Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
   3 * Internal non-public definitions that provide either classic
   4 * or preemptible semantics.
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, you can access it online at
  18 * http://www.gnu.org/licenses/gpl-2.0.html.
  19 *
  20 * Copyright Red Hat, 2009
  21 * Copyright IBM Corporation, 2009
  22 *
  23 * Author: Ingo Molnar <mingo@elte.hu>
  24 *	   Paul E. McKenney <paulmck@linux.vnet.ibm.com>
  25 */
  26
  27#include <linux/delay.h>
  28#include <linux/gfp.h>
  29#include <linux/oom.h>
  30#include <linux/smpboot.h>
  31#include "../time/tick-internal.h"
  32
  33#ifdef CONFIG_RCU_BOOST
  34
  35#include "../locking/rtmutex_common.h"
  36
  37/*
  38 * Control variables for per-CPU and per-rcu_node kthreads.  These
  39 * handle all flavors of RCU.
  40 */
  41static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
  42DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
  43DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
  44DEFINE_PER_CPU(char, rcu_cpu_has_work);
  45
  46#else /* #ifdef CONFIG_RCU_BOOST */
  47
  48/*
  49 * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST,
  50 * all uses are in dead code.  Provide a definition to keep the compiler
  51 * happy, but add WARN_ON_ONCE() to complain if used in the wrong place.
  52 * This probably needs to be excluded from -rt builds.
  53 */
  54#define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; })
  55
  56#endif /* #else #ifdef CONFIG_RCU_BOOST */
  57
  58#ifdef CONFIG_RCU_NOCB_CPU
  59static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
  60static bool have_rcu_nocb_mask;	    /* Was rcu_nocb_mask allocated? */
  61static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
  62#endif /* #ifdef CONFIG_RCU_NOCB_CPU */
  63
  64/*
  65 * Check the RCU kernel configuration parameters and print informative
  66 * messages about anything out of the ordinary.
  67 */
  68static void __init rcu_bootup_announce_oddness(void)
  69{
  70	if (IS_ENABLED(CONFIG_RCU_TRACE))
  71		pr_info("\tRCU debugfs-based tracing is enabled.\n");
  72	if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
  73	    (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
  74		pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
  75		       RCU_FANOUT);
  76	if (rcu_fanout_exact)
  77		pr_info("\tHierarchical RCU autobalancing is disabled.\n");
  78	if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
  79		pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
  80	if (IS_ENABLED(CONFIG_PROVE_RCU))
  81		pr_info("\tRCU lockdep checking is enabled.\n");
  82	if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST_RUNNABLE))
  83		pr_info("\tRCU torture testing starts during boot.\n");
  84	if (RCU_NUM_LVLS >= 4)
  85		pr_info("\tFour(or more)-level hierarchy is enabled.\n");
  86	if (RCU_FANOUT_LEAF != 16)
  87		pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
  88			RCU_FANOUT_LEAF);
  89	if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
  90		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
  91	if (nr_cpu_ids != NR_CPUS)
  92		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
  93	if (IS_ENABLED(CONFIG_RCU_BOOST))
  94		pr_info("\tRCU kthread priority: %d.\n", kthread_prio);
  95}
  96
  97#ifdef CONFIG_PREEMPT_RCU
  98
  99RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
 100static struct rcu_state *const rcu_state_p = &rcu_preempt_state;
 101static struct rcu_data __percpu *const rcu_data_p = &rcu_preempt_data;
 102
 103static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
 104			       bool wake);
 105
 106/*
 107 * Tell them what RCU they are running.
 108 */
 109static void __init rcu_bootup_announce(void)
 110{
 111	pr_info("Preemptible hierarchical RCU implementation.\n");
 112	rcu_bootup_announce_oddness();
 113}
 114
 115/* Flags for rcu_preempt_ctxt_queue() decision table. */
 116#define RCU_GP_TASKS	0x8
 117#define RCU_EXP_TASKS	0x4
 118#define RCU_GP_BLKD	0x2
 119#define RCU_EXP_BLKD	0x1
 120
 121/*
 122 * Queues a task preempted within an RCU-preempt read-side critical
 123 * section into the appropriate location within the ->blkd_tasks list,
 124 * depending on the states of any ongoing normal and expedited grace
 125 * periods.  The ->gp_tasks pointer indicates which element the normal
 126 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
 127 * indicates which element the expedited grace period is waiting on (again,
 128 * NULL if none).  If a grace period is waiting on a given element in the
 129 * ->blkd_tasks list, it also waits on all subsequent elements.  Thus,
 130 * adding a task to the tail of the list blocks any grace period that is
 131 * already waiting on one of the elements.  In contrast, adding a task
 132 * to the head of the list won't block any grace period that is already
 133 * waiting on one of the elements.
 134 *
 135 * This queuing is imprecise, and can sometimes make an ongoing grace
 136 * period wait for a task that is not strictly speaking blocking it.
 137 * Given the choice, we needlessly block a normal grace period rather than
 138 * blocking an expedited grace period.
 139 *
 140 * Note that an endless sequence of expedited grace periods still cannot
 141 * indefinitely postpone a normal grace period.  Eventually, all of the
 142 * fixed number of preempted tasks blocking the normal grace period that are
 143 * not also blocking the expedited grace period will resume and complete
 144 * their RCU read-side critical sections.  At that point, the ->gp_tasks
 145 * pointer will equal the ->exp_tasks pointer, at which point the end of
 146 * the corresponding expedited grace period will also be the end of the
 147 * normal grace period.
 148 */
 149static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
 150	__releases(rnp->lock) /* But leaves rrupts disabled. */
 151{
 152	int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
 153			 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
 154			 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
 155			 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
 156	struct task_struct *t = current;
 157
 158	/*
 159	 * Decide where to queue the newly blocked task.  In theory,
 160	 * this could be an if-statement.  In practice, when I tried
 161	 * that, it was quite messy.
 162	 */
 163	switch (blkd_state) {
 164	case 0:
 165	case                RCU_EXP_TASKS:
 166	case                RCU_EXP_TASKS + RCU_GP_BLKD:
 167	case RCU_GP_TASKS:
 168	case RCU_GP_TASKS + RCU_EXP_TASKS:
 169
 170		/*
 171		 * Blocking neither GP, or first task blocking the normal
 172		 * GP but not blocking the already-waiting expedited GP.
 173		 * Queue at the head of the list to avoid unnecessarily
 174		 * blocking the already-waiting GPs.
 175		 */
 176		list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
 177		break;
 178
 179	case                                              RCU_EXP_BLKD:
 180	case                                RCU_GP_BLKD:
 181	case                                RCU_GP_BLKD + RCU_EXP_BLKD:
 182	case RCU_GP_TASKS +                               RCU_EXP_BLKD:
 183	case RCU_GP_TASKS +                 RCU_GP_BLKD + RCU_EXP_BLKD:
 184	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
 185
 186		/*
 187		 * First task arriving that blocks either GP, or first task
 188		 * arriving that blocks the expedited GP (with the normal
 189		 * GP already waiting), or a task arriving that blocks
 190		 * both GPs with both GPs already waiting.  Queue at the
 191		 * tail of the list to avoid any GP waiting on any of the
 192		 * already queued tasks that are not blocking it.
 193		 */
 194		list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
 195		break;
 196
 197	case                RCU_EXP_TASKS +               RCU_EXP_BLKD:
 198	case                RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
 199	case RCU_GP_TASKS + RCU_EXP_TASKS +               RCU_EXP_BLKD:
 200
 201		/*
 202		 * Second or subsequent task blocking the expedited GP.
 203		 * The task either does not block the normal GP, or is the
 204		 * first task blocking the normal GP.  Queue just after
 205		 * the first task blocking the expedited GP.
 206		 */
 207		list_add(&t->rcu_node_entry, rnp->exp_tasks);
 208		break;
 209
 210	case RCU_GP_TASKS +                 RCU_GP_BLKD:
 211	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
 212
 213		/*
 214		 * Second or subsequent task blocking the normal GP.
 215		 * The task does not block the expedited GP. Queue just
 216		 * after the first task blocking the normal GP.
 217		 */
 218		list_add(&t->rcu_node_entry, rnp->gp_tasks);
 219		break;
 220
 221	default:
 222
 223		/* Yet another exercise in excessive paranoia. */
 224		WARN_ON_ONCE(1);
 225		break;
 226	}
 227
 228	/*
 229	 * We have now queued the task.  If it was the first one to
 230	 * block either grace period, update the ->gp_tasks and/or
 231	 * ->exp_tasks pointers, respectively, to reference the newly
 232	 * blocked tasks.
 233	 */
 234	if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD))
 235		rnp->gp_tasks = &t->rcu_node_entry;
 236	if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
 237		rnp->exp_tasks = &t->rcu_node_entry;
 238	raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
 239
 240	/*
 241	 * Report the quiescent state for the expedited GP.  This expedited
 242	 * GP should not be able to end until we report, so there should be
 243	 * no need to check for a subsequent expedited GP.  (Though we are
 244	 * still in a quiescent state in any case.)
 245	 */
 246	if (blkd_state & RCU_EXP_BLKD &&
 247	    t->rcu_read_unlock_special.b.exp_need_qs) {
 248		t->rcu_read_unlock_special.b.exp_need_qs = false;
 249		rcu_report_exp_rdp(rdp->rsp, rdp, true);
 250	} else {
 251		WARN_ON_ONCE(t->rcu_read_unlock_special.b.exp_need_qs);
 252	}
 253}
 254
 255/*
 256 * Record a preemptible-RCU quiescent state for the specified CPU.  Note
 257 * that this just means that the task currently running on the CPU is
 258 * not in a quiescent state.  There might be any number of tasks blocked
 259 * while in an RCU read-side critical section.
 260 *
 261 * As with the other rcu_*_qs() functions, callers to this function
 262 * must disable preemption.
 263 */
 264static void rcu_preempt_qs(void)
 265{
 266	if (__this_cpu_read(rcu_data_p->cpu_no_qs.s)) {
 267		trace_rcu_grace_period(TPS("rcu_preempt"),
 268				       __this_cpu_read(rcu_data_p->gpnum),
 269				       TPS("cpuqs"));
 270		__this_cpu_write(rcu_data_p->cpu_no_qs.b.norm, false);
 271		barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
 272		current->rcu_read_unlock_special.b.need_qs = false;
 273	}
 274}
 275
 276/*
 277 * We have entered the scheduler, and the current task might soon be
 278 * context-switched away from.  If this task is in an RCU read-side
 279 * critical section, we will no longer be able to rely on the CPU to
 280 * record that fact, so we enqueue the task on the blkd_tasks list.
 281 * The task will dequeue itself when it exits the outermost enclosing
 282 * RCU read-side critical section.  Therefore, the current grace period
 283 * cannot be permitted to complete until the blkd_tasks list entries
 284 * predating the current grace period drain, in other words, until
 285 * rnp->gp_tasks becomes NULL.
 286 *
 287 * Caller must disable interrupts.
 288 */
 289static void rcu_preempt_note_context_switch(void)
 290{
 291	struct task_struct *t = current;
 292	struct rcu_data *rdp;
 293	struct rcu_node *rnp;
 294
 295	if (t->rcu_read_lock_nesting > 0 &&
 296	    !t->rcu_read_unlock_special.b.blocked) {
 297
 298		/* Possibly blocking in an RCU read-side critical section. */
 299		rdp = this_cpu_ptr(rcu_state_p->rda);
 300		rnp = rdp->mynode;
 301		raw_spin_lock_rcu_node(rnp);
 302		t->rcu_read_unlock_special.b.blocked = true;
 303		t->rcu_blocked_node = rnp;
 304
 305		/*
 306		 * Verify the CPU's sanity, trace the preemption, and
 307		 * then queue the task as required based on the states
 308		 * of any ongoing and expedited grace periods.
 309		 */
 310		WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
 311		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
 312		trace_rcu_preempt_task(rdp->rsp->name,
 313				       t->pid,
 314				       (rnp->qsmask & rdp->grpmask)
 315				       ? rnp->gpnum
 316				       : rnp->gpnum + 1);
 317		rcu_preempt_ctxt_queue(rnp, rdp);
 318	} else if (t->rcu_read_lock_nesting < 0 &&
 319		   t->rcu_read_unlock_special.s) {
 320
 321		/*
 322		 * Complete exit from RCU read-side critical section on
 323		 * behalf of preempted instance of __rcu_read_unlock().
 324		 */
 325		rcu_read_unlock_special(t);
 326	}
 327
 328	/*
 329	 * Either we were not in an RCU read-side critical section to
 330	 * begin with, or we have now recorded that critical section
 331	 * globally.  Either way, we can now note a quiescent state
 332	 * for this CPU.  Again, if we were in an RCU read-side critical
 333	 * section, and if that critical section was blocking the current
 334	 * grace period, then the fact that the task has been enqueued
 335	 * means that we continue to block the current grace period.
 336	 */
 337	rcu_preempt_qs();
 338}
 339
 340/*
 341 * Check for preempted RCU readers blocking the current grace period
 342 * for the specified rcu_node structure.  If the caller needs a reliable
 343 * answer, it must hold the rcu_node's ->lock.
 344 */
 345static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
 346{
 347	return rnp->gp_tasks != NULL;
 348}
 349
 350/*
 351 * Advance a ->blkd_tasks-list pointer to the next entry, instead
 352 * returning NULL if at the end of the list.
 353 */
 354static struct list_head *rcu_next_node_entry(struct task_struct *t,
 355					     struct rcu_node *rnp)
 356{
 357	struct list_head *np;
 358
 359	np = t->rcu_node_entry.next;
 360	if (np == &rnp->blkd_tasks)
 361		np = NULL;
 362	return np;
 363}
 364
 365/*
 366 * Return true if the specified rcu_node structure has tasks that were
 367 * preempted within an RCU read-side critical section.
 368 */
 369static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
 370{
 371	return !list_empty(&rnp->blkd_tasks);
 372}
 373
 374/*
 375 * Handle special cases during rcu_read_unlock(), such as needing to
 376 * notify RCU core processing or task having blocked during the RCU
 377 * read-side critical section.
 378 */
 379void rcu_read_unlock_special(struct task_struct *t)
 380{
 381	bool empty_exp;
 382	bool empty_norm;
 383	bool empty_exp_now;
 384	unsigned long flags;
 385	struct list_head *np;
 386	bool drop_boost_mutex = false;
 387	struct rcu_data *rdp;
 388	struct rcu_node *rnp;
 389	union rcu_special special;
 390
 391	/* NMI handlers cannot block and cannot safely manipulate state. */
 392	if (in_nmi())
 393		return;
 394
 395	local_irq_save(flags);
 396
 397	/*
 398	 * If RCU core is waiting for this CPU to exit its critical section,
 399	 * report the fact that it has exited.  Because irqs are disabled,
 400	 * t->rcu_read_unlock_special cannot change.
 401	 */
 402	special = t->rcu_read_unlock_special;
 403	if (special.b.need_qs) {
 404		rcu_preempt_qs();
 405		t->rcu_read_unlock_special.b.need_qs = false;
 406		if (!t->rcu_read_unlock_special.s) {
 407			local_irq_restore(flags);
 408			return;
 409		}
 410	}
 411
 412	/*
 413	 * Respond to a request for an expedited grace period, but only if
 414	 * we were not preempted, meaning that we were running on the same
 415	 * CPU throughout.  If we were preempted, the exp_need_qs flag
 416	 * would have been cleared at the time of the first preemption,
 417	 * and the quiescent state would be reported when we were dequeued.
 418	 */
 419	if (special.b.exp_need_qs) {
 420		WARN_ON_ONCE(special.b.blocked);
 421		t->rcu_read_unlock_special.b.exp_need_qs = false;
 422		rdp = this_cpu_ptr(rcu_state_p->rda);
 423		rcu_report_exp_rdp(rcu_state_p, rdp, true);
 424		if (!t->rcu_read_unlock_special.s) {
 425			local_irq_restore(flags);
 426			return;
 427		}
 428	}
 429
 430	/* Hardware IRQ handlers cannot block, complain if they get here. */
 431	if (in_irq() || in_serving_softirq()) {
 432		lockdep_rcu_suspicious(__FILE__, __LINE__,
 433				       "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n");
 434		pr_alert("->rcu_read_unlock_special: %#x (b: %d, enq: %d nq: %d)\n",
 435			 t->rcu_read_unlock_special.s,
 436			 t->rcu_read_unlock_special.b.blocked,
 437			 t->rcu_read_unlock_special.b.exp_need_qs,
 438			 t->rcu_read_unlock_special.b.need_qs);
 439		local_irq_restore(flags);
 440		return;
 441	}
 442
 443	/* Clean up if blocked during RCU read-side critical section. */
 444	if (special.b.blocked) {
 445		t->rcu_read_unlock_special.b.blocked = false;
 446
 447		/*
 448		 * Remove this task from the list it blocked on.  The task
 449		 * now remains queued on the rcu_node corresponding to the
 450		 * CPU it first blocked on, so there is no longer any need
 451		 * to loop.  Retain a WARN_ON_ONCE() out of sheer paranoia.
 452		 */
 453		rnp = t->rcu_blocked_node;
 454		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
 455		WARN_ON_ONCE(rnp != t->rcu_blocked_node);
 456		empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
 457		empty_exp = sync_rcu_preempt_exp_done(rnp);
 458		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
 459		np = rcu_next_node_entry(t, rnp);
 460		list_del_init(&t->rcu_node_entry);
 461		t->rcu_blocked_node = NULL;
 462		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
 463						rnp->gpnum, t->pid);
 464		if (&t->rcu_node_entry == rnp->gp_tasks)
 465			rnp->gp_tasks = np;
 466		if (&t->rcu_node_entry == rnp->exp_tasks)
 467			rnp->exp_tasks = np;
 468		if (IS_ENABLED(CONFIG_RCU_BOOST)) {
 469			if (&t->rcu_node_entry == rnp->boost_tasks)
 470				rnp->boost_tasks = np;
 471			/* Snapshot ->boost_mtx ownership w/rnp->lock held. */
 472			drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
 473		}
 474
 475		/*
 476		 * If this was the last task on the current list, and if
 477		 * we aren't waiting on any CPUs, report the quiescent state.
 478		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
 479		 * so we must take a snapshot of the expedited state.
 480		 */
 481		empty_exp_now = sync_rcu_preempt_exp_done(rnp);
 482		if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
 483			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
 484							 rnp->gpnum,
 485							 0, rnp->qsmask,
 486							 rnp->level,
 487							 rnp->grplo,
 488							 rnp->grphi,
 489							 !!rnp->gp_tasks);
 490			rcu_report_unblock_qs_rnp(rcu_state_p, rnp, flags);
 491		} else {
 492			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 493		}
 494
 495		/* Unboost if we were boosted. */
 496		if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
 497			rt_mutex_unlock(&rnp->boost_mtx);
 498
 499		/*
 500		 * If this was the last task on the expedited lists,
 501		 * then we need to report up the rcu_node hierarchy.
 502		 */
 503		if (!empty_exp && empty_exp_now)
 504			rcu_report_exp_rnp(rcu_state_p, rnp, true);
 505	} else {
 506		local_irq_restore(flags);
 507	}
 508}
 509
 510/*
 511 * Dump detailed information for all tasks blocking the current RCU
 512 * grace period on the specified rcu_node structure.
 513 */
 514static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
 515{
 516	unsigned long flags;
 517	struct task_struct *t;
 518
 519	raw_spin_lock_irqsave_rcu_node(rnp, flags);
 520	if (!rcu_preempt_blocked_readers_cgp(rnp)) {
 521		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 522		return;
 523	}
 524	t = list_entry(rnp->gp_tasks->prev,
 525		       struct task_struct, rcu_node_entry);
 526	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
 527		sched_show_task(t);
 528	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 529}
 530
 531/*
 532 * Dump detailed information for all tasks blocking the current RCU
 533 * grace period.
 534 */
 535static void rcu_print_detail_task_stall(struct rcu_state *rsp)
 536{
 537	struct rcu_node *rnp = rcu_get_root(rsp);
 538
 539	rcu_print_detail_task_stall_rnp(rnp);
 540	rcu_for_each_leaf_node(rsp, rnp)
 541		rcu_print_detail_task_stall_rnp(rnp);
 542}
 543
 544static void rcu_print_task_stall_begin(struct rcu_node *rnp)
 545{
 546	pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
 547	       rnp->level, rnp->grplo, rnp->grphi);
 548}
 549
 550static void rcu_print_task_stall_end(void)
 551{
 552	pr_cont("\n");
 553}
 554
 555/*
 556 * Scan the current list of tasks blocked within RCU read-side critical
 557 * sections, printing out the tid of each.
 558 */
 559static int rcu_print_task_stall(struct rcu_node *rnp)
 560{
 561	struct task_struct *t;
 562	int ndetected = 0;
 563
 564	if (!rcu_preempt_blocked_readers_cgp(rnp))
 565		return 0;
 566	rcu_print_task_stall_begin(rnp);
 567	t = list_entry(rnp->gp_tasks->prev,
 568		       struct task_struct, rcu_node_entry);
 569	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
 570		pr_cont(" P%d", t->pid);
 571		ndetected++;
 572	}
 573	rcu_print_task_stall_end();
 574	return ndetected;
 575}
 576
 577/*
 578 * Scan the current list of tasks blocked within RCU read-side critical
 579 * sections, printing out the tid of each that is blocking the current
 580 * expedited grace period.
 581 */
 582static int rcu_print_task_exp_stall(struct rcu_node *rnp)
 583{
 584	struct task_struct *t;
 585	int ndetected = 0;
 586
 587	if (!rnp->exp_tasks)
 588		return 0;
 589	t = list_entry(rnp->exp_tasks->prev,
 590		       struct task_struct, rcu_node_entry);
 591	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
 592		pr_cont(" P%d", t->pid);
 593		ndetected++;
 594	}
 595	return ndetected;
 596}
 597
 598/*
 599 * Check that the list of blocked tasks for the newly completed grace
 600 * period is in fact empty.  It is a serious bug to complete a grace
 601 * period that still has RCU readers blocked!  This function must be
 602 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
 603 * must be held by the caller.
 604 *
 605 * Also, if there are blocked tasks on the list, they automatically
 606 * block the newly created grace period, so set up ->gp_tasks accordingly.
 607 */
 608static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
 609{
 610	WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
 611	if (rcu_preempt_has_tasks(rnp))
 612		rnp->gp_tasks = rnp->blkd_tasks.next;
 613	WARN_ON_ONCE(rnp->qsmask);
 614}
 615
 616/*
 617 * Check for a quiescent state from the current CPU.  When a task blocks,
 618 * the task is recorded in the corresponding CPU's rcu_node structure,
 619 * which is checked elsewhere.
 620 *
 621 * Caller must disable hard irqs.
 622 */
 623static void rcu_preempt_check_callbacks(void)
 624{
 625	struct task_struct *t = current;
 626
 627	if (t->rcu_read_lock_nesting == 0) {
 628		rcu_preempt_qs();
 629		return;
 630	}
 631	if (t->rcu_read_lock_nesting > 0 &&
 632	    __this_cpu_read(rcu_data_p->core_needs_qs) &&
 633	    __this_cpu_read(rcu_data_p->cpu_no_qs.b.norm))
 634		t->rcu_read_unlock_special.b.need_qs = true;
 635}
 636
 637#ifdef CONFIG_RCU_BOOST
 638
 639static void rcu_preempt_do_callbacks(void)
 640{
 641	rcu_do_batch(rcu_state_p, this_cpu_ptr(rcu_data_p));
 642}
 643
 644#endif /* #ifdef CONFIG_RCU_BOOST */
 645
 646/*
 647 * Queue a preemptible-RCU callback for invocation after a grace period.
 648 */
 649void call_rcu(struct rcu_head *head, rcu_callback_t func)
 650{
 651	__call_rcu(head, func, rcu_state_p, -1, 0);
 652}
 653EXPORT_SYMBOL_GPL(call_rcu);
 654
 655/**
 656 * synchronize_rcu - wait until a grace period has elapsed.
 657 *
 658 * Control will return to the caller some time after a full grace
 659 * period has elapsed, in other words after all currently executing RCU
 660 * read-side critical sections have completed.  Note, however, that
 661 * upon return from synchronize_rcu(), the caller might well be executing
 662 * concurrently with new RCU read-side critical sections that began while
 663 * synchronize_rcu() was waiting.  RCU read-side critical sections are
 664 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
 665 *
 666 * See the description of synchronize_sched() for more detailed information
 667 * on memory ordering guarantees.
 668 */
 669void synchronize_rcu(void)
 670{
 671	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
 672			 lock_is_held(&rcu_lock_map) ||
 673			 lock_is_held(&rcu_sched_lock_map),
 674			 "Illegal synchronize_rcu() in RCU read-side critical section");
 675	if (!rcu_scheduler_active)
 676		return;
 677	if (rcu_gp_is_expedited())
 678		synchronize_rcu_expedited();
 679	else
 680		wait_rcu_gp(call_rcu);
 681}
 682EXPORT_SYMBOL_GPL(synchronize_rcu);
 683
 684/*
 685 * Remote handler for smp_call_function_single().  If there is an
 686 * RCU read-side critical section in effect, request that the
 687 * next rcu_read_unlock() record the quiescent state up the
 688 * ->expmask fields in the rcu_node tree.  Otherwise, immediately
 689 * report the quiescent state.
 690 */
 691static void sync_rcu_exp_handler(void *info)
 692{
 693	struct rcu_data *rdp;
 694	struct rcu_state *rsp = info;
 695	struct task_struct *t = current;
 696
 697	/*
 698	 * Within an RCU read-side critical section, request that the next
 699	 * rcu_read_unlock() report.  Unless this RCU read-side critical
 700	 * section has already blocked, in which case it is already set
 701	 * up for the expedited grace period to wait on it.
 702	 */
 703	if (t->rcu_read_lock_nesting > 0 &&
 704	    !t->rcu_read_unlock_special.b.blocked) {
 705		t->rcu_read_unlock_special.b.exp_need_qs = true;
 706		return;
 707	}
 708
 709	/*
 710	 * We are either exiting an RCU read-side critical section (negative
 711	 * values of t->rcu_read_lock_nesting) or are not in one at all
 712	 * (zero value of t->rcu_read_lock_nesting).  Or we are in an RCU
 713	 * read-side critical section that blocked before this expedited
 714	 * grace period started.  Either way, we can immediately report
 715	 * the quiescent state.
 716	 */
 717	rdp = this_cpu_ptr(rsp->rda);
 718	rcu_report_exp_rdp(rsp, rdp, true);
 719}
 720
 721/**
 722 * synchronize_rcu_expedited - Brute-force RCU grace period
 723 *
 724 * Wait for an RCU-preempt grace period, but expedite it.  The basic
 725 * idea is to invoke synchronize_sched_expedited() to push all the tasks to
 726 * the ->blkd_tasks lists and wait for this list to drain.  This consumes
 727 * significant time on all CPUs and is unfriendly to real-time workloads,
 728 * so is thus not recommended for any sort of common-case code.
 729 * In fact, if you are using synchronize_rcu_expedited() in a loop,
 730 * please restructure your code to batch your updates, and then Use a
 731 * single synchronize_rcu() instead.
 732 */
 733void synchronize_rcu_expedited(void)
 734{
 735	struct rcu_node *rnp;
 736	struct rcu_node *rnp_unlock;
 737	struct rcu_state *rsp = rcu_state_p;
 738	unsigned long s;
 739
 740	/* If expedited grace periods are prohibited, fall back to normal. */
 741	if (rcu_gp_is_normal()) {
 742		wait_rcu_gp(call_rcu);
 743		return;
 744	}
 745
 746	s = rcu_exp_gp_seq_snap(rsp);
 747
 748	rnp_unlock = exp_funnel_lock(rsp, s);
 749	if (rnp_unlock == NULL)
 750		return;  /* Someone else did our work for us. */
 751
 752	rcu_exp_gp_seq_start(rsp);
 753
 754	/* Initialize the rcu_node tree in preparation for the wait. */
 755	sync_rcu_exp_select_cpus(rsp, sync_rcu_exp_handler);
 756
 757	/* Wait for snapshotted ->blkd_tasks lists to drain. */
 758	rnp = rcu_get_root(rsp);
 759	synchronize_sched_expedited_wait(rsp);
 760
 761	/* Clean up and exit. */
 762	rcu_exp_gp_seq_end(rsp);
 763	mutex_unlock(&rnp_unlock->exp_funnel_mutex);
 764}
 765EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
 766
 767/**
 768 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
 769 *
 770 * Note that this primitive does not necessarily wait for an RCU grace period
 771 * to complete.  For example, if there are no RCU callbacks queued anywhere
 772 * in the system, then rcu_barrier() is within its rights to return
 773 * immediately, without waiting for anything, much less an RCU grace period.
 774 */
 775void rcu_barrier(void)
 776{
 777	_rcu_barrier(rcu_state_p);
 778}
 779EXPORT_SYMBOL_GPL(rcu_barrier);
 780
 781/*
 782 * Initialize preemptible RCU's state structures.
 783 */
 784static void __init __rcu_init_preempt(void)
 785{
 786	rcu_init_one(rcu_state_p);
 787}
 788
 789/*
 790 * Check for a task exiting while in a preemptible-RCU read-side
 791 * critical section, clean up if so.  No need to issue warnings,
 792 * as debug_check_no_locks_held() already does this if lockdep
 793 * is enabled.
 794 */
 795void exit_rcu(void)
 796{
 797	struct task_struct *t = current;
 798
 799	if (likely(list_empty(&current->rcu_node_entry)))
 800		return;
 801	t->rcu_read_lock_nesting = 1;
 802	barrier();
 803	t->rcu_read_unlock_special.b.blocked = true;
 804	__rcu_read_unlock();
 805}
 806
 807#else /* #ifdef CONFIG_PREEMPT_RCU */
 808
 809static struct rcu_state *const rcu_state_p = &rcu_sched_state;
 810
 811/*
 812 * Tell them what RCU they are running.
 813 */
 814static void __init rcu_bootup_announce(void)
 815{
 816	pr_info("Hierarchical RCU implementation.\n");
 817	rcu_bootup_announce_oddness();
 818}
 819
 820/*
 821 * Because preemptible RCU does not exist, we never have to check for
 822 * CPUs being in quiescent states.
 823 */
 824static void rcu_preempt_note_context_switch(void)
 825{
 826}
 827
 828/*
 829 * Because preemptible RCU does not exist, there are never any preempted
 830 * RCU readers.
 831 */
 832static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
 833{
 834	return 0;
 835}
 836
 837/*
 838 * Because there is no preemptible RCU, there can be no readers blocked.
 839 */
 840static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
 841{
 842	return false;
 843}
 844
 845/*
 846 * Because preemptible RCU does not exist, we never have to check for
 847 * tasks blocked within RCU read-side critical sections.
 848 */
 849static void rcu_print_detail_task_stall(struct rcu_state *rsp)
 850{
 851}
 852
 853/*
 854 * Because preemptible RCU does not exist, we never have to check for
 855 * tasks blocked within RCU read-side critical sections.
 856 */
 857static int rcu_print_task_stall(struct rcu_node *rnp)
 858{
 859	return 0;
 860}
 861
 862/*
 863 * Because preemptible RCU does not exist, we never have to check for
 864 * tasks blocked within RCU read-side critical sections that are
 865 * blocking the current expedited grace period.
 866 */
 867static int rcu_print_task_exp_stall(struct rcu_node *rnp)
 868{
 869	return 0;
 870}
 871
 872/*
 873 * Because there is no preemptible RCU, there can be no readers blocked,
 874 * so there is no need to check for blocked tasks.  So check only for
 875 * bogus qsmask values.
 876 */
 877static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
 878{
 879	WARN_ON_ONCE(rnp->qsmask);
 880}
 881
 882/*
 883 * Because preemptible RCU does not exist, it never has any callbacks
 884 * to check.
 885 */
 886static void rcu_preempt_check_callbacks(void)
 887{
 888}
 889
 890/*
 891 * Wait for an rcu-preempt grace period, but make it happen quickly.
 892 * But because preemptible RCU does not exist, map to rcu-sched.
 893 */
 894void synchronize_rcu_expedited(void)
 895{
 896	synchronize_sched_expedited();
 897}
 898EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
 899
 900/*
 901 * Because preemptible RCU does not exist, rcu_barrier() is just
 902 * another name for rcu_barrier_sched().
 903 */
 904void rcu_barrier(void)
 905{
 906	rcu_barrier_sched();
 907}
 908EXPORT_SYMBOL_GPL(rcu_barrier);
 909
 910/*
 911 * Because preemptible RCU does not exist, it need not be initialized.
 912 */
 913static void __init __rcu_init_preempt(void)
 914{
 915}
 916
 917/*
 918 * Because preemptible RCU does not exist, tasks cannot possibly exit
 919 * while in preemptible RCU read-side critical sections.
 920 */
 921void exit_rcu(void)
 922{
 923}
 924
 925#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
 926
 927#ifdef CONFIG_RCU_BOOST
 928
 929#include "../locking/rtmutex_common.h"
 930
 931#ifdef CONFIG_RCU_TRACE
 932
 933static void rcu_initiate_boost_trace(struct rcu_node *rnp)
 934{
 935	if (!rcu_preempt_has_tasks(rnp))
 936		rnp->n_balk_blkd_tasks++;
 937	else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
 938		rnp->n_balk_exp_gp_tasks++;
 939	else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
 940		rnp->n_balk_boost_tasks++;
 941	else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
 942		rnp->n_balk_notblocked++;
 943	else if (rnp->gp_tasks != NULL &&
 944		 ULONG_CMP_LT(jiffies, rnp->boost_time))
 945		rnp->n_balk_notyet++;
 946	else
 947		rnp->n_balk_nos++;
 948}
 949
 950#else /* #ifdef CONFIG_RCU_TRACE */
 951
 952static void rcu_initiate_boost_trace(struct rcu_node *rnp)
 953{
 954}
 955
 956#endif /* #else #ifdef CONFIG_RCU_TRACE */
 957
 958static void rcu_wake_cond(struct task_struct *t, int status)
 959{
 960	/*
 961	 * If the thread is yielding, only wake it when this
 962	 * is invoked from idle
 963	 */
 964	if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
 965		wake_up_process(t);
 966}
 967
 968/*
 969 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
 970 * or ->boost_tasks, advancing the pointer to the next task in the
 971 * ->blkd_tasks list.
 972 *
 973 * Note that irqs must be enabled: boosting the task can block.
 974 * Returns 1 if there are more tasks needing to be boosted.
 975 */
 976static int rcu_boost(struct rcu_node *rnp)
 977{
 978	unsigned long flags;
 979	struct task_struct *t;
 980	struct list_head *tb;
 981
 982	if (READ_ONCE(rnp->exp_tasks) == NULL &&
 983	    READ_ONCE(rnp->boost_tasks) == NULL)
 984		return 0;  /* Nothing left to boost. */
 985
 986	raw_spin_lock_irqsave_rcu_node(rnp, flags);
 987
 988	/*
 989	 * Recheck under the lock: all tasks in need of boosting
 990	 * might exit their RCU read-side critical sections on their own.
 991	 */
 992	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
 993		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 994		return 0;
 995	}
 996
 997	/*
 998	 * Preferentially boost tasks blocking expedited grace periods.
 999	 * This cannot starve the normal grace periods because a second
1000	 * expedited grace period must boost all blocked tasks, including
1001	 * those blocking the pre-existing normal grace period.
1002	 */
1003	if (rnp->exp_tasks != NULL) {
1004		tb = rnp->exp_tasks;
1005		rnp->n_exp_boosts++;
1006	} else {
1007		tb = rnp->boost_tasks;
1008		rnp->n_normal_boosts++;
1009	}
1010	rnp->n_tasks_boosted++;
1011
1012	/*
1013	 * We boost task t by manufacturing an rt_mutex that appears to
1014	 * be held by task t.  We leave a pointer to that rt_mutex where
1015	 * task t can find it, and task t will release the mutex when it
1016	 * exits its outermost RCU read-side critical section.  Then
1017	 * simply acquiring this artificial rt_mutex will boost task
1018	 * t's priority.  (Thanks to tglx for suggesting this approach!)
1019	 *
1020	 * Note that task t must acquire rnp->lock to remove itself from
1021	 * the ->blkd_tasks list, which it will do from exit() if from
1022	 * nowhere else.  We therefore are guaranteed that task t will
1023	 * stay around at least until we drop rnp->lock.  Note that
1024	 * rnp->lock also resolves races between our priority boosting
1025	 * and task t's exiting its outermost RCU read-side critical
1026	 * section.
1027	 */
1028	t = container_of(tb, struct task_struct, rcu_node_entry);
1029	rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1030	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1031	/* Lock only for side effect: boosts task t's priority. */
1032	rt_mutex_lock(&rnp->boost_mtx);
1033	rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
1034
1035	return READ_ONCE(rnp->exp_tasks) != NULL ||
1036	       READ_ONCE(rnp->boost_tasks) != NULL;
1037}
1038
1039/*
1040 * Priority-boosting kthread, one per leaf rcu_node.
1041 */
1042static int rcu_boost_kthread(void *arg)
1043{
1044	struct rcu_node *rnp = (struct rcu_node *)arg;
1045	int spincnt = 0;
1046	int more2boost;
1047
1048	trace_rcu_utilization(TPS("Start boost kthread@init"));
1049	for (;;) {
1050		rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1051		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1052		rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1053		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1054		rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1055		more2boost = rcu_boost(rnp);
1056		if (more2boost)
1057			spincnt++;
1058		else
1059			spincnt = 0;
1060		if (spincnt > 10) {
1061			rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1062			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1063			schedule_timeout_interruptible(2);
1064			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1065			spincnt = 0;
1066		}
1067	}
1068	/* NOTREACHED */
1069	trace_rcu_utilization(TPS("End boost kthread@notreached"));
1070	return 0;
1071}
1072
1073/*
1074 * Check to see if it is time to start boosting RCU readers that are
1075 * blocking the current grace period, and, if so, tell the per-rcu_node
1076 * kthread to start boosting them.  If there is an expedited grace
1077 * period in progress, it is always time to boost.
1078 *
1079 * The caller must hold rnp->lock, which this function releases.
1080 * The ->boost_kthread_task is immortal, so we don't need to worry
1081 * about it going away.
1082 */
1083static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1084	__releases(rnp->lock)
1085{
1086	struct task_struct *t;
1087
1088	if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1089		rnp->n_balk_exp_gp_tasks++;
1090		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1091		return;
1092	}
1093	if (rnp->exp_tasks != NULL ||
1094	    (rnp->gp_tasks != NULL &&
1095	     rnp->boost_tasks == NULL &&
1096	     rnp->qsmask == 0 &&
1097	     ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1098		if (rnp->exp_tasks == NULL)
1099			rnp->boost_tasks = rnp->gp_tasks;
1100		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1101		t = rnp->boost_kthread_task;
1102		if (t)
1103			rcu_wake_cond(t, rnp->boost_kthread_status);
1104	} else {
1105		rcu_initiate_boost_trace(rnp);
1106		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1107	}
1108}
1109
1110/*
1111 * Wake up the per-CPU kthread to invoke RCU callbacks.
1112 */
1113static void invoke_rcu_callbacks_kthread(void)
1114{
1115	unsigned long flags;
1116
1117	local_irq_save(flags);
1118	__this_cpu_write(rcu_cpu_has_work, 1);
1119	if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1120	    current != __this_cpu_read(rcu_cpu_kthread_task)) {
1121		rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1122			      __this_cpu_read(rcu_cpu_kthread_status));
1123	}
1124	local_irq_restore(flags);
1125}
1126
1127/*
1128 * Is the current CPU running the RCU-callbacks kthread?
1129 * Caller must have preemption disabled.
1130 */
1131static bool rcu_is_callbacks_kthread(void)
1132{
1133	return __this_cpu_read(rcu_cpu_kthread_task) == current;
1134}
1135
1136#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1137
1138/*
1139 * Do priority-boost accounting for the start of a new grace period.
1140 */
1141static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1142{
1143	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1144}
1145
1146/*
1147 * Create an RCU-boost kthread for the specified node if one does not
1148 * already exist.  We only create this kthread for preemptible RCU.
1149 * Returns zero if all is well, a negated errno otherwise.
1150 */
1151static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1152				       struct rcu_node *rnp)
1153{
1154	int rnp_index = rnp - &rsp->node[0];
1155	unsigned long flags;
1156	struct sched_param sp;
1157	struct task_struct *t;
1158
1159	if (rcu_state_p != rsp)
1160		return 0;
1161
1162	if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
1163		return 0;
1164
1165	rsp->boost = 1;
1166	if (rnp->boost_kthread_task != NULL)
1167		return 0;
1168	t = kthread_create(rcu_boost_kthread, (void *)rnp,
1169			   "rcub/%d", rnp_index);
1170	if (IS_ERR(t))
1171		return PTR_ERR(t);
1172	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1173	rnp->boost_kthread_task = t;
1174	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1175	sp.sched_priority = kthread_prio;
1176	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1177	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1178	return 0;
1179}
1180
1181static void rcu_kthread_do_work(void)
1182{
1183	rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1184	rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1185	rcu_preempt_do_callbacks();
1186}
1187
1188static void rcu_cpu_kthread_setup(unsigned int cpu)
1189{
1190	struct sched_param sp;
1191
1192	sp.sched_priority = kthread_prio;
1193	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1194}
1195
1196static void rcu_cpu_kthread_park(unsigned int cpu)
1197{
1198	per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1199}
1200
1201static int rcu_cpu_kthread_should_run(unsigned int cpu)
1202{
1203	return __this_cpu_read(rcu_cpu_has_work);
1204}
1205
1206/*
1207 * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
1208 * RCU softirq used in flavors and configurations of RCU that do not
1209 * support RCU priority boosting.
1210 */
1211static void rcu_cpu_kthread(unsigned int cpu)
1212{
1213	unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1214	char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1215	int spincnt;
1216
1217	for (spincnt = 0; spincnt < 10; spincnt++) {
1218		trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1219		local_bh_disable();
1220		*statusp = RCU_KTHREAD_RUNNING;
1221		this_cpu_inc(rcu_cpu_kthread_loops);
1222		local_irq_disable();
1223		work = *workp;
1224		*workp = 0;
1225		local_irq_enable();
1226		if (work)
1227			rcu_kthread_do_work();
1228		local_bh_enable();
1229		if (*workp == 0) {
1230			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1231			*statusp = RCU_KTHREAD_WAITING;
1232			return;
1233		}
1234	}
1235	*statusp = RCU_KTHREAD_YIELDING;
1236	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1237	schedule_timeout_interruptible(2);
1238	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1239	*statusp = RCU_KTHREAD_WAITING;
1240}
1241
1242/*
1243 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1244 * served by the rcu_node in question.  The CPU hotplug lock is still
1245 * held, so the value of rnp->qsmaskinit will be stable.
1246 *
1247 * We don't include outgoingcpu in the affinity set, use -1 if there is
1248 * no outgoing CPU.  If there are no CPUs left in the affinity set,
1249 * this function allows the kthread to execute on any CPU.
1250 */
1251static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1252{
1253	struct task_struct *t = rnp->boost_kthread_task;
1254	unsigned long mask = rcu_rnp_online_cpus(rnp);
1255	cpumask_var_t cm;
1256	int cpu;
1257
1258	if (!t)
1259		return;
1260	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1261		return;
1262	for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1263		if ((mask & 0x1) && cpu != outgoingcpu)
1264			cpumask_set_cpu(cpu, cm);
1265	if (cpumask_weight(cm) == 0)
1266		cpumask_setall(cm);
1267	set_cpus_allowed_ptr(t, cm);
1268	free_cpumask_var(cm);
1269}
1270
1271static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1272	.store			= &rcu_cpu_kthread_task,
1273	.thread_should_run	= rcu_cpu_kthread_should_run,
1274	.thread_fn		= rcu_cpu_kthread,
1275	.thread_comm		= "rcuc/%u",
1276	.setup			= rcu_cpu_kthread_setup,
1277	.park			= rcu_cpu_kthread_park,
1278};
1279
1280/*
1281 * Spawn boost kthreads -- called as soon as the scheduler is running.
1282 */
1283static void __init rcu_spawn_boost_kthreads(void)
1284{
1285	struct rcu_node *rnp;
1286	int cpu;
1287
1288	for_each_possible_cpu(cpu)
1289		per_cpu(rcu_cpu_has_work, cpu) = 0;
1290	BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1291	rcu_for_each_leaf_node(rcu_state_p, rnp)
1292		(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1293}
1294
1295static void rcu_prepare_kthreads(int cpu)
1296{
1297	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
1298	struct rcu_node *rnp = rdp->mynode;
1299
1300	/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1301	if (rcu_scheduler_fully_active)
1302		(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1303}
1304
1305#else /* #ifdef CONFIG_RCU_BOOST */
1306
1307static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1308	__releases(rnp->lock)
1309{
1310	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1311}
1312
1313static void invoke_rcu_callbacks_kthread(void)
1314{
1315	WARN_ON_ONCE(1);
1316}
1317
1318static bool rcu_is_callbacks_kthread(void)
1319{
1320	return false;
1321}
1322
1323static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1324{
1325}
1326
1327static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1328{
1329}
1330
1331static void __init rcu_spawn_boost_kthreads(void)
1332{
1333}
1334
1335static void rcu_prepare_kthreads(int cpu)
1336{
1337}
1338
1339#endif /* #else #ifdef CONFIG_RCU_BOOST */
1340
1341#if !defined(CONFIG_RCU_FAST_NO_HZ)
1342
1343/*
1344 * Check to see if any future RCU-related work will need to be done
1345 * by the current CPU, even if none need be done immediately, returning
1346 * 1 if so.  This function is part of the RCU implementation; it is -not-
1347 * an exported member of the RCU API.
1348 *
1349 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1350 * any flavor of RCU.
1351 */
1352int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1353{
1354	*nextevt = KTIME_MAX;
1355	return IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)
1356	       ? 0 : rcu_cpu_has_callbacks(NULL);
1357}
1358
1359/*
1360 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1361 * after it.
1362 */
1363static void rcu_cleanup_after_idle(void)
1364{
1365}
1366
1367/*
1368 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1369 * is nothing.
1370 */
1371static void rcu_prepare_for_idle(void)
1372{
1373}
1374
1375/*
1376 * Don't bother keeping a running count of the number of RCU callbacks
1377 * posted because CONFIG_RCU_FAST_NO_HZ=n.
1378 */
1379static void rcu_idle_count_callbacks_posted(void)
1380{
1381}
1382
1383#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1384
1385/*
1386 * This code is invoked when a CPU goes idle, at which point we want
1387 * to have the CPU do everything required for RCU so that it can enter
1388 * the energy-efficient dyntick-idle mode.  This is handled by a
1389 * state machine implemented by rcu_prepare_for_idle() below.
1390 *
1391 * The following three proprocessor symbols control this state machine:
1392 *
1393 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1394 *	to sleep in dyntick-idle mode with RCU callbacks pending.  This
1395 *	is sized to be roughly one RCU grace period.  Those energy-efficiency
1396 *	benchmarkers who might otherwise be tempted to set this to a large
1397 *	number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1398 *	system.  And if you are -that- concerned about energy efficiency,
1399 *	just power the system down and be done with it!
1400 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1401 *	permitted to sleep in dyntick-idle mode with only lazy RCU
1402 *	callbacks pending.  Setting this too high can OOM your system.
1403 *
1404 * The values below work well in practice.  If future workloads require
1405 * adjustment, they can be converted into kernel config parameters, though
1406 * making the state machine smarter might be a better option.
1407 */
1408#define RCU_IDLE_GP_DELAY 4		/* Roughly one grace period. */
1409#define RCU_IDLE_LAZY_GP_DELAY (6 * HZ)	/* Roughly six seconds. */
1410
1411static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1412module_param(rcu_idle_gp_delay, int, 0644);
1413static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1414module_param(rcu_idle_lazy_gp_delay, int, 0644);
1415
1416/*
1417 * Try to advance callbacks for all flavors of RCU on the current CPU, but
1418 * only if it has been awhile since the last time we did so.  Afterwards,
1419 * if there are any callbacks ready for immediate invocation, return true.
1420 */
1421static bool __maybe_unused rcu_try_advance_all_cbs(void)
1422{
1423	bool cbs_ready = false;
1424	struct rcu_data *rdp;
1425	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1426	struct rcu_node *rnp;
1427	struct rcu_state *rsp;
1428
1429	/* Exit early if we advanced recently. */
1430	if (jiffies == rdtp->last_advance_all)
1431		return false;
1432	rdtp->last_advance_all = jiffies;
1433
1434	for_each_rcu_flavor(rsp) {
1435		rdp = this_cpu_ptr(rsp->rda);
1436		rnp = rdp->mynode;
1437
1438		/*
1439		 * Don't bother checking unless a grace period has
1440		 * completed since we last checked and there are
1441		 * callbacks not yet ready to invoke.
1442		 */
1443		if ((rdp->completed != rnp->completed ||
1444		     unlikely(READ_ONCE(rdp->gpwrap))) &&
1445		    rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
1446			note_gp_changes(rsp, rdp);
1447
1448		if (cpu_has_callbacks_ready_to_invoke(rdp))
1449			cbs_ready = true;
1450	}
1451	return cbs_ready;
1452}
1453
1454/*
1455 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1456 * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1457 * caller to set the timeout based on whether or not there are non-lazy
1458 * callbacks.
1459 *
1460 * The caller must have disabled interrupts.
1461 */
1462int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1463{
1464	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1465	unsigned long dj;
1466
1467	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)) {
1468		*nextevt = KTIME_MAX;
1469		return 0;
1470	}
1471
1472	/* Snapshot to detect later posting of non-lazy callback. */
1473	rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1474
1475	/* If no callbacks, RCU doesn't need the CPU. */
1476	if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
1477		*nextevt = KTIME_MAX;
1478		return 0;
1479	}
1480
1481	/* Attempt to advance callbacks. */
1482	if (rcu_try_advance_all_cbs()) {
1483		/* Some ready to invoke, so initiate later invocation. */
1484		invoke_rcu_core();
1485		return 1;
1486	}
1487	rdtp->last_accelerate = jiffies;
1488
1489	/* Request timer delay depending on laziness, and round. */
1490	if (!rdtp->all_lazy) {
1491		dj = round_up(rcu_idle_gp_delay + jiffies,
1492			       rcu_idle_gp_delay) - jiffies;
1493	} else {
1494		dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1495	}
1496	*nextevt = basemono + dj * TICK_NSEC;
1497	return 0;
1498}
1499
1500/*
1501 * Prepare a CPU for idle from an RCU perspective.  The first major task
1502 * is to sense whether nohz mode has been enabled or disabled via sysfs.
1503 * The second major task is to check to see if a non-lazy callback has
1504 * arrived at a CPU that previously had only lazy callbacks.  The third
1505 * major task is to accelerate (that is, assign grace-period numbers to)
1506 * any recently arrived callbacks.
1507 *
1508 * The caller must have disabled interrupts.
1509 */
1510static void rcu_prepare_for_idle(void)
1511{
1512	bool needwake;
1513	struct rcu_data *rdp;
1514	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1515	struct rcu_node *rnp;
1516	struct rcu_state *rsp;
1517	int tne;
1518
1519	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) ||
1520	    rcu_is_nocb_cpu(smp_processor_id()))
1521		return;
1522
1523	/* Handle nohz enablement switches conservatively. */
1524	tne = READ_ONCE(tick_nohz_active);
1525	if (tne != rdtp->tick_nohz_enabled_snap) {
1526		if (rcu_cpu_has_callbacks(NULL))
1527			invoke_rcu_core(); /* force nohz to see update. */
1528		rdtp->tick_nohz_enabled_snap = tne;
1529		return;
1530	}
1531	if (!tne)
1532		return;
1533
1534	/*
1535	 * If a non-lazy callback arrived at a CPU having only lazy
1536	 * callbacks, invoke RCU core for the side-effect of recalculating
1537	 * idle duration on re-entry to idle.
1538	 */
1539	if (rdtp->all_lazy &&
1540	    rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1541		rdtp->all_lazy = false;
1542		rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1543		invoke_rcu_core();
1544		return;
1545	}
1546
1547	/*
1548	 * If we have not yet accelerated this jiffy, accelerate all
1549	 * callbacks on this CPU.
1550	 */
1551	if (rdtp->last_accelerate == jiffies)
1552		return;
1553	rdtp->last_accelerate = jiffies;
1554	for_each_rcu_flavor(rsp) {
1555		rdp = this_cpu_ptr(rsp->rda);
1556		if (!*rdp->nxttail[RCU_DONE_TAIL])
1557			continue;
1558		rnp = rdp->mynode;
1559		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1560		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1561		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1562		if (needwake)
1563			rcu_gp_kthread_wake(rsp);
1564	}
1565}
1566
1567/*
1568 * Clean up for exit from idle.  Attempt to advance callbacks based on
1569 * any grace periods that elapsed while the CPU was idle, and if any
1570 * callbacks are now ready to invoke, initiate invocation.
1571 */
1572static void rcu_cleanup_after_idle(void)
1573{
1574	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) ||
1575	    rcu_is_nocb_cpu(smp_processor_id()))
1576		return;
1577	if (rcu_try_advance_all_cbs())
1578		invoke_rcu_core();
1579}
1580
1581/*
1582 * Keep a running count of the number of non-lazy callbacks posted
1583 * on this CPU.  This running counter (which is never decremented) allows
1584 * rcu_prepare_for_idle() to detect when something out of the idle loop
1585 * posts a callback, even if an equal number of callbacks are invoked.
1586 * Of course, callbacks should only be posted from within a trace event
1587 * designed to be called from idle or from within RCU_NONIDLE().
1588 */
1589static void rcu_idle_count_callbacks_posted(void)
1590{
1591	__this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1592}
1593
1594/*
1595 * Data for flushing lazy RCU callbacks at OOM time.
1596 */
1597static atomic_t oom_callback_count;
1598static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1599
1600/*
1601 * RCU OOM callback -- decrement the outstanding count and deliver the
1602 * wake-up if we are the last one.
1603 */
1604static void rcu_oom_callback(struct rcu_head *rhp)
1605{
1606	if (atomic_dec_and_test(&oom_callback_count))
1607		wake_up(&oom_callback_wq);
1608}
1609
1610/*
1611 * Post an rcu_oom_notify callback on the current CPU if it has at
1612 * least one lazy callback.  This will unnecessarily post callbacks
1613 * to CPUs that already have a non-lazy callback at the end of their
1614 * callback list, but this is an infrequent operation, so accept some
1615 * extra overhead to keep things simple.
1616 */
1617static void rcu_oom_notify_cpu(void *unused)
1618{
1619	struct rcu_state *rsp;
1620	struct rcu_data *rdp;
1621
1622	for_each_rcu_flavor(rsp) {
1623		rdp = raw_cpu_ptr(rsp->rda);
1624		if (rdp->qlen_lazy != 0) {
1625			atomic_inc(&oom_callback_count);
1626			rsp->call(&rdp->oom_head, rcu_oom_callback);
1627		}
1628	}
1629}
1630
1631/*
1632 * If low on memory, ensure that each CPU has a non-lazy callback.
1633 * This will wake up CPUs that have only lazy callbacks, in turn
1634 * ensuring that they free up the corresponding memory in a timely manner.
1635 * Because an uncertain amount of memory will be freed in some uncertain
1636 * timeframe, we do not claim to have freed anything.
1637 */
1638static int rcu_oom_notify(struct notifier_block *self,
1639			  unsigned long notused, void *nfreed)
1640{
1641	int cpu;
1642
1643	/* Wait for callbacks from earlier instance to complete. */
1644	wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1645	smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1646
1647	/*
1648	 * Prevent premature wakeup: ensure that all increments happen
1649	 * before there is a chance of the counter reaching zero.
1650	 */
1651	atomic_set(&oom_callback_count, 1);
1652
1653	for_each_online_cpu(cpu) {
1654		smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1655		cond_resched_rcu_qs();
1656	}
1657
1658	/* Unconditionally decrement: no need to wake ourselves up. */
1659	atomic_dec(&oom_callback_count);
1660
1661	return NOTIFY_OK;
1662}
1663
1664static struct notifier_block rcu_oom_nb = {
1665	.notifier_call = rcu_oom_notify
1666};
1667
1668static int __init rcu_register_oom_notifier(void)
1669{
1670	register_oom_notifier(&rcu_oom_nb);
1671	return 0;
1672}
1673early_initcall(rcu_register_oom_notifier);
1674
1675#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1676
1677#ifdef CONFIG_RCU_FAST_NO_HZ
1678
1679static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1680{
1681	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1682	unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1683
1684	sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1685		rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1686		ulong2long(nlpd),
1687		rdtp->all_lazy ? 'L' : '.',
1688		rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1689}
1690
1691#else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1692
1693static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1694{
1695	*cp = '\0';
1696}
1697
1698#endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1699
1700/* Initiate the stall-info list. */
1701static void print_cpu_stall_info_begin(void)
1702{
1703	pr_cont("\n");
1704}
1705
1706/*
1707 * Print out diagnostic information for the specified stalled CPU.
1708 *
1709 * If the specified CPU is aware of the current RCU grace period
1710 * (flavor specified by rsp), then print the number of scheduling
1711 * clock interrupts the CPU has taken during the time that it has
1712 * been aware.  Otherwise, print the number of RCU grace periods
1713 * that this CPU is ignorant of, for example, "1" if the CPU was
1714 * aware of the previous grace period.
1715 *
1716 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1717 */
1718static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1719{
1720	char fast_no_hz[72];
1721	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1722	struct rcu_dynticks *rdtp = rdp->dynticks;
1723	char *ticks_title;
1724	unsigned long ticks_value;
1725
1726	if (rsp->gpnum == rdp->gpnum) {
1727		ticks_title = "ticks this GP";
1728		ticks_value = rdp->ticks_this_gp;
1729	} else {
1730		ticks_title = "GPs behind";
1731		ticks_value = rsp->gpnum - rdp->gpnum;
1732	}
1733	print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1734	pr_err("\t%d-%c%c%c: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n",
1735	       cpu,
1736	       "O."[!!cpu_online(cpu)],
1737	       "o."[!!(rdp->grpmask & rdp->mynode->qsmaskinit)],
1738	       "N."[!!(rdp->grpmask & rdp->mynode->qsmaskinitnext)],
1739	       ticks_value, ticks_title,
1740	       atomic_read(&rdtp->dynticks) & 0xfff,
1741	       rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1742	       rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1743	       READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart,
1744	       fast_no_hz);
1745}
1746
1747/* Terminate the stall-info list. */
1748static void print_cpu_stall_info_end(void)
1749{
1750	pr_err("\t");
1751}
1752
1753/* Zero ->ticks_this_gp for all flavors of RCU. */
1754static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1755{
1756	rdp->ticks_this_gp = 0;
1757	rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1758}
1759
1760/* Increment ->ticks_this_gp for all flavors of RCU. */
1761static void increment_cpu_stall_ticks(void)
1762{
1763	struct rcu_state *rsp;
1764
1765	for_each_rcu_flavor(rsp)
1766		raw_cpu_inc(rsp->rda->ticks_this_gp);
1767}
1768
1769#ifdef CONFIG_RCU_NOCB_CPU
1770
1771/*
1772 * Offload callback processing from the boot-time-specified set of CPUs
1773 * specified by rcu_nocb_mask.  For each CPU in the set, there is a
1774 * kthread created that pulls the callbacks from the corresponding CPU,
1775 * waits for a grace period to elapse, and invokes the callbacks.
1776 * The no-CBs CPUs do a wake_up() on their kthread when they insert
1777 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1778 * has been specified, in which case each kthread actively polls its
1779 * CPU.  (Which isn't so great for energy efficiency, but which does
1780 * reduce RCU's overhead on that CPU.)
1781 *
1782 * This is intended to be used in conjunction with Frederic Weisbecker's
1783 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1784 * running CPU-bound user-mode computations.
1785 *
1786 * Offloading of callback processing could also in theory be used as
1787 * an energy-efficiency measure because CPUs with no RCU callbacks
1788 * queued are more aggressive about entering dyntick-idle mode.
1789 */
1790
1791
1792/* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1793static int __init rcu_nocb_setup(char *str)
1794{
1795	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1796	have_rcu_nocb_mask = true;
1797	cpulist_parse(str, rcu_nocb_mask);
1798	return 1;
1799}
1800__setup("rcu_nocbs=", rcu_nocb_setup);
1801
1802static int __init parse_rcu_nocb_poll(char *arg)
1803{
1804	rcu_nocb_poll = 1;
1805	return 0;
1806}
1807early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1808
1809/*
1810 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1811 * grace period.
1812 */
1813static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1814{
1815	swake_up_all(sq);
1816}
1817
1818/*
1819 * Set the root rcu_node structure's ->need_future_gp field
1820 * based on the sum of those of all rcu_node structures.  This does
1821 * double-count the root rcu_node structure's requests, but this
1822 * is necessary to handle the possibility of a rcu_nocb_kthread()
1823 * having awakened during the time that the rcu_node structures
1824 * were being updated for the end of the previous grace period.
1825 */
1826static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
1827{
1828	rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
1829}
1830
1831static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1832{
1833	return &rnp->nocb_gp_wq[rnp->completed & 0x1];
1834}
1835
1836static void rcu_init_one_nocb(struct rcu_node *rnp)
1837{
1838	init_swait_queue_head(&rnp->nocb_gp_wq[0]);
1839	init_swait_queue_head(&rnp->nocb_gp_wq[1]);
1840}
1841
1842#ifndef CONFIG_RCU_NOCB_CPU_ALL
1843/* Is the specified CPU a no-CBs CPU? */
1844bool rcu_is_nocb_cpu(int cpu)
1845{
1846	if (have_rcu_nocb_mask)
1847		return cpumask_test_cpu(cpu, rcu_nocb_mask);
1848	return false;
1849}
1850#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1851
1852/*
1853 * Kick the leader kthread for this NOCB group.
1854 */
1855static void wake_nocb_leader(struct rcu_data *rdp, bool force)
1856{
1857	struct rcu_data *rdp_leader = rdp->nocb_leader;
1858
1859	if (!READ_ONCE(rdp_leader->nocb_kthread))
1860		return;
1861	if (READ_ONCE(rdp_leader->nocb_leader_sleep) || force) {
1862		/* Prior smp_mb__after_atomic() orders against prior enqueue. */
1863		WRITE_ONCE(rdp_leader->nocb_leader_sleep, false);
1864		swake_up(&rdp_leader->nocb_wq);
1865	}
1866}
1867
1868/*
1869 * Does the specified CPU need an RCU callback for the specified flavor
1870 * of rcu_barrier()?
1871 */
1872static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
1873{
1874	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1875	unsigned long ret;
1876#ifdef CONFIG_PROVE_RCU
1877	struct rcu_head *rhp;
1878#endif /* #ifdef CONFIG_PROVE_RCU */
1879
1880	/*
1881	 * Check count of all no-CBs callbacks awaiting invocation.
1882	 * There needs to be a barrier before this function is called,
1883	 * but associated with a prior determination that no more
1884	 * callbacks would be posted.  In the worst case, the first
1885	 * barrier in _rcu_barrier() suffices (but the caller cannot
1886	 * necessarily rely on this, not a substitute for the caller
1887	 * getting the concurrency design right!).  There must also be
1888	 * a barrier between the following load an posting of a callback
1889	 * (if a callback is in fact needed).  This is associated with an
1890	 * atomic_inc() in the caller.
1891	 */
1892	ret = atomic_long_read(&rdp->nocb_q_count);
1893
1894#ifdef CONFIG_PROVE_RCU
1895	rhp = READ_ONCE(rdp->nocb_head);
1896	if (!rhp)
1897		rhp = READ_ONCE(rdp->nocb_gp_head);
1898	if (!rhp)
1899		rhp = READ_ONCE(rdp->nocb_follower_head);
1900
1901	/* Having no rcuo kthread but CBs after scheduler starts is bad! */
1902	if (!READ_ONCE(rdp->nocb_kthread) && rhp &&
1903	    rcu_scheduler_fully_active) {
1904		/* RCU callback enqueued before CPU first came online??? */
1905		pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
1906		       cpu, rhp->func);
1907		WARN_ON_ONCE(1);
1908	}
1909#endif /* #ifdef CONFIG_PROVE_RCU */
1910
1911	return !!ret;
1912}
1913
1914/*
1915 * Enqueue the specified string of rcu_head structures onto the specified
1916 * CPU's no-CBs lists.  The CPU is specified by rdp, the head of the
1917 * string by rhp, and the tail of the string by rhtp.  The non-lazy/lazy
1918 * counts are supplied by rhcount and rhcount_lazy.
1919 *
1920 * If warranted, also wake up the kthread servicing this CPUs queues.
1921 */
1922static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
1923				    struct rcu_head *rhp,
1924				    struct rcu_head **rhtp,
1925				    int rhcount, int rhcount_lazy,
1926				    unsigned long flags)
1927{
1928	int len;
1929	struct rcu_head **old_rhpp;
1930	struct task_struct *t;
1931
1932	/* Enqueue the callback on the nocb list and update counts. */
1933	atomic_long_add(rhcount, &rdp->nocb_q_count);
1934	/* rcu_barrier() relies on ->nocb_q_count add before xchg. */
1935	old_rhpp = xchg(&rdp->nocb_tail, rhtp);
1936	WRITE_ONCE(*old_rhpp, rhp);
1937	atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
1938	smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
1939
1940	/* If we are not being polled and there is a kthread, awaken it ... */
1941	t = READ_ONCE(rdp->nocb_kthread);
1942	if (rcu_nocb_poll || !t) {
1943		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1944				    TPS("WakeNotPoll"));
1945		return;
1946	}
1947	len = atomic_long_read(&rdp->nocb_q_count);
1948	if (old_rhpp == &rdp->nocb_head) {
1949		if (!irqs_disabled_flags(flags)) {
1950			/* ... if queue was empty ... */
1951			wake_nocb_leader(rdp, false);
1952			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1953					    TPS("WakeEmpty"));
1954		} else {
1955			rdp->nocb_defer_wakeup = RCU_NOGP_WAKE;
1956			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1957					    TPS("WakeEmptyIsDeferred"));
1958		}
1959		rdp->qlen_last_fqs_check = 0;
1960	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
1961		/* ... or if many callbacks queued. */
1962		if (!irqs_disabled_flags(flags)) {
1963			wake_nocb_leader(rdp, true);
1964			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1965					    TPS("WakeOvf"));
1966		} else {
1967			rdp->nocb_defer_wakeup = RCU_NOGP_WAKE_FORCE;
1968			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1969					    TPS("WakeOvfIsDeferred"));
1970		}
1971		rdp->qlen_last_fqs_check = LONG_MAX / 2;
1972	} else {
1973		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
1974	}
1975	return;
1976}
1977
1978/*
1979 * This is a helper for __call_rcu(), which invokes this when the normal
1980 * callback queue is inoperable.  If this is not a no-CBs CPU, this
1981 * function returns failure back to __call_rcu(), which can complain
1982 * appropriately.
1983 *
1984 * Otherwise, this function queues the callback where the corresponding
1985 * "rcuo" kthread can find it.
1986 */
1987static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
1988			    bool lazy, unsigned long flags)
1989{
1990
1991	if (!rcu_is_nocb_cpu(rdp->cpu))
1992		return false;
1993	__call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
1994	if (__is_kfree_rcu_offset((unsigned long)rhp->func))
1995		trace_rcu_kfree_callback(rdp->rsp->name, rhp,
1996					 (unsigned long)rhp->func,
1997					 -atomic_long_read(&rdp->nocb_q_count_lazy),
1998					 -atomic_long_read(&rdp->nocb_q_count));
1999	else
2000		trace_rcu_callback(rdp->rsp->name, rhp,
2001				   -atomic_long_read(&rdp->nocb_q_count_lazy),
2002				   -atomic_long_read(&rdp->nocb_q_count));
2003
2004	/*
2005	 * If called from an extended quiescent state with interrupts
2006	 * disabled, invoke the RCU core in order to allow the idle-entry
2007	 * deferred-wakeup check to function.
2008	 */
2009	if (irqs_disabled_flags(flags) &&
2010	    !rcu_is_watching() &&
2011	    cpu_online(smp_processor_id()))
2012		invoke_rcu_core();
2013
2014	return true;
2015}
2016
2017/*
2018 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2019 * not a no-CBs CPU.
2020 */
2021static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2022						     struct rcu_data *rdp,
2023						     unsigned long flags)
2024{
2025	long ql = rsp->qlen;
2026	long qll = rsp->qlen_lazy;
2027
2028	/* If this is not a no-CBs CPU, tell the caller to do it the old way. */
2029	if (!rcu_is_nocb_cpu(smp_processor_id()))
2030		return false;
2031	rsp->qlen = 0;
2032	rsp->qlen_lazy = 0;
2033
2034	/* First, enqueue the donelist, if any.  This preserves CB ordering. */
2035	if (rsp->orphan_donelist != NULL) {
2036		__call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
2037					rsp->orphan_donetail, ql, qll, flags);
2038		ql = qll = 0;
2039		rsp->orphan_donelist = NULL;
2040		rsp->orphan_donetail = &rsp->orphan_donelist;
2041	}
2042	if (rsp->orphan_nxtlist != NULL) {
2043		__call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
2044					rsp->orphan_nxttail, ql, qll, flags);
2045		ql = qll = 0;
2046		rsp->orphan_nxtlist = NULL;
2047		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2048	}
2049	return true;
2050}
2051
2052/*
2053 * If necessary, kick off a new grace period, and either way wait
2054 * for a subsequent grace period to complete.
2055 */
2056static void rcu_nocb_wait_gp(struct rcu_data *rdp)
2057{
2058	unsigned long c;
2059	bool d;
2060	unsigned long flags;
2061	bool needwake;
2062	struct rcu_node *rnp = rdp->mynode;
2063
2064	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2065	needwake = rcu_start_future_gp(rnp, rdp, &c);
2066	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2067	if (needwake)
2068		rcu_gp_kthread_wake(rdp->rsp);
2069
2070	/*
2071	 * Wait for the grace period.  Do so interruptibly to avoid messing
2072	 * up the load average.
2073	 */
2074	trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
2075	for (;;) {
2076		swait_event_interruptible(
2077			rnp->nocb_gp_wq[c & 0x1],
2078			(d = ULONG_CMP_GE(READ_ONCE(rnp->completed), c)));
2079		if (likely(d))
2080			break;
2081		WARN_ON(signal_pending(current));
2082		trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
2083	}
2084	trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
2085	smp_mb(); /* Ensure that CB invocation happens after GP end. */
2086}
2087
2088/*
2089 * Leaders come here to wait for additional callbacks to show up.
2090 * This function does not return until callbacks appear.
2091 */
2092static void nocb_leader_wait(struct rcu_data *my_rdp)
2093{
2094	bool firsttime = true;
2095	bool gotcbs;
2096	struct rcu_data *rdp;
2097	struct rcu_head **tail;
2098
2099wait_again:
2100
2101	/* Wait for callbacks to appear. */
2102	if (!rcu_nocb_poll) {
2103		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
2104		swait_event_interruptible(my_rdp->nocb_wq,
2105				!READ_ONCE(my_rdp->nocb_leader_sleep));
2106		/* Memory barrier handled by smp_mb() calls below and repoll. */
2107	} else if (firsttime) {
2108		firsttime = false; /* Don't drown trace log with "Poll"! */
2109		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
2110	}
2111
2112	/*
2113	 * Each pass through the following loop checks a follower for CBs.
2114	 * We are our own first follower.  Any CBs found are moved to
2115	 * nocb_gp_head, where they await a grace period.
2116	 */
2117	gotcbs = false;
2118	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2119		rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head);
2120		if (!rdp->nocb_gp_head)
2121			continue;  /* No CBs here, try next follower. */
2122
2123		/* Move callbacks to wait-for-GP list, which is empty. */
2124		WRITE_ONCE(rdp->nocb_head, NULL);
2125		rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2126		gotcbs = true;
2127	}
2128
2129	/*
2130	 * If there were no callbacks, sleep a bit, rescan after a
2131	 * memory barrier, and go retry.
2132	 */
2133	if (unlikely(!gotcbs)) {
2134		if (!rcu_nocb_poll)
2135			trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2136					    "WokeEmpty");
2137		WARN_ON(signal_pending(current));
2138		schedule_timeout_interruptible(1);
2139
2140		/* Rescan in case we were a victim of memory ordering. */
2141		my_rdp->nocb_leader_sleep = true;
2142		smp_mb();  /* Ensure _sleep true before scan. */
2143		for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
2144			if (READ_ONCE(rdp->nocb_head)) {
2145				/* Found CB, so short-circuit next wait. */
2146				my_rdp->nocb_leader_sleep = false;
2147				break;
2148			}
2149		goto wait_again;
2150	}
2151
2152	/* Wait for one grace period. */
2153	rcu_nocb_wait_gp(my_rdp);
2154
2155	/*
2156	 * We left ->nocb_leader_sleep unset to reduce cache thrashing.
2157	 * We set it now, but recheck for new callbacks while
2158	 * traversing our follower list.
2159	 */
2160	my_rdp->nocb_leader_sleep = true;
2161	smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
2162
2163	/* Each pass through the following loop wakes a follower, if needed. */
2164	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2165		if (READ_ONCE(rdp->nocb_head))
2166			my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
2167		if (!rdp->nocb_gp_head)
2168			continue; /* No CBs, so no need to wake follower. */
2169
2170		/* Append callbacks to follower's "done" list. */
2171		tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
2172		*tail = rdp->nocb_gp_head;
2173		smp_mb__after_atomic(); /* Store *tail before wakeup. */
2174		if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2175			/*
2176			 * List was empty, wake up the follower.
2177			 * Memory barriers supplied by atomic_long_add().
2178			 */
2179			swake_up(&rdp->nocb_wq);
2180		}
2181	}
2182
2183	/* If we (the leader) don't have CBs, go wait some more. */
2184	if (!my_rdp->nocb_follower_head)
2185		goto wait_again;
2186}
2187
2188/*
2189 * Followers come here to wait for additional callbacks to show up.
2190 * This function does not return until callbacks appear.
2191 */
2192static void nocb_follower_wait(struct rcu_data *rdp)
2193{
2194	bool firsttime = true;
2195
2196	for (;;) {
2197		if (!rcu_nocb_poll) {
2198			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2199					    "FollowerSleep");
2200			swait_event_interruptible(rdp->nocb_wq,
2201						 READ_ONCE(rdp->nocb_follower_head));
2202		} else if (firsttime) {
2203			/* Don't drown trace log with "Poll"! */
2204			firsttime = false;
2205			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
2206		}
2207		if (smp_load_acquire(&rdp->nocb_follower_head)) {
2208			/* ^^^ Ensure CB invocation follows _head test. */
2209			return;
2210		}
2211		if (!rcu_nocb_poll)
2212			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2213					    "WokeEmpty");
2214		WARN_ON(signal_pending(current));
2215		schedule_timeout_interruptible(1);
2216	}
2217}
2218
2219/*
2220 * Per-rcu_data kthread, but only for no-CBs CPUs.  Each kthread invokes
2221 * callbacks queued by the corresponding no-CBs CPU, however, there is
2222 * an optional leader-follower relationship so that the grace-period
2223 * kthreads don't have to do quite so many wakeups.
2224 */
2225static int rcu_nocb_kthread(void *arg)
2226{
2227	int c, cl;
2228	struct rcu_head *list;
2229	struct rcu_head *next;
2230	struct rcu_head **tail;
2231	struct rcu_data *rdp = arg;
2232
2233	/* Each pass through this loop invokes one batch of callbacks */
2234	for (;;) {
2235		/* Wait for callbacks. */
2236		if (rdp->nocb_leader == rdp)
2237			nocb_leader_wait(rdp);
2238		else
2239			nocb_follower_wait(rdp);
2240
2241		/* Pull the ready-to-invoke callbacks onto local list. */
2242		list = READ_ONCE(rdp->nocb_follower_head);
2243		BUG_ON(!list);
2244		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
2245		WRITE_ONCE(rdp->nocb_follower_head, NULL);
2246		tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
2247
2248		/* Each pass through the following loop invokes a callback. */
2249		trace_rcu_batch_start(rdp->rsp->name,
2250				      atomic_long_read(&rdp->nocb_q_count_lazy),
2251				      atomic_long_read(&rdp->nocb_q_count), -1);
2252		c = cl = 0;
2253		while (list) {
2254			next = list->next;
2255			/* Wait for enqueuing to complete, if needed. */
2256			while (next == NULL && &list->next != tail) {
2257				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2258						    TPS("WaitQueue"));
2259				schedule_timeout_interruptible(1);
2260				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2261						    TPS("WokeQueue"));
2262				next = list->next;
2263			}
2264			debug_rcu_head_unqueue(list);
2265			local_bh_disable();
2266			if (__rcu_reclaim(rdp->rsp->name, list))
2267				cl++;
2268			c++;
2269			local_bh_enable();
2270			list = next;
2271		}
2272		trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2273		smp_mb__before_atomic();  /* _add after CB invocation. */
2274		atomic_long_add(-c, &rdp->nocb_q_count);
2275		atomic_long_add(-cl, &rdp->nocb_q_count_lazy);
2276		rdp->n_nocbs_invoked += c;
2277	}
2278	return 0;
2279}
2280
2281/* Is a deferred wakeup of rcu_nocb_kthread() required? */
2282static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2283{
2284	return READ_ONCE(rdp->nocb_defer_wakeup);
2285}
2286
2287/* Do a deferred wakeup of rcu_nocb_kthread(). */
2288static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2289{
2290	int ndw;
2291
2292	if (!rcu_nocb_need_deferred_wakeup(rdp))
2293		return;
2294	ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2295	WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOGP_WAKE_NOT);
2296	wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE);
2297	trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
2298}
2299
2300void __init rcu_init_nohz(void)
2301{
2302	int cpu;
2303	bool need_rcu_nocb_mask = true;
2304	struct rcu_state *rsp;
2305
2306#ifdef CONFIG_RCU_NOCB_CPU_NONE
2307	need_rcu_nocb_mask = false;
2308#endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
2309
2310#if defined(CONFIG_NO_HZ_FULL)
2311	if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2312		need_rcu_nocb_mask = true;
2313#endif /* #if defined(CONFIG_NO_HZ_FULL) */
2314
2315	if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
2316		if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2317			pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2318			return;
2319		}
2320		have_rcu_nocb_mask = true;
2321	}
2322	if (!have_rcu_nocb_mask)
2323		return;
2324
2325#ifdef CONFIG_RCU_NOCB_CPU_ZERO
2326	pr_info("\tOffload RCU callbacks from CPU 0\n");
2327	cpumask_set_cpu(0, rcu_nocb_mask);
2328#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
2329#ifdef CONFIG_RCU_NOCB_CPU_ALL
2330	pr_info("\tOffload RCU callbacks from all CPUs\n");
2331	cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
2332#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
2333#if defined(CONFIG_NO_HZ_FULL)
2334	if (tick_nohz_full_running)
2335		cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2336#endif /* #if defined(CONFIG_NO_HZ_FULL) */
2337
2338	if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2339		pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
2340		cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2341			    rcu_nocb_mask);
2342	}
2343	pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2344		cpumask_pr_args(rcu_nocb_mask));
2345	if (rcu_nocb_poll)
2346		pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2347
2348	for_each_rcu_flavor(rsp) {
2349		for_each_cpu(cpu, rcu_nocb_mask)
2350			init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu));
2351		rcu_organize_nocb_kthreads(rsp);
2352	}
2353}
2354
2355/* Initialize per-rcu_data variables for no-CBs CPUs. */
2356static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2357{
2358	rdp->nocb_tail = &rdp->nocb_head;
2359	init_swait_queue_head(&rdp->nocb_wq);
2360	rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2361}
2362
2363/*
2364 * If the specified CPU is a no-CBs CPU that does not already have its
2365 * rcuo kthread for the specified RCU flavor, spawn it.  If the CPUs are
2366 * brought online out of order, this can require re-organizing the
2367 * leader-follower relationships.
2368 */
2369static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
2370{
2371	struct rcu_data *rdp;
2372	struct rcu_data *rdp_last;
2373	struct rcu_data *rdp_old_leader;
2374	struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
2375	struct task_struct *t;
2376
2377	/*
2378	 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2379	 * then nothing to do.
2380	 */
2381	if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
2382		return;
2383
2384	/* If we didn't spawn the leader first, reorganize! */
2385	rdp_old_leader = rdp_spawn->nocb_leader;
2386	if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
2387		rdp_last = NULL;
2388		rdp = rdp_old_leader;
2389		do {
2390			rdp->nocb_leader = rdp_spawn;
2391			if (rdp_last && rdp != rdp_spawn)
2392				rdp_last->nocb_next_follower = rdp;
2393			if (rdp == rdp_spawn) {
2394				rdp = rdp->nocb_next_follower;
2395			} else {
2396				rdp_last = rdp;
2397				rdp = rdp->nocb_next_follower;
2398				rdp_last->nocb_next_follower = NULL;
2399			}
2400		} while (rdp);
2401		rdp_spawn->nocb_next_follower = rdp_old_leader;
2402	}
2403
2404	/* Spawn the kthread for this CPU and RCU flavor. */
2405	t = kthread_run(rcu_nocb_kthread, rdp_spawn,
2406			"rcuo%c/%d", rsp->abbr, cpu);
2407	BUG_ON(IS_ERR(t));
2408	WRITE_ONCE(rdp_spawn->nocb_kthread, t);
2409}
2410
2411/*
2412 * If the specified CPU is a no-CBs CPU that does not already have its
2413 * rcuo kthreads, spawn them.
2414 */
2415static void rcu_spawn_all_nocb_kthreads(int cpu)
2416{
2417	struct rcu_state *rsp;
2418
2419	if (rcu_scheduler_fully_active)
2420		for_each_rcu_flavor(rsp)
2421			rcu_spawn_one_nocb_kthread(rsp, cpu);
2422}
2423
2424/*
2425 * Once the scheduler is running, spawn rcuo kthreads for all online
2426 * no-CBs CPUs.  This assumes that the early_initcall()s happen before
2427 * non-boot CPUs come online -- if this changes, we will need to add
2428 * some mutual exclusion.
2429 */
2430static void __init rcu_spawn_nocb_kthreads(void)
2431{
2432	int cpu;
2433
2434	for_each_online_cpu(cpu)
2435		rcu_spawn_all_nocb_kthreads(cpu);
2436}
2437
2438/* How many follower CPU IDs per leader?  Default of -1 for sqrt(nr_cpu_ids). */
2439static int rcu_nocb_leader_stride = -1;
2440module_param(rcu_nocb_leader_stride, int, 0444);
2441
2442/*
2443 * Initialize leader-follower relationships for all no-CBs CPU.
2444 */
2445static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
2446{
2447	int cpu;
2448	int ls = rcu_nocb_leader_stride;
2449	int nl = 0;  /* Next leader. */
2450	struct rcu_data *rdp;
2451	struct rcu_data *rdp_leader = NULL;  /* Suppress misguided gcc warn. */
2452	struct rcu_data *rdp_prev = NULL;
2453
2454	if (!have_rcu_nocb_mask)
2455		return;
2456	if (ls == -1) {
2457		ls = int_sqrt(nr_cpu_ids);
2458		rcu_nocb_leader_stride = ls;
2459	}
2460
2461	/*
2462	 * Each pass through this loop sets up one rcu_data structure and
2463	 * spawns one rcu_nocb_kthread().
2464	 */
2465	for_each_cpu(cpu, rcu_nocb_mask) {
2466		rdp = per_cpu_ptr(rsp->rda, cpu);
2467		if (rdp->cpu >= nl) {
2468			/* New leader, set up for followers & next leader. */
2469			nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2470			rdp->nocb_leader = rdp;
2471			rdp_leader = rdp;
2472		} else {
2473			/* Another follower, link to previous leader. */
2474			rdp->nocb_leader = rdp_leader;
2475			rdp_prev->nocb_next_follower = rdp;
2476		}
2477		rdp_prev = rdp;
2478	}
2479}
2480
2481/* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2482static bool init_nocb_callback_list(struct rcu_data *rdp)
2483{
2484	if (!rcu_is_nocb_cpu(rdp->cpu))
2485		return false;
2486
2487	/* If there are early-boot callbacks, move them to nocb lists. */
2488	if (rdp->nxtlist) {
2489		rdp->nocb_head = rdp->nxtlist;
2490		rdp->nocb_tail = rdp->nxttail[RCU_NEXT_TAIL];
2491		atomic_long_set(&rdp->nocb_q_count, rdp->qlen);
2492		atomic_long_set(&rdp->nocb_q_count_lazy, rdp->qlen_lazy);
2493		rdp->nxtlist = NULL;
2494		rdp->qlen = 0;
2495		rdp->qlen_lazy = 0;
2496	}
2497	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2498	return true;
2499}
2500
2501#else /* #ifdef CONFIG_RCU_NOCB_CPU */
2502
2503static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
2504{
2505	WARN_ON_ONCE(1); /* Should be dead code. */
2506	return false;
2507}
2508
2509static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
2510{
2511}
2512
2513static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2514{
2515}
2516
2517static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
2518{
2519	return NULL;
2520}
2521
2522static void rcu_init_one_nocb(struct rcu_node *rnp)
2523{
2524}
2525
2526static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2527			    bool lazy, unsigned long flags)
2528{
2529	return false;
2530}
2531
2532static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2533						     struct rcu_data *rdp,
2534						     unsigned long flags)
2535{
2536	return false;
2537}
2538
2539static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2540{
2541}
2542
2543static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2544{
2545	return false;
2546}
2547
2548static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2549{
2550}
2551
2552static void rcu_spawn_all_nocb_kthreads(int cpu)
2553{
2554}
2555
2556static void __init rcu_spawn_nocb_kthreads(void)
2557{
2558}
2559
2560static bool init_nocb_callback_list(struct rcu_data *rdp)
2561{
2562	return false;
2563}
2564
2565#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2566
2567/*
2568 * An adaptive-ticks CPU can potentially execute in kernel mode for an
2569 * arbitrarily long period of time with the scheduling-clock tick turned
2570 * off.  RCU will be paying attention to this CPU because it is in the
2571 * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2572 * machine because the scheduling-clock tick has been disabled.  Therefore,
2573 * if an adaptive-ticks CPU is failing to respond to the current grace
2574 * period and has not be idle from an RCU perspective, kick it.
2575 */
2576static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
2577{
2578#ifdef CONFIG_NO_HZ_FULL
2579	if (tick_nohz_full_cpu(cpu))
2580		smp_send_reschedule(cpu);
2581#endif /* #ifdef CONFIG_NO_HZ_FULL */
2582}
2583
2584
2585#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2586
2587static int full_sysidle_state;		/* Current system-idle state. */
2588#define RCU_SYSIDLE_NOT		0	/* Some CPU is not idle. */
2589#define RCU_SYSIDLE_SHORT	1	/* All CPUs idle for brief period. */
2590#define RCU_SYSIDLE_LONG	2	/* All CPUs idle for long enough. */
2591#define RCU_SYSIDLE_FULL	3	/* All CPUs idle, ready for sysidle. */
2592#define RCU_SYSIDLE_FULL_NOTED	4	/* Actually entered sysidle state. */
2593
2594/*
2595 * Invoked to note exit from irq or task transition to idle.  Note that
2596 * usermode execution does -not- count as idle here!  After all, we want
2597 * to detect full-system idle states, not RCU quiescent states and grace
2598 * periods.  The caller must have disabled interrupts.
2599 */
2600static void rcu_sysidle_enter(int irq)
2601{
2602	unsigned long j;
2603	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2604
2605	/* If there are no nohz_full= CPUs, no need to track this. */
2606	if (!tick_nohz_full_enabled())
2607		return;
2608
2609	/* Adjust nesting, check for fully idle. */
2610	if (irq) {
2611		rdtp->dynticks_idle_nesting--;
2612		WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2613		if (rdtp->dynticks_idle_nesting != 0)
2614			return;  /* Still not fully idle. */
2615	} else {
2616		if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
2617		    DYNTICK_TASK_NEST_VALUE) {
2618			rdtp->dynticks_idle_nesting = 0;
2619		} else {
2620			rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
2621			WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2622			return;  /* Still not fully idle. */
2623		}
2624	}
2625
2626	/* Record start of fully idle period. */
2627	j = jiffies;
2628	WRITE_ONCE(rdtp->dynticks_idle_jiffies, j);
2629	smp_mb__before_atomic();
2630	atomic_inc(&rdtp->dynticks_idle);
2631	smp_mb__after_atomic();
2632	WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
2633}
2634
2635/*
2636 * Unconditionally force exit from full system-idle state.  This is
2637 * invoked when a normal CPU exits idle, but must be called separately
2638 * for the timekeeping CPU (tick_do_timer_cpu).  The reason for this
2639 * is that the timekeeping CPU is permitted to take scheduling-clock
2640 * interrupts while the system is in system-idle state, and of course
2641 * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2642 * interrupt from any other type of interrupt.
2643 */
2644void rcu_sysidle_force_exit(void)
2645{
2646	int oldstate = READ_ONCE(full_sysidle_state);
2647	int newoldstate;
2648
2649	/*
2650	 * Each pass through the following loop attempts to exit full
2651	 * system-idle state.  If contention proves to be a problem,
2652	 * a trylock-based contention tree could be used here.
2653	 */
2654	while (oldstate > RCU_SYSIDLE_SHORT) {
2655		newoldstate = cmpxchg(&full_sysidle_state,
2656				      oldstate, RCU_SYSIDLE_NOT);
2657		if (oldstate == newoldstate &&
2658		    oldstate == RCU_SYSIDLE_FULL_NOTED) {
2659			rcu_kick_nohz_cpu(tick_do_timer_cpu);
2660			return; /* We cleared it, done! */
2661		}
2662		oldstate = newoldstate;
2663	}
2664	smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
2665}
2666
2667/*
2668 * Invoked to note entry to irq or task transition from idle.  Note that
2669 * usermode execution does -not- count as idle here!  The caller must
2670 * have disabled interrupts.
2671 */
2672static void rcu_sysidle_exit(int irq)
2673{
2674	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2675
2676	/* If there are no nohz_full= CPUs, no need to track this. */
2677	if (!tick_nohz_full_enabled())
2678		return;
2679
2680	/* Adjust nesting, check for already non-idle. */
2681	if (irq) {
2682		rdtp->dynticks_idle_nesting++;
2683		WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2684		if (rdtp->dynticks_idle_nesting != 1)
2685			return; /* Already non-idle. */
2686	} else {
2687		/*
2688		 * Allow for irq misnesting.  Yes, it really is possible
2689		 * to enter an irq handler then never leave it, and maybe
2690		 * also vice versa.  Handle both possibilities.
2691		 */
2692		if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
2693			rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
2694			WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2695			return; /* Already non-idle. */
2696		} else {
2697			rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
2698		}
2699	}
2700
2701	/* Record end of idle period. */
2702	smp_mb__before_atomic();
2703	atomic_inc(&rdtp->dynticks_idle);
2704	smp_mb__after_atomic();
2705	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
2706
2707	/*
2708	 * If we are the timekeeping CPU, we are permitted to be non-idle
2709	 * during a system-idle state.  This must be the case, because
2710	 * the timekeeping CPU has to take scheduling-clock interrupts
2711	 * during the time that the system is transitioning to full
2712	 * system-idle state.  This means that the timekeeping CPU must
2713	 * invoke rcu_sysidle_force_exit() directly if it does anything
2714	 * more than take a scheduling-clock interrupt.
2715	 */
2716	if (smp_processor_id() == tick_do_timer_cpu)
2717		return;
2718
2719	/* Update system-idle state: We are clearly no longer fully idle! */
2720	rcu_sysidle_force_exit();
2721}
2722
2723/*
2724 * Check to see if the current CPU is idle.  Note that usermode execution
2725 * does not count as idle.  The caller must have disabled interrupts,
2726 * and must be running on tick_do_timer_cpu.
2727 */
2728static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2729				  unsigned long *maxj)
2730{
2731	int cur;
2732	unsigned long j;
2733	struct rcu_dynticks *rdtp = rdp->dynticks;
2734
2735	/* If there are no nohz_full= CPUs, don't check system-wide idleness. */
2736	if (!tick_nohz_full_enabled())
2737		return;
2738
2739	/*
2740	 * If some other CPU has already reported non-idle, if this is
2741	 * not the flavor of RCU that tracks sysidle state, or if this
2742	 * is an offline or the timekeeping CPU, nothing to do.
2743	 */
2744	if (!*isidle || rdp->rsp != rcu_state_p ||
2745	    cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
2746		return;
2747	/* Verify affinity of current kthread. */
2748	WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
2749
2750	/* Pick up current idle and NMI-nesting counter and check. */
2751	cur = atomic_read(&rdtp->dynticks_idle);
2752	if (cur & 0x1) {
2753		*isidle = false; /* We are not idle! */
2754		return;
2755	}
2756	smp_mb(); /* Read counters before timestamps. */
2757
2758	/* Pick up timestamps. */
2759	j = READ_ONCE(rdtp->dynticks_idle_jiffies);
2760	/* If this CPU entered idle more recently, update maxj timestamp. */
2761	if (ULONG_CMP_LT(*maxj, j))
2762		*maxj = j;
2763}
2764
2765/*
2766 * Is this the flavor of RCU that is handling full-system idle?
2767 */
2768static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2769{
2770	return rsp == rcu_state_p;
2771}
2772
2773/*
2774 * Return a delay in jiffies based on the number of CPUs, rcu_node
2775 * leaf fanout, and jiffies tick rate.  The idea is to allow larger
2776 * systems more time to transition to full-idle state in order to
2777 * avoid the cache thrashing that otherwise occur on the state variable.
2778 * Really small systems (less than a couple of tens of CPUs) should
2779 * instead use a single global atomically incremented counter, and later
2780 * versions of this will automatically reconfigure themselves accordingly.
2781 */
2782static unsigned long rcu_sysidle_delay(void)
2783{
2784	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2785		return 0;
2786	return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
2787}
2788
2789/*
2790 * Advance the full-system-idle state.  This is invoked when all of
2791 * the non-timekeeping CPUs are idle.
2792 */
2793static void rcu_sysidle(unsigned long j)
2794{
2795	/* Check the current state. */
2796	switch (READ_ONCE(full_sysidle_state)) {
2797	case RCU_SYSIDLE_NOT:
2798
2799		/* First time all are idle, so note a short idle period. */
2800		WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_SHORT);
2801		break;
2802
2803	case RCU_SYSIDLE_SHORT:
2804
2805		/*
2806		 * Idle for a bit, time to advance to next state?
2807		 * cmpxchg failure means race with non-idle, let them win.
2808		 */
2809		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2810			(void)cmpxchg(&full_sysidle_state,
2811				      RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
2812		break;
2813
2814	case RCU_SYSIDLE_LONG:
2815
2816		/*
2817		 * Do an additional check pass before advancing to full.
2818		 * cmpxchg failure means race with non-idle, let them win.
2819		 */
2820		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2821			(void)cmpxchg(&full_sysidle_state,
2822				      RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
2823		break;
2824
2825	default:
2826		break;
2827	}
2828}
2829
2830/*
2831 * Found a non-idle non-timekeeping CPU, so kick the system-idle state
2832 * back to the beginning.
2833 */
2834static void rcu_sysidle_cancel(void)
2835{
2836	smp_mb();
2837	if (full_sysidle_state > RCU_SYSIDLE_SHORT)
2838		WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_NOT);
2839}
2840
2841/*
2842 * Update the sysidle state based on the results of a force-quiescent-state
2843 * scan of the CPUs' dyntick-idle state.
2844 */
2845static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
2846			       unsigned long maxj, bool gpkt)
2847{
2848	if (rsp != rcu_state_p)
2849		return;  /* Wrong flavor, ignore. */
2850	if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2851		return;  /* Running state machine from timekeeping CPU. */
2852	if (isidle)
2853		rcu_sysidle(maxj);    /* More idle! */
2854	else
2855		rcu_sysidle_cancel(); /* Idle is over. */
2856}
2857
2858/*
2859 * Wrapper for rcu_sysidle_report() when called from the grace-period
2860 * kthread's context.
2861 */
2862static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2863				  unsigned long maxj)
2864{
2865	/* If there are no nohz_full= CPUs, no need to track this. */
2866	if (!tick_nohz_full_enabled())
2867		return;
2868
2869	rcu_sysidle_report(rsp, isidle, maxj, true);
2870}
2871
2872/* Callback and function for forcing an RCU grace period. */
2873struct rcu_sysidle_head {
2874	struct rcu_head rh;
2875	int inuse;
2876};
2877
2878static void rcu_sysidle_cb(struct rcu_head *rhp)
2879{
2880	struct rcu_sysidle_head *rshp;
2881
2882	/*
2883	 * The following memory barrier is needed to replace the
2884	 * memory barriers that would normally be in the memory
2885	 * allocator.
2886	 */
2887	smp_mb();  /* grace period precedes setting inuse. */
2888
2889	rshp = container_of(rhp, struct rcu_sysidle_head, rh);
2890	WRITE_ONCE(rshp->inuse, 0);
2891}
2892
2893/*
2894 * Check to see if the system is fully idle, other than the timekeeping CPU.
2895 * The caller must have disabled interrupts.  This is not intended to be
2896 * called unless tick_nohz_full_enabled().
2897 */
2898bool rcu_sys_is_idle(void)
2899{
2900	static struct rcu_sysidle_head rsh;
2901	int rss = READ_ONCE(full_sysidle_state);
2902
2903	if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
2904		return false;
2905
2906	/* Handle small-system case by doing a full scan of CPUs. */
2907	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
2908		int oldrss = rss - 1;
2909
2910		/*
2911		 * One pass to advance to each state up to _FULL.
2912		 * Give up if any pass fails to advance the state.
2913		 */
2914		while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
2915			int cpu;
2916			bool isidle = true;
2917			unsigned long maxj = jiffies - ULONG_MAX / 4;
2918			struct rcu_data *rdp;
2919
2920			/* Scan all the CPUs looking for nonidle CPUs. */
2921			for_each_possible_cpu(cpu) {
2922				rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
2923				rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
2924				if (!isidle)
2925					break;
2926			}
2927			rcu_sysidle_report(rcu_state_p, isidle, maxj, false);
2928			oldrss = rss;
2929			rss = READ_ONCE(full_sysidle_state);
2930		}
2931	}
2932
2933	/* If this is the first observation of an idle period, record it. */
2934	if (rss == RCU_SYSIDLE_FULL) {
2935		rss = cmpxchg(&full_sysidle_state,
2936			      RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
2937		return rss == RCU_SYSIDLE_FULL;
2938	}
2939
2940	smp_mb(); /* ensure rss load happens before later caller actions. */
2941
2942	/* If already fully idle, tell the caller (in case of races). */
2943	if (rss == RCU_SYSIDLE_FULL_NOTED)
2944		return true;
2945
2946	/*
2947	 * If we aren't there yet, and a grace period is not in flight,
2948	 * initiate a grace period.  Either way, tell the caller that
2949	 * we are not there yet.  We use an xchg() rather than an assignment
2950	 * to make up for the memory barriers that would otherwise be
2951	 * provided by the memory allocator.
2952	 */
2953	if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
2954	    !rcu_gp_in_progress(rcu_state_p) &&
2955	    !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
2956		call_rcu(&rsh.rh, rcu_sysidle_cb);
2957	return false;
2958}
2959
2960/*
2961 * Initialize dynticks sysidle state for CPUs coming online.
2962 */
2963static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2964{
2965	rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
2966}
2967
2968#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2969
2970static void rcu_sysidle_enter(int irq)
2971{
2972}
2973
2974static void rcu_sysidle_exit(int irq)
2975{
2976}
2977
2978static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2979				  unsigned long *maxj)
2980{
2981}
2982
2983static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2984{
2985	return false;
2986}
2987
2988static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2989				  unsigned long maxj)
2990{
2991}
2992
2993static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2994{
2995}
2996
2997#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2998
2999/*
3000 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
3001 * grace-period kthread will do force_quiescent_state() processing?
3002 * The idea is to avoid waking up RCU core processing on such a
3003 * CPU unless the grace period has extended for too long.
3004 *
3005 * This code relies on the fact that all NO_HZ_FULL CPUs are also
3006 * CONFIG_RCU_NOCB_CPU CPUs.
3007 */
3008static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
3009{
3010#ifdef CONFIG_NO_HZ_FULL
3011	if (tick_nohz_full_cpu(smp_processor_id()) &&
3012	    (!rcu_gp_in_progress(rsp) ||
3013	     ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ)))
3014		return true;
3015#endif /* #ifdef CONFIG_NO_HZ_FULL */
3016	return false;
3017}
3018
3019/*
3020 * Bind the grace-period kthread for the sysidle flavor of RCU to the
3021 * timekeeping CPU.
3022 */
3023static void rcu_bind_gp_kthread(void)
3024{
3025	int __maybe_unused cpu;
3026
3027	if (!tick_nohz_full_enabled())
3028		return;
3029#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
3030	cpu = tick_do_timer_cpu;
3031	if (cpu >= 0 && cpu < nr_cpu_ids)
3032		set_cpus_allowed_ptr(current, cpumask_of(cpu));
3033#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3034	housekeeping_affine(current);
3035#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3036}
3037
3038/* Record the current task on dyntick-idle entry. */
3039static void rcu_dynticks_task_enter(void)
3040{
3041#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3042	WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
3043#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3044}
3045
3046/* Record no current task on dyntick-idle exit. */
3047static void rcu_dynticks_task_exit(void)
3048{
3049#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3050	WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
3051#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3052}