 
4899		s->flags |= SLAB_RED_ZONE;
4900	}
4901	calculate_sizes(s, -1);
4902	return length;
4903}
4904SLAB_ATTR(red_zone);
4905
4906static ssize_t poison_show(struct kmem_cache *s, char *buf)
4907{
4908	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4909}
4910
4911static ssize_t poison_store(struct kmem_cache *s,
4912				const char *buf, size_t length)
4913{
4914	if (any_slab_objects(s))
4915		return -EBUSY;
4916
4917	s->flags &= ~SLAB_POISON;
4918	if (buf[0] == '1') {
 
4919		s->flags |= SLAB_POISON;
4920	}
4921	calculate_sizes(s, -1);
4922	return length;
4923}
4924SLAB_ATTR(poison);
4925
4926static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4927{
4928	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4929}
4930
4931static ssize_t store_user_store(struct kmem_cache *s,
4932				const char *buf, size_t length)
4933{
4934	if (any_slab_objects(s))
4935		return -EBUSY;
4936
4937	s->flags &= ~SLAB_STORE_USER;
4938	if (buf[0] == '1') {
4939		s->flags &= ~__CMPXCHG_DOUBLE;
4940		s->flags |= SLAB_STORE_USER;
4941	}
4942	calculate_sizes(s, -1);
4943	return length;
4944}
4945SLAB_ATTR(store_user);
4946
4947static ssize_t validate_show(struct kmem_cache *s, char *buf)
4948{
4949	return 0;
4950}
4951
4952static ssize_t validate_store(struct kmem_cache *s,
4953			const char *buf, size_t length)
4954{
4955	int ret = -EINVAL;
4956
4957	if (buf[0] == '1') {
4958		ret = validate_slab_cache(s);
4959		if (ret >= 0)
4960			ret = length;
4961	}
4962	return ret;
4963}
4964SLAB_ATTR(validate);
4965
4966static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4967{
4968	if (!(s->flags & SLAB_STORE_USER))
4969		return -ENOSYS;
4970	return list_locations(s, buf, TRACK_ALLOC);
4971}
4972SLAB_ATTR_RO(alloc_calls);
4973
4974static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4975{
4976	if (!(s->flags & SLAB_STORE_USER))
4977		return -ENOSYS;
4978	return list_locations(s, buf, TRACK_FREE);
4979}
4980SLAB_ATTR_RO(free_calls);
4981#endif /* CONFIG_SLUB_DEBUG */
4982
4983#ifdef CONFIG_FAILSLAB
4984static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4985{
4986	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4987}
4988
4989static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4990							size_t length)
4991{
4992	if (s->refcount > 1)
4993		return -EINVAL;
4994
4995	s->flags &= ~SLAB_FAILSLAB;
4996	if (buf[0] == '1')
4997		s->flags |= SLAB_FAILSLAB;
4998	return length;
4999}
5000SLAB_ATTR(failslab);
5001#endif
5002
5003static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5004{
5005	return 0;
5006}
5007
5008static ssize_t shrink_store(struct kmem_cache *s,
5009			const char *buf, size_t length)
5010{
5011	if (buf[0] == '1')
5012		kmem_cache_shrink(s);
5013	else
 
 
 
5014		return -EINVAL;
5015	return length;
5016}
5017SLAB_ATTR(shrink);
5018
5019#ifdef CONFIG_NUMA
5020static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5021{
5022	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
5023}
5024
5025static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5026				const char *buf, size_t length)
5027{
5028	unsigned long ratio;
5029	int err;
5030
5031	err = kstrtoul(buf, 10, &ratio);
5032	if (err)
5033		return err;
5034
5035	if (ratio <= 100)
5036		s->remote_node_defrag_ratio = ratio * 10;
5037
5038	return length;
5039}
5040SLAB_ATTR(remote_node_defrag_ratio);
5041#endif
5042
5043#ifdef CONFIG_SLUB_STATS
5044static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5045{
5046	unsigned long sum  = 0;
5047	int cpu;
5048	int len;
5049	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5050
5051	if (!data)
5052		return -ENOMEM;
5053
5054	for_each_online_cpu(cpu) {
5055		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5056
5057		data[cpu] = x;
5058		sum += x;
5059	}
5060
5061	len = sprintf(buf, "%lu", sum);
5062
5063#ifdef CONFIG_SMP
5064	for_each_online_cpu(cpu) {
5065		if (data[cpu] && len < PAGE_SIZE - 20)
5066			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5067	}
5068#endif
5069	kfree(data);
5070	return len + sprintf(buf + len, "\n");
5071}
5072
5073static void clear_stat(struct kmem_cache *s, enum stat_item si)
5074{
5075	int cpu;
5076
5077	for_each_online_cpu(cpu)
5078		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5079}
5080
5081#define STAT_ATTR(si, text) 					\
5082static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
5083{								\
5084	return show_stat(s, buf, si);				\
5085}								\
5086static ssize_t text##_store(struct kmem_cache *s,		\
5087				const char *buf, size_t length)	\
5088{								\
5089	if (buf[0] != '0')					\
5090		return -EINVAL;					\
5091	clear_stat(s, si);					\
5092	return length;						\
5093}								\
5094SLAB_ATTR(text);						\
5095
5096STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5097STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5098STAT_ATTR(FREE_FASTPATH, free_fastpath);
5099STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5100STAT_ATTR(FREE_FROZEN, free_frozen);
5101STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5102STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5103STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5104STAT_ATTR(ALLOC_SLAB, alloc_slab);
5105STAT_ATTR(ALLOC_REFILL, alloc_refill);
5106STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5107STAT_ATTR(FREE_SLAB, free_slab);
5108STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5109STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5110STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5111STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5112STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5113STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5114STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5115STAT_ATTR(ORDER_FALLBACK, order_fallback);
5116STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5117STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5118STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5119STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5120STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5121STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5122#endif
5123
5124static struct attribute *slab_attrs[] = {
5125	&slab_size_attr.attr,
5126	&object_size_attr.attr,
5127	&objs_per_slab_attr.attr,
5128	&order_attr.attr,
5129	&min_partial_attr.attr,
5130	&cpu_partial_attr.attr,
5131	&objects_attr.attr,
5132	&objects_partial_attr.attr,
5133	&partial_attr.attr,
5134	&cpu_slabs_attr.attr,
5135	&ctor_attr.attr,
5136	&aliases_attr.attr,
5137	&align_attr.attr,
5138	&hwcache_align_attr.attr,
5139	&reclaim_account_attr.attr,
5140	&destroy_by_rcu_attr.attr,
5141	&shrink_attr.attr,
5142	&reserved_attr.attr,
5143	&slabs_cpu_partial_attr.attr,
5144#ifdef CONFIG_SLUB_DEBUG
5145	&total_objects_attr.attr,
5146	&slabs_attr.attr,
5147	&sanity_checks_attr.attr,
5148	&trace_attr.attr,
5149	&red_zone_attr.attr,
5150	&poison_attr.attr,
5151	&store_user_attr.attr,
5152	&validate_attr.attr,
5153	&alloc_calls_attr.attr,
5154	&free_calls_attr.attr,
5155#endif
5156#ifdef CONFIG_ZONE_DMA
5157	&cache_dma_attr.attr,
5158#endif
5159#ifdef CONFIG_NUMA
5160	&remote_node_defrag_ratio_attr.attr,
5161#endif
5162#ifdef CONFIG_SLUB_STATS
5163	&alloc_fastpath_attr.attr,
5164	&alloc_slowpath_attr.attr,
5165	&free_fastpath_attr.attr,
5166	&free_slowpath_attr.attr,
5167	&free_frozen_attr.attr,
5168	&free_add_partial_attr.attr,
5169	&free_remove_partial_attr.attr,
5170	&alloc_from_partial_attr.attr,
5171	&alloc_slab_attr.attr,
5172	&alloc_refill_attr.attr,
5173	&alloc_node_mismatch_attr.attr,
5174	&free_slab_attr.attr,
5175	&cpuslab_flush_attr.attr,
5176	&deactivate_full_attr.attr,
5177	&deactivate_empty_attr.attr,
5178	&deactivate_to_head_attr.attr,
5179	&deactivate_to_tail_attr.attr,
5180	&deactivate_remote_frees_attr.attr,
5181	&deactivate_bypass_attr.attr,
5182	&order_fallback_attr.attr,
5183	&cmpxchg_double_fail_attr.attr,
5184	&cmpxchg_double_cpu_fail_attr.attr,
5185	&cpu_partial_alloc_attr.attr,
5186	&cpu_partial_free_attr.attr,
5187	&cpu_partial_node_attr.attr,
5188	&cpu_partial_drain_attr.attr,
5189#endif
5190#ifdef CONFIG_FAILSLAB
5191	&failslab_attr.attr,
5192#endif
5193
5194	NULL
5195};
5196
5197static struct attribute_group slab_attr_group = {
5198	.attrs = slab_attrs,
5199};
5200
5201static ssize_t slab_attr_show(struct kobject *kobj,
5202				struct attribute *attr,
5203				char *buf)
5204{
5205	struct slab_attribute *attribute;
5206	struct kmem_cache *s;
5207	int err;
5208
5209	attribute = to_slab_attr(attr);
5210	s = to_slab(kobj);
5211
5212	if (!attribute->show)
5213		return -EIO;
5214
5215	err = attribute->show(s, buf);
5216
5217	return err;
5218}
5219
5220static ssize_t slab_attr_store(struct kobject *kobj,
5221				struct attribute *attr,
5222				const char *buf, size_t len)
5223{
5224	struct slab_attribute *attribute;
5225	struct kmem_cache *s;
5226	int err;
5227
5228	attribute = to_slab_attr(attr);
5229	s = to_slab(kobj);
5230
5231	if (!attribute->store)
5232		return -EIO;
5233
5234	err = attribute->store(s, buf, len);
5235#ifdef CONFIG_MEMCG
5236	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5237		struct kmem_cache *c;
5238
5239		mutex_lock(&slab_mutex);
5240		if (s->max_attr_size < len)
5241			s->max_attr_size = len;
5242
5243		/*
5244		 * This is a best effort propagation, so this function's return
5245		 * value will be determined by the parent cache only. This is
5246		 * basically because not all attributes will have a well
5247		 * defined semantics for rollbacks - most of the actions will
5248		 * have permanent effects.
5249		 *
5250		 * Returning the error value of any of the children that fail
5251		 * is not 100 % defined, in the sense that users seeing the
5252		 * error code won't be able to know anything about the state of
5253		 * the cache.
5254		 *
5255		 * Only returning the error code for the parent cache at least
5256		 * has well defined semantics. The cache being written to
5257		 * directly either failed or succeeded, in which case we loop
5258		 * through the descendants with best-effort propagation.
5259		 */
5260		for_each_memcg_cache(c, s)
5261			attribute->store(c, buf, len);
5262		mutex_unlock(&slab_mutex);
5263	}
5264#endif
5265	return err;
5266}
5267
5268static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5269{
5270#ifdef CONFIG_MEMCG
5271	int i;
5272	char *buffer = NULL;
5273	struct kmem_cache *root_cache;
5274
5275	if (is_root_cache(s))
5276		return;
5277
5278	root_cache = s->memcg_params.root_cache;
5279
5280	/*
5281	 * This mean this cache had no attribute written. Therefore, no point
5282	 * in copying default values around
5283	 */
5284	if (!root_cache->max_attr_size)
5285		return;
5286
5287	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5288		char mbuf[64];
5289		char *buf;
5290		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5291
5292		if (!attr || !attr->store || !attr->show)
5293			continue;
5294
5295		/*
5296		 * It is really bad that we have to allocate here, so we will
5297		 * do it only as a fallback. If we actually allocate, though,
5298		 * we can just use the allocated buffer until the end.
5299		 *
5300		 * Most of the slub attributes will tend to be very small in
5301		 * size, but sysfs allows buffers up to a page, so they can
5302		 * theoretically happen.
5303		 */
5304		if (buffer)
5305			buf = buffer;
5306		else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5307			buf = mbuf;
5308		else {
5309			buffer = (char *) get_zeroed_page(GFP_KERNEL);
5310			if (WARN_ON(!buffer))
5311				continue;
5312			buf = buffer;
5313		}
5314
5315		attr->show(root_cache, buf);
5316		attr->store(s, buf, strlen(buf));
5317	}
5318
5319	if (buffer)
5320		free_page((unsigned long)buffer);
5321#endif
5322}
5323
5324static void kmem_cache_release(struct kobject *k)
5325{
5326	slab_kmem_cache_release(to_slab(k));
5327}
5328
5329static const struct sysfs_ops slab_sysfs_ops = {
5330	.show = slab_attr_show,
5331	.store = slab_attr_store,
5332};
5333
5334static struct kobj_type slab_ktype = {
5335	.sysfs_ops = &slab_sysfs_ops,
5336	.release = kmem_cache_release,
5337};
5338
5339static int uevent_filter(struct kset *kset, struct kobject *kobj)
5340{
5341	struct kobj_type *ktype = get_ktype(kobj);
5342
5343	if (ktype == &slab_ktype)
5344		return 1;
5345	return 0;
5346}
5347
5348static const struct kset_uevent_ops slab_uevent_ops = {
5349	.filter = uevent_filter,
5350};
5351
5352static struct kset *slab_kset;
5353
5354static inline struct kset *cache_kset(struct kmem_cache *s)
5355{
5356#ifdef CONFIG_MEMCG
5357	if (!is_root_cache(s))
5358		return s->memcg_params.root_cache->memcg_kset;
5359#endif
5360	return slab_kset;
5361}
5362
5363#define ID_STR_LENGTH 64
5364
5365/* Create a unique string id for a slab cache:
5366 *
5367 * Format	:[flags-]size
5368 */
5369static char *create_unique_id(struct kmem_cache *s)
5370{
5371	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5372	char *p = name;
5373
5374	BUG_ON(!name);
5375
5376	*p++ = ':';
5377	/*
5378	 * First flags affecting slabcache operations. We will only
5379	 * get here for aliasable slabs so we do not need to support
5380	 * too many flags. The flags here must cover all flags that
5381	 * are matched during merging to guarantee that the id is
5382	 * unique.
5383	 */
5384	if (s->flags & SLAB_CACHE_DMA)
5385		*p++ = 'd';
5386	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5387		*p++ = 'a';
5388	if (s->flags & SLAB_CONSISTENCY_CHECKS)
5389		*p++ = 'F';
5390	if (!(s->flags & SLAB_NOTRACK))
5391		*p++ = 't';
5392	if (s->flags & SLAB_ACCOUNT)
5393		*p++ = 'A';
5394	if (p != name + 1)
5395		*p++ = '-';
5396	p += sprintf(p, "%07d", s->size);
5397
5398	BUG_ON(p > name + ID_STR_LENGTH - 1);
5399	return name;
5400}
5401
5402static int sysfs_slab_add(struct kmem_cache *s)
5403{
5404	int err;
5405	const char *name;
5406	int unmergeable = slab_unmergeable(s);
 
 
 
 
5407
 
5408	if (unmergeable) {
5409		/*
5410		 * Slabcache can never be merged so we can use the name proper.
5411		 * This is typically the case for debug situations. In that
5412		 * case we can catch duplicate names easily.
5413		 */
5414		sysfs_remove_link(&slab_kset->kobj, s->name);
5415		name = s->name;
5416	} else {
5417		/*
5418		 * Create a unique name for the slab as a target
5419		 * for the symlinks.
5420		 */
5421		name = create_unique_id(s);
5422	}
5423
5424	s->kobj.kset = cache_kset(s);
5425	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5426	if (err)
5427		goto out;
 
 
5428
5429	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5430	if (err)
5431		goto out_del_kobj;
5432
5433#ifdef CONFIG_MEMCG
5434	if (is_root_cache(s)) {
5435		s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5436		if (!s->memcg_kset) {
5437			err = -ENOMEM;
5438			goto out_del_kobj;
5439		}
5440	}
5441#endif
5442
5443	kobject_uevent(&s->kobj, KOBJ_ADD);
5444	if (!unmergeable) {
5445		/* Setup first alias */
5446		sysfs_slab_alias(s, s->name);
5447	}
5448out:
5449	if (!unmergeable)
5450		kfree(name);
5451	return err;
5452out_del_kobj:
5453	kobject_del(&s->kobj);
5454	goto out;
5455}
5456
5457void sysfs_slab_remove(struct kmem_cache *s)
5458{
5459	if (slab_state < FULL)
5460		/*
5461		 * Sysfs has not been setup yet so no need to remove the
5462		 * cache from sysfs.
5463		 */
5464		return;
5465
5466#ifdef CONFIG_MEMCG
5467	kset_unregister(s->memcg_kset);
5468#endif
5469	kobject_uevent(&s->kobj, KOBJ_REMOVE);
5470	kobject_del(&s->kobj);
5471	kobject_put(&s->kobj);
5472}
5473
5474/*
5475 * Need to buffer aliases during bootup until sysfs becomes
5476 * available lest we lose that information.
5477 */
5478struct saved_alias {
5479	struct kmem_cache *s;
5480	const char *name;
5481	struct saved_alias *next;
5482};
5483
5484static struct saved_alias *alias_list;
5485
5486static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5487{
5488	struct saved_alias *al;
5489
5490	if (slab_state == FULL) {
5491		/*
5492		 * If we have a leftover link then remove it.
5493		 */
5494		sysfs_remove_link(&slab_kset->kobj, name);
5495		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5496	}
5497
5498	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5499	if (!al)
5500		return -ENOMEM;
5501
5502	al->s = s;
5503	al->name = name;
5504	al->next = alias_list;
5505	alias_list = al;
5506	return 0;
5507}
5508
5509static int __init slab_sysfs_init(void)
5510{
5511	struct kmem_cache *s;
5512	int err;
5513
5514	mutex_lock(&slab_mutex);
5515
5516	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5517	if (!slab_kset) {
5518		mutex_unlock(&slab_mutex);
5519		pr_err("Cannot register slab subsystem.\n");
5520		return -ENOSYS;
5521	}
5522
5523	slab_state = FULL;
5524
5525	list_for_each_entry(s, &slab_caches, list) {
5526		err = sysfs_slab_add(s);
5527		if (err)
5528			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5529			       s->name);
5530	}
5531
5532	while (alias_list) {
5533		struct saved_alias *al = alias_list;
5534
5535		alias_list = alias_list->next;
5536		err = sysfs_slab_alias(al->s, al->name);
5537		if (err)
5538			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5539			       al->name);
5540		kfree(al);
5541	}
5542
5543	mutex_unlock(&slab_mutex);
5544	resiliency_test();
5545	return 0;
5546}
5547
5548__initcall(slab_sysfs_init);
5549#endif /* CONFIG_SYSFS */
5550
5551/*
5552 * The /proc/slabinfo ABI
5553 */
5554#ifdef CONFIG_SLABINFO
5555void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5556{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5557	unsigned long nr_slabs = 0;
 
5558	unsigned long nr_objs = 0;
5559	unsigned long nr_free = 0;
 
5560	int node;
5561	struct kmem_cache_node *n;
5562
5563	for_each_kmem_cache_node(s, node, n) {
5564		nr_slabs += node_nr_slabs(n);
5565		nr_objs += node_nr_objs(n);
 
 
 
 
 
 
 
 
5566		nr_free += count_partial(n, count_free);
5567	}
5568
5569	sinfo->active_objs = nr_objs - nr_free;
5570	sinfo->num_objs = nr_objs;
5571	sinfo->active_slabs = nr_slabs;
5572	sinfo->num_slabs = nr_slabs;
5573	sinfo->objects_per_slab = oo_objects(s->oo);
5574	sinfo->cache_order = oo_order(s->oo);
 
 
 
 
5575}
5576
5577void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
 
 
 
 
 
 
 
5578{
 
5579}
5580
5581ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5582		       size_t count, loff_t *ppos)
 
 
 
 
 
 
5583{
5584	return -EIO;
 
5585}
 
5586#endif /* CONFIG_SLABINFO */
v3.1
   1/*
   2 * SLUB: A slab allocator that limits cache line use instead of queuing
   3 * objects in per cpu and per node lists.
   4 *
   5 * The allocator synchronizes using per slab locks or atomic operatios
   6 * and only uses a centralized lock to manage a pool of partial slabs.
   7 *
   8 * (C) 2007 SGI, Christoph Lameter
   9 * (C) 2011 Linux Foundation, Christoph Lameter
  10 */
  11
  12#include <linux/mm.h>
  13#include <linux/swap.h> /* struct reclaim_state */
  14#include <linux/module.h>
  15#include <linux/bit_spinlock.h>
  16#include <linux/interrupt.h>
  17#include <linux/bitops.h>
  18#include <linux/slab.h>
 
  19#include <linux/proc_fs.h>
 
  20#include <linux/seq_file.h>
 
  21#include <linux/kmemcheck.h>
  22#include <linux/cpu.h>
  23#include <linux/cpuset.h>
  24#include <linux/mempolicy.h>
  25#include <linux/ctype.h>
  26#include <linux/debugobjects.h>
  27#include <linux/kallsyms.h>
  28#include <linux/memory.h>
  29#include <linux/math64.h>
  30#include <linux/fault-inject.h>
  31#include <linux/stacktrace.h>
 
 
  32
  33#include <trace/events/kmem.h>
  34
 
 
  35/*
  36 * Lock order:
  37 *   1. slub_lock (Global Semaphore)
  38 *   2. node->list_lock
  39 *   3. slab_lock(page) (Only on some arches and for debugging)
  40 *
  41 *   slub_lock
  42 *
  43 *   The role of the slub_lock is to protect the list of all the slabs
  44 *   and to synchronize major metadata changes to slab cache structures.
  45 *
  46 *   The slab_lock is only used for debugging and on arches that do not
  47 *   have the ability to do a cmpxchg_double. It only protects the second
  48 *   double word in the page struct. Meaning
  49 *	A. page->freelist	-> List of object free in a page
  50 *	B. page->counters	-> Counters of objects
  51 *	C. page->frozen		-> frozen state
  52 *
  53 *   If a slab is frozen then it is exempt from list management. It is not
  54 *   on any list. The processor that froze the slab is the one who can
  55 *   perform list operations on the page. Other processors may put objects
  56 *   onto the freelist but the processor that froze the slab is the only
  57 *   one that can retrieve the objects from the page's freelist.
  58 *
  59 *   The list_lock protects the partial and full list on each node and
  60 *   the partial slab counter. If taken then no new slabs may be added or
  61 *   removed from the lists nor make the number of partial slabs be modified.
  62 *   (Note that the total number of slabs is an atomic value that may be
  63 *   modified without taking the list lock).
  64 *
  65 *   The list_lock is a centralized lock and thus we avoid taking it as
  66 *   much as possible. As long as SLUB does not have to handle partial
  67 *   slabs, operations can continue without any centralized lock. F.e.
  68 *   allocating a long series of objects that fill up slabs does not require
  69 *   the list lock.
  70 *   Interrupts are disabled during allocation and deallocation in order to
  71 *   make the slab allocator safe to use in the context of an irq. In addition
  72 *   interrupts are disabled to ensure that the processor does not change
  73 *   while handling per_cpu slabs, due to kernel preemption.
  74 *
  75 * SLUB assigns one slab for allocation to each processor.
  76 * Allocations only occur from these slabs called cpu slabs.
  77 *
  78 * Slabs with free elements are kept on a partial list and during regular
  79 * operations no list for full slabs is used. If an object in a full slab is
  80 * freed then the slab will show up again on the partial lists.
  81 * We track full slabs for debugging purposes though because otherwise we
  82 * cannot scan all objects.
  83 *
  84 * Slabs are freed when they become empty. Teardown and setup is
  85 * minimal so we rely on the page allocators per cpu caches for
  86 * fast frees and allocs.
  87 *
  88 * Overloading of page flags that are otherwise used for LRU management.
  89 *
  90 * PageActive 		The slab is frozen and exempt from list processing.
  91 * 			This means that the slab is dedicated to a purpose
  92 * 			such as satisfying allocations for a specific
  93 * 			processor. Objects may be freed in the slab while
  94 * 			it is frozen but slab_free will then skip the usual
  95 * 			list operations. It is up to the processor holding
  96 * 			the slab to integrate the slab into the slab lists
  97 * 			when the slab is no longer needed.
  98 *
  99 * 			One use of this flag is to mark slabs that are
 100 * 			used for allocations. Then such a slab becomes a cpu
 101 * 			slab. The cpu slab may be equipped with an additional
 102 * 			freelist that allows lockless access to
 103 * 			free objects in addition to the regular freelist
 104 * 			that requires the slab lock.
 105 *
 106 * PageError		Slab requires special handling due to debug
 107 * 			options set. This moves	slab handling out of
 108 * 			the fast path and disables lockless freelists.
 109 */
 110
 111#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
 112		SLAB_TRACE | SLAB_DEBUG_FREE)
 113
 114static inline int kmem_cache_debug(struct kmem_cache *s)
 115{
 116#ifdef CONFIG_SLUB_DEBUG
 117	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
 118#else
 119	return 0;
 120#endif
 121}
 122
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 123/*
 124 * Issues still to be resolved:
 125 *
 126 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 127 *
 128 * - Variable sizing of the per node arrays
 129 */
 130
 131/* Enable to test recovery from slab corruption on boot */
 132#undef SLUB_RESILIENCY_TEST
 133
 134/* Enable to log cmpxchg failures */
 135#undef SLUB_DEBUG_CMPXCHG
 136
 137/*
 138 * Mininum number of partial slabs. These will be left on the partial
 139 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 140 */
 141#define MIN_PARTIAL 5
 142
 143/*
 144 * Maximum number of desirable partial slabs.
 145 * The existence of more partial slabs makes kmem_cache_shrink
 146 * sort the partial list by the number of objects in the.
 147 */
 148#define MAX_PARTIAL 10
 149
 150#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
 151				SLAB_POISON | SLAB_STORE_USER)
 152
 153/*
 
 
 
 
 
 
 
 
 154 * Debugging flags that require metadata to be stored in the slab.  These get
 155 * disabled when slub_debug=O is used and a cache's min order increases with
 156 * metadata.
 157 */
 158#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
 159
 160/*
 161 * Set of flags that will prevent slab merging
 162 */
 163#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
 164		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
 165		SLAB_FAILSLAB)
 166
 167#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
 168		SLAB_CACHE_DMA | SLAB_NOTRACK)
 169
 170#define OO_SHIFT	16
 171#define OO_MASK		((1 << OO_SHIFT) - 1)
 172#define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
 173
 174/* Internal SLUB flags */
 175#define __OBJECT_POISON		0x80000000UL /* Poison object */
 176#define __CMPXCHG_DOUBLE	0x40000000UL /* Use cmpxchg_double */
 177
 178static int kmem_size = sizeof(struct kmem_cache);
 179
 180#ifdef CONFIG_SMP
 181static struct notifier_block slab_notifier;
 182#endif
 183
 184static enum {
 185	DOWN,		/* No slab functionality available */
 186	PARTIAL,	/* Kmem_cache_node works */
 187	UP,		/* Everything works but does not show up in sysfs */
 188	SYSFS		/* Sysfs up */
 189} slab_state = DOWN;
 190
 191/* A list of all slab caches on the system */
 192static DECLARE_RWSEM(slub_lock);
 193static LIST_HEAD(slab_caches);
 194
 195/*
 196 * Tracking user of a slab.
 197 */
 198#define TRACK_ADDRS_COUNT 16
 199struct track {
 200	unsigned long addr;	/* Called from address */
 201#ifdef CONFIG_STACKTRACE
 202	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
 203#endif
 204	int cpu;		/* Was running on cpu */
 205	int pid;		/* Pid context */
 206	unsigned long when;	/* When did the operation occur */
 207};
 208
 209enum track_item { TRACK_ALLOC, TRACK_FREE };
 210
 211#ifdef CONFIG_SYSFS
 212static int sysfs_slab_add(struct kmem_cache *);
 213static int sysfs_slab_alias(struct kmem_cache *, const char *);
 214static void sysfs_slab_remove(struct kmem_cache *);
 215
 216#else
 217static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
 218static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
 219							{ return 0; }
 220static inline void sysfs_slab_remove(struct kmem_cache *s)
 221{
 222	kfree(s->name);
 223	kfree(s);
 224}
 225
 226#endif
 227
 228static inline void stat(const struct kmem_cache *s, enum stat_item si)
 229{
 230#ifdef CONFIG_SLUB_STATS
 231	__this_cpu_inc(s->cpu_slab->stat[si]);
 
 
 
 
 232#endif
 233}
 234
 235/********************************************************************
 236 * 			Core slab cache functions
 237 *******************************************************************/
 238
 239int slab_is_available(void)
 240{
 241	return slab_state >= UP;
 242}
 243
 244static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
 245{
 246	return s->node[node];
 247}
 248
 249/* Verify that a pointer has an address that is valid within a slab page */
 250static inline int check_valid_pointer(struct kmem_cache *s,
 251				struct page *page, const void *object)
 252{
 253	void *base;
 254
 255	if (!object)
 256		return 1;
 257
 258	base = page_address(page);
 259	if (object < base || object >= base + page->objects * s->size ||
 260		(object - base) % s->size) {
 261		return 0;
 262	}
 263
 264	return 1;
 265}
 266
 267static inline void *get_freepointer(struct kmem_cache *s, void *object)
 268{
 269	return *(void **)(object + s->offset);
 270}
 271
 272static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
 273{
 274	void *p;
 275
 276#ifdef CONFIG_DEBUG_PAGEALLOC
 
 
 277	probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
 278#else
 279	p = get_freepointer(s, object);
 280#endif
 281	return p;
 282}
 283
 284static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
 285{
 286	*(void **)(object + s->offset) = fp;
 287}
 288
 289/* Loop over all objects in a slab */
 290#define for_each_object(__p, __s, __addr, __objects) \
 291	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
 292			__p += (__s)->size)
 
 
 
 
 
 
 293
 294/* Determine object index from a given position */
 295static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
 296{
 297	return (p - addr) / s->size;
 298}
 299
 300static inline size_t slab_ksize(const struct kmem_cache *s)
 301{
 302#ifdef CONFIG_SLUB_DEBUG
 303	/*
 304	 * Debugging requires use of the padding between object
 305	 * and whatever may come after it.
 306	 */
 307	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
 308		return s->objsize;
 309
 310#endif
 311	/*
 312	 * If we have the need to store the freelist pointer
 313	 * back there or track user information then we can
 314	 * only use the space before that information.
 315	 */
 316	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
 317		return s->inuse;
 318	/*
 319	 * Else we can use all the padding etc for the allocation
 320	 */
 321	return s->size;
 322}
 323
 324static inline int order_objects(int order, unsigned long size, int reserved)
 325{
 326	return ((PAGE_SIZE << order) - reserved) / size;
 327}
 328
 329static inline struct kmem_cache_order_objects oo_make(int order,
 330		unsigned long size, int reserved)
 331{
 332	struct kmem_cache_order_objects x = {
 333		(order << OO_SHIFT) + order_objects(order, size, reserved)
 334	};
 335
 336	return x;
 337}
 338
 339static inline int oo_order(struct kmem_cache_order_objects x)
 340{
 341	return x.x >> OO_SHIFT;
 342}
 343
 344static inline int oo_objects(struct kmem_cache_order_objects x)
 345{
 346	return x.x & OO_MASK;
 347}
 348
 349/*
 350 * Per slab locking using the pagelock
 351 */
 352static __always_inline void slab_lock(struct page *page)
 353{
 
 354	bit_spin_lock(PG_locked, &page->flags);
 355}
 356
 357static __always_inline void slab_unlock(struct page *page)
 358{
 
 359	__bit_spin_unlock(PG_locked, &page->flags);
 360}
 361
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 362/* Interrupts must be disabled (for the fallback code to work right) */
 363static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
 364		void *freelist_old, unsigned long counters_old,
 365		void *freelist_new, unsigned long counters_new,
 366		const char *n)
 367{
 368	VM_BUG_ON(!irqs_disabled());
 369#ifdef CONFIG_CMPXCHG_DOUBLE
 
 370	if (s->flags & __CMPXCHG_DOUBLE) {
 371		if (cmpxchg_double(&page->freelist,
 372			freelist_old, counters_old,
 373			freelist_new, counters_new))
 374		return 1;
 375	} else
 376#endif
 377	{
 378		slab_lock(page);
 379		if (page->freelist == freelist_old && page->counters == counters_old) {
 
 380			page->freelist = freelist_new;
 381			page->counters = counters_new;
 382			slab_unlock(page);
 383			return 1;
 384		}
 385		slab_unlock(page);
 386	}
 387
 388	cpu_relax();
 389	stat(s, CMPXCHG_DOUBLE_FAIL);
 390
 391#ifdef SLUB_DEBUG_CMPXCHG
 392	printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
 393#endif
 394
 395	return 0;
 396}
 397
 398static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
 399		void *freelist_old, unsigned long counters_old,
 400		void *freelist_new, unsigned long counters_new,
 401		const char *n)
 402{
 403#ifdef CONFIG_CMPXCHG_DOUBLE
 
 404	if (s->flags & __CMPXCHG_DOUBLE) {
 405		if (cmpxchg_double(&page->freelist,
 406			freelist_old, counters_old,
 407			freelist_new, counters_new))
 408		return 1;
 409	} else
 410#endif
 411	{
 412		unsigned long flags;
 413
 414		local_irq_save(flags);
 415		slab_lock(page);
 416		if (page->freelist == freelist_old && page->counters == counters_old) {
 
 417			page->freelist = freelist_new;
 418			page->counters = counters_new;
 419			slab_unlock(page);
 420			local_irq_restore(flags);
 421			return 1;
 422		}
 423		slab_unlock(page);
 424		local_irq_restore(flags);
 425	}
 426
 427	cpu_relax();
 428	stat(s, CMPXCHG_DOUBLE_FAIL);
 429
 430#ifdef SLUB_DEBUG_CMPXCHG
 431	printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
 432#endif
 433
 434	return 0;
 435}
 436
 437#ifdef CONFIG_SLUB_DEBUG
 438/*
 439 * Determine a map of object in use on a page.
 440 *
 441 * Node listlock must be held to guarantee that the page does
 442 * not vanish from under us.
 443 */
 444static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
 445{
 446	void *p;
 447	void *addr = page_address(page);
 448
 449	for (p = page->freelist; p; p = get_freepointer(s, p))
 450		set_bit(slab_index(p, s, addr), map);
 451}
 452
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 453/*
 454 * Debug settings:
 455 */
 456#ifdef CONFIG_SLUB_DEBUG_ON
 457static int slub_debug = DEBUG_DEFAULT_FLAGS;
 
 
 458#else
 459static int slub_debug;
 460#endif
 461
 462static char *slub_debug_slabs;
 463static int disable_higher_order_debug;
 464
 465/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 466 * Object debugging
 467 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 468static void print_section(char *text, u8 *addr, unsigned int length)
 469{
 470	int i, offset;
 471	int newline = 1;
 472	char ascii[17];
 473
 474	ascii[16] = 0;
 475
 476	for (i = 0; i < length; i++) {
 477		if (newline) {
 478			printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
 479			newline = 0;
 480		}
 481		printk(KERN_CONT " %02x", addr[i]);
 482		offset = i % 16;
 483		ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
 484		if (offset == 15) {
 485			printk(KERN_CONT " %s\n", ascii);
 486			newline = 1;
 487		}
 488	}
 489	if (!newline) {
 490		i %= 16;
 491		while (i < 16) {
 492			printk(KERN_CONT "   ");
 493			ascii[i] = ' ';
 494			i++;
 495		}
 496		printk(KERN_CONT " %s\n", ascii);
 497	}
 498}
 499
 500static struct track *get_track(struct kmem_cache *s, void *object,
 501	enum track_item alloc)
 502{
 503	struct track *p;
 504
 505	if (s->offset)
 506		p = object + s->offset + sizeof(void *);
 507	else
 508		p = object + s->inuse;
 509
 510	return p + alloc;
 511}
 512
 513static void set_track(struct kmem_cache *s, void *object,
 514			enum track_item alloc, unsigned long addr)
 515{
 516	struct track *p = get_track(s, object, alloc);
 517
 518	if (addr) {
 519#ifdef CONFIG_STACKTRACE
 520		struct stack_trace trace;
 521		int i;
 522
 523		trace.nr_entries = 0;
 524		trace.max_entries = TRACK_ADDRS_COUNT;
 525		trace.entries = p->addrs;
 526		trace.skip = 3;
 
 527		save_stack_trace(&trace);
 
 528
 529		/* See rant in lockdep.c */
 530		if (trace.nr_entries != 0 &&
 531		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
 532			trace.nr_entries--;
 533
 534		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
 535			p->addrs[i] = 0;
 536#endif
 537		p->addr = addr;
 538		p->cpu = smp_processor_id();
 539		p->pid = current->pid;
 540		p->when = jiffies;
 541	} else
 542		memset(p, 0, sizeof(struct track));
 543}
 544
 545static void init_tracking(struct kmem_cache *s, void *object)
 546{
 547	if (!(s->flags & SLAB_STORE_USER))
 548		return;
 549
 550	set_track(s, object, TRACK_FREE, 0UL);
 551	set_track(s, object, TRACK_ALLOC, 0UL);
 552}
 553
 554static void print_track(const char *s, struct track *t)
 555{
 556	if (!t->addr)
 557		return;
 558
 559	printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
 560		s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
 561#ifdef CONFIG_STACKTRACE
 562	{
 563		int i;
 564		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
 565			if (t->addrs[i])
 566				printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
 567			else
 568				break;
 569	}
 570#endif
 571}
 572
 573static void print_tracking(struct kmem_cache *s, void *object)
 574{
 575	if (!(s->flags & SLAB_STORE_USER))
 576		return;
 577
 578	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
 579	print_track("Freed", get_track(s, object, TRACK_FREE));
 580}
 581
 582static void print_page_info(struct page *page)
 583{
 584	printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
 585		page, page->objects, page->inuse, page->freelist, page->flags);
 586
 587}
 588
 589static void slab_bug(struct kmem_cache *s, char *fmt, ...)
 590{
 
 591	va_list args;
 592	char buf[100];
 593
 594	va_start(args, fmt);
 595	vsnprintf(buf, sizeof(buf), fmt, args);
 
 
 
 
 
 
 596	va_end(args);
 597	printk(KERN_ERR "========================================"
 598			"=====================================\n");
 599	printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
 600	printk(KERN_ERR "----------------------------------------"
 601			"-------------------------------------\n\n");
 602}
 603
 604static void slab_fix(struct kmem_cache *s, char *fmt, ...)
 605{
 
 606	va_list args;
 607	char buf[100];
 608
 609	va_start(args, fmt);
 610	vsnprintf(buf, sizeof(buf), fmt, args);
 
 
 611	va_end(args);
 612	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
 613}
 614
 615static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
 616{
 617	unsigned int off;	/* Offset of last byte */
 618	u8 *addr = page_address(page);
 619
 620	print_tracking(s, p);
 621
 622	print_page_info(page);
 623
 624	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
 625			p, p - addr, get_freepointer(s, p));
 626
 627	if (p > addr + 16)
 628		print_section("Bytes b4", p - 16, 16);
 629
 630	print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
 631
 
 
 632	if (s->flags & SLAB_RED_ZONE)
 633		print_section("Redzone", p + s->objsize,
 634			s->inuse - s->objsize);
 635
 636	if (s->offset)
 637		off = s->offset + sizeof(void *);
 638	else
 639		off = s->inuse;
 640
 641	if (s->flags & SLAB_STORE_USER)
 642		off += 2 * sizeof(struct track);
 643
 644	if (off != s->size)
 645		/* Beginning of the filler is the free pointer */
 646		print_section("Padding", p + off, s->size - off);
 647
 648	dump_stack();
 649}
 650
 651static void object_err(struct kmem_cache *s, struct page *page,
 652			u8 *object, char *reason)
 653{
 654	slab_bug(s, "%s", reason);
 655	print_trailer(s, page, object);
 656}
 657
 658static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
 
 659{
 660	va_list args;
 661	char buf[100];
 662
 663	va_start(args, fmt);
 664	vsnprintf(buf, sizeof(buf), fmt, args);
 665	va_end(args);
 666	slab_bug(s, "%s", buf);
 667	print_page_info(page);
 668	dump_stack();
 669}
 670
 671static void init_object(struct kmem_cache *s, void *object, u8 val)
 672{
 673	u8 *p = object;
 674
 
 
 
 675	if (s->flags & __OBJECT_POISON) {
 676		memset(p, POISON_FREE, s->objsize - 1);
 677		p[s->objsize - 1] = POISON_END;
 678	}
 679
 680	if (s->flags & SLAB_RED_ZONE)
 681		memset(p + s->objsize, val, s->inuse - s->objsize);
 682}
 683
 684static u8 *check_bytes8(u8 *start, u8 value, unsigned int bytes)
 685{
 686	while (bytes) {
 687		if (*start != value)
 688			return start;
 689		start++;
 690		bytes--;
 691	}
 692	return NULL;
 693}
 694
 695static u8 *check_bytes(u8 *start, u8 value, unsigned int bytes)
 696{
 697	u64 value64;
 698	unsigned int words, prefix;
 699
 700	if (bytes <= 16)
 701		return check_bytes8(start, value, bytes);
 702
 703	value64 = value | value << 8 | value << 16 | value << 24;
 704	value64 = (value64 & 0xffffffff) | value64 << 32;
 705	prefix = 8 - ((unsigned long)start) % 8;
 706
 707	if (prefix) {
 708		u8 *r = check_bytes8(start, value, prefix);
 709		if (r)
 710			return r;
 711		start += prefix;
 712		bytes -= prefix;
 713	}
 714
 715	words = bytes / 8;
 716
 717	while (words) {
 718		if (*(u64 *)start != value64)
 719			return check_bytes8(start, value, 8);
 720		start += 8;
 721		words--;
 722	}
 723
 724	return check_bytes8(start, value, bytes % 8);
 725}
 726
 727static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
 728						void *from, void *to)
 729{
 730	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
 731	memset(from, data, to - from);
 732}
 733
 734static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
 735			u8 *object, char *what,
 736			u8 *start, unsigned int value, unsigned int bytes)
 737{
 738	u8 *fault;
 739	u8 *end;
 740
 741	fault = check_bytes(start, value, bytes);
 
 
 742	if (!fault)
 743		return 1;
 744
 745	end = start + bytes;
 746	while (end > fault && end[-1] == value)
 747		end--;
 748
 749	slab_bug(s, "%s overwritten", what);
 750	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
 751					fault, end - 1, fault[0], value);
 752	print_trailer(s, page, object);
 753
 754	restore_bytes(s, what, value, fault, end);
 755	return 0;
 756}
 757
 758/*
 759 * Object layout:
 760 *
 761 * object address
 762 * 	Bytes of the object to be managed.
 763 * 	If the freepointer may overlay the object then the free
 764 * 	pointer is the first word of the object.
 765 *
 766 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
 767 * 	0xa5 (POISON_END)
 768 *
 769 * object + s->objsize
 770 * 	Padding to reach word boundary. This is also used for Redzoning.
 771 * 	Padding is extended by another word if Redzoning is enabled and
 772 * 	objsize == inuse.
 773 *
 774 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 775 * 	0xcc (RED_ACTIVE) for objects in use.
 776 *
 777 * object + s->inuse
 778 * 	Meta data starts here.
 779 *
 780 * 	A. Free pointer (if we cannot overwrite object on free)
 781 * 	B. Tracking data for SLAB_STORE_USER
 782 * 	C. Padding to reach required alignment boundary or at mininum
 783 * 		one word if debugging is on to be able to detect writes
 784 * 		before the word boundary.
 785 *
 786 *	Padding is done using 0x5a (POISON_INUSE)
 787 *
 788 * object + s->size
 789 * 	Nothing is used beyond s->size.
 790 *
 791 * If slabcaches are merged then the objsize and inuse boundaries are mostly
 792 * ignored. And therefore no slab options that rely on these boundaries
 793 * may be used with merged slabcaches.
 794 */
 795
 796static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
 797{
 798	unsigned long off = s->inuse;	/* The end of info */
 799
 800	if (s->offset)
 801		/* Freepointer is placed after the object. */
 802		off += sizeof(void *);
 803
 804	if (s->flags & SLAB_STORE_USER)
 805		/* We also have user information there */
 806		off += 2 * sizeof(struct track);
 807
 808	if (s->size == off)
 809		return 1;
 810
 811	return check_bytes_and_report(s, page, p, "Object padding",
 812				p + off, POISON_INUSE, s->size - off);
 813}
 814
 815/* Check the pad bytes at the end of a slab page */
 816static int slab_pad_check(struct kmem_cache *s, struct page *page)
 817{
 818	u8 *start;
 819	u8 *fault;
 820	u8 *end;
 821	int length;
 822	int remainder;
 823
 824	if (!(s->flags & SLAB_POISON))
 825		return 1;
 826
 827	start = page_address(page);
 828	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
 829	end = start + length;
 830	remainder = length % s->size;
 831	if (!remainder)
 832		return 1;
 833
 834	fault = check_bytes(end - remainder, POISON_INUSE, remainder);
 
 
 835	if (!fault)
 836		return 1;
 837	while (end > fault && end[-1] == POISON_INUSE)
 838		end--;
 839
 840	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
 841	print_section("Padding", end - remainder, remainder);
 842
 843	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
 844	return 0;
 845}
 846
 847static int check_object(struct kmem_cache *s, struct page *page,
 848					void *object, u8 val)
 849{
 850	u8 *p = object;
 851	u8 *endobject = object + s->objsize;
 852
 853	if (s->flags & SLAB_RED_ZONE) {
 854		if (!check_bytes_and_report(s, page, object, "Redzone",
 855			endobject, val, s->inuse - s->objsize))
 
 
 
 
 856			return 0;
 857	} else {
 858		if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
 859			check_bytes_and_report(s, page, p, "Alignment padding",
 860				endobject, POISON_INUSE, s->inuse - s->objsize);
 
 861		}
 862	}
 863
 864	if (s->flags & SLAB_POISON) {
 865		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
 866			(!check_bytes_and_report(s, page, p, "Poison", p,
 867					POISON_FREE, s->objsize - 1) ||
 868			 !check_bytes_and_report(s, page, p, "Poison",
 869				p + s->objsize - 1, POISON_END, 1)))
 870			return 0;
 871		/*
 872		 * check_pad_bytes cleans up on its own.
 873		 */
 874		check_pad_bytes(s, page, p);
 875	}
 876
 877	if (!s->offset && val == SLUB_RED_ACTIVE)
 878		/*
 879		 * Object and freepointer overlap. Cannot check
 880		 * freepointer while object is allocated.
 881		 */
 882		return 1;
 883
 884	/* Check free pointer validity */
 885	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
 886		object_err(s, page, p, "Freepointer corrupt");
 887		/*
 888		 * No choice but to zap it and thus lose the remainder
 889		 * of the free objects in this slab. May cause
 890		 * another error because the object count is now wrong.
 891		 */
 892		set_freepointer(s, p, NULL);
 893		return 0;
 894	}
 895	return 1;
 896}
 897
 898static int check_slab(struct kmem_cache *s, struct page *page)
 899{
 900	int maxobj;
 901
 902	VM_BUG_ON(!irqs_disabled());
 903
 904	if (!PageSlab(page)) {
 905		slab_err(s, page, "Not a valid slab page");
 906		return 0;
 907	}
 908
 909	maxobj = order_objects(compound_order(page), s->size, s->reserved);
 910	if (page->objects > maxobj) {
 911		slab_err(s, page, "objects %u > max %u",
 912			s->name, page->objects, maxobj);
 913		return 0;
 914	}
 915	if (page->inuse > page->objects) {
 916		slab_err(s, page, "inuse %u > max %u",
 917			s->name, page->inuse, page->objects);
 918		return 0;
 919	}
 920	/* Slab_pad_check fixes things up after itself */
 921	slab_pad_check(s, page);
 922	return 1;
 923}
 924
 925/*
 926 * Determine if a certain object on a page is on the freelist. Must hold the
 927 * slab lock to guarantee that the chains are in a consistent state.
 928 */
 929static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
 930{
 931	int nr = 0;
 932	void *fp;
 933	void *object = NULL;
 934	unsigned long max_objects;
 935
 936	fp = page->freelist;
 937	while (fp && nr <= page->objects) {
 938		if (fp == search)
 939			return 1;
 940		if (!check_valid_pointer(s, page, fp)) {
 941			if (object) {
 942				object_err(s, page, object,
 943					"Freechain corrupt");
 944				set_freepointer(s, object, NULL);
 945				break;
 946			} else {
 947				slab_err(s, page, "Freepointer corrupt");
 948				page->freelist = NULL;
 949				page->inuse = page->objects;
 950				slab_fix(s, "Freelist cleared");
 951				return 0;
 952			}
 953			break;
 954		}
 955		object = fp;
 956		fp = get_freepointer(s, object);
 957		nr++;
 958	}
 959
 960	max_objects = order_objects(compound_order(page), s->size, s->reserved);
 961	if (max_objects > MAX_OBJS_PER_PAGE)
 962		max_objects = MAX_OBJS_PER_PAGE;
 963
 964	if (page->objects != max_objects) {
 965		slab_err(s, page, "Wrong number of objects. Found %d but "
 966			"should be %d", page->objects, max_objects);
 967		page->objects = max_objects;
 968		slab_fix(s, "Number of objects adjusted.");
 969	}
 970	if (page->inuse != page->objects - nr) {
 971		slab_err(s, page, "Wrong object count. Counter is %d but "
 972			"counted were %d", page->inuse, page->objects - nr);
 973		page->inuse = page->objects - nr;
 974		slab_fix(s, "Object count adjusted.");
 975	}
 976	return search == NULL;
 977}
 978
 979static void trace(struct kmem_cache *s, struct page *page, void *object,
 980								int alloc)
 981{
 982	if (s->flags & SLAB_TRACE) {
 983		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
 984			s->name,
 985			alloc ? "alloc" : "free",
 986			object, page->inuse,
 987			page->freelist);
 988
 989		if (!alloc)
 990			print_section("Object", (void *)object, s->objsize);
 
 991
 992		dump_stack();
 993	}
 994}
 995
 996/*
 997 * Hooks for other subsystems that check memory allocations. In a typical
 998 * production configuration these hooks all should produce no code at all.
 999 */
1000static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1001{
1002	flags &= gfp_allowed_mask;
1003	lockdep_trace_alloc(flags);
1004	might_sleep_if(flags & __GFP_WAIT);
1005
1006	return should_failslab(s->objsize, flags, s->flags);
1007}
1008
1009static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
1010{
1011	flags &= gfp_allowed_mask;
1012	kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
1013	kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
1014}
1015
1016static inline void slab_free_hook(struct kmem_cache *s, void *x)
1017{
1018	kmemleak_free_recursive(x, s->flags);
1019
1020	/*
1021	 * Trouble is that we may no longer disable interupts in the fast path
1022	 * So in order to make the debug calls that expect irqs to be
1023	 * disabled we need to disable interrupts temporarily.
1024	 */
1025#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1026	{
1027		unsigned long flags;
1028
1029		local_irq_save(flags);
1030		kmemcheck_slab_free(s, x, s->objsize);
1031		debug_check_no_locks_freed(x, s->objsize);
1032		local_irq_restore(flags);
1033	}
1034#endif
1035	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1036		debug_check_no_obj_freed(x, s->objsize);
1037}
1038
1039/*
1040 * Tracking of fully allocated slabs for debugging purposes.
1041 *
1042 * list_lock must be held.
1043 */
1044static void add_full(struct kmem_cache *s,
1045	struct kmem_cache_node *n, struct page *page)
1046{
1047	if (!(s->flags & SLAB_STORE_USER))
1048		return;
1049
 
1050	list_add(&page->lru, &n->full);
1051}
1052
1053/*
1054 * list_lock must be held.
1055 */
1056static void remove_full(struct kmem_cache *s, struct page *page)
1057{
1058	if (!(s->flags & SLAB_STORE_USER))
1059		return;
1060
 
1061	list_del(&page->lru);
1062}
1063
1064/* Tracking of the number of slabs for debugging purposes */
1065static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1066{
1067	struct kmem_cache_node *n = get_node(s, node);
1068
1069	return atomic_long_read(&n->nr_slabs);
1070}
1071
1072static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1073{
1074	return atomic_long_read(&n->nr_slabs);
1075}
1076
1077static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1078{
1079	struct kmem_cache_node *n = get_node(s, node);
1080
1081	/*
1082	 * May be called early in order to allocate a slab for the
1083	 * kmem_cache_node structure. Solve the chicken-egg
1084	 * dilemma by deferring the increment of the count during
1085	 * bootstrap (see early_kmem_cache_node_alloc).
1086	 */
1087	if (n) {
1088		atomic_long_inc(&n->nr_slabs);
1089		atomic_long_add(objects, &n->total_objects);
1090	}
1091}
1092static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1093{
1094	struct kmem_cache_node *n = get_node(s, node);
1095
1096	atomic_long_dec(&n->nr_slabs);
1097	atomic_long_sub(objects, &n->total_objects);
1098}
1099
1100/* Object debug checks for alloc/free paths */
1101static void setup_object_debug(struct kmem_cache *s, struct page *page,
1102								void *object)
1103{
1104	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1105		return;
1106
1107	init_object(s, object, SLUB_RED_INACTIVE);
1108	init_tracking(s, object);
1109}
1110
1111static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
 
1112					void *object, unsigned long addr)
1113{
1114	if (!check_slab(s, page))
1115		goto bad;
1116
1117	if (!check_valid_pointer(s, page, object)) {
1118		object_err(s, page, object, "Freelist Pointer check fails");
1119		goto bad;
1120	}
1121
1122	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1123		goto bad;
 
 
 
 
 
 
 
 
 
 
 
 
1124
1125	/* Success perform special debug activities for allocs */
1126	if (s->flags & SLAB_STORE_USER)
1127		set_track(s, object, TRACK_ALLOC, addr);
1128	trace(s, page, object, 1);
1129	init_object(s, object, SLUB_RED_ACTIVE);
1130	return 1;
1131
1132bad:
1133	if (PageSlab(page)) {
1134		/*
1135		 * If this is a slab page then lets do the best we can
1136		 * to avoid issues in the future. Marking all objects
1137		 * as used avoids touching the remaining objects.
1138		 */
1139		slab_fix(s, "Marking all objects used");
1140		page->inuse = page->objects;
1141		page->freelist = NULL;
1142	}
1143	return 0;
1144}
1145
1146static noinline int free_debug_processing(struct kmem_cache *s,
1147		 struct page *page, void *object, unsigned long addr)
1148{
1149	unsigned long flags;
1150	int rc = 0;
1151
1152	local_irq_save(flags);
1153	slab_lock(page);
1154
1155	if (!check_slab(s, page))
1156		goto fail;
1157
1158	if (!check_valid_pointer(s, page, object)) {
1159		slab_err(s, page, "Invalid object pointer 0x%p", object);
1160		goto fail;
1161	}
1162
1163	if (on_freelist(s, page, object)) {
1164		object_err(s, page, object, "Object already free");
1165		goto fail;
1166	}
1167
1168	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1169		goto out;
1170
1171	if (unlikely(s != page->slab)) {
1172		if (!PageSlab(page)) {
1173			slab_err(s, page, "Attempt to free object(0x%p) "
1174				"outside of slab", object);
1175		} else if (!page->slab) {
1176			printk(KERN_ERR
1177				"SLUB <none>: no slab for object 0x%p.\n",
1178						object);
1179			dump_stack();
1180		} else
1181			object_err(s, page, object,
1182					"page slab pointer corrupt.");
1183		goto fail;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1184	}
1185
1186	if (s->flags & SLAB_STORE_USER)
1187		set_track(s, object, TRACK_FREE, addr);
1188	trace(s, page, object, 0);
 
1189	init_object(s, object, SLUB_RED_INACTIVE);
1190	rc = 1;
 
 
 
 
 
 
 
1191out:
 
 
 
 
1192	slab_unlock(page);
1193	local_irq_restore(flags);
1194	return rc;
1195
1196fail:
1197	slab_fix(s, "Object at 0x%p not freed", object);
1198	goto out;
1199}
1200
1201static int __init setup_slub_debug(char *str)
1202{
1203	slub_debug = DEBUG_DEFAULT_FLAGS;
1204	if (*str++ != '=' || !*str)
1205		/*
1206		 * No options specified. Switch on full debugging.
1207		 */
1208		goto out;
1209
1210	if (*str == ',')
1211		/*
1212		 * No options but restriction on slabs. This means full
1213		 * debugging for slabs matching a pattern.
1214		 */
1215		goto check_slabs;
1216
1217	if (tolower(*str) == 'o') {
1218		/*
1219		 * Avoid enabling debugging on caches if its minimum order
1220		 * would increase as a result.
1221		 */
1222		disable_higher_order_debug = 1;
1223		goto out;
1224	}
1225
1226	slub_debug = 0;
1227	if (*str == '-')
1228		/*
1229		 * Switch off all debugging measures.
1230		 */
1231		goto out;
1232
1233	/*
1234	 * Determine which debug features should be switched on
1235	 */
1236	for (; *str && *str != ','; str++) {
1237		switch (tolower(*str)) {
1238		case 'f':
1239			slub_debug |= SLAB_DEBUG_FREE;
1240			break;
1241		case 'z':
1242			slub_debug |= SLAB_RED_ZONE;
1243			break;
1244		case 'p':
1245			slub_debug |= SLAB_POISON;
1246			break;
1247		case 'u':
1248			slub_debug |= SLAB_STORE_USER;
1249			break;
1250		case 't':
1251			slub_debug |= SLAB_TRACE;
1252			break;
1253		case 'a':
1254			slub_debug |= SLAB_FAILSLAB;
1255			break;
 
 
 
 
 
 
 
1256		default:
1257			printk(KERN_ERR "slub_debug option '%c' "
1258				"unknown. skipped\n", *str);
1259		}
1260	}
1261
1262check_slabs:
1263	if (*str == ',')
1264		slub_debug_slabs = str + 1;
1265out:
1266	return 1;
1267}
1268
1269__setup("slub_debug", setup_slub_debug);
1270
1271static unsigned long kmem_cache_flags(unsigned long objsize,
1272	unsigned long flags, const char *name,
1273	void (*ctor)(void *))
1274{
1275	/*
1276	 * Enable debugging if selected on the kernel commandline.
1277	 */
1278	if (slub_debug && (!slub_debug_slabs ||
1279		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1280		flags |= slub_debug;
1281
1282	return flags;
1283}
1284#else
1285static inline void setup_object_debug(struct kmem_cache *s,
1286			struct page *page, void *object) {}
1287
1288static inline int alloc_debug_processing(struct kmem_cache *s,
1289	struct page *page, void *object, unsigned long addr) { return 0; }
1290
1291static inline int free_debug_processing(struct kmem_cache *s,
1292	struct page *page, void *object, unsigned long addr) { return 0; }
 
 
1293
1294static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1295			{ return 1; }
1296static inline int check_object(struct kmem_cache *s, struct page *page,
1297			void *object, u8 val) { return 1; }
1298static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1299					struct page *page) {}
1300static inline void remove_full(struct kmem_cache *s, struct page *page) {}
1301static inline unsigned long kmem_cache_flags(unsigned long objsize,
 
1302	unsigned long flags, const char *name,
1303	void (*ctor)(void *))
1304{
1305	return flags;
1306}
1307#define slub_debug 0
1308
1309#define disable_higher_order_debug 0
1310
1311static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1312							{ return 0; }
1313static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1314							{ return 0; }
1315static inline void inc_slabs_node(struct kmem_cache *s, int node,
1316							int objects) {}
1317static inline void dec_slabs_node(struct kmem_cache *s, int node,
1318							int objects) {}
1319
1320static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1321							{ return 0; }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1322
1323static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1324		void *object) {}
1325
1326static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
 
 
 
 
 
 
 
 
 
 
 
1327
1328#endif /* CONFIG_SLUB_DEBUG */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1329
1330/*
1331 * Slab allocation and freeing
1332 */
1333static inline struct page *alloc_slab_page(gfp_t flags, int node,
1334					struct kmem_cache_order_objects oo)
1335{
 
1336	int order = oo_order(oo);
1337
1338	flags |= __GFP_NOTRACK;
1339
1340	if (node == NUMA_NO_NODE)
1341		return alloc_pages(flags, order);
1342	else
1343		return alloc_pages_exact_node(node, flags, order);
 
 
 
 
 
 
 
1344}
1345
1346static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1347{
1348	struct page *page;
1349	struct kmem_cache_order_objects oo = s->oo;
1350	gfp_t alloc_gfp;
 
 
1351
1352	flags &= gfp_allowed_mask;
1353
1354	if (flags & __GFP_WAIT)
1355		local_irq_enable();
1356
1357	flags |= s->allocflags;
1358
1359	/*
1360	 * Let the initial higher-order allocation fail under memory pressure
1361	 * so we fall-back to the minimum order allocation.
1362	 */
1363	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
 
 
1364
1365	page = alloc_slab_page(alloc_gfp, node, oo);
1366	if (unlikely(!page)) {
1367		oo = s->min;
 
1368		/*
1369		 * Allocation may have failed due to fragmentation.
1370		 * Try a lower order alloc if possible
1371		 */
1372		page = alloc_slab_page(flags, node, oo);
1373
1374		if (page)
1375			stat(s, ORDER_FALLBACK);
1376	}
1377
1378	if (flags & __GFP_WAIT)
1379		local_irq_disable();
1380
1381	if (!page)
1382		return NULL;
1383
1384	if (kmemcheck_enabled
1385		&& !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1386		int pages = 1 << oo_order(oo);
1387
1388		kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1389
1390		/*
1391		 * Objects from caches that have a constructor don't get
1392		 * cleared when they're allocated, so we need to do it here.
1393		 */
1394		if (s->ctor)
1395			kmemcheck_mark_uninitialized_pages(page, pages);
1396		else
1397			kmemcheck_mark_unallocated_pages(page, pages);
1398	}
1399
1400	page->objects = oo_objects(oo);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1401	mod_zone_page_state(page_zone(page),
1402		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1403		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1404		1 << oo_order(oo));
1405
 
 
1406	return page;
1407}
1408
1409static void setup_object(struct kmem_cache *s, struct page *page,
1410				void *object)
1411{
1412	setup_object_debug(s, page, object);
1413	if (unlikely(s->ctor))
1414		s->ctor(object);
1415}
1416
1417static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1418{
1419	struct page *page;
1420	void *start;
1421	void *last;
1422	void *p;
1423
1424	BUG_ON(flags & GFP_SLAB_BUG_MASK);
1425
1426	page = allocate_slab(s,
1427		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1428	if (!page)
1429		goto out;
1430
1431	inc_slabs_node(s, page_to_nid(page), page->objects);
1432	page->slab = s;
1433	page->flags |= 1 << PG_slab;
1434
1435	start = page_address(page);
1436
1437	if (unlikely(s->flags & SLAB_POISON))
1438		memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1439
1440	last = start;
1441	for_each_object(p, s, start, page->objects) {
1442		setup_object(s, page, last);
1443		set_freepointer(s, last, p);
1444		last = p;
1445	}
1446	setup_object(s, page, last);
1447	set_freepointer(s, last, NULL);
1448
1449	page->freelist = start;
1450	page->inuse = 0;
1451	page->frozen = 1;
1452out:
1453	return page;
1454}
1455
1456static void __free_slab(struct kmem_cache *s, struct page *page)
1457{
1458	int order = compound_order(page);
1459	int pages = 1 << order;
1460
1461	if (kmem_cache_debug(s)) {
1462		void *p;
1463
1464		slab_pad_check(s, page);
1465		for_each_object(p, s, page_address(page),
1466						page->objects)
1467			check_object(s, page, p, SLUB_RED_INACTIVE);
1468	}
1469
1470	kmemcheck_free_shadow(page, compound_order(page));
1471
1472	mod_zone_page_state(page_zone(page),
1473		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1474		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1475		-pages);
1476
 
1477	__ClearPageSlab(page);
1478	reset_page_mapcount(page);
 
1479	if (current->reclaim_state)
1480		current->reclaim_state->reclaimed_slab += pages;
 
1481	__free_pages(page, order);
1482}
1483
1484#define need_reserve_slab_rcu						\
1485	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1486
1487static void rcu_free_slab(struct rcu_head *h)
1488{
1489	struct page *page;
1490
1491	if (need_reserve_slab_rcu)
1492		page = virt_to_head_page(h);
1493	else
1494		page = container_of((struct list_head *)h, struct page, lru);
1495
1496	__free_slab(page->slab, page);
1497}
1498
1499static void free_slab(struct kmem_cache *s, struct page *page)
1500{
1501	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1502		struct rcu_head *head;
1503
1504		if (need_reserve_slab_rcu) {
1505			int order = compound_order(page);
1506			int offset = (PAGE_SIZE << order) - s->reserved;
1507
1508			VM_BUG_ON(s->reserved != sizeof(*head));
1509			head = page_address(page) + offset;
1510		} else {
1511			/*
1512			 * RCU free overloads the RCU head over the LRU
1513			 */
1514			head = (void *)&page->lru;
1515		}
1516
1517		call_rcu(head, rcu_free_slab);
1518	} else
1519		__free_slab(s, page);
1520}
1521
1522static void discard_slab(struct kmem_cache *s, struct page *page)
1523{
1524	dec_slabs_node(s, page_to_nid(page), page->objects);
1525	free_slab(s, page);
1526}
1527
1528/*
1529 * Management of partially allocated slabs.
1530 *
1531 * list_lock must be held.
1532 */
1533static inline void add_partial(struct kmem_cache_node *n,
1534				struct page *page, int tail)
1535{
1536	n->nr_partial++;
1537	if (tail)
1538		list_add_tail(&page->lru, &n->partial);
1539	else
1540		list_add(&page->lru, &n->partial);
1541}
1542
1543/*
1544 * list_lock must be held.
1545 */
 
 
 
 
1546static inline void remove_partial(struct kmem_cache_node *n,
1547					struct page *page)
1548{
 
1549	list_del(&page->lru);
1550	n->nr_partial--;
1551}
1552
1553/*
1554 * Lock slab, remove from the partial list and put the object into the
1555 * per cpu freelist.
1556 *
1557 * Must hold list_lock.
1558 */
1559static inline int acquire_slab(struct kmem_cache *s,
1560		struct kmem_cache_node *n, struct page *page)
 
1561{
1562	void *freelist;
1563	unsigned long counters;
1564	struct page new;
1565
 
 
1566	/*
1567	 * Zap the freelist and set the frozen bit.
1568	 * The old freelist is the list of objects for the
1569	 * per cpu allocation list.
1570	 */
1571	do {
1572		freelist = page->freelist;
1573		counters = page->counters;
1574		new.counters = counters;
 
1575		new.inuse = page->objects;
 
 
 
 
1576
1577		VM_BUG_ON(new.frozen);
1578		new.frozen = 1;
1579
1580	} while (!__cmpxchg_double_slab(s, page,
1581			freelist, counters,
1582			NULL, new.counters,
1583			"lock and freeze"));
 
1584
1585	remove_partial(n, page);
 
 
 
1586
1587	if (freelist) {
1588		/* Populate the per cpu freelist */
1589		this_cpu_write(s->cpu_slab->freelist, freelist);
1590		this_cpu_write(s->cpu_slab->page, page);
1591		this_cpu_write(s->cpu_slab->node, page_to_nid(page));
1592		return 1;
1593	} else {
1594		/*
1595		 * Slab page came from the wrong list. No object to allocate
1596		 * from. Put it onto the correct list and continue partial
1597		 * scan.
1598		 */
1599		printk(KERN_ERR "SLUB: %s : Page without available objects on"
1600			" partial list\n", s->name);
1601		return 0;
1602	}
1603}
1604
1605/*
1606 * Try to allocate a partial slab from a specific node.
1607 */
1608static struct page *get_partial_node(struct kmem_cache *s,
1609					struct kmem_cache_node *n)
1610{
1611	struct page *page;
 
 
 
1612
1613	/*
1614	 * Racy check. If we mistakenly see no partial slabs then we
1615	 * just allocate an empty slab. If we mistakenly try to get a
1616	 * partial slab and there is none available then get_partials()
1617	 * will return NULL.
1618	 */
1619	if (!n || !n->nr_partial)
1620		return NULL;
1621
1622	spin_lock(&n->list_lock);
1623	list_for_each_entry(page, &n->partial, lru)
1624		if (acquire_slab(s, n, page))
1625			goto out;
1626	page = NULL;
1627out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1628	spin_unlock(&n->list_lock);
1629	return page;
1630}
1631
1632/*
1633 * Get a page from somewhere. Search in increasing NUMA distances.
1634 */
1635static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
 
1636{
1637#ifdef CONFIG_NUMA
1638	struct zonelist *zonelist;
1639	struct zoneref *z;
1640	struct zone *zone;
1641	enum zone_type high_zoneidx = gfp_zone(flags);
1642	struct page *page;
 
1643
1644	/*
1645	 * The defrag ratio allows a configuration of the tradeoffs between
1646	 * inter node defragmentation and node local allocations. A lower
1647	 * defrag_ratio increases the tendency to do local allocations
1648	 * instead of attempting to obtain partial slabs from other nodes.
1649	 *
1650	 * If the defrag_ratio is set to 0 then kmalloc() always
1651	 * returns node local objects. If the ratio is higher then kmalloc()
1652	 * may return off node objects because partial slabs are obtained
1653	 * from other nodes and filled up.
1654	 *
1655	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1656	 * defrag_ratio = 1000) then every (well almost) allocation will
1657	 * first attempt to defrag slab caches on other nodes. This means
1658	 * scanning over all nodes to look for partial slabs which may be
1659	 * expensive if we do it every time we are trying to find a slab
1660	 * with available objects.
1661	 */
1662	if (!s->remote_node_defrag_ratio ||
1663			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1664		return NULL;
1665
1666	get_mems_allowed();
1667	zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1668	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1669		struct kmem_cache_node *n;
1670
1671		n = get_node(s, zone_to_nid(zone));
1672
1673		if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1674				n->nr_partial > s->min_partial) {
1675			page = get_partial_node(s, n);
1676			if (page) {
1677				put_mems_allowed();
1678				return page;
 
 
 
 
 
 
 
 
1679			}
1680		}
1681	}
1682	put_mems_allowed();
1683#endif
1684	return NULL;
1685}
1686
1687/*
1688 * Get a partial page, lock it and return it.
1689 */
1690static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
 
1691{
1692	struct page *page;
1693	int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1694
1695	page = get_partial_node(s, get_node(s, searchnode));
1696	if (page || node != NUMA_NO_NODE)
1697		return page;
 
 
 
 
 
1698
1699	return get_any_partial(s, flags);
1700}
1701
1702#ifdef CONFIG_PREEMPT
1703/*
1704 * Calculate the next globally unique transaction for disambiguiation
1705 * during cmpxchg. The transactions start with the cpu number and are then
1706 * incremented by CONFIG_NR_CPUS.
1707 */
1708#define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
1709#else
1710/*
1711 * No preemption supported therefore also no need to check for
1712 * different cpus.
1713 */
1714#define TID_STEP 1
1715#endif
1716
1717static inline unsigned long next_tid(unsigned long tid)
1718{
1719	return tid + TID_STEP;
1720}
1721
1722static inline unsigned int tid_to_cpu(unsigned long tid)
1723{
1724	return tid % TID_STEP;
1725}
1726
1727static inline unsigned long tid_to_event(unsigned long tid)
1728{
1729	return tid / TID_STEP;
1730}
1731
1732static inline unsigned int init_tid(int cpu)
1733{
1734	return cpu;
1735}
1736
1737static inline void note_cmpxchg_failure(const char *n,
1738		const struct kmem_cache *s, unsigned long tid)
1739{
1740#ifdef SLUB_DEBUG_CMPXCHG
1741	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1742
1743	printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1744
1745#ifdef CONFIG_PREEMPT
1746	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1747		printk("due to cpu change %d -> %d\n",
1748			tid_to_cpu(tid), tid_to_cpu(actual_tid));
1749	else
1750#endif
1751	if (tid_to_event(tid) != tid_to_event(actual_tid))
1752		printk("due to cpu running other code. Event %ld->%ld\n",
1753			tid_to_event(tid), tid_to_event(actual_tid));
1754	else
1755		printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1756			actual_tid, tid, next_tid(tid));
1757#endif
1758	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1759}
1760
1761void init_kmem_cache_cpus(struct kmem_cache *s)
1762{
1763	int cpu;
1764
1765	for_each_possible_cpu(cpu)
1766		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1767}
1768/*
1769 * Remove the cpu slab
1770 */
1771
1772/*
1773 * Remove the cpu slab
1774 */
1775static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
 
1776{
1777	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1778	struct page *page = c->page;
1779	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1780	int lock = 0;
1781	enum slab_modes l = M_NONE, m = M_NONE;
1782	void *freelist;
1783	void *nextfree;
1784	int tail = 0;
1785	struct page new;
1786	struct page old;
1787
1788	if (page->freelist) {
1789		stat(s, DEACTIVATE_REMOTE_FREES);
1790		tail = 1;
1791	}
1792
1793	c->tid = next_tid(c->tid);
1794	c->page = NULL;
1795	freelist = c->freelist;
1796	c->freelist = NULL;
1797
1798	/*
1799	 * Stage one: Free all available per cpu objects back
1800	 * to the page freelist while it is still frozen. Leave the
1801	 * last one.
1802	 *
1803	 * There is no need to take the list->lock because the page
1804	 * is still frozen.
1805	 */
1806	while (freelist && (nextfree = get_freepointer(s, freelist))) {
1807		void *prior;
1808		unsigned long counters;
1809
1810		do {
1811			prior = page->freelist;
1812			counters = page->counters;
1813			set_freepointer(s, freelist, prior);
1814			new.counters = counters;
1815			new.inuse--;
1816			VM_BUG_ON(!new.frozen);
1817
1818		} while (!__cmpxchg_double_slab(s, page,
1819			prior, counters,
1820			freelist, new.counters,
1821			"drain percpu freelist"));
1822
1823		freelist = nextfree;
1824	}
1825
1826	/*
1827	 * Stage two: Ensure that the page is unfrozen while the
1828	 * list presence reflects the actual number of objects
1829	 * during unfreeze.
1830	 *
1831	 * We setup the list membership and then perform a cmpxchg
1832	 * with the count. If there is a mismatch then the page
1833	 * is not unfrozen but the page is on the wrong list.
1834	 *
1835	 * Then we restart the process which may have to remove
1836	 * the page from the list that we just put it on again
1837	 * because the number of objects in the slab may have
1838	 * changed.
1839	 */
1840redo:
1841
1842	old.freelist = page->freelist;
1843	old.counters = page->counters;
1844	VM_BUG_ON(!old.frozen);
1845
1846	/* Determine target state of the slab */
1847	new.counters = old.counters;
1848	if (freelist) {
1849		new.inuse--;
1850		set_freepointer(s, freelist, old.freelist);
1851		new.freelist = freelist;
1852	} else
1853		new.freelist = old.freelist;
1854
1855	new.frozen = 0;
1856
1857	if (!new.inuse && n->nr_partial > s->min_partial)
1858		m = M_FREE;
1859	else if (new.freelist) {
1860		m = M_PARTIAL;
1861		if (!lock) {
1862			lock = 1;
1863			/*
1864			 * Taking the spinlock removes the possiblity
1865			 * that acquire_slab() will see a slab page that
1866			 * is frozen
1867			 */
1868			spin_lock(&n->list_lock);
1869		}
1870	} else {
1871		m = M_FULL;
1872		if (kmem_cache_debug(s) && !lock) {
1873			lock = 1;
1874			/*
1875			 * This also ensures that the scanning of full
1876			 * slabs from diagnostic functions will not see
1877			 * any frozen slabs.
1878			 */
1879			spin_lock(&n->list_lock);
1880		}
1881	}
1882
1883	if (l != m) {
1884
1885		if (l == M_PARTIAL)
1886
1887			remove_partial(n, page);
1888
1889		else if (l == M_FULL)
1890
1891			remove_full(s, page);
1892
1893		if (m == M_PARTIAL) {
1894
1895			add_partial(n, page, tail);
1896			stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1897
1898		} else if (m == M_FULL) {
1899
1900			stat(s, DEACTIVATE_FULL);
1901			add_full(s, n, page);
1902
1903		}
1904	}
1905
1906	l = m;
1907	if (!__cmpxchg_double_slab(s, page,
1908				old.freelist, old.counters,
1909				new.freelist, new.counters,
1910				"unfreezing slab"))
1911		goto redo;
1912
1913	if (lock)
1914		spin_unlock(&n->list_lock);
1915
1916	if (m == M_FREE) {
1917		stat(s, DEACTIVATE_EMPTY);
1918		discard_slab(s, page);
1919		stat(s, FREE_SLAB);
1920	}
1921}
1922
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1923static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1924{
1925	stat(s, CPUSLAB_FLUSH);
1926	deactivate_slab(s, c);
 
 
 
 
1927}
1928
1929/*
1930 * Flush cpu slab.
1931 *
1932 * Called from IPI handler with interrupts disabled.
1933 */
1934static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1935{
1936	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
1937
1938	if (likely(c && c->page))
1939		flush_slab(s, c);
 
 
 
 
1940}
1941
1942static void flush_cpu_slab(void *d)
1943{
1944	struct kmem_cache *s = d;
1945
1946	__flush_cpu_slab(s, smp_processor_id());
1947}
1948
 
 
 
 
 
 
 
 
1949static void flush_all(struct kmem_cache *s)
1950{
1951	on_each_cpu(flush_cpu_slab, s, 1);
1952}
1953
1954/*
1955 * Check if the objects in a per cpu structure fit numa
1956 * locality expectations.
1957 */
1958static inline int node_match(struct kmem_cache_cpu *c, int node)
1959{
1960#ifdef CONFIG_NUMA
1961	if (node != NUMA_NO_NODE && c->node != node)
1962		return 0;
1963#endif
1964	return 1;
1965}
1966
 
1967static int count_free(struct page *page)
1968{
1969	return page->objects - page->inuse;
1970}
1971
 
 
 
 
 
 
 
1972static unsigned long count_partial(struct kmem_cache_node *n,
1973					int (*get_count)(struct page *))
1974{
1975	unsigned long flags;
1976	unsigned long x = 0;
1977	struct page *page;
1978
1979	spin_lock_irqsave(&n->list_lock, flags);
1980	list_for_each_entry(page, &n->partial, lru)
1981		x += get_count(page);
1982	spin_unlock_irqrestore(&n->list_lock, flags);
1983	return x;
1984}
1985
1986static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1987{
1988#ifdef CONFIG_SLUB_DEBUG
1989	return atomic_long_read(&n->total_objects);
1990#else
1991	return 0;
1992#endif
1993}
1994
1995static noinline void
1996slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1997{
 
 
 
1998	int node;
 
 
 
 
1999
2000	printk(KERN_WARNING
2001		"SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2002		nid, gfpflags);
2003	printk(KERN_WARNING "  cache: %s, object size: %d, buffer size: %d, "
2004		"default order: %d, min order: %d\n", s->name, s->objsize,
2005		s->size, oo_order(s->oo), oo_order(s->min));
2006
2007	if (oo_order(s->min) > get_order(s->objsize))
2008		printk(KERN_WARNING "  %s debugging increased min order, use "
2009		       "slub_debug=O to disable.\n", s->name);
2010
2011	for_each_online_node(node) {
2012		struct kmem_cache_node *n = get_node(s, node);
2013		unsigned long nr_slabs;
2014		unsigned long nr_objs;
2015		unsigned long nr_free;
2016
2017		if (!n)
2018			continue;
2019
2020		nr_free  = count_partial(n, count_free);
2021		nr_slabs = node_nr_slabs(n);
2022		nr_objs  = node_nr_objs(n);
2023
2024		printk(KERN_WARNING
2025			"  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2026			node, nr_slabs, nr_objs, nr_free);
2027	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2028}
2029
2030/*
2031 * Slow path. The lockless freelist is empty or we need to perform
2032 * debugging duties.
2033 *
2034 * Interrupts are disabled.
2035 *
2036 * Processing is still very fast if new objects have been freed to the
2037 * regular freelist. In that case we simply take over the regular freelist
2038 * as the lockless freelist and zap the regular freelist.
2039 *
2040 * If that is not working then we fall back to the partial lists. We take the
2041 * first element of the freelist as the object to allocate now and move the
2042 * rest of the freelist to the lockless freelist.
2043 *
2044 * And if we were unable to get a new slab from the partial slab lists then
2045 * we need to allocate a new slab. This is the slowest path since it involves
2046 * a call to the page allocator and the setup of a new slab.
 
 
 
2047 */
2048static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2049			  unsigned long addr, struct kmem_cache_cpu *c)
2050{
2051	void **object;
2052	struct page *page;
2053	unsigned long flags;
2054	struct page new;
2055	unsigned long counters;
2056
2057	local_irq_save(flags);
2058#ifdef CONFIG_PREEMPT
2059	/*
2060	 * We may have been preempted and rescheduled on a different
2061	 * cpu before disabling interrupts. Need to reload cpu area
2062	 * pointer.
2063	 */
2064	c = this_cpu_ptr(s->cpu_slab);
2065#endif
2066
2067	/* We handle __GFP_ZERO in the caller */
2068	gfpflags &= ~__GFP_ZERO;
2069
2070	page = c->page;
2071	if (!page)
2072		goto new_slab;
 
2073
2074	if (unlikely(!node_match(c, node))) {
2075		stat(s, ALLOC_NODE_MISMATCH);
2076		deactivate_slab(s, c);
2077		goto new_slab;
2078	}
2079
2080	stat(s, ALLOC_SLOWPATH);
 
2081
2082	do {
2083		object = page->freelist;
2084		counters = page->counters;
2085		new.counters = counters;
2086		VM_BUG_ON(!new.frozen);
 
 
 
2087
2088		/*
2089		 * If there is no object left then we use this loop to
2090		 * deactivate the slab which is simple since no objects
2091		 * are left in the slab and therefore we do not need to
2092		 * put the page back onto the partial list.
2093		 *
2094		 * If there are objects left then we retrieve them
2095		 * and use them to refill the per cpu queue.
2096		*/
 
 
2097
2098		new.inuse = page->objects;
2099		new.frozen = object != NULL;
 
 
2100
2101	} while (!__cmpxchg_double_slab(s, page,
2102			object, counters,
2103			NULL, new.counters,
2104			"__slab_alloc"));
2105
2106	if (unlikely(!object)) {
2107		c->page = NULL;
2108		stat(s, DEACTIVATE_BYPASS);
2109		goto new_slab;
2110	}
2111
2112	stat(s, ALLOC_REFILL);
2113
2114load_freelist:
2115	VM_BUG_ON(!page->frozen);
2116	c->freelist = get_freepointer(s, object);
 
 
 
 
 
2117	c->tid = next_tid(c->tid);
2118	local_irq_restore(flags);
2119	return object;
2120
2121new_slab:
2122	page = get_partial(s, gfpflags, node);
2123	if (page) {
2124		stat(s, ALLOC_FROM_PARTIAL);
2125		object = c->freelist;
2126
2127		if (kmem_cache_debug(s))
2128			goto debug;
2129		goto load_freelist;
 
 
 
2130	}
2131
2132	page = new_slab(s, gfpflags, node);
2133
2134	if (page) {
2135		c = __this_cpu_ptr(s->cpu_slab);
2136		if (c->page)
2137			flush_slab(s, c);
 
 
 
 
2138
2139		/*
2140		 * No other reference to the page yet so we can
2141		 * muck around with it freely without cmpxchg
2142		 */
2143		object = page->freelist;
2144		page->freelist = NULL;
2145		page->inuse = page->objects;
2146
2147		stat(s, ALLOC_SLAB);
2148		c->node = page_to_nid(page);
2149		c->page = page;
 
 
2150
2151		if (kmem_cache_debug(s))
2152			goto debug;
2153		goto load_freelist;
2154	}
2155	if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2156		slab_out_of_memory(s, gfpflags, node);
2157	local_irq_restore(flags);
2158	return NULL;
 
2159
2160debug:
2161	if (!object || !alloc_debug_processing(s, page, object, addr))
2162		goto new_slab;
 
 
 
 
 
 
2163
2164	c->freelist = get_freepointer(s, object);
2165	deactivate_slab(s, c);
2166	c->page = NULL;
2167	c->node = NUMA_NO_NODE;
2168	local_irq_restore(flags);
2169	return object;
2170}
2171
2172/*
2173 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2174 * have the fastpath folded into their functions. So no function call
2175 * overhead for requests that can be satisfied on the fastpath.
2176 *
2177 * The fastpath works by first checking if the lockless freelist can be used.
2178 * If not then __slab_alloc is called for slow processing.
2179 *
2180 * Otherwise we can simply pick the next object from the lockless free list.
2181 */
2182static __always_inline void *slab_alloc(struct kmem_cache *s,
2183		gfp_t gfpflags, int node, unsigned long addr)
2184{
2185	void **object;
2186	struct kmem_cache_cpu *c;
 
2187	unsigned long tid;
2188
2189	if (slab_pre_alloc_hook(s, gfpflags))
 
2190		return NULL;
2191
2192redo:
2193
2194	/*
2195	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2196	 * enabled. We may switch back and forth between cpus while
2197	 * reading from one cpu area. That does not matter as long
2198	 * as we end up on the original cpu again when doing the cmpxchg.
 
 
 
 
2199	 */
2200	c = __this_cpu_ptr(s->cpu_slab);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2201
2202	/*
2203	 * The transaction ids are globally unique per cpu and per operation on
2204	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2205	 * occurs on the right processor and that there was no operation on the
2206	 * linked list in between.
2207	 */
2208	tid = c->tid;
2209	barrier();
2210
2211	object = c->freelist;
2212	if (unlikely(!object || !node_match(c, node)))
2213
2214		object = __slab_alloc(s, gfpflags, node, addr, c);
 
 
 
2215
2216	else {
2217		/*
2218		 * The cmpxchg will only match if there was no additional
2219		 * operation and if we are on the right processor.
2220		 *
2221		 * The cmpxchg does the following atomically (without lock semantics!)
 
2222		 * 1. Relocate first pointer to the current per cpu area.
2223		 * 2. Verify that tid and freelist have not been changed
2224		 * 3. If they were not changed replace tid and freelist
2225		 *
2226		 * Since this is without lock semantics the protection is only against
2227		 * code executing on this cpu *not* from access by other cpus.
 
2228		 */
2229		if (unlikely(!irqsafe_cpu_cmpxchg_double(
2230				s->cpu_slab->freelist, s->cpu_slab->tid,
2231				object, tid,
2232				get_freepointer_safe(s, object), next_tid(tid)))) {
2233
2234			note_cmpxchg_failure("slab_alloc", s, tid);
2235			goto redo;
2236		}
 
2237		stat(s, ALLOC_FASTPATH);
2238	}
2239
2240	if (unlikely(gfpflags & __GFP_ZERO) && object)
2241		memset(object, 0, s->objsize);
2242
2243	slab_post_alloc_hook(s, gfpflags, object);
2244
2245	return object;
2246}
2247
 
 
 
 
 
 
2248void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2249{
2250	void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2251
2252	trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
 
2253
2254	return ret;
2255}
2256EXPORT_SYMBOL(kmem_cache_alloc);
2257
2258#ifdef CONFIG_TRACING
2259void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2260{
2261	void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2262	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
 
2263	return ret;
2264}
2265EXPORT_SYMBOL(kmem_cache_alloc_trace);
2266
2267void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
2268{
2269	void *ret = kmalloc_order(size, flags, order);
2270	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2271	return ret;
2272}
2273EXPORT_SYMBOL(kmalloc_order_trace);
2274#endif
2275
2276#ifdef CONFIG_NUMA
2277void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2278{
2279	void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2280
2281	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2282				    s->objsize, s->size, gfpflags, node);
2283
2284	return ret;
2285}
2286EXPORT_SYMBOL(kmem_cache_alloc_node);
2287
2288#ifdef CONFIG_TRACING
2289void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2290				    gfp_t gfpflags,
2291				    int node, size_t size)
2292{
2293	void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2294
2295	trace_kmalloc_node(_RET_IP_, ret,
2296			   size, s->size, gfpflags, node);
 
 
2297	return ret;
2298}
2299EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2300#endif
2301#endif
2302
2303/*
2304 * Slow patch handling. This may still be called frequently since objects
2305 * have a longer lifetime than the cpu slabs in most processing loads.
2306 *
2307 * So we still attempt to reduce cache line usage. Just take the slab
2308 * lock and free the item. If there is no additional partial page
2309 * handling required then we can return immediately.
2310 */
2311static void __slab_free(struct kmem_cache *s, struct page *page,
2312			void *x, unsigned long addr)
 
 
2313{
2314	void *prior;
2315	void **object = (void *)x;
2316	int was_frozen;
2317	int inuse;
2318	struct page new;
2319	unsigned long counters;
2320	struct kmem_cache_node *n = NULL;
2321	unsigned long uninitialized_var(flags);
2322
2323	stat(s, FREE_SLOWPATH);
2324
2325	if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
 
2326		return;
2327
2328	do {
 
 
 
 
2329		prior = page->freelist;
2330		counters = page->counters;
2331		set_freepointer(s, object, prior);
2332		new.counters = counters;
2333		was_frozen = new.frozen;
2334		new.inuse--;
2335		if ((!new.inuse || !prior) && !was_frozen && !n) {
2336                        n = get_node(s, page_to_nid(page));
2337			/*
2338			 * Speculatively acquire the list_lock.
2339			 * If the cmpxchg does not succeed then we may
2340			 * drop the list_lock without any processing.
2341			 *
2342			 * Otherwise the list_lock will synchronize with
2343			 * other processors updating the list of slabs.
2344			 */
2345                        spin_lock_irqsave(&n->list_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2346		}
2347		inuse = new.inuse;
2348
2349	} while (!cmpxchg_double_slab(s, page,
2350		prior, counters,
2351		object, new.counters,
2352		"__slab_free"));
2353
2354	if (likely(!n)) {
2355                /*
 
 
 
 
 
 
 
 
 
2356		 * The list lock was not taken therefore no list
2357		 * activity can be necessary.
2358		 */
2359                if (was_frozen)
2360                        stat(s, FREE_FROZEN);
2361                return;
2362        }
 
 
 
2363
2364	/*
2365	 * was_frozen may have been set after we acquired the list_lock in
2366	 * an earlier loop. So we need to check it here again.
2367	 */
2368	if (was_frozen)
2369		stat(s, FREE_FROZEN);
2370	else {
2371		if (unlikely(!inuse && n->nr_partial > s->min_partial))
2372                        goto slab_empty;
2373
2374		/*
2375		 * Objects left in the slab. If it was not on the partial list before
2376		 * then add it.
2377		 */
2378		if (unlikely(!prior)) {
2379			remove_full(s, page);
2380			add_partial(n, page, 1);
2381			stat(s, FREE_ADD_PARTIAL);
2382		}
2383	}
2384	spin_unlock_irqrestore(&n->list_lock, flags);
2385	return;
2386
2387slab_empty:
2388	if (prior) {
2389		/*
2390		 * Slab on the partial list.
2391		 */
2392		remove_partial(n, page);
2393		stat(s, FREE_REMOVE_PARTIAL);
2394	} else
2395		/* Slab must be on the full list */
2396		remove_full(s, page);
 
2397
2398	spin_unlock_irqrestore(&n->list_lock, flags);
2399	stat(s, FREE_SLAB);
2400	discard_slab(s, page);
2401}
2402
2403/*
2404 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2405 * can perform fastpath freeing without additional function calls.
2406 *
2407 * The fastpath is only possible if we are freeing to the current cpu slab
2408 * of this processor. This typically the case if we have just allocated
2409 * the item before.
2410 *
2411 * If fastpath is not possible then fall back to __slab_free where we deal
2412 * with all sorts of special processing.
2413 */
2414static __always_inline void slab_free(struct kmem_cache *s,
2415			struct page *page, void *x, unsigned long addr)
 
 
 
 
 
2416{
2417	void **object = (void *)x;
2418	struct kmem_cache_cpu *c;
2419	unsigned long tid;
2420
2421	slab_free_hook(s, x);
2422
2423redo:
2424
2425	/*
2426	 * Determine the currently cpus per cpu slab.
2427	 * The cpu may change afterward. However that does not matter since
2428	 * data is retrieved via this pointer. If we are on the same cpu
2429	 * during the cmpxchg then the free will succedd.
2430	 */
2431	c = __this_cpu_ptr(s->cpu_slab);
 
 
 
 
2432
2433	tid = c->tid;
2434	barrier();
2435
2436	if (likely(page == c->page)) {
2437		set_freepointer(s, object, c->freelist);
2438
2439		if (unlikely(!irqsafe_cpu_cmpxchg_double(
2440				s->cpu_slab->freelist, s->cpu_slab->tid,
2441				c->freelist, tid,
2442				object, next_tid(tid)))) {
2443
2444			note_cmpxchg_failure("slab_free", s, tid);
2445			goto redo;
2446		}
2447		stat(s, FREE_FASTPATH);
2448	} else
2449		__slab_free(s, page, x, addr);
2450
2451}
2452
2453void kmem_cache_free(struct kmem_cache *s, void *x)
2454{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2455	struct page *page;
2456
2457	page = virt_to_head_page(x);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2458
2459	slab_free(s, page, x, _RET_IP_);
 
 
2460
2461	trace_kmem_cache_free(_RET_IP_, x);
 
 
 
 
 
 
 
 
 
 
 
2462}
2463EXPORT_SYMBOL(kmem_cache_free);
 
2464
2465/*
2466 * Object placement in a slab is made very easy because we always start at
2467 * offset 0. If we tune the size of the object to the alignment then we can
2468 * get the required alignment by putting one properly sized object after
2469 * another.
2470 *
2471 * Notice that the allocation order determines the sizes of the per cpu
2472 * caches. Each processor has always one slab available for allocations.
2473 * Increasing the allocation order reduces the number of times that slabs
2474 * must be moved on and off the partial lists and is therefore a factor in
2475 * locking overhead.
2476 */
2477
2478/*
2479 * Mininum / Maximum order of slab pages. This influences locking overhead
2480 * and slab fragmentation. A higher order reduces the number of partial slabs
2481 * and increases the number of allocations possible without having to
2482 * take the list_lock.
2483 */
2484static int slub_min_order;
2485static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2486static int slub_min_objects;
2487
2488/*
2489 * Merge control. If this is set then no merging of slab caches will occur.
2490 * (Could be removed. This was introduced to pacify the merge skeptics.)
2491 */
2492static int slub_nomerge;
2493
2494/*
2495 * Calculate the order of allocation given an slab object size.
2496 *
2497 * The order of allocation has significant impact on performance and other
2498 * system components. Generally order 0 allocations should be preferred since
2499 * order 0 does not cause fragmentation in the page allocator. Larger objects
2500 * be problematic to put into order 0 slabs because there may be too much
2501 * unused space left. We go to a higher order if more than 1/16th of the slab
2502 * would be wasted.
2503 *
2504 * In order to reach satisfactory performance we must ensure that a minimum
2505 * number of objects is in one slab. Otherwise we may generate too much
2506 * activity on the partial lists which requires taking the list_lock. This is
2507 * less a concern for large slabs though which are rarely used.
2508 *
2509 * slub_max_order specifies the order where we begin to stop considering the
2510 * number of objects in a slab as critical. If we reach slub_max_order then
2511 * we try to keep the page order as low as possible. So we accept more waste
2512 * of space in favor of a small page order.
2513 *
2514 * Higher order allocations also allow the placement of more objects in a
2515 * slab and thereby reduce object handling overhead. If the user has
2516 * requested a higher mininum order then we start with that one instead of
2517 * the smallest order which will fit the object.
2518 */
2519static inline int slab_order(int size, int min_objects,
2520				int max_order, int fract_leftover, int reserved)
2521{
2522	int order;
2523	int rem;
2524	int min_order = slub_min_order;
2525
2526	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2527		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2528
2529	for (order = max(min_order,
2530				fls(min_objects * size - 1) - PAGE_SHIFT);
2531			order <= max_order; order++) {
2532
2533		unsigned long slab_size = PAGE_SIZE << order;
2534
2535		if (slab_size < min_objects * size + reserved)
2536			continue;
2537
2538		rem = (slab_size - reserved) % size;
2539
2540		if (rem <= slab_size / fract_leftover)
2541			break;
2542
2543	}
2544
2545	return order;
2546}
2547
2548static inline int calculate_order(int size, int reserved)
2549{
2550	int order;
2551	int min_objects;
2552	int fraction;
2553	int max_objects;
2554
2555	/*
2556	 * Attempt to find best configuration for a slab. This
2557	 * works by first attempting to generate a layout with
2558	 * the best configuration and backing off gradually.
2559	 *
2560	 * First we reduce the acceptable waste in a slab. Then
2561	 * we reduce the minimum objects required in a slab.
2562	 */
2563	min_objects = slub_min_objects;
2564	if (!min_objects)
2565		min_objects = 4 * (fls(nr_cpu_ids) + 1);
2566	max_objects = order_objects(slub_max_order, size, reserved);
2567	min_objects = min(min_objects, max_objects);
2568
2569	while (min_objects > 1) {
2570		fraction = 16;
2571		while (fraction >= 4) {
2572			order = slab_order(size, min_objects,
2573					slub_max_order, fraction, reserved);
2574			if (order <= slub_max_order)
2575				return order;
2576			fraction /= 2;
2577		}
2578		min_objects--;
2579	}
2580
2581	/*
2582	 * We were unable to place multiple objects in a slab. Now
2583	 * lets see if we can place a single object there.
2584	 */
2585	order = slab_order(size, 1, slub_max_order, 1, reserved);
2586	if (order <= slub_max_order)
2587		return order;
2588
2589	/*
2590	 * Doh this slab cannot be placed using slub_max_order.
2591	 */
2592	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2593	if (order < MAX_ORDER)
2594		return order;
2595	return -ENOSYS;
2596}
2597
2598/*
2599 * Figure out what the alignment of the objects will be.
2600 */
2601static unsigned long calculate_alignment(unsigned long flags,
2602		unsigned long align, unsigned long size)
2603{
2604	/*
2605	 * If the user wants hardware cache aligned objects then follow that
2606	 * suggestion if the object is sufficiently large.
2607	 *
2608	 * The hardware cache alignment cannot override the specified
2609	 * alignment though. If that is greater then use it.
2610	 */
2611	if (flags & SLAB_HWCACHE_ALIGN) {
2612		unsigned long ralign = cache_line_size();
2613		while (size <= ralign / 2)
2614			ralign /= 2;
2615		align = max(align, ralign);
2616	}
2617
2618	if (align < ARCH_SLAB_MINALIGN)
2619		align = ARCH_SLAB_MINALIGN;
2620
2621	return ALIGN(align, sizeof(void *));
2622}
2623
2624static void
2625init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
2626{
2627	n->nr_partial = 0;
2628	spin_lock_init(&n->list_lock);
2629	INIT_LIST_HEAD(&n->partial);
2630#ifdef CONFIG_SLUB_DEBUG
2631	atomic_long_set(&n->nr_slabs, 0);
2632	atomic_long_set(&n->total_objects, 0);
2633	INIT_LIST_HEAD(&n->full);
2634#endif
2635}
2636
2637static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2638{
2639	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2640			SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
2641
2642	/*
2643	 * Must align to double word boundary for the double cmpxchg
2644	 * instructions to work; see __pcpu_double_call_return_bool().
2645	 */
2646	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2647				     2 * sizeof(void *));
2648
2649	if (!s->cpu_slab)
2650		return 0;
2651
2652	init_kmem_cache_cpus(s);
2653
2654	return 1;
2655}
2656
2657static struct kmem_cache *kmem_cache_node;
2658
2659/*
2660 * No kmalloc_node yet so do it by hand. We know that this is the first
2661 * slab on the node for this slabcache. There are no concurrent accesses
2662 * possible.
2663 *
2664 * Note that this function only works on the kmalloc_node_cache
2665 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2666 * memory on a fresh node that has no slab structures yet.
2667 */
2668static void early_kmem_cache_node_alloc(int node)
2669{
2670	struct page *page;
2671	struct kmem_cache_node *n;
2672
2673	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2674
2675	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2676
2677	BUG_ON(!page);
2678	if (page_to_nid(page) != node) {
2679		printk(KERN_ERR "SLUB: Unable to allocate memory from "
2680				"node %d\n", node);
2681		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2682				"in order to be able to continue\n");
2683	}
2684
2685	n = page->freelist;
2686	BUG_ON(!n);
2687	page->freelist = get_freepointer(kmem_cache_node, n);
2688	page->inuse++;
2689	page->frozen = 0;
2690	kmem_cache_node->node[node] = n;
2691#ifdef CONFIG_SLUB_DEBUG
2692	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2693	init_tracking(kmem_cache_node, n);
2694#endif
2695	init_kmem_cache_node(n, kmem_cache_node);
 
 
2696	inc_slabs_node(kmem_cache_node, node, page->objects);
2697
2698	add_partial(n, page, 0);
 
 
 
 
2699}
2700
2701static void free_kmem_cache_nodes(struct kmem_cache *s)
2702{
2703	int node;
 
2704
2705	for_each_node_state(node, N_NORMAL_MEMORY) {
2706		struct kmem_cache_node *n = s->node[node];
2707
2708		if (n)
2709			kmem_cache_free(kmem_cache_node, n);
2710
2711		s->node[node] = NULL;
2712	}
2713}
2714
 
 
 
 
 
 
2715static int init_kmem_cache_nodes(struct kmem_cache *s)
2716{
2717	int node;
2718
2719	for_each_node_state(node, N_NORMAL_MEMORY) {
2720		struct kmem_cache_node *n;
2721
2722		if (slab_state == DOWN) {
2723			early_kmem_cache_node_alloc(node);
2724			continue;
2725		}
2726		n = kmem_cache_alloc_node(kmem_cache_node,
2727						GFP_KERNEL, node);
2728
2729		if (!n) {
2730			free_kmem_cache_nodes(s);
2731			return 0;
2732		}
2733
2734		s->node[node] = n;
2735		init_kmem_cache_node(n, s);
2736	}
2737	return 1;
2738}
2739
2740static void set_min_partial(struct kmem_cache *s, unsigned long min)
2741{
2742	if (min < MIN_PARTIAL)
2743		min = MIN_PARTIAL;
2744	else if (min > MAX_PARTIAL)
2745		min = MAX_PARTIAL;
2746	s->min_partial = min;
2747}
2748
2749/*
2750 * calculate_sizes() determines the order and the distribution of data within
2751 * a slab object.
2752 */
2753static int calculate_sizes(struct kmem_cache *s, int forced_order)
2754{
2755	unsigned long flags = s->flags;
2756	unsigned long size = s->objsize;
2757	unsigned long align = s->align;
2758	int order;
2759
2760	/*
2761	 * Round up object size to the next word boundary. We can only
2762	 * place the free pointer at word boundaries and this determines
2763	 * the possible location of the free pointer.
2764	 */
2765	size = ALIGN(size, sizeof(void *));
2766
2767#ifdef CONFIG_SLUB_DEBUG
2768	/*
2769	 * Determine if we can poison the object itself. If the user of
2770	 * the slab may touch the object after free or before allocation
2771	 * then we should never poison the object itself.
2772	 */
2773	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2774			!s->ctor)
2775		s->flags |= __OBJECT_POISON;
2776	else
2777		s->flags &= ~__OBJECT_POISON;
2778
2779
2780	/*
2781	 * If we are Redzoning then check if there is some space between the
2782	 * end of the object and the free pointer. If not then add an
2783	 * additional word to have some bytes to store Redzone information.
2784	 */
2785	if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2786		size += sizeof(void *);
2787#endif
2788
2789	/*
2790	 * With that we have determined the number of bytes in actual use
2791	 * by the object. This is the potential offset to the free pointer.
2792	 */
2793	s->inuse = size;
2794
2795	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2796		s->ctor)) {
2797		/*
2798		 * Relocate free pointer after the object if it is not
2799		 * permitted to overwrite the first word of the object on
2800		 * kmem_cache_free.
2801		 *
2802		 * This is the case if we do RCU, have a constructor or
2803		 * destructor or are poisoning the objects.
2804		 */
2805		s->offset = size;
2806		size += sizeof(void *);
2807	}
2808
2809#ifdef CONFIG_SLUB_DEBUG
2810	if (flags & SLAB_STORE_USER)
2811		/*
2812		 * Need to store information about allocs and frees after
2813		 * the object.
2814		 */
2815		size += 2 * sizeof(struct track);
2816
2817	if (flags & SLAB_RED_ZONE)
2818		/*
2819		 * Add some empty padding so that we can catch
2820		 * overwrites from earlier objects rather than let
2821		 * tracking information or the free pointer be
2822		 * corrupted if a user writes before the start
2823		 * of the object.
2824		 */
2825		size += sizeof(void *);
 
 
 
 
 
2826#endif
2827
2828	/*
2829	 * Determine the alignment based on various parameters that the
2830	 * user specified and the dynamic determination of cache line size
2831	 * on bootup.
2832	 */
2833	align = calculate_alignment(flags, align, s->objsize);
2834	s->align = align;
2835
2836	/*
2837	 * SLUB stores one object immediately after another beginning from
2838	 * offset 0. In order to align the objects we have to simply size
2839	 * each object to conform to the alignment.
2840	 */
2841	size = ALIGN(size, align);
2842	s->size = size;
2843	if (forced_order >= 0)
2844		order = forced_order;
2845	else
2846		order = calculate_order(size, s->reserved);
2847
2848	if (order < 0)
2849		return 0;
2850
2851	s->allocflags = 0;
2852	if (order)
2853		s->allocflags |= __GFP_COMP;
2854
2855	if (s->flags & SLAB_CACHE_DMA)
2856		s->allocflags |= SLUB_DMA;
2857
2858	if (s->flags & SLAB_RECLAIM_ACCOUNT)
2859		s->allocflags |= __GFP_RECLAIMABLE;
2860
2861	/*
2862	 * Determine the number of objects per slab
2863	 */
2864	s->oo = oo_make(order, size, s->reserved);
2865	s->min = oo_make(get_order(size), size, s->reserved);
2866	if (oo_objects(s->oo) > oo_objects(s->max))
2867		s->max = s->oo;
2868
2869	return !!oo_objects(s->oo);
2870
2871}
2872
2873static int kmem_cache_open(struct kmem_cache *s,
2874		const char *name, size_t size,
2875		size_t align, unsigned long flags,
2876		void (*ctor)(void *))
2877{
2878	memset(s, 0, kmem_size);
2879	s->name = name;
2880	s->ctor = ctor;
2881	s->objsize = size;
2882	s->align = align;
2883	s->flags = kmem_cache_flags(size, flags, name, ctor);
2884	s->reserved = 0;
2885
2886	if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
2887		s->reserved = sizeof(struct rcu_head);
2888
2889	if (!calculate_sizes(s, -1))
2890		goto error;
2891	if (disable_higher_order_debug) {
2892		/*
2893		 * Disable debugging flags that store metadata if the min slab
2894		 * order increased.
2895		 */
2896		if (get_order(s->size) > get_order(s->objsize)) {
2897			s->flags &= ~DEBUG_METADATA_FLAGS;
2898			s->offset = 0;
2899			if (!calculate_sizes(s, -1))
2900				goto error;
2901		}
2902	}
2903
2904#ifdef CONFIG_CMPXCHG_DOUBLE
2905	if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
 
2906		/* Enable fast mode */
2907		s->flags |= __CMPXCHG_DOUBLE;
2908#endif
2909
2910	/*
2911	 * The larger the object size is, the more pages we want on the partial
2912	 * list to avoid pounding the page allocator excessively.
2913	 */
2914	set_min_partial(s, ilog2(s->size));
2915	s->refcount = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2916#ifdef CONFIG_NUMA
2917	s->remote_node_defrag_ratio = 1000;
2918#endif
2919	if (!init_kmem_cache_nodes(s))
2920		goto error;
2921
2922	if (alloc_kmem_cache_cpus(s))
2923		return 1;
2924
2925	free_kmem_cache_nodes(s);
2926error:
2927	if (flags & SLAB_PANIC)
2928		panic("Cannot create slab %s size=%lu realsize=%u "
2929			"order=%u offset=%u flags=%lx\n",
2930			s->name, (unsigned long)size, s->size, oo_order(s->oo),
2931			s->offset, flags);
2932	return 0;
2933}
2934
2935/*
2936 * Determine the size of a slab object
2937 */
2938unsigned int kmem_cache_size(struct kmem_cache *s)
2939{
2940	return s->objsize;
2941}
2942EXPORT_SYMBOL(kmem_cache_size);
2943
2944static void list_slab_objects(struct kmem_cache *s, struct page *page,
2945							const char *text)
2946{
2947#ifdef CONFIG_SLUB_DEBUG
2948	void *addr = page_address(page);
2949	void *p;
2950	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
2951				     sizeof(long), GFP_ATOMIC);
2952	if (!map)
2953		return;
2954	slab_err(s, page, "%s", text);
2955	slab_lock(page);
2956
2957	get_map(s, page, map);
2958	for_each_object(p, s, addr, page->objects) {
2959
2960		if (!test_bit(slab_index(p, s, addr), map)) {
2961			printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2962							p, p - addr);
2963			print_tracking(s, p);
2964		}
2965	}
2966	slab_unlock(page);
2967	kfree(map);
2968#endif
2969}
2970
2971/*
2972 * Attempt to free all partial slabs on a node.
 
 
2973 */
2974static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2975{
2976	unsigned long flags;
2977	struct page *page, *h;
2978
2979	spin_lock_irqsave(&n->list_lock, flags);
 
2980	list_for_each_entry_safe(page, h, &n->partial, lru) {
2981		if (!page->inuse) {
2982			remove_partial(n, page);
2983			discard_slab(s, page);
2984		} else {
2985			list_slab_objects(s, page,
2986				"Objects remaining on kmem_cache_close()");
2987		}
2988	}
2989	spin_unlock_irqrestore(&n->list_lock, flags);
2990}
2991
2992/*
2993 * Release all resources used by a slab cache.
2994 */
2995static inline int kmem_cache_close(struct kmem_cache *s)
2996{
2997	int node;
 
2998
2999	flush_all(s);
3000	free_percpu(s->cpu_slab);
3001	/* Attempt to free all objects */
3002	for_each_node_state(node, N_NORMAL_MEMORY) {
3003		struct kmem_cache_node *n = get_node(s, node);
3004
3005		free_partial(s, n);
3006		if (n->nr_partial || slabs_node(s, node))
3007			return 1;
3008	}
3009	free_kmem_cache_nodes(s);
3010	return 0;
3011}
3012
3013/*
3014 * Close a cache and release the kmem_cache structure
3015 * (must be used for caches created using kmem_cache_create)
3016 */
3017void kmem_cache_destroy(struct kmem_cache *s)
3018{
3019	down_write(&slub_lock);
3020	s->refcount--;
3021	if (!s->refcount) {
3022		list_del(&s->list);
3023		if (kmem_cache_close(s)) {
3024			printk(KERN_ERR "SLUB %s: %s called for cache that "
3025				"still has objects.\n", s->name, __func__);
3026			dump_stack();
3027		}
3028		if (s->flags & SLAB_DESTROY_BY_RCU)
3029			rcu_barrier();
3030		sysfs_slab_remove(s);
3031	}
3032	up_write(&slub_lock);
3033}
3034EXPORT_SYMBOL(kmem_cache_destroy);
3035
3036/********************************************************************
3037 *		Kmalloc subsystem
3038 *******************************************************************/
3039
3040struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
3041EXPORT_SYMBOL(kmalloc_caches);
3042
3043static struct kmem_cache *kmem_cache;
3044
3045#ifdef CONFIG_ZONE_DMA
3046static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
3047#endif
3048
3049static int __init setup_slub_min_order(char *str)
3050{
3051	get_option(&str, &slub_min_order);
3052
3053	return 1;
3054}
3055
3056__setup("slub_min_order=", setup_slub_min_order);
3057
3058static int __init setup_slub_max_order(char *str)
3059{
3060	get_option(&str, &slub_max_order);
3061	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3062
3063	return 1;
3064}
3065
3066__setup("slub_max_order=", setup_slub_max_order);
3067
3068static int __init setup_slub_min_objects(char *str)
3069{
3070	get_option(&str, &slub_min_objects);
3071
3072	return 1;
3073}
3074
3075__setup("slub_min_objects=", setup_slub_min_objects);
3076
3077static int __init setup_slub_nomerge(char *str)
3078{
3079	slub_nomerge = 1;
3080	return 1;
3081}
3082
3083__setup("slub_nomerge", setup_slub_nomerge);
3084
3085static struct kmem_cache *__init create_kmalloc_cache(const char *name,
3086						int size, unsigned int flags)
3087{
3088	struct kmem_cache *s;
3089
3090	s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3091
3092	/*
3093	 * This function is called with IRQs disabled during early-boot on
3094	 * single CPU so there's no need to take slub_lock here.
3095	 */
3096	if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
3097								flags, NULL))
3098		goto panic;
3099
3100	list_add(&s->list, &slab_caches);
3101	return s;
3102
3103panic:
3104	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
3105	return NULL;
3106}
3107
3108/*
3109 * Conversion table for small slabs sizes / 8 to the index in the
3110 * kmalloc array. This is necessary for slabs < 192 since we have non power
3111 * of two cache sizes there. The size of larger slabs can be determined using
3112 * fls.
3113 */
3114static s8 size_index[24] = {
3115	3,	/* 8 */
3116	4,	/* 16 */
3117	5,	/* 24 */
3118	5,	/* 32 */
3119	6,	/* 40 */
3120	6,	/* 48 */
3121	6,	/* 56 */
3122	6,	/* 64 */
3123	1,	/* 72 */
3124	1,	/* 80 */
3125	1,	/* 88 */
3126	1,	/* 96 */
3127	7,	/* 104 */
3128	7,	/* 112 */
3129	7,	/* 120 */
3130	7,	/* 128 */
3131	2,	/* 136 */
3132	2,	/* 144 */
3133	2,	/* 152 */
3134	2,	/* 160 */
3135	2,	/* 168 */
3136	2,	/* 176 */
3137	2,	/* 184 */
3138	2	/* 192 */
3139};
3140
3141static inline int size_index_elem(size_t bytes)
3142{
3143	return (bytes - 1) / 8;
3144}
3145
3146static struct kmem_cache *get_slab(size_t size, gfp_t flags)
3147{
3148	int index;
3149
3150	if (size <= 192) {
3151		if (!size)
3152			return ZERO_SIZE_PTR;
3153
3154		index = size_index[size_index_elem(size)];
3155	} else
3156		index = fls(size - 1);
3157
3158#ifdef CONFIG_ZONE_DMA
3159	if (unlikely((flags & SLUB_DMA)))
3160		return kmalloc_dma_caches[index];
3161
3162#endif
3163	return kmalloc_caches[index];
3164}
3165
3166void *__kmalloc(size_t size, gfp_t flags)
3167{
3168	struct kmem_cache *s;
3169	void *ret;
3170
3171	if (unlikely(size > SLUB_MAX_SIZE))
3172		return kmalloc_large(size, flags);
3173
3174	s = get_slab(size, flags);
3175
3176	if (unlikely(ZERO_OR_NULL_PTR(s)))
3177		return s;
3178
3179	ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
3180
3181	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3182
 
 
3183	return ret;
3184}
3185EXPORT_SYMBOL(__kmalloc);
3186
3187#ifdef CONFIG_NUMA
3188static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3189{
3190	struct page *page;
3191	void *ptr = NULL;
3192
3193	flags |= __GFP_COMP | __GFP_NOTRACK;
3194	page = alloc_pages_node(node, flags, get_order(size));
3195	if (page)
3196		ptr = page_address(page);
3197
3198	kmemleak_alloc(ptr, size, 1, flags);
3199	return ptr;
3200}
3201
3202void *__kmalloc_node(size_t size, gfp_t flags, int node)
3203{
3204	struct kmem_cache *s;
3205	void *ret;
3206
3207	if (unlikely(size > SLUB_MAX_SIZE)) {
3208		ret = kmalloc_large_node(size, flags, node);
3209
3210		trace_kmalloc_node(_RET_IP_, ret,
3211				   size, PAGE_SIZE << get_order(size),
3212				   flags, node);
3213
3214		return ret;
3215	}
3216
3217	s = get_slab(size, flags);
3218
3219	if (unlikely(ZERO_OR_NULL_PTR(s)))
3220		return s;
3221
3222	ret = slab_alloc(s, flags, node, _RET_IP_);
3223
3224	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3225
 
 
3226	return ret;
3227}
3228EXPORT_SYMBOL(__kmalloc_node);
3229#endif
3230
3231size_t ksize(const void *object)
3232{
3233	struct page *page;
3234
3235	if (unlikely(object == ZERO_SIZE_PTR))
3236		return 0;
3237
3238	page = virt_to_head_page(object);
3239
3240	if (unlikely(!PageSlab(page))) {
3241		WARN_ON(!PageCompound(page));
3242		return PAGE_SIZE << compound_order(page);
3243	}
3244
3245	return slab_ksize(page->slab);
3246}
3247EXPORT_SYMBOL(ksize);
3248
3249#ifdef CONFIG_SLUB_DEBUG
3250bool verify_mem_not_deleted(const void *x)
3251{
3252	struct page *page;
3253	void *object = (void *)x;
3254	unsigned long flags;
3255	bool rv;
3256
3257	if (unlikely(ZERO_OR_NULL_PTR(x)))
3258		return false;
3259
3260	local_irq_save(flags);
3261
3262	page = virt_to_head_page(x);
3263	if (unlikely(!PageSlab(page))) {
3264		/* maybe it was from stack? */
3265		rv = true;
3266		goto out_unlock;
3267	}
3268
3269	slab_lock(page);
3270	if (on_freelist(page->slab, page, object)) {
3271		object_err(page->slab, page, object, "Object is on free-list");
3272		rv = false;
3273	} else {
3274		rv = true;
3275	}
3276	slab_unlock(page);
3277
3278out_unlock:
3279	local_irq_restore(flags);
3280	return rv;
3281}
3282EXPORT_SYMBOL(verify_mem_not_deleted);
3283#endif
3284
3285void kfree(const void *x)
3286{
3287	struct page *page;
3288	void *object = (void *)x;
3289
3290	trace_kfree(_RET_IP_, x);
3291
3292	if (unlikely(ZERO_OR_NULL_PTR(x)))
3293		return;
3294
3295	page = virt_to_head_page(x);
3296	if (unlikely(!PageSlab(page))) {
3297		BUG_ON(!PageCompound(page));
3298		kmemleak_free(x);
3299		put_page(page);
3300		return;
3301	}
3302	slab_free(page->slab, page, object, _RET_IP_);
3303}
3304EXPORT_SYMBOL(kfree);
3305
 
 
3306/*
3307 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3308 * the remaining slabs by the number of items in use. The slabs with the
3309 * most items in use come first. New allocations will then fill those up
3310 * and thus they can be removed from the partial lists.
3311 *
3312 * The slabs with the least items are placed last. This results in them
3313 * being allocated from last increasing the chance that the last objects
3314 * are freed in them.
3315 */
3316int kmem_cache_shrink(struct kmem_cache *s)
3317{
3318	int node;
3319	int i;
3320	struct kmem_cache_node *n;
3321	struct page *page;
3322	struct page *t;
3323	int objects = oo_objects(s->max);
3324	struct list_head *slabs_by_inuse =
3325		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3326	unsigned long flags;
 
3327
3328	if (!slabs_by_inuse)
3329		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
3330
3331	flush_all(s);
3332	for_each_node_state(node, N_NORMAL_MEMORY) {
3333		n = get_node(s, node);
3334
3335		if (!n->nr_partial)
3336			continue;
3337
3338		for (i = 0; i < objects; i++)
3339			INIT_LIST_HEAD(slabs_by_inuse + i);
3340
3341		spin_lock_irqsave(&n->list_lock, flags);
3342
3343		/*
3344		 * Build lists indexed by the items in use in each slab.
3345		 *
3346		 * Note that concurrent frees may occur while we hold the
3347		 * list_lock. page->inuse here is the upper limit.
3348		 */
3349		list_for_each_entry_safe(page, t, &n->partial, lru) {
3350			if (!page->inuse) {
3351				remove_partial(n, page);
3352				discard_slab(s, page);
3353			} else {
3354				list_move(&page->lru,
3355				slabs_by_inuse + page->inuse);
3356			}
 
 
 
 
 
 
3357		}
3358
3359		/*
3360		 * Rebuild the partial list with the slabs filled up most
3361		 * first and the least used slabs at the end.
3362		 */
3363		for (i = objects - 1; i >= 0; i--)
3364			list_splice(slabs_by_inuse + i, n->partial.prev);
3365
3366		spin_unlock_irqrestore(&n->list_lock, flags);
 
 
 
 
 
 
 
3367	}
3368
3369	kfree(slabs_by_inuse);
3370	return 0;
3371}
3372EXPORT_SYMBOL(kmem_cache_shrink);
3373
3374#if defined(CONFIG_MEMORY_HOTPLUG)
3375static int slab_mem_going_offline_callback(void *arg)
3376{
3377	struct kmem_cache *s;
3378
3379	down_read(&slub_lock);
3380	list_for_each_entry(s, &slab_caches, list)
3381		kmem_cache_shrink(s);
3382	up_read(&slub_lock);
3383
3384	return 0;
3385}
3386
3387static void slab_mem_offline_callback(void *arg)
3388{
3389	struct kmem_cache_node *n;
3390	struct kmem_cache *s;
3391	struct memory_notify *marg = arg;
3392	int offline_node;
3393
3394	offline_node = marg->status_change_nid;
3395
3396	/*
3397	 * If the node still has available memory. we need kmem_cache_node
3398	 * for it yet.
3399	 */
3400	if (offline_node < 0)
3401		return;
3402
3403	down_read(&slub_lock);
3404	list_for_each_entry(s, &slab_caches, list) {
3405		n = get_node(s, offline_node);
3406		if (n) {
3407			/*
3408			 * if n->nr_slabs > 0, slabs still exist on the node
3409			 * that is going down. We were unable to free them,
3410			 * and offline_pages() function shouldn't call this
3411			 * callback. So, we must fail.
3412			 */
3413			BUG_ON(slabs_node(s, offline_node));
3414
3415			s->node[offline_node] = NULL;
3416			kmem_cache_free(kmem_cache_node, n);
3417		}
3418	}
3419	up_read(&slub_lock);
3420}
3421
3422static int slab_mem_going_online_callback(void *arg)
3423{
3424	struct kmem_cache_node *n;
3425	struct kmem_cache *s;
3426	struct memory_notify *marg = arg;
3427	int nid = marg->status_change_nid;
3428	int ret = 0;
3429
3430	/*
3431	 * If the node's memory is already available, then kmem_cache_node is
3432	 * already created. Nothing to do.
3433	 */
3434	if (nid < 0)
3435		return 0;
3436
3437	/*
3438	 * We are bringing a node online. No memory is available yet. We must
3439	 * allocate a kmem_cache_node structure in order to bring the node
3440	 * online.
3441	 */
3442	down_read(&slub_lock);
3443	list_for_each_entry(s, &slab_caches, list) {
3444		/*
3445		 * XXX: kmem_cache_alloc_node will fallback to other nodes
3446		 *      since memory is not yet available from the node that
3447		 *      is brought up.
3448		 */
3449		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3450		if (!n) {
3451			ret = -ENOMEM;
3452			goto out;
3453		}
3454		init_kmem_cache_node(n, s);
3455		s->node[nid] = n;
3456	}
3457out:
3458	up_read(&slub_lock);
3459	return ret;
3460}
3461
3462static int slab_memory_callback(struct notifier_block *self,
3463				unsigned long action, void *arg)
3464{
3465	int ret = 0;
3466
3467	switch (action) {
3468	case MEM_GOING_ONLINE:
3469		ret = slab_mem_going_online_callback(arg);
3470		break;
3471	case MEM_GOING_OFFLINE:
3472		ret = slab_mem_going_offline_callback(arg);
3473		break;
3474	case MEM_OFFLINE:
3475	case MEM_CANCEL_ONLINE:
3476		slab_mem_offline_callback(arg);
3477		break;
3478	case MEM_ONLINE:
3479	case MEM_CANCEL_OFFLINE:
3480		break;
3481	}
3482	if (ret)
3483		ret = notifier_from_errno(ret);
3484	else
3485		ret = NOTIFY_OK;
3486	return ret;
3487}
3488
3489#endif /* CONFIG_MEMORY_HOTPLUG */
 
 
 
3490
3491/********************************************************************
3492 *			Basic setup of slabs
3493 *******************************************************************/
3494
3495/*
3496 * Used for early kmem_cache structures that were allocated using
3497 * the page allocator
 
3498 */
3499
3500static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3501{
3502	int node;
 
 
3503
3504	list_add(&s->list, &slab_caches);
3505	s->refcount = -1;
3506
3507	for_each_node_state(node, N_NORMAL_MEMORY) {
3508		struct kmem_cache_node *n = get_node(s, node);
 
 
 
 
 
3509		struct page *p;
3510
3511		if (n) {
3512			list_for_each_entry(p, &n->partial, lru)
3513				p->slab = s;
3514
3515#ifdef CONFIG_SLUB_DEBUG
3516			list_for_each_entry(p, &n->full, lru)
3517				p->slab = s;
3518#endif
3519		}
3520	}
 
 
 
3521}
3522
3523void __init kmem_cache_init(void)
3524{
3525	int i;
3526	int caches = 0;
3527	struct kmem_cache *temp_kmem_cache;
3528	int order;
3529	struct kmem_cache *temp_kmem_cache_node;
3530	unsigned long kmalloc_size;
3531
3532	kmem_size = offsetof(struct kmem_cache, node) +
3533				nr_node_ids * sizeof(struct kmem_cache_node *);
3534
3535	/* Allocate two kmem_caches from the page allocator */
3536	kmalloc_size = ALIGN(kmem_size, cache_line_size());
3537	order = get_order(2 * kmalloc_size);
3538	kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3539
3540	/*
3541	 * Must first have the slab cache available for the allocations of the
3542	 * struct kmem_cache_node's. There is special bootstrap code in
3543	 * kmem_cache_open for slab_state == DOWN.
3544	 */
3545	kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3546
3547	kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3548		sizeof(struct kmem_cache_node),
3549		0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3550
3551	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3552
3553	/* Able to allocate the per node structures */
3554	slab_state = PARTIAL;
3555
3556	temp_kmem_cache = kmem_cache;
3557	kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3558		0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3559	kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3560	memcpy(kmem_cache, temp_kmem_cache, kmem_size);
 
3561
3562	/*
3563	 * Allocate kmem_cache_node properly from the kmem_cache slab.
3564	 * kmem_cache_node is separately allocated so no need to
3565	 * update any list pointers.
3566	 */
3567	temp_kmem_cache_node = kmem_cache_node;
3568
3569	kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3570	memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3571
3572	kmem_cache_bootstrap_fixup(kmem_cache_node);
3573
3574	caches++;
3575	kmem_cache_bootstrap_fixup(kmem_cache);
3576	caches++;
3577	/* Free temporary boot structure */
3578	free_pages((unsigned long)temp_kmem_cache, order);
3579
3580	/* Now we can use the kmem_cache to allocate kmalloc slabs */
3581
3582	/*
3583	 * Patch up the size_index table if we have strange large alignment
3584	 * requirements for the kmalloc array. This is only the case for
3585	 * MIPS it seems. The standard arches will not generate any code here.
3586	 *
3587	 * Largest permitted alignment is 256 bytes due to the way we
3588	 * handle the index determination for the smaller caches.
3589	 *
3590	 * Make sure that nothing crazy happens if someone starts tinkering
3591	 * around with ARCH_KMALLOC_MINALIGN
3592	 */
3593	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3594		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3595
3596	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3597		int elem = size_index_elem(i);
3598		if (elem >= ARRAY_SIZE(size_index))
3599			break;
3600		size_index[elem] = KMALLOC_SHIFT_LOW;
3601	}
3602
3603	if (KMALLOC_MIN_SIZE == 64) {
3604		/*
3605		 * The 96 byte size cache is not used if the alignment
3606		 * is 64 byte.
3607		 */
3608		for (i = 64 + 8; i <= 96; i += 8)
3609			size_index[size_index_elem(i)] = 7;
3610	} else if (KMALLOC_MIN_SIZE == 128) {
3611		/*
3612		 * The 192 byte sized cache is not used if the alignment
3613		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3614		 * instead.
3615		 */
3616		for (i = 128 + 8; i <= 192; i += 8)
3617			size_index[size_index_elem(i)] = 8;
3618	}
3619
3620	/* Caches that are not of the two-to-the-power-of size */
3621	if (KMALLOC_MIN_SIZE <= 32) {
3622		kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3623		caches++;
3624	}
3625
3626	if (KMALLOC_MIN_SIZE <= 64) {
3627		kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3628		caches++;
3629	}
3630
3631	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3632		kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3633		caches++;
3634	}
3635
3636	slab_state = UP;
3637
3638	/* Provide the correct kmalloc names now that the caches are up */
3639	if (KMALLOC_MIN_SIZE <= 32) {
3640		kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3641		BUG_ON(!kmalloc_caches[1]->name);
3642	}
3643
3644	if (KMALLOC_MIN_SIZE <= 64) {
3645		kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3646		BUG_ON(!kmalloc_caches[2]->name);
3647	}
3648
3649	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3650		char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3651
3652		BUG_ON(!s);
3653		kmalloc_caches[i]->name = s;
3654	}
3655
3656#ifdef CONFIG_SMP
3657	register_cpu_notifier(&slab_notifier);
3658#endif
3659
3660#ifdef CONFIG_ZONE_DMA
3661	for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3662		struct kmem_cache *s = kmalloc_caches[i];
3663
3664		if (s && s->size) {
3665			char *name = kasprintf(GFP_NOWAIT,
3666				 "dma-kmalloc-%d", s->objsize);
3667
3668			BUG_ON(!name);
3669			kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3670				s->objsize, SLAB_CACHE_DMA);
3671		}
3672	}
3673#endif
3674	printk(KERN_INFO
3675		"SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3676		" CPUs=%d, Nodes=%d\n",
3677		caches, cache_line_size(),
3678		slub_min_order, slub_max_order, slub_min_objects,
3679		nr_cpu_ids, nr_node_ids);
3680}
3681
3682void __init kmem_cache_init_late(void)
3683{
3684}
3685
3686/*
3687 * Find a mergeable slab cache
3688 */
3689static int slab_unmergeable(struct kmem_cache *s)
3690{
3691	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3692		return 1;
3693
3694	if (s->ctor)
3695		return 1;
3696
3697	/*
3698	 * We may have set a slab to be unmergeable during bootstrap.
3699	 */
3700	if (s->refcount < 0)
3701		return 1;
3702
3703	return 0;
3704}
3705
3706static struct kmem_cache *find_mergeable(size_t size,
3707		size_t align, unsigned long flags, const char *name,
3708		void (*ctor)(void *))
3709{
3710	struct kmem_cache *s;
3711
3712	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3713		return NULL;
3714
3715	if (ctor)
3716		return NULL;
3717
3718	size = ALIGN(size, sizeof(void *));
3719	align = calculate_alignment(flags, align, size);
3720	size = ALIGN(size, align);
3721	flags = kmem_cache_flags(size, flags, name, NULL);
3722
3723	list_for_each_entry(s, &slab_caches, list) {
3724		if (slab_unmergeable(s))
3725			continue;
3726
3727		if (size > s->size)
3728			continue;
3729
3730		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3731				continue;
3732		/*
3733		 * Check if alignment is compatible.
3734		 * Courtesy of Adrian Drzewiecki
3735		 */
3736		if ((s->size & ~(align - 1)) != s->size)
3737			continue;
3738
3739		if (s->size - size >= sizeof(void *))
3740			continue;
3741
3742		return s;
3743	}
3744	return NULL;
3745}
3746
3747struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3748		size_t align, unsigned long flags, void (*ctor)(void *))
3749{
3750	struct kmem_cache *s;
3751	char *n;
3752
3753	if (WARN_ON(!name))
3754		return NULL;
3755
3756	down_write(&slub_lock);
3757	s = find_mergeable(size, align, flags, name, ctor);
3758	if (s) {
3759		s->refcount++;
 
3760		/*
3761		 * Adjust the object sizes so that we clear
3762		 * the complete object on kzalloc.
3763		 */
3764		s->objsize = max(s->objsize, (int)size);
3765		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3766
 
 
 
 
 
 
3767		if (sysfs_slab_alias(s, name)) {
3768			s->refcount--;
3769			goto err;
3770		}
3771		up_write(&slub_lock);
3772		return s;
3773	}
3774
3775	n = kstrdup(name, GFP_KERNEL);
3776	if (!n)
3777		goto err;
3778
3779	s = kmalloc(kmem_size, GFP_KERNEL);
3780	if (s) {
3781		if (kmem_cache_open(s, n,
3782				size, align, flags, ctor)) {
3783			list_add(&s->list, &slab_caches);
3784			if (sysfs_slab_add(s)) {
3785				list_del(&s->list);
3786				kfree(n);
3787				kfree(s);
3788				goto err;
3789			}
3790			up_write(&slub_lock);
3791			return s;
3792		}
3793		kfree(n);
3794		kfree(s);
3795	}
3796err:
3797	up_write(&slub_lock);
3798
3799	if (flags & SLAB_PANIC)
3800		panic("Cannot create slabcache %s\n", name);
3801	else
3802		s = NULL;
3803	return s;
3804}
3805EXPORT_SYMBOL(kmem_cache_create);
3806
3807#ifdef CONFIG_SMP
3808/*
3809 * Use the cpu notifier to insure that the cpu slabs are flushed when
3810 * necessary.
3811 */
3812static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3813		unsigned long action, void *hcpu)
3814{
3815	long cpu = (long)hcpu;
3816	struct kmem_cache *s;
3817	unsigned long flags;
3818
3819	switch (action) {
3820	case CPU_UP_CANCELED:
3821	case CPU_UP_CANCELED_FROZEN:
3822	case CPU_DEAD:
3823	case CPU_DEAD_FROZEN:
3824		down_read(&slub_lock);
3825		list_for_each_entry(s, &slab_caches, list) {
3826			local_irq_save(flags);
3827			__flush_cpu_slab(s, cpu);
3828			local_irq_restore(flags);
3829		}
3830		up_read(&slub_lock);
3831		break;
3832	default:
3833		break;
3834	}
3835	return NOTIFY_OK;
3836}
3837
3838static struct notifier_block __cpuinitdata slab_notifier = {
3839	.notifier_call = slab_cpuup_callback
3840};
3841
3842#endif
3843
3844void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3845{
3846	struct kmem_cache *s;
3847	void *ret;
3848
3849	if (unlikely(size > SLUB_MAX_SIZE))
3850		return kmalloc_large(size, gfpflags);
3851
3852	s = get_slab(size, gfpflags);
3853
3854	if (unlikely(ZERO_OR_NULL_PTR(s)))
3855		return s;
3856
3857	ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
3858
3859	/* Honor the call site pointer we received. */
3860	trace_kmalloc(caller, ret, size, s->size, gfpflags);
3861
3862	return ret;
3863}
3864
3865#ifdef CONFIG_NUMA
3866void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3867					int node, unsigned long caller)
3868{
3869	struct kmem_cache *s;
3870	void *ret;
3871
3872	if (unlikely(size > SLUB_MAX_SIZE)) {
3873		ret = kmalloc_large_node(size, gfpflags, node);
3874
3875		trace_kmalloc_node(caller, ret,
3876				   size, PAGE_SIZE << get_order(size),
3877				   gfpflags, node);
3878
3879		return ret;
3880	}
3881
3882	s = get_slab(size, gfpflags);
3883
3884	if (unlikely(ZERO_OR_NULL_PTR(s)))
3885		return s;
3886
3887	ret = slab_alloc(s, gfpflags, node, caller);
3888
3889	/* Honor the call site pointer we received. */
3890	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3891
3892	return ret;
3893}
3894#endif
3895
3896#ifdef CONFIG_SYSFS
3897static int count_inuse(struct page *page)
3898{
3899	return page->inuse;
3900}
3901
3902static int count_total(struct page *page)
3903{
3904	return page->objects;
3905}
3906#endif
3907
3908#ifdef CONFIG_SLUB_DEBUG
3909static int validate_slab(struct kmem_cache *s, struct page *page,
3910						unsigned long *map)
3911{
3912	void *p;
3913	void *addr = page_address(page);
3914
3915	if (!check_slab(s, page) ||
3916			!on_freelist(s, page, NULL))
3917		return 0;
3918
3919	/* Now we know that a valid freelist exists */
3920	bitmap_zero(map, page->objects);
3921
3922	get_map(s, page, map);
3923	for_each_object(p, s, addr, page->objects) {
3924		if (test_bit(slab_index(p, s, addr), map))
3925			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3926				return 0;
3927	}
3928
3929	for_each_object(p, s, addr, page->objects)
3930		if (!test_bit(slab_index(p, s, addr), map))
3931			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3932				return 0;
3933	return 1;
3934}
3935
3936static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3937						unsigned long *map)
3938{
3939	slab_lock(page);
3940	validate_slab(s, page, map);
3941	slab_unlock(page);
3942}
3943
3944static int validate_slab_node(struct kmem_cache *s,
3945		struct kmem_cache_node *n, unsigned long *map)
3946{
3947	unsigned long count = 0;
3948	struct page *page;
3949	unsigned long flags;
3950
3951	spin_lock_irqsave(&n->list_lock, flags);
3952
3953	list_for_each_entry(page, &n->partial, lru) {
3954		validate_slab_slab(s, page, map);
3955		count++;
3956	}
3957	if (count != n->nr_partial)
3958		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3959			"counter=%ld\n", s->name, count, n->nr_partial);
3960
3961	if (!(s->flags & SLAB_STORE_USER))
3962		goto out;
3963
3964	list_for_each_entry(page, &n->full, lru) {
3965		validate_slab_slab(s, page, map);
3966		count++;
3967	}
3968	if (count != atomic_long_read(&n->nr_slabs))
3969		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3970			"counter=%ld\n", s->name, count,
3971			atomic_long_read(&n->nr_slabs));
3972
3973out:
3974	spin_unlock_irqrestore(&n->list_lock, flags);
3975	return count;
3976}
3977
3978static long validate_slab_cache(struct kmem_cache *s)
3979{
3980	int node;
3981	unsigned long count = 0;
3982	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3983				sizeof(unsigned long), GFP_KERNEL);
 
3984
3985	if (!map)
3986		return -ENOMEM;
3987
3988	flush_all(s);
3989	for_each_node_state(node, N_NORMAL_MEMORY) {
3990		struct kmem_cache_node *n = get_node(s, node);
3991
3992		count += validate_slab_node(s, n, map);
3993	}
3994	kfree(map);
3995	return count;
3996}
3997/*
3998 * Generate lists of code addresses where slabcache objects are allocated
3999 * and freed.
4000 */
4001
4002struct location {
4003	unsigned long count;
4004	unsigned long addr;
4005	long long sum_time;
4006	long min_time;
4007	long max_time;
4008	long min_pid;
4009	long max_pid;
4010	DECLARE_BITMAP(cpus, NR_CPUS);
4011	nodemask_t nodes;
4012};
4013
4014struct loc_track {
4015	unsigned long max;
4016	unsigned long count;
4017	struct location *loc;
4018};
4019
4020static void free_loc_track(struct loc_track *t)
4021{
4022	if (t->max)
4023		free_pages((unsigned long)t->loc,
4024			get_order(sizeof(struct location) * t->max));
4025}
4026
4027static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4028{
4029	struct location *l;
4030	int order;
4031
4032	order = get_order(sizeof(struct location) * max);
4033
4034	l = (void *)__get_free_pages(flags, order);
4035	if (!l)
4036		return 0;
4037
4038	if (t->count) {
4039		memcpy(l, t->loc, sizeof(struct location) * t->count);
4040		free_loc_track(t);
4041	}
4042	t->max = max;
4043	t->loc = l;
4044	return 1;
4045}
4046
4047static int add_location(struct loc_track *t, struct kmem_cache *s,
4048				const struct track *track)
4049{
4050	long start, end, pos;
4051	struct location *l;
4052	unsigned long caddr;
4053	unsigned long age = jiffies - track->when;
4054
4055	start = -1;
4056	end = t->count;
4057
4058	for ( ; ; ) {
4059		pos = start + (end - start + 1) / 2;
4060
4061		/*
4062		 * There is nothing at "end". If we end up there
4063		 * we need to add something to before end.
4064		 */
4065		if (pos == end)
4066			break;
4067
4068		caddr = t->loc[pos].addr;
4069		if (track->addr == caddr) {
4070
4071			l = &t->loc[pos];
4072			l->count++;
4073			if (track->when) {
4074				l->sum_time += age;
4075				if (age < l->min_time)
4076					l->min_time = age;
4077				if (age > l->max_time)
4078					l->max_time = age;
4079
4080				if (track->pid < l->min_pid)
4081					l->min_pid = track->pid;
4082				if (track->pid > l->max_pid)
4083					l->max_pid = track->pid;
4084
4085				cpumask_set_cpu(track->cpu,
4086						to_cpumask(l->cpus));
4087			}
4088			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4089			return 1;
4090		}
4091
4092		if (track->addr < caddr)
4093			end = pos;
4094		else
4095			start = pos;
4096	}
4097
4098	/*
4099	 * Not found. Insert new tracking element.
4100	 */
4101	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4102		return 0;
4103
4104	l = t->loc + pos;
4105	if (pos < t->count)
4106		memmove(l + 1, l,
4107			(t->count - pos) * sizeof(struct location));
4108	t->count++;
4109	l->count = 1;
4110	l->addr = track->addr;
4111	l->sum_time = age;
4112	l->min_time = age;
4113	l->max_time = age;
4114	l->min_pid = track->pid;
4115	l->max_pid = track->pid;
4116	cpumask_clear(to_cpumask(l->cpus));
4117	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4118	nodes_clear(l->nodes);
4119	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4120	return 1;
4121}
4122
4123static void process_slab(struct loc_track *t, struct kmem_cache *s,
4124		struct page *page, enum track_item alloc,
4125		unsigned long *map)
4126{
4127	void *addr = page_address(page);
4128	void *p;
4129
4130	bitmap_zero(map, page->objects);
4131	get_map(s, page, map);
4132
4133	for_each_object(p, s, addr, page->objects)
4134		if (!test_bit(slab_index(p, s, addr), map))
4135			add_location(t, s, get_track(s, p, alloc));
4136}
4137
4138static int list_locations(struct kmem_cache *s, char *buf,
4139					enum track_item alloc)
4140{
4141	int len = 0;
4142	unsigned long i;
4143	struct loc_track t = { 0, 0, NULL };
4144	int node;
4145	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4146				     sizeof(unsigned long), GFP_KERNEL);
 
4147
4148	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4149				     GFP_TEMPORARY)) {
4150		kfree(map);
4151		return sprintf(buf, "Out of memory\n");
4152	}
4153	/* Push back cpu slabs */
4154	flush_all(s);
4155
4156	for_each_node_state(node, N_NORMAL_MEMORY) {
4157		struct kmem_cache_node *n = get_node(s, node);
4158		unsigned long flags;
4159		struct page *page;
4160
4161		if (!atomic_long_read(&n->nr_slabs))
4162			continue;
4163
4164		spin_lock_irqsave(&n->list_lock, flags);
4165		list_for_each_entry(page, &n->partial, lru)
4166			process_slab(&t, s, page, alloc, map);
4167		list_for_each_entry(page, &n->full, lru)
4168			process_slab(&t, s, page, alloc, map);
4169		spin_unlock_irqrestore(&n->list_lock, flags);
4170	}
4171
4172	for (i = 0; i < t.count; i++) {
4173		struct location *l = &t.loc[i];
4174
4175		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4176			break;
4177		len += sprintf(buf + len, "%7ld ", l->count);
4178
4179		if (l->addr)
4180			len += sprintf(buf + len, "%pS", (void *)l->addr);
4181		else
4182			len += sprintf(buf + len, "<not-available>");
4183
4184		if (l->sum_time != l->min_time) {
4185			len += sprintf(buf + len, " age=%ld/%ld/%ld",
4186				l->min_time,
4187				(long)div_u64(l->sum_time, l->count),
4188				l->max_time);
4189		} else
4190			len += sprintf(buf + len, " age=%ld",
4191				l->min_time);
4192
4193		if (l->min_pid != l->max_pid)
4194			len += sprintf(buf + len, " pid=%ld-%ld",
4195				l->min_pid, l->max_pid);
4196		else
4197			len += sprintf(buf + len, " pid=%ld",
4198				l->min_pid);
4199
4200		if (num_online_cpus() > 1 &&
4201				!cpumask_empty(to_cpumask(l->cpus)) &&
4202				len < PAGE_SIZE - 60) {
4203			len += sprintf(buf + len, " cpus=");
4204			len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4205						 to_cpumask(l->cpus));
4206		}
4207
4208		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4209				len < PAGE_SIZE - 60) {
4210			len += sprintf(buf + len, " nodes=");
4211			len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4212					l->nodes);
4213		}
4214
4215		len += sprintf(buf + len, "\n");
4216	}
4217
4218	free_loc_track(&t);
4219	kfree(map);
4220	if (!t.count)
4221		len += sprintf(buf, "No data\n");
4222	return len;
4223}
4224#endif
4225
4226#ifdef SLUB_RESILIENCY_TEST
4227static void resiliency_test(void)
4228{
4229	u8 *p;
4230
4231	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
4232
4233	printk(KERN_ERR "SLUB resiliency testing\n");
4234	printk(KERN_ERR "-----------------------\n");
4235	printk(KERN_ERR "A. Corruption after allocation\n");
4236
4237	p = kzalloc(16, GFP_KERNEL);
4238	p[16] = 0x12;
4239	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4240			" 0x12->0x%p\n\n", p + 16);
4241
4242	validate_slab_cache(kmalloc_caches[4]);
4243
4244	/* Hmmm... The next two are dangerous */
4245	p = kzalloc(32, GFP_KERNEL);
4246	p[32 + sizeof(void *)] = 0x34;
4247	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4248			" 0x34 -> -0x%p\n", p);
4249	printk(KERN_ERR
4250		"If allocated object is overwritten then not detectable\n\n");
4251
4252	validate_slab_cache(kmalloc_caches[5]);
4253	p = kzalloc(64, GFP_KERNEL);
4254	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4255	*p = 0x56;
4256	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4257									p);
4258	printk(KERN_ERR
4259		"If allocated object is overwritten then not detectable\n\n");
4260	validate_slab_cache(kmalloc_caches[6]);
4261
4262	printk(KERN_ERR "\nB. Corruption after free\n");
4263	p = kzalloc(128, GFP_KERNEL);
4264	kfree(p);
4265	*p = 0x78;
4266	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4267	validate_slab_cache(kmalloc_caches[7]);
4268
4269	p = kzalloc(256, GFP_KERNEL);
4270	kfree(p);
4271	p[50] = 0x9a;
4272	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4273			p);
4274	validate_slab_cache(kmalloc_caches[8]);
4275
4276	p = kzalloc(512, GFP_KERNEL);
4277	kfree(p);
4278	p[512] = 0xab;
4279	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4280	validate_slab_cache(kmalloc_caches[9]);
4281}
4282#else
4283#ifdef CONFIG_SYSFS
4284static void resiliency_test(void) {};
4285#endif
4286#endif
4287
4288#ifdef CONFIG_SYSFS
4289enum slab_stat_type {
4290	SL_ALL,			/* All slabs */
4291	SL_PARTIAL,		/* Only partially allocated slabs */
4292	SL_CPU,			/* Only slabs used for cpu caches */
4293	SL_OBJECTS,		/* Determine allocated objects not slabs */
4294	SL_TOTAL		/* Determine object capacity not slabs */
4295};
4296
4297#define SO_ALL		(1 << SL_ALL)
4298#define SO_PARTIAL	(1 << SL_PARTIAL)
4299#define SO_CPU		(1 << SL_CPU)
4300#define SO_OBJECTS	(1 << SL_OBJECTS)
4301#define SO_TOTAL	(1 << SL_TOTAL)
4302
4303static ssize_t show_slab_objects(struct kmem_cache *s,
4304			    char *buf, unsigned long flags)
4305{
4306	unsigned long total = 0;
4307	int node;
4308	int x;
4309	unsigned long *nodes;
4310	unsigned long *per_cpu;
4311
4312	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4313	if (!nodes)
4314		return -ENOMEM;
4315	per_cpu = nodes + nr_node_ids;
4316
4317	if (flags & SO_CPU) {
4318		int cpu;
4319
4320		for_each_possible_cpu(cpu) {
4321			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
 
 
 
4322
4323			if (!c || c->node < 0)
 
4324				continue;
4325
4326			if (c->page) {
4327					if (flags & SO_TOTAL)
4328						x = c->page->objects;
 
 
 
 
 
 
 
 
 
 
 
 
 
4329				else if (flags & SO_OBJECTS)
4330					x = c->page->inuse;
4331				else
4332					x = 1;
4333
4334				total += x;
4335				nodes[c->node] += x;
4336			}
4337			per_cpu[c->node]++;
4338		}
4339	}
4340
4341	lock_memory_hotplug();
4342#ifdef CONFIG_SLUB_DEBUG
4343	if (flags & SO_ALL) {
4344		for_each_node_state(node, N_NORMAL_MEMORY) {
4345			struct kmem_cache_node *n = get_node(s, node);
4346
4347		if (flags & SO_TOTAL)
4348			x = atomic_long_read(&n->total_objects);
4349		else if (flags & SO_OBJECTS)
4350			x = atomic_long_read(&n->total_objects) -
4351				count_partial(n, count_free);
4352
 
 
 
 
 
4353			else
4354				x = atomic_long_read(&n->nr_slabs);
4355			total += x;
4356			nodes[node] += x;
4357		}
4358
4359	} else
4360#endif
4361	if (flags & SO_PARTIAL) {
4362		for_each_node_state(node, N_NORMAL_MEMORY) {
4363			struct kmem_cache_node *n = get_node(s, node);
4364
 
4365			if (flags & SO_TOTAL)
4366				x = count_partial(n, count_total);
4367			else if (flags & SO_OBJECTS)
4368				x = count_partial(n, count_inuse);
4369			else
4370				x = n->nr_partial;
4371			total += x;
4372			nodes[node] += x;
4373		}
4374	}
4375	x = sprintf(buf, "%lu", total);
4376#ifdef CONFIG_NUMA
4377	for_each_node_state(node, N_NORMAL_MEMORY)
4378		if (nodes[node])
4379			x += sprintf(buf + x, " N%d=%lu",
4380					node, nodes[node]);
4381#endif
4382	unlock_memory_hotplug();
4383	kfree(nodes);
4384	return x + sprintf(buf + x, "\n");
4385}
4386
4387#ifdef CONFIG_SLUB_DEBUG
4388static int any_slab_objects(struct kmem_cache *s)
4389{
4390	int node;
 
4391
4392	for_each_online_node(node) {
4393		struct kmem_cache_node *n = get_node(s, node);
4394
4395		if (!n)
4396			continue;
4397
4398		if (atomic_long_read(&n->total_objects))
4399			return 1;
4400	}
4401	return 0;
4402}
4403#endif
4404
4405#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4406#define to_slab(n) container_of(n, struct kmem_cache, kobj)
4407
4408struct slab_attribute {
4409	struct attribute attr;
4410	ssize_t (*show)(struct kmem_cache *s, char *buf);
4411	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4412};
4413
4414#define SLAB_ATTR_RO(_name) \
4415	static struct slab_attribute _name##_attr = __ATTR_RO(_name)
 
4416
4417#define SLAB_ATTR(_name) \
4418	static struct slab_attribute _name##_attr =  \
4419	__ATTR(_name, 0644, _name##_show, _name##_store)
4420
4421static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4422{
4423	return sprintf(buf, "%d\n", s->size);
4424}
4425SLAB_ATTR_RO(slab_size);
4426
4427static ssize_t align_show(struct kmem_cache *s, char *buf)
4428{
4429	return sprintf(buf, "%d\n", s->align);
4430}
4431SLAB_ATTR_RO(align);
4432
4433static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4434{
4435	return sprintf(buf, "%d\n", s->objsize);
4436}
4437SLAB_ATTR_RO(object_size);
4438
4439static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4440{
4441	return sprintf(buf, "%d\n", oo_objects(s->oo));
4442}
4443SLAB_ATTR_RO(objs_per_slab);
4444
4445static ssize_t order_store(struct kmem_cache *s,
4446				const char *buf, size_t length)
4447{
4448	unsigned long order;
4449	int err;
4450
4451	err = strict_strtoul(buf, 10, &order);
4452	if (err)
4453		return err;
4454
4455	if (order > slub_max_order || order < slub_min_order)
4456		return -EINVAL;
4457
4458	calculate_sizes(s, order);
4459	return length;
4460}
4461
4462static ssize_t order_show(struct kmem_cache *s, char *buf)
4463{
4464	return sprintf(buf, "%d\n", oo_order(s->oo));
4465}
4466SLAB_ATTR(order);
4467
4468static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4469{
4470	return sprintf(buf, "%lu\n", s->min_partial);
4471}
4472
4473static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4474				 size_t length)
4475{
4476	unsigned long min;
4477	int err;
4478
4479	err = strict_strtoul(buf, 10, &min);
4480	if (err)
4481		return err;
4482
4483	set_min_partial(s, min);
4484	return length;
4485}
4486SLAB_ATTR(min_partial);
4487
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4488static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4489{
4490	if (!s->ctor)
4491		return 0;
4492	return sprintf(buf, "%pS\n", s->ctor);
4493}
4494SLAB_ATTR_RO(ctor);
4495
4496static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4497{
4498	return sprintf(buf, "%d\n", s->refcount - 1);
4499}
4500SLAB_ATTR_RO(aliases);
4501
4502static ssize_t partial_show(struct kmem_cache *s, char *buf)
4503{
4504	return show_slab_objects(s, buf, SO_PARTIAL);
4505}
4506SLAB_ATTR_RO(partial);
4507
4508static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4509{
4510	return show_slab_objects(s, buf, SO_CPU);
4511}
4512SLAB_ATTR_RO(cpu_slabs);
4513
4514static ssize_t objects_show(struct kmem_cache *s, char *buf)
4515{
4516	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4517}
4518SLAB_ATTR_RO(objects);
4519
4520static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4521{
4522	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4523}
4524SLAB_ATTR_RO(objects_partial);
4525
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4526static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4527{
4528	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4529}
4530
4531static ssize_t reclaim_account_store(struct kmem_cache *s,
4532				const char *buf, size_t length)
4533{
4534	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4535	if (buf[0] == '1')
4536		s->flags |= SLAB_RECLAIM_ACCOUNT;
4537	return length;
4538}
4539SLAB_ATTR(reclaim_account);
4540
4541static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4542{
4543	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4544}
4545SLAB_ATTR_RO(hwcache_align);
4546
4547#ifdef CONFIG_ZONE_DMA
4548static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4549{
4550	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4551}
4552SLAB_ATTR_RO(cache_dma);
4553#endif
4554
4555static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4556{
4557	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4558}
4559SLAB_ATTR_RO(destroy_by_rcu);
4560
4561static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4562{
4563	return sprintf(buf, "%d\n", s->reserved);
4564}
4565SLAB_ATTR_RO(reserved);
4566
4567#ifdef CONFIG_SLUB_DEBUG
4568static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4569{
4570	return show_slab_objects(s, buf, SO_ALL);
4571}
4572SLAB_ATTR_RO(slabs);
4573
4574static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4575{
4576	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4577}
4578SLAB_ATTR_RO(total_objects);
4579
4580static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4581{
4582	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4583}
4584
4585static ssize_t sanity_checks_store(struct kmem_cache *s,
4586				const char *buf, size_t length)
4587{
4588	s->flags &= ~SLAB_DEBUG_FREE;
4589	if (buf[0] == '1') {
4590		s->flags &= ~__CMPXCHG_DOUBLE;
4591		s->flags |= SLAB_DEBUG_FREE;
4592	}
4593	return length;
4594}
4595SLAB_ATTR(sanity_checks);
4596
4597static ssize_t trace_show(struct kmem_cache *s, char *buf)
4598{
4599	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4600}
4601
4602static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4603							size_t length)
4604{
 
 
 
 
 
 
 
 
4605	s->flags &= ~SLAB_TRACE;
4606	if (buf[0] == '1') {
4607		s->flags &= ~__CMPXCHG_DOUBLE;
4608		s->flags |= SLAB_TRACE;
4609	}
4610	return length;
4611}
4612SLAB_ATTR(trace);
4613
4614static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4615{
4616	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4617}
4618
4619static ssize_t red_zone_store(struct kmem_cache *s,
4620				const char *buf, size_t length)
4621{
4622	if (any_slab_objects(s))
4623		return -EBUSY;
4624
4625	s->flags &= ~SLAB_RED_ZONE;
4626	if (buf[0] == '1') {
4627		s->flags &= ~__CMPXCHG_DOUBLE;
4628		s->flags |= SLAB_RED_ZONE;
4629	}
4630	calculate_sizes(s, -1);
4631	return length;
4632}
4633SLAB_ATTR(red_zone);
4634
4635static ssize_t poison_show(struct kmem_cache *s, char *buf)
4636{
4637	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4638}
4639
4640static ssize_t poison_store(struct kmem_cache *s,
4641				const char *buf, size_t length)
4642{
4643	if (any_slab_objects(s))
4644		return -EBUSY;
4645
4646	s->flags &= ~SLAB_POISON;
4647	if (buf[0] == '1') {
4648		s->flags &= ~__CMPXCHG_DOUBLE;
4649		s->flags |= SLAB_POISON;
4650	}
4651	calculate_sizes(s, -1);
4652	return length;
4653}
4654SLAB_ATTR(poison);
4655
4656static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4657{
4658	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4659}
4660
4661static ssize_t store_user_store(struct kmem_cache *s,
4662				const char *buf, size_t length)
4663{
4664	if (any_slab_objects(s))
4665		return -EBUSY;
4666
4667	s->flags &= ~SLAB_STORE_USER;
4668	if (buf[0] == '1') {
4669		s->flags &= ~__CMPXCHG_DOUBLE;
4670		s->flags |= SLAB_STORE_USER;
4671	}
4672	calculate_sizes(s, -1);
4673	return length;
4674}
4675SLAB_ATTR(store_user);
4676
4677static ssize_t validate_show(struct kmem_cache *s, char *buf)
4678{
4679	return 0;
4680}
4681
4682static ssize_t validate_store(struct kmem_cache *s,
4683			const char *buf, size_t length)
4684{
4685	int ret = -EINVAL;
4686
4687	if (buf[0] == '1') {
4688		ret = validate_slab_cache(s);
4689		if (ret >= 0)
4690			ret = length;
4691	}
4692	return ret;
4693}
4694SLAB_ATTR(validate);
4695
4696static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4697{
4698	if (!(s->flags & SLAB_STORE_USER))
4699		return -ENOSYS;
4700	return list_locations(s, buf, TRACK_ALLOC);
4701}
4702SLAB_ATTR_RO(alloc_calls);
4703
4704static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4705{
4706	if (!(s->flags & SLAB_STORE_USER))
4707		return -ENOSYS;
4708	return list_locations(s, buf, TRACK_FREE);
4709}
4710SLAB_ATTR_RO(free_calls);
4711#endif /* CONFIG_SLUB_DEBUG */
4712
4713#ifdef CONFIG_FAILSLAB
4714static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4715{
4716	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4717}
4718
4719static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4720							size_t length)
4721{
 
 
 
4722	s->flags &= ~SLAB_FAILSLAB;
4723	if (buf[0] == '1')
4724		s->flags |= SLAB_FAILSLAB;
4725	return length;
4726}
4727SLAB_ATTR(failslab);
4728#endif
4729
4730static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4731{
4732	return 0;
4733}
4734
4735static ssize_t shrink_store(struct kmem_cache *s,
4736			const char *buf, size_t length)
4737{
4738	if (buf[0] == '1') {
4739		int rc = kmem_cache_shrink(s);
4740
4741		if (rc)
4742			return rc;
4743	} else
4744		return -EINVAL;
4745	return length;
4746}
4747SLAB_ATTR(shrink);
4748
4749#ifdef CONFIG_NUMA
4750static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4751{
4752	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4753}
4754
4755static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4756				const char *buf, size_t length)
4757{
4758	unsigned long ratio;
4759	int err;
4760
4761	err = strict_strtoul(buf, 10, &ratio);
4762	if (err)
4763		return err;
4764
4765	if (ratio <= 100)
4766		s->remote_node_defrag_ratio = ratio * 10;
4767
4768	return length;
4769}
4770SLAB_ATTR(remote_node_defrag_ratio);
4771#endif
4772
4773#ifdef CONFIG_SLUB_STATS
4774static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4775{
4776	unsigned long sum  = 0;
4777	int cpu;
4778	int len;
4779	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4780
4781	if (!data)
4782		return -ENOMEM;
4783
4784	for_each_online_cpu(cpu) {
4785		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4786
4787		data[cpu] = x;
4788		sum += x;
4789	}
4790
4791	len = sprintf(buf, "%lu", sum);
4792
4793#ifdef CONFIG_SMP
4794	for_each_online_cpu(cpu) {
4795		if (data[cpu] && len < PAGE_SIZE - 20)
4796			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4797	}
4798#endif
4799	kfree(data);
4800	return len + sprintf(buf + len, "\n");
4801}
4802
4803static void clear_stat(struct kmem_cache *s, enum stat_item si)
4804{
4805	int cpu;
4806
4807	for_each_online_cpu(cpu)
4808		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4809}
4810
4811#define STAT_ATTR(si, text) 					\
4812static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
4813{								\
4814	return show_stat(s, buf, si);				\
4815}								\
4816static ssize_t text##_store(struct kmem_cache *s,		\
4817				const char *buf, size_t length)	\
4818{								\
4819	if (buf[0] != '0')					\
4820		return -EINVAL;					\
4821	clear_stat(s, si);					\
4822	return length;						\
4823}								\
4824SLAB_ATTR(text);						\
4825
4826STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4827STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4828STAT_ATTR(FREE_FASTPATH, free_fastpath);
4829STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4830STAT_ATTR(FREE_FROZEN, free_frozen);
4831STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4832STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4833STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4834STAT_ATTR(ALLOC_SLAB, alloc_slab);
4835STAT_ATTR(ALLOC_REFILL, alloc_refill);
4836STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4837STAT_ATTR(FREE_SLAB, free_slab);
4838STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4839STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4840STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4841STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4842STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4843STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4844STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4845STAT_ATTR(ORDER_FALLBACK, order_fallback);
4846STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4847STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
 
 
 
 
4848#endif
4849
4850static struct attribute *slab_attrs[] = {
4851	&slab_size_attr.attr,
4852	&object_size_attr.attr,
4853	&objs_per_slab_attr.attr,
4854	&order_attr.attr,
4855	&min_partial_attr.attr,
 
4856	&objects_attr.attr,
4857	&objects_partial_attr.attr,
4858	&partial_attr.attr,
4859	&cpu_slabs_attr.attr,
4860	&ctor_attr.attr,
4861	&aliases_attr.attr,
4862	&align_attr.attr,
4863	&hwcache_align_attr.attr,
4864	&reclaim_account_attr.attr,
4865	&destroy_by_rcu_attr.attr,
4866	&shrink_attr.attr,
4867	&reserved_attr.attr,
 
4868#ifdef CONFIG_SLUB_DEBUG
4869	&total_objects_attr.attr,
4870	&slabs_attr.attr,
4871	&sanity_checks_attr.attr,
4872	&trace_attr.attr,
4873	&red_zone_attr.attr,
4874	&poison_attr.attr,
4875	&store_user_attr.attr,
4876	&validate_attr.attr,
4877	&alloc_calls_attr.attr,
4878	&free_calls_attr.attr,
4879#endif
4880#ifdef CONFIG_ZONE_DMA
4881	&cache_dma_attr.attr,
4882#endif
4883#ifdef CONFIG_NUMA
4884	&remote_node_defrag_ratio_attr.attr,
4885#endif
4886#ifdef CONFIG_SLUB_STATS
4887	&alloc_fastpath_attr.attr,
4888	&alloc_slowpath_attr.attr,
4889	&free_fastpath_attr.attr,
4890	&free_slowpath_attr.attr,
4891	&free_frozen_attr.attr,
4892	&free_add_partial_attr.attr,
4893	&free_remove_partial_attr.attr,
4894	&alloc_from_partial_attr.attr,
4895	&alloc_slab_attr.attr,
4896	&alloc_refill_attr.attr,
4897	&alloc_node_mismatch_attr.attr,
4898	&free_slab_attr.attr,
4899	&cpuslab_flush_attr.attr,
4900	&deactivate_full_attr.attr,
4901	&deactivate_empty_attr.attr,
4902	&deactivate_to_head_attr.attr,
4903	&deactivate_to_tail_attr.attr,
4904	&deactivate_remote_frees_attr.attr,
4905	&deactivate_bypass_attr.attr,
4906	&order_fallback_attr.attr,
4907	&cmpxchg_double_fail_attr.attr,
4908	&cmpxchg_double_cpu_fail_attr.attr,
 
 
 
 
4909#endif
4910#ifdef CONFIG_FAILSLAB
4911	&failslab_attr.attr,
4912#endif
4913
4914	NULL
4915};
4916
4917static struct attribute_group slab_attr_group = {
4918	.attrs = slab_attrs,
4919};
4920
4921static ssize_t slab_attr_show(struct kobject *kobj,
4922				struct attribute *attr,
4923				char *buf)
4924{
4925	struct slab_attribute *attribute;
4926	struct kmem_cache *s;
4927	int err;
4928
4929	attribute = to_slab_attr(attr);
4930	s = to_slab(kobj);
4931
4932	if (!attribute->show)
4933		return -EIO;
4934
4935	err = attribute->show(s, buf);
4936
4937	return err;
4938}
4939
4940static ssize_t slab_attr_store(struct kobject *kobj,
4941				struct attribute *attr,
4942				const char *buf, size_t len)
4943{
4944	struct slab_attribute *attribute;
4945	struct kmem_cache *s;
4946	int err;
4947
4948	attribute = to_slab_attr(attr);
4949	s = to_slab(kobj);
4950
4951	if (!attribute->store)
4952		return -EIO;
4953
4954	err = attribute->store(s, buf, len);
 
 
 
 
 
 
 
4955
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4956	return err;
4957}
4958
4959static void kmem_cache_release(struct kobject *kobj)
4960{
4961	struct kmem_cache *s = to_slab(kobj);
 
 
 
4962
4963	kfree(s->name);
4964	kfree(s);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4965}
4966
4967static const struct sysfs_ops slab_sysfs_ops = {
4968	.show = slab_attr_show,
4969	.store = slab_attr_store,
4970};
4971
4972static struct kobj_type slab_ktype = {
4973	.sysfs_ops = &slab_sysfs_ops,
4974	.release = kmem_cache_release
4975};
4976
4977static int uevent_filter(struct kset *kset, struct kobject *kobj)
4978{
4979	struct kobj_type *ktype = get_ktype(kobj);
4980
4981	if (ktype == &slab_ktype)
4982		return 1;
4983	return 0;
4984}
4985
4986static const struct kset_uevent_ops slab_uevent_ops = {
4987	.filter = uevent_filter,
4988};
4989
4990static struct kset *slab_kset;
4991
 
 
 
 
 
 
 
 
 
4992#define ID_STR_LENGTH 64
4993
4994/* Create a unique string id for a slab cache:
4995 *
4996 * Format	:[flags-]size
4997 */
4998static char *create_unique_id(struct kmem_cache *s)
4999{
5000	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5001	char *p = name;
5002
5003	BUG_ON(!name);
5004
5005	*p++ = ':';
5006	/*
5007	 * First flags affecting slabcache operations. We will only
5008	 * get here for aliasable slabs so we do not need to support
5009	 * too many flags. The flags here must cover all flags that
5010	 * are matched during merging to guarantee that the id is
5011	 * unique.
5012	 */
5013	if (s->flags & SLAB_CACHE_DMA)
5014		*p++ = 'd';
5015	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5016		*p++ = 'a';
5017	if (s->flags & SLAB_DEBUG_FREE)
5018		*p++ = 'F';
5019	if (!(s->flags & SLAB_NOTRACK))
5020		*p++ = 't';
 
 
5021	if (p != name + 1)
5022		*p++ = '-';
5023	p += sprintf(p, "%07d", s->size);
 
5024	BUG_ON(p > name + ID_STR_LENGTH - 1);
5025	return name;
5026}
5027
5028static int sysfs_slab_add(struct kmem_cache *s)
5029{
5030	int err;
5031	const char *name;
5032	int unmergeable;
5033
5034	if (slab_state < SYSFS)
5035		/* Defer until later */
5036		return 0;
5037
5038	unmergeable = slab_unmergeable(s);
5039	if (unmergeable) {
5040		/*
5041		 * Slabcache can never be merged so we can use the name proper.
5042		 * This is typically the case for debug situations. In that
5043		 * case we can catch duplicate names easily.
5044		 */
5045		sysfs_remove_link(&slab_kset->kobj, s->name);
5046		name = s->name;
5047	} else {
5048		/*
5049		 * Create a unique name for the slab as a target
5050		 * for the symlinks.
5051		 */
5052		name = create_unique_id(s);
5053	}
5054
5055	s->kobj.kset = slab_kset;
5056	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5057	if (err) {
5058		kobject_put(&s->kobj);
5059		return err;
5060	}
5061
5062	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5063	if (err) {
5064		kobject_del(&s->kobj);
5065		kobject_put(&s->kobj);
5066		return err;
 
 
 
 
 
 
5067	}
 
 
5068	kobject_uevent(&s->kobj, KOBJ_ADD);
5069	if (!unmergeable) {
5070		/* Setup first alias */
5071		sysfs_slab_alias(s, s->name);
 
 
 
5072		kfree(name);
5073	}
5074	return 0;
 
 
5075}
5076
5077static void sysfs_slab_remove(struct kmem_cache *s)
5078{
5079	if (slab_state < SYSFS)
5080		/*
5081		 * Sysfs has not been setup yet so no need to remove the
5082		 * cache from sysfs.
5083		 */
5084		return;
5085
 
 
 
5086	kobject_uevent(&s->kobj, KOBJ_REMOVE);
5087	kobject_del(&s->kobj);
5088	kobject_put(&s->kobj);
5089}
5090
5091/*
5092 * Need to buffer aliases during bootup until sysfs becomes
5093 * available lest we lose that information.
5094 */
5095struct saved_alias {
5096	struct kmem_cache *s;
5097	const char *name;
5098	struct saved_alias *next;
5099};
5100
5101static struct saved_alias *alias_list;
5102
5103static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5104{
5105	struct saved_alias *al;
5106
5107	if (slab_state == SYSFS) {
5108		/*
5109		 * If we have a leftover link then remove it.
5110		 */
5111		sysfs_remove_link(&slab_kset->kobj, name);
5112		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5113	}
5114
5115	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5116	if (!al)
5117		return -ENOMEM;
5118
5119	al->s = s;
5120	al->name = name;
5121	al->next = alias_list;
5122	alias_list = al;
5123	return 0;
5124}
5125
5126static int __init slab_sysfs_init(void)
5127{
5128	struct kmem_cache *s;
5129	int err;
5130
5131	down_write(&slub_lock);
5132
5133	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5134	if (!slab_kset) {
5135		up_write(&slub_lock);
5136		printk(KERN_ERR "Cannot register slab subsystem.\n");
5137		return -ENOSYS;
5138	}
5139
5140	slab_state = SYSFS;
5141
5142	list_for_each_entry(s, &slab_caches, list) {
5143		err = sysfs_slab_add(s);
5144		if (err)
5145			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5146						" to sysfs\n", s->name);
5147	}
5148
5149	while (alias_list) {
5150		struct saved_alias *al = alias_list;
5151
5152		alias_list = alias_list->next;
5153		err = sysfs_slab_alias(al->s, al->name);
5154		if (err)
5155			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5156					" %s to sysfs\n", s->name);
5157		kfree(al);
5158	}
5159
5160	up_write(&slub_lock);
5161	resiliency_test();
5162	return 0;
5163}
5164
5165__initcall(slab_sysfs_init);
5166#endif /* CONFIG_SYSFS */
5167
5168/*
5169 * The /proc/slabinfo ABI
5170 */
5171#ifdef CONFIG_SLABINFO
5172static void print_slabinfo_header(struct seq_file *m)
5173{
5174	seq_puts(m, "slabinfo - version: 2.1\n");
5175	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
5176		 "<objperslab> <pagesperslab>");
5177	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
5178	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
5179	seq_putc(m, '\n');
5180}
5181
5182static void *s_start(struct seq_file *m, loff_t *pos)
5183{
5184	loff_t n = *pos;
5185
5186	down_read(&slub_lock);
5187	if (!n)
5188		print_slabinfo_header(m);
5189
5190	return seq_list_start(&slab_caches, *pos);
5191}
5192
5193static void *s_next(struct seq_file *m, void *p, loff_t *pos)
5194{
5195	return seq_list_next(p, &slab_caches, pos);
5196}
5197
5198static void s_stop(struct seq_file *m, void *p)
5199{
5200	up_read(&slub_lock);
5201}
5202
5203static int s_show(struct seq_file *m, void *p)
5204{
5205	unsigned long nr_partials = 0;
5206	unsigned long nr_slabs = 0;
5207	unsigned long nr_inuse = 0;
5208	unsigned long nr_objs = 0;
5209	unsigned long nr_free = 0;
5210	struct kmem_cache *s;
5211	int node;
 
5212
5213	s = list_entry(p, struct kmem_cache, list);
5214
5215	for_each_online_node(node) {
5216		struct kmem_cache_node *n = get_node(s, node);
5217
5218		if (!n)
5219			continue;
5220
5221		nr_partials += n->nr_partial;
5222		nr_slabs += atomic_long_read(&n->nr_slabs);
5223		nr_objs += atomic_long_read(&n->total_objects);
5224		nr_free += count_partial(n, count_free);
5225	}
5226
5227	nr_inuse = nr_objs - nr_free;
5228
5229	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
5230		   nr_objs, s->size, oo_objects(s->oo),
5231		   (1 << oo_order(s->oo)));
5232	seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
5233	seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
5234		   0UL);
5235	seq_putc(m, '\n');
5236	return 0;
5237}
5238
5239static const struct seq_operations slabinfo_op = {
5240	.start = s_start,
5241	.next = s_next,
5242	.stop = s_stop,
5243	.show = s_show,
5244};
5245
5246static int slabinfo_open(struct inode *inode, struct file *file)
5247{
5248	return seq_open(file, &slabinfo_op);
5249}
5250
5251static const struct file_operations proc_slabinfo_operations = {
5252	.open		= slabinfo_open,
5253	.read		= seq_read,
5254	.llseek		= seq_lseek,
5255	.release	= seq_release,
5256};
5257
5258static int __init slab_proc_init(void)
5259{
5260	proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
5261	return 0;
5262}
5263module_init(slab_proc_init);
5264#endif /* CONFIG_SLABINFO */