Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * SLUB: A slab allocator that limits cache line use instead of queuing
   3 * objects in per cpu and per node lists.
   4 *
   5 * The allocator synchronizes using per slab locks or atomic operatios
   6 * and only uses a centralized lock to manage a pool of partial slabs.
   7 *
   8 * (C) 2007 SGI, Christoph Lameter
   9 * (C) 2011 Linux Foundation, Christoph Lameter
  10 */
  11
  12#include <linux/mm.h>
  13#include <linux/swap.h> /* struct reclaim_state */
  14#include <linux/module.h>
  15#include <linux/bit_spinlock.h>
  16#include <linux/interrupt.h>
  17#include <linux/bitops.h>
  18#include <linux/slab.h>
  19#include "slab.h"
  20#include <linux/proc_fs.h>
  21#include <linux/notifier.h>
  22#include <linux/seq_file.h>
  23#include <linux/kasan.h>
  24#include <linux/kmemcheck.h>
  25#include <linux/cpu.h>
  26#include <linux/cpuset.h>
  27#include <linux/mempolicy.h>
  28#include <linux/ctype.h>
  29#include <linux/debugobjects.h>
  30#include <linux/kallsyms.h>
  31#include <linux/memory.h>
  32#include <linux/math64.h>
  33#include <linux/fault-inject.h>
  34#include <linux/stacktrace.h>
  35#include <linux/prefetch.h>
  36#include <linux/memcontrol.h>
 
  37
  38#include <trace/events/kmem.h>
  39
  40#include "internal.h"
  41
  42/*
  43 * Lock order:
  44 *   1. slab_mutex (Global Mutex)
  45 *   2. node->list_lock
  46 *   3. slab_lock(page) (Only on some arches and for debugging)
  47 *
  48 *   slab_mutex
  49 *
  50 *   The role of the slab_mutex is to protect the list of all the slabs
  51 *   and to synchronize major metadata changes to slab cache structures.
  52 *
  53 *   The slab_lock is only used for debugging and on arches that do not
  54 *   have the ability to do a cmpxchg_double. It only protects the second
  55 *   double word in the page struct. Meaning
  56 *	A. page->freelist	-> List of object free in a page
  57 *	B. page->counters	-> Counters of objects
  58 *	C. page->frozen		-> frozen state
  59 *
  60 *   If a slab is frozen then it is exempt from list management. It is not
  61 *   on any list. The processor that froze the slab is the one who can
  62 *   perform list operations on the page. Other processors may put objects
  63 *   onto the freelist but the processor that froze the slab is the only
  64 *   one that can retrieve the objects from the page's freelist.
  65 *
  66 *   The list_lock protects the partial and full list on each node and
  67 *   the partial slab counter. If taken then no new slabs may be added or
  68 *   removed from the lists nor make the number of partial slabs be modified.
  69 *   (Note that the total number of slabs is an atomic value that may be
  70 *   modified without taking the list lock).
  71 *
  72 *   The list_lock is a centralized lock and thus we avoid taking it as
  73 *   much as possible. As long as SLUB does not have to handle partial
  74 *   slabs, operations can continue without any centralized lock. F.e.
  75 *   allocating a long series of objects that fill up slabs does not require
  76 *   the list lock.
  77 *   Interrupts are disabled during allocation and deallocation in order to
  78 *   make the slab allocator safe to use in the context of an irq. In addition
  79 *   interrupts are disabled to ensure that the processor does not change
  80 *   while handling per_cpu slabs, due to kernel preemption.
  81 *
  82 * SLUB assigns one slab for allocation to each processor.
  83 * Allocations only occur from these slabs called cpu slabs.
  84 *
  85 * Slabs with free elements are kept on a partial list and during regular
  86 * operations no list for full slabs is used. If an object in a full slab is
  87 * freed then the slab will show up again on the partial lists.
  88 * We track full slabs for debugging purposes though because otherwise we
  89 * cannot scan all objects.
  90 *
  91 * Slabs are freed when they become empty. Teardown and setup is
  92 * minimal so we rely on the page allocators per cpu caches for
  93 * fast frees and allocs.
  94 *
  95 * Overloading of page flags that are otherwise used for LRU management.
  96 *
  97 * PageActive 		The slab is frozen and exempt from list processing.
  98 * 			This means that the slab is dedicated to a purpose
  99 * 			such as satisfying allocations for a specific
 100 * 			processor. Objects may be freed in the slab while
 101 * 			it is frozen but slab_free will then skip the usual
 102 * 			list operations. It is up to the processor holding
 103 * 			the slab to integrate the slab into the slab lists
 104 * 			when the slab is no longer needed.
 105 *
 106 * 			One use of this flag is to mark slabs that are
 107 * 			used for allocations. Then such a slab becomes a cpu
 108 * 			slab. The cpu slab may be equipped with an additional
 109 * 			freelist that allows lockless access to
 110 * 			free objects in addition to the regular freelist
 111 * 			that requires the slab lock.
 112 *
 113 * PageError		Slab requires special handling due to debug
 114 * 			options set. This moves	slab handling out of
 115 * 			the fast path and disables lockless freelists.
 116 */
 117
 118static inline int kmem_cache_debug(struct kmem_cache *s)
 119{
 120#ifdef CONFIG_SLUB_DEBUG
 121	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
 122#else
 123	return 0;
 124#endif
 125}
 126
 127static inline void *fixup_red_left(struct kmem_cache *s, void *p)
 128{
 129	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
 130		p += s->red_left_pad;
 131
 132	return p;
 133}
 134
 135static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
 136{
 137#ifdef CONFIG_SLUB_CPU_PARTIAL
 138	return !kmem_cache_debug(s);
 139#else
 140	return false;
 141#endif
 142}
 143
 144/*
 145 * Issues still to be resolved:
 146 *
 147 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 148 *
 149 * - Variable sizing of the per node arrays
 150 */
 151
 152/* Enable to test recovery from slab corruption on boot */
 153#undef SLUB_RESILIENCY_TEST
 154
 155/* Enable to log cmpxchg failures */
 156#undef SLUB_DEBUG_CMPXCHG
 157
 158/*
 159 * Mininum number of partial slabs. These will be left on the partial
 160 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 161 */
 162#define MIN_PARTIAL 5
 163
 164/*
 165 * Maximum number of desirable partial slabs.
 166 * The existence of more partial slabs makes kmem_cache_shrink
 167 * sort the partial list by the number of objects in use.
 168 */
 169#define MAX_PARTIAL 10
 170
 171#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
 172				SLAB_POISON | SLAB_STORE_USER)
 173
 174/*
 175 * These debug flags cannot use CMPXCHG because there might be consistency
 176 * issues when checking or reading debug information
 177 */
 178#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
 179				SLAB_TRACE)
 180
 181
 182/*
 183 * Debugging flags that require metadata to be stored in the slab.  These get
 184 * disabled when slub_debug=O is used and a cache's min order increases with
 185 * metadata.
 186 */
 187#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
 188
 189#define OO_SHIFT	16
 190#define OO_MASK		((1 << OO_SHIFT) - 1)
 191#define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
 192
 193/* Internal SLUB flags */
 194#define __OBJECT_POISON		0x80000000UL /* Poison object */
 195#define __CMPXCHG_DOUBLE	0x40000000UL /* Use cmpxchg_double */
 196
 197#ifdef CONFIG_SMP
 198static struct notifier_block slab_notifier;
 199#endif
 200
 201/*
 202 * Tracking user of a slab.
 203 */
 204#define TRACK_ADDRS_COUNT 16
 205struct track {
 206	unsigned long addr;	/* Called from address */
 207#ifdef CONFIG_STACKTRACE
 208	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
 209#endif
 210	int cpu;		/* Was running on cpu */
 211	int pid;		/* Pid context */
 212	unsigned long when;	/* When did the operation occur */
 213};
 214
 215enum track_item { TRACK_ALLOC, TRACK_FREE };
 216
 217#ifdef CONFIG_SYSFS
 218static int sysfs_slab_add(struct kmem_cache *);
 219static int sysfs_slab_alias(struct kmem_cache *, const char *);
 220static void memcg_propagate_slab_attrs(struct kmem_cache *s);
 
 221#else
 222static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
 223static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
 224							{ return 0; }
 225static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
 
 226#endif
 227
 228static inline void stat(const struct kmem_cache *s, enum stat_item si)
 229{
 230#ifdef CONFIG_SLUB_STATS
 231	/*
 232	 * The rmw is racy on a preemptible kernel but this is acceptable, so
 233	 * avoid this_cpu_add()'s irq-disable overhead.
 234	 */
 235	raw_cpu_inc(s->cpu_slab->stat[si]);
 236#endif
 237}
 238
 239/********************************************************************
 240 * 			Core slab cache functions
 241 *******************************************************************/
 242
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 243static inline void *get_freepointer(struct kmem_cache *s, void *object)
 244{
 245	return *(void **)(object + s->offset);
 246}
 247
 248static void prefetch_freepointer(const struct kmem_cache *s, void *object)
 249{
 250	prefetch(object + s->offset);
 
 251}
 252
 253static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
 254{
 
 255	void *p;
 256
 257	if (!debug_pagealloc_enabled())
 258		return get_freepointer(s, object);
 259
 260	probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
 261	return p;
 
 262}
 263
 264static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
 265{
 266	*(void **)(object + s->offset) = fp;
 
 
 
 
 
 
 267}
 268
 269/* Loop over all objects in a slab */
 270#define for_each_object(__p, __s, __addr, __objects) \
 271	for (__p = fixup_red_left(__s, __addr); \
 272		__p < (__addr) + (__objects) * (__s)->size; \
 273		__p += (__s)->size)
 274
 275#define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
 276	for (__p = fixup_red_left(__s, __addr), __idx = 1; \
 277		__idx <= __objects; \
 278		__p += (__s)->size, __idx++)
 279
 280/* Determine object index from a given position */
 281static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
 282{
 283	return (p - addr) / s->size;
 284}
 285
 286static inline int order_objects(int order, unsigned long size, int reserved)
 287{
 288	return ((PAGE_SIZE << order) - reserved) / size;
 289}
 290
 291static inline struct kmem_cache_order_objects oo_make(int order,
 292		unsigned long size, int reserved)
 293{
 294	struct kmem_cache_order_objects x = {
 295		(order << OO_SHIFT) + order_objects(order, size, reserved)
 296	};
 297
 298	return x;
 299}
 300
 301static inline int oo_order(struct kmem_cache_order_objects x)
 302{
 303	return x.x >> OO_SHIFT;
 304}
 305
 306static inline int oo_objects(struct kmem_cache_order_objects x)
 307{
 308	return x.x & OO_MASK;
 309}
 310
 311/*
 312 * Per slab locking using the pagelock
 313 */
 314static __always_inline void slab_lock(struct page *page)
 315{
 316	VM_BUG_ON_PAGE(PageTail(page), page);
 317	bit_spin_lock(PG_locked, &page->flags);
 318}
 319
 320static __always_inline void slab_unlock(struct page *page)
 321{
 322	VM_BUG_ON_PAGE(PageTail(page), page);
 323	__bit_spin_unlock(PG_locked, &page->flags);
 324}
 325
 326static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
 327{
 328	struct page tmp;
 329	tmp.counters = counters_new;
 330	/*
 331	 * page->counters can cover frozen/inuse/objects as well
 332	 * as page->_count.  If we assign to ->counters directly
 333	 * we run the risk of losing updates to page->_count, so
 334	 * be careful and only assign to the fields we need.
 335	 */
 336	page->frozen  = tmp.frozen;
 337	page->inuse   = tmp.inuse;
 338	page->objects = tmp.objects;
 339}
 340
 341/* Interrupts must be disabled (for the fallback code to work right) */
 342static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
 343		void *freelist_old, unsigned long counters_old,
 344		void *freelist_new, unsigned long counters_new,
 345		const char *n)
 346{
 347	VM_BUG_ON(!irqs_disabled());
 348#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
 349    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
 350	if (s->flags & __CMPXCHG_DOUBLE) {
 351		if (cmpxchg_double(&page->freelist, &page->counters,
 352				   freelist_old, counters_old,
 353				   freelist_new, counters_new))
 354			return true;
 355	} else
 356#endif
 357	{
 358		slab_lock(page);
 359		if (page->freelist == freelist_old &&
 360					page->counters == counters_old) {
 361			page->freelist = freelist_new;
 362			set_page_slub_counters(page, counters_new);
 363			slab_unlock(page);
 364			return true;
 365		}
 366		slab_unlock(page);
 367	}
 368
 369	cpu_relax();
 370	stat(s, CMPXCHG_DOUBLE_FAIL);
 371
 372#ifdef SLUB_DEBUG_CMPXCHG
 373	pr_info("%s %s: cmpxchg double redo ", n, s->name);
 374#endif
 375
 376	return false;
 377}
 378
 379static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
 380		void *freelist_old, unsigned long counters_old,
 381		void *freelist_new, unsigned long counters_new,
 382		const char *n)
 383{
 384#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
 385    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
 386	if (s->flags & __CMPXCHG_DOUBLE) {
 387		if (cmpxchg_double(&page->freelist, &page->counters,
 388				   freelist_old, counters_old,
 389				   freelist_new, counters_new))
 390			return true;
 391	} else
 392#endif
 393	{
 394		unsigned long flags;
 395
 396		local_irq_save(flags);
 397		slab_lock(page);
 398		if (page->freelist == freelist_old &&
 399					page->counters == counters_old) {
 400			page->freelist = freelist_new;
 401			set_page_slub_counters(page, counters_new);
 402			slab_unlock(page);
 403			local_irq_restore(flags);
 404			return true;
 405		}
 406		slab_unlock(page);
 407		local_irq_restore(flags);
 408	}
 409
 410	cpu_relax();
 411	stat(s, CMPXCHG_DOUBLE_FAIL);
 412
 413#ifdef SLUB_DEBUG_CMPXCHG
 414	pr_info("%s %s: cmpxchg double redo ", n, s->name);
 415#endif
 416
 417	return false;
 418}
 419
 420#ifdef CONFIG_SLUB_DEBUG
 421/*
 422 * Determine a map of object in use on a page.
 423 *
 424 * Node listlock must be held to guarantee that the page does
 425 * not vanish from under us.
 426 */
 427static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
 428{
 429	void *p;
 430	void *addr = page_address(page);
 431
 432	for (p = page->freelist; p; p = get_freepointer(s, p))
 433		set_bit(slab_index(p, s, addr), map);
 434}
 435
 436static inline int size_from_object(struct kmem_cache *s)
 437{
 438	if (s->flags & SLAB_RED_ZONE)
 439		return s->size - s->red_left_pad;
 440
 441	return s->size;
 442}
 443
 444static inline void *restore_red_left(struct kmem_cache *s, void *p)
 445{
 446	if (s->flags & SLAB_RED_ZONE)
 447		p -= s->red_left_pad;
 448
 449	return p;
 450}
 451
 452/*
 453 * Debug settings:
 454 */
 455#if defined(CONFIG_SLUB_DEBUG_ON)
 456static int slub_debug = DEBUG_DEFAULT_FLAGS;
 457#elif defined(CONFIG_KASAN)
 458static int slub_debug = SLAB_STORE_USER;
 459#else
 460static int slub_debug;
 461#endif
 462
 463static char *slub_debug_slabs;
 464static int disable_higher_order_debug;
 465
 466/*
 467 * slub is about to manipulate internal object metadata.  This memory lies
 468 * outside the range of the allocated object, so accessing it would normally
 469 * be reported by kasan as a bounds error.  metadata_access_enable() is used
 470 * to tell kasan that these accesses are OK.
 471 */
 472static inline void metadata_access_enable(void)
 473{
 474	kasan_disable_current();
 475}
 476
 477static inline void metadata_access_disable(void)
 478{
 479	kasan_enable_current();
 480}
 481
 482/*
 483 * Object debugging
 484 */
 485
 486/* Verify that a pointer has an address that is valid within a slab page */
 487static inline int check_valid_pointer(struct kmem_cache *s,
 488				struct page *page, void *object)
 489{
 490	void *base;
 491
 492	if (!object)
 493		return 1;
 494
 495	base = page_address(page);
 496	object = restore_red_left(s, object);
 497	if (object < base || object >= base + page->objects * s->size ||
 498		(object - base) % s->size) {
 499		return 0;
 500	}
 501
 502	return 1;
 503}
 504
 505static void print_section(char *text, u8 *addr, unsigned int length)
 
 506{
 507	metadata_access_enable();
 508	print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
 509			length, 1);
 510	metadata_access_disable();
 511}
 512
 513static struct track *get_track(struct kmem_cache *s, void *object,
 514	enum track_item alloc)
 515{
 516	struct track *p;
 517
 518	if (s->offset)
 519		p = object + s->offset + sizeof(void *);
 520	else
 521		p = object + s->inuse;
 522
 523	return p + alloc;
 524}
 525
 526static void set_track(struct kmem_cache *s, void *object,
 527			enum track_item alloc, unsigned long addr)
 528{
 529	struct track *p = get_track(s, object, alloc);
 530
 531	if (addr) {
 532#ifdef CONFIG_STACKTRACE
 533		struct stack_trace trace;
 534		int i;
 535
 536		trace.nr_entries = 0;
 537		trace.max_entries = TRACK_ADDRS_COUNT;
 538		trace.entries = p->addrs;
 539		trace.skip = 3;
 540		metadata_access_enable();
 541		save_stack_trace(&trace);
 542		metadata_access_disable();
 543
 544		/* See rant in lockdep.c */
 545		if (trace.nr_entries != 0 &&
 546		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
 547			trace.nr_entries--;
 548
 549		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
 550			p->addrs[i] = 0;
 551#endif
 552		p->addr = addr;
 553		p->cpu = smp_processor_id();
 554		p->pid = current->pid;
 555		p->when = jiffies;
 556	} else
 557		memset(p, 0, sizeof(struct track));
 558}
 559
 560static void init_tracking(struct kmem_cache *s, void *object)
 561{
 562	if (!(s->flags & SLAB_STORE_USER))
 563		return;
 564
 565	set_track(s, object, TRACK_FREE, 0UL);
 566	set_track(s, object, TRACK_ALLOC, 0UL);
 567}
 568
 569static void print_track(const char *s, struct track *t)
 570{
 571	if (!t->addr)
 572		return;
 573
 574	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
 575	       s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
 576#ifdef CONFIG_STACKTRACE
 577	{
 578		int i;
 579		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
 580			if (t->addrs[i])
 581				pr_err("\t%pS\n", (void *)t->addrs[i]);
 582			else
 583				break;
 584	}
 585#endif
 586}
 587
 588static void print_tracking(struct kmem_cache *s, void *object)
 589{
 
 590	if (!(s->flags & SLAB_STORE_USER))
 591		return;
 592
 593	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
 594	print_track("Freed", get_track(s, object, TRACK_FREE));
 595}
 596
 597static void print_page_info(struct page *page)
 598{
 599	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
 600	       page, page->objects, page->inuse, page->freelist, page->flags);
 601
 602}
 603
 604static void slab_bug(struct kmem_cache *s, char *fmt, ...)
 605{
 606	struct va_format vaf;
 607	va_list args;
 608
 609	va_start(args, fmt);
 610	vaf.fmt = fmt;
 611	vaf.va = &args;
 612	pr_err("=============================================================================\n");
 613	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
 614	pr_err("-----------------------------------------------------------------------------\n\n");
 615
 616	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 617	va_end(args);
 618}
 619
 620static void slab_fix(struct kmem_cache *s, char *fmt, ...)
 621{
 622	struct va_format vaf;
 623	va_list args;
 624
 625	va_start(args, fmt);
 626	vaf.fmt = fmt;
 627	vaf.va = &args;
 628	pr_err("FIX %s: %pV\n", s->name, &vaf);
 629	va_end(args);
 630}
 631
 632static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
 633{
 634	unsigned int off;	/* Offset of last byte */
 635	u8 *addr = page_address(page);
 636
 637	print_tracking(s, p);
 638
 639	print_page_info(page);
 640
 641	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
 642	       p, p - addr, get_freepointer(s, p));
 643
 644	if (s->flags & SLAB_RED_ZONE)
 645		print_section("Redzone ", p - s->red_left_pad, s->red_left_pad);
 
 646	else if (p > addr + 16)
 647		print_section("Bytes b4 ", p - 16, 16);
 648
 649	print_section("Object ", p, min_t(unsigned long, s->object_size,
 650				PAGE_SIZE));
 651	if (s->flags & SLAB_RED_ZONE)
 652		print_section("Redzone ", p + s->object_size,
 653			s->inuse - s->object_size);
 654
 655	if (s->offset)
 656		off = s->offset + sizeof(void *);
 657	else
 658		off = s->inuse;
 659
 660	if (s->flags & SLAB_STORE_USER)
 661		off += 2 * sizeof(struct track);
 662
 
 
 663	if (off != size_from_object(s))
 664		/* Beginning of the filler is the free pointer */
 665		print_section("Padding ", p + off, size_from_object(s) - off);
 
 666
 667	dump_stack();
 668}
 669
 670void object_err(struct kmem_cache *s, struct page *page,
 671			u8 *object, char *reason)
 672{
 673	slab_bug(s, "%s", reason);
 674	print_trailer(s, page, object);
 675}
 676
 677static void slab_err(struct kmem_cache *s, struct page *page,
 678			const char *fmt, ...)
 679{
 680	va_list args;
 681	char buf[100];
 682
 683	va_start(args, fmt);
 684	vsnprintf(buf, sizeof(buf), fmt, args);
 685	va_end(args);
 686	slab_bug(s, "%s", buf);
 687	print_page_info(page);
 688	dump_stack();
 689}
 690
 691static void init_object(struct kmem_cache *s, void *object, u8 val)
 692{
 693	u8 *p = object;
 694
 695	if (s->flags & SLAB_RED_ZONE)
 696		memset(p - s->red_left_pad, val, s->red_left_pad);
 697
 698	if (s->flags & __OBJECT_POISON) {
 699		memset(p, POISON_FREE, s->object_size - 1);
 700		p[s->object_size - 1] = POISON_END;
 701	}
 702
 703	if (s->flags & SLAB_RED_ZONE)
 704		memset(p + s->object_size, val, s->inuse - s->object_size);
 705}
 706
 707static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
 708						void *from, void *to)
 709{
 710	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
 711	memset(from, data, to - from);
 712}
 713
 714static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
 715			u8 *object, char *what,
 716			u8 *start, unsigned int value, unsigned int bytes)
 717{
 718	u8 *fault;
 719	u8 *end;
 720
 721	metadata_access_enable();
 722	fault = memchr_inv(start, value, bytes);
 723	metadata_access_disable();
 724	if (!fault)
 725		return 1;
 726
 727	end = start + bytes;
 728	while (end > fault && end[-1] == value)
 729		end--;
 730
 731	slab_bug(s, "%s overwritten", what);
 732	pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
 733					fault, end - 1, fault[0], value);
 734	print_trailer(s, page, object);
 735
 736	restore_bytes(s, what, value, fault, end);
 737	return 0;
 738}
 739
 740/*
 741 * Object layout:
 742 *
 743 * object address
 744 * 	Bytes of the object to be managed.
 745 * 	If the freepointer may overlay the object then the free
 746 * 	pointer is the first word of the object.
 747 *
 748 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
 749 * 	0xa5 (POISON_END)
 750 *
 751 * object + s->object_size
 752 * 	Padding to reach word boundary. This is also used for Redzoning.
 753 * 	Padding is extended by another word if Redzoning is enabled and
 754 * 	object_size == inuse.
 755 *
 756 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 757 * 	0xcc (RED_ACTIVE) for objects in use.
 758 *
 759 * object + s->inuse
 760 * 	Meta data starts here.
 761 *
 762 * 	A. Free pointer (if we cannot overwrite object on free)
 763 * 	B. Tracking data for SLAB_STORE_USER
 764 * 	C. Padding to reach required alignment boundary or at mininum
 765 * 		one word if debugging is on to be able to detect writes
 766 * 		before the word boundary.
 767 *
 768 *	Padding is done using 0x5a (POISON_INUSE)
 769 *
 770 * object + s->size
 771 * 	Nothing is used beyond s->size.
 772 *
 773 * If slabcaches are merged then the object_size and inuse boundaries are mostly
 774 * ignored. And therefore no slab options that rely on these boundaries
 775 * may be used with merged slabcaches.
 776 */
 777
 778static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
 779{
 780	unsigned long off = s->inuse;	/* The end of info */
 781
 782	if (s->offset)
 783		/* Freepointer is placed after the object. */
 784		off += sizeof(void *);
 785
 786	if (s->flags & SLAB_STORE_USER)
 787		/* We also have user information there */
 788		off += 2 * sizeof(struct track);
 789
 
 
 790	if (size_from_object(s) == off)
 791		return 1;
 792
 793	return check_bytes_and_report(s, page, p, "Object padding",
 794			p + off, POISON_INUSE, size_from_object(s) - off);
 795}
 796
 797/* Check the pad bytes at the end of a slab page */
 798static int slab_pad_check(struct kmem_cache *s, struct page *page)
 799{
 800	u8 *start;
 801	u8 *fault;
 802	u8 *end;
 
 803	int length;
 804	int remainder;
 805
 806	if (!(s->flags & SLAB_POISON))
 807		return 1;
 808
 809	start = page_address(page);
 810	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
 811	end = start + length;
 812	remainder = length % s->size;
 813	if (!remainder)
 814		return 1;
 815
 
 816	metadata_access_enable();
 817	fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
 818	metadata_access_disable();
 819	if (!fault)
 820		return 1;
 821	while (end > fault && end[-1] == POISON_INUSE)
 822		end--;
 823
 824	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
 825	print_section("Padding ", end - remainder, remainder);
 826
 827	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
 828	return 0;
 829}
 830
 831static int check_object(struct kmem_cache *s, struct page *page,
 832					void *object, u8 val)
 833{
 834	u8 *p = object;
 835	u8 *endobject = object + s->object_size;
 836
 837	if (s->flags & SLAB_RED_ZONE) {
 838		if (!check_bytes_and_report(s, page, object, "Redzone",
 839			object - s->red_left_pad, val, s->red_left_pad))
 840			return 0;
 841
 842		if (!check_bytes_and_report(s, page, object, "Redzone",
 843			endobject, val, s->inuse - s->object_size))
 844			return 0;
 845	} else {
 846		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
 847			check_bytes_and_report(s, page, p, "Alignment padding",
 848				endobject, POISON_INUSE,
 849				s->inuse - s->object_size);
 850		}
 851	}
 852
 853	if (s->flags & SLAB_POISON) {
 854		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
 855			(!check_bytes_and_report(s, page, p, "Poison", p,
 856					POISON_FREE, s->object_size - 1) ||
 857			 !check_bytes_and_report(s, page, p, "Poison",
 858				p + s->object_size - 1, POISON_END, 1)))
 859			return 0;
 860		/*
 861		 * check_pad_bytes cleans up on its own.
 862		 */
 863		check_pad_bytes(s, page, p);
 864	}
 865
 866	if (!s->offset && val == SLUB_RED_ACTIVE)
 867		/*
 868		 * Object and freepointer overlap. Cannot check
 869		 * freepointer while object is allocated.
 870		 */
 871		return 1;
 872
 873	/* Check free pointer validity */
 874	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
 875		object_err(s, page, p, "Freepointer corrupt");
 876		/*
 877		 * No choice but to zap it and thus lose the remainder
 878		 * of the free objects in this slab. May cause
 879		 * another error because the object count is now wrong.
 880		 */
 881		set_freepointer(s, p, NULL);
 882		return 0;
 883	}
 884	return 1;
 885}
 886
 887static int check_slab(struct kmem_cache *s, struct page *page)
 888{
 889	int maxobj;
 890
 891	VM_BUG_ON(!irqs_disabled());
 892
 893	if (!PageSlab(page)) {
 894		slab_err(s, page, "Not a valid slab page");
 895		return 0;
 896	}
 897
 898	maxobj = order_objects(compound_order(page), s->size, s->reserved);
 899	if (page->objects > maxobj) {
 900		slab_err(s, page, "objects %u > max %u",
 901			page->objects, maxobj);
 902		return 0;
 903	}
 904	if (page->inuse > page->objects) {
 905		slab_err(s, page, "inuse %u > max %u",
 906			page->inuse, page->objects);
 907		return 0;
 908	}
 909	/* Slab_pad_check fixes things up after itself */
 910	slab_pad_check(s, page);
 911	return 1;
 912}
 913
 914/*
 915 * Determine if a certain object on a page is on the freelist. Must hold the
 916 * slab lock to guarantee that the chains are in a consistent state.
 917 */
 918static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
 919{
 920	int nr = 0;
 921	void *fp;
 922	void *object = NULL;
 923	int max_objects;
 924
 925	fp = page->freelist;
 926	while (fp && nr <= page->objects) {
 927		if (fp == search)
 928			return 1;
 929		if (!check_valid_pointer(s, page, fp)) {
 930			if (object) {
 931				object_err(s, page, object,
 932					"Freechain corrupt");
 933				set_freepointer(s, object, NULL);
 934			} else {
 935				slab_err(s, page, "Freepointer corrupt");
 936				page->freelist = NULL;
 937				page->inuse = page->objects;
 938				slab_fix(s, "Freelist cleared");
 939				return 0;
 940			}
 941			break;
 942		}
 943		object = fp;
 944		fp = get_freepointer(s, object);
 945		nr++;
 946	}
 947
 948	max_objects = order_objects(compound_order(page), s->size, s->reserved);
 949	if (max_objects > MAX_OBJS_PER_PAGE)
 950		max_objects = MAX_OBJS_PER_PAGE;
 951
 952	if (page->objects != max_objects) {
 953		slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
 954			 page->objects, max_objects);
 955		page->objects = max_objects;
 956		slab_fix(s, "Number of objects adjusted.");
 957	}
 958	if (page->inuse != page->objects - nr) {
 959		slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
 960			 page->inuse, page->objects - nr);
 961		page->inuse = page->objects - nr;
 962		slab_fix(s, "Object count adjusted.");
 963	}
 964	return search == NULL;
 965}
 966
 967static void trace(struct kmem_cache *s, struct page *page, void *object,
 968								int alloc)
 969{
 970	if (s->flags & SLAB_TRACE) {
 971		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
 972			s->name,
 973			alloc ? "alloc" : "free",
 974			object, page->inuse,
 975			page->freelist);
 976
 977		if (!alloc)
 978			print_section("Object ", (void *)object,
 979					s->object_size);
 980
 981		dump_stack();
 982	}
 983}
 984
 985/*
 986 * Tracking of fully allocated slabs for debugging purposes.
 987 */
 988static void add_full(struct kmem_cache *s,
 989	struct kmem_cache_node *n, struct page *page)
 990{
 991	if (!(s->flags & SLAB_STORE_USER))
 992		return;
 993
 994	lockdep_assert_held(&n->list_lock);
 995	list_add(&page->lru, &n->full);
 996}
 997
 998static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
 999{
1000	if (!(s->flags & SLAB_STORE_USER))
1001		return;
1002
1003	lockdep_assert_held(&n->list_lock);
1004	list_del(&page->lru);
1005}
1006
1007/* Tracking of the number of slabs for debugging purposes */
1008static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1009{
1010	struct kmem_cache_node *n = get_node(s, node);
1011
1012	return atomic_long_read(&n->nr_slabs);
1013}
1014
1015static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1016{
1017	return atomic_long_read(&n->nr_slabs);
1018}
1019
1020static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1021{
1022	struct kmem_cache_node *n = get_node(s, node);
1023
1024	/*
1025	 * May be called early in order to allocate a slab for the
1026	 * kmem_cache_node structure. Solve the chicken-egg
1027	 * dilemma by deferring the increment of the count during
1028	 * bootstrap (see early_kmem_cache_node_alloc).
1029	 */
1030	if (likely(n)) {
1031		atomic_long_inc(&n->nr_slabs);
1032		atomic_long_add(objects, &n->total_objects);
1033	}
1034}
1035static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1036{
1037	struct kmem_cache_node *n = get_node(s, node);
1038
1039	atomic_long_dec(&n->nr_slabs);
1040	atomic_long_sub(objects, &n->total_objects);
1041}
1042
1043/* Object debug checks for alloc/free paths */
1044static void setup_object_debug(struct kmem_cache *s, struct page *page,
1045								void *object)
1046{
1047	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1048		return;
1049
1050	init_object(s, object, SLUB_RED_INACTIVE);
1051	init_tracking(s, object);
1052}
1053
1054static inline int alloc_consistency_checks(struct kmem_cache *s,
1055					struct page *page,
1056					void *object, unsigned long addr)
1057{
1058	if (!check_slab(s, page))
1059		return 0;
1060
1061	if (!check_valid_pointer(s, page, object)) {
1062		object_err(s, page, object, "Freelist Pointer check fails");
1063		return 0;
1064	}
1065
1066	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1067		return 0;
1068
1069	return 1;
1070}
1071
1072static noinline int alloc_debug_processing(struct kmem_cache *s,
1073					struct page *page,
1074					void *object, unsigned long addr)
1075{
1076	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1077		if (!alloc_consistency_checks(s, page, object, addr))
1078			goto bad;
1079	}
1080
1081	/* Success perform special debug activities for allocs */
1082	if (s->flags & SLAB_STORE_USER)
1083		set_track(s, object, TRACK_ALLOC, addr);
1084	trace(s, page, object, 1);
1085	init_object(s, object, SLUB_RED_ACTIVE);
1086	return 1;
1087
1088bad:
1089	if (PageSlab(page)) {
1090		/*
1091		 * If this is a slab page then lets do the best we can
1092		 * to avoid issues in the future. Marking all objects
1093		 * as used avoids touching the remaining objects.
1094		 */
1095		slab_fix(s, "Marking all objects used");
1096		page->inuse = page->objects;
1097		page->freelist = NULL;
1098	}
1099	return 0;
1100}
1101
1102static inline int free_consistency_checks(struct kmem_cache *s,
1103		struct page *page, void *object, unsigned long addr)
1104{
1105	if (!check_valid_pointer(s, page, object)) {
1106		slab_err(s, page, "Invalid object pointer 0x%p", object);
1107		return 0;
1108	}
1109
1110	if (on_freelist(s, page, object)) {
1111		object_err(s, page, object, "Object already free");
1112		return 0;
1113	}
1114
1115	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1116		return 0;
1117
1118	if (unlikely(s != page->slab_cache)) {
1119		if (!PageSlab(page)) {
1120			slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1121				 object);
1122		} else if (!page->slab_cache) {
1123			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1124			       object);
1125			dump_stack();
1126		} else
1127			object_err(s, page, object,
1128					"page slab pointer corrupt.");
1129		return 0;
1130	}
1131	return 1;
1132}
1133
1134/* Supports checking bulk free of a constructed freelist */
1135static noinline int free_debug_processing(
1136	struct kmem_cache *s, struct page *page,
1137	void *head, void *tail, int bulk_cnt,
1138	unsigned long addr)
1139{
1140	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1141	void *object = head;
1142	int cnt = 0;
1143	unsigned long uninitialized_var(flags);
1144	int ret = 0;
1145
1146	spin_lock_irqsave(&n->list_lock, flags);
1147	slab_lock(page);
1148
1149	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1150		if (!check_slab(s, page))
1151			goto out;
1152	}
1153
1154next_object:
1155	cnt++;
1156
1157	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1158		if (!free_consistency_checks(s, page, object, addr))
1159			goto out;
1160	}
1161
1162	if (s->flags & SLAB_STORE_USER)
1163		set_track(s, object, TRACK_FREE, addr);
1164	trace(s, page, object, 0);
1165	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1166	init_object(s, object, SLUB_RED_INACTIVE);
1167
1168	/* Reached end of constructed freelist yet? */
1169	if (object != tail) {
1170		object = get_freepointer(s, object);
1171		goto next_object;
1172	}
1173	ret = 1;
1174
1175out:
1176	if (cnt != bulk_cnt)
1177		slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1178			 bulk_cnt, cnt);
1179
1180	slab_unlock(page);
1181	spin_unlock_irqrestore(&n->list_lock, flags);
1182	if (!ret)
1183		slab_fix(s, "Object at 0x%p not freed", object);
1184	return ret;
1185}
1186
1187static int __init setup_slub_debug(char *str)
1188{
1189	slub_debug = DEBUG_DEFAULT_FLAGS;
1190	if (*str++ != '=' || !*str)
1191		/*
1192		 * No options specified. Switch on full debugging.
1193		 */
1194		goto out;
1195
1196	if (*str == ',')
1197		/*
1198		 * No options but restriction on slabs. This means full
1199		 * debugging for slabs matching a pattern.
1200		 */
1201		goto check_slabs;
1202
1203	slub_debug = 0;
1204	if (*str == '-')
1205		/*
1206		 * Switch off all debugging measures.
1207		 */
1208		goto out;
1209
1210	/*
1211	 * Determine which debug features should be switched on
1212	 */
1213	for (; *str && *str != ','; str++) {
1214		switch (tolower(*str)) {
1215		case 'f':
1216			slub_debug |= SLAB_CONSISTENCY_CHECKS;
1217			break;
1218		case 'z':
1219			slub_debug |= SLAB_RED_ZONE;
1220			break;
1221		case 'p':
1222			slub_debug |= SLAB_POISON;
1223			break;
1224		case 'u':
1225			slub_debug |= SLAB_STORE_USER;
1226			break;
1227		case 't':
1228			slub_debug |= SLAB_TRACE;
1229			break;
1230		case 'a':
1231			slub_debug |= SLAB_FAILSLAB;
1232			break;
1233		case 'o':
1234			/*
1235			 * Avoid enabling debugging on caches if its minimum
1236			 * order would increase as a result.
1237			 */
1238			disable_higher_order_debug = 1;
1239			break;
1240		default:
1241			pr_err("slub_debug option '%c' unknown. skipped\n",
1242			       *str);
1243		}
1244	}
1245
1246check_slabs:
1247	if (*str == ',')
1248		slub_debug_slabs = str + 1;
1249out:
1250	return 1;
1251}
1252
1253__setup("slub_debug", setup_slub_debug);
1254
1255unsigned long kmem_cache_flags(unsigned long object_size,
1256	unsigned long flags, const char *name,
1257	void (*ctor)(void *))
1258{
1259	/*
1260	 * Enable debugging if selected on the kernel commandline.
1261	 */
1262	if (slub_debug && (!slub_debug_slabs || (name &&
1263		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1264		flags |= slub_debug;
1265
1266	return flags;
1267}
1268#else /* !CONFIG_SLUB_DEBUG */
1269static inline void setup_object_debug(struct kmem_cache *s,
1270			struct page *page, void *object) {}
1271
1272static inline int alloc_debug_processing(struct kmem_cache *s,
1273	struct page *page, void *object, unsigned long addr) { return 0; }
1274
1275static inline int free_debug_processing(
1276	struct kmem_cache *s, struct page *page,
1277	void *head, void *tail, int bulk_cnt,
1278	unsigned long addr) { return 0; }
1279
1280static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1281			{ return 1; }
1282static inline int check_object(struct kmem_cache *s, struct page *page,
1283			void *object, u8 val) { return 1; }
1284static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1285					struct page *page) {}
1286static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1287					struct page *page) {}
1288unsigned long kmem_cache_flags(unsigned long object_size,
1289	unsigned long flags, const char *name,
1290	void (*ctor)(void *))
1291{
1292	return flags;
1293}
1294#define slub_debug 0
1295
1296#define disable_higher_order_debug 0
1297
1298static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1299							{ return 0; }
1300static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1301							{ return 0; }
1302static inline void inc_slabs_node(struct kmem_cache *s, int node,
1303							int objects) {}
1304static inline void dec_slabs_node(struct kmem_cache *s, int node,
1305							int objects) {}
1306
1307#endif /* CONFIG_SLUB_DEBUG */
1308
1309/*
1310 * Hooks for other subsystems that check memory allocations. In a typical
1311 * production configuration these hooks all should produce no code at all.
1312 */
1313static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1314{
1315	kmemleak_alloc(ptr, size, 1, flags);
1316	kasan_kmalloc_large(ptr, size, flags);
1317}
1318
1319static inline void kfree_hook(const void *x)
1320{
1321	kmemleak_free(x);
1322	kasan_kfree_large(x);
1323}
1324
1325static inline void slab_free_hook(struct kmem_cache *s, void *x)
1326{
1327	kmemleak_free_recursive(x, s->flags);
1328
1329	/*
1330	 * Trouble is that we may no longer disable interrupts in the fast path
1331	 * So in order to make the debug calls that expect irqs to be
1332	 * disabled we need to disable interrupts temporarily.
1333	 */
1334#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1335	{
1336		unsigned long flags;
1337
1338		local_irq_save(flags);
1339		kmemcheck_slab_free(s, x, s->object_size);
1340		debug_check_no_locks_freed(x, s->object_size);
1341		local_irq_restore(flags);
1342	}
1343#endif
1344	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1345		debug_check_no_obj_freed(x, s->object_size);
1346
1347	kasan_slab_free(s, x);
 
1348}
1349
1350static inline void slab_free_freelist_hook(struct kmem_cache *s,
1351					   void *head, void *tail)
1352{
1353/*
1354 * Compiler cannot detect this function can be removed if slab_free_hook()
1355 * evaluates to nothing.  Thus, catch all relevant config debug options here.
1356 */
1357#if defined(CONFIG_KMEMCHECK) ||		\
1358	defined(CONFIG_LOCKDEP)	||		\
1359	defined(CONFIG_DEBUG_KMEMLEAK) ||	\
1360	defined(CONFIG_DEBUG_OBJECTS_FREE) ||	\
1361	defined(CONFIG_KASAN)
1362
1363	void *object = head;
1364	void *tail_obj = tail ? : head;
 
 
 
 
 
1365
1366	do {
1367		slab_free_hook(s, object);
1368	} while ((object != tail_obj) &&
1369		 (object = get_freepointer(s, object)));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1370#endif
1371}
1372
1373static void setup_object(struct kmem_cache *s, struct page *page,
1374				void *object)
1375{
1376	setup_object_debug(s, page, object);
 
1377	if (unlikely(s->ctor)) {
1378		kasan_unpoison_object_data(s, object);
1379		s->ctor(object);
1380		kasan_poison_object_data(s, object);
1381	}
1382}
1383
1384/*
1385 * Slab allocation and freeing
1386 */
1387static inline struct page *alloc_slab_page(struct kmem_cache *s,
1388		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1389{
1390	struct page *page;
1391	int order = oo_order(oo);
1392
1393	flags |= __GFP_NOTRACK;
1394
1395	if (node == NUMA_NO_NODE)
1396		page = alloc_pages(flags, order);
1397	else
1398		page = __alloc_pages_node(node, flags, order);
1399
1400	if (page && memcg_charge_slab(page, flags, order, s)) {
1401		__free_pages(page, order);
1402		page = NULL;
1403	}
1404
1405	return page;
1406}
1407
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1408static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1409{
1410	struct page *page;
1411	struct kmem_cache_order_objects oo = s->oo;
1412	gfp_t alloc_gfp;
1413	void *start, *p;
1414	int idx, order;
 
1415
1416	flags &= gfp_allowed_mask;
1417
1418	if (gfpflags_allow_blocking(flags))
1419		local_irq_enable();
1420
1421	flags |= s->allocflags;
1422
1423	/*
1424	 * Let the initial higher-order allocation fail under memory pressure
1425	 * so we fall-back to the minimum order allocation.
1426	 */
1427	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1428	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1429		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1430
1431	page = alloc_slab_page(s, alloc_gfp, node, oo);
1432	if (unlikely(!page)) {
1433		oo = s->min;
1434		alloc_gfp = flags;
1435		/*
1436		 * Allocation may have failed due to fragmentation.
1437		 * Try a lower order alloc if possible
1438		 */
1439		page = alloc_slab_page(s, alloc_gfp, node, oo);
1440		if (unlikely(!page))
1441			goto out;
1442		stat(s, ORDER_FALLBACK);
1443	}
1444
1445	if (kmemcheck_enabled &&
1446	    !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1447		int pages = 1 << oo_order(oo);
1448
1449		kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
1450
1451		/*
1452		 * Objects from caches that have a constructor don't get
1453		 * cleared when they're allocated, so we need to do it here.
1454		 */
1455		if (s->ctor)
1456			kmemcheck_mark_uninitialized_pages(page, pages);
1457		else
1458			kmemcheck_mark_unallocated_pages(page, pages);
1459	}
1460
1461	page->objects = oo_objects(oo);
1462
1463	order = compound_order(page);
1464	page->slab_cache = s;
1465	__SetPageSlab(page);
1466	if (page_is_pfmemalloc(page))
1467		SetPageSlabPfmemalloc(page);
1468
1469	start = page_address(page);
1470
1471	if (unlikely(s->flags & SLAB_POISON))
1472		memset(start, POISON_INUSE, PAGE_SIZE << order);
1473
1474	kasan_poison_slab(page);
1475
1476	for_each_object_idx(p, idx, s, start, page->objects) {
1477		setup_object(s, page, p);
1478		if (likely(idx < page->objects))
1479			set_freepointer(s, p, p + s->size);
1480		else
1481			set_freepointer(s, p, NULL);
 
 
 
 
 
1482	}
1483
1484	page->freelist = fixup_red_left(s, start);
1485	page->inuse = page->objects;
1486	page->frozen = 1;
1487
1488out:
1489	if (gfpflags_allow_blocking(flags))
1490		local_irq_disable();
1491	if (!page)
1492		return NULL;
1493
1494	mod_zone_page_state(page_zone(page),
1495		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1496		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1497		1 << oo_order(oo));
1498
1499	inc_slabs_node(s, page_to_nid(page), page->objects);
1500
1501	return page;
1502}
1503
1504static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1505{
1506	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1507		pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
1508		BUG();
 
 
 
1509	}
1510
1511	return allocate_slab(s,
1512		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1513}
1514
1515static void __free_slab(struct kmem_cache *s, struct page *page)
1516{
1517	int order = compound_order(page);
1518	int pages = 1 << order;
1519
1520	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1521		void *p;
1522
1523		slab_pad_check(s, page);
1524		for_each_object(p, s, page_address(page),
1525						page->objects)
1526			check_object(s, page, p, SLUB_RED_INACTIVE);
1527	}
1528
1529	kmemcheck_free_shadow(page, compound_order(page));
1530
1531	mod_zone_page_state(page_zone(page),
1532		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1533		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1534		-pages);
1535
1536	__ClearPageSlabPfmemalloc(page);
1537	__ClearPageSlab(page);
1538
1539	page_mapcount_reset(page);
1540	if (current->reclaim_state)
1541		current->reclaim_state->reclaimed_slab += pages;
1542	memcg_uncharge_slab(page, order, s);
1543	__free_pages(page, order);
1544}
1545
1546#define need_reserve_slab_rcu						\
1547	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1548
1549static void rcu_free_slab(struct rcu_head *h)
1550{
1551	struct page *page;
1552
1553	if (need_reserve_slab_rcu)
1554		page = virt_to_head_page(h);
1555	else
1556		page = container_of((struct list_head *)h, struct page, lru);
1557
1558	__free_slab(page->slab_cache, page);
1559}
1560
1561static void free_slab(struct kmem_cache *s, struct page *page)
1562{
1563	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1564		struct rcu_head *head;
1565
1566		if (need_reserve_slab_rcu) {
1567			int order = compound_order(page);
1568			int offset = (PAGE_SIZE << order) - s->reserved;
1569
1570			VM_BUG_ON(s->reserved != sizeof(*head));
1571			head = page_address(page) + offset;
1572		} else {
1573			head = &page->rcu_head;
1574		}
1575
1576		call_rcu(head, rcu_free_slab);
1577	} else
1578		__free_slab(s, page);
1579}
1580
1581static void discard_slab(struct kmem_cache *s, struct page *page)
1582{
1583	dec_slabs_node(s, page_to_nid(page), page->objects);
1584	free_slab(s, page);
1585}
1586
1587/*
1588 * Management of partially allocated slabs.
1589 */
1590static inline void
1591__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1592{
1593	n->nr_partial++;
1594	if (tail == DEACTIVATE_TO_TAIL)
1595		list_add_tail(&page->lru, &n->partial);
1596	else
1597		list_add(&page->lru, &n->partial);
1598}
1599
1600static inline void add_partial(struct kmem_cache_node *n,
1601				struct page *page, int tail)
1602{
1603	lockdep_assert_held(&n->list_lock);
1604	__add_partial(n, page, tail);
1605}
1606
1607static inline void remove_partial(struct kmem_cache_node *n,
1608					struct page *page)
1609{
1610	lockdep_assert_held(&n->list_lock);
1611	list_del(&page->lru);
1612	n->nr_partial--;
1613}
1614
1615/*
1616 * Remove slab from the partial list, freeze it and
1617 * return the pointer to the freelist.
1618 *
1619 * Returns a list of objects or NULL if it fails.
1620 */
1621static inline void *acquire_slab(struct kmem_cache *s,
1622		struct kmem_cache_node *n, struct page *page,
1623		int mode, int *objects)
1624{
1625	void *freelist;
1626	unsigned long counters;
1627	struct page new;
1628
1629	lockdep_assert_held(&n->list_lock);
1630
1631	/*
1632	 * Zap the freelist and set the frozen bit.
1633	 * The old freelist is the list of objects for the
1634	 * per cpu allocation list.
1635	 */
1636	freelist = page->freelist;
1637	counters = page->counters;
1638	new.counters = counters;
1639	*objects = new.objects - new.inuse;
1640	if (mode) {
1641		new.inuse = page->objects;
1642		new.freelist = NULL;
1643	} else {
1644		new.freelist = freelist;
1645	}
1646
1647	VM_BUG_ON(new.frozen);
1648	new.frozen = 1;
1649
1650	if (!__cmpxchg_double_slab(s, page,
1651			freelist, counters,
1652			new.freelist, new.counters,
1653			"acquire_slab"))
1654		return NULL;
1655
1656	remove_partial(n, page);
1657	WARN_ON(!freelist);
1658	return freelist;
1659}
1660
1661static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1662static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1663
1664/*
1665 * Try to allocate a partial slab from a specific node.
1666 */
1667static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1668				struct kmem_cache_cpu *c, gfp_t flags)
1669{
1670	struct page *page, *page2;
1671	void *object = NULL;
1672	int available = 0;
1673	int objects;
1674
1675	/*
1676	 * Racy check. If we mistakenly see no partial slabs then we
1677	 * just allocate an empty slab. If we mistakenly try to get a
1678	 * partial slab and there is none available then get_partials()
1679	 * will return NULL.
1680	 */
1681	if (!n || !n->nr_partial)
1682		return NULL;
1683
1684	spin_lock(&n->list_lock);
1685	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1686		void *t;
1687
1688		if (!pfmemalloc_match(page, flags))
1689			continue;
1690
1691		t = acquire_slab(s, n, page, object == NULL, &objects);
1692		if (!t)
1693			break;
1694
1695		available += objects;
1696		if (!object) {
1697			c->page = page;
1698			stat(s, ALLOC_FROM_PARTIAL);
1699			object = t;
1700		} else {
1701			put_cpu_partial(s, page, 0);
1702			stat(s, CPU_PARTIAL_NODE);
1703		}
1704		if (!kmem_cache_has_cpu_partial(s)
1705			|| available > s->cpu_partial / 2)
1706			break;
1707
1708	}
1709	spin_unlock(&n->list_lock);
1710	return object;
1711}
1712
1713/*
1714 * Get a page from somewhere. Search in increasing NUMA distances.
1715 */
1716static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1717		struct kmem_cache_cpu *c)
1718{
1719#ifdef CONFIG_NUMA
1720	struct zonelist *zonelist;
1721	struct zoneref *z;
1722	struct zone *zone;
1723	enum zone_type high_zoneidx = gfp_zone(flags);
1724	void *object;
1725	unsigned int cpuset_mems_cookie;
1726
1727	/*
1728	 * The defrag ratio allows a configuration of the tradeoffs between
1729	 * inter node defragmentation and node local allocations. A lower
1730	 * defrag_ratio increases the tendency to do local allocations
1731	 * instead of attempting to obtain partial slabs from other nodes.
1732	 *
1733	 * If the defrag_ratio is set to 0 then kmalloc() always
1734	 * returns node local objects. If the ratio is higher then kmalloc()
1735	 * may return off node objects because partial slabs are obtained
1736	 * from other nodes and filled up.
1737	 *
1738	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1739	 * defrag_ratio = 1000) then every (well almost) allocation will
1740	 * first attempt to defrag slab caches on other nodes. This means
1741	 * scanning over all nodes to look for partial slabs which may be
1742	 * expensive if we do it every time we are trying to find a slab
1743	 * with available objects.
1744	 */
1745	if (!s->remote_node_defrag_ratio ||
1746			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1747		return NULL;
1748
1749	do {
1750		cpuset_mems_cookie = read_mems_allowed_begin();
1751		zonelist = node_zonelist(mempolicy_slab_node(), flags);
1752		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1753			struct kmem_cache_node *n;
1754
1755			n = get_node(s, zone_to_nid(zone));
1756
1757			if (n && cpuset_zone_allowed(zone, flags) &&
1758					n->nr_partial > s->min_partial) {
1759				object = get_partial_node(s, n, c, flags);
1760				if (object) {
1761					/*
1762					 * Don't check read_mems_allowed_retry()
1763					 * here - if mems_allowed was updated in
1764					 * parallel, that was a harmless race
1765					 * between allocation and the cpuset
1766					 * update
1767					 */
1768					return object;
1769				}
1770			}
1771		}
1772	} while (read_mems_allowed_retry(cpuset_mems_cookie));
1773#endif
1774	return NULL;
1775}
1776
1777/*
1778 * Get a partial page, lock it and return it.
1779 */
1780static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1781		struct kmem_cache_cpu *c)
1782{
1783	void *object;
1784	int searchnode = node;
1785
1786	if (node == NUMA_NO_NODE)
1787		searchnode = numa_mem_id();
1788	else if (!node_present_pages(node))
1789		searchnode = node_to_mem_node(node);
1790
1791	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1792	if (object || node != NUMA_NO_NODE)
1793		return object;
1794
1795	return get_any_partial(s, flags, c);
1796}
1797
1798#ifdef CONFIG_PREEMPT
1799/*
1800 * Calculate the next globally unique transaction for disambiguiation
1801 * during cmpxchg. The transactions start with the cpu number and are then
1802 * incremented by CONFIG_NR_CPUS.
1803 */
1804#define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
1805#else
1806/*
1807 * No preemption supported therefore also no need to check for
1808 * different cpus.
1809 */
1810#define TID_STEP 1
1811#endif
1812
1813static inline unsigned long next_tid(unsigned long tid)
1814{
1815	return tid + TID_STEP;
1816}
1817
1818static inline unsigned int tid_to_cpu(unsigned long tid)
1819{
1820	return tid % TID_STEP;
1821}
1822
1823static inline unsigned long tid_to_event(unsigned long tid)
1824{
1825	return tid / TID_STEP;
1826}
1827
1828static inline unsigned int init_tid(int cpu)
1829{
1830	return cpu;
1831}
1832
1833static inline void note_cmpxchg_failure(const char *n,
1834		const struct kmem_cache *s, unsigned long tid)
1835{
1836#ifdef SLUB_DEBUG_CMPXCHG
1837	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1838
1839	pr_info("%s %s: cmpxchg redo ", n, s->name);
1840
1841#ifdef CONFIG_PREEMPT
1842	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1843		pr_warn("due to cpu change %d -> %d\n",
1844			tid_to_cpu(tid), tid_to_cpu(actual_tid));
1845	else
1846#endif
1847	if (tid_to_event(tid) != tid_to_event(actual_tid))
1848		pr_warn("due to cpu running other code. Event %ld->%ld\n",
1849			tid_to_event(tid), tid_to_event(actual_tid));
1850	else
1851		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1852			actual_tid, tid, next_tid(tid));
1853#endif
1854	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1855}
1856
1857static void init_kmem_cache_cpus(struct kmem_cache *s)
1858{
1859	int cpu;
1860
1861	for_each_possible_cpu(cpu)
1862		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1863}
1864
1865/*
1866 * Remove the cpu slab
1867 */
1868static void deactivate_slab(struct kmem_cache *s, struct page *page,
1869				void *freelist)
1870{
1871	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1872	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1873	int lock = 0;
1874	enum slab_modes l = M_NONE, m = M_NONE;
1875	void *nextfree;
1876	int tail = DEACTIVATE_TO_HEAD;
1877	struct page new;
1878	struct page old;
1879
1880	if (page->freelist) {
1881		stat(s, DEACTIVATE_REMOTE_FREES);
1882		tail = DEACTIVATE_TO_TAIL;
1883	}
1884
1885	/*
1886	 * Stage one: Free all available per cpu objects back
1887	 * to the page freelist while it is still frozen. Leave the
1888	 * last one.
1889	 *
1890	 * There is no need to take the list->lock because the page
1891	 * is still frozen.
1892	 */
1893	while (freelist && (nextfree = get_freepointer(s, freelist))) {
1894		void *prior;
1895		unsigned long counters;
1896
1897		do {
1898			prior = page->freelist;
1899			counters = page->counters;
1900			set_freepointer(s, freelist, prior);
1901			new.counters = counters;
1902			new.inuse--;
1903			VM_BUG_ON(!new.frozen);
1904
1905		} while (!__cmpxchg_double_slab(s, page,
1906			prior, counters,
1907			freelist, new.counters,
1908			"drain percpu freelist"));
1909
1910		freelist = nextfree;
1911	}
1912
1913	/*
1914	 * Stage two: Ensure that the page is unfrozen while the
1915	 * list presence reflects the actual number of objects
1916	 * during unfreeze.
1917	 *
1918	 * We setup the list membership and then perform a cmpxchg
1919	 * with the count. If there is a mismatch then the page
1920	 * is not unfrozen but the page is on the wrong list.
1921	 *
1922	 * Then we restart the process which may have to remove
1923	 * the page from the list that we just put it on again
1924	 * because the number of objects in the slab may have
1925	 * changed.
1926	 */
1927redo:
1928
1929	old.freelist = page->freelist;
1930	old.counters = page->counters;
1931	VM_BUG_ON(!old.frozen);
1932
1933	/* Determine target state of the slab */
1934	new.counters = old.counters;
1935	if (freelist) {
1936		new.inuse--;
1937		set_freepointer(s, freelist, old.freelist);
1938		new.freelist = freelist;
1939	} else
1940		new.freelist = old.freelist;
1941
1942	new.frozen = 0;
1943
1944	if (!new.inuse && n->nr_partial >= s->min_partial)
1945		m = M_FREE;
1946	else if (new.freelist) {
1947		m = M_PARTIAL;
1948		if (!lock) {
1949			lock = 1;
1950			/*
1951			 * Taking the spinlock removes the possiblity
1952			 * that acquire_slab() will see a slab page that
1953			 * is frozen
1954			 */
1955			spin_lock(&n->list_lock);
1956		}
1957	} else {
1958		m = M_FULL;
1959		if (kmem_cache_debug(s) && !lock) {
1960			lock = 1;
1961			/*
1962			 * This also ensures that the scanning of full
1963			 * slabs from diagnostic functions will not see
1964			 * any frozen slabs.
1965			 */
1966			spin_lock(&n->list_lock);
1967		}
1968	}
1969
1970	if (l != m) {
1971
1972		if (l == M_PARTIAL)
1973
1974			remove_partial(n, page);
1975
1976		else if (l == M_FULL)
1977
1978			remove_full(s, n, page);
1979
1980		if (m == M_PARTIAL) {
1981
1982			add_partial(n, page, tail);
1983			stat(s, tail);
1984
1985		} else if (m == M_FULL) {
1986
1987			stat(s, DEACTIVATE_FULL);
1988			add_full(s, n, page);
1989
1990		}
1991	}
1992
1993	l = m;
1994	if (!__cmpxchg_double_slab(s, page,
1995				old.freelist, old.counters,
1996				new.freelist, new.counters,
1997				"unfreezing slab"))
1998		goto redo;
1999
2000	if (lock)
2001		spin_unlock(&n->list_lock);
2002
2003	if (m == M_FREE) {
2004		stat(s, DEACTIVATE_EMPTY);
2005		discard_slab(s, page);
2006		stat(s, FREE_SLAB);
2007	}
 
 
 
2008}
2009
2010/*
2011 * Unfreeze all the cpu partial slabs.
2012 *
2013 * This function must be called with interrupts disabled
2014 * for the cpu using c (or some other guarantee must be there
2015 * to guarantee no concurrent accesses).
2016 */
2017static void unfreeze_partials(struct kmem_cache *s,
2018		struct kmem_cache_cpu *c)
2019{
2020#ifdef CONFIG_SLUB_CPU_PARTIAL
2021	struct kmem_cache_node *n = NULL, *n2 = NULL;
2022	struct page *page, *discard_page = NULL;
2023
2024	while ((page = c->partial)) {
2025		struct page new;
2026		struct page old;
2027
2028		c->partial = page->next;
2029
2030		n2 = get_node(s, page_to_nid(page));
2031		if (n != n2) {
2032			if (n)
2033				spin_unlock(&n->list_lock);
2034
2035			n = n2;
2036			spin_lock(&n->list_lock);
2037		}
2038
2039		do {
2040
2041			old.freelist = page->freelist;
2042			old.counters = page->counters;
2043			VM_BUG_ON(!old.frozen);
2044
2045			new.counters = old.counters;
2046			new.freelist = old.freelist;
2047
2048			new.frozen = 0;
2049
2050		} while (!__cmpxchg_double_slab(s, page,
2051				old.freelist, old.counters,
2052				new.freelist, new.counters,
2053				"unfreezing slab"));
2054
2055		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2056			page->next = discard_page;
2057			discard_page = page;
2058		} else {
2059			add_partial(n, page, DEACTIVATE_TO_TAIL);
2060			stat(s, FREE_ADD_PARTIAL);
2061		}
2062	}
2063
2064	if (n)
2065		spin_unlock(&n->list_lock);
2066
2067	while (discard_page) {
2068		page = discard_page;
2069		discard_page = discard_page->next;
2070
2071		stat(s, DEACTIVATE_EMPTY);
2072		discard_slab(s, page);
2073		stat(s, FREE_SLAB);
2074	}
2075#endif
2076}
2077
2078/*
2079 * Put a page that was just frozen (in __slab_free) into a partial page
2080 * slot if available. This is done without interrupts disabled and without
2081 * preemption disabled. The cmpxchg is racy and may put the partial page
2082 * onto a random cpus partial slot.
2083 *
2084 * If we did not find a slot then simply move all the partials to the
2085 * per node partial list.
2086 */
2087static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2088{
2089#ifdef CONFIG_SLUB_CPU_PARTIAL
2090	struct page *oldpage;
2091	int pages;
2092	int pobjects;
2093
2094	preempt_disable();
2095	do {
2096		pages = 0;
2097		pobjects = 0;
2098		oldpage = this_cpu_read(s->cpu_slab->partial);
2099
2100		if (oldpage) {
2101			pobjects = oldpage->pobjects;
2102			pages = oldpage->pages;
2103			if (drain && pobjects > s->cpu_partial) {
2104				unsigned long flags;
2105				/*
2106				 * partial array is full. Move the existing
2107				 * set to the per node partial list.
2108				 */
2109				local_irq_save(flags);
2110				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2111				local_irq_restore(flags);
2112				oldpage = NULL;
2113				pobjects = 0;
2114				pages = 0;
2115				stat(s, CPU_PARTIAL_DRAIN);
2116			}
2117		}
2118
2119		pages++;
2120		pobjects += page->objects - page->inuse;
2121
2122		page->pages = pages;
2123		page->pobjects = pobjects;
2124		page->next = oldpage;
2125
2126	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2127								!= oldpage);
2128	if (unlikely(!s->cpu_partial)) {
2129		unsigned long flags;
2130
2131		local_irq_save(flags);
2132		unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2133		local_irq_restore(flags);
2134	}
2135	preempt_enable();
2136#endif
2137}
2138
2139static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2140{
2141	stat(s, CPUSLAB_FLUSH);
2142	deactivate_slab(s, c->page, c->freelist);
2143
2144	c->tid = next_tid(c->tid);
2145	c->page = NULL;
2146	c->freelist = NULL;
2147}
2148
2149/*
2150 * Flush cpu slab.
2151 *
2152 * Called from IPI handler with interrupts disabled.
2153 */
2154static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2155{
2156	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2157
2158	if (likely(c)) {
2159		if (c->page)
2160			flush_slab(s, c);
2161
2162		unfreeze_partials(s, c);
2163	}
2164}
2165
2166static void flush_cpu_slab(void *d)
2167{
2168	struct kmem_cache *s = d;
2169
2170	__flush_cpu_slab(s, smp_processor_id());
2171}
2172
2173static bool has_cpu_slab(int cpu, void *info)
2174{
2175	struct kmem_cache *s = info;
2176	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2177
2178	return c->page || c->partial;
2179}
2180
2181static void flush_all(struct kmem_cache *s)
2182{
2183	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2184}
2185
2186/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2187 * Check if the objects in a per cpu structure fit numa
2188 * locality expectations.
2189 */
2190static inline int node_match(struct page *page, int node)
2191{
2192#ifdef CONFIG_NUMA
2193	if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2194		return 0;
2195#endif
2196	return 1;
2197}
2198
2199#ifdef CONFIG_SLUB_DEBUG
2200static int count_free(struct page *page)
2201{
2202	return page->objects - page->inuse;
2203}
2204
2205static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2206{
2207	return atomic_long_read(&n->total_objects);
2208}
2209#endif /* CONFIG_SLUB_DEBUG */
2210
2211#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2212static unsigned long count_partial(struct kmem_cache_node *n,
2213					int (*get_count)(struct page *))
2214{
2215	unsigned long flags;
2216	unsigned long x = 0;
2217	struct page *page;
2218
2219	spin_lock_irqsave(&n->list_lock, flags);
2220	list_for_each_entry(page, &n->partial, lru)
2221		x += get_count(page);
2222	spin_unlock_irqrestore(&n->list_lock, flags);
2223	return x;
2224}
2225#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2226
2227static noinline void
2228slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2229{
2230#ifdef CONFIG_SLUB_DEBUG
2231	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2232				      DEFAULT_RATELIMIT_BURST);
2233	int node;
2234	struct kmem_cache_node *n;
2235
2236	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2237		return;
2238
2239	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2240		nid, gfpflags, &gfpflags);
2241	pr_warn("  cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2242		s->name, s->object_size, s->size, oo_order(s->oo),
2243		oo_order(s->min));
2244
2245	if (oo_order(s->min) > get_order(s->object_size))
2246		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
2247			s->name);
2248
2249	for_each_kmem_cache_node(s, node, n) {
2250		unsigned long nr_slabs;
2251		unsigned long nr_objs;
2252		unsigned long nr_free;
2253
2254		nr_free  = count_partial(n, count_free);
2255		nr_slabs = node_nr_slabs(n);
2256		nr_objs  = node_nr_objs(n);
2257
2258		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2259			node, nr_slabs, nr_objs, nr_free);
2260	}
2261#endif
2262}
2263
2264static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2265			int node, struct kmem_cache_cpu **pc)
2266{
2267	void *freelist;
2268	struct kmem_cache_cpu *c = *pc;
2269	struct page *page;
2270
2271	freelist = get_partial(s, flags, node, c);
2272
2273	if (freelist)
2274		return freelist;
2275
2276	page = new_slab(s, flags, node);
2277	if (page) {
2278		c = raw_cpu_ptr(s->cpu_slab);
2279		if (c->page)
2280			flush_slab(s, c);
2281
2282		/*
2283		 * No other reference to the page yet so we can
2284		 * muck around with it freely without cmpxchg
2285		 */
2286		freelist = page->freelist;
2287		page->freelist = NULL;
2288
2289		stat(s, ALLOC_SLAB);
2290		c->page = page;
2291		*pc = c;
2292	} else
2293		freelist = NULL;
2294
2295	return freelist;
2296}
2297
2298static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2299{
2300	if (unlikely(PageSlabPfmemalloc(page)))
2301		return gfp_pfmemalloc_allowed(gfpflags);
2302
2303	return true;
2304}
2305
2306/*
2307 * Check the page->freelist of a page and either transfer the freelist to the
2308 * per cpu freelist or deactivate the page.
2309 *
2310 * The page is still frozen if the return value is not NULL.
2311 *
2312 * If this function returns NULL then the page has been unfrozen.
2313 *
2314 * This function must be called with interrupt disabled.
2315 */
2316static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2317{
2318	struct page new;
2319	unsigned long counters;
2320	void *freelist;
2321
2322	do {
2323		freelist = page->freelist;
2324		counters = page->counters;
2325
2326		new.counters = counters;
2327		VM_BUG_ON(!new.frozen);
2328
2329		new.inuse = page->objects;
2330		new.frozen = freelist != NULL;
2331
2332	} while (!__cmpxchg_double_slab(s, page,
2333		freelist, counters,
2334		NULL, new.counters,
2335		"get_freelist"));
2336
2337	return freelist;
2338}
2339
2340/*
2341 * Slow path. The lockless freelist is empty or we need to perform
2342 * debugging duties.
2343 *
2344 * Processing is still very fast if new objects have been freed to the
2345 * regular freelist. In that case we simply take over the regular freelist
2346 * as the lockless freelist and zap the regular freelist.
2347 *
2348 * If that is not working then we fall back to the partial lists. We take the
2349 * first element of the freelist as the object to allocate now and move the
2350 * rest of the freelist to the lockless freelist.
2351 *
2352 * And if we were unable to get a new slab from the partial slab lists then
2353 * we need to allocate a new slab. This is the slowest path since it involves
2354 * a call to the page allocator and the setup of a new slab.
2355 *
2356 * Version of __slab_alloc to use when we know that interrupts are
2357 * already disabled (which is the case for bulk allocation).
2358 */
2359static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2360			  unsigned long addr, struct kmem_cache_cpu *c)
2361{
2362	void *freelist;
2363	struct page *page;
2364
2365	page = c->page;
2366	if (!page)
2367		goto new_slab;
2368redo:
2369
2370	if (unlikely(!node_match(page, node))) {
2371		int searchnode = node;
2372
2373		if (node != NUMA_NO_NODE && !node_present_pages(node))
2374			searchnode = node_to_mem_node(node);
2375
2376		if (unlikely(!node_match(page, searchnode))) {
2377			stat(s, ALLOC_NODE_MISMATCH);
2378			deactivate_slab(s, page, c->freelist);
2379			c->page = NULL;
2380			c->freelist = NULL;
2381			goto new_slab;
2382		}
2383	}
2384
2385	/*
2386	 * By rights, we should be searching for a slab page that was
2387	 * PFMEMALLOC but right now, we are losing the pfmemalloc
2388	 * information when the page leaves the per-cpu allocator
2389	 */
2390	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2391		deactivate_slab(s, page, c->freelist);
2392		c->page = NULL;
2393		c->freelist = NULL;
2394		goto new_slab;
2395	}
2396
2397	/* must check again c->freelist in case of cpu migration or IRQ */
2398	freelist = c->freelist;
2399	if (freelist)
2400		goto load_freelist;
2401
2402	freelist = get_freelist(s, page);
2403
2404	if (!freelist) {
2405		c->page = NULL;
2406		stat(s, DEACTIVATE_BYPASS);
2407		goto new_slab;
2408	}
2409
2410	stat(s, ALLOC_REFILL);
2411
2412load_freelist:
2413	/*
2414	 * freelist is pointing to the list of objects to be used.
2415	 * page is pointing to the page from which the objects are obtained.
2416	 * That page must be frozen for per cpu allocations to work.
2417	 */
2418	VM_BUG_ON(!c->page->frozen);
2419	c->freelist = get_freepointer(s, freelist);
2420	c->tid = next_tid(c->tid);
2421	return freelist;
2422
2423new_slab:
2424
2425	if (c->partial) {
2426		page = c->page = c->partial;
2427		c->partial = page->next;
2428		stat(s, CPU_PARTIAL_ALLOC);
2429		c->freelist = NULL;
2430		goto redo;
2431	}
2432
2433	freelist = new_slab_objects(s, gfpflags, node, &c);
2434
2435	if (unlikely(!freelist)) {
2436		slab_out_of_memory(s, gfpflags, node);
2437		return NULL;
2438	}
2439
2440	page = c->page;
2441	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2442		goto load_freelist;
2443
2444	/* Only entered in the debug case */
2445	if (kmem_cache_debug(s) &&
2446			!alloc_debug_processing(s, page, freelist, addr))
2447		goto new_slab;	/* Slab failed checks. Next slab needed */
2448
2449	deactivate_slab(s, page, get_freepointer(s, freelist));
2450	c->page = NULL;
2451	c->freelist = NULL;
2452	return freelist;
2453}
2454
2455/*
2456 * Another one that disabled interrupt and compensates for possible
2457 * cpu changes by refetching the per cpu area pointer.
2458 */
2459static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2460			  unsigned long addr, struct kmem_cache_cpu *c)
2461{
2462	void *p;
2463	unsigned long flags;
2464
2465	local_irq_save(flags);
2466#ifdef CONFIG_PREEMPT
2467	/*
2468	 * We may have been preempted and rescheduled on a different
2469	 * cpu before disabling interrupts. Need to reload cpu area
2470	 * pointer.
2471	 */
2472	c = this_cpu_ptr(s->cpu_slab);
2473#endif
2474
2475	p = ___slab_alloc(s, gfpflags, node, addr, c);
2476	local_irq_restore(flags);
2477	return p;
2478}
2479
2480/*
2481 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2482 * have the fastpath folded into their functions. So no function call
2483 * overhead for requests that can be satisfied on the fastpath.
2484 *
2485 * The fastpath works by first checking if the lockless freelist can be used.
2486 * If not then __slab_alloc is called for slow processing.
2487 *
2488 * Otherwise we can simply pick the next object from the lockless free list.
2489 */
2490static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2491		gfp_t gfpflags, int node, unsigned long addr)
2492{
2493	void *object;
2494	struct kmem_cache_cpu *c;
2495	struct page *page;
2496	unsigned long tid;
2497
2498	s = slab_pre_alloc_hook(s, gfpflags);
2499	if (!s)
2500		return NULL;
2501redo:
2502	/*
2503	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2504	 * enabled. We may switch back and forth between cpus while
2505	 * reading from one cpu area. That does not matter as long
2506	 * as we end up on the original cpu again when doing the cmpxchg.
2507	 *
2508	 * We should guarantee that tid and kmem_cache are retrieved on
2509	 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2510	 * to check if it is matched or not.
2511	 */
2512	do {
2513		tid = this_cpu_read(s->cpu_slab->tid);
2514		c = raw_cpu_ptr(s->cpu_slab);
2515	} while (IS_ENABLED(CONFIG_PREEMPT) &&
2516		 unlikely(tid != READ_ONCE(c->tid)));
2517
2518	/*
2519	 * Irqless object alloc/free algorithm used here depends on sequence
2520	 * of fetching cpu_slab's data. tid should be fetched before anything
2521	 * on c to guarantee that object and page associated with previous tid
2522	 * won't be used with current tid. If we fetch tid first, object and
2523	 * page could be one associated with next tid and our alloc/free
2524	 * request will be failed. In this case, we will retry. So, no problem.
2525	 */
2526	barrier();
2527
2528	/*
2529	 * The transaction ids are globally unique per cpu and per operation on
2530	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2531	 * occurs on the right processor and that there was no operation on the
2532	 * linked list in between.
2533	 */
2534
2535	object = c->freelist;
2536	page = c->page;
2537	if (unlikely(!object || !node_match(page, node))) {
2538		object = __slab_alloc(s, gfpflags, node, addr, c);
2539		stat(s, ALLOC_SLOWPATH);
2540	} else {
2541		void *next_object = get_freepointer_safe(s, object);
2542
2543		/*
2544		 * The cmpxchg will only match if there was no additional
2545		 * operation and if we are on the right processor.
2546		 *
2547		 * The cmpxchg does the following atomically (without lock
2548		 * semantics!)
2549		 * 1. Relocate first pointer to the current per cpu area.
2550		 * 2. Verify that tid and freelist have not been changed
2551		 * 3. If they were not changed replace tid and freelist
2552		 *
2553		 * Since this is without lock semantics the protection is only
2554		 * against code executing on this cpu *not* from access by
2555		 * other cpus.
2556		 */
2557		if (unlikely(!this_cpu_cmpxchg_double(
2558				s->cpu_slab->freelist, s->cpu_slab->tid,
2559				object, tid,
2560				next_object, next_tid(tid)))) {
2561
2562			note_cmpxchg_failure("slab_alloc", s, tid);
2563			goto redo;
2564		}
2565		prefetch_freepointer(s, next_object);
2566		stat(s, ALLOC_FASTPATH);
2567	}
2568
2569	if (unlikely(gfpflags & __GFP_ZERO) && object)
2570		memset(object, 0, s->object_size);
2571
2572	slab_post_alloc_hook(s, gfpflags, 1, &object);
2573
2574	return object;
2575}
2576
2577static __always_inline void *slab_alloc(struct kmem_cache *s,
2578		gfp_t gfpflags, unsigned long addr)
2579{
2580	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2581}
2582
2583void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2584{
2585	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2586
2587	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2588				s->size, gfpflags);
2589
2590	return ret;
2591}
2592EXPORT_SYMBOL(kmem_cache_alloc);
2593
2594#ifdef CONFIG_TRACING
2595void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2596{
2597	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2598	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2599	kasan_kmalloc(s, ret, size, gfpflags);
2600	return ret;
2601}
2602EXPORT_SYMBOL(kmem_cache_alloc_trace);
2603#endif
2604
2605#ifdef CONFIG_NUMA
2606void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2607{
2608	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2609
2610	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2611				    s->object_size, s->size, gfpflags, node);
2612
2613	return ret;
2614}
2615EXPORT_SYMBOL(kmem_cache_alloc_node);
2616
2617#ifdef CONFIG_TRACING
2618void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2619				    gfp_t gfpflags,
2620				    int node, size_t size)
2621{
2622	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2623
2624	trace_kmalloc_node(_RET_IP_, ret,
2625			   size, s->size, gfpflags, node);
2626
2627	kasan_kmalloc(s, ret, size, gfpflags);
2628	return ret;
2629}
2630EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2631#endif
2632#endif
2633
2634/*
2635 * Slow path handling. This may still be called frequently since objects
2636 * have a longer lifetime than the cpu slabs in most processing loads.
2637 *
2638 * So we still attempt to reduce cache line usage. Just take the slab
2639 * lock and free the item. If there is no additional partial page
2640 * handling required then we can return immediately.
2641 */
2642static void __slab_free(struct kmem_cache *s, struct page *page,
2643			void *head, void *tail, int cnt,
2644			unsigned long addr)
2645
2646{
2647	void *prior;
2648	int was_frozen;
2649	struct page new;
2650	unsigned long counters;
2651	struct kmem_cache_node *n = NULL;
2652	unsigned long uninitialized_var(flags);
2653
2654	stat(s, FREE_SLOWPATH);
2655
2656	if (kmem_cache_debug(s) &&
2657	    !free_debug_processing(s, page, head, tail, cnt, addr))
2658		return;
2659
2660	do {
2661		if (unlikely(n)) {
2662			spin_unlock_irqrestore(&n->list_lock, flags);
2663			n = NULL;
2664		}
2665		prior = page->freelist;
2666		counters = page->counters;
2667		set_freepointer(s, tail, prior);
2668		new.counters = counters;
2669		was_frozen = new.frozen;
2670		new.inuse -= cnt;
2671		if ((!new.inuse || !prior) && !was_frozen) {
2672
2673			if (kmem_cache_has_cpu_partial(s) && !prior) {
2674
2675				/*
2676				 * Slab was on no list before and will be
2677				 * partially empty
2678				 * We can defer the list move and instead
2679				 * freeze it.
2680				 */
2681				new.frozen = 1;
2682
2683			} else { /* Needs to be taken off a list */
2684
2685				n = get_node(s, page_to_nid(page));
2686				/*
2687				 * Speculatively acquire the list_lock.
2688				 * If the cmpxchg does not succeed then we may
2689				 * drop the list_lock without any processing.
2690				 *
2691				 * Otherwise the list_lock will synchronize with
2692				 * other processors updating the list of slabs.
2693				 */
2694				spin_lock_irqsave(&n->list_lock, flags);
2695
2696			}
2697		}
2698
2699	} while (!cmpxchg_double_slab(s, page,
2700		prior, counters,
2701		head, new.counters,
2702		"__slab_free"));
2703
2704	if (likely(!n)) {
2705
2706		/*
2707		 * If we just froze the page then put it onto the
2708		 * per cpu partial list.
2709		 */
2710		if (new.frozen && !was_frozen) {
2711			put_cpu_partial(s, page, 1);
2712			stat(s, CPU_PARTIAL_FREE);
2713		}
2714		/*
2715		 * The list lock was not taken therefore no list
2716		 * activity can be necessary.
2717		 */
2718		if (was_frozen)
2719			stat(s, FREE_FROZEN);
2720		return;
2721	}
2722
2723	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2724		goto slab_empty;
2725
2726	/*
2727	 * Objects left in the slab. If it was not on the partial list before
2728	 * then add it.
2729	 */
2730	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2731		if (kmem_cache_debug(s))
2732			remove_full(s, n, page);
2733		add_partial(n, page, DEACTIVATE_TO_TAIL);
2734		stat(s, FREE_ADD_PARTIAL);
2735	}
2736	spin_unlock_irqrestore(&n->list_lock, flags);
2737	return;
2738
2739slab_empty:
2740	if (prior) {
2741		/*
2742		 * Slab on the partial list.
2743		 */
2744		remove_partial(n, page);
2745		stat(s, FREE_REMOVE_PARTIAL);
2746	} else {
2747		/* Slab must be on the full list */
2748		remove_full(s, n, page);
2749	}
2750
2751	spin_unlock_irqrestore(&n->list_lock, flags);
2752	stat(s, FREE_SLAB);
2753	discard_slab(s, page);
2754}
2755
2756/*
2757 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2758 * can perform fastpath freeing without additional function calls.
2759 *
2760 * The fastpath is only possible if we are freeing to the current cpu slab
2761 * of this processor. This typically the case if we have just allocated
2762 * the item before.
2763 *
2764 * If fastpath is not possible then fall back to __slab_free where we deal
2765 * with all sorts of special processing.
2766 *
2767 * Bulk free of a freelist with several objects (all pointing to the
2768 * same page) possible by specifying head and tail ptr, plus objects
2769 * count (cnt). Bulk free indicated by tail pointer being set.
2770 */
2771static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2772				      void *head, void *tail, int cnt,
2773				      unsigned long addr)
2774{
2775	void *tail_obj = tail ? : head;
2776	struct kmem_cache_cpu *c;
2777	unsigned long tid;
2778
2779	slab_free_freelist_hook(s, head, tail);
2780
2781redo:
2782	/*
2783	 * Determine the currently cpus per cpu slab.
2784	 * The cpu may change afterward. However that does not matter since
2785	 * data is retrieved via this pointer. If we are on the same cpu
2786	 * during the cmpxchg then the free will succeed.
2787	 */
2788	do {
2789		tid = this_cpu_read(s->cpu_slab->tid);
2790		c = raw_cpu_ptr(s->cpu_slab);
2791	} while (IS_ENABLED(CONFIG_PREEMPT) &&
2792		 unlikely(tid != READ_ONCE(c->tid)));
2793
2794	/* Same with comment on barrier() in slab_alloc_node() */
2795	barrier();
2796
2797	if (likely(page == c->page)) {
2798		set_freepointer(s, tail_obj, c->freelist);
2799
2800		if (unlikely(!this_cpu_cmpxchg_double(
2801				s->cpu_slab->freelist, s->cpu_slab->tid,
2802				c->freelist, tid,
2803				head, next_tid(tid)))) {
2804
2805			note_cmpxchg_failure("slab_free", s, tid);
2806			goto redo;
2807		}
2808		stat(s, FREE_FASTPATH);
2809	} else
2810		__slab_free(s, page, head, tail_obj, cnt, addr);
2811
2812}
2813
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2814void kmem_cache_free(struct kmem_cache *s, void *x)
2815{
2816	s = cache_from_obj(s, x);
2817	if (!s)
2818		return;
2819	slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
2820	trace_kmem_cache_free(_RET_IP_, x);
2821}
2822EXPORT_SYMBOL(kmem_cache_free);
2823
2824struct detached_freelist {
2825	struct page *page;
2826	void *tail;
2827	void *freelist;
2828	int cnt;
2829	struct kmem_cache *s;
2830};
2831
2832/*
2833 * This function progressively scans the array with free objects (with
2834 * a limited look ahead) and extract objects belonging to the same
2835 * page.  It builds a detached freelist directly within the given
2836 * page/objects.  This can happen without any need for
2837 * synchronization, because the objects are owned by running process.
2838 * The freelist is build up as a single linked list in the objects.
2839 * The idea is, that this detached freelist can then be bulk
2840 * transferred to the real freelist(s), but only requiring a single
2841 * synchronization primitive.  Look ahead in the array is limited due
2842 * to performance reasons.
2843 */
2844static inline
2845int build_detached_freelist(struct kmem_cache *s, size_t size,
2846			    void **p, struct detached_freelist *df)
2847{
2848	size_t first_skipped_index = 0;
2849	int lookahead = 3;
2850	void *object;
2851	struct page *page;
2852
2853	/* Always re-init detached_freelist */
2854	df->page = NULL;
2855
2856	do {
2857		object = p[--size];
2858		/* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
2859	} while (!object && size);
2860
2861	if (!object)
2862		return 0;
2863
2864	page = virt_to_head_page(object);
2865	if (!s) {
2866		/* Handle kalloc'ed objects */
2867		if (unlikely(!PageSlab(page))) {
2868			BUG_ON(!PageCompound(page));
2869			kfree_hook(object);
2870			__free_kmem_pages(page, compound_order(page));
2871			p[size] = NULL; /* mark object processed */
2872			return size;
2873		}
2874		/* Derive kmem_cache from object */
2875		df->s = page->slab_cache;
2876	} else {
2877		df->s = cache_from_obj(s, object); /* Support for memcg */
2878	}
2879
2880	/* Start new detached freelist */
2881	df->page = page;
2882	set_freepointer(df->s, object, NULL);
2883	df->tail = object;
2884	df->freelist = object;
2885	p[size] = NULL; /* mark object processed */
2886	df->cnt = 1;
2887
2888	while (size) {
2889		object = p[--size];
2890		if (!object)
2891			continue; /* Skip processed objects */
2892
2893		/* df->page is always set at this point */
2894		if (df->page == virt_to_head_page(object)) {
2895			/* Opportunity build freelist */
2896			set_freepointer(df->s, object, df->freelist);
2897			df->freelist = object;
2898			df->cnt++;
2899			p[size] = NULL; /* mark object processed */
2900
2901			continue;
2902		}
2903
2904		/* Limit look ahead search */
2905		if (!--lookahead)
2906			break;
2907
2908		if (!first_skipped_index)
2909			first_skipped_index = size + 1;
2910	}
2911
2912	return first_skipped_index;
2913}
2914
2915/* Note that interrupts must be enabled when calling this function. */
2916void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
2917{
2918	if (WARN_ON(!size))
2919		return;
2920
2921	do {
2922		struct detached_freelist df;
2923
2924		size = build_detached_freelist(s, size, p, &df);
2925		if (unlikely(!df.page))
2926			continue;
2927
2928		slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
2929	} while (likely(size));
2930}
2931EXPORT_SYMBOL(kmem_cache_free_bulk);
2932
2933/* Note that interrupts must be enabled when calling this function. */
2934int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
2935			  void **p)
2936{
2937	struct kmem_cache_cpu *c;
2938	int i;
2939
2940	/* memcg and kmem_cache debug support */
2941	s = slab_pre_alloc_hook(s, flags);
2942	if (unlikely(!s))
2943		return false;
2944	/*
2945	 * Drain objects in the per cpu slab, while disabling local
2946	 * IRQs, which protects against PREEMPT and interrupts
2947	 * handlers invoking normal fastpath.
2948	 */
2949	local_irq_disable();
2950	c = this_cpu_ptr(s->cpu_slab);
2951
2952	for (i = 0; i < size; i++) {
2953		void *object = c->freelist;
2954
2955		if (unlikely(!object)) {
2956			/*
2957			 * Invoking slow path likely have side-effect
2958			 * of re-populating per CPU c->freelist
2959			 */
2960			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
2961					    _RET_IP_, c);
2962			if (unlikely(!p[i]))
2963				goto error;
2964
2965			c = this_cpu_ptr(s->cpu_slab);
2966			continue; /* goto for-loop */
2967		}
2968		c->freelist = get_freepointer(s, object);
2969		p[i] = object;
2970	}
2971	c->tid = next_tid(c->tid);
2972	local_irq_enable();
2973
2974	/* Clear memory outside IRQ disabled fastpath loop */
2975	if (unlikely(flags & __GFP_ZERO)) {
2976		int j;
2977
2978		for (j = 0; j < i; j++)
2979			memset(p[j], 0, s->object_size);
2980	}
2981
2982	/* memcg and kmem_cache debug support */
2983	slab_post_alloc_hook(s, flags, size, p);
2984	return i;
2985error:
2986	local_irq_enable();
2987	slab_post_alloc_hook(s, flags, i, p);
2988	__kmem_cache_free_bulk(s, i, p);
2989	return 0;
2990}
2991EXPORT_SYMBOL(kmem_cache_alloc_bulk);
2992
2993
2994/*
2995 * Object placement in a slab is made very easy because we always start at
2996 * offset 0. If we tune the size of the object to the alignment then we can
2997 * get the required alignment by putting one properly sized object after
2998 * another.
2999 *
3000 * Notice that the allocation order determines the sizes of the per cpu
3001 * caches. Each processor has always one slab available for allocations.
3002 * Increasing the allocation order reduces the number of times that slabs
3003 * must be moved on and off the partial lists and is therefore a factor in
3004 * locking overhead.
3005 */
3006
3007/*
3008 * Mininum / Maximum order of slab pages. This influences locking overhead
3009 * and slab fragmentation. A higher order reduces the number of partial slabs
3010 * and increases the number of allocations possible without having to
3011 * take the list_lock.
3012 */
3013static int slub_min_order;
3014static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3015static int slub_min_objects;
3016
3017/*
3018 * Calculate the order of allocation given an slab object size.
3019 *
3020 * The order of allocation has significant impact on performance and other
3021 * system components. Generally order 0 allocations should be preferred since
3022 * order 0 does not cause fragmentation in the page allocator. Larger objects
3023 * be problematic to put into order 0 slabs because there may be too much
3024 * unused space left. We go to a higher order if more than 1/16th of the slab
3025 * would be wasted.
3026 *
3027 * In order to reach satisfactory performance we must ensure that a minimum
3028 * number of objects is in one slab. Otherwise we may generate too much
3029 * activity on the partial lists which requires taking the list_lock. This is
3030 * less a concern for large slabs though which are rarely used.
3031 *
3032 * slub_max_order specifies the order where we begin to stop considering the
3033 * number of objects in a slab as critical. If we reach slub_max_order then
3034 * we try to keep the page order as low as possible. So we accept more waste
3035 * of space in favor of a small page order.
3036 *
3037 * Higher order allocations also allow the placement of more objects in a
3038 * slab and thereby reduce object handling overhead. If the user has
3039 * requested a higher mininum order then we start with that one instead of
3040 * the smallest order which will fit the object.
3041 */
3042static inline int slab_order(int size, int min_objects,
3043				int max_order, int fract_leftover, int reserved)
 
3044{
3045	int order;
3046	int rem;
3047	int min_order = slub_min_order;
3048
3049	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
3050		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3051
3052	for (order = max(min_order, get_order(min_objects * size + reserved));
3053			order <= max_order; order++) {
3054
3055		unsigned long slab_size = PAGE_SIZE << order;
 
3056
3057		rem = (slab_size - reserved) % size;
3058
3059		if (rem <= slab_size / fract_leftover)
3060			break;
3061	}
3062
3063	return order;
3064}
3065
3066static inline int calculate_order(int size, int reserved)
3067{
3068	int order;
3069	int min_objects;
3070	int fraction;
3071	int max_objects;
3072
3073	/*
3074	 * Attempt to find best configuration for a slab. This
3075	 * works by first attempting to generate a layout with
3076	 * the best configuration and backing off gradually.
3077	 *
3078	 * First we increase the acceptable waste in a slab. Then
3079	 * we reduce the minimum objects required in a slab.
3080	 */
3081	min_objects = slub_min_objects;
3082	if (!min_objects)
3083		min_objects = 4 * (fls(nr_cpu_ids) + 1);
3084	max_objects = order_objects(slub_max_order, size, reserved);
3085	min_objects = min(min_objects, max_objects);
3086
3087	while (min_objects > 1) {
 
 
3088		fraction = 16;
3089		while (fraction >= 4) {
3090			order = slab_order(size, min_objects,
3091					slub_max_order, fraction, reserved);
3092			if (order <= slub_max_order)
3093				return order;
3094			fraction /= 2;
3095		}
3096		min_objects--;
3097	}
3098
3099	/*
3100	 * We were unable to place multiple objects in a slab. Now
3101	 * lets see if we can place a single object there.
3102	 */
3103	order = slab_order(size, 1, slub_max_order, 1, reserved);
3104	if (order <= slub_max_order)
3105		return order;
3106
3107	/*
3108	 * Doh this slab cannot be placed using slub_max_order.
3109	 */
3110	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
3111	if (order < MAX_ORDER)
3112		return order;
3113	return -ENOSYS;
3114}
3115
3116static void
3117init_kmem_cache_node(struct kmem_cache_node *n)
3118{
3119	n->nr_partial = 0;
3120	spin_lock_init(&n->list_lock);
3121	INIT_LIST_HEAD(&n->partial);
3122#ifdef CONFIG_SLUB_DEBUG
3123	atomic_long_set(&n->nr_slabs, 0);
3124	atomic_long_set(&n->total_objects, 0);
3125	INIT_LIST_HEAD(&n->full);
3126#endif
3127}
3128
3129static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3130{
3131	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3132			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3133
3134	/*
3135	 * Must align to double word boundary for the double cmpxchg
3136	 * instructions to work; see __pcpu_double_call_return_bool().
3137	 */
3138	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3139				     2 * sizeof(void *));
3140
3141	if (!s->cpu_slab)
3142		return 0;
3143
3144	init_kmem_cache_cpus(s);
3145
3146	return 1;
3147}
3148
3149static struct kmem_cache *kmem_cache_node;
3150
3151/*
3152 * No kmalloc_node yet so do it by hand. We know that this is the first
3153 * slab on the node for this slabcache. There are no concurrent accesses
3154 * possible.
3155 *
3156 * Note that this function only works on the kmem_cache_node
3157 * when allocating for the kmem_cache_node. This is used for bootstrapping
3158 * memory on a fresh node that has no slab structures yet.
3159 */
3160static void early_kmem_cache_node_alloc(int node)
3161{
3162	struct page *page;
3163	struct kmem_cache_node *n;
3164
3165	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3166
3167	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3168
3169	BUG_ON(!page);
3170	if (page_to_nid(page) != node) {
3171		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3172		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3173	}
3174
3175	n = page->freelist;
3176	BUG_ON(!n);
3177	page->freelist = get_freepointer(kmem_cache_node, n);
3178	page->inuse = 1;
3179	page->frozen = 0;
3180	kmem_cache_node->node[node] = n;
3181#ifdef CONFIG_SLUB_DEBUG
3182	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3183	init_tracking(kmem_cache_node, n);
3184#endif
3185	kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3186		      GFP_KERNEL);
3187	init_kmem_cache_node(n);
3188	inc_slabs_node(kmem_cache_node, node, page->objects);
3189
3190	/*
3191	 * No locks need to be taken here as it has just been
3192	 * initialized and there is no concurrent access.
3193	 */
3194	__add_partial(n, page, DEACTIVATE_TO_HEAD);
3195}
3196
3197static void free_kmem_cache_nodes(struct kmem_cache *s)
3198{
3199	int node;
3200	struct kmem_cache_node *n;
3201
3202	for_each_kmem_cache_node(s, node, n) {
3203		kmem_cache_free(kmem_cache_node, n);
3204		s->node[node] = NULL;
 
3205	}
3206}
3207
3208void __kmem_cache_release(struct kmem_cache *s)
3209{
 
3210	free_percpu(s->cpu_slab);
3211	free_kmem_cache_nodes(s);
3212}
3213
3214static int init_kmem_cache_nodes(struct kmem_cache *s)
3215{
3216	int node;
3217
3218	for_each_node_state(node, N_NORMAL_MEMORY) {
3219		struct kmem_cache_node *n;
3220
3221		if (slab_state == DOWN) {
3222			early_kmem_cache_node_alloc(node);
3223			continue;
3224		}
3225		n = kmem_cache_alloc_node(kmem_cache_node,
3226						GFP_KERNEL, node);
3227
3228		if (!n) {
3229			free_kmem_cache_nodes(s);
3230			return 0;
3231		}
3232
3233		s->node[node] = n;
3234		init_kmem_cache_node(n);
 
3235	}
3236	return 1;
3237}
3238
3239static void set_min_partial(struct kmem_cache *s, unsigned long min)
3240{
3241	if (min < MIN_PARTIAL)
3242		min = MIN_PARTIAL;
3243	else if (min > MAX_PARTIAL)
3244		min = MAX_PARTIAL;
3245	s->min_partial = min;
3246}
3247
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3248/*
3249 * calculate_sizes() determines the order and the distribution of data within
3250 * a slab object.
3251 */
3252static int calculate_sizes(struct kmem_cache *s, int forced_order)
3253{
3254	unsigned long flags = s->flags;
3255	unsigned long size = s->object_size;
3256	int order;
3257
3258	/*
3259	 * Round up object size to the next word boundary. We can only
3260	 * place the free pointer at word boundaries and this determines
3261	 * the possible location of the free pointer.
3262	 */
3263	size = ALIGN(size, sizeof(void *));
3264
3265#ifdef CONFIG_SLUB_DEBUG
3266	/*
3267	 * Determine if we can poison the object itself. If the user of
3268	 * the slab may touch the object after free or before allocation
3269	 * then we should never poison the object itself.
3270	 */
3271	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
3272			!s->ctor)
3273		s->flags |= __OBJECT_POISON;
3274	else
3275		s->flags &= ~__OBJECT_POISON;
3276
3277
3278	/*
3279	 * If we are Redzoning then check if there is some space between the
3280	 * end of the object and the free pointer. If not then add an
3281	 * additional word to have some bytes to store Redzone information.
3282	 */
3283	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3284		size += sizeof(void *);
3285#endif
3286
3287	/*
3288	 * With that we have determined the number of bytes in actual use
3289	 * by the object. This is the potential offset to the free pointer.
3290	 */
3291	s->inuse = size;
3292
3293	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
3294		s->ctor)) {
3295		/*
3296		 * Relocate free pointer after the object if it is not
3297		 * permitted to overwrite the first word of the object on
3298		 * kmem_cache_free.
3299		 *
3300		 * This is the case if we do RCU, have a constructor or
3301		 * destructor or are poisoning the objects.
3302		 */
3303		s->offset = size;
3304		size += sizeof(void *);
3305	}
3306
3307#ifdef CONFIG_SLUB_DEBUG
3308	if (flags & SLAB_STORE_USER)
3309		/*
3310		 * Need to store information about allocs and frees after
3311		 * the object.
3312		 */
3313		size += 2 * sizeof(struct track);
 
3314
 
 
3315	if (flags & SLAB_RED_ZONE) {
3316		/*
3317		 * Add some empty padding so that we can catch
3318		 * overwrites from earlier objects rather than let
3319		 * tracking information or the free pointer be
3320		 * corrupted if a user writes before the start
3321		 * of the object.
3322		 */
3323		size += sizeof(void *);
3324
3325		s->red_left_pad = sizeof(void *);
3326		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3327		size += s->red_left_pad;
3328	}
3329#endif
3330
3331	/*
3332	 * SLUB stores one object immediately after another beginning from
3333	 * offset 0. In order to align the objects we have to simply size
3334	 * each object to conform to the alignment.
3335	 */
3336	size = ALIGN(size, s->align);
3337	s->size = size;
3338	if (forced_order >= 0)
3339		order = forced_order;
3340	else
3341		order = calculate_order(size, s->reserved);
3342
3343	if (order < 0)
3344		return 0;
3345
3346	s->allocflags = 0;
3347	if (order)
3348		s->allocflags |= __GFP_COMP;
3349
3350	if (s->flags & SLAB_CACHE_DMA)
3351		s->allocflags |= GFP_DMA;
3352
3353	if (s->flags & SLAB_RECLAIM_ACCOUNT)
3354		s->allocflags |= __GFP_RECLAIMABLE;
3355
3356	/*
3357	 * Determine the number of objects per slab
3358	 */
3359	s->oo = oo_make(order, size, s->reserved);
3360	s->min = oo_make(get_order(size), size, s->reserved);
3361	if (oo_objects(s->oo) > oo_objects(s->max))
3362		s->max = s->oo;
3363
3364	return !!oo_objects(s->oo);
3365}
3366
3367static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3368{
3369	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3370	s->reserved = 0;
 
 
 
3371
3372	if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3373		s->reserved = sizeof(struct rcu_head);
3374
3375	if (!calculate_sizes(s, -1))
3376		goto error;
3377	if (disable_higher_order_debug) {
3378		/*
3379		 * Disable debugging flags that store metadata if the min slab
3380		 * order increased.
3381		 */
3382		if (get_order(s->size) > get_order(s->object_size)) {
3383			s->flags &= ~DEBUG_METADATA_FLAGS;
3384			s->offset = 0;
3385			if (!calculate_sizes(s, -1))
3386				goto error;
3387		}
3388	}
3389
3390#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3391    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3392	if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3393		/* Enable fast mode */
3394		s->flags |= __CMPXCHG_DOUBLE;
3395#endif
3396
3397	/*
3398	 * The larger the object size is, the more pages we want on the partial
3399	 * list to avoid pounding the page allocator excessively.
3400	 */
3401	set_min_partial(s, ilog2(s->size) / 2);
3402
3403	/*
3404	 * cpu_partial determined the maximum number of objects kept in the
3405	 * per cpu partial lists of a processor.
3406	 *
3407	 * Per cpu partial lists mainly contain slabs that just have one
3408	 * object freed. If they are used for allocation then they can be
3409	 * filled up again with minimal effort. The slab will never hit the
3410	 * per node partial lists and therefore no locking will be required.
3411	 *
3412	 * This setting also determines
3413	 *
3414	 * A) The number of objects from per cpu partial slabs dumped to the
3415	 *    per node list when we reach the limit.
3416	 * B) The number of objects in cpu partial slabs to extract from the
3417	 *    per node list when we run out of per cpu objects. We only fetch
3418	 *    50% to keep some capacity around for frees.
3419	 */
3420	if (!kmem_cache_has_cpu_partial(s))
3421		s->cpu_partial = 0;
3422	else if (s->size >= PAGE_SIZE)
3423		s->cpu_partial = 2;
3424	else if (s->size >= 1024)
3425		s->cpu_partial = 6;
3426	else if (s->size >= 256)
3427		s->cpu_partial = 13;
3428	else
3429		s->cpu_partial = 30;
3430
3431#ifdef CONFIG_NUMA
3432	s->remote_node_defrag_ratio = 1000;
3433#endif
 
 
 
 
 
 
 
3434	if (!init_kmem_cache_nodes(s))
3435		goto error;
3436
3437	if (alloc_kmem_cache_cpus(s))
3438		return 0;
3439
3440	free_kmem_cache_nodes(s);
3441error:
3442	if (flags & SLAB_PANIC)
3443		panic("Cannot create slab %s size=%lu realsize=%u order=%u offset=%u flags=%lx\n",
3444		      s->name, (unsigned long)s->size, s->size,
3445		      oo_order(s->oo), s->offset, flags);
3446	return -EINVAL;
3447}
3448
3449static void list_slab_objects(struct kmem_cache *s, struct page *page,
3450							const char *text)
3451{
3452#ifdef CONFIG_SLUB_DEBUG
3453	void *addr = page_address(page);
3454	void *p;
3455	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3456				     sizeof(long), GFP_ATOMIC);
3457	if (!map)
3458		return;
3459	slab_err(s, page, text, s->name);
3460	slab_lock(page);
3461
3462	get_map(s, page, map);
3463	for_each_object(p, s, addr, page->objects) {
3464
3465		if (!test_bit(slab_index(p, s, addr), map)) {
3466			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3467			print_tracking(s, p);
3468		}
3469	}
3470	slab_unlock(page);
3471	kfree(map);
3472#endif
3473}
3474
3475/*
3476 * Attempt to free all partial slabs on a node.
3477 * This is called from __kmem_cache_shutdown(). We must take list_lock
3478 * because sysfs file might still access partial list after the shutdowning.
3479 */
3480static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3481{
 
3482	struct page *page, *h;
3483
3484	BUG_ON(irqs_disabled());
3485	spin_lock_irq(&n->list_lock);
3486	list_for_each_entry_safe(page, h, &n->partial, lru) {
3487		if (!page->inuse) {
3488			remove_partial(n, page);
3489			discard_slab(s, page);
3490		} else {
3491			list_slab_objects(s, page,
3492			"Objects remaining in %s on __kmem_cache_shutdown()");
3493		}
3494	}
3495	spin_unlock_irq(&n->list_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3496}
3497
3498/*
3499 * Release all resources used by a slab cache.
3500 */
3501int __kmem_cache_shutdown(struct kmem_cache *s)
3502{
3503	int node;
3504	struct kmem_cache_node *n;
3505
3506	flush_all(s);
3507	/* Attempt to free all objects */
3508	for_each_kmem_cache_node(s, node, n) {
3509		free_partial(s, n);
3510		if (n->nr_partial || slabs_node(s, node))
3511			return 1;
3512	}
 
3513	return 0;
3514}
3515
3516/********************************************************************
3517 *		Kmalloc subsystem
3518 *******************************************************************/
3519
3520static int __init setup_slub_min_order(char *str)
3521{
3522	get_option(&str, &slub_min_order);
3523
3524	return 1;
3525}
3526
3527__setup("slub_min_order=", setup_slub_min_order);
3528
3529static int __init setup_slub_max_order(char *str)
3530{
3531	get_option(&str, &slub_max_order);
3532	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3533
3534	return 1;
3535}
3536
3537__setup("slub_max_order=", setup_slub_max_order);
3538
3539static int __init setup_slub_min_objects(char *str)
3540{
3541	get_option(&str, &slub_min_objects);
3542
3543	return 1;
3544}
3545
3546__setup("slub_min_objects=", setup_slub_min_objects);
3547
3548void *__kmalloc(size_t size, gfp_t flags)
3549{
3550	struct kmem_cache *s;
3551	void *ret;
3552
3553	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3554		return kmalloc_large(size, flags);
3555
3556	s = kmalloc_slab(size, flags);
3557
3558	if (unlikely(ZERO_OR_NULL_PTR(s)))
3559		return s;
3560
3561	ret = slab_alloc(s, flags, _RET_IP_);
3562
3563	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3564
3565	kasan_kmalloc(s, ret, size, flags);
3566
3567	return ret;
3568}
3569EXPORT_SYMBOL(__kmalloc);
3570
3571#ifdef CONFIG_NUMA
3572static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3573{
3574	struct page *page;
3575	void *ptr = NULL;
3576
3577	flags |= __GFP_COMP | __GFP_NOTRACK;
3578	page = alloc_kmem_pages_node(node, flags, get_order(size));
3579	if (page)
3580		ptr = page_address(page);
3581
3582	kmalloc_large_node_hook(ptr, size, flags);
3583	return ptr;
3584}
3585
3586void *__kmalloc_node(size_t size, gfp_t flags, int node)
3587{
3588	struct kmem_cache *s;
3589	void *ret;
3590
3591	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3592		ret = kmalloc_large_node(size, flags, node);
3593
3594		trace_kmalloc_node(_RET_IP_, ret,
3595				   size, PAGE_SIZE << get_order(size),
3596				   flags, node);
3597
3598		return ret;
3599	}
3600
3601	s = kmalloc_slab(size, flags);
3602
3603	if (unlikely(ZERO_OR_NULL_PTR(s)))
3604		return s;
3605
3606	ret = slab_alloc_node(s, flags, node, _RET_IP_);
3607
3608	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3609
3610	kasan_kmalloc(s, ret, size, flags);
3611
3612	return ret;
3613}
3614EXPORT_SYMBOL(__kmalloc_node);
3615#endif
3616
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3617static size_t __ksize(const void *object)
3618{
3619	struct page *page;
3620
3621	if (unlikely(object == ZERO_SIZE_PTR))
3622		return 0;
3623
3624	page = virt_to_head_page(object);
3625
3626	if (unlikely(!PageSlab(page))) {
3627		WARN_ON(!PageCompound(page));
3628		return PAGE_SIZE << compound_order(page);
3629	}
3630
3631	return slab_ksize(page->slab_cache);
3632}
3633
3634size_t ksize(const void *object)
3635{
3636	size_t size = __ksize(object);
3637	/* We assume that ksize callers could use whole allocated area,
3638	   so we need unpoison this area. */
3639	kasan_krealloc(object, size, GFP_NOWAIT);
 
3640	return size;
3641}
3642EXPORT_SYMBOL(ksize);
3643
3644void kfree(const void *x)
3645{
3646	struct page *page;
3647	void *object = (void *)x;
3648
3649	trace_kfree(_RET_IP_, x);
3650
3651	if (unlikely(ZERO_OR_NULL_PTR(x)))
3652		return;
3653
3654	page = virt_to_head_page(x);
3655	if (unlikely(!PageSlab(page))) {
3656		BUG_ON(!PageCompound(page));
3657		kfree_hook(x);
3658		__free_kmem_pages(page, compound_order(page));
3659		return;
3660	}
3661	slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
3662}
3663EXPORT_SYMBOL(kfree);
3664
3665#define SHRINK_PROMOTE_MAX 32
3666
3667/*
3668 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3669 * up most to the head of the partial lists. New allocations will then
3670 * fill those up and thus they can be removed from the partial lists.
3671 *
3672 * The slabs with the least items are placed last. This results in them
3673 * being allocated from last increasing the chance that the last objects
3674 * are freed in them.
3675 */
3676int __kmem_cache_shrink(struct kmem_cache *s, bool deactivate)
3677{
3678	int node;
3679	int i;
3680	struct kmem_cache_node *n;
3681	struct page *page;
3682	struct page *t;
3683	struct list_head discard;
3684	struct list_head promote[SHRINK_PROMOTE_MAX];
3685	unsigned long flags;
3686	int ret = 0;
3687
3688	if (deactivate) {
3689		/*
3690		 * Disable empty slabs caching. Used to avoid pinning offline
3691		 * memory cgroups by kmem pages that can be freed.
3692		 */
3693		s->cpu_partial = 0;
3694		s->min_partial = 0;
3695
3696		/*
3697		 * s->cpu_partial is checked locklessly (see put_cpu_partial),
3698		 * so we have to make sure the change is visible.
3699		 */
3700		kick_all_cpus_sync();
3701	}
3702
3703	flush_all(s);
3704	for_each_kmem_cache_node(s, node, n) {
3705		INIT_LIST_HEAD(&discard);
3706		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3707			INIT_LIST_HEAD(promote + i);
3708
3709		spin_lock_irqsave(&n->list_lock, flags);
3710
3711		/*
3712		 * Build lists of slabs to discard or promote.
3713		 *
3714		 * Note that concurrent frees may occur while we hold the
3715		 * list_lock. page->inuse here is the upper limit.
3716		 */
3717		list_for_each_entry_safe(page, t, &n->partial, lru) {
3718			int free = page->objects - page->inuse;
3719
3720			/* Do not reread page->inuse */
3721			barrier();
3722
3723			/* We do not keep full slabs on the list */
3724			BUG_ON(free <= 0);
3725
3726			if (free == page->objects) {
3727				list_move(&page->lru, &discard);
3728				n->nr_partial--;
3729			} else if (free <= SHRINK_PROMOTE_MAX)
3730				list_move(&page->lru, promote + free - 1);
3731		}
3732
3733		/*
3734		 * Promote the slabs filled up most to the head of the
3735		 * partial list.
3736		 */
3737		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3738			list_splice(promote + i, &n->partial);
3739
3740		spin_unlock_irqrestore(&n->list_lock, flags);
3741
3742		/* Release empty slabs */
3743		list_for_each_entry_safe(page, t, &discard, lru)
3744			discard_slab(s, page);
3745
3746		if (slabs_node(s, node))
3747			ret = 1;
3748	}
3749
3750	return ret;
3751}
3752
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3753static int slab_mem_going_offline_callback(void *arg)
3754{
3755	struct kmem_cache *s;
3756
3757	mutex_lock(&slab_mutex);
3758	list_for_each_entry(s, &slab_caches, list)
3759		__kmem_cache_shrink(s, false);
3760	mutex_unlock(&slab_mutex);
3761
3762	return 0;
3763}
3764
3765static void slab_mem_offline_callback(void *arg)
3766{
3767	struct kmem_cache_node *n;
3768	struct kmem_cache *s;
3769	struct memory_notify *marg = arg;
3770	int offline_node;
3771
3772	offline_node = marg->status_change_nid_normal;
3773
3774	/*
3775	 * If the node still has available memory. we need kmem_cache_node
3776	 * for it yet.
3777	 */
3778	if (offline_node < 0)
3779		return;
3780
3781	mutex_lock(&slab_mutex);
3782	list_for_each_entry(s, &slab_caches, list) {
3783		n = get_node(s, offline_node);
3784		if (n) {
3785			/*
3786			 * if n->nr_slabs > 0, slabs still exist on the node
3787			 * that is going down. We were unable to free them,
3788			 * and offline_pages() function shouldn't call this
3789			 * callback. So, we must fail.
3790			 */
3791			BUG_ON(slabs_node(s, offline_node));
3792
3793			s->node[offline_node] = NULL;
3794			kmem_cache_free(kmem_cache_node, n);
3795		}
3796	}
3797	mutex_unlock(&slab_mutex);
3798}
3799
3800static int slab_mem_going_online_callback(void *arg)
3801{
3802	struct kmem_cache_node *n;
3803	struct kmem_cache *s;
3804	struct memory_notify *marg = arg;
3805	int nid = marg->status_change_nid_normal;
3806	int ret = 0;
3807
3808	/*
3809	 * If the node's memory is already available, then kmem_cache_node is
3810	 * already created. Nothing to do.
3811	 */
3812	if (nid < 0)
3813		return 0;
3814
3815	/*
3816	 * We are bringing a node online. No memory is available yet. We must
3817	 * allocate a kmem_cache_node structure in order to bring the node
3818	 * online.
3819	 */
3820	mutex_lock(&slab_mutex);
3821	list_for_each_entry(s, &slab_caches, list) {
3822		/*
3823		 * XXX: kmem_cache_alloc_node will fallback to other nodes
3824		 *      since memory is not yet available from the node that
3825		 *      is brought up.
3826		 */
3827		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3828		if (!n) {
3829			ret = -ENOMEM;
3830			goto out;
3831		}
3832		init_kmem_cache_node(n);
3833		s->node[nid] = n;
3834	}
3835out:
3836	mutex_unlock(&slab_mutex);
3837	return ret;
3838}
3839
3840static int slab_memory_callback(struct notifier_block *self,
3841				unsigned long action, void *arg)
3842{
3843	int ret = 0;
3844
3845	switch (action) {
3846	case MEM_GOING_ONLINE:
3847		ret = slab_mem_going_online_callback(arg);
3848		break;
3849	case MEM_GOING_OFFLINE:
3850		ret = slab_mem_going_offline_callback(arg);
3851		break;
3852	case MEM_OFFLINE:
3853	case MEM_CANCEL_ONLINE:
3854		slab_mem_offline_callback(arg);
3855		break;
3856	case MEM_ONLINE:
3857	case MEM_CANCEL_OFFLINE:
3858		break;
3859	}
3860	if (ret)
3861		ret = notifier_from_errno(ret);
3862	else
3863		ret = NOTIFY_OK;
3864	return ret;
3865}
3866
3867static struct notifier_block slab_memory_callback_nb = {
3868	.notifier_call = slab_memory_callback,
3869	.priority = SLAB_CALLBACK_PRI,
3870};
3871
3872/********************************************************************
3873 *			Basic setup of slabs
3874 *******************************************************************/
3875
3876/*
3877 * Used for early kmem_cache structures that were allocated using
3878 * the page allocator. Allocate them properly then fix up the pointers
3879 * that may be pointing to the wrong kmem_cache structure.
3880 */
3881
3882static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3883{
3884	int node;
3885	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
3886	struct kmem_cache_node *n;
3887
3888	memcpy(s, static_cache, kmem_cache->object_size);
3889
3890	/*
3891	 * This runs very early, and only the boot processor is supposed to be
3892	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
3893	 * IPIs around.
3894	 */
3895	__flush_cpu_slab(s, smp_processor_id());
3896	for_each_kmem_cache_node(s, node, n) {
3897		struct page *p;
3898
3899		list_for_each_entry(p, &n->partial, lru)
3900			p->slab_cache = s;
3901
3902#ifdef CONFIG_SLUB_DEBUG
3903		list_for_each_entry(p, &n->full, lru)
3904			p->slab_cache = s;
3905#endif
3906	}
3907	slab_init_memcg_params(s);
3908	list_add(&s->list, &slab_caches);
 
3909	return s;
3910}
3911
3912void __init kmem_cache_init(void)
3913{
3914	static __initdata struct kmem_cache boot_kmem_cache,
3915		boot_kmem_cache_node;
3916
3917	if (debug_guardpage_minorder())
3918		slub_max_order = 0;
3919
3920	kmem_cache_node = &boot_kmem_cache_node;
3921	kmem_cache = &boot_kmem_cache;
3922
3923	create_boot_cache(kmem_cache_node, "kmem_cache_node",
3924		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3925
3926	register_hotmemory_notifier(&slab_memory_callback_nb);
3927
3928	/* Able to allocate the per node structures */
3929	slab_state = PARTIAL;
3930
3931	create_boot_cache(kmem_cache, "kmem_cache",
3932			offsetof(struct kmem_cache, node) +
3933				nr_node_ids * sizeof(struct kmem_cache_node *),
3934		       SLAB_HWCACHE_ALIGN);
3935
3936	kmem_cache = bootstrap(&boot_kmem_cache);
3937
3938	/*
3939	 * Allocate kmem_cache_node properly from the kmem_cache slab.
3940	 * kmem_cache_node is separately allocated so no need to
3941	 * update any list pointers.
3942	 */
3943	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3944
3945	/* Now we can use the kmem_cache to allocate kmalloc slabs */
3946	setup_kmalloc_cache_index_table();
3947	create_kmalloc_caches(0);
3948
3949#ifdef CONFIG_SMP
3950	register_cpu_notifier(&slab_notifier);
3951#endif
 
 
3952
3953	pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
3954		cache_line_size(),
3955		slub_min_order, slub_max_order, slub_min_objects,
3956		nr_cpu_ids, nr_node_ids);
3957}
3958
3959void __init kmem_cache_init_late(void)
3960{
3961}
3962
3963struct kmem_cache *
3964__kmem_cache_alias(const char *name, size_t size, size_t align,
3965		   unsigned long flags, void (*ctor)(void *))
3966{
3967	struct kmem_cache *s, *c;
3968
3969	s = find_mergeable(size, align, flags, name, ctor);
3970	if (s) {
3971		s->refcount++;
3972
3973		/*
3974		 * Adjust the object sizes so that we clear
3975		 * the complete object on kzalloc.
3976		 */
3977		s->object_size = max(s->object_size, (int)size);
3978		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3979
3980		for_each_memcg_cache(c, s) {
3981			c->object_size = s->object_size;
3982			c->inuse = max_t(int, c->inuse,
3983					 ALIGN(size, sizeof(void *)));
3984		}
3985
3986		if (sysfs_slab_alias(s, name)) {
3987			s->refcount--;
3988			s = NULL;
3989		}
3990	}
3991
3992	return s;
3993}
3994
3995int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3996{
3997	int err;
3998
3999	err = kmem_cache_open(s, flags);
4000	if (err)
4001		return err;
4002
4003	/* Mutex is not taken during early boot */
4004	if (slab_state <= UP)
4005		return 0;
4006
4007	memcg_propagate_slab_attrs(s);
4008	err = sysfs_slab_add(s);
4009	if (err)
4010		__kmem_cache_release(s);
4011
4012	return err;
4013}
4014
4015#ifdef CONFIG_SMP
4016/*
4017 * Use the cpu notifier to insure that the cpu slabs are flushed when
4018 * necessary.
4019 */
4020static int slab_cpuup_callback(struct notifier_block *nfb,
4021		unsigned long action, void *hcpu)
4022{
4023	long cpu = (long)hcpu;
4024	struct kmem_cache *s;
4025	unsigned long flags;
4026
4027	switch (action) {
4028	case CPU_UP_CANCELED:
4029	case CPU_UP_CANCELED_FROZEN:
4030	case CPU_DEAD:
4031	case CPU_DEAD_FROZEN:
4032		mutex_lock(&slab_mutex);
4033		list_for_each_entry(s, &slab_caches, list) {
4034			local_irq_save(flags);
4035			__flush_cpu_slab(s, cpu);
4036			local_irq_restore(flags);
4037		}
4038		mutex_unlock(&slab_mutex);
4039		break;
4040	default:
4041		break;
4042	}
4043	return NOTIFY_OK;
4044}
4045
4046static struct notifier_block slab_notifier = {
4047	.notifier_call = slab_cpuup_callback
4048};
4049
4050#endif
4051
4052void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4053{
4054	struct kmem_cache *s;
4055	void *ret;
4056
4057	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4058		return kmalloc_large(size, gfpflags);
4059
4060	s = kmalloc_slab(size, gfpflags);
4061
4062	if (unlikely(ZERO_OR_NULL_PTR(s)))
4063		return s;
4064
4065	ret = slab_alloc(s, gfpflags, caller);
4066
4067	/* Honor the call site pointer we received. */
4068	trace_kmalloc(caller, ret, size, s->size, gfpflags);
4069
4070	return ret;
4071}
4072
4073#ifdef CONFIG_NUMA
4074void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4075					int node, unsigned long caller)
4076{
4077	struct kmem_cache *s;
4078	void *ret;
4079
4080	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4081		ret = kmalloc_large_node(size, gfpflags, node);
4082
4083		trace_kmalloc_node(caller, ret,
4084				   size, PAGE_SIZE << get_order(size),
4085				   gfpflags, node);
4086
4087		return ret;
4088	}
4089
4090	s = kmalloc_slab(size, gfpflags);
4091
4092	if (unlikely(ZERO_OR_NULL_PTR(s)))
4093		return s;
4094
4095	ret = slab_alloc_node(s, gfpflags, node, caller);
4096
4097	/* Honor the call site pointer we received. */
4098	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4099
4100	return ret;
4101}
4102#endif
4103
4104#ifdef CONFIG_SYSFS
4105static int count_inuse(struct page *page)
4106{
4107	return page->inuse;
4108}
4109
4110static int count_total(struct page *page)
4111{
4112	return page->objects;
4113}
4114#endif
4115
4116#ifdef CONFIG_SLUB_DEBUG
4117static int validate_slab(struct kmem_cache *s, struct page *page,
4118						unsigned long *map)
4119{
4120	void *p;
4121	void *addr = page_address(page);
4122
4123	if (!check_slab(s, page) ||
4124			!on_freelist(s, page, NULL))
4125		return 0;
4126
4127	/* Now we know that a valid freelist exists */
4128	bitmap_zero(map, page->objects);
4129
4130	get_map(s, page, map);
4131	for_each_object(p, s, addr, page->objects) {
4132		if (test_bit(slab_index(p, s, addr), map))
4133			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4134				return 0;
4135	}
4136
4137	for_each_object(p, s, addr, page->objects)
4138		if (!test_bit(slab_index(p, s, addr), map))
4139			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4140				return 0;
4141	return 1;
4142}
4143
4144static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4145						unsigned long *map)
4146{
4147	slab_lock(page);
4148	validate_slab(s, page, map);
4149	slab_unlock(page);
4150}
4151
4152static int validate_slab_node(struct kmem_cache *s,
4153		struct kmem_cache_node *n, unsigned long *map)
4154{
4155	unsigned long count = 0;
4156	struct page *page;
4157	unsigned long flags;
4158
4159	spin_lock_irqsave(&n->list_lock, flags);
4160
4161	list_for_each_entry(page, &n->partial, lru) {
4162		validate_slab_slab(s, page, map);
4163		count++;
4164	}
4165	if (count != n->nr_partial)
4166		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4167		       s->name, count, n->nr_partial);
4168
4169	if (!(s->flags & SLAB_STORE_USER))
4170		goto out;
4171
4172	list_for_each_entry(page, &n->full, lru) {
4173		validate_slab_slab(s, page, map);
4174		count++;
4175	}
4176	if (count != atomic_long_read(&n->nr_slabs))
4177		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4178		       s->name, count, atomic_long_read(&n->nr_slabs));
4179
4180out:
4181	spin_unlock_irqrestore(&n->list_lock, flags);
4182	return count;
4183}
4184
4185static long validate_slab_cache(struct kmem_cache *s)
4186{
4187	int node;
4188	unsigned long count = 0;
4189	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4190				sizeof(unsigned long), GFP_KERNEL);
4191	struct kmem_cache_node *n;
4192
4193	if (!map)
4194		return -ENOMEM;
4195
4196	flush_all(s);
4197	for_each_kmem_cache_node(s, node, n)
4198		count += validate_slab_node(s, n, map);
4199	kfree(map);
4200	return count;
4201}
4202/*
4203 * Generate lists of code addresses where slabcache objects are allocated
4204 * and freed.
4205 */
4206
4207struct location {
4208	unsigned long count;
4209	unsigned long addr;
4210	long long sum_time;
4211	long min_time;
4212	long max_time;
4213	long min_pid;
4214	long max_pid;
4215	DECLARE_BITMAP(cpus, NR_CPUS);
4216	nodemask_t nodes;
4217};
4218
4219struct loc_track {
4220	unsigned long max;
4221	unsigned long count;
4222	struct location *loc;
4223};
4224
4225static void free_loc_track(struct loc_track *t)
4226{
4227	if (t->max)
4228		free_pages((unsigned long)t->loc,
4229			get_order(sizeof(struct location) * t->max));
4230}
4231
4232static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4233{
4234	struct location *l;
4235	int order;
4236
4237	order = get_order(sizeof(struct location) * max);
4238
4239	l = (void *)__get_free_pages(flags, order);
4240	if (!l)
4241		return 0;
4242
4243	if (t->count) {
4244		memcpy(l, t->loc, sizeof(struct location) * t->count);
4245		free_loc_track(t);
4246	}
4247	t->max = max;
4248	t->loc = l;
4249	return 1;
4250}
4251
4252static int add_location(struct loc_track *t, struct kmem_cache *s,
4253				const struct track *track)
4254{
4255	long start, end, pos;
4256	struct location *l;
4257	unsigned long caddr;
4258	unsigned long age = jiffies - track->when;
4259
4260	start = -1;
4261	end = t->count;
4262
4263	for ( ; ; ) {
4264		pos = start + (end - start + 1) / 2;
4265
4266		/*
4267		 * There is nothing at "end". If we end up there
4268		 * we need to add something to before end.
4269		 */
4270		if (pos == end)
4271			break;
4272
4273		caddr = t->loc[pos].addr;
4274		if (track->addr == caddr) {
4275
4276			l = &t->loc[pos];
4277			l->count++;
4278			if (track->when) {
4279				l->sum_time += age;
4280				if (age < l->min_time)
4281					l->min_time = age;
4282				if (age > l->max_time)
4283					l->max_time = age;
4284
4285				if (track->pid < l->min_pid)
4286					l->min_pid = track->pid;
4287				if (track->pid > l->max_pid)
4288					l->max_pid = track->pid;
4289
4290				cpumask_set_cpu(track->cpu,
4291						to_cpumask(l->cpus));
4292			}
4293			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4294			return 1;
4295		}
4296
4297		if (track->addr < caddr)
4298			end = pos;
4299		else
4300			start = pos;
4301	}
4302
4303	/*
4304	 * Not found. Insert new tracking element.
4305	 */
4306	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4307		return 0;
4308
4309	l = t->loc + pos;
4310	if (pos < t->count)
4311		memmove(l + 1, l,
4312			(t->count - pos) * sizeof(struct location));
4313	t->count++;
4314	l->count = 1;
4315	l->addr = track->addr;
4316	l->sum_time = age;
4317	l->min_time = age;
4318	l->max_time = age;
4319	l->min_pid = track->pid;
4320	l->max_pid = track->pid;
4321	cpumask_clear(to_cpumask(l->cpus));
4322	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4323	nodes_clear(l->nodes);
4324	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4325	return 1;
4326}
4327
4328static void process_slab(struct loc_track *t, struct kmem_cache *s,
4329		struct page *page, enum track_item alloc,
4330		unsigned long *map)
4331{
4332	void *addr = page_address(page);
4333	void *p;
4334
4335	bitmap_zero(map, page->objects);
4336	get_map(s, page, map);
4337
4338	for_each_object(p, s, addr, page->objects)
4339		if (!test_bit(slab_index(p, s, addr), map))
4340			add_location(t, s, get_track(s, p, alloc));
4341}
4342
4343static int list_locations(struct kmem_cache *s, char *buf,
4344					enum track_item alloc)
4345{
4346	int len = 0;
4347	unsigned long i;
4348	struct loc_track t = { 0, 0, NULL };
4349	int node;
4350	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4351				     sizeof(unsigned long), GFP_KERNEL);
4352	struct kmem_cache_node *n;
4353
4354	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4355				     GFP_TEMPORARY)) {
4356		kfree(map);
4357		return sprintf(buf, "Out of memory\n");
4358	}
4359	/* Push back cpu slabs */
4360	flush_all(s);
4361
4362	for_each_kmem_cache_node(s, node, n) {
4363		unsigned long flags;
4364		struct page *page;
4365
4366		if (!atomic_long_read(&n->nr_slabs))
4367			continue;
4368
4369		spin_lock_irqsave(&n->list_lock, flags);
4370		list_for_each_entry(page, &n->partial, lru)
4371			process_slab(&t, s, page, alloc, map);
4372		list_for_each_entry(page, &n->full, lru)
4373			process_slab(&t, s, page, alloc, map);
4374		spin_unlock_irqrestore(&n->list_lock, flags);
4375	}
4376
4377	for (i = 0; i < t.count; i++) {
4378		struct location *l = &t.loc[i];
4379
4380		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4381			break;
4382		len += sprintf(buf + len, "%7ld ", l->count);
4383
4384		if (l->addr)
4385			len += sprintf(buf + len, "%pS", (void *)l->addr);
4386		else
4387			len += sprintf(buf + len, "<not-available>");
4388
4389		if (l->sum_time != l->min_time) {
4390			len += sprintf(buf + len, " age=%ld/%ld/%ld",
4391				l->min_time,
4392				(long)div_u64(l->sum_time, l->count),
4393				l->max_time);
4394		} else
4395			len += sprintf(buf + len, " age=%ld",
4396				l->min_time);
4397
4398		if (l->min_pid != l->max_pid)
4399			len += sprintf(buf + len, " pid=%ld-%ld",
4400				l->min_pid, l->max_pid);
4401		else
4402			len += sprintf(buf + len, " pid=%ld",
4403				l->min_pid);
4404
4405		if (num_online_cpus() > 1 &&
4406				!cpumask_empty(to_cpumask(l->cpus)) &&
4407				len < PAGE_SIZE - 60)
4408			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4409					 " cpus=%*pbl",
4410					 cpumask_pr_args(to_cpumask(l->cpus)));
4411
4412		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4413				len < PAGE_SIZE - 60)
4414			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4415					 " nodes=%*pbl",
4416					 nodemask_pr_args(&l->nodes));
4417
4418		len += sprintf(buf + len, "\n");
4419	}
4420
4421	free_loc_track(&t);
4422	kfree(map);
4423	if (!t.count)
4424		len += sprintf(buf, "No data\n");
4425	return len;
4426}
4427#endif
4428
4429#ifdef SLUB_RESILIENCY_TEST
4430static void __init resiliency_test(void)
4431{
4432	u8 *p;
4433
4434	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4435
4436	pr_err("SLUB resiliency testing\n");
4437	pr_err("-----------------------\n");
4438	pr_err("A. Corruption after allocation\n");
4439
4440	p = kzalloc(16, GFP_KERNEL);
4441	p[16] = 0x12;
4442	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4443	       p + 16);
4444
4445	validate_slab_cache(kmalloc_caches[4]);
4446
4447	/* Hmmm... The next two are dangerous */
4448	p = kzalloc(32, GFP_KERNEL);
4449	p[32 + sizeof(void *)] = 0x34;
4450	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4451	       p);
4452	pr_err("If allocated object is overwritten then not detectable\n\n");
4453
4454	validate_slab_cache(kmalloc_caches[5]);
4455	p = kzalloc(64, GFP_KERNEL);
4456	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4457	*p = 0x56;
4458	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4459	       p);
4460	pr_err("If allocated object is overwritten then not detectable\n\n");
4461	validate_slab_cache(kmalloc_caches[6]);
4462
4463	pr_err("\nB. Corruption after free\n");
4464	p = kzalloc(128, GFP_KERNEL);
4465	kfree(p);
4466	*p = 0x78;
4467	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4468	validate_slab_cache(kmalloc_caches[7]);
4469
4470	p = kzalloc(256, GFP_KERNEL);
4471	kfree(p);
4472	p[50] = 0x9a;
4473	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4474	validate_slab_cache(kmalloc_caches[8]);
4475
4476	p = kzalloc(512, GFP_KERNEL);
4477	kfree(p);
4478	p[512] = 0xab;
4479	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4480	validate_slab_cache(kmalloc_caches[9]);
4481}
4482#else
4483#ifdef CONFIG_SYSFS
4484static void resiliency_test(void) {};
4485#endif
4486#endif
4487
4488#ifdef CONFIG_SYSFS
4489enum slab_stat_type {
4490	SL_ALL,			/* All slabs */
4491	SL_PARTIAL,		/* Only partially allocated slabs */
4492	SL_CPU,			/* Only slabs used for cpu caches */
4493	SL_OBJECTS,		/* Determine allocated objects not slabs */
4494	SL_TOTAL		/* Determine object capacity not slabs */
4495};
4496
4497#define SO_ALL		(1 << SL_ALL)
4498#define SO_PARTIAL	(1 << SL_PARTIAL)
4499#define SO_CPU		(1 << SL_CPU)
4500#define SO_OBJECTS	(1 << SL_OBJECTS)
4501#define SO_TOTAL	(1 << SL_TOTAL)
4502
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4503static ssize_t show_slab_objects(struct kmem_cache *s,
4504			    char *buf, unsigned long flags)
4505{
4506	unsigned long total = 0;
4507	int node;
4508	int x;
4509	unsigned long *nodes;
4510
4511	nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4512	if (!nodes)
4513		return -ENOMEM;
4514
4515	if (flags & SO_CPU) {
4516		int cpu;
4517
4518		for_each_possible_cpu(cpu) {
4519			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4520							       cpu);
4521			int node;
4522			struct page *page;
4523
4524			page = READ_ONCE(c->page);
4525			if (!page)
4526				continue;
4527
4528			node = page_to_nid(page);
4529			if (flags & SO_TOTAL)
4530				x = page->objects;
4531			else if (flags & SO_OBJECTS)
4532				x = page->inuse;
4533			else
4534				x = 1;
4535
4536			total += x;
4537			nodes[node] += x;
4538
4539			page = READ_ONCE(c->partial);
4540			if (page) {
4541				node = page_to_nid(page);
4542				if (flags & SO_TOTAL)
4543					WARN_ON_ONCE(1);
4544				else if (flags & SO_OBJECTS)
4545					WARN_ON_ONCE(1);
4546				else
4547					x = page->pages;
4548				total += x;
4549				nodes[node] += x;
4550			}
4551		}
4552	}
4553
4554	get_online_mems();
4555#ifdef CONFIG_SLUB_DEBUG
4556	if (flags & SO_ALL) {
4557		struct kmem_cache_node *n;
4558
4559		for_each_kmem_cache_node(s, node, n) {
4560
4561			if (flags & SO_TOTAL)
4562				x = atomic_long_read(&n->total_objects);
4563			else if (flags & SO_OBJECTS)
4564				x = atomic_long_read(&n->total_objects) -
4565					count_partial(n, count_free);
4566			else
4567				x = atomic_long_read(&n->nr_slabs);
4568			total += x;
4569			nodes[node] += x;
4570		}
4571
4572	} else
4573#endif
4574	if (flags & SO_PARTIAL) {
4575		struct kmem_cache_node *n;
4576
4577		for_each_kmem_cache_node(s, node, n) {
4578			if (flags & SO_TOTAL)
4579				x = count_partial(n, count_total);
4580			else if (flags & SO_OBJECTS)
4581				x = count_partial(n, count_inuse);
4582			else
4583				x = n->nr_partial;
4584			total += x;
4585			nodes[node] += x;
4586		}
4587	}
4588	x = sprintf(buf, "%lu", total);
4589#ifdef CONFIG_NUMA
4590	for (node = 0; node < nr_node_ids; node++)
4591		if (nodes[node])
4592			x += sprintf(buf + x, " N%d=%lu",
4593					node, nodes[node]);
4594#endif
4595	put_online_mems();
4596	kfree(nodes);
4597	return x + sprintf(buf + x, "\n");
4598}
4599
4600#ifdef CONFIG_SLUB_DEBUG
4601static int any_slab_objects(struct kmem_cache *s)
4602{
4603	int node;
4604	struct kmem_cache_node *n;
4605
4606	for_each_kmem_cache_node(s, node, n)
4607		if (atomic_long_read(&n->total_objects))
4608			return 1;
4609
4610	return 0;
4611}
4612#endif
4613
4614#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4615#define to_slab(n) container_of(n, struct kmem_cache, kobj)
4616
4617struct slab_attribute {
4618	struct attribute attr;
4619	ssize_t (*show)(struct kmem_cache *s, char *buf);
4620	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4621};
4622
4623#define SLAB_ATTR_RO(_name) \
4624	static struct slab_attribute _name##_attr = \
4625	__ATTR(_name, 0400, _name##_show, NULL)
4626
4627#define SLAB_ATTR(_name) \
4628	static struct slab_attribute _name##_attr =  \
4629	__ATTR(_name, 0600, _name##_show, _name##_store)
4630
4631static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4632{
4633	return sprintf(buf, "%d\n", s->size);
4634}
4635SLAB_ATTR_RO(slab_size);
4636
4637static ssize_t align_show(struct kmem_cache *s, char *buf)
4638{
4639	return sprintf(buf, "%d\n", s->align);
4640}
4641SLAB_ATTR_RO(align);
4642
4643static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4644{
4645	return sprintf(buf, "%d\n", s->object_size);
4646}
4647SLAB_ATTR_RO(object_size);
4648
4649static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4650{
4651	return sprintf(buf, "%d\n", oo_objects(s->oo));
4652}
4653SLAB_ATTR_RO(objs_per_slab);
4654
4655static ssize_t order_store(struct kmem_cache *s,
4656				const char *buf, size_t length)
4657{
4658	unsigned long order;
4659	int err;
4660
4661	err = kstrtoul(buf, 10, &order);
4662	if (err)
4663		return err;
4664
4665	if (order > slub_max_order || order < slub_min_order)
4666		return -EINVAL;
4667
4668	calculate_sizes(s, order);
4669	return length;
4670}
4671
4672static ssize_t order_show(struct kmem_cache *s, char *buf)
4673{
4674	return sprintf(buf, "%d\n", oo_order(s->oo));
4675}
4676SLAB_ATTR(order);
4677
4678static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4679{
4680	return sprintf(buf, "%lu\n", s->min_partial);
4681}
4682
4683static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4684				 size_t length)
4685{
4686	unsigned long min;
4687	int err;
4688
4689	err = kstrtoul(buf, 10, &min);
4690	if (err)
4691		return err;
4692
4693	set_min_partial(s, min);
4694	return length;
4695}
4696SLAB_ATTR(min_partial);
4697
4698static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4699{
4700	return sprintf(buf, "%u\n", s->cpu_partial);
4701}
4702
4703static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4704				 size_t length)
4705{
4706	unsigned long objects;
4707	int err;
4708
4709	err = kstrtoul(buf, 10, &objects);
4710	if (err)
4711		return err;
4712	if (objects && !kmem_cache_has_cpu_partial(s))
4713		return -EINVAL;
4714
4715	s->cpu_partial = objects;
4716	flush_all(s);
4717	return length;
4718}
4719SLAB_ATTR(cpu_partial);
4720
4721static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4722{
4723	if (!s->ctor)
4724		return 0;
4725	return sprintf(buf, "%pS\n", s->ctor);
4726}
4727SLAB_ATTR_RO(ctor);
4728
4729static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4730{
4731	return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
4732}
4733SLAB_ATTR_RO(aliases);
4734
4735static ssize_t partial_show(struct kmem_cache *s, char *buf)
4736{
4737	return show_slab_objects(s, buf, SO_PARTIAL);
4738}
4739SLAB_ATTR_RO(partial);
4740
4741static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4742{
4743	return show_slab_objects(s, buf, SO_CPU);
4744}
4745SLAB_ATTR_RO(cpu_slabs);
4746
4747static ssize_t objects_show(struct kmem_cache *s, char *buf)
4748{
4749	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4750}
4751SLAB_ATTR_RO(objects);
4752
4753static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4754{
4755	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4756}
4757SLAB_ATTR_RO(objects_partial);
4758
4759static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4760{
4761	int objects = 0;
4762	int pages = 0;
4763	int cpu;
4764	int len;
4765
4766	for_each_online_cpu(cpu) {
4767		struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
 
 
4768
4769		if (page) {
4770			pages += page->pages;
4771			objects += page->pobjects;
4772		}
4773	}
4774
4775	len = sprintf(buf, "%d(%d)", objects, pages);
4776
4777#ifdef CONFIG_SMP
4778	for_each_online_cpu(cpu) {
4779		struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
 
 
4780
4781		if (page && len < PAGE_SIZE - 20)
4782			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4783				page->pobjects, page->pages);
4784	}
4785#endif
4786	return len + sprintf(buf + len, "\n");
4787}
4788SLAB_ATTR_RO(slabs_cpu_partial);
4789
4790static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4791{
4792	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4793}
4794
4795static ssize_t reclaim_account_store(struct kmem_cache *s,
4796				const char *buf, size_t length)
4797{
4798	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4799	if (buf[0] == '1')
4800		s->flags |= SLAB_RECLAIM_ACCOUNT;
4801	return length;
4802}
4803SLAB_ATTR(reclaim_account);
4804
4805static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4806{
4807	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4808}
4809SLAB_ATTR_RO(hwcache_align);
4810
4811#ifdef CONFIG_ZONE_DMA
4812static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4813{
4814	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4815}
4816SLAB_ATTR_RO(cache_dma);
4817#endif
4818
 
 
 
 
 
 
4819static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4820{
4821	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4822}
4823SLAB_ATTR_RO(destroy_by_rcu);
4824
4825static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4826{
4827	return sprintf(buf, "%d\n", s->reserved);
4828}
4829SLAB_ATTR_RO(reserved);
4830
4831#ifdef CONFIG_SLUB_DEBUG
4832static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4833{
4834	return show_slab_objects(s, buf, SO_ALL);
4835}
4836SLAB_ATTR_RO(slabs);
4837
4838static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4839{
4840	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4841}
4842SLAB_ATTR_RO(total_objects);
4843
4844static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4845{
4846	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
4847}
4848
4849static ssize_t sanity_checks_store(struct kmem_cache *s,
4850				const char *buf, size_t length)
4851{
4852	s->flags &= ~SLAB_CONSISTENCY_CHECKS;
4853	if (buf[0] == '1') {
4854		s->flags &= ~__CMPXCHG_DOUBLE;
4855		s->flags |= SLAB_CONSISTENCY_CHECKS;
4856	}
4857	return length;
4858}
4859SLAB_ATTR(sanity_checks);
4860
4861static ssize_t trace_show(struct kmem_cache *s, char *buf)
4862{
4863	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4864}
4865
4866static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4867							size_t length)
4868{
4869	/*
4870	 * Tracing a merged cache is going to give confusing results
4871	 * as well as cause other issues like converting a mergeable
4872	 * cache into an umergeable one.
4873	 */
4874	if (s->refcount > 1)
4875		return -EINVAL;
4876
4877	s->flags &= ~SLAB_TRACE;
4878	if (buf[0] == '1') {
4879		s->flags &= ~__CMPXCHG_DOUBLE;
4880		s->flags |= SLAB_TRACE;
4881	}
4882	return length;
4883}
4884SLAB_ATTR(trace);
4885
4886static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4887{
4888	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4889}
4890
4891static ssize_t red_zone_store(struct kmem_cache *s,
4892				const char *buf, size_t length)
4893{
4894	if (any_slab_objects(s))
4895		return -EBUSY;
4896
4897	s->flags &= ~SLAB_RED_ZONE;
4898	if (buf[0] == '1') {
4899		s->flags |= SLAB_RED_ZONE;
4900	}
4901	calculate_sizes(s, -1);
4902	return length;
4903}
4904SLAB_ATTR(red_zone);
4905
4906static ssize_t poison_show(struct kmem_cache *s, char *buf)
4907{
4908	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4909}
4910
4911static ssize_t poison_store(struct kmem_cache *s,
4912				const char *buf, size_t length)
4913{
4914	if (any_slab_objects(s))
4915		return -EBUSY;
4916
4917	s->flags &= ~SLAB_POISON;
4918	if (buf[0] == '1') {
4919		s->flags |= SLAB_POISON;
4920	}
4921	calculate_sizes(s, -1);
4922	return length;
4923}
4924SLAB_ATTR(poison);
4925
4926static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4927{
4928	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4929}
4930
4931static ssize_t store_user_store(struct kmem_cache *s,
4932				const char *buf, size_t length)
4933{
4934	if (any_slab_objects(s))
4935		return -EBUSY;
4936
4937	s->flags &= ~SLAB_STORE_USER;
4938	if (buf[0] == '1') {
4939		s->flags &= ~__CMPXCHG_DOUBLE;
4940		s->flags |= SLAB_STORE_USER;
4941	}
4942	calculate_sizes(s, -1);
4943	return length;
4944}
4945SLAB_ATTR(store_user);
4946
4947static ssize_t validate_show(struct kmem_cache *s, char *buf)
4948{
4949	return 0;
4950}
4951
4952static ssize_t validate_store(struct kmem_cache *s,
4953			const char *buf, size_t length)
4954{
4955	int ret = -EINVAL;
4956
4957	if (buf[0] == '1') {
4958		ret = validate_slab_cache(s);
4959		if (ret >= 0)
4960			ret = length;
4961	}
4962	return ret;
4963}
4964SLAB_ATTR(validate);
4965
4966static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4967{
4968	if (!(s->flags & SLAB_STORE_USER))
4969		return -ENOSYS;
4970	return list_locations(s, buf, TRACK_ALLOC);
4971}
4972SLAB_ATTR_RO(alloc_calls);
4973
4974static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4975{
4976	if (!(s->flags & SLAB_STORE_USER))
4977		return -ENOSYS;
4978	return list_locations(s, buf, TRACK_FREE);
4979}
4980SLAB_ATTR_RO(free_calls);
4981#endif /* CONFIG_SLUB_DEBUG */
4982
4983#ifdef CONFIG_FAILSLAB
4984static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4985{
4986	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4987}
4988
4989static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4990							size_t length)
4991{
4992	if (s->refcount > 1)
4993		return -EINVAL;
4994
4995	s->flags &= ~SLAB_FAILSLAB;
4996	if (buf[0] == '1')
4997		s->flags |= SLAB_FAILSLAB;
4998	return length;
4999}
5000SLAB_ATTR(failslab);
5001#endif
5002
5003static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5004{
5005	return 0;
5006}
5007
5008static ssize_t shrink_store(struct kmem_cache *s,
5009			const char *buf, size_t length)
5010{
5011	if (buf[0] == '1')
5012		kmem_cache_shrink(s);
5013	else
5014		return -EINVAL;
5015	return length;
5016}
5017SLAB_ATTR(shrink);
5018
5019#ifdef CONFIG_NUMA
5020static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5021{
5022	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
5023}
5024
5025static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5026				const char *buf, size_t length)
5027{
5028	unsigned long ratio;
5029	int err;
5030
5031	err = kstrtoul(buf, 10, &ratio);
5032	if (err)
5033		return err;
 
 
5034
5035	if (ratio <= 100)
5036		s->remote_node_defrag_ratio = ratio * 10;
5037
5038	return length;
5039}
5040SLAB_ATTR(remote_node_defrag_ratio);
5041#endif
5042
5043#ifdef CONFIG_SLUB_STATS
5044static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5045{
5046	unsigned long sum  = 0;
5047	int cpu;
5048	int len;
5049	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5050
5051	if (!data)
5052		return -ENOMEM;
5053
5054	for_each_online_cpu(cpu) {
5055		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5056
5057		data[cpu] = x;
5058		sum += x;
5059	}
5060
5061	len = sprintf(buf, "%lu", sum);
5062
5063#ifdef CONFIG_SMP
5064	for_each_online_cpu(cpu) {
5065		if (data[cpu] && len < PAGE_SIZE - 20)
5066			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5067	}
5068#endif
5069	kfree(data);
5070	return len + sprintf(buf + len, "\n");
5071}
5072
5073static void clear_stat(struct kmem_cache *s, enum stat_item si)
5074{
5075	int cpu;
5076
5077	for_each_online_cpu(cpu)
5078		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5079}
5080
5081#define STAT_ATTR(si, text) 					\
5082static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
5083{								\
5084	return show_stat(s, buf, si);				\
5085}								\
5086static ssize_t text##_store(struct kmem_cache *s,		\
5087				const char *buf, size_t length)	\
5088{								\
5089	if (buf[0] != '0')					\
5090		return -EINVAL;					\
5091	clear_stat(s, si);					\
5092	return length;						\
5093}								\
5094SLAB_ATTR(text);						\
5095
5096STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5097STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5098STAT_ATTR(FREE_FASTPATH, free_fastpath);
5099STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5100STAT_ATTR(FREE_FROZEN, free_frozen);
5101STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5102STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5103STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5104STAT_ATTR(ALLOC_SLAB, alloc_slab);
5105STAT_ATTR(ALLOC_REFILL, alloc_refill);
5106STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5107STAT_ATTR(FREE_SLAB, free_slab);
5108STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5109STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5110STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5111STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5112STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5113STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5114STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5115STAT_ATTR(ORDER_FALLBACK, order_fallback);
5116STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5117STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5118STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5119STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5120STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5121STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5122#endif
5123
5124static struct attribute *slab_attrs[] = {
5125	&slab_size_attr.attr,
5126	&object_size_attr.attr,
5127	&objs_per_slab_attr.attr,
5128	&order_attr.attr,
5129	&min_partial_attr.attr,
5130	&cpu_partial_attr.attr,
5131	&objects_attr.attr,
5132	&objects_partial_attr.attr,
5133	&partial_attr.attr,
5134	&cpu_slabs_attr.attr,
5135	&ctor_attr.attr,
5136	&aliases_attr.attr,
5137	&align_attr.attr,
5138	&hwcache_align_attr.attr,
5139	&reclaim_account_attr.attr,
5140	&destroy_by_rcu_attr.attr,
5141	&shrink_attr.attr,
5142	&reserved_attr.attr,
5143	&slabs_cpu_partial_attr.attr,
5144#ifdef CONFIG_SLUB_DEBUG
5145	&total_objects_attr.attr,
5146	&slabs_attr.attr,
5147	&sanity_checks_attr.attr,
5148	&trace_attr.attr,
5149	&red_zone_attr.attr,
5150	&poison_attr.attr,
5151	&store_user_attr.attr,
5152	&validate_attr.attr,
5153	&alloc_calls_attr.attr,
5154	&free_calls_attr.attr,
5155#endif
5156#ifdef CONFIG_ZONE_DMA
5157	&cache_dma_attr.attr,
5158#endif
5159#ifdef CONFIG_NUMA
5160	&remote_node_defrag_ratio_attr.attr,
5161#endif
5162#ifdef CONFIG_SLUB_STATS
5163	&alloc_fastpath_attr.attr,
5164	&alloc_slowpath_attr.attr,
5165	&free_fastpath_attr.attr,
5166	&free_slowpath_attr.attr,
5167	&free_frozen_attr.attr,
5168	&free_add_partial_attr.attr,
5169	&free_remove_partial_attr.attr,
5170	&alloc_from_partial_attr.attr,
5171	&alloc_slab_attr.attr,
5172	&alloc_refill_attr.attr,
5173	&alloc_node_mismatch_attr.attr,
5174	&free_slab_attr.attr,
5175	&cpuslab_flush_attr.attr,
5176	&deactivate_full_attr.attr,
5177	&deactivate_empty_attr.attr,
5178	&deactivate_to_head_attr.attr,
5179	&deactivate_to_tail_attr.attr,
5180	&deactivate_remote_frees_attr.attr,
5181	&deactivate_bypass_attr.attr,
5182	&order_fallback_attr.attr,
5183	&cmpxchg_double_fail_attr.attr,
5184	&cmpxchg_double_cpu_fail_attr.attr,
5185	&cpu_partial_alloc_attr.attr,
5186	&cpu_partial_free_attr.attr,
5187	&cpu_partial_node_attr.attr,
5188	&cpu_partial_drain_attr.attr,
5189#endif
5190#ifdef CONFIG_FAILSLAB
5191	&failslab_attr.attr,
5192#endif
 
5193
5194	NULL
5195};
5196
5197static struct attribute_group slab_attr_group = {
5198	.attrs = slab_attrs,
5199};
5200
5201static ssize_t slab_attr_show(struct kobject *kobj,
5202				struct attribute *attr,
5203				char *buf)
5204{
5205	struct slab_attribute *attribute;
5206	struct kmem_cache *s;
5207	int err;
5208
5209	attribute = to_slab_attr(attr);
5210	s = to_slab(kobj);
5211
5212	if (!attribute->show)
5213		return -EIO;
5214
5215	err = attribute->show(s, buf);
5216
5217	return err;
5218}
5219
5220static ssize_t slab_attr_store(struct kobject *kobj,
5221				struct attribute *attr,
5222				const char *buf, size_t len)
5223{
5224	struct slab_attribute *attribute;
5225	struct kmem_cache *s;
5226	int err;
5227
5228	attribute = to_slab_attr(attr);
5229	s = to_slab(kobj);
5230
5231	if (!attribute->store)
5232		return -EIO;
5233
5234	err = attribute->store(s, buf, len);
5235#ifdef CONFIG_MEMCG
5236	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5237		struct kmem_cache *c;
5238
5239		mutex_lock(&slab_mutex);
5240		if (s->max_attr_size < len)
5241			s->max_attr_size = len;
5242
5243		/*
5244		 * This is a best effort propagation, so this function's return
5245		 * value will be determined by the parent cache only. This is
5246		 * basically because not all attributes will have a well
5247		 * defined semantics for rollbacks - most of the actions will
5248		 * have permanent effects.
5249		 *
5250		 * Returning the error value of any of the children that fail
5251		 * is not 100 % defined, in the sense that users seeing the
5252		 * error code won't be able to know anything about the state of
5253		 * the cache.
5254		 *
5255		 * Only returning the error code for the parent cache at least
5256		 * has well defined semantics. The cache being written to
5257		 * directly either failed or succeeded, in which case we loop
5258		 * through the descendants with best-effort propagation.
5259		 */
5260		for_each_memcg_cache(c, s)
5261			attribute->store(c, buf, len);
5262		mutex_unlock(&slab_mutex);
5263	}
5264#endif
5265	return err;
5266}
5267
5268static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5269{
5270#ifdef CONFIG_MEMCG
5271	int i;
5272	char *buffer = NULL;
5273	struct kmem_cache *root_cache;
5274
5275	if (is_root_cache(s))
5276		return;
5277
5278	root_cache = s->memcg_params.root_cache;
5279
5280	/*
5281	 * This mean this cache had no attribute written. Therefore, no point
5282	 * in copying default values around
5283	 */
5284	if (!root_cache->max_attr_size)
5285		return;
5286
5287	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5288		char mbuf[64];
5289		char *buf;
5290		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
 
5291
5292		if (!attr || !attr->store || !attr->show)
5293			continue;
5294
5295		/*
5296		 * It is really bad that we have to allocate here, so we will
5297		 * do it only as a fallback. If we actually allocate, though,
5298		 * we can just use the allocated buffer until the end.
5299		 *
5300		 * Most of the slub attributes will tend to be very small in
5301		 * size, but sysfs allows buffers up to a page, so they can
5302		 * theoretically happen.
5303		 */
5304		if (buffer)
5305			buf = buffer;
5306		else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5307			buf = mbuf;
5308		else {
5309			buffer = (char *) get_zeroed_page(GFP_KERNEL);
5310			if (WARN_ON(!buffer))
5311				continue;
5312			buf = buffer;
5313		}
5314
5315		attr->show(root_cache, buf);
5316		attr->store(s, buf, strlen(buf));
 
5317	}
5318
5319	if (buffer)
5320		free_page((unsigned long)buffer);
5321#endif
5322}
5323
5324static void kmem_cache_release(struct kobject *k)
5325{
5326	slab_kmem_cache_release(to_slab(k));
5327}
5328
5329static const struct sysfs_ops slab_sysfs_ops = {
5330	.show = slab_attr_show,
5331	.store = slab_attr_store,
5332};
5333
5334static struct kobj_type slab_ktype = {
5335	.sysfs_ops = &slab_sysfs_ops,
5336	.release = kmem_cache_release,
5337};
5338
5339static int uevent_filter(struct kset *kset, struct kobject *kobj)
5340{
5341	struct kobj_type *ktype = get_ktype(kobj);
5342
5343	if (ktype == &slab_ktype)
5344		return 1;
5345	return 0;
5346}
5347
5348static const struct kset_uevent_ops slab_uevent_ops = {
5349	.filter = uevent_filter,
5350};
5351
5352static struct kset *slab_kset;
5353
5354static inline struct kset *cache_kset(struct kmem_cache *s)
5355{
5356#ifdef CONFIG_MEMCG
5357	if (!is_root_cache(s))
5358		return s->memcg_params.root_cache->memcg_kset;
5359#endif
5360	return slab_kset;
5361}
5362
5363#define ID_STR_LENGTH 64
5364
5365/* Create a unique string id for a slab cache:
5366 *
5367 * Format	:[flags-]size
5368 */
5369static char *create_unique_id(struct kmem_cache *s)
5370{
5371	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5372	char *p = name;
5373
5374	BUG_ON(!name);
5375
5376	*p++ = ':';
5377	/*
5378	 * First flags affecting slabcache operations. We will only
5379	 * get here for aliasable slabs so we do not need to support
5380	 * too many flags. The flags here must cover all flags that
5381	 * are matched during merging to guarantee that the id is
5382	 * unique.
5383	 */
5384	if (s->flags & SLAB_CACHE_DMA)
5385		*p++ = 'd';
5386	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5387		*p++ = 'a';
5388	if (s->flags & SLAB_CONSISTENCY_CHECKS)
5389		*p++ = 'F';
5390	if (!(s->flags & SLAB_NOTRACK))
5391		*p++ = 't';
5392	if (s->flags & SLAB_ACCOUNT)
5393		*p++ = 'A';
5394	if (p != name + 1)
5395		*p++ = '-';
5396	p += sprintf(p, "%07d", s->size);
5397
5398	BUG_ON(p > name + ID_STR_LENGTH - 1);
5399	return name;
5400}
5401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5402static int sysfs_slab_add(struct kmem_cache *s)
5403{
5404	int err;
5405	const char *name;
 
5406	int unmergeable = slab_unmergeable(s);
5407
 
 
 
 
 
 
 
 
 
 
 
5408	if (unmergeable) {
5409		/*
5410		 * Slabcache can never be merged so we can use the name proper.
5411		 * This is typically the case for debug situations. In that
5412		 * case we can catch duplicate names easily.
5413		 */
5414		sysfs_remove_link(&slab_kset->kobj, s->name);
5415		name = s->name;
5416	} else {
5417		/*
5418		 * Create a unique name for the slab as a target
5419		 * for the symlinks.
5420		 */
5421		name = create_unique_id(s);
5422	}
5423
5424	s->kobj.kset = cache_kset(s);
5425	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5426	if (err)
5427		goto out;
5428
5429	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5430	if (err)
5431		goto out_del_kobj;
5432
5433#ifdef CONFIG_MEMCG
5434	if (is_root_cache(s)) {
5435		s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5436		if (!s->memcg_kset) {
5437			err = -ENOMEM;
5438			goto out_del_kobj;
5439		}
5440	}
5441#endif
5442
5443	kobject_uevent(&s->kobj, KOBJ_ADD);
5444	if (!unmergeable) {
5445		/* Setup first alias */
5446		sysfs_slab_alias(s, s->name);
5447	}
5448out:
5449	if (!unmergeable)
5450		kfree(name);
5451	return err;
5452out_del_kobj:
5453	kobject_del(&s->kobj);
5454	goto out;
5455}
5456
5457void sysfs_slab_remove(struct kmem_cache *s)
5458{
5459	if (slab_state < FULL)
5460		/*
5461		 * Sysfs has not been setup yet so no need to remove the
5462		 * cache from sysfs.
5463		 */
5464		return;
5465
5466#ifdef CONFIG_MEMCG
5467	kset_unregister(s->memcg_kset);
5468#endif
5469	kobject_uevent(&s->kobj, KOBJ_REMOVE);
5470	kobject_del(&s->kobj);
5471	kobject_put(&s->kobj);
 
 
5472}
5473
5474/*
5475 * Need to buffer aliases during bootup until sysfs becomes
5476 * available lest we lose that information.
5477 */
5478struct saved_alias {
5479	struct kmem_cache *s;
5480	const char *name;
5481	struct saved_alias *next;
5482};
5483
5484static struct saved_alias *alias_list;
5485
5486static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5487{
5488	struct saved_alias *al;
5489
5490	if (slab_state == FULL) {
5491		/*
5492		 * If we have a leftover link then remove it.
5493		 */
5494		sysfs_remove_link(&slab_kset->kobj, name);
5495		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5496	}
5497
5498	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5499	if (!al)
5500		return -ENOMEM;
5501
5502	al->s = s;
5503	al->name = name;
5504	al->next = alias_list;
5505	alias_list = al;
5506	return 0;
5507}
5508
5509static int __init slab_sysfs_init(void)
5510{
5511	struct kmem_cache *s;
5512	int err;
5513
5514	mutex_lock(&slab_mutex);
5515
5516	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5517	if (!slab_kset) {
5518		mutex_unlock(&slab_mutex);
5519		pr_err("Cannot register slab subsystem.\n");
5520		return -ENOSYS;
5521	}
5522
5523	slab_state = FULL;
5524
5525	list_for_each_entry(s, &slab_caches, list) {
5526		err = sysfs_slab_add(s);
5527		if (err)
5528			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5529			       s->name);
5530	}
5531
5532	while (alias_list) {
5533		struct saved_alias *al = alias_list;
5534
5535		alias_list = alias_list->next;
5536		err = sysfs_slab_alias(al->s, al->name);
5537		if (err)
5538			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5539			       al->name);
5540		kfree(al);
5541	}
5542
5543	mutex_unlock(&slab_mutex);
5544	resiliency_test();
5545	return 0;
5546}
5547
5548__initcall(slab_sysfs_init);
5549#endif /* CONFIG_SYSFS */
5550
5551/*
5552 * The /proc/slabinfo ABI
5553 */
5554#ifdef CONFIG_SLABINFO
5555void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5556{
5557	unsigned long nr_slabs = 0;
5558	unsigned long nr_objs = 0;
5559	unsigned long nr_free = 0;
5560	int node;
5561	struct kmem_cache_node *n;
5562
5563	for_each_kmem_cache_node(s, node, n) {
5564		nr_slabs += node_nr_slabs(n);
5565		nr_objs += node_nr_objs(n);
5566		nr_free += count_partial(n, count_free);
5567	}
5568
5569	sinfo->active_objs = nr_objs - nr_free;
5570	sinfo->num_objs = nr_objs;
5571	sinfo->active_slabs = nr_slabs;
5572	sinfo->num_slabs = nr_slabs;
5573	sinfo->objects_per_slab = oo_objects(s->oo);
5574	sinfo->cache_order = oo_order(s->oo);
5575}
5576
5577void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5578{
5579}
5580
5581ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5582		       size_t count, loff_t *ppos)
5583{
5584	return -EIO;
5585}
5586#endif /* CONFIG_SLABINFO */
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * SLUB: A slab allocator that limits cache line use instead of queuing
   4 * objects in per cpu and per node lists.
   5 *
   6 * The allocator synchronizes using per slab locks or atomic operatios
   7 * and only uses a centralized lock to manage a pool of partial slabs.
   8 *
   9 * (C) 2007 SGI, Christoph Lameter
  10 * (C) 2011 Linux Foundation, Christoph Lameter
  11 */
  12
  13#include <linux/mm.h>
  14#include <linux/swap.h> /* struct reclaim_state */
  15#include <linux/module.h>
  16#include <linux/bit_spinlock.h>
  17#include <linux/interrupt.h>
  18#include <linux/bitops.h>
  19#include <linux/slab.h>
  20#include "slab.h"
  21#include <linux/proc_fs.h>
  22#include <linux/notifier.h>
  23#include <linux/seq_file.h>
  24#include <linux/kasan.h>
 
  25#include <linux/cpu.h>
  26#include <linux/cpuset.h>
  27#include <linux/mempolicy.h>
  28#include <linux/ctype.h>
  29#include <linux/debugobjects.h>
  30#include <linux/kallsyms.h>
  31#include <linux/memory.h>
  32#include <linux/math64.h>
  33#include <linux/fault-inject.h>
  34#include <linux/stacktrace.h>
  35#include <linux/prefetch.h>
  36#include <linux/memcontrol.h>
  37#include <linux/random.h>
  38
  39#include <trace/events/kmem.h>
  40
  41#include "internal.h"
  42
  43/*
  44 * Lock order:
  45 *   1. slab_mutex (Global Mutex)
  46 *   2. node->list_lock
  47 *   3. slab_lock(page) (Only on some arches and for debugging)
  48 *
  49 *   slab_mutex
  50 *
  51 *   The role of the slab_mutex is to protect the list of all the slabs
  52 *   and to synchronize major metadata changes to slab cache structures.
  53 *
  54 *   The slab_lock is only used for debugging and on arches that do not
  55 *   have the ability to do a cmpxchg_double. It only protects the second
  56 *   double word in the page struct. Meaning
  57 *	A. page->freelist	-> List of object free in a page
  58 *	B. page->counters	-> Counters of objects
  59 *	C. page->frozen		-> frozen state
  60 *
  61 *   If a slab is frozen then it is exempt from list management. It is not
  62 *   on any list. The processor that froze the slab is the one who can
  63 *   perform list operations on the page. Other processors may put objects
  64 *   onto the freelist but the processor that froze the slab is the only
  65 *   one that can retrieve the objects from the page's freelist.
  66 *
  67 *   The list_lock protects the partial and full list on each node and
  68 *   the partial slab counter. If taken then no new slabs may be added or
  69 *   removed from the lists nor make the number of partial slabs be modified.
  70 *   (Note that the total number of slabs is an atomic value that may be
  71 *   modified without taking the list lock).
  72 *
  73 *   The list_lock is a centralized lock and thus we avoid taking it as
  74 *   much as possible. As long as SLUB does not have to handle partial
  75 *   slabs, operations can continue without any centralized lock. F.e.
  76 *   allocating a long series of objects that fill up slabs does not require
  77 *   the list lock.
  78 *   Interrupts are disabled during allocation and deallocation in order to
  79 *   make the slab allocator safe to use in the context of an irq. In addition
  80 *   interrupts are disabled to ensure that the processor does not change
  81 *   while handling per_cpu slabs, due to kernel preemption.
  82 *
  83 * SLUB assigns one slab for allocation to each processor.
  84 * Allocations only occur from these slabs called cpu slabs.
  85 *
  86 * Slabs with free elements are kept on a partial list and during regular
  87 * operations no list for full slabs is used. If an object in a full slab is
  88 * freed then the slab will show up again on the partial lists.
  89 * We track full slabs for debugging purposes though because otherwise we
  90 * cannot scan all objects.
  91 *
  92 * Slabs are freed when they become empty. Teardown and setup is
  93 * minimal so we rely on the page allocators per cpu caches for
  94 * fast frees and allocs.
  95 *
  96 * Overloading of page flags that are otherwise used for LRU management.
  97 *
  98 * PageActive 		The slab is frozen and exempt from list processing.
  99 * 			This means that the slab is dedicated to a purpose
 100 * 			such as satisfying allocations for a specific
 101 * 			processor. Objects may be freed in the slab while
 102 * 			it is frozen but slab_free will then skip the usual
 103 * 			list operations. It is up to the processor holding
 104 * 			the slab to integrate the slab into the slab lists
 105 * 			when the slab is no longer needed.
 106 *
 107 * 			One use of this flag is to mark slabs that are
 108 * 			used for allocations. Then such a slab becomes a cpu
 109 * 			slab. The cpu slab may be equipped with an additional
 110 * 			freelist that allows lockless access to
 111 * 			free objects in addition to the regular freelist
 112 * 			that requires the slab lock.
 113 *
 114 * PageError		Slab requires special handling due to debug
 115 * 			options set. This moves	slab handling out of
 116 * 			the fast path and disables lockless freelists.
 117 */
 118
 119static inline int kmem_cache_debug(struct kmem_cache *s)
 120{
 121#ifdef CONFIG_SLUB_DEBUG
 122	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
 123#else
 124	return 0;
 125#endif
 126}
 127
 128void *fixup_red_left(struct kmem_cache *s, void *p)
 129{
 130	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
 131		p += s->red_left_pad;
 132
 133	return p;
 134}
 135
 136static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
 137{
 138#ifdef CONFIG_SLUB_CPU_PARTIAL
 139	return !kmem_cache_debug(s);
 140#else
 141	return false;
 142#endif
 143}
 144
 145/*
 146 * Issues still to be resolved:
 147 *
 148 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 149 *
 150 * - Variable sizing of the per node arrays
 151 */
 152
 153/* Enable to test recovery from slab corruption on boot */
 154#undef SLUB_RESILIENCY_TEST
 155
 156/* Enable to log cmpxchg failures */
 157#undef SLUB_DEBUG_CMPXCHG
 158
 159/*
 160 * Mininum number of partial slabs. These will be left on the partial
 161 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 162 */
 163#define MIN_PARTIAL 5
 164
 165/*
 166 * Maximum number of desirable partial slabs.
 167 * The existence of more partial slabs makes kmem_cache_shrink
 168 * sort the partial list by the number of objects in use.
 169 */
 170#define MAX_PARTIAL 10
 171
 172#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
 173				SLAB_POISON | SLAB_STORE_USER)
 174
 175/*
 176 * These debug flags cannot use CMPXCHG because there might be consistency
 177 * issues when checking or reading debug information
 178 */
 179#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
 180				SLAB_TRACE)
 181
 182
 183/*
 184 * Debugging flags that require metadata to be stored in the slab.  These get
 185 * disabled when slub_debug=O is used and a cache's min order increases with
 186 * metadata.
 187 */
 188#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
 189
 190#define OO_SHIFT	16
 191#define OO_MASK		((1 << OO_SHIFT) - 1)
 192#define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
 193
 194/* Internal SLUB flags */
 195/* Poison object */
 196#define __OBJECT_POISON		((slab_flags_t __force)0x80000000U)
 197/* Use cmpxchg_double */
 198#define __CMPXCHG_DOUBLE	((slab_flags_t __force)0x40000000U)
 
 
 199
 200/*
 201 * Tracking user of a slab.
 202 */
 203#define TRACK_ADDRS_COUNT 16
 204struct track {
 205	unsigned long addr;	/* Called from address */
 206#ifdef CONFIG_STACKTRACE
 207	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
 208#endif
 209	int cpu;		/* Was running on cpu */
 210	int pid;		/* Pid context */
 211	unsigned long when;	/* When did the operation occur */
 212};
 213
 214enum track_item { TRACK_ALLOC, TRACK_FREE };
 215
 216#ifdef CONFIG_SYSFS
 217static int sysfs_slab_add(struct kmem_cache *);
 218static int sysfs_slab_alias(struct kmem_cache *, const char *);
 219static void memcg_propagate_slab_attrs(struct kmem_cache *s);
 220static void sysfs_slab_remove(struct kmem_cache *s);
 221#else
 222static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
 223static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
 224							{ return 0; }
 225static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
 226static inline void sysfs_slab_remove(struct kmem_cache *s) { }
 227#endif
 228
 229static inline void stat(const struct kmem_cache *s, enum stat_item si)
 230{
 231#ifdef CONFIG_SLUB_STATS
 232	/*
 233	 * The rmw is racy on a preemptible kernel but this is acceptable, so
 234	 * avoid this_cpu_add()'s irq-disable overhead.
 235	 */
 236	raw_cpu_inc(s->cpu_slab->stat[si]);
 237#endif
 238}
 239
 240/********************************************************************
 241 * 			Core slab cache functions
 242 *******************************************************************/
 243
 244/*
 245 * Returns freelist pointer (ptr). With hardening, this is obfuscated
 246 * with an XOR of the address where the pointer is held and a per-cache
 247 * random number.
 248 */
 249static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
 250				 unsigned long ptr_addr)
 251{
 252#ifdef CONFIG_SLAB_FREELIST_HARDENED
 253	return (void *)((unsigned long)ptr ^ s->random ^ ptr_addr);
 254#else
 255	return ptr;
 256#endif
 257}
 258
 259/* Returns the freelist pointer recorded at location ptr_addr. */
 260static inline void *freelist_dereference(const struct kmem_cache *s,
 261					 void *ptr_addr)
 262{
 263	return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
 264			    (unsigned long)ptr_addr);
 265}
 266
 267static inline void *get_freepointer(struct kmem_cache *s, void *object)
 268{
 269	return freelist_dereference(s, object + s->offset);
 270}
 271
 272static void prefetch_freepointer(const struct kmem_cache *s, void *object)
 273{
 274	if (object)
 275		prefetch(freelist_dereference(s, object + s->offset));
 276}
 277
 278static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
 279{
 280	unsigned long freepointer_addr;
 281	void *p;
 282
 283	if (!debug_pagealloc_enabled())
 284		return get_freepointer(s, object);
 285
 286	freepointer_addr = (unsigned long)object + s->offset;
 287	probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
 288	return freelist_ptr(s, p, freepointer_addr);
 289}
 290
 291static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
 292{
 293	unsigned long freeptr_addr = (unsigned long)object + s->offset;
 294
 295#ifdef CONFIG_SLAB_FREELIST_HARDENED
 296	BUG_ON(object == fp); /* naive detection of double free or corruption */
 297#endif
 298
 299	*(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
 300}
 301
 302/* Loop over all objects in a slab */
 303#define for_each_object(__p, __s, __addr, __objects) \
 304	for (__p = fixup_red_left(__s, __addr); \
 305		__p < (__addr) + (__objects) * (__s)->size; \
 306		__p += (__s)->size)
 307
 308#define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
 309	for (__p = fixup_red_left(__s, __addr), __idx = 1; \
 310		__idx <= __objects; \
 311		__p += (__s)->size, __idx++)
 312
 313/* Determine object index from a given position */
 314static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr)
 315{
 316	return (p - addr) / s->size;
 317}
 318
 319static inline unsigned int order_objects(unsigned int order, unsigned int size, unsigned int reserved)
 320{
 321	return (((unsigned int)PAGE_SIZE << order) - reserved) / size;
 322}
 323
 324static inline struct kmem_cache_order_objects oo_make(unsigned int order,
 325		unsigned int size, unsigned int reserved)
 326{
 327	struct kmem_cache_order_objects x = {
 328		(order << OO_SHIFT) + order_objects(order, size, reserved)
 329	};
 330
 331	return x;
 332}
 333
 334static inline unsigned int oo_order(struct kmem_cache_order_objects x)
 335{
 336	return x.x >> OO_SHIFT;
 337}
 338
 339static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
 340{
 341	return x.x & OO_MASK;
 342}
 343
 344/*
 345 * Per slab locking using the pagelock
 346 */
 347static __always_inline void slab_lock(struct page *page)
 348{
 349	VM_BUG_ON_PAGE(PageTail(page), page);
 350	bit_spin_lock(PG_locked, &page->flags);
 351}
 352
 353static __always_inline void slab_unlock(struct page *page)
 354{
 355	VM_BUG_ON_PAGE(PageTail(page), page);
 356	__bit_spin_unlock(PG_locked, &page->flags);
 357}
 358
 359static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
 360{
 361	struct page tmp;
 362	tmp.counters = counters_new;
 363	/*
 364	 * page->counters can cover frozen/inuse/objects as well
 365	 * as page->_refcount.  If we assign to ->counters directly
 366	 * we run the risk of losing updates to page->_refcount, so
 367	 * be careful and only assign to the fields we need.
 368	 */
 369	page->frozen  = tmp.frozen;
 370	page->inuse   = tmp.inuse;
 371	page->objects = tmp.objects;
 372}
 373
 374/* Interrupts must be disabled (for the fallback code to work right) */
 375static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
 376		void *freelist_old, unsigned long counters_old,
 377		void *freelist_new, unsigned long counters_new,
 378		const char *n)
 379{
 380	VM_BUG_ON(!irqs_disabled());
 381#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
 382    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
 383	if (s->flags & __CMPXCHG_DOUBLE) {
 384		if (cmpxchg_double(&page->freelist, &page->counters,
 385				   freelist_old, counters_old,
 386				   freelist_new, counters_new))
 387			return true;
 388	} else
 389#endif
 390	{
 391		slab_lock(page);
 392		if (page->freelist == freelist_old &&
 393					page->counters == counters_old) {
 394			page->freelist = freelist_new;
 395			set_page_slub_counters(page, counters_new);
 396			slab_unlock(page);
 397			return true;
 398		}
 399		slab_unlock(page);
 400	}
 401
 402	cpu_relax();
 403	stat(s, CMPXCHG_DOUBLE_FAIL);
 404
 405#ifdef SLUB_DEBUG_CMPXCHG
 406	pr_info("%s %s: cmpxchg double redo ", n, s->name);
 407#endif
 408
 409	return false;
 410}
 411
 412static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
 413		void *freelist_old, unsigned long counters_old,
 414		void *freelist_new, unsigned long counters_new,
 415		const char *n)
 416{
 417#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
 418    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
 419	if (s->flags & __CMPXCHG_DOUBLE) {
 420		if (cmpxchg_double(&page->freelist, &page->counters,
 421				   freelist_old, counters_old,
 422				   freelist_new, counters_new))
 423			return true;
 424	} else
 425#endif
 426	{
 427		unsigned long flags;
 428
 429		local_irq_save(flags);
 430		slab_lock(page);
 431		if (page->freelist == freelist_old &&
 432					page->counters == counters_old) {
 433			page->freelist = freelist_new;
 434			set_page_slub_counters(page, counters_new);
 435			slab_unlock(page);
 436			local_irq_restore(flags);
 437			return true;
 438		}
 439		slab_unlock(page);
 440		local_irq_restore(flags);
 441	}
 442
 443	cpu_relax();
 444	stat(s, CMPXCHG_DOUBLE_FAIL);
 445
 446#ifdef SLUB_DEBUG_CMPXCHG
 447	pr_info("%s %s: cmpxchg double redo ", n, s->name);
 448#endif
 449
 450	return false;
 451}
 452
 453#ifdef CONFIG_SLUB_DEBUG
 454/*
 455 * Determine a map of object in use on a page.
 456 *
 457 * Node listlock must be held to guarantee that the page does
 458 * not vanish from under us.
 459 */
 460static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
 461{
 462	void *p;
 463	void *addr = page_address(page);
 464
 465	for (p = page->freelist; p; p = get_freepointer(s, p))
 466		set_bit(slab_index(p, s, addr), map);
 467}
 468
 469static inline unsigned int size_from_object(struct kmem_cache *s)
 470{
 471	if (s->flags & SLAB_RED_ZONE)
 472		return s->size - s->red_left_pad;
 473
 474	return s->size;
 475}
 476
 477static inline void *restore_red_left(struct kmem_cache *s, void *p)
 478{
 479	if (s->flags & SLAB_RED_ZONE)
 480		p -= s->red_left_pad;
 481
 482	return p;
 483}
 484
 485/*
 486 * Debug settings:
 487 */
 488#if defined(CONFIG_SLUB_DEBUG_ON)
 489static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
 
 
 490#else
 491static slab_flags_t slub_debug;
 492#endif
 493
 494static char *slub_debug_slabs;
 495static int disable_higher_order_debug;
 496
 497/*
 498 * slub is about to manipulate internal object metadata.  This memory lies
 499 * outside the range of the allocated object, so accessing it would normally
 500 * be reported by kasan as a bounds error.  metadata_access_enable() is used
 501 * to tell kasan that these accesses are OK.
 502 */
 503static inline void metadata_access_enable(void)
 504{
 505	kasan_disable_current();
 506}
 507
 508static inline void metadata_access_disable(void)
 509{
 510	kasan_enable_current();
 511}
 512
 513/*
 514 * Object debugging
 515 */
 516
 517/* Verify that a pointer has an address that is valid within a slab page */
 518static inline int check_valid_pointer(struct kmem_cache *s,
 519				struct page *page, void *object)
 520{
 521	void *base;
 522
 523	if (!object)
 524		return 1;
 525
 526	base = page_address(page);
 527	object = restore_red_left(s, object);
 528	if (object < base || object >= base + page->objects * s->size ||
 529		(object - base) % s->size) {
 530		return 0;
 531	}
 532
 533	return 1;
 534}
 535
 536static void print_section(char *level, char *text, u8 *addr,
 537			  unsigned int length)
 538{
 539	metadata_access_enable();
 540	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
 541			length, 1);
 542	metadata_access_disable();
 543}
 544
 545static struct track *get_track(struct kmem_cache *s, void *object,
 546	enum track_item alloc)
 547{
 548	struct track *p;
 549
 550	if (s->offset)
 551		p = object + s->offset + sizeof(void *);
 552	else
 553		p = object + s->inuse;
 554
 555	return p + alloc;
 556}
 557
 558static void set_track(struct kmem_cache *s, void *object,
 559			enum track_item alloc, unsigned long addr)
 560{
 561	struct track *p = get_track(s, object, alloc);
 562
 563	if (addr) {
 564#ifdef CONFIG_STACKTRACE
 565		struct stack_trace trace;
 566		int i;
 567
 568		trace.nr_entries = 0;
 569		trace.max_entries = TRACK_ADDRS_COUNT;
 570		trace.entries = p->addrs;
 571		trace.skip = 3;
 572		metadata_access_enable();
 573		save_stack_trace(&trace);
 574		metadata_access_disable();
 575
 576		/* See rant in lockdep.c */
 577		if (trace.nr_entries != 0 &&
 578		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
 579			trace.nr_entries--;
 580
 581		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
 582			p->addrs[i] = 0;
 583#endif
 584		p->addr = addr;
 585		p->cpu = smp_processor_id();
 586		p->pid = current->pid;
 587		p->when = jiffies;
 588	} else
 589		memset(p, 0, sizeof(struct track));
 590}
 591
 592static void init_tracking(struct kmem_cache *s, void *object)
 593{
 594	if (!(s->flags & SLAB_STORE_USER))
 595		return;
 596
 597	set_track(s, object, TRACK_FREE, 0UL);
 598	set_track(s, object, TRACK_ALLOC, 0UL);
 599}
 600
 601static void print_track(const char *s, struct track *t, unsigned long pr_time)
 602{
 603	if (!t->addr)
 604		return;
 605
 606	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
 607	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
 608#ifdef CONFIG_STACKTRACE
 609	{
 610		int i;
 611		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
 612			if (t->addrs[i])
 613				pr_err("\t%pS\n", (void *)t->addrs[i]);
 614			else
 615				break;
 616	}
 617#endif
 618}
 619
 620static void print_tracking(struct kmem_cache *s, void *object)
 621{
 622	unsigned long pr_time = jiffies;
 623	if (!(s->flags & SLAB_STORE_USER))
 624		return;
 625
 626	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
 627	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
 628}
 629
 630static void print_page_info(struct page *page)
 631{
 632	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
 633	       page, page->objects, page->inuse, page->freelist, page->flags);
 634
 635}
 636
 637static void slab_bug(struct kmem_cache *s, char *fmt, ...)
 638{
 639	struct va_format vaf;
 640	va_list args;
 641
 642	va_start(args, fmt);
 643	vaf.fmt = fmt;
 644	vaf.va = &args;
 645	pr_err("=============================================================================\n");
 646	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
 647	pr_err("-----------------------------------------------------------------------------\n\n");
 648
 649	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 650	va_end(args);
 651}
 652
 653static void slab_fix(struct kmem_cache *s, char *fmt, ...)
 654{
 655	struct va_format vaf;
 656	va_list args;
 657
 658	va_start(args, fmt);
 659	vaf.fmt = fmt;
 660	vaf.va = &args;
 661	pr_err("FIX %s: %pV\n", s->name, &vaf);
 662	va_end(args);
 663}
 664
 665static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
 666{
 667	unsigned int off;	/* Offset of last byte */
 668	u8 *addr = page_address(page);
 669
 670	print_tracking(s, p);
 671
 672	print_page_info(page);
 673
 674	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
 675	       p, p - addr, get_freepointer(s, p));
 676
 677	if (s->flags & SLAB_RED_ZONE)
 678		print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
 679			      s->red_left_pad);
 680	else if (p > addr + 16)
 681		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
 682
 683	print_section(KERN_ERR, "Object ", p,
 684		      min_t(unsigned int, s->object_size, PAGE_SIZE));
 685	if (s->flags & SLAB_RED_ZONE)
 686		print_section(KERN_ERR, "Redzone ", p + s->object_size,
 687			s->inuse - s->object_size);
 688
 689	if (s->offset)
 690		off = s->offset + sizeof(void *);
 691	else
 692		off = s->inuse;
 693
 694	if (s->flags & SLAB_STORE_USER)
 695		off += 2 * sizeof(struct track);
 696
 697	off += kasan_metadata_size(s);
 698
 699	if (off != size_from_object(s))
 700		/* Beginning of the filler is the free pointer */
 701		print_section(KERN_ERR, "Padding ", p + off,
 702			      size_from_object(s) - off);
 703
 704	dump_stack();
 705}
 706
 707void object_err(struct kmem_cache *s, struct page *page,
 708			u8 *object, char *reason)
 709{
 710	slab_bug(s, "%s", reason);
 711	print_trailer(s, page, object);
 712}
 713
 714static void slab_err(struct kmem_cache *s, struct page *page,
 715			const char *fmt, ...)
 716{
 717	va_list args;
 718	char buf[100];
 719
 720	va_start(args, fmt);
 721	vsnprintf(buf, sizeof(buf), fmt, args);
 722	va_end(args);
 723	slab_bug(s, "%s", buf);
 724	print_page_info(page);
 725	dump_stack();
 726}
 727
 728static void init_object(struct kmem_cache *s, void *object, u8 val)
 729{
 730	u8 *p = object;
 731
 732	if (s->flags & SLAB_RED_ZONE)
 733		memset(p - s->red_left_pad, val, s->red_left_pad);
 734
 735	if (s->flags & __OBJECT_POISON) {
 736		memset(p, POISON_FREE, s->object_size - 1);
 737		p[s->object_size - 1] = POISON_END;
 738	}
 739
 740	if (s->flags & SLAB_RED_ZONE)
 741		memset(p + s->object_size, val, s->inuse - s->object_size);
 742}
 743
 744static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
 745						void *from, void *to)
 746{
 747	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
 748	memset(from, data, to - from);
 749}
 750
 751static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
 752			u8 *object, char *what,
 753			u8 *start, unsigned int value, unsigned int bytes)
 754{
 755	u8 *fault;
 756	u8 *end;
 757
 758	metadata_access_enable();
 759	fault = memchr_inv(start, value, bytes);
 760	metadata_access_disable();
 761	if (!fault)
 762		return 1;
 763
 764	end = start + bytes;
 765	while (end > fault && end[-1] == value)
 766		end--;
 767
 768	slab_bug(s, "%s overwritten", what);
 769	pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
 770					fault, end - 1, fault[0], value);
 771	print_trailer(s, page, object);
 772
 773	restore_bytes(s, what, value, fault, end);
 774	return 0;
 775}
 776
 777/*
 778 * Object layout:
 779 *
 780 * object address
 781 * 	Bytes of the object to be managed.
 782 * 	If the freepointer may overlay the object then the free
 783 * 	pointer is the first word of the object.
 784 *
 785 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
 786 * 	0xa5 (POISON_END)
 787 *
 788 * object + s->object_size
 789 * 	Padding to reach word boundary. This is also used for Redzoning.
 790 * 	Padding is extended by another word if Redzoning is enabled and
 791 * 	object_size == inuse.
 792 *
 793 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 794 * 	0xcc (RED_ACTIVE) for objects in use.
 795 *
 796 * object + s->inuse
 797 * 	Meta data starts here.
 798 *
 799 * 	A. Free pointer (if we cannot overwrite object on free)
 800 * 	B. Tracking data for SLAB_STORE_USER
 801 * 	C. Padding to reach required alignment boundary or at mininum
 802 * 		one word if debugging is on to be able to detect writes
 803 * 		before the word boundary.
 804 *
 805 *	Padding is done using 0x5a (POISON_INUSE)
 806 *
 807 * object + s->size
 808 * 	Nothing is used beyond s->size.
 809 *
 810 * If slabcaches are merged then the object_size and inuse boundaries are mostly
 811 * ignored. And therefore no slab options that rely on these boundaries
 812 * may be used with merged slabcaches.
 813 */
 814
 815static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
 816{
 817	unsigned long off = s->inuse;	/* The end of info */
 818
 819	if (s->offset)
 820		/* Freepointer is placed after the object. */
 821		off += sizeof(void *);
 822
 823	if (s->flags & SLAB_STORE_USER)
 824		/* We also have user information there */
 825		off += 2 * sizeof(struct track);
 826
 827	off += kasan_metadata_size(s);
 828
 829	if (size_from_object(s) == off)
 830		return 1;
 831
 832	return check_bytes_and_report(s, page, p, "Object padding",
 833			p + off, POISON_INUSE, size_from_object(s) - off);
 834}
 835
 836/* Check the pad bytes at the end of a slab page */
 837static int slab_pad_check(struct kmem_cache *s, struct page *page)
 838{
 839	u8 *start;
 840	u8 *fault;
 841	u8 *end;
 842	u8 *pad;
 843	int length;
 844	int remainder;
 845
 846	if (!(s->flags & SLAB_POISON))
 847		return 1;
 848
 849	start = page_address(page);
 850	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
 851	end = start + length;
 852	remainder = length % s->size;
 853	if (!remainder)
 854		return 1;
 855
 856	pad = end - remainder;
 857	metadata_access_enable();
 858	fault = memchr_inv(pad, POISON_INUSE, remainder);
 859	metadata_access_disable();
 860	if (!fault)
 861		return 1;
 862	while (end > fault && end[-1] == POISON_INUSE)
 863		end--;
 864
 865	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
 866	print_section(KERN_ERR, "Padding ", pad, remainder);
 867
 868	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
 869	return 0;
 870}
 871
 872static int check_object(struct kmem_cache *s, struct page *page,
 873					void *object, u8 val)
 874{
 875	u8 *p = object;
 876	u8 *endobject = object + s->object_size;
 877
 878	if (s->flags & SLAB_RED_ZONE) {
 879		if (!check_bytes_and_report(s, page, object, "Redzone",
 880			object - s->red_left_pad, val, s->red_left_pad))
 881			return 0;
 882
 883		if (!check_bytes_and_report(s, page, object, "Redzone",
 884			endobject, val, s->inuse - s->object_size))
 885			return 0;
 886	} else {
 887		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
 888			check_bytes_and_report(s, page, p, "Alignment padding",
 889				endobject, POISON_INUSE,
 890				s->inuse - s->object_size);
 891		}
 892	}
 893
 894	if (s->flags & SLAB_POISON) {
 895		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
 896			(!check_bytes_and_report(s, page, p, "Poison", p,
 897					POISON_FREE, s->object_size - 1) ||
 898			 !check_bytes_and_report(s, page, p, "Poison",
 899				p + s->object_size - 1, POISON_END, 1)))
 900			return 0;
 901		/*
 902		 * check_pad_bytes cleans up on its own.
 903		 */
 904		check_pad_bytes(s, page, p);
 905	}
 906
 907	if (!s->offset && val == SLUB_RED_ACTIVE)
 908		/*
 909		 * Object and freepointer overlap. Cannot check
 910		 * freepointer while object is allocated.
 911		 */
 912		return 1;
 913
 914	/* Check free pointer validity */
 915	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
 916		object_err(s, page, p, "Freepointer corrupt");
 917		/*
 918		 * No choice but to zap it and thus lose the remainder
 919		 * of the free objects in this slab. May cause
 920		 * another error because the object count is now wrong.
 921		 */
 922		set_freepointer(s, p, NULL);
 923		return 0;
 924	}
 925	return 1;
 926}
 927
 928static int check_slab(struct kmem_cache *s, struct page *page)
 929{
 930	int maxobj;
 931
 932	VM_BUG_ON(!irqs_disabled());
 933
 934	if (!PageSlab(page)) {
 935		slab_err(s, page, "Not a valid slab page");
 936		return 0;
 937	}
 938
 939	maxobj = order_objects(compound_order(page), s->size, s->reserved);
 940	if (page->objects > maxobj) {
 941		slab_err(s, page, "objects %u > max %u",
 942			page->objects, maxobj);
 943		return 0;
 944	}
 945	if (page->inuse > page->objects) {
 946		slab_err(s, page, "inuse %u > max %u",
 947			page->inuse, page->objects);
 948		return 0;
 949	}
 950	/* Slab_pad_check fixes things up after itself */
 951	slab_pad_check(s, page);
 952	return 1;
 953}
 954
 955/*
 956 * Determine if a certain object on a page is on the freelist. Must hold the
 957 * slab lock to guarantee that the chains are in a consistent state.
 958 */
 959static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
 960{
 961	int nr = 0;
 962	void *fp;
 963	void *object = NULL;
 964	int max_objects;
 965
 966	fp = page->freelist;
 967	while (fp && nr <= page->objects) {
 968		if (fp == search)
 969			return 1;
 970		if (!check_valid_pointer(s, page, fp)) {
 971			if (object) {
 972				object_err(s, page, object,
 973					"Freechain corrupt");
 974				set_freepointer(s, object, NULL);
 975			} else {
 976				slab_err(s, page, "Freepointer corrupt");
 977				page->freelist = NULL;
 978				page->inuse = page->objects;
 979				slab_fix(s, "Freelist cleared");
 980				return 0;
 981			}
 982			break;
 983		}
 984		object = fp;
 985		fp = get_freepointer(s, object);
 986		nr++;
 987	}
 988
 989	max_objects = order_objects(compound_order(page), s->size, s->reserved);
 990	if (max_objects > MAX_OBJS_PER_PAGE)
 991		max_objects = MAX_OBJS_PER_PAGE;
 992
 993	if (page->objects != max_objects) {
 994		slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
 995			 page->objects, max_objects);
 996		page->objects = max_objects;
 997		slab_fix(s, "Number of objects adjusted.");
 998	}
 999	if (page->inuse != page->objects - nr) {
1000		slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1001			 page->inuse, page->objects - nr);
1002		page->inuse = page->objects - nr;
1003		slab_fix(s, "Object count adjusted.");
1004	}
1005	return search == NULL;
1006}
1007
1008static void trace(struct kmem_cache *s, struct page *page, void *object,
1009								int alloc)
1010{
1011	if (s->flags & SLAB_TRACE) {
1012		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1013			s->name,
1014			alloc ? "alloc" : "free",
1015			object, page->inuse,
1016			page->freelist);
1017
1018		if (!alloc)
1019			print_section(KERN_INFO, "Object ", (void *)object,
1020					s->object_size);
1021
1022		dump_stack();
1023	}
1024}
1025
1026/*
1027 * Tracking of fully allocated slabs for debugging purposes.
1028 */
1029static void add_full(struct kmem_cache *s,
1030	struct kmem_cache_node *n, struct page *page)
1031{
1032	if (!(s->flags & SLAB_STORE_USER))
1033		return;
1034
1035	lockdep_assert_held(&n->list_lock);
1036	list_add(&page->lru, &n->full);
1037}
1038
1039static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1040{
1041	if (!(s->flags & SLAB_STORE_USER))
1042		return;
1043
1044	lockdep_assert_held(&n->list_lock);
1045	list_del(&page->lru);
1046}
1047
1048/* Tracking of the number of slabs for debugging purposes */
1049static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1050{
1051	struct kmem_cache_node *n = get_node(s, node);
1052
1053	return atomic_long_read(&n->nr_slabs);
1054}
1055
1056static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1057{
1058	return atomic_long_read(&n->nr_slabs);
1059}
1060
1061static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1062{
1063	struct kmem_cache_node *n = get_node(s, node);
1064
1065	/*
1066	 * May be called early in order to allocate a slab for the
1067	 * kmem_cache_node structure. Solve the chicken-egg
1068	 * dilemma by deferring the increment of the count during
1069	 * bootstrap (see early_kmem_cache_node_alloc).
1070	 */
1071	if (likely(n)) {
1072		atomic_long_inc(&n->nr_slabs);
1073		atomic_long_add(objects, &n->total_objects);
1074	}
1075}
1076static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1077{
1078	struct kmem_cache_node *n = get_node(s, node);
1079
1080	atomic_long_dec(&n->nr_slabs);
1081	atomic_long_sub(objects, &n->total_objects);
1082}
1083
1084/* Object debug checks for alloc/free paths */
1085static void setup_object_debug(struct kmem_cache *s, struct page *page,
1086								void *object)
1087{
1088	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1089		return;
1090
1091	init_object(s, object, SLUB_RED_INACTIVE);
1092	init_tracking(s, object);
1093}
1094
1095static inline int alloc_consistency_checks(struct kmem_cache *s,
1096					struct page *page,
1097					void *object, unsigned long addr)
1098{
1099	if (!check_slab(s, page))
1100		return 0;
1101
1102	if (!check_valid_pointer(s, page, object)) {
1103		object_err(s, page, object, "Freelist Pointer check fails");
1104		return 0;
1105	}
1106
1107	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1108		return 0;
1109
1110	return 1;
1111}
1112
1113static noinline int alloc_debug_processing(struct kmem_cache *s,
1114					struct page *page,
1115					void *object, unsigned long addr)
1116{
1117	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1118		if (!alloc_consistency_checks(s, page, object, addr))
1119			goto bad;
1120	}
1121
1122	/* Success perform special debug activities for allocs */
1123	if (s->flags & SLAB_STORE_USER)
1124		set_track(s, object, TRACK_ALLOC, addr);
1125	trace(s, page, object, 1);
1126	init_object(s, object, SLUB_RED_ACTIVE);
1127	return 1;
1128
1129bad:
1130	if (PageSlab(page)) {
1131		/*
1132		 * If this is a slab page then lets do the best we can
1133		 * to avoid issues in the future. Marking all objects
1134		 * as used avoids touching the remaining objects.
1135		 */
1136		slab_fix(s, "Marking all objects used");
1137		page->inuse = page->objects;
1138		page->freelist = NULL;
1139	}
1140	return 0;
1141}
1142
1143static inline int free_consistency_checks(struct kmem_cache *s,
1144		struct page *page, void *object, unsigned long addr)
1145{
1146	if (!check_valid_pointer(s, page, object)) {
1147		slab_err(s, page, "Invalid object pointer 0x%p", object);
1148		return 0;
1149	}
1150
1151	if (on_freelist(s, page, object)) {
1152		object_err(s, page, object, "Object already free");
1153		return 0;
1154	}
1155
1156	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1157		return 0;
1158
1159	if (unlikely(s != page->slab_cache)) {
1160		if (!PageSlab(page)) {
1161			slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1162				 object);
1163		} else if (!page->slab_cache) {
1164			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1165			       object);
1166			dump_stack();
1167		} else
1168			object_err(s, page, object,
1169					"page slab pointer corrupt.");
1170		return 0;
1171	}
1172	return 1;
1173}
1174
1175/* Supports checking bulk free of a constructed freelist */
1176static noinline int free_debug_processing(
1177	struct kmem_cache *s, struct page *page,
1178	void *head, void *tail, int bulk_cnt,
1179	unsigned long addr)
1180{
1181	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1182	void *object = head;
1183	int cnt = 0;
1184	unsigned long uninitialized_var(flags);
1185	int ret = 0;
1186
1187	spin_lock_irqsave(&n->list_lock, flags);
1188	slab_lock(page);
1189
1190	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1191		if (!check_slab(s, page))
1192			goto out;
1193	}
1194
1195next_object:
1196	cnt++;
1197
1198	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1199		if (!free_consistency_checks(s, page, object, addr))
1200			goto out;
1201	}
1202
1203	if (s->flags & SLAB_STORE_USER)
1204		set_track(s, object, TRACK_FREE, addr);
1205	trace(s, page, object, 0);
1206	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1207	init_object(s, object, SLUB_RED_INACTIVE);
1208
1209	/* Reached end of constructed freelist yet? */
1210	if (object != tail) {
1211		object = get_freepointer(s, object);
1212		goto next_object;
1213	}
1214	ret = 1;
1215
1216out:
1217	if (cnt != bulk_cnt)
1218		slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1219			 bulk_cnt, cnt);
1220
1221	slab_unlock(page);
1222	spin_unlock_irqrestore(&n->list_lock, flags);
1223	if (!ret)
1224		slab_fix(s, "Object at 0x%p not freed", object);
1225	return ret;
1226}
1227
1228static int __init setup_slub_debug(char *str)
1229{
1230	slub_debug = DEBUG_DEFAULT_FLAGS;
1231	if (*str++ != '=' || !*str)
1232		/*
1233		 * No options specified. Switch on full debugging.
1234		 */
1235		goto out;
1236
1237	if (*str == ',')
1238		/*
1239		 * No options but restriction on slabs. This means full
1240		 * debugging for slabs matching a pattern.
1241		 */
1242		goto check_slabs;
1243
1244	slub_debug = 0;
1245	if (*str == '-')
1246		/*
1247		 * Switch off all debugging measures.
1248		 */
1249		goto out;
1250
1251	/*
1252	 * Determine which debug features should be switched on
1253	 */
1254	for (; *str && *str != ','; str++) {
1255		switch (tolower(*str)) {
1256		case 'f':
1257			slub_debug |= SLAB_CONSISTENCY_CHECKS;
1258			break;
1259		case 'z':
1260			slub_debug |= SLAB_RED_ZONE;
1261			break;
1262		case 'p':
1263			slub_debug |= SLAB_POISON;
1264			break;
1265		case 'u':
1266			slub_debug |= SLAB_STORE_USER;
1267			break;
1268		case 't':
1269			slub_debug |= SLAB_TRACE;
1270			break;
1271		case 'a':
1272			slub_debug |= SLAB_FAILSLAB;
1273			break;
1274		case 'o':
1275			/*
1276			 * Avoid enabling debugging on caches if its minimum
1277			 * order would increase as a result.
1278			 */
1279			disable_higher_order_debug = 1;
1280			break;
1281		default:
1282			pr_err("slub_debug option '%c' unknown. skipped\n",
1283			       *str);
1284		}
1285	}
1286
1287check_slabs:
1288	if (*str == ',')
1289		slub_debug_slabs = str + 1;
1290out:
1291	return 1;
1292}
1293
1294__setup("slub_debug", setup_slub_debug);
1295
1296slab_flags_t kmem_cache_flags(unsigned int object_size,
1297	slab_flags_t flags, const char *name,
1298	void (*ctor)(void *))
1299{
1300	/*
1301	 * Enable debugging if selected on the kernel commandline.
1302	 */
1303	if (slub_debug && (!slub_debug_slabs || (name &&
1304		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1305		flags |= slub_debug;
1306
1307	return flags;
1308}
1309#else /* !CONFIG_SLUB_DEBUG */
1310static inline void setup_object_debug(struct kmem_cache *s,
1311			struct page *page, void *object) {}
1312
1313static inline int alloc_debug_processing(struct kmem_cache *s,
1314	struct page *page, void *object, unsigned long addr) { return 0; }
1315
1316static inline int free_debug_processing(
1317	struct kmem_cache *s, struct page *page,
1318	void *head, void *tail, int bulk_cnt,
1319	unsigned long addr) { return 0; }
1320
1321static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1322			{ return 1; }
1323static inline int check_object(struct kmem_cache *s, struct page *page,
1324			void *object, u8 val) { return 1; }
1325static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1326					struct page *page) {}
1327static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1328					struct page *page) {}
1329slab_flags_t kmem_cache_flags(unsigned int object_size,
1330	slab_flags_t flags, const char *name,
1331	void (*ctor)(void *))
1332{
1333	return flags;
1334}
1335#define slub_debug 0
1336
1337#define disable_higher_order_debug 0
1338
1339static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1340							{ return 0; }
1341static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1342							{ return 0; }
1343static inline void inc_slabs_node(struct kmem_cache *s, int node,
1344							int objects) {}
1345static inline void dec_slabs_node(struct kmem_cache *s, int node,
1346							int objects) {}
1347
1348#endif /* CONFIG_SLUB_DEBUG */
1349
1350/*
1351 * Hooks for other subsystems that check memory allocations. In a typical
1352 * production configuration these hooks all should produce no code at all.
1353 */
1354static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1355{
1356	kmemleak_alloc(ptr, size, 1, flags);
1357	kasan_kmalloc_large(ptr, size, flags);
1358}
1359
1360static __always_inline void kfree_hook(void *x)
1361{
1362	kmemleak_free(x);
1363	kasan_kfree_large(x, _RET_IP_);
1364}
1365
1366static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
1367{
1368	kmemleak_free_recursive(x, s->flags);
1369
1370	/*
1371	 * Trouble is that we may no longer disable interrupts in the fast path
1372	 * So in order to make the debug calls that expect irqs to be
1373	 * disabled we need to disable interrupts temporarily.
1374	 */
1375#ifdef CONFIG_LOCKDEP
1376	{
1377		unsigned long flags;
1378
1379		local_irq_save(flags);
 
1380		debug_check_no_locks_freed(x, s->object_size);
1381		local_irq_restore(flags);
1382	}
1383#endif
1384	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1385		debug_check_no_obj_freed(x, s->object_size);
1386
1387	/* KASAN might put x into memory quarantine, delaying its reuse */
1388	return kasan_slab_free(s, x, _RET_IP_);
1389}
1390
1391static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1392					   void **head, void **tail)
1393{
1394/*
1395 * Compiler cannot detect this function can be removed if slab_free_hook()
1396 * evaluates to nothing.  Thus, catch all relevant config debug options here.
1397 */
1398#if defined(CONFIG_LOCKDEP)	||		\
 
1399	defined(CONFIG_DEBUG_KMEMLEAK) ||	\
1400	defined(CONFIG_DEBUG_OBJECTS_FREE) ||	\
1401	defined(CONFIG_KASAN)
1402
1403	void *object;
1404	void *next = *head;
1405	void *old_tail = *tail ? *tail : *head;
1406
1407	/* Head and tail of the reconstructed freelist */
1408	*head = NULL;
1409	*tail = NULL;
1410
1411	do {
1412		object = next;
1413		next = get_freepointer(s, object);
1414		/* If object's reuse doesn't have to be delayed */
1415		if (!slab_free_hook(s, object)) {
1416			/* Move object to the new freelist */
1417			set_freepointer(s, object, *head);
1418			*head = object;
1419			if (!*tail)
1420				*tail = object;
1421		}
1422	} while (object != old_tail);
1423
1424	if (*head == *tail)
1425		*tail = NULL;
1426
1427	return *head != NULL;
1428#else
1429	return true;
1430#endif
1431}
1432
1433static void setup_object(struct kmem_cache *s, struct page *page,
1434				void *object)
1435{
1436	setup_object_debug(s, page, object);
1437	kasan_init_slab_obj(s, object);
1438	if (unlikely(s->ctor)) {
1439		kasan_unpoison_object_data(s, object);
1440		s->ctor(object);
1441		kasan_poison_object_data(s, object);
1442	}
1443}
1444
1445/*
1446 * Slab allocation and freeing
1447 */
1448static inline struct page *alloc_slab_page(struct kmem_cache *s,
1449		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1450{
1451	struct page *page;
1452	unsigned int order = oo_order(oo);
 
 
1453
1454	if (node == NUMA_NO_NODE)
1455		page = alloc_pages(flags, order);
1456	else
1457		page = __alloc_pages_node(node, flags, order);
1458
1459	if (page && memcg_charge_slab(page, flags, order, s)) {
1460		__free_pages(page, order);
1461		page = NULL;
1462	}
1463
1464	return page;
1465}
1466
1467#ifdef CONFIG_SLAB_FREELIST_RANDOM
1468/* Pre-initialize the random sequence cache */
1469static int init_cache_random_seq(struct kmem_cache *s)
1470{
1471	unsigned int count = oo_objects(s->oo);
1472	int err;
1473
1474	/* Bailout if already initialised */
1475	if (s->random_seq)
1476		return 0;
1477
1478	err = cache_random_seq_create(s, count, GFP_KERNEL);
1479	if (err) {
1480		pr_err("SLUB: Unable to initialize free list for %s\n",
1481			s->name);
1482		return err;
1483	}
1484
1485	/* Transform to an offset on the set of pages */
1486	if (s->random_seq) {
1487		unsigned int i;
1488
1489		for (i = 0; i < count; i++)
1490			s->random_seq[i] *= s->size;
1491	}
1492	return 0;
1493}
1494
1495/* Initialize each random sequence freelist per cache */
1496static void __init init_freelist_randomization(void)
1497{
1498	struct kmem_cache *s;
1499
1500	mutex_lock(&slab_mutex);
1501
1502	list_for_each_entry(s, &slab_caches, list)
1503		init_cache_random_seq(s);
1504
1505	mutex_unlock(&slab_mutex);
1506}
1507
1508/* Get the next entry on the pre-computed freelist randomized */
1509static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1510				unsigned long *pos, void *start,
1511				unsigned long page_limit,
1512				unsigned long freelist_count)
1513{
1514	unsigned int idx;
1515
1516	/*
1517	 * If the target page allocation failed, the number of objects on the
1518	 * page might be smaller than the usual size defined by the cache.
1519	 */
1520	do {
1521		idx = s->random_seq[*pos];
1522		*pos += 1;
1523		if (*pos >= freelist_count)
1524			*pos = 0;
1525	} while (unlikely(idx >= page_limit));
1526
1527	return (char *)start + idx;
1528}
1529
1530/* Shuffle the single linked freelist based on a random pre-computed sequence */
1531static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1532{
1533	void *start;
1534	void *cur;
1535	void *next;
1536	unsigned long idx, pos, page_limit, freelist_count;
1537
1538	if (page->objects < 2 || !s->random_seq)
1539		return false;
1540
1541	freelist_count = oo_objects(s->oo);
1542	pos = get_random_int() % freelist_count;
1543
1544	page_limit = page->objects * s->size;
1545	start = fixup_red_left(s, page_address(page));
1546
1547	/* First entry is used as the base of the freelist */
1548	cur = next_freelist_entry(s, page, &pos, start, page_limit,
1549				freelist_count);
1550	page->freelist = cur;
1551
1552	for (idx = 1; idx < page->objects; idx++) {
1553		setup_object(s, page, cur);
1554		next = next_freelist_entry(s, page, &pos, start, page_limit,
1555			freelist_count);
1556		set_freepointer(s, cur, next);
1557		cur = next;
1558	}
1559	setup_object(s, page, cur);
1560	set_freepointer(s, cur, NULL);
1561
1562	return true;
1563}
1564#else
1565static inline int init_cache_random_seq(struct kmem_cache *s)
1566{
1567	return 0;
1568}
1569static inline void init_freelist_randomization(void) { }
1570static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1571{
1572	return false;
1573}
1574#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1575
1576static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1577{
1578	struct page *page;
1579	struct kmem_cache_order_objects oo = s->oo;
1580	gfp_t alloc_gfp;
1581	void *start, *p;
1582	int idx, order;
1583	bool shuffle;
1584
1585	flags &= gfp_allowed_mask;
1586
1587	if (gfpflags_allow_blocking(flags))
1588		local_irq_enable();
1589
1590	flags |= s->allocflags;
1591
1592	/*
1593	 * Let the initial higher-order allocation fail under memory pressure
1594	 * so we fall-back to the minimum order allocation.
1595	 */
1596	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1597	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1598		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1599
1600	page = alloc_slab_page(s, alloc_gfp, node, oo);
1601	if (unlikely(!page)) {
1602		oo = s->min;
1603		alloc_gfp = flags;
1604		/*
1605		 * Allocation may have failed due to fragmentation.
1606		 * Try a lower order alloc if possible
1607		 */
1608		page = alloc_slab_page(s, alloc_gfp, node, oo);
1609		if (unlikely(!page))
1610			goto out;
1611		stat(s, ORDER_FALLBACK);
1612	}
1613
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1614	page->objects = oo_objects(oo);
1615
1616	order = compound_order(page);
1617	page->slab_cache = s;
1618	__SetPageSlab(page);
1619	if (page_is_pfmemalloc(page))
1620		SetPageSlabPfmemalloc(page);
1621
1622	start = page_address(page);
1623
1624	if (unlikely(s->flags & SLAB_POISON))
1625		memset(start, POISON_INUSE, PAGE_SIZE << order);
1626
1627	kasan_poison_slab(page);
1628
1629	shuffle = shuffle_freelist(s, page);
1630
1631	if (!shuffle) {
1632		for_each_object_idx(p, idx, s, start, page->objects) {
1633			setup_object(s, page, p);
1634			if (likely(idx < page->objects))
1635				set_freepointer(s, p, p + s->size);
1636			else
1637				set_freepointer(s, p, NULL);
1638		}
1639		page->freelist = fixup_red_left(s, start);
1640	}
1641
 
1642	page->inuse = page->objects;
1643	page->frozen = 1;
1644
1645out:
1646	if (gfpflags_allow_blocking(flags))
1647		local_irq_disable();
1648	if (!page)
1649		return NULL;
1650
1651	mod_lruvec_page_state(page,
1652		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1653		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1654		1 << oo_order(oo));
1655
1656	inc_slabs_node(s, page_to_nid(page), page->objects);
1657
1658	return page;
1659}
1660
1661static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1662{
1663	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1664		gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1665		flags &= ~GFP_SLAB_BUG_MASK;
1666		pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1667				invalid_mask, &invalid_mask, flags, &flags);
1668		dump_stack();
1669	}
1670
1671	return allocate_slab(s,
1672		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1673}
1674
1675static void __free_slab(struct kmem_cache *s, struct page *page)
1676{
1677	int order = compound_order(page);
1678	int pages = 1 << order;
1679
1680	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1681		void *p;
1682
1683		slab_pad_check(s, page);
1684		for_each_object(p, s, page_address(page),
1685						page->objects)
1686			check_object(s, page, p, SLUB_RED_INACTIVE);
1687	}
1688
1689	mod_lruvec_page_state(page,
 
 
1690		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1691		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1692		-pages);
1693
1694	__ClearPageSlabPfmemalloc(page);
1695	__ClearPageSlab(page);
1696
1697	page_mapcount_reset(page);
1698	if (current->reclaim_state)
1699		current->reclaim_state->reclaimed_slab += pages;
1700	memcg_uncharge_slab(page, order, s);
1701	__free_pages(page, order);
1702}
1703
1704#define need_reserve_slab_rcu						\
1705	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1706
1707static void rcu_free_slab(struct rcu_head *h)
1708{
1709	struct page *page;
1710
1711	if (need_reserve_slab_rcu)
1712		page = virt_to_head_page(h);
1713	else
1714		page = container_of((struct list_head *)h, struct page, lru);
1715
1716	__free_slab(page->slab_cache, page);
1717}
1718
1719static void free_slab(struct kmem_cache *s, struct page *page)
1720{
1721	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1722		struct rcu_head *head;
1723
1724		if (need_reserve_slab_rcu) {
1725			int order = compound_order(page);
1726			int offset = (PAGE_SIZE << order) - s->reserved;
1727
1728			VM_BUG_ON(s->reserved != sizeof(*head));
1729			head = page_address(page) + offset;
1730		} else {
1731			head = &page->rcu_head;
1732		}
1733
1734		call_rcu(head, rcu_free_slab);
1735	} else
1736		__free_slab(s, page);
1737}
1738
1739static void discard_slab(struct kmem_cache *s, struct page *page)
1740{
1741	dec_slabs_node(s, page_to_nid(page), page->objects);
1742	free_slab(s, page);
1743}
1744
1745/*
1746 * Management of partially allocated slabs.
1747 */
1748static inline void
1749__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1750{
1751	n->nr_partial++;
1752	if (tail == DEACTIVATE_TO_TAIL)
1753		list_add_tail(&page->lru, &n->partial);
1754	else
1755		list_add(&page->lru, &n->partial);
1756}
1757
1758static inline void add_partial(struct kmem_cache_node *n,
1759				struct page *page, int tail)
1760{
1761	lockdep_assert_held(&n->list_lock);
1762	__add_partial(n, page, tail);
1763}
1764
1765static inline void remove_partial(struct kmem_cache_node *n,
1766					struct page *page)
1767{
1768	lockdep_assert_held(&n->list_lock);
1769	list_del(&page->lru);
1770	n->nr_partial--;
1771}
1772
1773/*
1774 * Remove slab from the partial list, freeze it and
1775 * return the pointer to the freelist.
1776 *
1777 * Returns a list of objects or NULL if it fails.
1778 */
1779static inline void *acquire_slab(struct kmem_cache *s,
1780		struct kmem_cache_node *n, struct page *page,
1781		int mode, int *objects)
1782{
1783	void *freelist;
1784	unsigned long counters;
1785	struct page new;
1786
1787	lockdep_assert_held(&n->list_lock);
1788
1789	/*
1790	 * Zap the freelist and set the frozen bit.
1791	 * The old freelist is the list of objects for the
1792	 * per cpu allocation list.
1793	 */
1794	freelist = page->freelist;
1795	counters = page->counters;
1796	new.counters = counters;
1797	*objects = new.objects - new.inuse;
1798	if (mode) {
1799		new.inuse = page->objects;
1800		new.freelist = NULL;
1801	} else {
1802		new.freelist = freelist;
1803	}
1804
1805	VM_BUG_ON(new.frozen);
1806	new.frozen = 1;
1807
1808	if (!__cmpxchg_double_slab(s, page,
1809			freelist, counters,
1810			new.freelist, new.counters,
1811			"acquire_slab"))
1812		return NULL;
1813
1814	remove_partial(n, page);
1815	WARN_ON(!freelist);
1816	return freelist;
1817}
1818
1819static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1820static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1821
1822/*
1823 * Try to allocate a partial slab from a specific node.
1824 */
1825static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1826				struct kmem_cache_cpu *c, gfp_t flags)
1827{
1828	struct page *page, *page2;
1829	void *object = NULL;
1830	unsigned int available = 0;
1831	int objects;
1832
1833	/*
1834	 * Racy check. If we mistakenly see no partial slabs then we
1835	 * just allocate an empty slab. If we mistakenly try to get a
1836	 * partial slab and there is none available then get_partials()
1837	 * will return NULL.
1838	 */
1839	if (!n || !n->nr_partial)
1840		return NULL;
1841
1842	spin_lock(&n->list_lock);
1843	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1844		void *t;
1845
1846		if (!pfmemalloc_match(page, flags))
1847			continue;
1848
1849		t = acquire_slab(s, n, page, object == NULL, &objects);
1850		if (!t)
1851			break;
1852
1853		available += objects;
1854		if (!object) {
1855			c->page = page;
1856			stat(s, ALLOC_FROM_PARTIAL);
1857			object = t;
1858		} else {
1859			put_cpu_partial(s, page, 0);
1860			stat(s, CPU_PARTIAL_NODE);
1861		}
1862		if (!kmem_cache_has_cpu_partial(s)
1863			|| available > slub_cpu_partial(s) / 2)
1864			break;
1865
1866	}
1867	spin_unlock(&n->list_lock);
1868	return object;
1869}
1870
1871/*
1872 * Get a page from somewhere. Search in increasing NUMA distances.
1873 */
1874static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1875		struct kmem_cache_cpu *c)
1876{
1877#ifdef CONFIG_NUMA
1878	struct zonelist *zonelist;
1879	struct zoneref *z;
1880	struct zone *zone;
1881	enum zone_type high_zoneidx = gfp_zone(flags);
1882	void *object;
1883	unsigned int cpuset_mems_cookie;
1884
1885	/*
1886	 * The defrag ratio allows a configuration of the tradeoffs between
1887	 * inter node defragmentation and node local allocations. A lower
1888	 * defrag_ratio increases the tendency to do local allocations
1889	 * instead of attempting to obtain partial slabs from other nodes.
1890	 *
1891	 * If the defrag_ratio is set to 0 then kmalloc() always
1892	 * returns node local objects. If the ratio is higher then kmalloc()
1893	 * may return off node objects because partial slabs are obtained
1894	 * from other nodes and filled up.
1895	 *
1896	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1897	 * (which makes defrag_ratio = 1000) then every (well almost)
1898	 * allocation will first attempt to defrag slab caches on other nodes.
1899	 * This means scanning over all nodes to look for partial slabs which
1900	 * may be expensive if we do it every time we are trying to find a slab
1901	 * with available objects.
1902	 */
1903	if (!s->remote_node_defrag_ratio ||
1904			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1905		return NULL;
1906
1907	do {
1908		cpuset_mems_cookie = read_mems_allowed_begin();
1909		zonelist = node_zonelist(mempolicy_slab_node(), flags);
1910		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1911			struct kmem_cache_node *n;
1912
1913			n = get_node(s, zone_to_nid(zone));
1914
1915			if (n && cpuset_zone_allowed(zone, flags) &&
1916					n->nr_partial > s->min_partial) {
1917				object = get_partial_node(s, n, c, flags);
1918				if (object) {
1919					/*
1920					 * Don't check read_mems_allowed_retry()
1921					 * here - if mems_allowed was updated in
1922					 * parallel, that was a harmless race
1923					 * between allocation and the cpuset
1924					 * update
1925					 */
1926					return object;
1927				}
1928			}
1929		}
1930	} while (read_mems_allowed_retry(cpuset_mems_cookie));
1931#endif
1932	return NULL;
1933}
1934
1935/*
1936 * Get a partial page, lock it and return it.
1937 */
1938static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1939		struct kmem_cache_cpu *c)
1940{
1941	void *object;
1942	int searchnode = node;
1943
1944	if (node == NUMA_NO_NODE)
1945		searchnode = numa_mem_id();
1946	else if (!node_present_pages(node))
1947		searchnode = node_to_mem_node(node);
1948
1949	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1950	if (object || node != NUMA_NO_NODE)
1951		return object;
1952
1953	return get_any_partial(s, flags, c);
1954}
1955
1956#ifdef CONFIG_PREEMPT
1957/*
1958 * Calculate the next globally unique transaction for disambiguiation
1959 * during cmpxchg. The transactions start with the cpu number and are then
1960 * incremented by CONFIG_NR_CPUS.
1961 */
1962#define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
1963#else
1964/*
1965 * No preemption supported therefore also no need to check for
1966 * different cpus.
1967 */
1968#define TID_STEP 1
1969#endif
1970
1971static inline unsigned long next_tid(unsigned long tid)
1972{
1973	return tid + TID_STEP;
1974}
1975
1976static inline unsigned int tid_to_cpu(unsigned long tid)
1977{
1978	return tid % TID_STEP;
1979}
1980
1981static inline unsigned long tid_to_event(unsigned long tid)
1982{
1983	return tid / TID_STEP;
1984}
1985
1986static inline unsigned int init_tid(int cpu)
1987{
1988	return cpu;
1989}
1990
1991static inline void note_cmpxchg_failure(const char *n,
1992		const struct kmem_cache *s, unsigned long tid)
1993{
1994#ifdef SLUB_DEBUG_CMPXCHG
1995	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1996
1997	pr_info("%s %s: cmpxchg redo ", n, s->name);
1998
1999#ifdef CONFIG_PREEMPT
2000	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2001		pr_warn("due to cpu change %d -> %d\n",
2002			tid_to_cpu(tid), tid_to_cpu(actual_tid));
2003	else
2004#endif
2005	if (tid_to_event(tid) != tid_to_event(actual_tid))
2006		pr_warn("due to cpu running other code. Event %ld->%ld\n",
2007			tid_to_event(tid), tid_to_event(actual_tid));
2008	else
2009		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2010			actual_tid, tid, next_tid(tid));
2011#endif
2012	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2013}
2014
2015static void init_kmem_cache_cpus(struct kmem_cache *s)
2016{
2017	int cpu;
2018
2019	for_each_possible_cpu(cpu)
2020		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
2021}
2022
2023/*
2024 * Remove the cpu slab
2025 */
2026static void deactivate_slab(struct kmem_cache *s, struct page *page,
2027				void *freelist, struct kmem_cache_cpu *c)
2028{
2029	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2030	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2031	int lock = 0;
2032	enum slab_modes l = M_NONE, m = M_NONE;
2033	void *nextfree;
2034	int tail = DEACTIVATE_TO_HEAD;
2035	struct page new;
2036	struct page old;
2037
2038	if (page->freelist) {
2039		stat(s, DEACTIVATE_REMOTE_FREES);
2040		tail = DEACTIVATE_TO_TAIL;
2041	}
2042
2043	/*
2044	 * Stage one: Free all available per cpu objects back
2045	 * to the page freelist while it is still frozen. Leave the
2046	 * last one.
2047	 *
2048	 * There is no need to take the list->lock because the page
2049	 * is still frozen.
2050	 */
2051	while (freelist && (nextfree = get_freepointer(s, freelist))) {
2052		void *prior;
2053		unsigned long counters;
2054
2055		do {
2056			prior = page->freelist;
2057			counters = page->counters;
2058			set_freepointer(s, freelist, prior);
2059			new.counters = counters;
2060			new.inuse--;
2061			VM_BUG_ON(!new.frozen);
2062
2063		} while (!__cmpxchg_double_slab(s, page,
2064			prior, counters,
2065			freelist, new.counters,
2066			"drain percpu freelist"));
2067
2068		freelist = nextfree;
2069	}
2070
2071	/*
2072	 * Stage two: Ensure that the page is unfrozen while the
2073	 * list presence reflects the actual number of objects
2074	 * during unfreeze.
2075	 *
2076	 * We setup the list membership and then perform a cmpxchg
2077	 * with the count. If there is a mismatch then the page
2078	 * is not unfrozen but the page is on the wrong list.
2079	 *
2080	 * Then we restart the process which may have to remove
2081	 * the page from the list that we just put it on again
2082	 * because the number of objects in the slab may have
2083	 * changed.
2084	 */
2085redo:
2086
2087	old.freelist = page->freelist;
2088	old.counters = page->counters;
2089	VM_BUG_ON(!old.frozen);
2090
2091	/* Determine target state of the slab */
2092	new.counters = old.counters;
2093	if (freelist) {
2094		new.inuse--;
2095		set_freepointer(s, freelist, old.freelist);
2096		new.freelist = freelist;
2097	} else
2098		new.freelist = old.freelist;
2099
2100	new.frozen = 0;
2101
2102	if (!new.inuse && n->nr_partial >= s->min_partial)
2103		m = M_FREE;
2104	else if (new.freelist) {
2105		m = M_PARTIAL;
2106		if (!lock) {
2107			lock = 1;
2108			/*
2109			 * Taking the spinlock removes the possiblity
2110			 * that acquire_slab() will see a slab page that
2111			 * is frozen
2112			 */
2113			spin_lock(&n->list_lock);
2114		}
2115	} else {
2116		m = M_FULL;
2117		if (kmem_cache_debug(s) && !lock) {
2118			lock = 1;
2119			/*
2120			 * This also ensures that the scanning of full
2121			 * slabs from diagnostic functions will not see
2122			 * any frozen slabs.
2123			 */
2124			spin_lock(&n->list_lock);
2125		}
2126	}
2127
2128	if (l != m) {
2129
2130		if (l == M_PARTIAL)
2131
2132			remove_partial(n, page);
2133
2134		else if (l == M_FULL)
2135
2136			remove_full(s, n, page);
2137
2138		if (m == M_PARTIAL) {
2139
2140			add_partial(n, page, tail);
2141			stat(s, tail);
2142
2143		} else if (m == M_FULL) {
2144
2145			stat(s, DEACTIVATE_FULL);
2146			add_full(s, n, page);
2147
2148		}
2149	}
2150
2151	l = m;
2152	if (!__cmpxchg_double_slab(s, page,
2153				old.freelist, old.counters,
2154				new.freelist, new.counters,
2155				"unfreezing slab"))
2156		goto redo;
2157
2158	if (lock)
2159		spin_unlock(&n->list_lock);
2160
2161	if (m == M_FREE) {
2162		stat(s, DEACTIVATE_EMPTY);
2163		discard_slab(s, page);
2164		stat(s, FREE_SLAB);
2165	}
2166
2167	c->page = NULL;
2168	c->freelist = NULL;
2169}
2170
2171/*
2172 * Unfreeze all the cpu partial slabs.
2173 *
2174 * This function must be called with interrupts disabled
2175 * for the cpu using c (or some other guarantee must be there
2176 * to guarantee no concurrent accesses).
2177 */
2178static void unfreeze_partials(struct kmem_cache *s,
2179		struct kmem_cache_cpu *c)
2180{
2181#ifdef CONFIG_SLUB_CPU_PARTIAL
2182	struct kmem_cache_node *n = NULL, *n2 = NULL;
2183	struct page *page, *discard_page = NULL;
2184
2185	while ((page = c->partial)) {
2186		struct page new;
2187		struct page old;
2188
2189		c->partial = page->next;
2190
2191		n2 = get_node(s, page_to_nid(page));
2192		if (n != n2) {
2193			if (n)
2194				spin_unlock(&n->list_lock);
2195
2196			n = n2;
2197			spin_lock(&n->list_lock);
2198		}
2199
2200		do {
2201
2202			old.freelist = page->freelist;
2203			old.counters = page->counters;
2204			VM_BUG_ON(!old.frozen);
2205
2206			new.counters = old.counters;
2207			new.freelist = old.freelist;
2208
2209			new.frozen = 0;
2210
2211		} while (!__cmpxchg_double_slab(s, page,
2212				old.freelist, old.counters,
2213				new.freelist, new.counters,
2214				"unfreezing slab"));
2215
2216		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2217			page->next = discard_page;
2218			discard_page = page;
2219		} else {
2220			add_partial(n, page, DEACTIVATE_TO_TAIL);
2221			stat(s, FREE_ADD_PARTIAL);
2222		}
2223	}
2224
2225	if (n)
2226		spin_unlock(&n->list_lock);
2227
2228	while (discard_page) {
2229		page = discard_page;
2230		discard_page = discard_page->next;
2231
2232		stat(s, DEACTIVATE_EMPTY);
2233		discard_slab(s, page);
2234		stat(s, FREE_SLAB);
2235	}
2236#endif
2237}
2238
2239/*
2240 * Put a page that was just frozen (in __slab_free) into a partial page
2241 * slot if available.
 
 
2242 *
2243 * If we did not find a slot then simply move all the partials to the
2244 * per node partial list.
2245 */
2246static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2247{
2248#ifdef CONFIG_SLUB_CPU_PARTIAL
2249	struct page *oldpage;
2250	int pages;
2251	int pobjects;
2252
2253	preempt_disable();
2254	do {
2255		pages = 0;
2256		pobjects = 0;
2257		oldpage = this_cpu_read(s->cpu_slab->partial);
2258
2259		if (oldpage) {
2260			pobjects = oldpage->pobjects;
2261			pages = oldpage->pages;
2262			if (drain && pobjects > s->cpu_partial) {
2263				unsigned long flags;
2264				/*
2265				 * partial array is full. Move the existing
2266				 * set to the per node partial list.
2267				 */
2268				local_irq_save(flags);
2269				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2270				local_irq_restore(flags);
2271				oldpage = NULL;
2272				pobjects = 0;
2273				pages = 0;
2274				stat(s, CPU_PARTIAL_DRAIN);
2275			}
2276		}
2277
2278		pages++;
2279		pobjects += page->objects - page->inuse;
2280
2281		page->pages = pages;
2282		page->pobjects = pobjects;
2283		page->next = oldpage;
2284
2285	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2286								!= oldpage);
2287	if (unlikely(!s->cpu_partial)) {
2288		unsigned long flags;
2289
2290		local_irq_save(flags);
2291		unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2292		local_irq_restore(flags);
2293	}
2294	preempt_enable();
2295#endif
2296}
2297
2298static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2299{
2300	stat(s, CPUSLAB_FLUSH);
2301	deactivate_slab(s, c->page, c->freelist, c);
2302
2303	c->tid = next_tid(c->tid);
 
 
2304}
2305
2306/*
2307 * Flush cpu slab.
2308 *
2309 * Called from IPI handler with interrupts disabled.
2310 */
2311static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2312{
2313	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2314
2315	if (likely(c)) {
2316		if (c->page)
2317			flush_slab(s, c);
2318
2319		unfreeze_partials(s, c);
2320	}
2321}
2322
2323static void flush_cpu_slab(void *d)
2324{
2325	struct kmem_cache *s = d;
2326
2327	__flush_cpu_slab(s, smp_processor_id());
2328}
2329
2330static bool has_cpu_slab(int cpu, void *info)
2331{
2332	struct kmem_cache *s = info;
2333	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2334
2335	return c->page || slub_percpu_partial(c);
2336}
2337
2338static void flush_all(struct kmem_cache *s)
2339{
2340	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2341}
2342
2343/*
2344 * Use the cpu notifier to insure that the cpu slabs are flushed when
2345 * necessary.
2346 */
2347static int slub_cpu_dead(unsigned int cpu)
2348{
2349	struct kmem_cache *s;
2350	unsigned long flags;
2351
2352	mutex_lock(&slab_mutex);
2353	list_for_each_entry(s, &slab_caches, list) {
2354		local_irq_save(flags);
2355		__flush_cpu_slab(s, cpu);
2356		local_irq_restore(flags);
2357	}
2358	mutex_unlock(&slab_mutex);
2359	return 0;
2360}
2361
2362/*
2363 * Check if the objects in a per cpu structure fit numa
2364 * locality expectations.
2365 */
2366static inline int node_match(struct page *page, int node)
2367{
2368#ifdef CONFIG_NUMA
2369	if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2370		return 0;
2371#endif
2372	return 1;
2373}
2374
2375#ifdef CONFIG_SLUB_DEBUG
2376static int count_free(struct page *page)
2377{
2378	return page->objects - page->inuse;
2379}
2380
2381static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2382{
2383	return atomic_long_read(&n->total_objects);
2384}
2385#endif /* CONFIG_SLUB_DEBUG */
2386
2387#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2388static unsigned long count_partial(struct kmem_cache_node *n,
2389					int (*get_count)(struct page *))
2390{
2391	unsigned long flags;
2392	unsigned long x = 0;
2393	struct page *page;
2394
2395	spin_lock_irqsave(&n->list_lock, flags);
2396	list_for_each_entry(page, &n->partial, lru)
2397		x += get_count(page);
2398	spin_unlock_irqrestore(&n->list_lock, flags);
2399	return x;
2400}
2401#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2402
2403static noinline void
2404slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2405{
2406#ifdef CONFIG_SLUB_DEBUG
2407	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2408				      DEFAULT_RATELIMIT_BURST);
2409	int node;
2410	struct kmem_cache_node *n;
2411
2412	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2413		return;
2414
2415	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2416		nid, gfpflags, &gfpflags);
2417	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2418		s->name, s->object_size, s->size, oo_order(s->oo),
2419		oo_order(s->min));
2420
2421	if (oo_order(s->min) > get_order(s->object_size))
2422		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
2423			s->name);
2424
2425	for_each_kmem_cache_node(s, node, n) {
2426		unsigned long nr_slabs;
2427		unsigned long nr_objs;
2428		unsigned long nr_free;
2429
2430		nr_free  = count_partial(n, count_free);
2431		nr_slabs = node_nr_slabs(n);
2432		nr_objs  = node_nr_objs(n);
2433
2434		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2435			node, nr_slabs, nr_objs, nr_free);
2436	}
2437#endif
2438}
2439
2440static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2441			int node, struct kmem_cache_cpu **pc)
2442{
2443	void *freelist;
2444	struct kmem_cache_cpu *c = *pc;
2445	struct page *page;
2446
2447	freelist = get_partial(s, flags, node, c);
2448
2449	if (freelist)
2450		return freelist;
2451
2452	page = new_slab(s, flags, node);
2453	if (page) {
2454		c = raw_cpu_ptr(s->cpu_slab);
2455		if (c->page)
2456			flush_slab(s, c);
2457
2458		/*
2459		 * No other reference to the page yet so we can
2460		 * muck around with it freely without cmpxchg
2461		 */
2462		freelist = page->freelist;
2463		page->freelist = NULL;
2464
2465		stat(s, ALLOC_SLAB);
2466		c->page = page;
2467		*pc = c;
2468	} else
2469		freelist = NULL;
2470
2471	return freelist;
2472}
2473
2474static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2475{
2476	if (unlikely(PageSlabPfmemalloc(page)))
2477		return gfp_pfmemalloc_allowed(gfpflags);
2478
2479	return true;
2480}
2481
2482/*
2483 * Check the page->freelist of a page and either transfer the freelist to the
2484 * per cpu freelist or deactivate the page.
2485 *
2486 * The page is still frozen if the return value is not NULL.
2487 *
2488 * If this function returns NULL then the page has been unfrozen.
2489 *
2490 * This function must be called with interrupt disabled.
2491 */
2492static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2493{
2494	struct page new;
2495	unsigned long counters;
2496	void *freelist;
2497
2498	do {
2499		freelist = page->freelist;
2500		counters = page->counters;
2501
2502		new.counters = counters;
2503		VM_BUG_ON(!new.frozen);
2504
2505		new.inuse = page->objects;
2506		new.frozen = freelist != NULL;
2507
2508	} while (!__cmpxchg_double_slab(s, page,
2509		freelist, counters,
2510		NULL, new.counters,
2511		"get_freelist"));
2512
2513	return freelist;
2514}
2515
2516/*
2517 * Slow path. The lockless freelist is empty or we need to perform
2518 * debugging duties.
2519 *
2520 * Processing is still very fast if new objects have been freed to the
2521 * regular freelist. In that case we simply take over the regular freelist
2522 * as the lockless freelist and zap the regular freelist.
2523 *
2524 * If that is not working then we fall back to the partial lists. We take the
2525 * first element of the freelist as the object to allocate now and move the
2526 * rest of the freelist to the lockless freelist.
2527 *
2528 * And if we were unable to get a new slab from the partial slab lists then
2529 * we need to allocate a new slab. This is the slowest path since it involves
2530 * a call to the page allocator and the setup of a new slab.
2531 *
2532 * Version of __slab_alloc to use when we know that interrupts are
2533 * already disabled (which is the case for bulk allocation).
2534 */
2535static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2536			  unsigned long addr, struct kmem_cache_cpu *c)
2537{
2538	void *freelist;
2539	struct page *page;
2540
2541	page = c->page;
2542	if (!page)
2543		goto new_slab;
2544redo:
2545
2546	if (unlikely(!node_match(page, node))) {
2547		int searchnode = node;
2548
2549		if (node != NUMA_NO_NODE && !node_present_pages(node))
2550			searchnode = node_to_mem_node(node);
2551
2552		if (unlikely(!node_match(page, searchnode))) {
2553			stat(s, ALLOC_NODE_MISMATCH);
2554			deactivate_slab(s, page, c->freelist, c);
 
 
2555			goto new_slab;
2556		}
2557	}
2558
2559	/*
2560	 * By rights, we should be searching for a slab page that was
2561	 * PFMEMALLOC but right now, we are losing the pfmemalloc
2562	 * information when the page leaves the per-cpu allocator
2563	 */
2564	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2565		deactivate_slab(s, page, c->freelist, c);
 
 
2566		goto new_slab;
2567	}
2568
2569	/* must check again c->freelist in case of cpu migration or IRQ */
2570	freelist = c->freelist;
2571	if (freelist)
2572		goto load_freelist;
2573
2574	freelist = get_freelist(s, page);
2575
2576	if (!freelist) {
2577		c->page = NULL;
2578		stat(s, DEACTIVATE_BYPASS);
2579		goto new_slab;
2580	}
2581
2582	stat(s, ALLOC_REFILL);
2583
2584load_freelist:
2585	/*
2586	 * freelist is pointing to the list of objects to be used.
2587	 * page is pointing to the page from which the objects are obtained.
2588	 * That page must be frozen for per cpu allocations to work.
2589	 */
2590	VM_BUG_ON(!c->page->frozen);
2591	c->freelist = get_freepointer(s, freelist);
2592	c->tid = next_tid(c->tid);
2593	return freelist;
2594
2595new_slab:
2596
2597	if (slub_percpu_partial(c)) {
2598		page = c->page = slub_percpu_partial(c);
2599		slub_set_percpu_partial(c, page);
2600		stat(s, CPU_PARTIAL_ALLOC);
 
2601		goto redo;
2602	}
2603
2604	freelist = new_slab_objects(s, gfpflags, node, &c);
2605
2606	if (unlikely(!freelist)) {
2607		slab_out_of_memory(s, gfpflags, node);
2608		return NULL;
2609	}
2610
2611	page = c->page;
2612	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2613		goto load_freelist;
2614
2615	/* Only entered in the debug case */
2616	if (kmem_cache_debug(s) &&
2617			!alloc_debug_processing(s, page, freelist, addr))
2618		goto new_slab;	/* Slab failed checks. Next slab needed */
2619
2620	deactivate_slab(s, page, get_freepointer(s, freelist), c);
 
 
2621	return freelist;
2622}
2623
2624/*
2625 * Another one that disabled interrupt and compensates for possible
2626 * cpu changes by refetching the per cpu area pointer.
2627 */
2628static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2629			  unsigned long addr, struct kmem_cache_cpu *c)
2630{
2631	void *p;
2632	unsigned long flags;
2633
2634	local_irq_save(flags);
2635#ifdef CONFIG_PREEMPT
2636	/*
2637	 * We may have been preempted and rescheduled on a different
2638	 * cpu before disabling interrupts. Need to reload cpu area
2639	 * pointer.
2640	 */
2641	c = this_cpu_ptr(s->cpu_slab);
2642#endif
2643
2644	p = ___slab_alloc(s, gfpflags, node, addr, c);
2645	local_irq_restore(flags);
2646	return p;
2647}
2648
2649/*
2650 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2651 * have the fastpath folded into their functions. So no function call
2652 * overhead for requests that can be satisfied on the fastpath.
2653 *
2654 * The fastpath works by first checking if the lockless freelist can be used.
2655 * If not then __slab_alloc is called for slow processing.
2656 *
2657 * Otherwise we can simply pick the next object from the lockless free list.
2658 */
2659static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2660		gfp_t gfpflags, int node, unsigned long addr)
2661{
2662	void *object;
2663	struct kmem_cache_cpu *c;
2664	struct page *page;
2665	unsigned long tid;
2666
2667	s = slab_pre_alloc_hook(s, gfpflags);
2668	if (!s)
2669		return NULL;
2670redo:
2671	/*
2672	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2673	 * enabled. We may switch back and forth between cpus while
2674	 * reading from one cpu area. That does not matter as long
2675	 * as we end up on the original cpu again when doing the cmpxchg.
2676	 *
2677	 * We should guarantee that tid and kmem_cache are retrieved on
2678	 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2679	 * to check if it is matched or not.
2680	 */
2681	do {
2682		tid = this_cpu_read(s->cpu_slab->tid);
2683		c = raw_cpu_ptr(s->cpu_slab);
2684	} while (IS_ENABLED(CONFIG_PREEMPT) &&
2685		 unlikely(tid != READ_ONCE(c->tid)));
2686
2687	/*
2688	 * Irqless object alloc/free algorithm used here depends on sequence
2689	 * of fetching cpu_slab's data. tid should be fetched before anything
2690	 * on c to guarantee that object and page associated with previous tid
2691	 * won't be used with current tid. If we fetch tid first, object and
2692	 * page could be one associated with next tid and our alloc/free
2693	 * request will be failed. In this case, we will retry. So, no problem.
2694	 */
2695	barrier();
2696
2697	/*
2698	 * The transaction ids are globally unique per cpu and per operation on
2699	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2700	 * occurs on the right processor and that there was no operation on the
2701	 * linked list in between.
2702	 */
2703
2704	object = c->freelist;
2705	page = c->page;
2706	if (unlikely(!object || !node_match(page, node))) {
2707		object = __slab_alloc(s, gfpflags, node, addr, c);
2708		stat(s, ALLOC_SLOWPATH);
2709	} else {
2710		void *next_object = get_freepointer_safe(s, object);
2711
2712		/*
2713		 * The cmpxchg will only match if there was no additional
2714		 * operation and if we are on the right processor.
2715		 *
2716		 * The cmpxchg does the following atomically (without lock
2717		 * semantics!)
2718		 * 1. Relocate first pointer to the current per cpu area.
2719		 * 2. Verify that tid and freelist have not been changed
2720		 * 3. If they were not changed replace tid and freelist
2721		 *
2722		 * Since this is without lock semantics the protection is only
2723		 * against code executing on this cpu *not* from access by
2724		 * other cpus.
2725		 */
2726		if (unlikely(!this_cpu_cmpxchg_double(
2727				s->cpu_slab->freelist, s->cpu_slab->tid,
2728				object, tid,
2729				next_object, next_tid(tid)))) {
2730
2731			note_cmpxchg_failure("slab_alloc", s, tid);
2732			goto redo;
2733		}
2734		prefetch_freepointer(s, next_object);
2735		stat(s, ALLOC_FASTPATH);
2736	}
2737
2738	if (unlikely(gfpflags & __GFP_ZERO) && object)
2739		memset(object, 0, s->object_size);
2740
2741	slab_post_alloc_hook(s, gfpflags, 1, &object);
2742
2743	return object;
2744}
2745
2746static __always_inline void *slab_alloc(struct kmem_cache *s,
2747		gfp_t gfpflags, unsigned long addr)
2748{
2749	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2750}
2751
2752void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2753{
2754	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2755
2756	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2757				s->size, gfpflags);
2758
2759	return ret;
2760}
2761EXPORT_SYMBOL(kmem_cache_alloc);
2762
2763#ifdef CONFIG_TRACING
2764void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2765{
2766	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2767	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2768	kasan_kmalloc(s, ret, size, gfpflags);
2769	return ret;
2770}
2771EXPORT_SYMBOL(kmem_cache_alloc_trace);
2772#endif
2773
2774#ifdef CONFIG_NUMA
2775void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2776{
2777	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2778
2779	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2780				    s->object_size, s->size, gfpflags, node);
2781
2782	return ret;
2783}
2784EXPORT_SYMBOL(kmem_cache_alloc_node);
2785
2786#ifdef CONFIG_TRACING
2787void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2788				    gfp_t gfpflags,
2789				    int node, size_t size)
2790{
2791	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2792
2793	trace_kmalloc_node(_RET_IP_, ret,
2794			   size, s->size, gfpflags, node);
2795
2796	kasan_kmalloc(s, ret, size, gfpflags);
2797	return ret;
2798}
2799EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2800#endif
2801#endif
2802
2803/*
2804 * Slow path handling. This may still be called frequently since objects
2805 * have a longer lifetime than the cpu slabs in most processing loads.
2806 *
2807 * So we still attempt to reduce cache line usage. Just take the slab
2808 * lock and free the item. If there is no additional partial page
2809 * handling required then we can return immediately.
2810 */
2811static void __slab_free(struct kmem_cache *s, struct page *page,
2812			void *head, void *tail, int cnt,
2813			unsigned long addr)
2814
2815{
2816	void *prior;
2817	int was_frozen;
2818	struct page new;
2819	unsigned long counters;
2820	struct kmem_cache_node *n = NULL;
2821	unsigned long uninitialized_var(flags);
2822
2823	stat(s, FREE_SLOWPATH);
2824
2825	if (kmem_cache_debug(s) &&
2826	    !free_debug_processing(s, page, head, tail, cnt, addr))
2827		return;
2828
2829	do {
2830		if (unlikely(n)) {
2831			spin_unlock_irqrestore(&n->list_lock, flags);
2832			n = NULL;
2833		}
2834		prior = page->freelist;
2835		counters = page->counters;
2836		set_freepointer(s, tail, prior);
2837		new.counters = counters;
2838		was_frozen = new.frozen;
2839		new.inuse -= cnt;
2840		if ((!new.inuse || !prior) && !was_frozen) {
2841
2842			if (kmem_cache_has_cpu_partial(s) && !prior) {
2843
2844				/*
2845				 * Slab was on no list before and will be
2846				 * partially empty
2847				 * We can defer the list move and instead
2848				 * freeze it.
2849				 */
2850				new.frozen = 1;
2851
2852			} else { /* Needs to be taken off a list */
2853
2854				n = get_node(s, page_to_nid(page));
2855				/*
2856				 * Speculatively acquire the list_lock.
2857				 * If the cmpxchg does not succeed then we may
2858				 * drop the list_lock without any processing.
2859				 *
2860				 * Otherwise the list_lock will synchronize with
2861				 * other processors updating the list of slabs.
2862				 */
2863				spin_lock_irqsave(&n->list_lock, flags);
2864
2865			}
2866		}
2867
2868	} while (!cmpxchg_double_slab(s, page,
2869		prior, counters,
2870		head, new.counters,
2871		"__slab_free"));
2872
2873	if (likely(!n)) {
2874
2875		/*
2876		 * If we just froze the page then put it onto the
2877		 * per cpu partial list.
2878		 */
2879		if (new.frozen && !was_frozen) {
2880			put_cpu_partial(s, page, 1);
2881			stat(s, CPU_PARTIAL_FREE);
2882		}
2883		/*
2884		 * The list lock was not taken therefore no list
2885		 * activity can be necessary.
2886		 */
2887		if (was_frozen)
2888			stat(s, FREE_FROZEN);
2889		return;
2890	}
2891
2892	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2893		goto slab_empty;
2894
2895	/*
2896	 * Objects left in the slab. If it was not on the partial list before
2897	 * then add it.
2898	 */
2899	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2900		if (kmem_cache_debug(s))
2901			remove_full(s, n, page);
2902		add_partial(n, page, DEACTIVATE_TO_TAIL);
2903		stat(s, FREE_ADD_PARTIAL);
2904	}
2905	spin_unlock_irqrestore(&n->list_lock, flags);
2906	return;
2907
2908slab_empty:
2909	if (prior) {
2910		/*
2911		 * Slab on the partial list.
2912		 */
2913		remove_partial(n, page);
2914		stat(s, FREE_REMOVE_PARTIAL);
2915	} else {
2916		/* Slab must be on the full list */
2917		remove_full(s, n, page);
2918	}
2919
2920	spin_unlock_irqrestore(&n->list_lock, flags);
2921	stat(s, FREE_SLAB);
2922	discard_slab(s, page);
2923}
2924
2925/*
2926 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2927 * can perform fastpath freeing without additional function calls.
2928 *
2929 * The fastpath is only possible if we are freeing to the current cpu slab
2930 * of this processor. This typically the case if we have just allocated
2931 * the item before.
2932 *
2933 * If fastpath is not possible then fall back to __slab_free where we deal
2934 * with all sorts of special processing.
2935 *
2936 * Bulk free of a freelist with several objects (all pointing to the
2937 * same page) possible by specifying head and tail ptr, plus objects
2938 * count (cnt). Bulk free indicated by tail pointer being set.
2939 */
2940static __always_inline void do_slab_free(struct kmem_cache *s,
2941				struct page *page, void *head, void *tail,
2942				int cnt, unsigned long addr)
2943{
2944	void *tail_obj = tail ? : head;
2945	struct kmem_cache_cpu *c;
2946	unsigned long tid;
 
 
 
2947redo:
2948	/*
2949	 * Determine the currently cpus per cpu slab.
2950	 * The cpu may change afterward. However that does not matter since
2951	 * data is retrieved via this pointer. If we are on the same cpu
2952	 * during the cmpxchg then the free will succeed.
2953	 */
2954	do {
2955		tid = this_cpu_read(s->cpu_slab->tid);
2956		c = raw_cpu_ptr(s->cpu_slab);
2957	} while (IS_ENABLED(CONFIG_PREEMPT) &&
2958		 unlikely(tid != READ_ONCE(c->tid)));
2959
2960	/* Same with comment on barrier() in slab_alloc_node() */
2961	barrier();
2962
2963	if (likely(page == c->page)) {
2964		set_freepointer(s, tail_obj, c->freelist);
2965
2966		if (unlikely(!this_cpu_cmpxchg_double(
2967				s->cpu_slab->freelist, s->cpu_slab->tid,
2968				c->freelist, tid,
2969				head, next_tid(tid)))) {
2970
2971			note_cmpxchg_failure("slab_free", s, tid);
2972			goto redo;
2973		}
2974		stat(s, FREE_FASTPATH);
2975	} else
2976		__slab_free(s, page, head, tail_obj, cnt, addr);
2977
2978}
2979
2980static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2981				      void *head, void *tail, int cnt,
2982				      unsigned long addr)
2983{
2984	/*
2985	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
2986	 * to remove objects, whose reuse must be delayed.
2987	 */
2988	if (slab_free_freelist_hook(s, &head, &tail))
2989		do_slab_free(s, page, head, tail, cnt, addr);
2990}
2991
2992#ifdef CONFIG_KASAN
2993void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
2994{
2995	do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
2996}
2997#endif
2998
2999void kmem_cache_free(struct kmem_cache *s, void *x)
3000{
3001	s = cache_from_obj(s, x);
3002	if (!s)
3003		return;
3004	slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3005	trace_kmem_cache_free(_RET_IP_, x);
3006}
3007EXPORT_SYMBOL(kmem_cache_free);
3008
3009struct detached_freelist {
3010	struct page *page;
3011	void *tail;
3012	void *freelist;
3013	int cnt;
3014	struct kmem_cache *s;
3015};
3016
3017/*
3018 * This function progressively scans the array with free objects (with
3019 * a limited look ahead) and extract objects belonging to the same
3020 * page.  It builds a detached freelist directly within the given
3021 * page/objects.  This can happen without any need for
3022 * synchronization, because the objects are owned by running process.
3023 * The freelist is build up as a single linked list in the objects.
3024 * The idea is, that this detached freelist can then be bulk
3025 * transferred to the real freelist(s), but only requiring a single
3026 * synchronization primitive.  Look ahead in the array is limited due
3027 * to performance reasons.
3028 */
3029static inline
3030int build_detached_freelist(struct kmem_cache *s, size_t size,
3031			    void **p, struct detached_freelist *df)
3032{
3033	size_t first_skipped_index = 0;
3034	int lookahead = 3;
3035	void *object;
3036	struct page *page;
3037
3038	/* Always re-init detached_freelist */
3039	df->page = NULL;
3040
3041	do {
3042		object = p[--size];
3043		/* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3044	} while (!object && size);
3045
3046	if (!object)
3047		return 0;
3048
3049	page = virt_to_head_page(object);
3050	if (!s) {
3051		/* Handle kalloc'ed objects */
3052		if (unlikely(!PageSlab(page))) {
3053			BUG_ON(!PageCompound(page));
3054			kfree_hook(object);
3055			__free_pages(page, compound_order(page));
3056			p[size] = NULL; /* mark object processed */
3057			return size;
3058		}
3059		/* Derive kmem_cache from object */
3060		df->s = page->slab_cache;
3061	} else {
3062		df->s = cache_from_obj(s, object); /* Support for memcg */
3063	}
3064
3065	/* Start new detached freelist */
3066	df->page = page;
3067	set_freepointer(df->s, object, NULL);
3068	df->tail = object;
3069	df->freelist = object;
3070	p[size] = NULL; /* mark object processed */
3071	df->cnt = 1;
3072
3073	while (size) {
3074		object = p[--size];
3075		if (!object)
3076			continue; /* Skip processed objects */
3077
3078		/* df->page is always set at this point */
3079		if (df->page == virt_to_head_page(object)) {
3080			/* Opportunity build freelist */
3081			set_freepointer(df->s, object, df->freelist);
3082			df->freelist = object;
3083			df->cnt++;
3084			p[size] = NULL; /* mark object processed */
3085
3086			continue;
3087		}
3088
3089		/* Limit look ahead search */
3090		if (!--lookahead)
3091			break;
3092
3093		if (!first_skipped_index)
3094			first_skipped_index = size + 1;
3095	}
3096
3097	return first_skipped_index;
3098}
3099
3100/* Note that interrupts must be enabled when calling this function. */
3101void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3102{
3103	if (WARN_ON(!size))
3104		return;
3105
3106	do {
3107		struct detached_freelist df;
3108
3109		size = build_detached_freelist(s, size, p, &df);
3110		if (!df.page)
3111			continue;
3112
3113		slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3114	} while (likely(size));
3115}
3116EXPORT_SYMBOL(kmem_cache_free_bulk);
3117
3118/* Note that interrupts must be enabled when calling this function. */
3119int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3120			  void **p)
3121{
3122	struct kmem_cache_cpu *c;
3123	int i;
3124
3125	/* memcg and kmem_cache debug support */
3126	s = slab_pre_alloc_hook(s, flags);
3127	if (unlikely(!s))
3128		return false;
3129	/*
3130	 * Drain objects in the per cpu slab, while disabling local
3131	 * IRQs, which protects against PREEMPT and interrupts
3132	 * handlers invoking normal fastpath.
3133	 */
3134	local_irq_disable();
3135	c = this_cpu_ptr(s->cpu_slab);
3136
3137	for (i = 0; i < size; i++) {
3138		void *object = c->freelist;
3139
3140		if (unlikely(!object)) {
3141			/*
3142			 * Invoking slow path likely have side-effect
3143			 * of re-populating per CPU c->freelist
3144			 */
3145			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3146					    _RET_IP_, c);
3147			if (unlikely(!p[i]))
3148				goto error;
3149
3150			c = this_cpu_ptr(s->cpu_slab);
3151			continue; /* goto for-loop */
3152		}
3153		c->freelist = get_freepointer(s, object);
3154		p[i] = object;
3155	}
3156	c->tid = next_tid(c->tid);
3157	local_irq_enable();
3158
3159	/* Clear memory outside IRQ disabled fastpath loop */
3160	if (unlikely(flags & __GFP_ZERO)) {
3161		int j;
3162
3163		for (j = 0; j < i; j++)
3164			memset(p[j], 0, s->object_size);
3165	}
3166
3167	/* memcg and kmem_cache debug support */
3168	slab_post_alloc_hook(s, flags, size, p);
3169	return i;
3170error:
3171	local_irq_enable();
3172	slab_post_alloc_hook(s, flags, i, p);
3173	__kmem_cache_free_bulk(s, i, p);
3174	return 0;
3175}
3176EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3177
3178
3179/*
3180 * Object placement in a slab is made very easy because we always start at
3181 * offset 0. If we tune the size of the object to the alignment then we can
3182 * get the required alignment by putting one properly sized object after
3183 * another.
3184 *
3185 * Notice that the allocation order determines the sizes of the per cpu
3186 * caches. Each processor has always one slab available for allocations.
3187 * Increasing the allocation order reduces the number of times that slabs
3188 * must be moved on and off the partial lists and is therefore a factor in
3189 * locking overhead.
3190 */
3191
3192/*
3193 * Mininum / Maximum order of slab pages. This influences locking overhead
3194 * and slab fragmentation. A higher order reduces the number of partial slabs
3195 * and increases the number of allocations possible without having to
3196 * take the list_lock.
3197 */
3198static unsigned int slub_min_order;
3199static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3200static unsigned int slub_min_objects;
3201
3202/*
3203 * Calculate the order of allocation given an slab object size.
3204 *
3205 * The order of allocation has significant impact on performance and other
3206 * system components. Generally order 0 allocations should be preferred since
3207 * order 0 does not cause fragmentation in the page allocator. Larger objects
3208 * be problematic to put into order 0 slabs because there may be too much
3209 * unused space left. We go to a higher order if more than 1/16th of the slab
3210 * would be wasted.
3211 *
3212 * In order to reach satisfactory performance we must ensure that a minimum
3213 * number of objects is in one slab. Otherwise we may generate too much
3214 * activity on the partial lists which requires taking the list_lock. This is
3215 * less a concern for large slabs though which are rarely used.
3216 *
3217 * slub_max_order specifies the order where we begin to stop considering the
3218 * number of objects in a slab as critical. If we reach slub_max_order then
3219 * we try to keep the page order as low as possible. So we accept more waste
3220 * of space in favor of a small page order.
3221 *
3222 * Higher order allocations also allow the placement of more objects in a
3223 * slab and thereby reduce object handling overhead. If the user has
3224 * requested a higher mininum order then we start with that one instead of
3225 * the smallest order which will fit the object.
3226 */
3227static inline unsigned int slab_order(unsigned int size,
3228		unsigned int min_objects, unsigned int max_order,
3229		unsigned int fract_leftover, unsigned int reserved)
3230{
3231	unsigned int min_order = slub_min_order;
3232	unsigned int order;
 
3233
3234	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
3235		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3236
3237	for (order = max(min_order, (unsigned int)get_order(min_objects * size + reserved));
3238			order <= max_order; order++) {
3239
3240		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3241		unsigned int rem;
3242
3243		rem = (slab_size - reserved) % size;
3244
3245		if (rem <= slab_size / fract_leftover)
3246			break;
3247	}
3248
3249	return order;
3250}
3251
3252static inline int calculate_order(unsigned int size, unsigned int reserved)
3253{
3254	unsigned int order;
3255	unsigned int min_objects;
3256	unsigned int max_objects;
 
3257
3258	/*
3259	 * Attempt to find best configuration for a slab. This
3260	 * works by first attempting to generate a layout with
3261	 * the best configuration and backing off gradually.
3262	 *
3263	 * First we increase the acceptable waste in a slab. Then
3264	 * we reduce the minimum objects required in a slab.
3265	 */
3266	min_objects = slub_min_objects;
3267	if (!min_objects)
3268		min_objects = 4 * (fls(nr_cpu_ids) + 1);
3269	max_objects = order_objects(slub_max_order, size, reserved);
3270	min_objects = min(min_objects, max_objects);
3271
3272	while (min_objects > 1) {
3273		unsigned int fraction;
3274
3275		fraction = 16;
3276		while (fraction >= 4) {
3277			order = slab_order(size, min_objects,
3278					slub_max_order, fraction, reserved);
3279			if (order <= slub_max_order)
3280				return order;
3281			fraction /= 2;
3282		}
3283		min_objects--;
3284	}
3285
3286	/*
3287	 * We were unable to place multiple objects in a slab. Now
3288	 * lets see if we can place a single object there.
3289	 */
3290	order = slab_order(size, 1, slub_max_order, 1, reserved);
3291	if (order <= slub_max_order)
3292		return order;
3293
3294	/*
3295	 * Doh this slab cannot be placed using slub_max_order.
3296	 */
3297	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
3298	if (order < MAX_ORDER)
3299		return order;
3300	return -ENOSYS;
3301}
3302
3303static void
3304init_kmem_cache_node(struct kmem_cache_node *n)
3305{
3306	n->nr_partial = 0;
3307	spin_lock_init(&n->list_lock);
3308	INIT_LIST_HEAD(&n->partial);
3309#ifdef CONFIG_SLUB_DEBUG
3310	atomic_long_set(&n->nr_slabs, 0);
3311	atomic_long_set(&n->total_objects, 0);
3312	INIT_LIST_HEAD(&n->full);
3313#endif
3314}
3315
3316static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3317{
3318	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3319			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3320
3321	/*
3322	 * Must align to double word boundary for the double cmpxchg
3323	 * instructions to work; see __pcpu_double_call_return_bool().
3324	 */
3325	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3326				     2 * sizeof(void *));
3327
3328	if (!s->cpu_slab)
3329		return 0;
3330
3331	init_kmem_cache_cpus(s);
3332
3333	return 1;
3334}
3335
3336static struct kmem_cache *kmem_cache_node;
3337
3338/*
3339 * No kmalloc_node yet so do it by hand. We know that this is the first
3340 * slab on the node for this slabcache. There are no concurrent accesses
3341 * possible.
3342 *
3343 * Note that this function only works on the kmem_cache_node
3344 * when allocating for the kmem_cache_node. This is used for bootstrapping
3345 * memory on a fresh node that has no slab structures yet.
3346 */
3347static void early_kmem_cache_node_alloc(int node)
3348{
3349	struct page *page;
3350	struct kmem_cache_node *n;
3351
3352	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3353
3354	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3355
3356	BUG_ON(!page);
3357	if (page_to_nid(page) != node) {
3358		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3359		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3360	}
3361
3362	n = page->freelist;
3363	BUG_ON(!n);
3364	page->freelist = get_freepointer(kmem_cache_node, n);
3365	page->inuse = 1;
3366	page->frozen = 0;
3367	kmem_cache_node->node[node] = n;
3368#ifdef CONFIG_SLUB_DEBUG
3369	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3370	init_tracking(kmem_cache_node, n);
3371#endif
3372	kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3373		      GFP_KERNEL);
3374	init_kmem_cache_node(n);
3375	inc_slabs_node(kmem_cache_node, node, page->objects);
3376
3377	/*
3378	 * No locks need to be taken here as it has just been
3379	 * initialized and there is no concurrent access.
3380	 */
3381	__add_partial(n, page, DEACTIVATE_TO_HEAD);
3382}
3383
3384static void free_kmem_cache_nodes(struct kmem_cache *s)
3385{
3386	int node;
3387	struct kmem_cache_node *n;
3388
3389	for_each_kmem_cache_node(s, node, n) {
 
3390		s->node[node] = NULL;
3391		kmem_cache_free(kmem_cache_node, n);
3392	}
3393}
3394
3395void __kmem_cache_release(struct kmem_cache *s)
3396{
3397	cache_random_seq_destroy(s);
3398	free_percpu(s->cpu_slab);
3399	free_kmem_cache_nodes(s);
3400}
3401
3402static int init_kmem_cache_nodes(struct kmem_cache *s)
3403{
3404	int node;
3405
3406	for_each_node_state(node, N_NORMAL_MEMORY) {
3407		struct kmem_cache_node *n;
3408
3409		if (slab_state == DOWN) {
3410			early_kmem_cache_node_alloc(node);
3411			continue;
3412		}
3413		n = kmem_cache_alloc_node(kmem_cache_node,
3414						GFP_KERNEL, node);
3415
3416		if (!n) {
3417			free_kmem_cache_nodes(s);
3418			return 0;
3419		}
3420
 
3421		init_kmem_cache_node(n);
3422		s->node[node] = n;
3423	}
3424	return 1;
3425}
3426
3427static void set_min_partial(struct kmem_cache *s, unsigned long min)
3428{
3429	if (min < MIN_PARTIAL)
3430		min = MIN_PARTIAL;
3431	else if (min > MAX_PARTIAL)
3432		min = MAX_PARTIAL;
3433	s->min_partial = min;
3434}
3435
3436static void set_cpu_partial(struct kmem_cache *s)
3437{
3438#ifdef CONFIG_SLUB_CPU_PARTIAL
3439	/*
3440	 * cpu_partial determined the maximum number of objects kept in the
3441	 * per cpu partial lists of a processor.
3442	 *
3443	 * Per cpu partial lists mainly contain slabs that just have one
3444	 * object freed. If they are used for allocation then they can be
3445	 * filled up again with minimal effort. The slab will never hit the
3446	 * per node partial lists and therefore no locking will be required.
3447	 *
3448	 * This setting also determines
3449	 *
3450	 * A) The number of objects from per cpu partial slabs dumped to the
3451	 *    per node list when we reach the limit.
3452	 * B) The number of objects in cpu partial slabs to extract from the
3453	 *    per node list when we run out of per cpu objects. We only fetch
3454	 *    50% to keep some capacity around for frees.
3455	 */
3456	if (!kmem_cache_has_cpu_partial(s))
3457		s->cpu_partial = 0;
3458	else if (s->size >= PAGE_SIZE)
3459		s->cpu_partial = 2;
3460	else if (s->size >= 1024)
3461		s->cpu_partial = 6;
3462	else if (s->size >= 256)
3463		s->cpu_partial = 13;
3464	else
3465		s->cpu_partial = 30;
3466#endif
3467}
3468
3469/*
3470 * calculate_sizes() determines the order and the distribution of data within
3471 * a slab object.
3472 */
3473static int calculate_sizes(struct kmem_cache *s, int forced_order)
3474{
3475	slab_flags_t flags = s->flags;
3476	unsigned int size = s->object_size;
3477	unsigned int order;
3478
3479	/*
3480	 * Round up object size to the next word boundary. We can only
3481	 * place the free pointer at word boundaries and this determines
3482	 * the possible location of the free pointer.
3483	 */
3484	size = ALIGN(size, sizeof(void *));
3485
3486#ifdef CONFIG_SLUB_DEBUG
3487	/*
3488	 * Determine if we can poison the object itself. If the user of
3489	 * the slab may touch the object after free or before allocation
3490	 * then we should never poison the object itself.
3491	 */
3492	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3493			!s->ctor)
3494		s->flags |= __OBJECT_POISON;
3495	else
3496		s->flags &= ~__OBJECT_POISON;
3497
3498
3499	/*
3500	 * If we are Redzoning then check if there is some space between the
3501	 * end of the object and the free pointer. If not then add an
3502	 * additional word to have some bytes to store Redzone information.
3503	 */
3504	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3505		size += sizeof(void *);
3506#endif
3507
3508	/*
3509	 * With that we have determined the number of bytes in actual use
3510	 * by the object. This is the potential offset to the free pointer.
3511	 */
3512	s->inuse = size;
3513
3514	if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3515		s->ctor)) {
3516		/*
3517		 * Relocate free pointer after the object if it is not
3518		 * permitted to overwrite the first word of the object on
3519		 * kmem_cache_free.
3520		 *
3521		 * This is the case if we do RCU, have a constructor or
3522		 * destructor or are poisoning the objects.
3523		 */
3524		s->offset = size;
3525		size += sizeof(void *);
3526	}
3527
3528#ifdef CONFIG_SLUB_DEBUG
3529	if (flags & SLAB_STORE_USER)
3530		/*
3531		 * Need to store information about allocs and frees after
3532		 * the object.
3533		 */
3534		size += 2 * sizeof(struct track);
3535#endif
3536
3537	kasan_cache_create(s, &size, &s->flags);
3538#ifdef CONFIG_SLUB_DEBUG
3539	if (flags & SLAB_RED_ZONE) {
3540		/*
3541		 * Add some empty padding so that we can catch
3542		 * overwrites from earlier objects rather than let
3543		 * tracking information or the free pointer be
3544		 * corrupted if a user writes before the start
3545		 * of the object.
3546		 */
3547		size += sizeof(void *);
3548
3549		s->red_left_pad = sizeof(void *);
3550		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3551		size += s->red_left_pad;
3552	}
3553#endif
3554
3555	/*
3556	 * SLUB stores one object immediately after another beginning from
3557	 * offset 0. In order to align the objects we have to simply size
3558	 * each object to conform to the alignment.
3559	 */
3560	size = ALIGN(size, s->align);
3561	s->size = size;
3562	if (forced_order >= 0)
3563		order = forced_order;
3564	else
3565		order = calculate_order(size, s->reserved);
3566
3567	if ((int)order < 0)
3568		return 0;
3569
3570	s->allocflags = 0;
3571	if (order)
3572		s->allocflags |= __GFP_COMP;
3573
3574	if (s->flags & SLAB_CACHE_DMA)
3575		s->allocflags |= GFP_DMA;
3576
3577	if (s->flags & SLAB_RECLAIM_ACCOUNT)
3578		s->allocflags |= __GFP_RECLAIMABLE;
3579
3580	/*
3581	 * Determine the number of objects per slab
3582	 */
3583	s->oo = oo_make(order, size, s->reserved);
3584	s->min = oo_make(get_order(size), size, s->reserved);
3585	if (oo_objects(s->oo) > oo_objects(s->max))
3586		s->max = s->oo;
3587
3588	return !!oo_objects(s->oo);
3589}
3590
3591static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
3592{
3593	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3594	s->reserved = 0;
3595#ifdef CONFIG_SLAB_FREELIST_HARDENED
3596	s->random = get_random_long();
3597#endif
3598
3599	if (need_reserve_slab_rcu && (s->flags & SLAB_TYPESAFE_BY_RCU))
3600		s->reserved = sizeof(struct rcu_head);
3601
3602	if (!calculate_sizes(s, -1))
3603		goto error;
3604	if (disable_higher_order_debug) {
3605		/*
3606		 * Disable debugging flags that store metadata if the min slab
3607		 * order increased.
3608		 */
3609		if (get_order(s->size) > get_order(s->object_size)) {
3610			s->flags &= ~DEBUG_METADATA_FLAGS;
3611			s->offset = 0;
3612			if (!calculate_sizes(s, -1))
3613				goto error;
3614		}
3615	}
3616
3617#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3618    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3619	if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3620		/* Enable fast mode */
3621		s->flags |= __CMPXCHG_DOUBLE;
3622#endif
3623
3624	/*
3625	 * The larger the object size is, the more pages we want on the partial
3626	 * list to avoid pounding the page allocator excessively.
3627	 */
3628	set_min_partial(s, ilog2(s->size) / 2);
3629
3630	set_cpu_partial(s);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3631
3632#ifdef CONFIG_NUMA
3633	s->remote_node_defrag_ratio = 1000;
3634#endif
3635
3636	/* Initialize the pre-computed randomized freelist if slab is up */
3637	if (slab_state >= UP) {
3638		if (init_cache_random_seq(s))
3639			goto error;
3640	}
3641
3642	if (!init_kmem_cache_nodes(s))
3643		goto error;
3644
3645	if (alloc_kmem_cache_cpus(s))
3646		return 0;
3647
3648	free_kmem_cache_nodes(s);
3649error:
3650	if (flags & SLAB_PANIC)
3651		panic("Cannot create slab %s size=%u realsize=%u order=%u offset=%u flags=%lx\n",
3652		      s->name, s->size, s->size,
3653		      oo_order(s->oo), s->offset, (unsigned long)flags);
3654	return -EINVAL;
3655}
3656
3657static void list_slab_objects(struct kmem_cache *s, struct page *page,
3658							const char *text)
3659{
3660#ifdef CONFIG_SLUB_DEBUG
3661	void *addr = page_address(page);
3662	void *p;
3663	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3664				     sizeof(long), GFP_ATOMIC);
3665	if (!map)
3666		return;
3667	slab_err(s, page, text, s->name);
3668	slab_lock(page);
3669
3670	get_map(s, page, map);
3671	for_each_object(p, s, addr, page->objects) {
3672
3673		if (!test_bit(slab_index(p, s, addr), map)) {
3674			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3675			print_tracking(s, p);
3676		}
3677	}
3678	slab_unlock(page);
3679	kfree(map);
3680#endif
3681}
3682
3683/*
3684 * Attempt to free all partial slabs on a node.
3685 * This is called from __kmem_cache_shutdown(). We must take list_lock
3686 * because sysfs file might still access partial list after the shutdowning.
3687 */
3688static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3689{
3690	LIST_HEAD(discard);
3691	struct page *page, *h;
3692
3693	BUG_ON(irqs_disabled());
3694	spin_lock_irq(&n->list_lock);
3695	list_for_each_entry_safe(page, h, &n->partial, lru) {
3696		if (!page->inuse) {
3697			remove_partial(n, page);
3698			list_add(&page->lru, &discard);
3699		} else {
3700			list_slab_objects(s, page,
3701			"Objects remaining in %s on __kmem_cache_shutdown()");
3702		}
3703	}
3704	spin_unlock_irq(&n->list_lock);
3705
3706	list_for_each_entry_safe(page, h, &discard, lru)
3707		discard_slab(s, page);
3708}
3709
3710bool __kmem_cache_empty(struct kmem_cache *s)
3711{
3712	int node;
3713	struct kmem_cache_node *n;
3714
3715	for_each_kmem_cache_node(s, node, n)
3716		if (n->nr_partial || slabs_node(s, node))
3717			return false;
3718	return true;
3719}
3720
3721/*
3722 * Release all resources used by a slab cache.
3723 */
3724int __kmem_cache_shutdown(struct kmem_cache *s)
3725{
3726	int node;
3727	struct kmem_cache_node *n;
3728
3729	flush_all(s);
3730	/* Attempt to free all objects */
3731	for_each_kmem_cache_node(s, node, n) {
3732		free_partial(s, n);
3733		if (n->nr_partial || slabs_node(s, node))
3734			return 1;
3735	}
3736	sysfs_slab_remove(s);
3737	return 0;
3738}
3739
3740/********************************************************************
3741 *		Kmalloc subsystem
3742 *******************************************************************/
3743
3744static int __init setup_slub_min_order(char *str)
3745{
3746	get_option(&str, (int *)&slub_min_order);
3747
3748	return 1;
3749}
3750
3751__setup("slub_min_order=", setup_slub_min_order);
3752
3753static int __init setup_slub_max_order(char *str)
3754{
3755	get_option(&str, (int *)&slub_max_order);
3756	slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
3757
3758	return 1;
3759}
3760
3761__setup("slub_max_order=", setup_slub_max_order);
3762
3763static int __init setup_slub_min_objects(char *str)
3764{
3765	get_option(&str, (int *)&slub_min_objects);
3766
3767	return 1;
3768}
3769
3770__setup("slub_min_objects=", setup_slub_min_objects);
3771
3772void *__kmalloc(size_t size, gfp_t flags)
3773{
3774	struct kmem_cache *s;
3775	void *ret;
3776
3777	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3778		return kmalloc_large(size, flags);
3779
3780	s = kmalloc_slab(size, flags);
3781
3782	if (unlikely(ZERO_OR_NULL_PTR(s)))
3783		return s;
3784
3785	ret = slab_alloc(s, flags, _RET_IP_);
3786
3787	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3788
3789	kasan_kmalloc(s, ret, size, flags);
3790
3791	return ret;
3792}
3793EXPORT_SYMBOL(__kmalloc);
3794
3795#ifdef CONFIG_NUMA
3796static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3797{
3798	struct page *page;
3799	void *ptr = NULL;
3800
3801	flags |= __GFP_COMP;
3802	page = alloc_pages_node(node, flags, get_order(size));
3803	if (page)
3804		ptr = page_address(page);
3805
3806	kmalloc_large_node_hook(ptr, size, flags);
3807	return ptr;
3808}
3809
3810void *__kmalloc_node(size_t size, gfp_t flags, int node)
3811{
3812	struct kmem_cache *s;
3813	void *ret;
3814
3815	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3816		ret = kmalloc_large_node(size, flags, node);
3817
3818		trace_kmalloc_node(_RET_IP_, ret,
3819				   size, PAGE_SIZE << get_order(size),
3820				   flags, node);
3821
3822		return ret;
3823	}
3824
3825	s = kmalloc_slab(size, flags);
3826
3827	if (unlikely(ZERO_OR_NULL_PTR(s)))
3828		return s;
3829
3830	ret = slab_alloc_node(s, flags, node, _RET_IP_);
3831
3832	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3833
3834	kasan_kmalloc(s, ret, size, flags);
3835
3836	return ret;
3837}
3838EXPORT_SYMBOL(__kmalloc_node);
3839#endif
3840
3841#ifdef CONFIG_HARDENED_USERCOPY
3842/*
3843 * Rejects incorrectly sized objects and objects that are to be copied
3844 * to/from userspace but do not fall entirely within the containing slab
3845 * cache's usercopy region.
3846 *
3847 * Returns NULL if check passes, otherwise const char * to name of cache
3848 * to indicate an error.
3849 */
3850void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
3851			 bool to_user)
3852{
3853	struct kmem_cache *s;
3854	unsigned int offset;
3855	size_t object_size;
3856
3857	/* Find object and usable object size. */
3858	s = page->slab_cache;
3859
3860	/* Reject impossible pointers. */
3861	if (ptr < page_address(page))
3862		usercopy_abort("SLUB object not in SLUB page?!", NULL,
3863			       to_user, 0, n);
3864
3865	/* Find offset within object. */
3866	offset = (ptr - page_address(page)) % s->size;
3867
3868	/* Adjust for redzone and reject if within the redzone. */
3869	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3870		if (offset < s->red_left_pad)
3871			usercopy_abort("SLUB object in left red zone",
3872				       s->name, to_user, offset, n);
3873		offset -= s->red_left_pad;
3874	}
3875
3876	/* Allow address range falling entirely within usercopy region. */
3877	if (offset >= s->useroffset &&
3878	    offset - s->useroffset <= s->usersize &&
3879	    n <= s->useroffset - offset + s->usersize)
3880		return;
3881
3882	/*
3883	 * If the copy is still within the allocated object, produce
3884	 * a warning instead of rejecting the copy. This is intended
3885	 * to be a temporary method to find any missing usercopy
3886	 * whitelists.
3887	 */
3888	object_size = slab_ksize(s);
3889	if (usercopy_fallback &&
3890	    offset <= object_size && n <= object_size - offset) {
3891		usercopy_warn("SLUB object", s->name, to_user, offset, n);
3892		return;
3893	}
3894
3895	usercopy_abort("SLUB object", s->name, to_user, offset, n);
3896}
3897#endif /* CONFIG_HARDENED_USERCOPY */
3898
3899static size_t __ksize(const void *object)
3900{
3901	struct page *page;
3902
3903	if (unlikely(object == ZERO_SIZE_PTR))
3904		return 0;
3905
3906	page = virt_to_head_page(object);
3907
3908	if (unlikely(!PageSlab(page))) {
3909		WARN_ON(!PageCompound(page));
3910		return PAGE_SIZE << compound_order(page);
3911	}
3912
3913	return slab_ksize(page->slab_cache);
3914}
3915
3916size_t ksize(const void *object)
3917{
3918	size_t size = __ksize(object);
3919	/* We assume that ksize callers could use whole allocated area,
3920	 * so we need to unpoison this area.
3921	 */
3922	kasan_unpoison_shadow(object, size);
3923	return size;
3924}
3925EXPORT_SYMBOL(ksize);
3926
3927void kfree(const void *x)
3928{
3929	struct page *page;
3930	void *object = (void *)x;
3931
3932	trace_kfree(_RET_IP_, x);
3933
3934	if (unlikely(ZERO_OR_NULL_PTR(x)))
3935		return;
3936
3937	page = virt_to_head_page(x);
3938	if (unlikely(!PageSlab(page))) {
3939		BUG_ON(!PageCompound(page));
3940		kfree_hook(object);
3941		__free_pages(page, compound_order(page));
3942		return;
3943	}
3944	slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
3945}
3946EXPORT_SYMBOL(kfree);
3947
3948#define SHRINK_PROMOTE_MAX 32
3949
3950/*
3951 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3952 * up most to the head of the partial lists. New allocations will then
3953 * fill those up and thus they can be removed from the partial lists.
3954 *
3955 * The slabs with the least items are placed last. This results in them
3956 * being allocated from last increasing the chance that the last objects
3957 * are freed in them.
3958 */
3959int __kmem_cache_shrink(struct kmem_cache *s)
3960{
3961	int node;
3962	int i;
3963	struct kmem_cache_node *n;
3964	struct page *page;
3965	struct page *t;
3966	struct list_head discard;
3967	struct list_head promote[SHRINK_PROMOTE_MAX];
3968	unsigned long flags;
3969	int ret = 0;
3970
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3971	flush_all(s);
3972	for_each_kmem_cache_node(s, node, n) {
3973		INIT_LIST_HEAD(&discard);
3974		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3975			INIT_LIST_HEAD(promote + i);
3976
3977		spin_lock_irqsave(&n->list_lock, flags);
3978
3979		/*
3980		 * Build lists of slabs to discard or promote.
3981		 *
3982		 * Note that concurrent frees may occur while we hold the
3983		 * list_lock. page->inuse here is the upper limit.
3984		 */
3985		list_for_each_entry_safe(page, t, &n->partial, lru) {
3986			int free = page->objects - page->inuse;
3987
3988			/* Do not reread page->inuse */
3989			barrier();
3990
3991			/* We do not keep full slabs on the list */
3992			BUG_ON(free <= 0);
3993
3994			if (free == page->objects) {
3995				list_move(&page->lru, &discard);
3996				n->nr_partial--;
3997			} else if (free <= SHRINK_PROMOTE_MAX)
3998				list_move(&page->lru, promote + free - 1);
3999		}
4000
4001		/*
4002		 * Promote the slabs filled up most to the head of the
4003		 * partial list.
4004		 */
4005		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4006			list_splice(promote + i, &n->partial);
4007
4008		spin_unlock_irqrestore(&n->list_lock, flags);
4009
4010		/* Release empty slabs */
4011		list_for_each_entry_safe(page, t, &discard, lru)
4012			discard_slab(s, page);
4013
4014		if (slabs_node(s, node))
4015			ret = 1;
4016	}
4017
4018	return ret;
4019}
4020
4021#ifdef CONFIG_MEMCG
4022static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s)
4023{
4024	/*
4025	 * Called with all the locks held after a sched RCU grace period.
4026	 * Even if @s becomes empty after shrinking, we can't know that @s
4027	 * doesn't have allocations already in-flight and thus can't
4028	 * destroy @s until the associated memcg is released.
4029	 *
4030	 * However, let's remove the sysfs files for empty caches here.
4031	 * Each cache has a lot of interface files which aren't
4032	 * particularly useful for empty draining caches; otherwise, we can
4033	 * easily end up with millions of unnecessary sysfs files on
4034	 * systems which have a lot of memory and transient cgroups.
4035	 */
4036	if (!__kmem_cache_shrink(s))
4037		sysfs_slab_remove(s);
4038}
4039
4040void __kmemcg_cache_deactivate(struct kmem_cache *s)
4041{
4042	/*
4043	 * Disable empty slabs caching. Used to avoid pinning offline
4044	 * memory cgroups by kmem pages that can be freed.
4045	 */
4046	slub_set_cpu_partial(s, 0);
4047	s->min_partial = 0;
4048
4049	/*
4050	 * s->cpu_partial is checked locklessly (see put_cpu_partial), so
4051	 * we have to make sure the change is visible before shrinking.
4052	 */
4053	slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu);
4054}
4055#endif
4056
4057static int slab_mem_going_offline_callback(void *arg)
4058{
4059	struct kmem_cache *s;
4060
4061	mutex_lock(&slab_mutex);
4062	list_for_each_entry(s, &slab_caches, list)
4063		__kmem_cache_shrink(s);
4064	mutex_unlock(&slab_mutex);
4065
4066	return 0;
4067}
4068
4069static void slab_mem_offline_callback(void *arg)
4070{
4071	struct kmem_cache_node *n;
4072	struct kmem_cache *s;
4073	struct memory_notify *marg = arg;
4074	int offline_node;
4075
4076	offline_node = marg->status_change_nid_normal;
4077
4078	/*
4079	 * If the node still has available memory. we need kmem_cache_node
4080	 * for it yet.
4081	 */
4082	if (offline_node < 0)
4083		return;
4084
4085	mutex_lock(&slab_mutex);
4086	list_for_each_entry(s, &slab_caches, list) {
4087		n = get_node(s, offline_node);
4088		if (n) {
4089			/*
4090			 * if n->nr_slabs > 0, slabs still exist on the node
4091			 * that is going down. We were unable to free them,
4092			 * and offline_pages() function shouldn't call this
4093			 * callback. So, we must fail.
4094			 */
4095			BUG_ON(slabs_node(s, offline_node));
4096
4097			s->node[offline_node] = NULL;
4098			kmem_cache_free(kmem_cache_node, n);
4099		}
4100	}
4101	mutex_unlock(&slab_mutex);
4102}
4103
4104static int slab_mem_going_online_callback(void *arg)
4105{
4106	struct kmem_cache_node *n;
4107	struct kmem_cache *s;
4108	struct memory_notify *marg = arg;
4109	int nid = marg->status_change_nid_normal;
4110	int ret = 0;
4111
4112	/*
4113	 * If the node's memory is already available, then kmem_cache_node is
4114	 * already created. Nothing to do.
4115	 */
4116	if (nid < 0)
4117		return 0;
4118
4119	/*
4120	 * We are bringing a node online. No memory is available yet. We must
4121	 * allocate a kmem_cache_node structure in order to bring the node
4122	 * online.
4123	 */
4124	mutex_lock(&slab_mutex);
4125	list_for_each_entry(s, &slab_caches, list) {
4126		/*
4127		 * XXX: kmem_cache_alloc_node will fallback to other nodes
4128		 *      since memory is not yet available from the node that
4129		 *      is brought up.
4130		 */
4131		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4132		if (!n) {
4133			ret = -ENOMEM;
4134			goto out;
4135		}
4136		init_kmem_cache_node(n);
4137		s->node[nid] = n;
4138	}
4139out:
4140	mutex_unlock(&slab_mutex);
4141	return ret;
4142}
4143
4144static int slab_memory_callback(struct notifier_block *self,
4145				unsigned long action, void *arg)
4146{
4147	int ret = 0;
4148
4149	switch (action) {
4150	case MEM_GOING_ONLINE:
4151		ret = slab_mem_going_online_callback(arg);
4152		break;
4153	case MEM_GOING_OFFLINE:
4154		ret = slab_mem_going_offline_callback(arg);
4155		break;
4156	case MEM_OFFLINE:
4157	case MEM_CANCEL_ONLINE:
4158		slab_mem_offline_callback(arg);
4159		break;
4160	case MEM_ONLINE:
4161	case MEM_CANCEL_OFFLINE:
4162		break;
4163	}
4164	if (ret)
4165		ret = notifier_from_errno(ret);
4166	else
4167		ret = NOTIFY_OK;
4168	return ret;
4169}
4170
4171static struct notifier_block slab_memory_callback_nb = {
4172	.notifier_call = slab_memory_callback,
4173	.priority = SLAB_CALLBACK_PRI,
4174};
4175
4176/********************************************************************
4177 *			Basic setup of slabs
4178 *******************************************************************/
4179
4180/*
4181 * Used for early kmem_cache structures that were allocated using
4182 * the page allocator. Allocate them properly then fix up the pointers
4183 * that may be pointing to the wrong kmem_cache structure.
4184 */
4185
4186static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4187{
4188	int node;
4189	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4190	struct kmem_cache_node *n;
4191
4192	memcpy(s, static_cache, kmem_cache->object_size);
4193
4194	/*
4195	 * This runs very early, and only the boot processor is supposed to be
4196	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
4197	 * IPIs around.
4198	 */
4199	__flush_cpu_slab(s, smp_processor_id());
4200	for_each_kmem_cache_node(s, node, n) {
4201		struct page *p;
4202
4203		list_for_each_entry(p, &n->partial, lru)
4204			p->slab_cache = s;
4205
4206#ifdef CONFIG_SLUB_DEBUG
4207		list_for_each_entry(p, &n->full, lru)
4208			p->slab_cache = s;
4209#endif
4210	}
4211	slab_init_memcg_params(s);
4212	list_add(&s->list, &slab_caches);
4213	memcg_link_cache(s);
4214	return s;
4215}
4216
4217void __init kmem_cache_init(void)
4218{
4219	static __initdata struct kmem_cache boot_kmem_cache,
4220		boot_kmem_cache_node;
4221
4222	if (debug_guardpage_minorder())
4223		slub_max_order = 0;
4224
4225	kmem_cache_node = &boot_kmem_cache_node;
4226	kmem_cache = &boot_kmem_cache;
4227
4228	create_boot_cache(kmem_cache_node, "kmem_cache_node",
4229		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4230
4231	register_hotmemory_notifier(&slab_memory_callback_nb);
4232
4233	/* Able to allocate the per node structures */
4234	slab_state = PARTIAL;
4235
4236	create_boot_cache(kmem_cache, "kmem_cache",
4237			offsetof(struct kmem_cache, node) +
4238				nr_node_ids * sizeof(struct kmem_cache_node *),
4239		       SLAB_HWCACHE_ALIGN, 0, 0);
4240
4241	kmem_cache = bootstrap(&boot_kmem_cache);
4242
4243	/*
4244	 * Allocate kmem_cache_node properly from the kmem_cache slab.
4245	 * kmem_cache_node is separately allocated so no need to
4246	 * update any list pointers.
4247	 */
4248	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4249
4250	/* Now we can use the kmem_cache to allocate kmalloc slabs */
4251	setup_kmalloc_cache_index_table();
4252	create_kmalloc_caches(0);
4253
4254	/* Setup random freelists for each cache */
4255	init_freelist_randomization();
4256
4257	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4258				  slub_cpu_dead);
4259
4260	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%d\n",
4261		cache_line_size(),
4262		slub_min_order, slub_max_order, slub_min_objects,
4263		nr_cpu_ids, nr_node_ids);
4264}
4265
4266void __init kmem_cache_init_late(void)
4267{
4268}
4269
4270struct kmem_cache *
4271__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4272		   slab_flags_t flags, void (*ctor)(void *))
4273{
4274	struct kmem_cache *s, *c;
4275
4276	s = find_mergeable(size, align, flags, name, ctor);
4277	if (s) {
4278		s->refcount++;
4279
4280		/*
4281		 * Adjust the object sizes so that we clear
4282		 * the complete object on kzalloc.
4283		 */
4284		s->object_size = max(s->object_size, size);
4285		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4286
4287		for_each_memcg_cache(c, s) {
4288			c->object_size = s->object_size;
4289			c->inuse = max(c->inuse, ALIGN(size, sizeof(void *)));
 
4290		}
4291
4292		if (sysfs_slab_alias(s, name)) {
4293			s->refcount--;
4294			s = NULL;
4295		}
4296	}
4297
4298	return s;
4299}
4300
4301int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4302{
4303	int err;
4304
4305	err = kmem_cache_open(s, flags);
4306	if (err)
4307		return err;
4308
4309	/* Mutex is not taken during early boot */
4310	if (slab_state <= UP)
4311		return 0;
4312
4313	memcg_propagate_slab_attrs(s);
4314	err = sysfs_slab_add(s);
4315	if (err)
4316		__kmem_cache_release(s);
4317
4318	return err;
4319}
4320
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4321void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4322{
4323	struct kmem_cache *s;
4324	void *ret;
4325
4326	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4327		return kmalloc_large(size, gfpflags);
4328
4329	s = kmalloc_slab(size, gfpflags);
4330
4331	if (unlikely(ZERO_OR_NULL_PTR(s)))
4332		return s;
4333
4334	ret = slab_alloc(s, gfpflags, caller);
4335
4336	/* Honor the call site pointer we received. */
4337	trace_kmalloc(caller, ret, size, s->size, gfpflags);
4338
4339	return ret;
4340}
4341
4342#ifdef CONFIG_NUMA
4343void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4344					int node, unsigned long caller)
4345{
4346	struct kmem_cache *s;
4347	void *ret;
4348
4349	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4350		ret = kmalloc_large_node(size, gfpflags, node);
4351
4352		trace_kmalloc_node(caller, ret,
4353				   size, PAGE_SIZE << get_order(size),
4354				   gfpflags, node);
4355
4356		return ret;
4357	}
4358
4359	s = kmalloc_slab(size, gfpflags);
4360
4361	if (unlikely(ZERO_OR_NULL_PTR(s)))
4362		return s;
4363
4364	ret = slab_alloc_node(s, gfpflags, node, caller);
4365
4366	/* Honor the call site pointer we received. */
4367	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4368
4369	return ret;
4370}
4371#endif
4372
4373#ifdef CONFIG_SYSFS
4374static int count_inuse(struct page *page)
4375{
4376	return page->inuse;
4377}
4378
4379static int count_total(struct page *page)
4380{
4381	return page->objects;
4382}
4383#endif
4384
4385#ifdef CONFIG_SLUB_DEBUG
4386static int validate_slab(struct kmem_cache *s, struct page *page,
4387						unsigned long *map)
4388{
4389	void *p;
4390	void *addr = page_address(page);
4391
4392	if (!check_slab(s, page) ||
4393			!on_freelist(s, page, NULL))
4394		return 0;
4395
4396	/* Now we know that a valid freelist exists */
4397	bitmap_zero(map, page->objects);
4398
4399	get_map(s, page, map);
4400	for_each_object(p, s, addr, page->objects) {
4401		if (test_bit(slab_index(p, s, addr), map))
4402			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4403				return 0;
4404	}
4405
4406	for_each_object(p, s, addr, page->objects)
4407		if (!test_bit(slab_index(p, s, addr), map))
4408			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4409				return 0;
4410	return 1;
4411}
4412
4413static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4414						unsigned long *map)
4415{
4416	slab_lock(page);
4417	validate_slab(s, page, map);
4418	slab_unlock(page);
4419}
4420
4421static int validate_slab_node(struct kmem_cache *s,
4422		struct kmem_cache_node *n, unsigned long *map)
4423{
4424	unsigned long count = 0;
4425	struct page *page;
4426	unsigned long flags;
4427
4428	spin_lock_irqsave(&n->list_lock, flags);
4429
4430	list_for_each_entry(page, &n->partial, lru) {
4431		validate_slab_slab(s, page, map);
4432		count++;
4433	}
4434	if (count != n->nr_partial)
4435		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4436		       s->name, count, n->nr_partial);
4437
4438	if (!(s->flags & SLAB_STORE_USER))
4439		goto out;
4440
4441	list_for_each_entry(page, &n->full, lru) {
4442		validate_slab_slab(s, page, map);
4443		count++;
4444	}
4445	if (count != atomic_long_read(&n->nr_slabs))
4446		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4447		       s->name, count, atomic_long_read(&n->nr_slabs));
4448
4449out:
4450	spin_unlock_irqrestore(&n->list_lock, flags);
4451	return count;
4452}
4453
4454static long validate_slab_cache(struct kmem_cache *s)
4455{
4456	int node;
4457	unsigned long count = 0;
4458	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4459				sizeof(unsigned long), GFP_KERNEL);
4460	struct kmem_cache_node *n;
4461
4462	if (!map)
4463		return -ENOMEM;
4464
4465	flush_all(s);
4466	for_each_kmem_cache_node(s, node, n)
4467		count += validate_slab_node(s, n, map);
4468	kfree(map);
4469	return count;
4470}
4471/*
4472 * Generate lists of code addresses where slabcache objects are allocated
4473 * and freed.
4474 */
4475
4476struct location {
4477	unsigned long count;
4478	unsigned long addr;
4479	long long sum_time;
4480	long min_time;
4481	long max_time;
4482	long min_pid;
4483	long max_pid;
4484	DECLARE_BITMAP(cpus, NR_CPUS);
4485	nodemask_t nodes;
4486};
4487
4488struct loc_track {
4489	unsigned long max;
4490	unsigned long count;
4491	struct location *loc;
4492};
4493
4494static void free_loc_track(struct loc_track *t)
4495{
4496	if (t->max)
4497		free_pages((unsigned long)t->loc,
4498			get_order(sizeof(struct location) * t->max));
4499}
4500
4501static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4502{
4503	struct location *l;
4504	int order;
4505
4506	order = get_order(sizeof(struct location) * max);
4507
4508	l = (void *)__get_free_pages(flags, order);
4509	if (!l)
4510		return 0;
4511
4512	if (t->count) {
4513		memcpy(l, t->loc, sizeof(struct location) * t->count);
4514		free_loc_track(t);
4515	}
4516	t->max = max;
4517	t->loc = l;
4518	return 1;
4519}
4520
4521static int add_location(struct loc_track *t, struct kmem_cache *s,
4522				const struct track *track)
4523{
4524	long start, end, pos;
4525	struct location *l;
4526	unsigned long caddr;
4527	unsigned long age = jiffies - track->when;
4528
4529	start = -1;
4530	end = t->count;
4531
4532	for ( ; ; ) {
4533		pos = start + (end - start + 1) / 2;
4534
4535		/*
4536		 * There is nothing at "end". If we end up there
4537		 * we need to add something to before end.
4538		 */
4539		if (pos == end)
4540			break;
4541
4542		caddr = t->loc[pos].addr;
4543		if (track->addr == caddr) {
4544
4545			l = &t->loc[pos];
4546			l->count++;
4547			if (track->when) {
4548				l->sum_time += age;
4549				if (age < l->min_time)
4550					l->min_time = age;
4551				if (age > l->max_time)
4552					l->max_time = age;
4553
4554				if (track->pid < l->min_pid)
4555					l->min_pid = track->pid;
4556				if (track->pid > l->max_pid)
4557					l->max_pid = track->pid;
4558
4559				cpumask_set_cpu(track->cpu,
4560						to_cpumask(l->cpus));
4561			}
4562			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4563			return 1;
4564		}
4565
4566		if (track->addr < caddr)
4567			end = pos;
4568		else
4569			start = pos;
4570	}
4571
4572	/*
4573	 * Not found. Insert new tracking element.
4574	 */
4575	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4576		return 0;
4577
4578	l = t->loc + pos;
4579	if (pos < t->count)
4580		memmove(l + 1, l,
4581			(t->count - pos) * sizeof(struct location));
4582	t->count++;
4583	l->count = 1;
4584	l->addr = track->addr;
4585	l->sum_time = age;
4586	l->min_time = age;
4587	l->max_time = age;
4588	l->min_pid = track->pid;
4589	l->max_pid = track->pid;
4590	cpumask_clear(to_cpumask(l->cpus));
4591	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4592	nodes_clear(l->nodes);
4593	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4594	return 1;
4595}
4596
4597static void process_slab(struct loc_track *t, struct kmem_cache *s,
4598		struct page *page, enum track_item alloc,
4599		unsigned long *map)
4600{
4601	void *addr = page_address(page);
4602	void *p;
4603
4604	bitmap_zero(map, page->objects);
4605	get_map(s, page, map);
4606
4607	for_each_object(p, s, addr, page->objects)
4608		if (!test_bit(slab_index(p, s, addr), map))
4609			add_location(t, s, get_track(s, p, alloc));
4610}
4611
4612static int list_locations(struct kmem_cache *s, char *buf,
4613					enum track_item alloc)
4614{
4615	int len = 0;
4616	unsigned long i;
4617	struct loc_track t = { 0, 0, NULL };
4618	int node;
4619	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4620				     sizeof(unsigned long), GFP_KERNEL);
4621	struct kmem_cache_node *n;
4622
4623	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4624				     GFP_KERNEL)) {
4625		kfree(map);
4626		return sprintf(buf, "Out of memory\n");
4627	}
4628	/* Push back cpu slabs */
4629	flush_all(s);
4630
4631	for_each_kmem_cache_node(s, node, n) {
4632		unsigned long flags;
4633		struct page *page;
4634
4635		if (!atomic_long_read(&n->nr_slabs))
4636			continue;
4637
4638		spin_lock_irqsave(&n->list_lock, flags);
4639		list_for_each_entry(page, &n->partial, lru)
4640			process_slab(&t, s, page, alloc, map);
4641		list_for_each_entry(page, &n->full, lru)
4642			process_slab(&t, s, page, alloc, map);
4643		spin_unlock_irqrestore(&n->list_lock, flags);
4644	}
4645
4646	for (i = 0; i < t.count; i++) {
4647		struct location *l = &t.loc[i];
4648
4649		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4650			break;
4651		len += sprintf(buf + len, "%7ld ", l->count);
4652
4653		if (l->addr)
4654			len += sprintf(buf + len, "%pS", (void *)l->addr);
4655		else
4656			len += sprintf(buf + len, "<not-available>");
4657
4658		if (l->sum_time != l->min_time) {
4659			len += sprintf(buf + len, " age=%ld/%ld/%ld",
4660				l->min_time,
4661				(long)div_u64(l->sum_time, l->count),
4662				l->max_time);
4663		} else
4664			len += sprintf(buf + len, " age=%ld",
4665				l->min_time);
4666
4667		if (l->min_pid != l->max_pid)
4668			len += sprintf(buf + len, " pid=%ld-%ld",
4669				l->min_pid, l->max_pid);
4670		else
4671			len += sprintf(buf + len, " pid=%ld",
4672				l->min_pid);
4673
4674		if (num_online_cpus() > 1 &&
4675				!cpumask_empty(to_cpumask(l->cpus)) &&
4676				len < PAGE_SIZE - 60)
4677			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4678					 " cpus=%*pbl",
4679					 cpumask_pr_args(to_cpumask(l->cpus)));
4680
4681		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4682				len < PAGE_SIZE - 60)
4683			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4684					 " nodes=%*pbl",
4685					 nodemask_pr_args(&l->nodes));
4686
4687		len += sprintf(buf + len, "\n");
4688	}
4689
4690	free_loc_track(&t);
4691	kfree(map);
4692	if (!t.count)
4693		len += sprintf(buf, "No data\n");
4694	return len;
4695}
4696#endif
4697
4698#ifdef SLUB_RESILIENCY_TEST
4699static void __init resiliency_test(void)
4700{
4701	u8 *p;
4702
4703	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4704
4705	pr_err("SLUB resiliency testing\n");
4706	pr_err("-----------------------\n");
4707	pr_err("A. Corruption after allocation\n");
4708
4709	p = kzalloc(16, GFP_KERNEL);
4710	p[16] = 0x12;
4711	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4712	       p + 16);
4713
4714	validate_slab_cache(kmalloc_caches[4]);
4715
4716	/* Hmmm... The next two are dangerous */
4717	p = kzalloc(32, GFP_KERNEL);
4718	p[32 + sizeof(void *)] = 0x34;
4719	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4720	       p);
4721	pr_err("If allocated object is overwritten then not detectable\n\n");
4722
4723	validate_slab_cache(kmalloc_caches[5]);
4724	p = kzalloc(64, GFP_KERNEL);
4725	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4726	*p = 0x56;
4727	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4728	       p);
4729	pr_err("If allocated object is overwritten then not detectable\n\n");
4730	validate_slab_cache(kmalloc_caches[6]);
4731
4732	pr_err("\nB. Corruption after free\n");
4733	p = kzalloc(128, GFP_KERNEL);
4734	kfree(p);
4735	*p = 0x78;
4736	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4737	validate_slab_cache(kmalloc_caches[7]);
4738
4739	p = kzalloc(256, GFP_KERNEL);
4740	kfree(p);
4741	p[50] = 0x9a;
4742	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4743	validate_slab_cache(kmalloc_caches[8]);
4744
4745	p = kzalloc(512, GFP_KERNEL);
4746	kfree(p);
4747	p[512] = 0xab;
4748	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4749	validate_slab_cache(kmalloc_caches[9]);
4750}
4751#else
4752#ifdef CONFIG_SYSFS
4753static void resiliency_test(void) {};
4754#endif
4755#endif
4756
4757#ifdef CONFIG_SYSFS
4758enum slab_stat_type {
4759	SL_ALL,			/* All slabs */
4760	SL_PARTIAL,		/* Only partially allocated slabs */
4761	SL_CPU,			/* Only slabs used for cpu caches */
4762	SL_OBJECTS,		/* Determine allocated objects not slabs */
4763	SL_TOTAL		/* Determine object capacity not slabs */
4764};
4765
4766#define SO_ALL		(1 << SL_ALL)
4767#define SO_PARTIAL	(1 << SL_PARTIAL)
4768#define SO_CPU		(1 << SL_CPU)
4769#define SO_OBJECTS	(1 << SL_OBJECTS)
4770#define SO_TOTAL	(1 << SL_TOTAL)
4771
4772#ifdef CONFIG_MEMCG
4773static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4774
4775static int __init setup_slub_memcg_sysfs(char *str)
4776{
4777	int v;
4778
4779	if (get_option(&str, &v) > 0)
4780		memcg_sysfs_enabled = v;
4781
4782	return 1;
4783}
4784
4785__setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4786#endif
4787
4788static ssize_t show_slab_objects(struct kmem_cache *s,
4789			    char *buf, unsigned long flags)
4790{
4791	unsigned long total = 0;
4792	int node;
4793	int x;
4794	unsigned long *nodes;
4795
4796	nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4797	if (!nodes)
4798		return -ENOMEM;
4799
4800	if (flags & SO_CPU) {
4801		int cpu;
4802
4803		for_each_possible_cpu(cpu) {
4804			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4805							       cpu);
4806			int node;
4807			struct page *page;
4808
4809			page = READ_ONCE(c->page);
4810			if (!page)
4811				continue;
4812
4813			node = page_to_nid(page);
4814			if (flags & SO_TOTAL)
4815				x = page->objects;
4816			else if (flags & SO_OBJECTS)
4817				x = page->inuse;
4818			else
4819				x = 1;
4820
4821			total += x;
4822			nodes[node] += x;
4823
4824			page = slub_percpu_partial_read_once(c);
4825			if (page) {
4826				node = page_to_nid(page);
4827				if (flags & SO_TOTAL)
4828					WARN_ON_ONCE(1);
4829				else if (flags & SO_OBJECTS)
4830					WARN_ON_ONCE(1);
4831				else
4832					x = page->pages;
4833				total += x;
4834				nodes[node] += x;
4835			}
4836		}
4837	}
4838
4839	get_online_mems();
4840#ifdef CONFIG_SLUB_DEBUG
4841	if (flags & SO_ALL) {
4842		struct kmem_cache_node *n;
4843
4844		for_each_kmem_cache_node(s, node, n) {
4845
4846			if (flags & SO_TOTAL)
4847				x = atomic_long_read(&n->total_objects);
4848			else if (flags & SO_OBJECTS)
4849				x = atomic_long_read(&n->total_objects) -
4850					count_partial(n, count_free);
4851			else
4852				x = atomic_long_read(&n->nr_slabs);
4853			total += x;
4854			nodes[node] += x;
4855		}
4856
4857	} else
4858#endif
4859	if (flags & SO_PARTIAL) {
4860		struct kmem_cache_node *n;
4861
4862		for_each_kmem_cache_node(s, node, n) {
4863			if (flags & SO_TOTAL)
4864				x = count_partial(n, count_total);
4865			else if (flags & SO_OBJECTS)
4866				x = count_partial(n, count_inuse);
4867			else
4868				x = n->nr_partial;
4869			total += x;
4870			nodes[node] += x;
4871		}
4872	}
4873	x = sprintf(buf, "%lu", total);
4874#ifdef CONFIG_NUMA
4875	for (node = 0; node < nr_node_ids; node++)
4876		if (nodes[node])
4877			x += sprintf(buf + x, " N%d=%lu",
4878					node, nodes[node]);
4879#endif
4880	put_online_mems();
4881	kfree(nodes);
4882	return x + sprintf(buf + x, "\n");
4883}
4884
4885#ifdef CONFIG_SLUB_DEBUG
4886static int any_slab_objects(struct kmem_cache *s)
4887{
4888	int node;
4889	struct kmem_cache_node *n;
4890
4891	for_each_kmem_cache_node(s, node, n)
4892		if (atomic_long_read(&n->total_objects))
4893			return 1;
4894
4895	return 0;
4896}
4897#endif
4898
4899#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4900#define to_slab(n) container_of(n, struct kmem_cache, kobj)
4901
4902struct slab_attribute {
4903	struct attribute attr;
4904	ssize_t (*show)(struct kmem_cache *s, char *buf);
4905	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4906};
4907
4908#define SLAB_ATTR_RO(_name) \
4909	static struct slab_attribute _name##_attr = \
4910	__ATTR(_name, 0400, _name##_show, NULL)
4911
4912#define SLAB_ATTR(_name) \
4913	static struct slab_attribute _name##_attr =  \
4914	__ATTR(_name, 0600, _name##_show, _name##_store)
4915
4916static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4917{
4918	return sprintf(buf, "%u\n", s->size);
4919}
4920SLAB_ATTR_RO(slab_size);
4921
4922static ssize_t align_show(struct kmem_cache *s, char *buf)
4923{
4924	return sprintf(buf, "%u\n", s->align);
4925}
4926SLAB_ATTR_RO(align);
4927
4928static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4929{
4930	return sprintf(buf, "%u\n", s->object_size);
4931}
4932SLAB_ATTR_RO(object_size);
4933
4934static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4935{
4936	return sprintf(buf, "%u\n", oo_objects(s->oo));
4937}
4938SLAB_ATTR_RO(objs_per_slab);
4939
4940static ssize_t order_store(struct kmem_cache *s,
4941				const char *buf, size_t length)
4942{
4943	unsigned int order;
4944	int err;
4945
4946	err = kstrtouint(buf, 10, &order);
4947	if (err)
4948		return err;
4949
4950	if (order > slub_max_order || order < slub_min_order)
4951		return -EINVAL;
4952
4953	calculate_sizes(s, order);
4954	return length;
4955}
4956
4957static ssize_t order_show(struct kmem_cache *s, char *buf)
4958{
4959	return sprintf(buf, "%u\n", oo_order(s->oo));
4960}
4961SLAB_ATTR(order);
4962
4963static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4964{
4965	return sprintf(buf, "%lu\n", s->min_partial);
4966}
4967
4968static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4969				 size_t length)
4970{
4971	unsigned long min;
4972	int err;
4973
4974	err = kstrtoul(buf, 10, &min);
4975	if (err)
4976		return err;
4977
4978	set_min_partial(s, min);
4979	return length;
4980}
4981SLAB_ATTR(min_partial);
4982
4983static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4984{
4985	return sprintf(buf, "%u\n", slub_cpu_partial(s));
4986}
4987
4988static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4989				 size_t length)
4990{
4991	unsigned int objects;
4992	int err;
4993
4994	err = kstrtouint(buf, 10, &objects);
4995	if (err)
4996		return err;
4997	if (objects && !kmem_cache_has_cpu_partial(s))
4998		return -EINVAL;
4999
5000	slub_set_cpu_partial(s, objects);
5001	flush_all(s);
5002	return length;
5003}
5004SLAB_ATTR(cpu_partial);
5005
5006static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5007{
5008	if (!s->ctor)
5009		return 0;
5010	return sprintf(buf, "%pS\n", s->ctor);
5011}
5012SLAB_ATTR_RO(ctor);
5013
5014static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5015{
5016	return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5017}
5018SLAB_ATTR_RO(aliases);
5019
5020static ssize_t partial_show(struct kmem_cache *s, char *buf)
5021{
5022	return show_slab_objects(s, buf, SO_PARTIAL);
5023}
5024SLAB_ATTR_RO(partial);
5025
5026static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5027{
5028	return show_slab_objects(s, buf, SO_CPU);
5029}
5030SLAB_ATTR_RO(cpu_slabs);
5031
5032static ssize_t objects_show(struct kmem_cache *s, char *buf)
5033{
5034	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5035}
5036SLAB_ATTR_RO(objects);
5037
5038static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5039{
5040	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5041}
5042SLAB_ATTR_RO(objects_partial);
5043
5044static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5045{
5046	int objects = 0;
5047	int pages = 0;
5048	int cpu;
5049	int len;
5050
5051	for_each_online_cpu(cpu) {
5052		struct page *page;
5053
5054		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5055
5056		if (page) {
5057			pages += page->pages;
5058			objects += page->pobjects;
5059		}
5060	}
5061
5062	len = sprintf(buf, "%d(%d)", objects, pages);
5063
5064#ifdef CONFIG_SMP
5065	for_each_online_cpu(cpu) {
5066		struct page *page;
5067
5068		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5069
5070		if (page && len < PAGE_SIZE - 20)
5071			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5072				page->pobjects, page->pages);
5073	}
5074#endif
5075	return len + sprintf(buf + len, "\n");
5076}
5077SLAB_ATTR_RO(slabs_cpu_partial);
5078
5079static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5080{
5081	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5082}
5083
5084static ssize_t reclaim_account_store(struct kmem_cache *s,
5085				const char *buf, size_t length)
5086{
5087	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
5088	if (buf[0] == '1')
5089		s->flags |= SLAB_RECLAIM_ACCOUNT;
5090	return length;
5091}
5092SLAB_ATTR(reclaim_account);
5093
5094static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5095{
5096	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5097}
5098SLAB_ATTR_RO(hwcache_align);
5099
5100#ifdef CONFIG_ZONE_DMA
5101static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5102{
5103	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5104}
5105SLAB_ATTR_RO(cache_dma);
5106#endif
5107
5108static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5109{
5110	return sprintf(buf, "%u\n", s->usersize);
5111}
5112SLAB_ATTR_RO(usersize);
5113
5114static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5115{
5116	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5117}
5118SLAB_ATTR_RO(destroy_by_rcu);
5119
5120static ssize_t reserved_show(struct kmem_cache *s, char *buf)
5121{
5122	return sprintf(buf, "%u\n", s->reserved);
5123}
5124SLAB_ATTR_RO(reserved);
5125
5126#ifdef CONFIG_SLUB_DEBUG
5127static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5128{
5129	return show_slab_objects(s, buf, SO_ALL);
5130}
5131SLAB_ATTR_RO(slabs);
5132
5133static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5134{
5135	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5136}
5137SLAB_ATTR_RO(total_objects);
5138
5139static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5140{
5141	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5142}
5143
5144static ssize_t sanity_checks_store(struct kmem_cache *s,
5145				const char *buf, size_t length)
5146{
5147	s->flags &= ~SLAB_CONSISTENCY_CHECKS;
5148	if (buf[0] == '1') {
5149		s->flags &= ~__CMPXCHG_DOUBLE;
5150		s->flags |= SLAB_CONSISTENCY_CHECKS;
5151	}
5152	return length;
5153}
5154SLAB_ATTR(sanity_checks);
5155
5156static ssize_t trace_show(struct kmem_cache *s, char *buf)
5157{
5158	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5159}
5160
5161static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5162							size_t length)
5163{
5164	/*
5165	 * Tracing a merged cache is going to give confusing results
5166	 * as well as cause other issues like converting a mergeable
5167	 * cache into an umergeable one.
5168	 */
5169	if (s->refcount > 1)
5170		return -EINVAL;
5171
5172	s->flags &= ~SLAB_TRACE;
5173	if (buf[0] == '1') {
5174		s->flags &= ~__CMPXCHG_DOUBLE;
5175		s->flags |= SLAB_TRACE;
5176	}
5177	return length;
5178}
5179SLAB_ATTR(trace);
5180
5181static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5182{
5183	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5184}
5185
5186static ssize_t red_zone_store(struct kmem_cache *s,
5187				const char *buf, size_t length)
5188{
5189	if (any_slab_objects(s))
5190		return -EBUSY;
5191
5192	s->flags &= ~SLAB_RED_ZONE;
5193	if (buf[0] == '1') {
5194		s->flags |= SLAB_RED_ZONE;
5195	}
5196	calculate_sizes(s, -1);
5197	return length;
5198}
5199SLAB_ATTR(red_zone);
5200
5201static ssize_t poison_show(struct kmem_cache *s, char *buf)
5202{
5203	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5204}
5205
5206static ssize_t poison_store(struct kmem_cache *s,
5207				const char *buf, size_t length)
5208{
5209	if (any_slab_objects(s))
5210		return -EBUSY;
5211
5212	s->flags &= ~SLAB_POISON;
5213	if (buf[0] == '1') {
5214		s->flags |= SLAB_POISON;
5215	}
5216	calculate_sizes(s, -1);
5217	return length;
5218}
5219SLAB_ATTR(poison);
5220
5221static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5222{
5223	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5224}
5225
5226static ssize_t store_user_store(struct kmem_cache *s,
5227				const char *buf, size_t length)
5228{
5229	if (any_slab_objects(s))
5230		return -EBUSY;
5231
5232	s->flags &= ~SLAB_STORE_USER;
5233	if (buf[0] == '1') {
5234		s->flags &= ~__CMPXCHG_DOUBLE;
5235		s->flags |= SLAB_STORE_USER;
5236	}
5237	calculate_sizes(s, -1);
5238	return length;
5239}
5240SLAB_ATTR(store_user);
5241
5242static ssize_t validate_show(struct kmem_cache *s, char *buf)
5243{
5244	return 0;
5245}
5246
5247static ssize_t validate_store(struct kmem_cache *s,
5248			const char *buf, size_t length)
5249{
5250	int ret = -EINVAL;
5251
5252	if (buf[0] == '1') {
5253		ret = validate_slab_cache(s);
5254		if (ret >= 0)
5255			ret = length;
5256	}
5257	return ret;
5258}
5259SLAB_ATTR(validate);
5260
5261static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5262{
5263	if (!(s->flags & SLAB_STORE_USER))
5264		return -ENOSYS;
5265	return list_locations(s, buf, TRACK_ALLOC);
5266}
5267SLAB_ATTR_RO(alloc_calls);
5268
5269static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5270{
5271	if (!(s->flags & SLAB_STORE_USER))
5272		return -ENOSYS;
5273	return list_locations(s, buf, TRACK_FREE);
5274}
5275SLAB_ATTR_RO(free_calls);
5276#endif /* CONFIG_SLUB_DEBUG */
5277
5278#ifdef CONFIG_FAILSLAB
5279static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5280{
5281	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5282}
5283
5284static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5285							size_t length)
5286{
5287	if (s->refcount > 1)
5288		return -EINVAL;
5289
5290	s->flags &= ~SLAB_FAILSLAB;
5291	if (buf[0] == '1')
5292		s->flags |= SLAB_FAILSLAB;
5293	return length;
5294}
5295SLAB_ATTR(failslab);
5296#endif
5297
5298static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5299{
5300	return 0;
5301}
5302
5303static ssize_t shrink_store(struct kmem_cache *s,
5304			const char *buf, size_t length)
5305{
5306	if (buf[0] == '1')
5307		kmem_cache_shrink(s);
5308	else
5309		return -EINVAL;
5310	return length;
5311}
5312SLAB_ATTR(shrink);
5313
5314#ifdef CONFIG_NUMA
5315static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5316{
5317	return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5318}
5319
5320static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5321				const char *buf, size_t length)
5322{
5323	unsigned int ratio;
5324	int err;
5325
5326	err = kstrtouint(buf, 10, &ratio);
5327	if (err)
5328		return err;
5329	if (ratio > 100)
5330		return -ERANGE;
5331
5332	s->remote_node_defrag_ratio = ratio * 10;
 
5333
5334	return length;
5335}
5336SLAB_ATTR(remote_node_defrag_ratio);
5337#endif
5338
5339#ifdef CONFIG_SLUB_STATS
5340static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5341{
5342	unsigned long sum  = 0;
5343	int cpu;
5344	int len;
5345	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5346
5347	if (!data)
5348		return -ENOMEM;
5349
5350	for_each_online_cpu(cpu) {
5351		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5352
5353		data[cpu] = x;
5354		sum += x;
5355	}
5356
5357	len = sprintf(buf, "%lu", sum);
5358
5359#ifdef CONFIG_SMP
5360	for_each_online_cpu(cpu) {
5361		if (data[cpu] && len < PAGE_SIZE - 20)
5362			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5363	}
5364#endif
5365	kfree(data);
5366	return len + sprintf(buf + len, "\n");
5367}
5368
5369static void clear_stat(struct kmem_cache *s, enum stat_item si)
5370{
5371	int cpu;
5372
5373	for_each_online_cpu(cpu)
5374		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5375}
5376
5377#define STAT_ATTR(si, text) 					\
5378static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
5379{								\
5380	return show_stat(s, buf, si);				\
5381}								\
5382static ssize_t text##_store(struct kmem_cache *s,		\
5383				const char *buf, size_t length)	\
5384{								\
5385	if (buf[0] != '0')					\
5386		return -EINVAL;					\
5387	clear_stat(s, si);					\
5388	return length;						\
5389}								\
5390SLAB_ATTR(text);						\
5391
5392STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5393STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5394STAT_ATTR(FREE_FASTPATH, free_fastpath);
5395STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5396STAT_ATTR(FREE_FROZEN, free_frozen);
5397STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5398STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5399STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5400STAT_ATTR(ALLOC_SLAB, alloc_slab);
5401STAT_ATTR(ALLOC_REFILL, alloc_refill);
5402STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5403STAT_ATTR(FREE_SLAB, free_slab);
5404STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5405STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5406STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5407STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5408STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5409STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5410STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5411STAT_ATTR(ORDER_FALLBACK, order_fallback);
5412STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5413STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5414STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5415STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5416STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5417STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5418#endif
5419
5420static struct attribute *slab_attrs[] = {
5421	&slab_size_attr.attr,
5422	&object_size_attr.attr,
5423	&objs_per_slab_attr.attr,
5424	&order_attr.attr,
5425	&min_partial_attr.attr,
5426	&cpu_partial_attr.attr,
5427	&objects_attr.attr,
5428	&objects_partial_attr.attr,
5429	&partial_attr.attr,
5430	&cpu_slabs_attr.attr,
5431	&ctor_attr.attr,
5432	&aliases_attr.attr,
5433	&align_attr.attr,
5434	&hwcache_align_attr.attr,
5435	&reclaim_account_attr.attr,
5436	&destroy_by_rcu_attr.attr,
5437	&shrink_attr.attr,
5438	&reserved_attr.attr,
5439	&slabs_cpu_partial_attr.attr,
5440#ifdef CONFIG_SLUB_DEBUG
5441	&total_objects_attr.attr,
5442	&slabs_attr.attr,
5443	&sanity_checks_attr.attr,
5444	&trace_attr.attr,
5445	&red_zone_attr.attr,
5446	&poison_attr.attr,
5447	&store_user_attr.attr,
5448	&validate_attr.attr,
5449	&alloc_calls_attr.attr,
5450	&free_calls_attr.attr,
5451#endif
5452#ifdef CONFIG_ZONE_DMA
5453	&cache_dma_attr.attr,
5454#endif
5455#ifdef CONFIG_NUMA
5456	&remote_node_defrag_ratio_attr.attr,
5457#endif
5458#ifdef CONFIG_SLUB_STATS
5459	&alloc_fastpath_attr.attr,
5460	&alloc_slowpath_attr.attr,
5461	&free_fastpath_attr.attr,
5462	&free_slowpath_attr.attr,
5463	&free_frozen_attr.attr,
5464	&free_add_partial_attr.attr,
5465	&free_remove_partial_attr.attr,
5466	&alloc_from_partial_attr.attr,
5467	&alloc_slab_attr.attr,
5468	&alloc_refill_attr.attr,
5469	&alloc_node_mismatch_attr.attr,
5470	&free_slab_attr.attr,
5471	&cpuslab_flush_attr.attr,
5472	&deactivate_full_attr.attr,
5473	&deactivate_empty_attr.attr,
5474	&deactivate_to_head_attr.attr,
5475	&deactivate_to_tail_attr.attr,
5476	&deactivate_remote_frees_attr.attr,
5477	&deactivate_bypass_attr.attr,
5478	&order_fallback_attr.attr,
5479	&cmpxchg_double_fail_attr.attr,
5480	&cmpxchg_double_cpu_fail_attr.attr,
5481	&cpu_partial_alloc_attr.attr,
5482	&cpu_partial_free_attr.attr,
5483	&cpu_partial_node_attr.attr,
5484	&cpu_partial_drain_attr.attr,
5485#endif
5486#ifdef CONFIG_FAILSLAB
5487	&failslab_attr.attr,
5488#endif
5489	&usersize_attr.attr,
5490
5491	NULL
5492};
5493
5494static const struct attribute_group slab_attr_group = {
5495	.attrs = slab_attrs,
5496};
5497
5498static ssize_t slab_attr_show(struct kobject *kobj,
5499				struct attribute *attr,
5500				char *buf)
5501{
5502	struct slab_attribute *attribute;
5503	struct kmem_cache *s;
5504	int err;
5505
5506	attribute = to_slab_attr(attr);
5507	s = to_slab(kobj);
5508
5509	if (!attribute->show)
5510		return -EIO;
5511
5512	err = attribute->show(s, buf);
5513
5514	return err;
5515}
5516
5517static ssize_t slab_attr_store(struct kobject *kobj,
5518				struct attribute *attr,
5519				const char *buf, size_t len)
5520{
5521	struct slab_attribute *attribute;
5522	struct kmem_cache *s;
5523	int err;
5524
5525	attribute = to_slab_attr(attr);
5526	s = to_slab(kobj);
5527
5528	if (!attribute->store)
5529		return -EIO;
5530
5531	err = attribute->store(s, buf, len);
5532#ifdef CONFIG_MEMCG
5533	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5534		struct kmem_cache *c;
5535
5536		mutex_lock(&slab_mutex);
5537		if (s->max_attr_size < len)
5538			s->max_attr_size = len;
5539
5540		/*
5541		 * This is a best effort propagation, so this function's return
5542		 * value will be determined by the parent cache only. This is
5543		 * basically because not all attributes will have a well
5544		 * defined semantics for rollbacks - most of the actions will
5545		 * have permanent effects.
5546		 *
5547		 * Returning the error value of any of the children that fail
5548		 * is not 100 % defined, in the sense that users seeing the
5549		 * error code won't be able to know anything about the state of
5550		 * the cache.
5551		 *
5552		 * Only returning the error code for the parent cache at least
5553		 * has well defined semantics. The cache being written to
5554		 * directly either failed or succeeded, in which case we loop
5555		 * through the descendants with best-effort propagation.
5556		 */
5557		for_each_memcg_cache(c, s)
5558			attribute->store(c, buf, len);
5559		mutex_unlock(&slab_mutex);
5560	}
5561#endif
5562	return err;
5563}
5564
5565static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5566{
5567#ifdef CONFIG_MEMCG
5568	int i;
5569	char *buffer = NULL;
5570	struct kmem_cache *root_cache;
5571
5572	if (is_root_cache(s))
5573		return;
5574
5575	root_cache = s->memcg_params.root_cache;
5576
5577	/*
5578	 * This mean this cache had no attribute written. Therefore, no point
5579	 * in copying default values around
5580	 */
5581	if (!root_cache->max_attr_size)
5582		return;
5583
5584	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5585		char mbuf[64];
5586		char *buf;
5587		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5588		ssize_t len;
5589
5590		if (!attr || !attr->store || !attr->show)
5591			continue;
5592
5593		/*
5594		 * It is really bad that we have to allocate here, so we will
5595		 * do it only as a fallback. If we actually allocate, though,
5596		 * we can just use the allocated buffer until the end.
5597		 *
5598		 * Most of the slub attributes will tend to be very small in
5599		 * size, but sysfs allows buffers up to a page, so they can
5600		 * theoretically happen.
5601		 */
5602		if (buffer)
5603			buf = buffer;
5604		else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5605			buf = mbuf;
5606		else {
5607			buffer = (char *) get_zeroed_page(GFP_KERNEL);
5608			if (WARN_ON(!buffer))
5609				continue;
5610			buf = buffer;
5611		}
5612
5613		len = attr->show(root_cache, buf);
5614		if (len > 0)
5615			attr->store(s, buf, len);
5616	}
5617
5618	if (buffer)
5619		free_page((unsigned long)buffer);
5620#endif
5621}
5622
5623static void kmem_cache_release(struct kobject *k)
5624{
5625	slab_kmem_cache_release(to_slab(k));
5626}
5627
5628static const struct sysfs_ops slab_sysfs_ops = {
5629	.show = slab_attr_show,
5630	.store = slab_attr_store,
5631};
5632
5633static struct kobj_type slab_ktype = {
5634	.sysfs_ops = &slab_sysfs_ops,
5635	.release = kmem_cache_release,
5636};
5637
5638static int uevent_filter(struct kset *kset, struct kobject *kobj)
5639{
5640	struct kobj_type *ktype = get_ktype(kobj);
5641
5642	if (ktype == &slab_ktype)
5643		return 1;
5644	return 0;
5645}
5646
5647static const struct kset_uevent_ops slab_uevent_ops = {
5648	.filter = uevent_filter,
5649};
5650
5651static struct kset *slab_kset;
5652
5653static inline struct kset *cache_kset(struct kmem_cache *s)
5654{
5655#ifdef CONFIG_MEMCG
5656	if (!is_root_cache(s))
5657		return s->memcg_params.root_cache->memcg_kset;
5658#endif
5659	return slab_kset;
5660}
5661
5662#define ID_STR_LENGTH 64
5663
5664/* Create a unique string id for a slab cache:
5665 *
5666 * Format	:[flags-]size
5667 */
5668static char *create_unique_id(struct kmem_cache *s)
5669{
5670	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5671	char *p = name;
5672
5673	BUG_ON(!name);
5674
5675	*p++ = ':';
5676	/*
5677	 * First flags affecting slabcache operations. We will only
5678	 * get here for aliasable slabs so we do not need to support
5679	 * too many flags. The flags here must cover all flags that
5680	 * are matched during merging to guarantee that the id is
5681	 * unique.
5682	 */
5683	if (s->flags & SLAB_CACHE_DMA)
5684		*p++ = 'd';
5685	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5686		*p++ = 'a';
5687	if (s->flags & SLAB_CONSISTENCY_CHECKS)
5688		*p++ = 'F';
 
 
5689	if (s->flags & SLAB_ACCOUNT)
5690		*p++ = 'A';
5691	if (p != name + 1)
5692		*p++ = '-';
5693	p += sprintf(p, "%07u", s->size);
5694
5695	BUG_ON(p > name + ID_STR_LENGTH - 1);
5696	return name;
5697}
5698
5699static void sysfs_slab_remove_workfn(struct work_struct *work)
5700{
5701	struct kmem_cache *s =
5702		container_of(work, struct kmem_cache, kobj_remove_work);
5703
5704	if (!s->kobj.state_in_sysfs)
5705		/*
5706		 * For a memcg cache, this may be called during
5707		 * deactivation and again on shutdown.  Remove only once.
5708		 * A cache is never shut down before deactivation is
5709		 * complete, so no need to worry about synchronization.
5710		 */
5711		goto out;
5712
5713#ifdef CONFIG_MEMCG
5714	kset_unregister(s->memcg_kset);
5715#endif
5716	kobject_uevent(&s->kobj, KOBJ_REMOVE);
5717	kobject_del(&s->kobj);
5718out:
5719	kobject_put(&s->kobj);
5720}
5721
5722static int sysfs_slab_add(struct kmem_cache *s)
5723{
5724	int err;
5725	const char *name;
5726	struct kset *kset = cache_kset(s);
5727	int unmergeable = slab_unmergeable(s);
5728
5729	INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
5730
5731	if (!kset) {
5732		kobject_init(&s->kobj, &slab_ktype);
5733		return 0;
5734	}
5735
5736	if (!unmergeable && disable_higher_order_debug &&
5737			(slub_debug & DEBUG_METADATA_FLAGS))
5738		unmergeable = 1;
5739
5740	if (unmergeable) {
5741		/*
5742		 * Slabcache can never be merged so we can use the name proper.
5743		 * This is typically the case for debug situations. In that
5744		 * case we can catch duplicate names easily.
5745		 */
5746		sysfs_remove_link(&slab_kset->kobj, s->name);
5747		name = s->name;
5748	} else {
5749		/*
5750		 * Create a unique name for the slab as a target
5751		 * for the symlinks.
5752		 */
5753		name = create_unique_id(s);
5754	}
5755
5756	s->kobj.kset = kset;
5757	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5758	if (err)
5759		goto out;
5760
5761	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5762	if (err)
5763		goto out_del_kobj;
5764
5765#ifdef CONFIG_MEMCG
5766	if (is_root_cache(s) && memcg_sysfs_enabled) {
5767		s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5768		if (!s->memcg_kset) {
5769			err = -ENOMEM;
5770			goto out_del_kobj;
5771		}
5772	}
5773#endif
5774
5775	kobject_uevent(&s->kobj, KOBJ_ADD);
5776	if (!unmergeable) {
5777		/* Setup first alias */
5778		sysfs_slab_alias(s, s->name);
5779	}
5780out:
5781	if (!unmergeable)
5782		kfree(name);
5783	return err;
5784out_del_kobj:
5785	kobject_del(&s->kobj);
5786	goto out;
5787}
5788
5789static void sysfs_slab_remove(struct kmem_cache *s)
5790{
5791	if (slab_state < FULL)
5792		/*
5793		 * Sysfs has not been setup yet so no need to remove the
5794		 * cache from sysfs.
5795		 */
5796		return;
5797
5798	kobject_get(&s->kobj);
5799	schedule_work(&s->kobj_remove_work);
5800}
5801
5802void sysfs_slab_release(struct kmem_cache *s)
5803{
5804	if (slab_state >= FULL)
5805		kobject_put(&s->kobj);
5806}
5807
5808/*
5809 * Need to buffer aliases during bootup until sysfs becomes
5810 * available lest we lose that information.
5811 */
5812struct saved_alias {
5813	struct kmem_cache *s;
5814	const char *name;
5815	struct saved_alias *next;
5816};
5817
5818static struct saved_alias *alias_list;
5819
5820static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5821{
5822	struct saved_alias *al;
5823
5824	if (slab_state == FULL) {
5825		/*
5826		 * If we have a leftover link then remove it.
5827		 */
5828		sysfs_remove_link(&slab_kset->kobj, name);
5829		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5830	}
5831
5832	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5833	if (!al)
5834		return -ENOMEM;
5835
5836	al->s = s;
5837	al->name = name;
5838	al->next = alias_list;
5839	alias_list = al;
5840	return 0;
5841}
5842
5843static int __init slab_sysfs_init(void)
5844{
5845	struct kmem_cache *s;
5846	int err;
5847
5848	mutex_lock(&slab_mutex);
5849
5850	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5851	if (!slab_kset) {
5852		mutex_unlock(&slab_mutex);
5853		pr_err("Cannot register slab subsystem.\n");
5854		return -ENOSYS;
5855	}
5856
5857	slab_state = FULL;
5858
5859	list_for_each_entry(s, &slab_caches, list) {
5860		err = sysfs_slab_add(s);
5861		if (err)
5862			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5863			       s->name);
5864	}
5865
5866	while (alias_list) {
5867		struct saved_alias *al = alias_list;
5868
5869		alias_list = alias_list->next;
5870		err = sysfs_slab_alias(al->s, al->name);
5871		if (err)
5872			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5873			       al->name);
5874		kfree(al);
5875	}
5876
5877	mutex_unlock(&slab_mutex);
5878	resiliency_test();
5879	return 0;
5880}
5881
5882__initcall(slab_sysfs_init);
5883#endif /* CONFIG_SYSFS */
5884
5885/*
5886 * The /proc/slabinfo ABI
5887 */
5888#ifdef CONFIG_SLUB_DEBUG
5889void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5890{
5891	unsigned long nr_slabs = 0;
5892	unsigned long nr_objs = 0;
5893	unsigned long nr_free = 0;
5894	int node;
5895	struct kmem_cache_node *n;
5896
5897	for_each_kmem_cache_node(s, node, n) {
5898		nr_slabs += node_nr_slabs(n);
5899		nr_objs += node_nr_objs(n);
5900		nr_free += count_partial(n, count_free);
5901	}
5902
5903	sinfo->active_objs = nr_objs - nr_free;
5904	sinfo->num_objs = nr_objs;
5905	sinfo->active_slabs = nr_slabs;
5906	sinfo->num_slabs = nr_slabs;
5907	sinfo->objects_per_slab = oo_objects(s->oo);
5908	sinfo->cache_order = oo_order(s->oo);
5909}
5910
5911void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5912{
5913}
5914
5915ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5916		       size_t count, loff_t *ppos)
5917{
5918	return -EIO;
5919}
5920#endif /* CONFIG_SLUB_DEBUG */