Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
   3 * Internal non-public definitions that provide either classic
   4 * or preemptible semantics.
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, you can access it online at
  18 * http://www.gnu.org/licenses/gpl-2.0.html.
  19 *
  20 * Copyright Red Hat, 2009
  21 * Copyright IBM Corporation, 2009
  22 *
  23 * Author: Ingo Molnar <mingo@elte.hu>
  24 *	   Paul E. McKenney <paulmck@linux.vnet.ibm.com>
  25 */
  26
  27#include <linux/delay.h>
  28#include <linux/gfp.h>
  29#include <linux/oom.h>
  30#include <linux/smpboot.h>
  31#include "../time/tick-internal.h"
  32
  33#ifdef CONFIG_RCU_BOOST
  34
  35#include "../locking/rtmutex_common.h"
  36
  37/*
  38 * Control variables for per-CPU and per-rcu_node kthreads.  These
  39 * handle all flavors of RCU.
  40 */
  41static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
  42DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
  43DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
  44DEFINE_PER_CPU(char, rcu_cpu_has_work);
  45
  46#else /* #ifdef CONFIG_RCU_BOOST */
  47
  48/*
  49 * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST,
  50 * all uses are in dead code.  Provide a definition to keep the compiler
  51 * happy, but add WARN_ON_ONCE() to complain if used in the wrong place.
  52 * This probably needs to be excluded from -rt builds.
  53 */
  54#define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; })
  55
  56#endif /* #else #ifdef CONFIG_RCU_BOOST */
  57
  58#ifdef CONFIG_RCU_NOCB_CPU
  59static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
  60static bool have_rcu_nocb_mask;	    /* Was rcu_nocb_mask allocated? */
  61static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
  62#endif /* #ifdef CONFIG_RCU_NOCB_CPU */
  63
  64/*
  65 * Check the RCU kernel configuration parameters and print informative
  66 * messages about anything out of the ordinary.
  67 */
  68static void __init rcu_bootup_announce_oddness(void)
  69{
  70	if (IS_ENABLED(CONFIG_RCU_TRACE))
  71		pr_info("\tRCU debugfs-based tracing is enabled.\n");
  72	if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
  73	    (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
  74		pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
  75		       RCU_FANOUT);
  76	if (rcu_fanout_exact)
  77		pr_info("\tHierarchical RCU autobalancing is disabled.\n");
  78	if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
  79		pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
  80	if (IS_ENABLED(CONFIG_PROVE_RCU))
  81		pr_info("\tRCU lockdep checking is enabled.\n");
  82	if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST_RUNNABLE))
  83		pr_info("\tRCU torture testing starts during boot.\n");
  84	if (RCU_NUM_LVLS >= 4)
  85		pr_info("\tFour(or more)-level hierarchy is enabled.\n");
  86	if (RCU_FANOUT_LEAF != 16)
  87		pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
  88			RCU_FANOUT_LEAF);
  89	if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
  90		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
 
  91	if (nr_cpu_ids != NR_CPUS)
  92		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
  93	if (IS_ENABLED(CONFIG_RCU_BOOST))
  94		pr_info("\tRCU kthread priority: %d.\n", kthread_prio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  95}
  96
  97#ifdef CONFIG_PREEMPT_RCU
  98
  99RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
 100static struct rcu_state *const rcu_state_p = &rcu_preempt_state;
 101static struct rcu_data __percpu *const rcu_data_p = &rcu_preempt_data;
 102
 103static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
 104			       bool wake);
 105
 106/*
 107 * Tell them what RCU they are running.
 108 */
 109static void __init rcu_bootup_announce(void)
 110{
 111	pr_info("Preemptible hierarchical RCU implementation.\n");
 112	rcu_bootup_announce_oddness();
 113}
 114
 115/* Flags for rcu_preempt_ctxt_queue() decision table. */
 116#define RCU_GP_TASKS	0x8
 117#define RCU_EXP_TASKS	0x4
 118#define RCU_GP_BLKD	0x2
 119#define RCU_EXP_BLKD	0x1
 120
 121/*
 122 * Queues a task preempted within an RCU-preempt read-side critical
 123 * section into the appropriate location within the ->blkd_tasks list,
 124 * depending on the states of any ongoing normal and expedited grace
 125 * periods.  The ->gp_tasks pointer indicates which element the normal
 126 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
 127 * indicates which element the expedited grace period is waiting on (again,
 128 * NULL if none).  If a grace period is waiting on a given element in the
 129 * ->blkd_tasks list, it also waits on all subsequent elements.  Thus,
 130 * adding a task to the tail of the list blocks any grace period that is
 131 * already waiting on one of the elements.  In contrast, adding a task
 132 * to the head of the list won't block any grace period that is already
 133 * waiting on one of the elements.
 134 *
 135 * This queuing is imprecise, and can sometimes make an ongoing grace
 136 * period wait for a task that is not strictly speaking blocking it.
 137 * Given the choice, we needlessly block a normal grace period rather than
 138 * blocking an expedited grace period.
 139 *
 140 * Note that an endless sequence of expedited grace periods still cannot
 141 * indefinitely postpone a normal grace period.  Eventually, all of the
 142 * fixed number of preempted tasks blocking the normal grace period that are
 143 * not also blocking the expedited grace period will resume and complete
 144 * their RCU read-side critical sections.  At that point, the ->gp_tasks
 145 * pointer will equal the ->exp_tasks pointer, at which point the end of
 146 * the corresponding expedited grace period will also be the end of the
 147 * normal grace period.
 148 */
 149static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
 150	__releases(rnp->lock) /* But leaves rrupts disabled. */
 151{
 152	int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
 153			 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
 154			 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
 155			 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
 156	struct task_struct *t = current;
 157
 
 
 
 
 
 
 
 158	/*
 159	 * Decide where to queue the newly blocked task.  In theory,
 160	 * this could be an if-statement.  In practice, when I tried
 161	 * that, it was quite messy.
 162	 */
 163	switch (blkd_state) {
 164	case 0:
 165	case                RCU_EXP_TASKS:
 166	case                RCU_EXP_TASKS + RCU_GP_BLKD:
 167	case RCU_GP_TASKS:
 168	case RCU_GP_TASKS + RCU_EXP_TASKS:
 169
 170		/*
 171		 * Blocking neither GP, or first task blocking the normal
 172		 * GP but not blocking the already-waiting expedited GP.
 173		 * Queue at the head of the list to avoid unnecessarily
 174		 * blocking the already-waiting GPs.
 175		 */
 176		list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
 177		break;
 178
 179	case                                              RCU_EXP_BLKD:
 180	case                                RCU_GP_BLKD:
 181	case                                RCU_GP_BLKD + RCU_EXP_BLKD:
 182	case RCU_GP_TASKS +                               RCU_EXP_BLKD:
 183	case RCU_GP_TASKS +                 RCU_GP_BLKD + RCU_EXP_BLKD:
 184	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
 185
 186		/*
 187		 * First task arriving that blocks either GP, or first task
 188		 * arriving that blocks the expedited GP (with the normal
 189		 * GP already waiting), or a task arriving that blocks
 190		 * both GPs with both GPs already waiting.  Queue at the
 191		 * tail of the list to avoid any GP waiting on any of the
 192		 * already queued tasks that are not blocking it.
 193		 */
 194		list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
 195		break;
 196
 197	case                RCU_EXP_TASKS +               RCU_EXP_BLKD:
 198	case                RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
 199	case RCU_GP_TASKS + RCU_EXP_TASKS +               RCU_EXP_BLKD:
 200
 201		/*
 202		 * Second or subsequent task blocking the expedited GP.
 203		 * The task either does not block the normal GP, or is the
 204		 * first task blocking the normal GP.  Queue just after
 205		 * the first task blocking the expedited GP.
 206		 */
 207		list_add(&t->rcu_node_entry, rnp->exp_tasks);
 208		break;
 209
 210	case RCU_GP_TASKS +                 RCU_GP_BLKD:
 211	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
 212
 213		/*
 214		 * Second or subsequent task blocking the normal GP.
 215		 * The task does not block the expedited GP. Queue just
 216		 * after the first task blocking the normal GP.
 217		 */
 218		list_add(&t->rcu_node_entry, rnp->gp_tasks);
 219		break;
 220
 221	default:
 222
 223		/* Yet another exercise in excessive paranoia. */
 224		WARN_ON_ONCE(1);
 225		break;
 226	}
 227
 228	/*
 229	 * We have now queued the task.  If it was the first one to
 230	 * block either grace period, update the ->gp_tasks and/or
 231	 * ->exp_tasks pointers, respectively, to reference the newly
 232	 * blocked tasks.
 233	 */
 234	if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD))
 235		rnp->gp_tasks = &t->rcu_node_entry;
 
 
 236	if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
 237		rnp->exp_tasks = &t->rcu_node_entry;
 
 
 
 
 238	raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
 239
 240	/*
 241	 * Report the quiescent state for the expedited GP.  This expedited
 242	 * GP should not be able to end until we report, so there should be
 243	 * no need to check for a subsequent expedited GP.  (Though we are
 244	 * still in a quiescent state in any case.)
 245	 */
 246	if (blkd_state & RCU_EXP_BLKD &&
 247	    t->rcu_read_unlock_special.b.exp_need_qs) {
 248		t->rcu_read_unlock_special.b.exp_need_qs = false;
 249		rcu_report_exp_rdp(rdp->rsp, rdp, true);
 250	} else {
 251		WARN_ON_ONCE(t->rcu_read_unlock_special.b.exp_need_qs);
 252	}
 253}
 254
 255/*
 256 * Record a preemptible-RCU quiescent state for the specified CPU.  Note
 257 * that this just means that the task currently running on the CPU is
 258 * not in a quiescent state.  There might be any number of tasks blocked
 259 * while in an RCU read-side critical section.
 
 
 
 
 
 260 *
 261 * As with the other rcu_*_qs() functions, callers to this function
 262 * must disable preemption.
 263 */
 264static void rcu_preempt_qs(void)
 265{
 266	if (__this_cpu_read(rcu_data_p->cpu_no_qs.s)) {
 
 267		trace_rcu_grace_period(TPS("rcu_preempt"),
 268				       __this_cpu_read(rcu_data_p->gpnum),
 269				       TPS("cpuqs"));
 270		__this_cpu_write(rcu_data_p->cpu_no_qs.b.norm, false);
 271		barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
 272		current->rcu_read_unlock_special.b.need_qs = false;
 273	}
 274}
 275
 276/*
 277 * We have entered the scheduler, and the current task might soon be
 278 * context-switched away from.  If this task is in an RCU read-side
 279 * critical section, we will no longer be able to rely on the CPU to
 280 * record that fact, so we enqueue the task on the blkd_tasks list.
 281 * The task will dequeue itself when it exits the outermost enclosing
 282 * RCU read-side critical section.  Therefore, the current grace period
 283 * cannot be permitted to complete until the blkd_tasks list entries
 284 * predating the current grace period drain, in other words, until
 285 * rnp->gp_tasks becomes NULL.
 286 *
 287 * Caller must disable interrupts.
 288 */
 289static void rcu_preempt_note_context_switch(void)
 290{
 291	struct task_struct *t = current;
 292	struct rcu_data *rdp;
 293	struct rcu_node *rnp;
 294
 
 
 
 295	if (t->rcu_read_lock_nesting > 0 &&
 296	    !t->rcu_read_unlock_special.b.blocked) {
 297
 298		/* Possibly blocking in an RCU read-side critical section. */
 299		rdp = this_cpu_ptr(rcu_state_p->rda);
 300		rnp = rdp->mynode;
 301		raw_spin_lock_rcu_node(rnp);
 302		t->rcu_read_unlock_special.b.blocked = true;
 303		t->rcu_blocked_node = rnp;
 304
 305		/*
 306		 * Verify the CPU's sanity, trace the preemption, and
 307		 * then queue the task as required based on the states
 308		 * of any ongoing and expedited grace periods.
 309		 */
 310		WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
 311		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
 312		trace_rcu_preempt_task(rdp->rsp->name,
 313				       t->pid,
 314				       (rnp->qsmask & rdp->grpmask)
 315				       ? rnp->gpnum
 316				       : rnp->gpnum + 1);
 317		rcu_preempt_ctxt_queue(rnp, rdp);
 318	} else if (t->rcu_read_lock_nesting < 0 &&
 319		   t->rcu_read_unlock_special.s) {
 320
 321		/*
 322		 * Complete exit from RCU read-side critical section on
 323		 * behalf of preempted instance of __rcu_read_unlock().
 324		 */
 325		rcu_read_unlock_special(t);
 326	}
 327
 328	/*
 329	 * Either we were not in an RCU read-side critical section to
 330	 * begin with, or we have now recorded that critical section
 331	 * globally.  Either way, we can now note a quiescent state
 332	 * for this CPU.  Again, if we were in an RCU read-side critical
 333	 * section, and if that critical section was blocking the current
 334	 * grace period, then the fact that the task has been enqueued
 335	 * means that we continue to block the current grace period.
 336	 */
 337	rcu_preempt_qs();
 
 
 
 338}
 
 339
 340/*
 341 * Check for preempted RCU readers blocking the current grace period
 342 * for the specified rcu_node structure.  If the caller needs a reliable
 343 * answer, it must hold the rcu_node's ->lock.
 344 */
 345static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
 346{
 347	return rnp->gp_tasks != NULL;
 348}
 349
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 350/*
 351 * Advance a ->blkd_tasks-list pointer to the next entry, instead
 352 * returning NULL if at the end of the list.
 353 */
 354static struct list_head *rcu_next_node_entry(struct task_struct *t,
 355					     struct rcu_node *rnp)
 356{
 357	struct list_head *np;
 358
 359	np = t->rcu_node_entry.next;
 360	if (np == &rnp->blkd_tasks)
 361		np = NULL;
 362	return np;
 363}
 364
 365/*
 366 * Return true if the specified rcu_node structure has tasks that were
 367 * preempted within an RCU read-side critical section.
 368 */
 369static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
 370{
 371	return !list_empty(&rnp->blkd_tasks);
 372}
 373
 374/*
 375 * Handle special cases during rcu_read_unlock(), such as needing to
 376 * notify RCU core processing or task having blocked during the RCU
 377 * read-side critical section.
 378 */
 379void rcu_read_unlock_special(struct task_struct *t)
 
 380{
 381	bool empty_exp;
 382	bool empty_norm;
 383	bool empty_exp_now;
 384	unsigned long flags;
 385	struct list_head *np;
 386	bool drop_boost_mutex = false;
 387	struct rcu_data *rdp;
 388	struct rcu_node *rnp;
 389	union rcu_special special;
 390
 391	/* NMI handlers cannot block and cannot safely manipulate state. */
 392	if (in_nmi())
 393		return;
 394
 395	local_irq_save(flags);
 396
 397	/*
 398	 * If RCU core is waiting for this CPU to exit its critical section,
 399	 * report the fact that it has exited.  Because irqs are disabled,
 400	 * t->rcu_read_unlock_special cannot change.
 401	 */
 402	special = t->rcu_read_unlock_special;
 
 
 
 
 
 
 403	if (special.b.need_qs) {
 404		rcu_preempt_qs();
 405		t->rcu_read_unlock_special.b.need_qs = false;
 406		if (!t->rcu_read_unlock_special.s) {
 407			local_irq_restore(flags);
 408			return;
 409		}
 410	}
 411
 412	/*
 413	 * Respond to a request for an expedited grace period, but only if
 414	 * we were not preempted, meaning that we were running on the same
 415	 * CPU throughout.  If we were preempted, the exp_need_qs flag
 416	 * would have been cleared at the time of the first preemption,
 417	 * and the quiescent state would be reported when we were dequeued.
 418	 */
 419	if (special.b.exp_need_qs) {
 420		WARN_ON_ONCE(special.b.blocked);
 421		t->rcu_read_unlock_special.b.exp_need_qs = false;
 422		rdp = this_cpu_ptr(rcu_state_p->rda);
 423		rcu_report_exp_rdp(rcu_state_p, rdp, true);
 424		if (!t->rcu_read_unlock_special.s) {
 425			local_irq_restore(flags);
 426			return;
 427		}
 428	}
 429
 430	/* Hardware IRQ handlers cannot block, complain if they get here. */
 431	if (in_irq() || in_serving_softirq()) {
 432		lockdep_rcu_suspicious(__FILE__, __LINE__,
 433				       "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n");
 434		pr_alert("->rcu_read_unlock_special: %#x (b: %d, enq: %d nq: %d)\n",
 435			 t->rcu_read_unlock_special.s,
 436			 t->rcu_read_unlock_special.b.blocked,
 437			 t->rcu_read_unlock_special.b.exp_need_qs,
 438			 t->rcu_read_unlock_special.b.need_qs);
 439		local_irq_restore(flags);
 440		return;
 441	}
 442
 443	/* Clean up if blocked during RCU read-side critical section. */
 444	if (special.b.blocked) {
 445		t->rcu_read_unlock_special.b.blocked = false;
 446
 447		/*
 448		 * Remove this task from the list it blocked on.  The task
 449		 * now remains queued on the rcu_node corresponding to the
 450		 * CPU it first blocked on, so there is no longer any need
 451		 * to loop.  Retain a WARN_ON_ONCE() out of sheer paranoia.
 452		 */
 453		rnp = t->rcu_blocked_node;
 454		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
 455		WARN_ON_ONCE(rnp != t->rcu_blocked_node);
 
 456		empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
 
 
 457		empty_exp = sync_rcu_preempt_exp_done(rnp);
 458		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
 459		np = rcu_next_node_entry(t, rnp);
 460		list_del_init(&t->rcu_node_entry);
 461		t->rcu_blocked_node = NULL;
 462		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
 463						rnp->gpnum, t->pid);
 464		if (&t->rcu_node_entry == rnp->gp_tasks)
 465			rnp->gp_tasks = np;
 466		if (&t->rcu_node_entry == rnp->exp_tasks)
 467			rnp->exp_tasks = np;
 468		if (IS_ENABLED(CONFIG_RCU_BOOST)) {
 469			if (&t->rcu_node_entry == rnp->boost_tasks)
 470				rnp->boost_tasks = np;
 471			/* Snapshot ->boost_mtx ownership w/rnp->lock held. */
 472			drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
 
 
 473		}
 474
 475		/*
 476		 * If this was the last task on the current list, and if
 477		 * we aren't waiting on any CPUs, report the quiescent state.
 478		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
 479		 * so we must take a snapshot of the expedited state.
 480		 */
 481		empty_exp_now = sync_rcu_preempt_exp_done(rnp);
 482		if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
 483			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
 484							 rnp->gpnum,
 485							 0, rnp->qsmask,
 486							 rnp->level,
 487							 rnp->grplo,
 488							 rnp->grphi,
 489							 !!rnp->gp_tasks);
 490			rcu_report_unblock_qs_rnp(rcu_state_p, rnp, flags);
 491		} else {
 492			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 493		}
 494
 495		/* Unboost if we were boosted. */
 496		if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
 497			rt_mutex_unlock(&rnp->boost_mtx);
 498
 499		/*
 500		 * If this was the last task on the expedited lists,
 501		 * then we need to report up the rcu_node hierarchy.
 502		 */
 503		if (!empty_exp && empty_exp_now)
 504			rcu_report_exp_rnp(rcu_state_p, rnp, true);
 505	} else {
 506		local_irq_restore(flags);
 507	}
 508}
 509
 510/*
 511 * Dump detailed information for all tasks blocking the current RCU
 512 * grace period on the specified rcu_node structure.
 
 
 
 
 
 513 */
 514static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
 515{
 516	unsigned long flags;
 517	struct task_struct *t;
 518
 519	raw_spin_lock_irqsave_rcu_node(rnp, flags);
 520	if (!rcu_preempt_blocked_readers_cgp(rnp)) {
 521		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 522		return;
 523	}
 524	t = list_entry(rnp->gp_tasks->prev,
 525		       struct task_struct, rcu_node_entry);
 526	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
 527		sched_show_task(t);
 528	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 529}
 530
 531/*
 532 * Dump detailed information for all tasks blocking the current RCU
 533 * grace period.
 
 
 
 534 */
 535static void rcu_print_detail_task_stall(struct rcu_state *rsp)
 536{
 537	struct rcu_node *rnp = rcu_get_root(rsp);
 538
 539	rcu_print_detail_task_stall_rnp(rnp);
 540	rcu_for_each_leaf_node(rsp, rnp)
 541		rcu_print_detail_task_stall_rnp(rnp);
 542}
 543
 544static void rcu_print_task_stall_begin(struct rcu_node *rnp)
 545{
 546	pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
 547	       rnp->level, rnp->grplo, rnp->grphi);
 548}
 549
 550static void rcu_print_task_stall_end(void)
 551{
 552	pr_cont("\n");
 
 
 
 
 
 553}
 554
 555/*
 556 * Scan the current list of tasks blocked within RCU read-side critical
 557 * sections, printing out the tid of each.
 558 */
 559static int rcu_print_task_stall(struct rcu_node *rnp)
 560{
 561	struct task_struct *t;
 562	int ndetected = 0;
 563
 564	if (!rcu_preempt_blocked_readers_cgp(rnp))
 565		return 0;
 566	rcu_print_task_stall_begin(rnp);
 567	t = list_entry(rnp->gp_tasks->prev,
 568		       struct task_struct, rcu_node_entry);
 569	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
 570		pr_cont(" P%d", t->pid);
 571		ndetected++;
 572	}
 573	rcu_print_task_stall_end();
 574	return ndetected;
 575}
 576
 577/*
 578 * Scan the current list of tasks blocked within RCU read-side critical
 579 * sections, printing out the tid of each that is blocking the current
 580 * expedited grace period.
 581 */
 582static int rcu_print_task_exp_stall(struct rcu_node *rnp)
 583{
 584	struct task_struct *t;
 585	int ndetected = 0;
 
 
 586
 587	if (!rnp->exp_tasks)
 588		return 0;
 589	t = list_entry(rnp->exp_tasks->prev,
 590		       struct task_struct, rcu_node_entry);
 591	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
 592		pr_cont(" P%d", t->pid);
 593		ndetected++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 594	}
 595	return ndetected;
 
 596}
 597
 598/*
 599 * Check that the list of blocked tasks for the newly completed grace
 600 * period is in fact empty.  It is a serious bug to complete a grace
 601 * period that still has RCU readers blocked!  This function must be
 602 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
 603 * must be held by the caller.
 604 *
 605 * Also, if there are blocked tasks on the list, they automatically
 606 * block the newly created grace period, so set up ->gp_tasks accordingly.
 607 */
 608static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
 609{
 610	WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
 611	if (rcu_preempt_has_tasks(rnp))
 
 
 
 
 
 612		rnp->gp_tasks = rnp->blkd_tasks.next;
 
 
 
 
 
 613	WARN_ON_ONCE(rnp->qsmask);
 614}
 615
 616/*
 617 * Check for a quiescent state from the current CPU.  When a task blocks,
 618 * the task is recorded in the corresponding CPU's rcu_node structure,
 619 * which is checked elsewhere.
 620 *
 621 * Caller must disable hard irqs.
 622 */
 623static void rcu_preempt_check_callbacks(void)
 624{
 625	struct task_struct *t = current;
 626
 627	if (t->rcu_read_lock_nesting == 0) {
 628		rcu_preempt_qs();
 
 
 
 
 
 
 
 
 
 
 
 
 
 629		return;
 630	}
 
 
 631	if (t->rcu_read_lock_nesting > 0 &&
 632	    __this_cpu_read(rcu_data_p->core_needs_qs) &&
 633	    __this_cpu_read(rcu_data_p->cpu_no_qs.b.norm))
 
 
 634		t->rcu_read_unlock_special.b.need_qs = true;
 635}
 636
 637#ifdef CONFIG_RCU_BOOST
 638
 639static void rcu_preempt_do_callbacks(void)
 640{
 641	rcu_do_batch(rcu_state_p, this_cpu_ptr(rcu_data_p));
 642}
 643
 644#endif /* #ifdef CONFIG_RCU_BOOST */
 645
 646/*
 647 * Queue a preemptible-RCU callback for invocation after a grace period.
 
 
 
 
 
 648 */
 649void call_rcu(struct rcu_head *head, rcu_callback_t func)
 650{
 651	__call_rcu(head, func, rcu_state_p, -1, 0);
 652}
 653EXPORT_SYMBOL_GPL(call_rcu);
 654
 655/**
 656 * synchronize_rcu - wait until a grace period has elapsed.
 657 *
 658 * Control will return to the caller some time after a full grace
 659 * period has elapsed, in other words after all currently executing RCU
 660 * read-side critical sections have completed.  Note, however, that
 661 * upon return from synchronize_rcu(), the caller might well be executing
 662 * concurrently with new RCU read-side critical sections that began while
 663 * synchronize_rcu() was waiting.  RCU read-side critical sections are
 664 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
 665 *
 666 * See the description of synchronize_sched() for more detailed information
 667 * on memory ordering guarantees.
 668 */
 669void synchronize_rcu(void)
 670{
 671	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
 672			 lock_is_held(&rcu_lock_map) ||
 673			 lock_is_held(&rcu_sched_lock_map),
 674			 "Illegal synchronize_rcu() in RCU read-side critical section");
 675	if (!rcu_scheduler_active)
 676		return;
 677	if (rcu_gp_is_expedited())
 678		synchronize_rcu_expedited();
 679	else
 680		wait_rcu_gp(call_rcu);
 681}
 682EXPORT_SYMBOL_GPL(synchronize_rcu);
 683
 684/*
 685 * Remote handler for smp_call_function_single().  If there is an
 686 * RCU read-side critical section in effect, request that the
 687 * next rcu_read_unlock() record the quiescent state up the
 688 * ->expmask fields in the rcu_node tree.  Otherwise, immediately
 689 * report the quiescent state.
 690 */
 691static void sync_rcu_exp_handler(void *info)
 
 692{
 
 
 
 
 693	struct rcu_data *rdp;
 694	struct rcu_state *rsp = info;
 695	struct task_struct *t = current;
 696
 697	/*
 698	 * Within an RCU read-side critical section, request that the next
 699	 * rcu_read_unlock() report.  Unless this RCU read-side critical
 700	 * section has already blocked, in which case it is already set
 701	 * up for the expedited grace period to wait on it.
 702	 */
 703	if (t->rcu_read_lock_nesting > 0 &&
 704	    !t->rcu_read_unlock_special.b.blocked) {
 705		t->rcu_read_unlock_special.b.exp_need_qs = true;
 706		return;
 
 
 
 
 
 707	}
 708
 709	/*
 710	 * We are either exiting an RCU read-side critical section (negative
 711	 * values of t->rcu_read_lock_nesting) or are not in one at all
 712	 * (zero value of t->rcu_read_lock_nesting).  Or we are in an RCU
 713	 * read-side critical section that blocked before this expedited
 714	 * grace period started.  Either way, we can immediately report
 715	 * the quiescent state.
 716	 */
 717	rdp = this_cpu_ptr(rsp->rda);
 718	rcu_report_exp_rdp(rsp, rdp, true);
 719}
 720
 721/**
 722 * synchronize_rcu_expedited - Brute-force RCU grace period
 723 *
 724 * Wait for an RCU-preempt grace period, but expedite it.  The basic
 725 * idea is to invoke synchronize_sched_expedited() to push all the tasks to
 726 * the ->blkd_tasks lists and wait for this list to drain.  This consumes
 727 * significant time on all CPUs and is unfriendly to real-time workloads,
 728 * so is thus not recommended for any sort of common-case code.
 729 * In fact, if you are using synchronize_rcu_expedited() in a loop,
 730 * please restructure your code to batch your updates, and then Use a
 731 * single synchronize_rcu() instead.
 732 */
 733void synchronize_rcu_expedited(void)
 734{
 735	struct rcu_node *rnp;
 736	struct rcu_node *rnp_unlock;
 737	struct rcu_state *rsp = rcu_state_p;
 738	unsigned long s;
 739
 740	/* If expedited grace periods are prohibited, fall back to normal. */
 741	if (rcu_gp_is_normal()) {
 742		wait_rcu_gp(call_rcu);
 743		return;
 744	}
 745
 746	s = rcu_exp_gp_seq_snap(rsp);
 747
 748	rnp_unlock = exp_funnel_lock(rsp, s);
 749	if (rnp_unlock == NULL)
 750		return;  /* Someone else did our work for us. */
 751
 752	rcu_exp_gp_seq_start(rsp);
 753
 754	/* Initialize the rcu_node tree in preparation for the wait. */
 755	sync_rcu_exp_select_cpus(rsp, sync_rcu_exp_handler);
 756
 757	/* Wait for snapshotted ->blkd_tasks lists to drain. */
 758	rnp = rcu_get_root(rsp);
 759	synchronize_sched_expedited_wait(rsp);
 760
 761	/* Clean up and exit. */
 762	rcu_exp_gp_seq_end(rsp);
 763	mutex_unlock(&rnp_unlock->exp_funnel_mutex);
 764}
 765EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
 766
 767/**
 768 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
 769 *
 770 * Note that this primitive does not necessarily wait for an RCU grace period
 771 * to complete.  For example, if there are no RCU callbacks queued anywhere
 772 * in the system, then rcu_barrier() is within its rights to return
 773 * immediately, without waiting for anything, much less an RCU grace period.
 774 */
 775void rcu_barrier(void)
 776{
 777	_rcu_barrier(rcu_state_p);
 778}
 779EXPORT_SYMBOL_GPL(rcu_barrier);
 780
 781/*
 782 * Initialize preemptible RCU's state structures.
 783 */
 784static void __init __rcu_init_preempt(void)
 785{
 786	rcu_init_one(rcu_state_p);
 
 787}
 788
 789/*
 790 * Check for a task exiting while in a preemptible-RCU read-side
 791 * critical section, clean up if so.  No need to issue warnings,
 792 * as debug_check_no_locks_held() already does this if lockdep
 793 * is enabled.
 794 */
 795void exit_rcu(void)
 796{
 797	struct task_struct *t = current;
 798
 799	if (likely(list_empty(&current->rcu_node_entry)))
 800		return;
 801	t->rcu_read_lock_nesting = 1;
 802	barrier();
 803	t->rcu_read_unlock_special.b.blocked = true;
 804	__rcu_read_unlock();
 
 
 
 805}
 806
 807#else /* #ifdef CONFIG_PREEMPT_RCU */
 808
 809static struct rcu_state *const rcu_state_p = &rcu_sched_state;
 810
 811/*
 812 * Tell them what RCU they are running.
 
 
 
 
 813 */
 814static void __init rcu_bootup_announce(void)
 815{
 816	pr_info("Hierarchical RCU implementation.\n");
 817	rcu_bootup_announce_oddness();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 818}
 
 819
 820/*
 821 * Because preemptible RCU does not exist, we never have to check for
 822 * CPUs being in quiescent states.
 823 */
 824static void rcu_preempt_note_context_switch(void)
 825{
 
 
 
 
 
 
 
 
 
 
 
 
 826}
 
 827
 828/*
 829 * Because preemptible RCU does not exist, there are never any preempted
 830 * RCU readers.
 831 */
 832static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
 833{
 834	return 0;
 835}
 836
 837/*
 838 * Because there is no preemptible RCU, there can be no readers blocked.
 839 */
 840static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
 841{
 842	return false;
 843}
 844
 845/*
 846 * Because preemptible RCU does not exist, we never have to check for
 847 * tasks blocked within RCU read-side critical sections.
 848 */
 849static void rcu_print_detail_task_stall(struct rcu_state *rsp)
 850{
 
 851}
 852
 853/*
 854 * Because preemptible RCU does not exist, we never have to check for
 855 * tasks blocked within RCU read-side critical sections.
 856 */
 857static int rcu_print_task_stall(struct rcu_node *rnp)
 858{
 859	return 0;
 860}
 861
 862/*
 863 * Because preemptible RCU does not exist, we never have to check for
 864 * tasks blocked within RCU read-side critical sections that are
 865 * blocking the current expedited grace period.
 866 */
 867static int rcu_print_task_exp_stall(struct rcu_node *rnp)
 868{
 869	return 0;
 870}
 871
 872/*
 873 * Because there is no preemptible RCU, there can be no readers blocked,
 874 * so there is no need to check for blocked tasks.  So check only for
 875 * bogus qsmask values.
 876 */
 877static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
 878{
 879	WARN_ON_ONCE(rnp->qsmask);
 880}
 881
 882/*
 883 * Because preemptible RCU does not exist, it never has any callbacks
 884 * to check.
 885 */
 886static void rcu_preempt_check_callbacks(void)
 887{
 888}
 889
 890/*
 891 * Wait for an rcu-preempt grace period, but make it happen quickly.
 892 * But because preemptible RCU does not exist, map to rcu-sched.
 893 */
 894void synchronize_rcu_expedited(void)
 895{
 896	synchronize_sched_expedited();
 897}
 898EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
 
 
 899
 900/*
 901 * Because preemptible RCU does not exist, rcu_barrier() is just
 902 * another name for rcu_barrier_sched().
 903 */
 904void rcu_barrier(void)
 905{
 906	rcu_barrier_sched();
 907}
 908EXPORT_SYMBOL_GPL(rcu_barrier);
 909
 910/*
 911 * Because preemptible RCU does not exist, it need not be initialized.
 
 912 */
 913static void __init __rcu_init_preempt(void)
 914{
 915}
 916
 917/*
 918 * Because preemptible RCU does not exist, tasks cannot possibly exit
 919 * while in preemptible RCU read-side critical sections.
 920 */
 921void exit_rcu(void)
 
 922{
 
 923}
 924
 925#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
 926
 927#ifdef CONFIG_RCU_BOOST
 928
 929#include "../locking/rtmutex_common.h"
 930
 931#ifdef CONFIG_RCU_TRACE
 932
 933static void rcu_initiate_boost_trace(struct rcu_node *rnp)
 934{
 935	if (!rcu_preempt_has_tasks(rnp))
 936		rnp->n_balk_blkd_tasks++;
 937	else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
 938		rnp->n_balk_exp_gp_tasks++;
 939	else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
 940		rnp->n_balk_boost_tasks++;
 941	else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
 942		rnp->n_balk_notblocked++;
 943	else if (rnp->gp_tasks != NULL &&
 944		 ULONG_CMP_LT(jiffies, rnp->boost_time))
 945		rnp->n_balk_notyet++;
 946	else
 947		rnp->n_balk_nos++;
 948}
 949
 950#else /* #ifdef CONFIG_RCU_TRACE */
 951
 952static void rcu_initiate_boost_trace(struct rcu_node *rnp)
 953{
 
 954}
 955
 956#endif /* #else #ifdef CONFIG_RCU_TRACE */
 957
 958static void rcu_wake_cond(struct task_struct *t, int status)
 959{
 960	/*
 961	 * If the thread is yielding, only wake it when this
 962	 * is invoked from idle
 963	 */
 964	if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
 965		wake_up_process(t);
 966}
 967
 968/*
 969 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
 970 * or ->boost_tasks, advancing the pointer to the next task in the
 971 * ->blkd_tasks list.
 972 *
 973 * Note that irqs must be enabled: boosting the task can block.
 974 * Returns 1 if there are more tasks needing to be boosted.
 975 */
 976static int rcu_boost(struct rcu_node *rnp)
 977{
 978	unsigned long flags;
 979	struct task_struct *t;
 980	struct list_head *tb;
 981
 982	if (READ_ONCE(rnp->exp_tasks) == NULL &&
 983	    READ_ONCE(rnp->boost_tasks) == NULL)
 984		return 0;  /* Nothing left to boost. */
 985
 986	raw_spin_lock_irqsave_rcu_node(rnp, flags);
 987
 988	/*
 989	 * Recheck under the lock: all tasks in need of boosting
 990	 * might exit their RCU read-side critical sections on their own.
 991	 */
 992	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
 993		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 994		return 0;
 995	}
 996
 997	/*
 998	 * Preferentially boost tasks blocking expedited grace periods.
 999	 * This cannot starve the normal grace periods because a second
1000	 * expedited grace period must boost all blocked tasks, including
1001	 * those blocking the pre-existing normal grace period.
1002	 */
1003	if (rnp->exp_tasks != NULL) {
1004		tb = rnp->exp_tasks;
1005		rnp->n_exp_boosts++;
1006	} else {
1007		tb = rnp->boost_tasks;
1008		rnp->n_normal_boosts++;
1009	}
1010	rnp->n_tasks_boosted++;
1011
1012	/*
1013	 * We boost task t by manufacturing an rt_mutex that appears to
1014	 * be held by task t.  We leave a pointer to that rt_mutex where
1015	 * task t can find it, and task t will release the mutex when it
1016	 * exits its outermost RCU read-side critical section.  Then
1017	 * simply acquiring this artificial rt_mutex will boost task
1018	 * t's priority.  (Thanks to tglx for suggesting this approach!)
1019	 *
1020	 * Note that task t must acquire rnp->lock to remove itself from
1021	 * the ->blkd_tasks list, which it will do from exit() if from
1022	 * nowhere else.  We therefore are guaranteed that task t will
1023	 * stay around at least until we drop rnp->lock.  Note that
1024	 * rnp->lock also resolves races between our priority boosting
1025	 * and task t's exiting its outermost RCU read-side critical
1026	 * section.
1027	 */
1028	t = container_of(tb, struct task_struct, rcu_node_entry);
1029	rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1030	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1031	/* Lock only for side effect: boosts task t's priority. */
1032	rt_mutex_lock(&rnp->boost_mtx);
1033	rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
1034
1035	return READ_ONCE(rnp->exp_tasks) != NULL ||
1036	       READ_ONCE(rnp->boost_tasks) != NULL;
1037}
1038
1039/*
1040 * Priority-boosting kthread, one per leaf rcu_node.
1041 */
1042static int rcu_boost_kthread(void *arg)
1043{
1044	struct rcu_node *rnp = (struct rcu_node *)arg;
1045	int spincnt = 0;
1046	int more2boost;
1047
1048	trace_rcu_utilization(TPS("Start boost kthread@init"));
1049	for (;;) {
1050		rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1051		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1052		rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1053		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1054		rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1055		more2boost = rcu_boost(rnp);
1056		if (more2boost)
1057			spincnt++;
1058		else
1059			spincnt = 0;
1060		if (spincnt > 10) {
1061			rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1062			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1063			schedule_timeout_interruptible(2);
1064			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1065			spincnt = 0;
1066		}
1067	}
1068	/* NOTREACHED */
1069	trace_rcu_utilization(TPS("End boost kthread@notreached"));
1070	return 0;
1071}
1072
1073/*
1074 * Check to see if it is time to start boosting RCU readers that are
1075 * blocking the current grace period, and, if so, tell the per-rcu_node
1076 * kthread to start boosting them.  If there is an expedited grace
1077 * period in progress, it is always time to boost.
1078 *
1079 * The caller must hold rnp->lock, which this function releases.
1080 * The ->boost_kthread_task is immortal, so we don't need to worry
1081 * about it going away.
1082 */
1083static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1084	__releases(rnp->lock)
1085{
1086	struct task_struct *t;
1087
1088	if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1089		rnp->n_balk_exp_gp_tasks++;
1090		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1091		return;
1092	}
1093	if (rnp->exp_tasks != NULL ||
1094	    (rnp->gp_tasks != NULL &&
1095	     rnp->boost_tasks == NULL &&
1096	     rnp->qsmask == 0 &&
1097	     ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1098		if (rnp->exp_tasks == NULL)
1099			rnp->boost_tasks = rnp->gp_tasks;
1100		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1101		t = rnp->boost_kthread_task;
1102		if (t)
1103			rcu_wake_cond(t, rnp->boost_kthread_status);
1104	} else {
1105		rcu_initiate_boost_trace(rnp);
1106		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1107	}
1108}
1109
1110/*
1111 * Wake up the per-CPU kthread to invoke RCU callbacks.
1112 */
1113static void invoke_rcu_callbacks_kthread(void)
1114{
1115	unsigned long flags;
1116
1117	local_irq_save(flags);
1118	__this_cpu_write(rcu_cpu_has_work, 1);
1119	if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1120	    current != __this_cpu_read(rcu_cpu_kthread_task)) {
1121		rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1122			      __this_cpu_read(rcu_cpu_kthread_status));
1123	}
1124	local_irq_restore(flags);
1125}
1126
1127/*
1128 * Is the current CPU running the RCU-callbacks kthread?
1129 * Caller must have preemption disabled.
1130 */
1131static bool rcu_is_callbacks_kthread(void)
1132{
1133	return __this_cpu_read(rcu_cpu_kthread_task) == current;
1134}
1135
1136#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1137
1138/*
1139 * Do priority-boost accounting for the start of a new grace period.
1140 */
1141static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1142{
1143	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1144}
1145
1146/*
1147 * Create an RCU-boost kthread for the specified node if one does not
1148 * already exist.  We only create this kthread for preemptible RCU.
1149 * Returns zero if all is well, a negated errno otherwise.
1150 */
1151static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1152				       struct rcu_node *rnp)
1153{
1154	int rnp_index = rnp - &rsp->node[0];
1155	unsigned long flags;
1156	struct sched_param sp;
1157	struct task_struct *t;
1158
1159	if (rcu_state_p != rsp)
1160		return 0;
1161
1162	if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
1163		return 0;
 
 
1164
1165	rsp->boost = 1;
1166	if (rnp->boost_kthread_task != NULL)
1167		return 0;
 
1168	t = kthread_create(rcu_boost_kthread, (void *)rnp,
1169			   "rcub/%d", rnp_index);
1170	if (IS_ERR(t))
1171		return PTR_ERR(t);
 
1172	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1173	rnp->boost_kthread_task = t;
1174	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1175	sp.sched_priority = kthread_prio;
1176	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1177	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1178	return 0;
1179}
1180
1181static void rcu_kthread_do_work(void)
1182{
1183	rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1184	rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1185	rcu_preempt_do_callbacks();
1186}
1187
1188static void rcu_cpu_kthread_setup(unsigned int cpu)
1189{
1190	struct sched_param sp;
1191
1192	sp.sched_priority = kthread_prio;
1193	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1194}
1195
1196static void rcu_cpu_kthread_park(unsigned int cpu)
1197{
1198	per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1199}
1200
1201static int rcu_cpu_kthread_should_run(unsigned int cpu)
1202{
1203	return __this_cpu_read(rcu_cpu_has_work);
1204}
1205
1206/*
1207 * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
1208 * RCU softirq used in flavors and configurations of RCU that do not
1209 * support RCU priority boosting.
1210 */
1211static void rcu_cpu_kthread(unsigned int cpu)
1212{
1213	unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1214	char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1215	int spincnt;
1216
1217	for (spincnt = 0; spincnt < 10; spincnt++) {
1218		trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1219		local_bh_disable();
1220		*statusp = RCU_KTHREAD_RUNNING;
1221		this_cpu_inc(rcu_cpu_kthread_loops);
1222		local_irq_disable();
1223		work = *workp;
1224		*workp = 0;
1225		local_irq_enable();
1226		if (work)
1227			rcu_kthread_do_work();
1228		local_bh_enable();
1229		if (*workp == 0) {
1230			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1231			*statusp = RCU_KTHREAD_WAITING;
1232			return;
1233		}
1234	}
1235	*statusp = RCU_KTHREAD_YIELDING;
1236	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1237	schedule_timeout_interruptible(2);
1238	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1239	*statusp = RCU_KTHREAD_WAITING;
1240}
1241
1242/*
1243 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1244 * served by the rcu_node in question.  The CPU hotplug lock is still
1245 * held, so the value of rnp->qsmaskinit will be stable.
1246 *
1247 * We don't include outgoingcpu in the affinity set, use -1 if there is
1248 * no outgoing CPU.  If there are no CPUs left in the affinity set,
1249 * this function allows the kthread to execute on any CPU.
1250 */
1251static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1252{
1253	struct task_struct *t = rnp->boost_kthread_task;
1254	unsigned long mask = rcu_rnp_online_cpus(rnp);
1255	cpumask_var_t cm;
1256	int cpu;
1257
1258	if (!t)
1259		return;
1260	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1261		return;
1262	for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1263		if ((mask & 0x1) && cpu != outgoingcpu)
 
1264			cpumask_set_cpu(cpu, cm);
1265	if (cpumask_weight(cm) == 0)
1266		cpumask_setall(cm);
1267	set_cpus_allowed_ptr(t, cm);
1268	free_cpumask_var(cm);
1269}
1270
1271static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1272	.store			= &rcu_cpu_kthread_task,
1273	.thread_should_run	= rcu_cpu_kthread_should_run,
1274	.thread_fn		= rcu_cpu_kthread,
1275	.thread_comm		= "rcuc/%u",
1276	.setup			= rcu_cpu_kthread_setup,
1277	.park			= rcu_cpu_kthread_park,
1278};
1279
1280/*
1281 * Spawn boost kthreads -- called as soon as the scheduler is running.
1282 */
1283static void __init rcu_spawn_boost_kthreads(void)
1284{
1285	struct rcu_node *rnp;
1286	int cpu;
1287
1288	for_each_possible_cpu(cpu)
1289		per_cpu(rcu_cpu_has_work, cpu) = 0;
1290	BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1291	rcu_for_each_leaf_node(rcu_state_p, rnp)
1292		(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1293}
1294
1295static void rcu_prepare_kthreads(int cpu)
1296{
1297	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
1298	struct rcu_node *rnp = rdp->mynode;
1299
1300	/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1301	if (rcu_scheduler_fully_active)
1302		(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1303}
1304
1305#else /* #ifdef CONFIG_RCU_BOOST */
1306
1307static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1308	__releases(rnp->lock)
1309{
1310	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1311}
1312
1313static void invoke_rcu_callbacks_kthread(void)
1314{
1315	WARN_ON_ONCE(1);
1316}
1317
1318static bool rcu_is_callbacks_kthread(void)
1319{
1320	return false;
1321}
1322
1323static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1324{
1325}
1326
1327static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1328{
1329}
1330
1331static void __init rcu_spawn_boost_kthreads(void)
1332{
1333}
1334
1335static void rcu_prepare_kthreads(int cpu)
1336{
1337}
1338
1339#endif /* #else #ifdef CONFIG_RCU_BOOST */
1340
1341#if !defined(CONFIG_RCU_FAST_NO_HZ)
1342
1343/*
1344 * Check to see if any future RCU-related work will need to be done
1345 * by the current CPU, even if none need be done immediately, returning
1346 * 1 if so.  This function is part of the RCU implementation; it is -not-
1347 * an exported member of the RCU API.
1348 *
1349 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1350 * any flavor of RCU.
1351 */
1352int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1353{
1354	*nextevt = KTIME_MAX;
1355	return IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)
1356	       ? 0 : rcu_cpu_has_callbacks(NULL);
1357}
1358
1359/*
1360 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1361 * after it.
1362 */
1363static void rcu_cleanup_after_idle(void)
1364{
1365}
1366
1367/*
1368 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1369 * is nothing.
1370 */
1371static void rcu_prepare_for_idle(void)
1372{
1373}
1374
1375/*
1376 * Don't bother keeping a running count of the number of RCU callbacks
1377 * posted because CONFIG_RCU_FAST_NO_HZ=n.
1378 */
1379static void rcu_idle_count_callbacks_posted(void)
1380{
1381}
1382
1383#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1384
1385/*
1386 * This code is invoked when a CPU goes idle, at which point we want
1387 * to have the CPU do everything required for RCU so that it can enter
1388 * the energy-efficient dyntick-idle mode.  This is handled by a
1389 * state machine implemented by rcu_prepare_for_idle() below.
1390 *
1391 * The following three proprocessor symbols control this state machine:
1392 *
1393 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1394 *	to sleep in dyntick-idle mode with RCU callbacks pending.  This
1395 *	is sized to be roughly one RCU grace period.  Those energy-efficiency
1396 *	benchmarkers who might otherwise be tempted to set this to a large
1397 *	number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1398 *	system.  And if you are -that- concerned about energy efficiency,
1399 *	just power the system down and be done with it!
1400 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1401 *	permitted to sleep in dyntick-idle mode with only lazy RCU
1402 *	callbacks pending.  Setting this too high can OOM your system.
1403 *
1404 * The values below work well in practice.  If future workloads require
1405 * adjustment, they can be converted into kernel config parameters, though
1406 * making the state machine smarter might be a better option.
1407 */
1408#define RCU_IDLE_GP_DELAY 4		/* Roughly one grace period. */
1409#define RCU_IDLE_LAZY_GP_DELAY (6 * HZ)	/* Roughly six seconds. */
1410
1411static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1412module_param(rcu_idle_gp_delay, int, 0644);
1413static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1414module_param(rcu_idle_lazy_gp_delay, int, 0644);
1415
1416/*
1417 * Try to advance callbacks for all flavors of RCU on the current CPU, but
1418 * only if it has been awhile since the last time we did so.  Afterwards,
1419 * if there are any callbacks ready for immediate invocation, return true.
1420 */
1421static bool __maybe_unused rcu_try_advance_all_cbs(void)
1422{
1423	bool cbs_ready = false;
1424	struct rcu_data *rdp;
1425	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1426	struct rcu_node *rnp;
1427	struct rcu_state *rsp;
1428
1429	/* Exit early if we advanced recently. */
1430	if (jiffies == rdtp->last_advance_all)
1431		return false;
1432	rdtp->last_advance_all = jiffies;
1433
1434	for_each_rcu_flavor(rsp) {
1435		rdp = this_cpu_ptr(rsp->rda);
1436		rnp = rdp->mynode;
1437
1438		/*
1439		 * Don't bother checking unless a grace period has
1440		 * completed since we last checked and there are
1441		 * callbacks not yet ready to invoke.
1442		 */
1443		if ((rdp->completed != rnp->completed ||
1444		     unlikely(READ_ONCE(rdp->gpwrap))) &&
1445		    rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
1446			note_gp_changes(rsp, rdp);
 
1447
1448		if (cpu_has_callbacks_ready_to_invoke(rdp))
1449			cbs_ready = true;
1450	}
1451	return cbs_ready;
1452}
1453
1454/*
1455 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1456 * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1457 * caller to set the timeout based on whether or not there are non-lazy
1458 * callbacks.
1459 *
1460 * The caller must have disabled interrupts.
1461 */
1462int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1463{
1464	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1465	unsigned long dj;
1466
1467	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)) {
1468		*nextevt = KTIME_MAX;
1469		return 0;
1470	}
1471
1472	/* Snapshot to detect later posting of non-lazy callback. */
1473	rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1474
1475	/* If no callbacks, RCU doesn't need the CPU. */
1476	if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
 
1477		*nextevt = KTIME_MAX;
1478		return 0;
1479	}
1480
1481	/* Attempt to advance callbacks. */
1482	if (rcu_try_advance_all_cbs()) {
1483		/* Some ready to invoke, so initiate later invocation. */
1484		invoke_rcu_core();
1485		return 1;
1486	}
1487	rdtp->last_accelerate = jiffies;
1488
1489	/* Request timer delay depending on laziness, and round. */
1490	if (!rdtp->all_lazy) {
 
 
 
1491		dj = round_up(rcu_idle_gp_delay + jiffies,
1492			       rcu_idle_gp_delay) - jiffies;
1493	} else {
1494		dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1495	}
1496	*nextevt = basemono + dj * TICK_NSEC;
1497	return 0;
1498}
1499
1500/*
1501 * Prepare a CPU for idle from an RCU perspective.  The first major task
1502 * is to sense whether nohz mode has been enabled or disabled via sysfs.
1503 * The second major task is to check to see if a non-lazy callback has
1504 * arrived at a CPU that previously had only lazy callbacks.  The third
1505 * major task is to accelerate (that is, assign grace-period numbers to)
1506 * any recently arrived callbacks.
1507 *
1508 * The caller must have disabled interrupts.
1509 */
1510static void rcu_prepare_for_idle(void)
1511{
1512	bool needwake;
1513	struct rcu_data *rdp;
1514	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1515	struct rcu_node *rnp;
1516	struct rcu_state *rsp;
1517	int tne;
1518
1519	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) ||
1520	    rcu_is_nocb_cpu(smp_processor_id()))
1521		return;
1522
1523	/* Handle nohz enablement switches conservatively. */
1524	tne = READ_ONCE(tick_nohz_active);
1525	if (tne != rdtp->tick_nohz_enabled_snap) {
1526		if (rcu_cpu_has_callbacks(NULL))
1527			invoke_rcu_core(); /* force nohz to see update. */
1528		rdtp->tick_nohz_enabled_snap = tne;
1529		return;
1530	}
1531	if (!tne)
1532		return;
1533
1534	/*
1535	 * If a non-lazy callback arrived at a CPU having only lazy
1536	 * callbacks, invoke RCU core for the side-effect of recalculating
1537	 * idle duration on re-entry to idle.
1538	 */
1539	if (rdtp->all_lazy &&
1540	    rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1541		rdtp->all_lazy = false;
1542		rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1543		invoke_rcu_core();
1544		return;
1545	}
1546
1547	/*
1548	 * If we have not yet accelerated this jiffy, accelerate all
1549	 * callbacks on this CPU.
1550	 */
1551	if (rdtp->last_accelerate == jiffies)
1552		return;
1553	rdtp->last_accelerate = jiffies;
1554	for_each_rcu_flavor(rsp) {
1555		rdp = this_cpu_ptr(rsp->rda);
1556		if (!*rdp->nxttail[RCU_DONE_TAIL])
1557			continue;
1558		rnp = rdp->mynode;
1559		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1560		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1561		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1562		if (needwake)
1563			rcu_gp_kthread_wake(rsp);
1564	}
1565}
1566
1567/*
1568 * Clean up for exit from idle.  Attempt to advance callbacks based on
1569 * any grace periods that elapsed while the CPU was idle, and if any
1570 * callbacks are now ready to invoke, initiate invocation.
1571 */
1572static void rcu_cleanup_after_idle(void)
1573{
1574	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) ||
1575	    rcu_is_nocb_cpu(smp_processor_id()))
 
 
1576		return;
1577	if (rcu_try_advance_all_cbs())
1578		invoke_rcu_core();
1579}
1580
1581/*
1582 * Keep a running count of the number of non-lazy callbacks posted
1583 * on this CPU.  This running counter (which is never decremented) allows
1584 * rcu_prepare_for_idle() to detect when something out of the idle loop
1585 * posts a callback, even if an equal number of callbacks are invoked.
1586 * Of course, callbacks should only be posted from within a trace event
1587 * designed to be called from idle or from within RCU_NONIDLE().
1588 */
1589static void rcu_idle_count_callbacks_posted(void)
1590{
1591	__this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1592}
1593
1594/*
1595 * Data for flushing lazy RCU callbacks at OOM time.
1596 */
1597static atomic_t oom_callback_count;
1598static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1599
1600/*
1601 * RCU OOM callback -- decrement the outstanding count and deliver the
1602 * wake-up if we are the last one.
1603 */
1604static void rcu_oom_callback(struct rcu_head *rhp)
1605{
1606	if (atomic_dec_and_test(&oom_callback_count))
1607		wake_up(&oom_callback_wq);
1608}
1609
1610/*
1611 * Post an rcu_oom_notify callback on the current CPU if it has at
1612 * least one lazy callback.  This will unnecessarily post callbacks
1613 * to CPUs that already have a non-lazy callback at the end of their
1614 * callback list, but this is an infrequent operation, so accept some
1615 * extra overhead to keep things simple.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1616 */
1617static void rcu_oom_notify_cpu(void *unused)
1618{
1619	struct rcu_state *rsp;
1620	struct rcu_data *rdp;
1621
1622	for_each_rcu_flavor(rsp) {
1623		rdp = raw_cpu_ptr(rsp->rda);
1624		if (rdp->qlen_lazy != 0) {
1625			atomic_inc(&oom_callback_count);
1626			rsp->call(&rdp->oom_head, rcu_oom_callback);
1627		}
1628	}
1629}
1630
1631/*
1632 * If low on memory, ensure that each CPU has a non-lazy callback.
1633 * This will wake up CPUs that have only lazy callbacks, in turn
1634 * ensuring that they free up the corresponding memory in a timely manner.
1635 * Because an uncertain amount of memory will be freed in some uncertain
1636 * timeframe, we do not claim to have freed anything.
1637 */
1638static int rcu_oom_notify(struct notifier_block *self,
1639			  unsigned long notused, void *nfreed)
1640{
1641	int cpu;
1642
1643	/* Wait for callbacks from earlier instance to complete. */
1644	wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1645	smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1646
1647	/*
1648	 * Prevent premature wakeup: ensure that all increments happen
1649	 * before there is a chance of the counter reaching zero.
1650	 */
1651	atomic_set(&oom_callback_count, 1);
1652
1653	for_each_online_cpu(cpu) {
1654		smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1655		cond_resched_rcu_qs();
1656	}
1657
1658	/* Unconditionally decrement: no need to wake ourselves up. */
1659	atomic_dec(&oom_callback_count);
1660
1661	return NOTIFY_OK;
1662}
 
1663
1664static struct notifier_block rcu_oom_nb = {
1665	.notifier_call = rcu_oom_notify
1666};
1667
1668static int __init rcu_register_oom_notifier(void)
1669{
1670	register_oom_notifier(&rcu_oom_nb);
1671	return 0;
1672}
1673early_initcall(rcu_register_oom_notifier);
1674
1675#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1676
1677#ifdef CONFIG_RCU_FAST_NO_HZ
 
 
 
 
 
 
1678
1679static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
 
 
 
 
 
1680{
1681	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1682	unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1683
1684	sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1685		rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1686		ulong2long(nlpd),
1687		rdtp->all_lazy ? 'L' : '.',
1688		rdtp->tick_nohz_enabled_snap ? '.' : 'D');
 
1689}
1690
1691#else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1692
1693static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
 
 
 
 
 
 
 
 
1694{
1695	*cp = '\0';
 
 
1696}
1697
1698#endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1699
1700/* Initiate the stall-info list. */
1701static void print_cpu_stall_info_begin(void)
 
1702{
1703	pr_cont("\n");
 
1704}
1705
1706/*
1707 * Print out diagnostic information for the specified stalled CPU.
1708 *
1709 * If the specified CPU is aware of the current RCU grace period
1710 * (flavor specified by rsp), then print the number of scheduling
1711 * clock interrupts the CPU has taken during the time that it has
1712 * been aware.  Otherwise, print the number of RCU grace periods
1713 * that this CPU is ignorant of, for example, "1" if the CPU was
1714 * aware of the previous grace period.
1715 *
1716 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1717 */
1718static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1719{
1720	char fast_no_hz[72];
1721	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1722	struct rcu_dynticks *rdtp = rdp->dynticks;
1723	char *ticks_title;
1724	unsigned long ticks_value;
1725
1726	if (rsp->gpnum == rdp->gpnum) {
1727		ticks_title = "ticks this GP";
1728		ticks_value = rdp->ticks_this_gp;
1729	} else {
1730		ticks_title = "GPs behind";
1731		ticks_value = rsp->gpnum - rdp->gpnum;
1732	}
1733	print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1734	pr_err("\t%d-%c%c%c: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n",
1735	       cpu,
1736	       "O."[!!cpu_online(cpu)],
1737	       "o."[!!(rdp->grpmask & rdp->mynode->qsmaskinit)],
1738	       "N."[!!(rdp->grpmask & rdp->mynode->qsmaskinitnext)],
1739	       ticks_value, ticks_title,
1740	       atomic_read(&rdtp->dynticks) & 0xfff,
1741	       rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1742	       rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1743	       READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart,
1744	       fast_no_hz);
1745}
1746
1747/* Terminate the stall-info list. */
1748static void print_cpu_stall_info_end(void)
1749{
1750	pr_err("\t");
 
1751}
1752
1753/* Zero ->ticks_this_gp for all flavors of RCU. */
1754static void zero_cpu_stall_ticks(struct rcu_data *rdp)
 
 
 
1755{
1756	rdp->ticks_this_gp = 0;
1757	rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
 
 
1758}
1759
1760/* Increment ->ticks_this_gp for all flavors of RCU. */
1761static void increment_cpu_stall_ticks(void)
 
 
 
1762{
1763	struct rcu_state *rsp;
1764
1765	for_each_rcu_flavor(rsp)
1766		raw_cpu_inc(rsp->rda->ticks_this_gp);
1767}
1768
1769#ifdef CONFIG_RCU_NOCB_CPU
1770
1771/*
1772 * Offload callback processing from the boot-time-specified set of CPUs
1773 * specified by rcu_nocb_mask.  For each CPU in the set, there is a
1774 * kthread created that pulls the callbacks from the corresponding CPU,
1775 * waits for a grace period to elapse, and invokes the callbacks.
1776 * The no-CBs CPUs do a wake_up() on their kthread when they insert
1777 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1778 * has been specified, in which case each kthread actively polls its
1779 * CPU.  (Which isn't so great for energy efficiency, but which does
1780 * reduce RCU's overhead on that CPU.)
1781 *
1782 * This is intended to be used in conjunction with Frederic Weisbecker's
1783 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1784 * running CPU-bound user-mode computations.
1785 *
1786 * Offloading of callback processing could also in theory be used as
1787 * an energy-efficiency measure because CPUs with no RCU callbacks
1788 * queued are more aggressive about entering dyntick-idle mode.
1789 */
1790
1791
1792/* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1793static int __init rcu_nocb_setup(char *str)
1794{
1795	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1796	have_rcu_nocb_mask = true;
1797	cpulist_parse(str, rcu_nocb_mask);
1798	return 1;
 
 
1799}
1800__setup("rcu_nocbs=", rcu_nocb_setup);
1801
1802static int __init parse_rcu_nocb_poll(char *arg)
 
1803{
1804	rcu_nocb_poll = 1;
1805	return 0;
 
 
1806}
1807early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1808
1809/*
1810 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1811 * grace period.
1812 */
1813static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1814{
1815	swake_up_all(sq);
1816}
1817
1818/*
1819 * Set the root rcu_node structure's ->need_future_gp field
1820 * based on the sum of those of all rcu_node structures.  This does
1821 * double-count the root rcu_node structure's requests, but this
1822 * is necessary to handle the possibility of a rcu_nocb_kthread()
1823 * having awakened during the time that the rcu_node structures
1824 * were being updated for the end of the previous grace period.
1825 */
1826static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
1827{
1828	rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
1829}
1830
1831static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1832{
1833	return &rnp->nocb_gp_wq[rnp->completed & 0x1];
1834}
1835
1836static void rcu_init_one_nocb(struct rcu_node *rnp)
1837{
1838	init_swait_queue_head(&rnp->nocb_gp_wq[0]);
1839	init_swait_queue_head(&rnp->nocb_gp_wq[1]);
1840}
1841
1842#ifndef CONFIG_RCU_NOCB_CPU_ALL
1843/* Is the specified CPU a no-CBs CPU? */
1844bool rcu_is_nocb_cpu(int cpu)
1845{
1846	if (have_rcu_nocb_mask)
1847		return cpumask_test_cpu(cpu, rcu_nocb_mask);
1848	return false;
1849}
1850#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1851
1852/*
1853 * Kick the leader kthread for this NOCB group.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1854 */
1855static void wake_nocb_leader(struct rcu_data *rdp, bool force)
 
1856{
1857	struct rcu_data *rdp_leader = rdp->nocb_leader;
 
 
 
 
 
1858
1859	if (!READ_ONCE(rdp_leader->nocb_kthread))
1860		return;
1861	if (READ_ONCE(rdp_leader->nocb_leader_sleep) || force) {
1862		/* Prior smp_mb__after_atomic() orders against prior enqueue. */
1863		WRITE_ONCE(rdp_leader->nocb_leader_sleep, false);
1864		swake_up(&rdp_leader->nocb_wq);
 
 
 
 
 
 
 
 
 
 
 
 
 
1865	}
 
 
 
 
 
 
 
 
1866}
1867
1868/*
1869 * Does the specified CPU need an RCU callback for the specified flavor
1870 * of rcu_barrier()?
 
 
 
 
1871 */
1872static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
 
1873{
1874	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1875	unsigned long ret;
1876#ifdef CONFIG_PROVE_RCU
1877	struct rcu_head *rhp;
1878#endif /* #ifdef CONFIG_PROVE_RCU */
 
1879
1880	/*
1881	 * Check count of all no-CBs callbacks awaiting invocation.
1882	 * There needs to be a barrier before this function is called,
1883	 * but associated with a prior determination that no more
1884	 * callbacks would be posted.  In the worst case, the first
1885	 * barrier in _rcu_barrier() suffices (but the caller cannot
1886	 * necessarily rely on this, not a substitute for the caller
1887	 * getting the concurrency design right!).  There must also be
1888	 * a barrier between the following load an posting of a callback
1889	 * (if a callback is in fact needed).  This is associated with an
1890	 * atomic_inc() in the caller.
1891	 */
1892	ret = atomic_long_read(&rdp->nocb_q_count);
1893
1894#ifdef CONFIG_PROVE_RCU
1895	rhp = READ_ONCE(rdp->nocb_head);
1896	if (!rhp)
1897		rhp = READ_ONCE(rdp->nocb_gp_head);
1898	if (!rhp)
1899		rhp = READ_ONCE(rdp->nocb_follower_head);
1900
1901	/* Having no rcuo kthread but CBs after scheduler starts is bad! */
1902	if (!READ_ONCE(rdp->nocb_kthread) && rhp &&
1903	    rcu_scheduler_fully_active) {
1904		/* RCU callback enqueued before CPU first came online??? */
1905		pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
1906		       cpu, rhp->func);
1907		WARN_ON_ONCE(1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1908	}
1909#endif /* #ifdef CONFIG_PROVE_RCU */
1910
1911	return !!ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1912}
1913
1914/*
1915 * Enqueue the specified string of rcu_head structures onto the specified
1916 * CPU's no-CBs lists.  The CPU is specified by rdp, the head of the
1917 * string by rhp, and the tail of the string by rhtp.  The non-lazy/lazy
1918 * counts are supplied by rhcount and rhcount_lazy.
1919 *
1920 * If warranted, also wake up the kthread servicing this CPUs queues.
1921 */
1922static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
1923				    struct rcu_head *rhp,
1924				    struct rcu_head **rhtp,
1925				    int rhcount, int rhcount_lazy,
1926				    unsigned long flags)
1927{
1928	int len;
1929	struct rcu_head **old_rhpp;
 
1930	struct task_struct *t;
1931
1932	/* Enqueue the callback on the nocb list and update counts. */
1933	atomic_long_add(rhcount, &rdp->nocb_q_count);
1934	/* rcu_barrier() relies on ->nocb_q_count add before xchg. */
1935	old_rhpp = xchg(&rdp->nocb_tail, rhtp);
1936	WRITE_ONCE(*old_rhpp, rhp);
1937	atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
1938	smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
1939
1940	/* If we are not being polled and there is a kthread, awaken it ... */
1941	t = READ_ONCE(rdp->nocb_kthread);
1942	if (rcu_nocb_poll || !t) {
1943		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1944				    TPS("WakeNotPoll"));
 
1945		return;
1946	}
1947	len = atomic_long_read(&rdp->nocb_q_count);
1948	if (old_rhpp == &rdp->nocb_head) {
 
 
1949		if (!irqs_disabled_flags(flags)) {
1950			/* ... if queue was empty ... */
1951			wake_nocb_leader(rdp, false);
1952			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1953					    TPS("WakeEmpty"));
1954		} else {
1955			rdp->nocb_defer_wakeup = RCU_NOGP_WAKE;
1956			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1957					    TPS("WakeEmptyIsDeferred"));
1958		}
1959		rdp->qlen_last_fqs_check = 0;
1960	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
1961		/* ... or if many callbacks queued. */
1962		if (!irqs_disabled_flags(flags)) {
1963			wake_nocb_leader(rdp, true);
1964			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1965					    TPS("WakeOvf"));
1966		} else {
1967			rdp->nocb_defer_wakeup = RCU_NOGP_WAKE_FORCE;
1968			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1969					    TPS("WakeOvfIsDeferred"));
1970		}
1971		rdp->qlen_last_fqs_check = LONG_MAX / 2;
 
 
 
 
 
 
1972	} else {
1973		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
 
1974	}
1975	return;
1976}
1977
1978/*
1979 * This is a helper for __call_rcu(), which invokes this when the normal
1980 * callback queue is inoperable.  If this is not a no-CBs CPU, this
1981 * function returns failure back to __call_rcu(), which can complain
1982 * appropriately.
1983 *
1984 * Otherwise, this function queues the callback where the corresponding
1985 * "rcuo" kthread can find it.
1986 */
1987static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
1988			    bool lazy, unsigned long flags)
1989{
 
 
1990
1991	if (!rcu_is_nocb_cpu(rdp->cpu))
1992		return false;
1993	__call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
1994	if (__is_kfree_rcu_offset((unsigned long)rhp->func))
1995		trace_rcu_kfree_callback(rdp->rsp->name, rhp,
1996					 (unsigned long)rhp->func,
1997					 -atomic_long_read(&rdp->nocb_q_count_lazy),
1998					 -atomic_long_read(&rdp->nocb_q_count));
1999	else
2000		trace_rcu_callback(rdp->rsp->name, rhp,
2001				   -atomic_long_read(&rdp->nocb_q_count_lazy),
2002				   -atomic_long_read(&rdp->nocb_q_count));
2003
2004	/*
2005	 * If called from an extended quiescent state with interrupts
2006	 * disabled, invoke the RCU core in order to allow the idle-entry
2007	 * deferred-wakeup check to function.
2008	 */
2009	if (irqs_disabled_flags(flags) &&
2010	    !rcu_is_watching() &&
2011	    cpu_online(smp_processor_id()))
2012		invoke_rcu_core();
2013
2014	return true;
2015}
2016
2017/*
2018 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2019 * not a no-CBs CPU.
2020 */
2021static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2022						     struct rcu_data *rdp,
2023						     unsigned long flags)
2024{
2025	long ql = rsp->qlen;
2026	long qll = rsp->qlen_lazy;
 
 
 
 
 
 
 
 
 
 
 
2027
2028	/* If this is not a no-CBs CPU, tell the caller to do it the old way. */
2029	if (!rcu_is_nocb_cpu(smp_processor_id()))
2030		return false;
2031	rsp->qlen = 0;
2032	rsp->qlen_lazy = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2033
2034	/* First, enqueue the donelist, if any.  This preserves CB ordering. */
2035	if (rsp->orphan_donelist != NULL) {
2036		__call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
2037					rsp->orphan_donetail, ql, qll, flags);
2038		ql = qll = 0;
2039		rsp->orphan_donelist = NULL;
2040		rsp->orphan_donetail = &rsp->orphan_donelist;
2041	}
2042	if (rsp->orphan_nxtlist != NULL) {
2043		__call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
2044					rsp->orphan_nxttail, ql, qll, flags);
2045		ql = qll = 0;
2046		rsp->orphan_nxtlist = NULL;
2047		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2048	}
2049	return true;
 
 
 
 
 
 
 
 
2050}
2051
2052/*
2053 * If necessary, kick off a new grace period, and either way wait
2054 * for a subsequent grace period to complete.
 
 
 
 
2055 */
2056static void rcu_nocb_wait_gp(struct rcu_data *rdp)
2057{
2058	unsigned long c;
2059	bool d;
2060	unsigned long flags;
2061	bool needwake;
2062	struct rcu_node *rnp = rdp->mynode;
2063
2064	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2065	needwake = rcu_start_future_gp(rnp, rdp, &c);
2066	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2067	if (needwake)
2068		rcu_gp_kthread_wake(rdp->rsp);
2069
2070	/*
2071	 * Wait for the grace period.  Do so interruptibly to avoid messing
2072	 * up the load average.
2073	 */
2074	trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
2075	for (;;) {
2076		swait_event_interruptible(
2077			rnp->nocb_gp_wq[c & 0x1],
2078			(d = ULONG_CMP_GE(READ_ONCE(rnp->completed), c)));
2079		if (likely(d))
2080			break;
2081		WARN_ON(signal_pending(current));
2082		trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
2083	}
2084	trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
2085	smp_mb(); /* Ensure that CB invocation happens after GP end. */
2086}
2087
2088/*
2089 * Leaders come here to wait for additional callbacks to show up.
2090 * This function does not return until callbacks appear.
2091 */
2092static void nocb_leader_wait(struct rcu_data *my_rdp)
2093{
2094	bool firsttime = true;
2095	bool gotcbs;
2096	struct rcu_data *rdp;
2097	struct rcu_head **tail;
2098
2099wait_again:
2100
2101	/* Wait for callbacks to appear. */
2102	if (!rcu_nocb_poll) {
2103		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
2104		swait_event_interruptible(my_rdp->nocb_wq,
2105				!READ_ONCE(my_rdp->nocb_leader_sleep));
2106		/* Memory barrier handled by smp_mb() calls below and repoll. */
2107	} else if (firsttime) {
2108		firsttime = false; /* Don't drown trace log with "Poll"! */
2109		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
2110	}
2111
2112	/*
2113	 * Each pass through the following loop checks a follower for CBs.
2114	 * We are our own first follower.  Any CBs found are moved to
2115	 * nocb_gp_head, where they await a grace period.
2116	 */
2117	gotcbs = false;
2118	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2119		rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head);
2120		if (!rdp->nocb_gp_head)
2121			continue;  /* No CBs here, try next follower. */
2122
2123		/* Move callbacks to wait-for-GP list, which is empty. */
2124		WRITE_ONCE(rdp->nocb_head, NULL);
2125		rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2126		gotcbs = true;
2127	}
2128
2129	/*
2130	 * If there were no callbacks, sleep a bit, rescan after a
2131	 * memory barrier, and go retry.
2132	 */
2133	if (unlikely(!gotcbs)) {
2134		if (!rcu_nocb_poll)
2135			trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2136					    "WokeEmpty");
2137		WARN_ON(signal_pending(current));
2138		schedule_timeout_interruptible(1);
2139
2140		/* Rescan in case we were a victim of memory ordering. */
2141		my_rdp->nocb_leader_sleep = true;
2142		smp_mb();  /* Ensure _sleep true before scan. */
2143		for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
2144			if (READ_ONCE(rdp->nocb_head)) {
2145				/* Found CB, so short-circuit next wait. */
2146				my_rdp->nocb_leader_sleep = false;
2147				break;
2148			}
2149		goto wait_again;
2150	}
2151
2152	/* Wait for one grace period. */
2153	rcu_nocb_wait_gp(my_rdp);
2154
2155	/*
2156	 * We left ->nocb_leader_sleep unset to reduce cache thrashing.
2157	 * We set it now, but recheck for new callbacks while
2158	 * traversing our follower list.
2159	 */
2160	my_rdp->nocb_leader_sleep = true;
2161	smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
2162
2163	/* Each pass through the following loop wakes a follower, if needed. */
2164	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2165		if (READ_ONCE(rdp->nocb_head))
2166			my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
2167		if (!rdp->nocb_gp_head)
2168			continue; /* No CBs, so no need to wake follower. */
2169
2170		/* Append callbacks to follower's "done" list. */
2171		tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
2172		*tail = rdp->nocb_gp_head;
2173		smp_mb__after_atomic(); /* Store *tail before wakeup. */
2174		if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2175			/*
2176			 * List was empty, wake up the follower.
2177			 * Memory barriers supplied by atomic_long_add().
2178			 */
2179			swake_up(&rdp->nocb_wq);
2180		}
2181	}
2182
2183	/* If we (the leader) don't have CBs, go wait some more. */
2184	if (!my_rdp->nocb_follower_head)
2185		goto wait_again;
2186}
2187
2188/*
2189 * Followers come here to wait for additional callbacks to show up.
2190 * This function does not return until callbacks appear.
2191 */
2192static void nocb_follower_wait(struct rcu_data *rdp)
2193{
2194	bool firsttime = true;
2195
2196	for (;;) {
2197		if (!rcu_nocb_poll) {
2198			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2199					    "FollowerSleep");
2200			swait_event_interruptible(rdp->nocb_wq,
2201						 READ_ONCE(rdp->nocb_follower_head));
2202		} else if (firsttime) {
2203			/* Don't drown trace log with "Poll"! */
2204			firsttime = false;
2205			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
2206		}
2207		if (smp_load_acquire(&rdp->nocb_follower_head)) {
2208			/* ^^^ Ensure CB invocation follows _head test. */
2209			return;
2210		}
2211		if (!rcu_nocb_poll)
2212			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2213					    "WokeEmpty");
2214		WARN_ON(signal_pending(current));
2215		schedule_timeout_interruptible(1);
2216	}
2217}
2218
2219/*
2220 * Per-rcu_data kthread, but only for no-CBs CPUs.  Each kthread invokes
2221 * callbacks queued by the corresponding no-CBs CPU, however, there is
2222 * an optional leader-follower relationship so that the grace-period
2223 * kthreads don't have to do quite so many wakeups.
2224 */
2225static int rcu_nocb_kthread(void *arg)
2226{
2227	int c, cl;
2228	struct rcu_head *list;
2229	struct rcu_head *next;
2230	struct rcu_head **tail;
2231	struct rcu_data *rdp = arg;
2232
2233	/* Each pass through this loop invokes one batch of callbacks */
 
2234	for (;;) {
2235		/* Wait for callbacks. */
2236		if (rdp->nocb_leader == rdp)
2237			nocb_leader_wait(rdp);
2238		else
2239			nocb_follower_wait(rdp);
2240
2241		/* Pull the ready-to-invoke callbacks onto local list. */
2242		list = READ_ONCE(rdp->nocb_follower_head);
2243		BUG_ON(!list);
2244		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
2245		WRITE_ONCE(rdp->nocb_follower_head, NULL);
2246		tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
2247
2248		/* Each pass through the following loop invokes a callback. */
2249		trace_rcu_batch_start(rdp->rsp->name,
2250				      atomic_long_read(&rdp->nocb_q_count_lazy),
2251				      atomic_long_read(&rdp->nocb_q_count), -1);
2252		c = cl = 0;
2253		while (list) {
2254			next = list->next;
2255			/* Wait for enqueuing to complete, if needed. */
2256			while (next == NULL && &list->next != tail) {
2257				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2258						    TPS("WaitQueue"));
2259				schedule_timeout_interruptible(1);
2260				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2261						    TPS("WokeQueue"));
2262				next = list->next;
2263			}
2264			debug_rcu_head_unqueue(list);
2265			local_bh_disable();
2266			if (__rcu_reclaim(rdp->rsp->name, list))
2267				cl++;
2268			c++;
2269			local_bh_enable();
2270			list = next;
2271		}
2272		trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2273		smp_mb__before_atomic();  /* _add after CB invocation. */
2274		atomic_long_add(-c, &rdp->nocb_q_count);
2275		atomic_long_add(-cl, &rdp->nocb_q_count_lazy);
2276		rdp->n_nocbs_invoked += c;
2277	}
2278	return 0;
2279}
2280
2281/* Is a deferred wakeup of rcu_nocb_kthread() required? */
2282static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2283{
2284	return READ_ONCE(rdp->nocb_defer_wakeup);
2285}
2286
2287/* Do a deferred wakeup of rcu_nocb_kthread(). */
2288static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2289{
 
2290	int ndw;
2291
2292	if (!rcu_nocb_need_deferred_wakeup(rdp))
 
 
2293		return;
 
2294	ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2295	WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOGP_WAKE_NOT);
2296	wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE);
2297	trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2298}
2299
2300void __init rcu_init_nohz(void)
2301{
2302	int cpu;
2303	bool need_rcu_nocb_mask = true;
2304	struct rcu_state *rsp;
2305
2306#ifdef CONFIG_RCU_NOCB_CPU_NONE
2307	need_rcu_nocb_mask = false;
2308#endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
2309
2310#if defined(CONFIG_NO_HZ_FULL)
2311	if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2312		need_rcu_nocb_mask = true;
2313#endif /* #if defined(CONFIG_NO_HZ_FULL) */
2314
2315	if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
2316		if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2317			pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2318			return;
2319		}
2320		have_rcu_nocb_mask = true;
2321	}
2322	if (!have_rcu_nocb_mask)
2323		return;
2324
2325#ifdef CONFIG_RCU_NOCB_CPU_ZERO
2326	pr_info("\tOffload RCU callbacks from CPU 0\n");
2327	cpumask_set_cpu(0, rcu_nocb_mask);
2328#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
2329#ifdef CONFIG_RCU_NOCB_CPU_ALL
2330	pr_info("\tOffload RCU callbacks from all CPUs\n");
2331	cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
2332#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
2333#if defined(CONFIG_NO_HZ_FULL)
2334	if (tick_nohz_full_running)
2335		cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2336#endif /* #if defined(CONFIG_NO_HZ_FULL) */
2337
2338	if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2339		pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
2340		cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2341			    rcu_nocb_mask);
2342	}
2343	pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2344		cpumask_pr_args(rcu_nocb_mask));
 
 
 
2345	if (rcu_nocb_poll)
2346		pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2347
2348	for_each_rcu_flavor(rsp) {
2349		for_each_cpu(cpu, rcu_nocb_mask)
2350			init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu));
2351		rcu_organize_nocb_kthreads(rsp);
 
2352	}
 
2353}
2354
2355/* Initialize per-rcu_data variables for no-CBs CPUs. */
2356static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2357{
2358	rdp->nocb_tail = &rdp->nocb_head;
2359	init_swait_queue_head(&rdp->nocb_wq);
2360	rdp->nocb_follower_tail = &rdp->nocb_follower_head;
 
 
 
 
 
2361}
2362
2363/*
2364 * If the specified CPU is a no-CBs CPU that does not already have its
2365 * rcuo kthread for the specified RCU flavor, spawn it.  If the CPUs are
2366 * brought online out of order, this can require re-organizing the
2367 * leader-follower relationships.
2368 */
2369static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
2370{
2371	struct rcu_data *rdp;
2372	struct rcu_data *rdp_last;
2373	struct rcu_data *rdp_old_leader;
2374	struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
2375	struct task_struct *t;
2376
2377	/*
2378	 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2379	 * then nothing to do.
2380	 */
2381	if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
2382		return;
2383
2384	/* If we didn't spawn the leader first, reorganize! */
2385	rdp_old_leader = rdp_spawn->nocb_leader;
2386	if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
2387		rdp_last = NULL;
2388		rdp = rdp_old_leader;
2389		do {
2390			rdp->nocb_leader = rdp_spawn;
2391			if (rdp_last && rdp != rdp_spawn)
2392				rdp_last->nocb_next_follower = rdp;
2393			if (rdp == rdp_spawn) {
2394				rdp = rdp->nocb_next_follower;
2395			} else {
2396				rdp_last = rdp;
2397				rdp = rdp->nocb_next_follower;
2398				rdp_last->nocb_next_follower = NULL;
2399			}
2400		} while (rdp);
2401		rdp_spawn->nocb_next_follower = rdp_old_leader;
2402	}
2403
2404	/* Spawn the kthread for this CPU and RCU flavor. */
2405	t = kthread_run(rcu_nocb_kthread, rdp_spawn,
2406			"rcuo%c/%d", rsp->abbr, cpu);
2407	BUG_ON(IS_ERR(t));
2408	WRITE_ONCE(rdp_spawn->nocb_kthread, t);
 
 
2409}
2410
2411/*
2412 * If the specified CPU is a no-CBs CPU that does not already have its
2413 * rcuo kthreads, spawn them.
2414 */
2415static void rcu_spawn_all_nocb_kthreads(int cpu)
2416{
2417	struct rcu_state *rsp;
2418
2419	if (rcu_scheduler_fully_active)
2420		for_each_rcu_flavor(rsp)
2421			rcu_spawn_one_nocb_kthread(rsp, cpu);
2422}
2423
2424/*
2425 * Once the scheduler is running, spawn rcuo kthreads for all online
2426 * no-CBs CPUs.  This assumes that the early_initcall()s happen before
2427 * non-boot CPUs come online -- if this changes, we will need to add
2428 * some mutual exclusion.
2429 */
2430static void __init rcu_spawn_nocb_kthreads(void)
2431{
2432	int cpu;
2433
2434	for_each_online_cpu(cpu)
2435		rcu_spawn_all_nocb_kthreads(cpu);
2436}
2437
2438/* How many follower CPU IDs per leader?  Default of -1 for sqrt(nr_cpu_ids). */
2439static int rcu_nocb_leader_stride = -1;
2440module_param(rcu_nocb_leader_stride, int, 0444);
2441
2442/*
2443 * Initialize leader-follower relationships for all no-CBs CPU.
2444 */
2445static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
2446{
2447	int cpu;
2448	int ls = rcu_nocb_leader_stride;
2449	int nl = 0;  /* Next leader. */
 
2450	struct rcu_data *rdp;
2451	struct rcu_data *rdp_leader = NULL;  /* Suppress misguided gcc warn. */
2452	struct rcu_data *rdp_prev = NULL;
2453
2454	if (!have_rcu_nocb_mask)
2455		return;
2456	if (ls == -1) {
2457		ls = int_sqrt(nr_cpu_ids);
2458		rcu_nocb_leader_stride = ls;
2459	}
2460
2461	/*
2462	 * Each pass through this loop sets up one rcu_data structure and
2463	 * spawns one rcu_nocb_kthread().
 
2464	 */
2465	for_each_cpu(cpu, rcu_nocb_mask) {
2466		rdp = per_cpu_ptr(rsp->rda, cpu);
2467		if (rdp->cpu >= nl) {
2468			/* New leader, set up for followers & next leader. */
2469			nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2470			rdp->nocb_leader = rdp;
2471			rdp_leader = rdp;
 
 
 
 
2472		} else {
2473			/* Another follower, link to previous leader. */
2474			rdp->nocb_leader = rdp_leader;
2475			rdp_prev->nocb_next_follower = rdp;
 
2476		}
2477		rdp_prev = rdp;
2478	}
2479}
2480
2481/* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2482static bool init_nocb_callback_list(struct rcu_data *rdp)
2483{
2484	if (!rcu_is_nocb_cpu(rdp->cpu))
2485		return false;
2486
2487	/* If there are early-boot callbacks, move them to nocb lists. */
2488	if (rdp->nxtlist) {
2489		rdp->nocb_head = rdp->nxtlist;
2490		rdp->nocb_tail = rdp->nxttail[RCU_NEXT_TAIL];
2491		atomic_long_set(&rdp->nocb_q_count, rdp->qlen);
2492		atomic_long_set(&rdp->nocb_q_count_lazy, rdp->qlen_lazy);
2493		rdp->nxtlist = NULL;
2494		rdp->qlen = 0;
2495		rdp->qlen_lazy = 0;
2496	}
2497	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2498	return true;
2499}
2500
2501#else /* #ifdef CONFIG_RCU_NOCB_CPU */
2502
2503static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
2504{
2505	WARN_ON_ONCE(1); /* Should be dead code. */
2506	return false;
2507}
2508
2509static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
2510{
2511}
2512
2513static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2514{
2515}
2516
2517static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
2518{
2519	return NULL;
2520}
2521
2522static void rcu_init_one_nocb(struct rcu_node *rnp)
2523{
2524}
2525
2526static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2527			    bool lazy, unsigned long flags)
2528{
2529	return false;
2530}
2531
2532static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2533						     struct rcu_data *rdp,
2534						     unsigned long flags)
2535{
2536	return false;
2537}
2538
2539static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2540{
2541}
2542
2543static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2544{
2545	return false;
2546}
2547
2548static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2549{
2550}
2551
2552static void rcu_spawn_all_nocb_kthreads(int cpu)
2553{
2554}
2555
2556static void __init rcu_spawn_nocb_kthreads(void)
2557{
2558}
2559
2560static bool init_nocb_callback_list(struct rcu_data *rdp)
2561{
2562	return false;
2563}
2564
2565#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2566
2567/*
2568 * An adaptive-ticks CPU can potentially execute in kernel mode for an
2569 * arbitrarily long period of time with the scheduling-clock tick turned
2570 * off.  RCU will be paying attention to this CPU because it is in the
2571 * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2572 * machine because the scheduling-clock tick has been disabled.  Therefore,
2573 * if an adaptive-ticks CPU is failing to respond to the current grace
2574 * period and has not be idle from an RCU perspective, kick it.
2575 */
2576static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
2577{
2578#ifdef CONFIG_NO_HZ_FULL
2579	if (tick_nohz_full_cpu(cpu))
2580		smp_send_reschedule(cpu);
2581#endif /* #ifdef CONFIG_NO_HZ_FULL */
2582}
2583
2584
2585#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2586
2587static int full_sysidle_state;		/* Current system-idle state. */
2588#define RCU_SYSIDLE_NOT		0	/* Some CPU is not idle. */
2589#define RCU_SYSIDLE_SHORT	1	/* All CPUs idle for brief period. */
2590#define RCU_SYSIDLE_LONG	2	/* All CPUs idle for long enough. */
2591#define RCU_SYSIDLE_FULL	3	/* All CPUs idle, ready for sysidle. */
2592#define RCU_SYSIDLE_FULL_NOTED	4	/* Actually entered sysidle state. */
2593
2594/*
2595 * Invoked to note exit from irq or task transition to idle.  Note that
2596 * usermode execution does -not- count as idle here!  After all, we want
2597 * to detect full-system idle states, not RCU quiescent states and grace
2598 * periods.  The caller must have disabled interrupts.
2599 */
2600static void rcu_sysidle_enter(int irq)
2601{
2602	unsigned long j;
2603	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2604
2605	/* If there are no nohz_full= CPUs, no need to track this. */
2606	if (!tick_nohz_full_enabled())
2607		return;
2608
2609	/* Adjust nesting, check for fully idle. */
2610	if (irq) {
2611		rdtp->dynticks_idle_nesting--;
2612		WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2613		if (rdtp->dynticks_idle_nesting != 0)
2614			return;  /* Still not fully idle. */
2615	} else {
2616		if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
2617		    DYNTICK_TASK_NEST_VALUE) {
2618			rdtp->dynticks_idle_nesting = 0;
2619		} else {
2620			rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
2621			WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2622			return;  /* Still not fully idle. */
2623		}
2624	}
2625
2626	/* Record start of fully idle period. */
2627	j = jiffies;
2628	WRITE_ONCE(rdtp->dynticks_idle_jiffies, j);
2629	smp_mb__before_atomic();
2630	atomic_inc(&rdtp->dynticks_idle);
2631	smp_mb__after_atomic();
2632	WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
2633}
 
2634
2635/*
2636 * Unconditionally force exit from full system-idle state.  This is
2637 * invoked when a normal CPU exits idle, but must be called separately
2638 * for the timekeeping CPU (tick_do_timer_cpu).  The reason for this
2639 * is that the timekeeping CPU is permitted to take scheduling-clock
2640 * interrupts while the system is in system-idle state, and of course
2641 * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2642 * interrupt from any other type of interrupt.
2643 */
2644void rcu_sysidle_force_exit(void)
2645{
2646	int oldstate = READ_ONCE(full_sysidle_state);
2647	int newoldstate;
2648
2649	/*
2650	 * Each pass through the following loop attempts to exit full
2651	 * system-idle state.  If contention proves to be a problem,
2652	 * a trylock-based contention tree could be used here.
2653	 */
2654	while (oldstate > RCU_SYSIDLE_SHORT) {
2655		newoldstate = cmpxchg(&full_sysidle_state,
2656				      oldstate, RCU_SYSIDLE_NOT);
2657		if (oldstate == newoldstate &&
2658		    oldstate == RCU_SYSIDLE_FULL_NOTED) {
2659			rcu_kick_nohz_cpu(tick_do_timer_cpu);
2660			return; /* We cleared it, done! */
2661		}
2662		oldstate = newoldstate;
2663	}
2664	smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2665}
2666
2667/*
2668 * Invoked to note entry to irq or task transition from idle.  Note that
2669 * usermode execution does -not- count as idle here!  The caller must
2670 * have disabled interrupts.
2671 */
2672static void rcu_sysidle_exit(int irq)
2673{
2674	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2675
2676	/* If there are no nohz_full= CPUs, no need to track this. */
2677	if (!tick_nohz_full_enabled())
2678		return;
2679
2680	/* Adjust nesting, check for already non-idle. */
2681	if (irq) {
2682		rdtp->dynticks_idle_nesting++;
2683		WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2684		if (rdtp->dynticks_idle_nesting != 1)
2685			return; /* Already non-idle. */
2686	} else {
2687		/*
2688		 * Allow for irq misnesting.  Yes, it really is possible
2689		 * to enter an irq handler then never leave it, and maybe
2690		 * also vice versa.  Handle both possibilities.
2691		 */
2692		if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
2693			rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
2694			WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2695			return; /* Already non-idle. */
2696		} else {
2697			rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
2698		}
2699	}
2700
2701	/* Record end of idle period. */
2702	smp_mb__before_atomic();
2703	atomic_inc(&rdtp->dynticks_idle);
2704	smp_mb__after_atomic();
2705	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
2706
2707	/*
2708	 * If we are the timekeeping CPU, we are permitted to be non-idle
2709	 * during a system-idle state.  This must be the case, because
2710	 * the timekeeping CPU has to take scheduling-clock interrupts
2711	 * during the time that the system is transitioning to full
2712	 * system-idle state.  This means that the timekeeping CPU must
2713	 * invoke rcu_sysidle_force_exit() directly if it does anything
2714	 * more than take a scheduling-clock interrupt.
2715	 */
2716	if (smp_processor_id() == tick_do_timer_cpu)
2717		return;
2718
2719	/* Update system-idle state: We are clearly no longer fully idle! */
2720	rcu_sysidle_force_exit();
2721}
2722
2723/*
2724 * Check to see if the current CPU is idle.  Note that usermode execution
2725 * does not count as idle.  The caller must have disabled interrupts,
2726 * and must be running on tick_do_timer_cpu.
2727 */
2728static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2729				  unsigned long *maxj)
2730{
2731	int cur;
2732	unsigned long j;
2733	struct rcu_dynticks *rdtp = rdp->dynticks;
2734
2735	/* If there are no nohz_full= CPUs, don't check system-wide idleness. */
2736	if (!tick_nohz_full_enabled())
2737		return;
2738
2739	/*
2740	 * If some other CPU has already reported non-idle, if this is
2741	 * not the flavor of RCU that tracks sysidle state, or if this
2742	 * is an offline or the timekeeping CPU, nothing to do.
2743	 */
2744	if (!*isidle || rdp->rsp != rcu_state_p ||
2745	    cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
2746		return;
2747	/* Verify affinity of current kthread. */
2748	WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
2749
2750	/* Pick up current idle and NMI-nesting counter and check. */
2751	cur = atomic_read(&rdtp->dynticks_idle);
2752	if (cur & 0x1) {
2753		*isidle = false; /* We are not idle! */
2754		return;
2755	}
2756	smp_mb(); /* Read counters before timestamps. */
2757
2758	/* Pick up timestamps. */
2759	j = READ_ONCE(rdtp->dynticks_idle_jiffies);
2760	/* If this CPU entered idle more recently, update maxj timestamp. */
2761	if (ULONG_CMP_LT(*maxj, j))
2762		*maxj = j;
2763}
2764
2765/*
2766 * Is this the flavor of RCU that is handling full-system idle?
2767 */
2768static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2769{
2770	return rsp == rcu_state_p;
2771}
2772
2773/*
2774 * Return a delay in jiffies based on the number of CPUs, rcu_node
2775 * leaf fanout, and jiffies tick rate.  The idea is to allow larger
2776 * systems more time to transition to full-idle state in order to
2777 * avoid the cache thrashing that otherwise occur on the state variable.
2778 * Really small systems (less than a couple of tens of CPUs) should
2779 * instead use a single global atomically incremented counter, and later
2780 * versions of this will automatically reconfigure themselves accordingly.
2781 */
2782static unsigned long rcu_sysidle_delay(void)
2783{
2784	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2785		return 0;
2786	return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
2787}
2788
2789/*
2790 * Advance the full-system-idle state.  This is invoked when all of
2791 * the non-timekeeping CPUs are idle.
2792 */
2793static void rcu_sysidle(unsigned long j)
2794{
2795	/* Check the current state. */
2796	switch (READ_ONCE(full_sysidle_state)) {
2797	case RCU_SYSIDLE_NOT:
2798
2799		/* First time all are idle, so note a short idle period. */
2800		WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_SHORT);
2801		break;
2802
2803	case RCU_SYSIDLE_SHORT:
2804
2805		/*
2806		 * Idle for a bit, time to advance to next state?
2807		 * cmpxchg failure means race with non-idle, let them win.
2808		 */
2809		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2810			(void)cmpxchg(&full_sysidle_state,
2811				      RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
2812		break;
2813
2814	case RCU_SYSIDLE_LONG:
2815
2816		/*
2817		 * Do an additional check pass before advancing to full.
2818		 * cmpxchg failure means race with non-idle, let them win.
2819		 */
2820		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2821			(void)cmpxchg(&full_sysidle_state,
2822				      RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
2823		break;
2824
2825	default:
2826		break;
2827	}
2828}
2829
2830/*
2831 * Found a non-idle non-timekeeping CPU, so kick the system-idle state
2832 * back to the beginning.
2833 */
2834static void rcu_sysidle_cancel(void)
2835{
2836	smp_mb();
2837	if (full_sysidle_state > RCU_SYSIDLE_SHORT)
2838		WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_NOT);
2839}
2840
2841/*
2842 * Update the sysidle state based on the results of a force-quiescent-state
2843 * scan of the CPUs' dyntick-idle state.
2844 */
2845static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
2846			       unsigned long maxj, bool gpkt)
2847{
2848	if (rsp != rcu_state_p)
2849		return;  /* Wrong flavor, ignore. */
2850	if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2851		return;  /* Running state machine from timekeeping CPU. */
2852	if (isidle)
2853		rcu_sysidle(maxj);    /* More idle! */
2854	else
2855		rcu_sysidle_cancel(); /* Idle is over. */
2856}
2857
2858/*
2859 * Wrapper for rcu_sysidle_report() when called from the grace-period
2860 * kthread's context.
2861 */
2862static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2863				  unsigned long maxj)
2864{
2865	/* If there are no nohz_full= CPUs, no need to track this. */
2866	if (!tick_nohz_full_enabled())
2867		return;
2868
2869	rcu_sysidle_report(rsp, isidle, maxj, true);
2870}
2871
2872/* Callback and function for forcing an RCU grace period. */
2873struct rcu_sysidle_head {
2874	struct rcu_head rh;
2875	int inuse;
2876};
2877
2878static void rcu_sysidle_cb(struct rcu_head *rhp)
2879{
2880	struct rcu_sysidle_head *rshp;
2881
2882	/*
2883	 * The following memory barrier is needed to replace the
2884	 * memory barriers that would normally be in the memory
2885	 * allocator.
2886	 */
2887	smp_mb();  /* grace period precedes setting inuse. */
2888
2889	rshp = container_of(rhp, struct rcu_sysidle_head, rh);
2890	WRITE_ONCE(rshp->inuse, 0);
2891}
2892
2893/*
2894 * Check to see if the system is fully idle, other than the timekeeping CPU.
2895 * The caller must have disabled interrupts.  This is not intended to be
2896 * called unless tick_nohz_full_enabled().
2897 */
2898bool rcu_sys_is_idle(void)
2899{
2900	static struct rcu_sysidle_head rsh;
2901	int rss = READ_ONCE(full_sysidle_state);
2902
2903	if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
2904		return false;
2905
2906	/* Handle small-system case by doing a full scan of CPUs. */
2907	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
2908		int oldrss = rss - 1;
2909
2910		/*
2911		 * One pass to advance to each state up to _FULL.
2912		 * Give up if any pass fails to advance the state.
2913		 */
2914		while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
2915			int cpu;
2916			bool isidle = true;
2917			unsigned long maxj = jiffies - ULONG_MAX / 4;
2918			struct rcu_data *rdp;
2919
2920			/* Scan all the CPUs looking for nonidle CPUs. */
2921			for_each_possible_cpu(cpu) {
2922				rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
2923				rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
2924				if (!isidle)
2925					break;
2926			}
2927			rcu_sysidle_report(rcu_state_p, isidle, maxj, false);
2928			oldrss = rss;
2929			rss = READ_ONCE(full_sysidle_state);
2930		}
2931	}
2932
2933	/* If this is the first observation of an idle period, record it. */
2934	if (rss == RCU_SYSIDLE_FULL) {
2935		rss = cmpxchg(&full_sysidle_state,
2936			      RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
2937		return rss == RCU_SYSIDLE_FULL;
2938	}
2939
2940	smp_mb(); /* ensure rss load happens before later caller actions. */
2941
2942	/* If already fully idle, tell the caller (in case of races). */
2943	if (rss == RCU_SYSIDLE_FULL_NOTED)
2944		return true;
2945
2946	/*
2947	 * If we aren't there yet, and a grace period is not in flight,
2948	 * initiate a grace period.  Either way, tell the caller that
2949	 * we are not there yet.  We use an xchg() rather than an assignment
2950	 * to make up for the memory barriers that would otherwise be
2951	 * provided by the memory allocator.
2952	 */
2953	if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
2954	    !rcu_gp_in_progress(rcu_state_p) &&
2955	    !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
2956		call_rcu(&rsh.rh, rcu_sysidle_cb);
2957	return false;
2958}
2959
2960/*
2961 * Initialize dynticks sysidle state for CPUs coming online.
2962 */
2963static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2964{
2965	rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
2966}
2967
2968#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2969
2970static void rcu_sysidle_enter(int irq)
2971{
2972}
2973
2974static void rcu_sysidle_exit(int irq)
2975{
 
2976}
2977
2978static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2979				  unsigned long *maxj)
2980{
2981}
2982
2983static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2984{
2985	return false;
2986}
2987
2988static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2989				  unsigned long maxj)
2990{
2991}
2992
2993static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2994{
2995}
2996
2997#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2998
2999/*
3000 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
3001 * grace-period kthread will do force_quiescent_state() processing?
3002 * The idea is to avoid waking up RCU core processing on such a
3003 * CPU unless the grace period has extended for too long.
3004 *
3005 * This code relies on the fact that all NO_HZ_FULL CPUs are also
3006 * CONFIG_RCU_NOCB_CPU CPUs.
3007 */
3008static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
3009{
3010#ifdef CONFIG_NO_HZ_FULL
3011	if (tick_nohz_full_cpu(smp_processor_id()) &&
3012	    (!rcu_gp_in_progress(rsp) ||
3013	     ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ)))
3014		return true;
3015#endif /* #ifdef CONFIG_NO_HZ_FULL */
3016	return false;
3017}
3018
3019/*
3020 * Bind the grace-period kthread for the sysidle flavor of RCU to the
3021 * timekeeping CPU.
3022 */
3023static void rcu_bind_gp_kthread(void)
3024{
3025	int __maybe_unused cpu;
3026
3027	if (!tick_nohz_full_enabled())
3028		return;
3029#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
3030	cpu = tick_do_timer_cpu;
3031	if (cpu >= 0 && cpu < nr_cpu_ids)
3032		set_cpus_allowed_ptr(current, cpumask_of(cpu));
3033#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3034	housekeeping_affine(current);
3035#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3036}
3037
3038/* Record the current task on dyntick-idle entry. */
3039static void rcu_dynticks_task_enter(void)
3040{
3041#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3042	WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
3043#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3044}
3045
3046/* Record no current task on dyntick-idle exit. */
3047static void rcu_dynticks_task_exit(void)
3048{
3049#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3050	WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
3051#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3052}
v5.4
   1/* SPDX-License-Identifier: GPL-2.0+ */
   2/*
   3 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
   4 * Internal non-public definitions that provide either classic
   5 * or preemptible semantics.
   6 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   7 * Copyright Red Hat, 2009
   8 * Copyright IBM Corporation, 2009
   9 *
  10 * Author: Ingo Molnar <mingo@elte.hu>
  11 *	   Paul E. McKenney <paulmck@linux.ibm.com>
  12 */
  13
 
 
 
 
 
 
 
 
  14#include "../locking/rtmutex_common.h"
  15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  16#ifdef CONFIG_RCU_NOCB_CPU
  17static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
 
  18static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
  19#endif /* #ifdef CONFIG_RCU_NOCB_CPU */
  20
  21/*
  22 * Check the RCU kernel configuration parameters and print informative
  23 * messages about anything out of the ordinary.
  24 */
  25static void __init rcu_bootup_announce_oddness(void)
  26{
  27	if (IS_ENABLED(CONFIG_RCU_TRACE))
  28		pr_info("\tRCU event tracing is enabled.\n");
  29	if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
  30	    (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
  31		pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n",
  32			RCU_FANOUT);
  33	if (rcu_fanout_exact)
  34		pr_info("\tHierarchical RCU autobalancing is disabled.\n");
  35	if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
  36		pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
  37	if (IS_ENABLED(CONFIG_PROVE_RCU))
  38		pr_info("\tRCU lockdep checking is enabled.\n");
 
 
  39	if (RCU_NUM_LVLS >= 4)
  40		pr_info("\tFour(or more)-level hierarchy is enabled.\n");
  41	if (RCU_FANOUT_LEAF != 16)
  42		pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
  43			RCU_FANOUT_LEAF);
  44	if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
  45		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n",
  46			rcu_fanout_leaf);
  47	if (nr_cpu_ids != NR_CPUS)
  48		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids);
  49#ifdef CONFIG_RCU_BOOST
  50	pr_info("\tRCU priority boosting: priority %d delay %d ms.\n",
  51		kthread_prio, CONFIG_RCU_BOOST_DELAY);
  52#endif
  53	if (blimit != DEFAULT_RCU_BLIMIT)
  54		pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
  55	if (qhimark != DEFAULT_RCU_QHIMARK)
  56		pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
  57	if (qlowmark != DEFAULT_RCU_QLOMARK)
  58		pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
  59	if (jiffies_till_first_fqs != ULONG_MAX)
  60		pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
  61	if (jiffies_till_next_fqs != ULONG_MAX)
  62		pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
  63	if (jiffies_till_sched_qs != ULONG_MAX)
  64		pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs);
  65	if (rcu_kick_kthreads)
  66		pr_info("\tKick kthreads if too-long grace period.\n");
  67	if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
  68		pr_info("\tRCU callback double-/use-after-free debug enabled.\n");
  69	if (gp_preinit_delay)
  70		pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
  71	if (gp_init_delay)
  72		pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
  73	if (gp_cleanup_delay)
  74		pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay);
  75	if (!use_softirq)
  76		pr_info("\tRCU_SOFTIRQ processing moved to rcuc kthreads.\n");
  77	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
  78		pr_info("\tRCU debug extended QS entry/exit.\n");
  79	rcupdate_announce_bootup_oddness();
  80}
  81
  82#ifdef CONFIG_PREEMPT_RCU
  83
  84static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake);
  85static void rcu_read_unlock_special(struct task_struct *t);
 
 
 
 
  86
  87/*
  88 * Tell them what RCU they are running.
  89 */
  90static void __init rcu_bootup_announce(void)
  91{
  92	pr_info("Preemptible hierarchical RCU implementation.\n");
  93	rcu_bootup_announce_oddness();
  94}
  95
  96/* Flags for rcu_preempt_ctxt_queue() decision table. */
  97#define RCU_GP_TASKS	0x8
  98#define RCU_EXP_TASKS	0x4
  99#define RCU_GP_BLKD	0x2
 100#define RCU_EXP_BLKD	0x1
 101
 102/*
 103 * Queues a task preempted within an RCU-preempt read-side critical
 104 * section into the appropriate location within the ->blkd_tasks list,
 105 * depending on the states of any ongoing normal and expedited grace
 106 * periods.  The ->gp_tasks pointer indicates which element the normal
 107 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
 108 * indicates which element the expedited grace period is waiting on (again,
 109 * NULL if none).  If a grace period is waiting on a given element in the
 110 * ->blkd_tasks list, it also waits on all subsequent elements.  Thus,
 111 * adding a task to the tail of the list blocks any grace period that is
 112 * already waiting on one of the elements.  In contrast, adding a task
 113 * to the head of the list won't block any grace period that is already
 114 * waiting on one of the elements.
 115 *
 116 * This queuing is imprecise, and can sometimes make an ongoing grace
 117 * period wait for a task that is not strictly speaking blocking it.
 118 * Given the choice, we needlessly block a normal grace period rather than
 119 * blocking an expedited grace period.
 120 *
 121 * Note that an endless sequence of expedited grace periods still cannot
 122 * indefinitely postpone a normal grace period.  Eventually, all of the
 123 * fixed number of preempted tasks blocking the normal grace period that are
 124 * not also blocking the expedited grace period will resume and complete
 125 * their RCU read-side critical sections.  At that point, the ->gp_tasks
 126 * pointer will equal the ->exp_tasks pointer, at which point the end of
 127 * the corresponding expedited grace period will also be the end of the
 128 * normal grace period.
 129 */
 130static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
 131	__releases(rnp->lock) /* But leaves rrupts disabled. */
 132{
 133	int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
 134			 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
 135			 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
 136			 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
 137	struct task_struct *t = current;
 138
 139	raw_lockdep_assert_held_rcu_node(rnp);
 140	WARN_ON_ONCE(rdp->mynode != rnp);
 141	WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
 142	/* RCU better not be waiting on newly onlined CPUs! */
 143	WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask &
 144		     rdp->grpmask);
 145
 146	/*
 147	 * Decide where to queue the newly blocked task.  In theory,
 148	 * this could be an if-statement.  In practice, when I tried
 149	 * that, it was quite messy.
 150	 */
 151	switch (blkd_state) {
 152	case 0:
 153	case                RCU_EXP_TASKS:
 154	case                RCU_EXP_TASKS + RCU_GP_BLKD:
 155	case RCU_GP_TASKS:
 156	case RCU_GP_TASKS + RCU_EXP_TASKS:
 157
 158		/*
 159		 * Blocking neither GP, or first task blocking the normal
 160		 * GP but not blocking the already-waiting expedited GP.
 161		 * Queue at the head of the list to avoid unnecessarily
 162		 * blocking the already-waiting GPs.
 163		 */
 164		list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
 165		break;
 166
 167	case                                              RCU_EXP_BLKD:
 168	case                                RCU_GP_BLKD:
 169	case                                RCU_GP_BLKD + RCU_EXP_BLKD:
 170	case RCU_GP_TASKS +                               RCU_EXP_BLKD:
 171	case RCU_GP_TASKS +                 RCU_GP_BLKD + RCU_EXP_BLKD:
 172	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
 173
 174		/*
 175		 * First task arriving that blocks either GP, or first task
 176		 * arriving that blocks the expedited GP (with the normal
 177		 * GP already waiting), or a task arriving that blocks
 178		 * both GPs with both GPs already waiting.  Queue at the
 179		 * tail of the list to avoid any GP waiting on any of the
 180		 * already queued tasks that are not blocking it.
 181		 */
 182		list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
 183		break;
 184
 185	case                RCU_EXP_TASKS +               RCU_EXP_BLKD:
 186	case                RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
 187	case RCU_GP_TASKS + RCU_EXP_TASKS +               RCU_EXP_BLKD:
 188
 189		/*
 190		 * Second or subsequent task blocking the expedited GP.
 191		 * The task either does not block the normal GP, or is the
 192		 * first task blocking the normal GP.  Queue just after
 193		 * the first task blocking the expedited GP.
 194		 */
 195		list_add(&t->rcu_node_entry, rnp->exp_tasks);
 196		break;
 197
 198	case RCU_GP_TASKS +                 RCU_GP_BLKD:
 199	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
 200
 201		/*
 202		 * Second or subsequent task blocking the normal GP.
 203		 * The task does not block the expedited GP. Queue just
 204		 * after the first task blocking the normal GP.
 205		 */
 206		list_add(&t->rcu_node_entry, rnp->gp_tasks);
 207		break;
 208
 209	default:
 210
 211		/* Yet another exercise in excessive paranoia. */
 212		WARN_ON_ONCE(1);
 213		break;
 214	}
 215
 216	/*
 217	 * We have now queued the task.  If it was the first one to
 218	 * block either grace period, update the ->gp_tasks and/or
 219	 * ->exp_tasks pointers, respectively, to reference the newly
 220	 * blocked tasks.
 221	 */
 222	if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) {
 223		rnp->gp_tasks = &t->rcu_node_entry;
 224		WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq);
 225	}
 226	if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
 227		rnp->exp_tasks = &t->rcu_node_entry;
 228	WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) !=
 229		     !(rnp->qsmask & rdp->grpmask));
 230	WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) !=
 231		     !(rnp->expmask & rdp->grpmask));
 232	raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
 233
 234	/*
 235	 * Report the quiescent state for the expedited GP.  This expedited
 236	 * GP should not be able to end until we report, so there should be
 237	 * no need to check for a subsequent expedited GP.  (Though we are
 238	 * still in a quiescent state in any case.)
 239	 */
 240	if (blkd_state & RCU_EXP_BLKD && rdp->exp_deferred_qs)
 241		rcu_report_exp_rdp(rdp);
 242	else
 243		WARN_ON_ONCE(rdp->exp_deferred_qs);
 
 
 
 244}
 245
 246/*
 247 * Record a preemptible-RCU quiescent state for the specified CPU.
 248 * Note that this does not necessarily mean that the task currently running
 249 * on the CPU is in a quiescent state:  Instead, it means that the current
 250 * grace period need not wait on any RCU read-side critical section that
 251 * starts later on this CPU.  It also means that if the current task is
 252 * in an RCU read-side critical section, it has already added itself to
 253 * some leaf rcu_node structure's ->blkd_tasks list.  In addition to the
 254 * current task, there might be any number of other tasks blocked while
 255 * in an RCU read-side critical section.
 256 *
 257 * Callers to this function must disable preemption.
 
 258 */
 259static void rcu_qs(void)
 260{
 261	RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n");
 262	if (__this_cpu_read(rcu_data.cpu_no_qs.s)) {
 263		trace_rcu_grace_period(TPS("rcu_preempt"),
 264				       __this_cpu_read(rcu_data.gp_seq),
 265				       TPS("cpuqs"));
 266		__this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
 267		barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */
 268		WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, false);
 269	}
 270}
 271
 272/*
 273 * We have entered the scheduler, and the current task might soon be
 274 * context-switched away from.  If this task is in an RCU read-side
 275 * critical section, we will no longer be able to rely on the CPU to
 276 * record that fact, so we enqueue the task on the blkd_tasks list.
 277 * The task will dequeue itself when it exits the outermost enclosing
 278 * RCU read-side critical section.  Therefore, the current grace period
 279 * cannot be permitted to complete until the blkd_tasks list entries
 280 * predating the current grace period drain, in other words, until
 281 * rnp->gp_tasks becomes NULL.
 282 *
 283 * Caller must disable interrupts.
 284 */
 285void rcu_note_context_switch(bool preempt)
 286{
 287	struct task_struct *t = current;
 288	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 289	struct rcu_node *rnp;
 290
 291	trace_rcu_utilization(TPS("Start context switch"));
 292	lockdep_assert_irqs_disabled();
 293	WARN_ON_ONCE(!preempt && t->rcu_read_lock_nesting > 0);
 294	if (t->rcu_read_lock_nesting > 0 &&
 295	    !t->rcu_read_unlock_special.b.blocked) {
 296
 297		/* Possibly blocking in an RCU read-side critical section. */
 
 298		rnp = rdp->mynode;
 299		raw_spin_lock_rcu_node(rnp);
 300		t->rcu_read_unlock_special.b.blocked = true;
 301		t->rcu_blocked_node = rnp;
 302
 303		/*
 304		 * Verify the CPU's sanity, trace the preemption, and
 305		 * then queue the task as required based on the states
 306		 * of any ongoing and expedited grace periods.
 307		 */
 308		WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
 309		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
 310		trace_rcu_preempt_task(rcu_state.name,
 311				       t->pid,
 312				       (rnp->qsmask & rdp->grpmask)
 313				       ? rnp->gp_seq
 314				       : rcu_seq_snap(&rnp->gp_seq));
 315		rcu_preempt_ctxt_queue(rnp, rdp);
 316	} else {
 317		rcu_preempt_deferred_qs(t);
 
 
 
 
 
 
 318	}
 319
 320	/*
 321	 * Either we were not in an RCU read-side critical section to
 322	 * begin with, or we have now recorded that critical section
 323	 * globally.  Either way, we can now note a quiescent state
 324	 * for this CPU.  Again, if we were in an RCU read-side critical
 325	 * section, and if that critical section was blocking the current
 326	 * grace period, then the fact that the task has been enqueued
 327	 * means that we continue to block the current grace period.
 328	 */
 329	rcu_qs();
 330	if (rdp->exp_deferred_qs)
 331		rcu_report_exp_rdp(rdp);
 332	trace_rcu_utilization(TPS("End context switch"));
 333}
 334EXPORT_SYMBOL_GPL(rcu_note_context_switch);
 335
 336/*
 337 * Check for preempted RCU readers blocking the current grace period
 338 * for the specified rcu_node structure.  If the caller needs a reliable
 339 * answer, it must hold the rcu_node's ->lock.
 340 */
 341static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
 342{
 343	return rnp->gp_tasks != NULL;
 344}
 345
 346/* Bias and limit values for ->rcu_read_lock_nesting. */
 347#define RCU_NEST_BIAS INT_MAX
 348#define RCU_NEST_NMAX (-INT_MAX / 2)
 349#define RCU_NEST_PMAX (INT_MAX / 2)
 350
 351/*
 352 * Preemptible RCU implementation for rcu_read_lock().
 353 * Just increment ->rcu_read_lock_nesting, shared state will be updated
 354 * if we block.
 355 */
 356void __rcu_read_lock(void)
 357{
 358	current->rcu_read_lock_nesting++;
 359	if (IS_ENABLED(CONFIG_PROVE_LOCKING))
 360		WARN_ON_ONCE(current->rcu_read_lock_nesting > RCU_NEST_PMAX);
 361	barrier();  /* critical section after entry code. */
 362}
 363EXPORT_SYMBOL_GPL(__rcu_read_lock);
 364
 365/*
 366 * Preemptible RCU implementation for rcu_read_unlock().
 367 * Decrement ->rcu_read_lock_nesting.  If the result is zero (outermost
 368 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
 369 * invoke rcu_read_unlock_special() to clean up after a context switch
 370 * in an RCU read-side critical section and other special cases.
 371 */
 372void __rcu_read_unlock(void)
 373{
 374	struct task_struct *t = current;
 375
 376	if (t->rcu_read_lock_nesting != 1) {
 377		--t->rcu_read_lock_nesting;
 378	} else {
 379		barrier();  /* critical section before exit code. */
 380		t->rcu_read_lock_nesting = -RCU_NEST_BIAS;
 381		barrier();  /* assign before ->rcu_read_unlock_special load */
 382		if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
 383			rcu_read_unlock_special(t);
 384		barrier();  /* ->rcu_read_unlock_special load before assign */
 385		t->rcu_read_lock_nesting = 0;
 386	}
 387	if (IS_ENABLED(CONFIG_PROVE_LOCKING)) {
 388		int rrln = t->rcu_read_lock_nesting;
 389
 390		WARN_ON_ONCE(rrln < 0 && rrln > RCU_NEST_NMAX);
 391	}
 392}
 393EXPORT_SYMBOL_GPL(__rcu_read_unlock);
 394
 395/*
 396 * Advance a ->blkd_tasks-list pointer to the next entry, instead
 397 * returning NULL if at the end of the list.
 398 */
 399static struct list_head *rcu_next_node_entry(struct task_struct *t,
 400					     struct rcu_node *rnp)
 401{
 402	struct list_head *np;
 403
 404	np = t->rcu_node_entry.next;
 405	if (np == &rnp->blkd_tasks)
 406		np = NULL;
 407	return np;
 408}
 409
 410/*
 411 * Return true if the specified rcu_node structure has tasks that were
 412 * preempted within an RCU read-side critical section.
 413 */
 414static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
 415{
 416	return !list_empty(&rnp->blkd_tasks);
 417}
 418
 419/*
 420 * Report deferred quiescent states.  The deferral time can
 421 * be quite short, for example, in the case of the call from
 422 * rcu_read_unlock_special().
 423 */
 424static void
 425rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags)
 426{
 427	bool empty_exp;
 428	bool empty_norm;
 429	bool empty_exp_now;
 
 430	struct list_head *np;
 431	bool drop_boost_mutex = false;
 432	struct rcu_data *rdp;
 433	struct rcu_node *rnp;
 434	union rcu_special special;
 435
 
 
 
 
 
 
 436	/*
 437	 * If RCU core is waiting for this CPU to exit its critical section,
 438	 * report the fact that it has exited.  Because irqs are disabled,
 439	 * t->rcu_read_unlock_special cannot change.
 440	 */
 441	special = t->rcu_read_unlock_special;
 442	rdp = this_cpu_ptr(&rcu_data);
 443	if (!special.s && !rdp->exp_deferred_qs) {
 444		local_irq_restore(flags);
 445		return;
 446	}
 447	t->rcu_read_unlock_special.b.deferred_qs = false;
 448	if (special.b.need_qs) {
 449		rcu_qs();
 450		t->rcu_read_unlock_special.b.need_qs = false;
 451		if (!t->rcu_read_unlock_special.s && !rdp->exp_deferred_qs) {
 452			local_irq_restore(flags);
 453			return;
 454		}
 455	}
 456
 457	/*
 458	 * Respond to a request by an expedited grace period for a
 459	 * quiescent state from this CPU.  Note that requests from
 460	 * tasks are handled when removing the task from the
 461	 * blocked-tasks list below.
 
 462	 */
 463	if (rdp->exp_deferred_qs) {
 464		rcu_report_exp_rdp(rdp);
 
 
 
 465		if (!t->rcu_read_unlock_special.s) {
 466			local_irq_restore(flags);
 467			return;
 468		}
 469	}
 470
 
 
 
 
 
 
 
 
 
 
 
 
 
 471	/* Clean up if blocked during RCU read-side critical section. */
 472	if (special.b.blocked) {
 473		t->rcu_read_unlock_special.b.blocked = false;
 474
 475		/*
 476		 * Remove this task from the list it blocked on.  The task
 477		 * now remains queued on the rcu_node corresponding to the
 478		 * CPU it first blocked on, so there is no longer any need
 479		 * to loop.  Retain a WARN_ON_ONCE() out of sheer paranoia.
 480		 */
 481		rnp = t->rcu_blocked_node;
 482		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
 483		WARN_ON_ONCE(rnp != t->rcu_blocked_node);
 484		WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
 485		empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
 486		WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq &&
 487			     (!empty_norm || rnp->qsmask));
 488		empty_exp = sync_rcu_preempt_exp_done(rnp);
 489		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
 490		np = rcu_next_node_entry(t, rnp);
 491		list_del_init(&t->rcu_node_entry);
 492		t->rcu_blocked_node = NULL;
 493		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
 494						rnp->gp_seq, t->pid);
 495		if (&t->rcu_node_entry == rnp->gp_tasks)
 496			rnp->gp_tasks = np;
 497		if (&t->rcu_node_entry == rnp->exp_tasks)
 498			rnp->exp_tasks = np;
 499		if (IS_ENABLED(CONFIG_RCU_BOOST)) {
 
 
 500			/* Snapshot ->boost_mtx ownership w/rnp->lock held. */
 501			drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
 502			if (&t->rcu_node_entry == rnp->boost_tasks)
 503				rnp->boost_tasks = np;
 504		}
 505
 506		/*
 507		 * If this was the last task on the current list, and if
 508		 * we aren't waiting on any CPUs, report the quiescent state.
 509		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
 510		 * so we must take a snapshot of the expedited state.
 511		 */
 512		empty_exp_now = sync_rcu_preempt_exp_done(rnp);
 513		if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
 514			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
 515							 rnp->gp_seq,
 516							 0, rnp->qsmask,
 517							 rnp->level,
 518							 rnp->grplo,
 519							 rnp->grphi,
 520							 !!rnp->gp_tasks);
 521			rcu_report_unblock_qs_rnp(rnp, flags);
 522		} else {
 523			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 524		}
 525
 526		/* Unboost if we were boosted. */
 527		if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
 528			rt_mutex_futex_unlock(&rnp->boost_mtx);
 529
 530		/*
 531		 * If this was the last task on the expedited lists,
 532		 * then we need to report up the rcu_node hierarchy.
 533		 */
 534		if (!empty_exp && empty_exp_now)
 535			rcu_report_exp_rnp(rnp, true);
 536	} else {
 537		local_irq_restore(flags);
 538	}
 539}
 540
 541/*
 542 * Is a deferred quiescent-state pending, and are we also not in
 543 * an RCU read-side critical section?  It is the caller's responsibility
 544 * to ensure it is otherwise safe to report any deferred quiescent
 545 * states.  The reason for this is that it is safe to report a
 546 * quiescent state during context switch even though preemption
 547 * is disabled.  This function cannot be expected to understand these
 548 * nuances, so the caller must handle them.
 549 */
 550static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
 551{
 552	return (__this_cpu_read(rcu_data.exp_deferred_qs) ||
 553		READ_ONCE(t->rcu_read_unlock_special.s)) &&
 554	       t->rcu_read_lock_nesting <= 0;
 
 
 
 
 
 
 
 
 
 
 555}
 556
 557/*
 558 * Report a deferred quiescent state if needed and safe to do so.
 559 * As with rcu_preempt_need_deferred_qs(), "safe" involves only
 560 * not being in an RCU read-side critical section.  The caller must
 561 * evaluate safety in terms of interrupt, softirq, and preemption
 562 * disabling.
 563 */
 564static void rcu_preempt_deferred_qs(struct task_struct *t)
 
 
 
 
 
 
 
 
 
 565{
 566	unsigned long flags;
 567	bool couldrecurse = t->rcu_read_lock_nesting >= 0;
 
 568
 569	if (!rcu_preempt_need_deferred_qs(t))
 570		return;
 571	if (couldrecurse)
 572		t->rcu_read_lock_nesting -= RCU_NEST_BIAS;
 573	local_irq_save(flags);
 574	rcu_preempt_deferred_qs_irqrestore(t, flags);
 575	if (couldrecurse)
 576		t->rcu_read_lock_nesting += RCU_NEST_BIAS;
 577}
 578
 579/*
 580 * Minimal handler to give the scheduler a chance to re-evaluate.
 
 581 */
 582static void rcu_preempt_deferred_qs_handler(struct irq_work *iwp)
 583{
 584	struct rcu_data *rdp;
 
 585
 586	rdp = container_of(iwp, struct rcu_data, defer_qs_iw);
 587	rdp->defer_qs_iw_pending = false;
 
 
 
 
 
 
 
 
 
 588}
 589
 590/*
 591 * Handle special cases during rcu_read_unlock(), such as needing to
 592 * notify RCU core processing or task having blocked during the RCU
 593 * read-side critical section.
 594 */
 595static void rcu_read_unlock_special(struct task_struct *t)
 596{
 597	unsigned long flags;
 598	bool preempt_bh_were_disabled =
 599			!!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK));
 600	bool irqs_were_disabled;
 601
 602	/* NMI handlers cannot block and cannot safely manipulate state. */
 603	if (in_nmi())
 604		return;
 605
 606	local_irq_save(flags);
 607	irqs_were_disabled = irqs_disabled_flags(flags);
 608	if (preempt_bh_were_disabled || irqs_were_disabled) {
 609		bool exp;
 610		struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 611		struct rcu_node *rnp = rdp->mynode;
 612
 613		t->rcu_read_unlock_special.b.exp_hint = false;
 614		exp = (t->rcu_blocked_node && t->rcu_blocked_node->exp_tasks) ||
 615		      (rdp->grpmask & rnp->expmask) ||
 616		      tick_nohz_full_cpu(rdp->cpu);
 617		// Need to defer quiescent state until everything is enabled.
 618		if (irqs_were_disabled && use_softirq &&
 619		    (in_interrupt() ||
 620		     (exp && !t->rcu_read_unlock_special.b.deferred_qs))) {
 621			// Using softirq, safe to awaken, and we get
 622			// no help from enabling irqs, unlike bh/preempt.
 623			raise_softirq_irqoff(RCU_SOFTIRQ);
 624		} else {
 625			// Enabling BH or preempt does reschedule, so...
 626			// Also if no expediting or NO_HZ_FULL, slow is OK.
 627			set_tsk_need_resched(current);
 628			set_preempt_need_resched();
 629			if (IS_ENABLED(CONFIG_IRQ_WORK) && irqs_were_disabled &&
 630			    !rdp->defer_qs_iw_pending && exp) {
 631				// Get scheduler to re-evaluate and call hooks.
 632				// If !IRQ_WORK, FQS scan will eventually IPI.
 633				init_irq_work(&rdp->defer_qs_iw,
 634					      rcu_preempt_deferred_qs_handler);
 635				rdp->defer_qs_iw_pending = true;
 636				irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu);
 637			}
 638		}
 639		t->rcu_read_unlock_special.b.deferred_qs = true;
 640		local_irq_restore(flags);
 641		return;
 642	}
 643	WRITE_ONCE(t->rcu_read_unlock_special.b.exp_hint, false);
 644	rcu_preempt_deferred_qs_irqrestore(t, flags);
 645}
 646
 647/*
 648 * Check that the list of blocked tasks for the newly completed grace
 649 * period is in fact empty.  It is a serious bug to complete a grace
 650 * period that still has RCU readers blocked!  This function must be
 651 * invoked -before- updating this rnp's ->gp_seq, and the rnp's ->lock
 652 * must be held by the caller.
 653 *
 654 * Also, if there are blocked tasks on the list, they automatically
 655 * block the newly created grace period, so set up ->gp_tasks accordingly.
 656 */
 657static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
 658{
 659	struct task_struct *t;
 660
 661	RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
 662	if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
 663		dump_blkd_tasks(rnp, 10);
 664	if (rcu_preempt_has_tasks(rnp) &&
 665	    (rnp->qsmaskinit || rnp->wait_blkd_tasks)) {
 666		rnp->gp_tasks = rnp->blkd_tasks.next;
 667		t = container_of(rnp->gp_tasks, struct task_struct,
 668				 rcu_node_entry);
 669		trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
 670						rnp->gp_seq, t->pid);
 671	}
 672	WARN_ON_ONCE(rnp->qsmask);
 673}
 674
 675/*
 676 * Check for a quiescent state from the current CPU, including voluntary
 677 * context switches for Tasks RCU.  When a task blocks, the task is
 678 * recorded in the corresponding CPU's rcu_node structure, which is checked
 679 * elsewhere, hence this function need only check for quiescent states
 680 * related to the current CPU, not to those related to tasks.
 681 */
 682static void rcu_flavor_sched_clock_irq(int user)
 683{
 684	struct task_struct *t = current;
 685
 686	if (user || rcu_is_cpu_rrupt_from_idle()) {
 687		rcu_note_voluntary_context_switch(current);
 688	}
 689	if (t->rcu_read_lock_nesting > 0 ||
 690	    (preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) {
 691		/* No QS, force context switch if deferred. */
 692		if (rcu_preempt_need_deferred_qs(t)) {
 693			set_tsk_need_resched(t);
 694			set_preempt_need_resched();
 695		}
 696	} else if (rcu_preempt_need_deferred_qs(t)) {
 697		rcu_preempt_deferred_qs(t); /* Report deferred QS. */
 698		return;
 699	} else if (!t->rcu_read_lock_nesting) {
 700		rcu_qs(); /* Report immediate QS. */
 701		return;
 702	}
 703
 704	/* If GP is oldish, ask for help from rcu_read_unlock_special(). */
 705	if (t->rcu_read_lock_nesting > 0 &&
 706	    __this_cpu_read(rcu_data.core_needs_qs) &&
 707	    __this_cpu_read(rcu_data.cpu_no_qs.b.norm) &&
 708	    !t->rcu_read_unlock_special.b.need_qs &&
 709	    time_after(jiffies, rcu_state.gp_start + HZ))
 710		t->rcu_read_unlock_special.b.need_qs = true;
 711}
 712
 
 
 
 
 
 
 
 
 
 713/*
 714 * Check for a task exiting while in a preemptible-RCU read-side
 715 * critical section, clean up if so.  No need to issue warnings, as
 716 * debug_check_no_locks_held() already does this if lockdep is enabled.
 717 * Besides, if this function does anything other than just immediately
 718 * return, there was a bug of some sort.  Spewing warnings from this
 719 * function is like as not to simply obscure important prior warnings.
 720 */
 721void exit_rcu(void)
 722{
 723	struct task_struct *t = current;
 
 
 724
 725	if (unlikely(!list_empty(&current->rcu_node_entry))) {
 726		t->rcu_read_lock_nesting = 1;
 727		barrier();
 728		WRITE_ONCE(t->rcu_read_unlock_special.b.blocked, true);
 729	} else if (unlikely(t->rcu_read_lock_nesting)) {
 730		t->rcu_read_lock_nesting = 1;
 731	} else {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 732		return;
 733	}
 734	__rcu_read_unlock();
 735	rcu_preempt_deferred_qs(current);
 
 736}
 
 737
 738/*
 739 * Dump the blocked-tasks state, but limit the list dump to the
 740 * specified number of elements.
 
 
 
 741 */
 742static void
 743dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
 744{
 745	int cpu;
 746	int i;
 747	struct list_head *lhp;
 748	bool onl;
 749	struct rcu_data *rdp;
 750	struct rcu_node *rnp1;
 
 751
 752	raw_lockdep_assert_held_rcu_node(rnp);
 753	pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
 754		__func__, rnp->grplo, rnp->grphi, rnp->level,
 755		(long)rnp->gp_seq, (long)rnp->completedqs);
 756	for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
 757		pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n",
 758			__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext);
 759	pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n",
 760		__func__, rnp->gp_tasks, rnp->boost_tasks, rnp->exp_tasks);
 761	pr_info("%s: ->blkd_tasks", __func__);
 762	i = 0;
 763	list_for_each(lhp, &rnp->blkd_tasks) {
 764		pr_cont(" %p", lhp);
 765		if (++i >= ncheck)
 766			break;
 767	}
 768	pr_cont("\n");
 769	for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
 770		rdp = per_cpu_ptr(&rcu_data, cpu);
 771		onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
 772		pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n",
 773			cpu, ".o"[onl],
 774			(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
 775			(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 776	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 777}
 
 778
 779#else /* #ifdef CONFIG_PREEMPT_RCU */
 
 
 
 
 
 
 
 
 
 
 
 
 780
 781/*
 782 * Tell them what RCU they are running.
 783 */
 784static void __init rcu_bootup_announce(void)
 785{
 786	pr_info("Hierarchical RCU implementation.\n");
 787	rcu_bootup_announce_oddness();
 788}
 789
 790/*
 791 * Note a quiescent state for PREEMPT=n.  Because we do not need to know
 792 * how many quiescent states passed, just if there was at least one since
 793 * the start of the grace period, this just sets a flag.  The caller must
 794 * have disabled preemption.
 795 */
 796static void rcu_qs(void)
 797{
 798	RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!");
 799	if (!__this_cpu_read(rcu_data.cpu_no_qs.s))
 
 800		return;
 801	trace_rcu_grace_period(TPS("rcu_sched"),
 802			       __this_cpu_read(rcu_data.gp_seq), TPS("cpuqs"));
 803	__this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
 804	if (!__this_cpu_read(rcu_data.cpu_no_qs.b.exp))
 805		return;
 806	__this_cpu_write(rcu_data.cpu_no_qs.b.exp, false);
 807	rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
 808}
 809
 
 
 
 
 810/*
 811 * Register an urgently needed quiescent state.  If there is an
 812 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
 813 * dyntick-idle quiescent state visible to other CPUs, which will in
 814 * some cases serve for expedited as well as normal grace periods.
 815 * Either way, register a lightweight quiescent state.
 816 */
 817void rcu_all_qs(void)
 818{
 819	unsigned long flags;
 820
 821	if (!raw_cpu_read(rcu_data.rcu_urgent_qs))
 822		return;
 823	preempt_disable();
 824	/* Load rcu_urgent_qs before other flags. */
 825	if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
 826		preempt_enable();
 827		return;
 828	}
 829	this_cpu_write(rcu_data.rcu_urgent_qs, false);
 830	if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) {
 831		local_irq_save(flags);
 832		rcu_momentary_dyntick_idle();
 833		local_irq_restore(flags);
 834	}
 835	rcu_qs();
 836	preempt_enable();
 837}
 838EXPORT_SYMBOL_GPL(rcu_all_qs);
 839
 840/*
 841 * Note a PREEMPT=n context switch.  The caller must have disabled interrupts.
 
 842 */
 843void rcu_note_context_switch(bool preempt)
 844{
 845	trace_rcu_utilization(TPS("Start context switch"));
 846	rcu_qs();
 847	/* Load rcu_urgent_qs before other flags. */
 848	if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs)))
 849		goto out;
 850	this_cpu_write(rcu_data.rcu_urgent_qs, false);
 851	if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs)))
 852		rcu_momentary_dyntick_idle();
 853	if (!preempt)
 854		rcu_tasks_qs(current);
 855out:
 856	trace_rcu_utilization(TPS("End context switch"));
 857}
 858EXPORT_SYMBOL_GPL(rcu_note_context_switch);
 859
 860/*
 861 * Because preemptible RCU does not exist, there are never any preempted
 862 * RCU readers.
 863 */
 864static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
 865{
 866	return 0;
 867}
 868
 869/*
 870 * Because there is no preemptible RCU, there can be no readers blocked.
 871 */
 872static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
 873{
 874	return false;
 875}
 876
 877/*
 878 * Because there is no preemptible RCU, there can be no deferred quiescent
 879 * states.
 880 */
 881static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
 882{
 883	return false;
 884}
 885static void rcu_preempt_deferred_qs(struct task_struct *t) { }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 886
 887/*
 888 * Because there is no preemptible RCU, there can be no readers blocked,
 889 * so there is no need to check for blocked tasks.  So check only for
 890 * bogus qsmask values.
 891 */
 892static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
 893{
 894	WARN_ON_ONCE(rnp->qsmask);
 895}
 896
 897/*
 898 * Check to see if this CPU is in a non-context-switch quiescent state,
 899 * namely user mode and idle loop.
 900 */
 901static void rcu_flavor_sched_clock_irq(int user)
 902{
 903	if (user || rcu_is_cpu_rrupt_from_idle()) {
 904
 905		/*
 906		 * Get here if this CPU took its interrupt from user
 907		 * mode or from the idle loop, and if this is not a
 908		 * nested interrupt.  In this case, the CPU is in
 909		 * a quiescent state, so note it.
 910		 *
 911		 * No memory barrier is required here because rcu_qs()
 912		 * references only CPU-local variables that other CPUs
 913		 * neither access nor modify, at least not while the
 914		 * corresponding CPU is online.
 915		 */
 916
 917		rcu_qs();
 918	}
 
 
 
 
 
 919}
 
 920
 921/*
 922 * Because preemptible RCU does not exist, tasks cannot possibly exit
 923 * while in preemptible RCU read-side critical sections.
 924 */
 925void exit_rcu(void)
 926{
 927}
 928
 929/*
 930 * Dump the guaranteed-empty blocked-tasks state.  Trust but verify.
 
 931 */
 932static void
 933dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
 934{
 935	WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks));
 936}
 937
 938#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
 939
 940/*
 941 * If boosting, set rcuc kthreads to realtime priority.
 942 */
 943static void rcu_cpu_kthread_setup(unsigned int cpu)
 
 
 
 944{
 945#ifdef CONFIG_RCU_BOOST
 946	struct sched_param sp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 947
 948	sp.sched_priority = kthread_prio;
 949	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
 950#endif /* #ifdef CONFIG_RCU_BOOST */
 951}
 952
 953#ifdef CONFIG_RCU_BOOST
 
 
 
 
 
 
 
 
 
 
 954
 955/*
 956 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
 957 * or ->boost_tasks, advancing the pointer to the next task in the
 958 * ->blkd_tasks list.
 959 *
 960 * Note that irqs must be enabled: boosting the task can block.
 961 * Returns 1 if there are more tasks needing to be boosted.
 962 */
 963static int rcu_boost(struct rcu_node *rnp)
 964{
 965	unsigned long flags;
 966	struct task_struct *t;
 967	struct list_head *tb;
 968
 969	if (READ_ONCE(rnp->exp_tasks) == NULL &&
 970	    READ_ONCE(rnp->boost_tasks) == NULL)
 971		return 0;  /* Nothing left to boost. */
 972
 973	raw_spin_lock_irqsave_rcu_node(rnp, flags);
 974
 975	/*
 976	 * Recheck under the lock: all tasks in need of boosting
 977	 * might exit their RCU read-side critical sections on their own.
 978	 */
 979	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
 980		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 981		return 0;
 982	}
 983
 984	/*
 985	 * Preferentially boost tasks blocking expedited grace periods.
 986	 * This cannot starve the normal grace periods because a second
 987	 * expedited grace period must boost all blocked tasks, including
 988	 * those blocking the pre-existing normal grace period.
 989	 */
 990	if (rnp->exp_tasks != NULL)
 991		tb = rnp->exp_tasks;
 992	else
 
 993		tb = rnp->boost_tasks;
 
 
 
 994
 995	/*
 996	 * We boost task t by manufacturing an rt_mutex that appears to
 997	 * be held by task t.  We leave a pointer to that rt_mutex where
 998	 * task t can find it, and task t will release the mutex when it
 999	 * exits its outermost RCU read-side critical section.  Then
1000	 * simply acquiring this artificial rt_mutex will boost task
1001	 * t's priority.  (Thanks to tglx for suggesting this approach!)
1002	 *
1003	 * Note that task t must acquire rnp->lock to remove itself from
1004	 * the ->blkd_tasks list, which it will do from exit() if from
1005	 * nowhere else.  We therefore are guaranteed that task t will
1006	 * stay around at least until we drop rnp->lock.  Note that
1007	 * rnp->lock also resolves races between our priority boosting
1008	 * and task t's exiting its outermost RCU read-side critical
1009	 * section.
1010	 */
1011	t = container_of(tb, struct task_struct, rcu_node_entry);
1012	rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1013	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1014	/* Lock only for side effect: boosts task t's priority. */
1015	rt_mutex_lock(&rnp->boost_mtx);
1016	rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
1017
1018	return READ_ONCE(rnp->exp_tasks) != NULL ||
1019	       READ_ONCE(rnp->boost_tasks) != NULL;
1020}
1021
1022/*
1023 * Priority-boosting kthread, one per leaf rcu_node.
1024 */
1025static int rcu_boost_kthread(void *arg)
1026{
1027	struct rcu_node *rnp = (struct rcu_node *)arg;
1028	int spincnt = 0;
1029	int more2boost;
1030
1031	trace_rcu_utilization(TPS("Start boost kthread@init"));
1032	for (;;) {
1033		rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1034		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1035		rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1036		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1037		rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1038		more2boost = rcu_boost(rnp);
1039		if (more2boost)
1040			spincnt++;
1041		else
1042			spincnt = 0;
1043		if (spincnt > 10) {
1044			rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1045			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1046			schedule_timeout_interruptible(2);
1047			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1048			spincnt = 0;
1049		}
1050	}
1051	/* NOTREACHED */
1052	trace_rcu_utilization(TPS("End boost kthread@notreached"));
1053	return 0;
1054}
1055
1056/*
1057 * Check to see if it is time to start boosting RCU readers that are
1058 * blocking the current grace period, and, if so, tell the per-rcu_node
1059 * kthread to start boosting them.  If there is an expedited grace
1060 * period in progress, it is always time to boost.
1061 *
1062 * The caller must hold rnp->lock, which this function releases.
1063 * The ->boost_kthread_task is immortal, so we don't need to worry
1064 * about it going away.
1065 */
1066static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1067	__releases(rnp->lock)
1068{
1069	raw_lockdep_assert_held_rcu_node(rnp);
 
1070	if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
 
1071		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1072		return;
1073	}
1074	if (rnp->exp_tasks != NULL ||
1075	    (rnp->gp_tasks != NULL &&
1076	     rnp->boost_tasks == NULL &&
1077	     rnp->qsmask == 0 &&
1078	     ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1079		if (rnp->exp_tasks == NULL)
1080			rnp->boost_tasks = rnp->gp_tasks;
1081		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1082		rcu_wake_cond(rnp->boost_kthread_task,
1083			      rnp->boost_kthread_status);
 
1084	} else {
 
1085		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1086	}
1087}
1088
1089/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1090 * Is the current CPU running the RCU-callbacks kthread?
1091 * Caller must have preemption disabled.
1092 */
1093static bool rcu_is_callbacks_kthread(void)
1094{
1095	return __this_cpu_read(rcu_data.rcu_cpu_kthread_task) == current;
1096}
1097
1098#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1099
1100/*
1101 * Do priority-boost accounting for the start of a new grace period.
1102 */
1103static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1104{
1105	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1106}
1107
1108/*
1109 * Create an RCU-boost kthread for the specified node if one does not
1110 * already exist.  We only create this kthread for preemptible RCU.
1111 * Returns zero if all is well, a negated errno otherwise.
1112 */
1113static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
 
1114{
1115	int rnp_index = rnp - rcu_get_root();
1116	unsigned long flags;
1117	struct sched_param sp;
1118	struct task_struct *t;
1119
1120	if (!IS_ENABLED(CONFIG_PREEMPT_RCU))
1121		return;
1122
1123	if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
1124		return;
1125
1126	rcu_state.boost = 1;
1127
 
1128	if (rnp->boost_kthread_task != NULL)
1129		return;
1130
1131	t = kthread_create(rcu_boost_kthread, (void *)rnp,
1132			   "rcub/%d", rnp_index);
1133	if (WARN_ON_ONCE(IS_ERR(t)))
1134		return;
1135
1136	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1137	rnp->boost_kthread_task = t;
1138	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1139	sp.sched_priority = kthread_prio;
1140	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1141	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1142}
1143
1144/*
1145 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1146 * served by the rcu_node in question.  The CPU hotplug lock is still
1147 * held, so the value of rnp->qsmaskinit will be stable.
1148 *
1149 * We don't include outgoingcpu in the affinity set, use -1 if there is
1150 * no outgoing CPU.  If there are no CPUs left in the affinity set,
1151 * this function allows the kthread to execute on any CPU.
1152 */
1153static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1154{
1155	struct task_struct *t = rnp->boost_kthread_task;
1156	unsigned long mask = rcu_rnp_online_cpus(rnp);
1157	cpumask_var_t cm;
1158	int cpu;
1159
1160	if (!t)
1161		return;
1162	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1163		return;
1164	for_each_leaf_node_possible_cpu(rnp, cpu)
1165		if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
1166		    cpu != outgoingcpu)
1167			cpumask_set_cpu(cpu, cm);
1168	if (cpumask_weight(cm) == 0)
1169		cpumask_setall(cm);
1170	set_cpus_allowed_ptr(t, cm);
1171	free_cpumask_var(cm);
1172}
1173
 
 
 
 
 
 
 
 
 
1174/*
1175 * Spawn boost kthreads -- called as soon as the scheduler is running.
1176 */
1177static void __init rcu_spawn_boost_kthreads(void)
1178{
1179	struct rcu_node *rnp;
 
1180
1181	rcu_for_each_leaf_node(rnp)
1182		rcu_spawn_one_boost_kthread(rnp);
 
 
 
1183}
1184
1185static void rcu_prepare_kthreads(int cpu)
1186{
1187	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1188	struct rcu_node *rnp = rdp->mynode;
1189
1190	/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1191	if (rcu_scheduler_fully_active)
1192		rcu_spawn_one_boost_kthread(rnp);
1193}
1194
1195#else /* #ifdef CONFIG_RCU_BOOST */
1196
1197static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1198	__releases(rnp->lock)
1199{
1200	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1201}
1202
 
 
 
 
 
1203static bool rcu_is_callbacks_kthread(void)
1204{
1205	return false;
1206}
1207
1208static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1209{
1210}
1211
1212static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1213{
1214}
1215
1216static void __init rcu_spawn_boost_kthreads(void)
1217{
1218}
1219
1220static void rcu_prepare_kthreads(int cpu)
1221{
1222}
1223
1224#endif /* #else #ifdef CONFIG_RCU_BOOST */
1225
1226#if !defined(CONFIG_RCU_FAST_NO_HZ)
1227
1228/*
1229 * Check to see if any future non-offloaded RCU-related work will need
1230 * to be done by the current CPU, even if none need be done immediately,
1231 * returning 1 if so.  This function is part of the RCU implementation;
1232 * it is -not- an exported member of the RCU API.
1233 *
1234 * Because we not have RCU_FAST_NO_HZ, just check whether or not this
1235 * CPU has RCU callbacks queued.
1236 */
1237int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1238{
1239	*nextevt = KTIME_MAX;
1240	return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) &&
1241	       !rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist);
1242}
1243
1244/*
1245 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1246 * after it.
1247 */
1248static void rcu_cleanup_after_idle(void)
1249{
1250}
1251
1252/*
1253 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1254 * is nothing.
1255 */
1256static void rcu_prepare_for_idle(void)
1257{
1258}
1259
 
 
 
 
 
 
 
 
1260#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1261
1262/*
1263 * This code is invoked when a CPU goes idle, at which point we want
1264 * to have the CPU do everything required for RCU so that it can enter
1265 * the energy-efficient dyntick-idle mode.  This is handled by a
1266 * state machine implemented by rcu_prepare_for_idle() below.
1267 *
1268 * The following three proprocessor symbols control this state machine:
1269 *
1270 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1271 *	to sleep in dyntick-idle mode with RCU callbacks pending.  This
1272 *	is sized to be roughly one RCU grace period.  Those energy-efficiency
1273 *	benchmarkers who might otherwise be tempted to set this to a large
1274 *	number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1275 *	system.  And if you are -that- concerned about energy efficiency,
1276 *	just power the system down and be done with it!
1277 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1278 *	permitted to sleep in dyntick-idle mode with only lazy RCU
1279 *	callbacks pending.  Setting this too high can OOM your system.
1280 *
1281 * The values below work well in practice.  If future workloads require
1282 * adjustment, they can be converted into kernel config parameters, though
1283 * making the state machine smarter might be a better option.
1284 */
1285#define RCU_IDLE_GP_DELAY 4		/* Roughly one grace period. */
1286#define RCU_IDLE_LAZY_GP_DELAY (6 * HZ)	/* Roughly six seconds. */
1287
1288static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1289module_param(rcu_idle_gp_delay, int, 0644);
1290static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1291module_param(rcu_idle_lazy_gp_delay, int, 0644);
1292
1293/*
1294 * Try to advance callbacks on the current CPU, but only if it has been
1295 * awhile since the last time we did so.  Afterwards, if there are any
1296 * callbacks ready for immediate invocation, return true.
1297 */
1298static bool __maybe_unused rcu_try_advance_all_cbs(void)
1299{
1300	bool cbs_ready = false;
1301	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 
1302	struct rcu_node *rnp;
 
1303
1304	/* Exit early if we advanced recently. */
1305	if (jiffies == rdp->last_advance_all)
1306		return false;
1307	rdp->last_advance_all = jiffies;
1308
1309	rnp = rdp->mynode;
 
 
1310
1311	/*
1312	 * Don't bother checking unless a grace period has
1313	 * completed since we last checked and there are
1314	 * callbacks not yet ready to invoke.
1315	 */
1316	if ((rcu_seq_completed_gp(rdp->gp_seq,
1317				  rcu_seq_current(&rnp->gp_seq)) ||
1318	     unlikely(READ_ONCE(rdp->gpwrap))) &&
1319	    rcu_segcblist_pend_cbs(&rdp->cblist))
1320		note_gp_changes(rdp);
1321
1322	if (rcu_segcblist_ready_cbs(&rdp->cblist))
1323		cbs_ready = true;
 
1324	return cbs_ready;
1325}
1326
1327/*
1328 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1329 * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1330 * caller to set the timeout based on whether or not there are non-lazy
1331 * callbacks.
1332 *
1333 * The caller must have disabled interrupts.
1334 */
1335int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1336{
1337	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1338	unsigned long dj;
1339
1340	lockdep_assert_irqs_disabled();
 
 
 
 
 
 
1341
1342	/* If no non-offloaded callbacks, RCU doesn't need the CPU. */
1343	if (rcu_segcblist_empty(&rdp->cblist) ||
1344	    rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist)) {
1345		*nextevt = KTIME_MAX;
1346		return 0;
1347	}
1348
1349	/* Attempt to advance callbacks. */
1350	if (rcu_try_advance_all_cbs()) {
1351		/* Some ready to invoke, so initiate later invocation. */
1352		invoke_rcu_core();
1353		return 1;
1354	}
1355	rdp->last_accelerate = jiffies;
1356
1357	/* Request timer delay depending on laziness, and round. */
1358	rdp->all_lazy = !rcu_segcblist_n_nonlazy_cbs(&rdp->cblist);
1359	if (rdp->all_lazy) {
1360		dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1361	} else {
1362		dj = round_up(rcu_idle_gp_delay + jiffies,
1363			       rcu_idle_gp_delay) - jiffies;
 
 
1364	}
1365	*nextevt = basemono + dj * TICK_NSEC;
1366	return 0;
1367}
1368
1369/*
1370 * Prepare a CPU for idle from an RCU perspective.  The first major task
1371 * is to sense whether nohz mode has been enabled or disabled via sysfs.
1372 * The second major task is to check to see if a non-lazy callback has
1373 * arrived at a CPU that previously had only lazy callbacks.  The third
1374 * major task is to accelerate (that is, assign grace-period numbers to)
1375 * any recently arrived callbacks.
1376 *
1377 * The caller must have disabled interrupts.
1378 */
1379static void rcu_prepare_for_idle(void)
1380{
1381	bool needwake;
1382	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 
1383	struct rcu_node *rnp;
 
1384	int tne;
1385
1386	lockdep_assert_irqs_disabled();
1387	if (rcu_segcblist_is_offloaded(&rdp->cblist))
1388		return;
1389
1390	/* Handle nohz enablement switches conservatively. */
1391	tne = READ_ONCE(tick_nohz_active);
1392	if (tne != rdp->tick_nohz_enabled_snap) {
1393		if (!rcu_segcblist_empty(&rdp->cblist))
1394			invoke_rcu_core(); /* force nohz to see update. */
1395		rdp->tick_nohz_enabled_snap = tne;
1396		return;
1397	}
1398	if (!tne)
1399		return;
1400
1401	/*
1402	 * If a non-lazy callback arrived at a CPU having only lazy
1403	 * callbacks, invoke RCU core for the side-effect of recalculating
1404	 * idle duration on re-entry to idle.
1405	 */
1406	if (rdp->all_lazy && rcu_segcblist_n_nonlazy_cbs(&rdp->cblist)) {
1407		rdp->all_lazy = false;
 
 
1408		invoke_rcu_core();
1409		return;
1410	}
1411
1412	/*
1413	 * If we have not yet accelerated this jiffy, accelerate all
1414	 * callbacks on this CPU.
1415	 */
1416	if (rdp->last_accelerate == jiffies)
1417		return;
1418	rdp->last_accelerate = jiffies;
1419	if (rcu_segcblist_pend_cbs(&rdp->cblist)) {
 
 
 
1420		rnp = rdp->mynode;
1421		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1422		needwake = rcu_accelerate_cbs(rnp, rdp);
1423		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1424		if (needwake)
1425			rcu_gp_kthread_wake();
1426	}
1427}
1428
1429/*
1430 * Clean up for exit from idle.  Attempt to advance callbacks based on
1431 * any grace periods that elapsed while the CPU was idle, and if any
1432 * callbacks are now ready to invoke, initiate invocation.
1433 */
1434static void rcu_cleanup_after_idle(void)
1435{
1436	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1437
1438	lockdep_assert_irqs_disabled();
1439	if (rcu_segcblist_is_offloaded(&rdp->cblist))
1440		return;
1441	if (rcu_try_advance_all_cbs())
1442		invoke_rcu_core();
1443}
1444
1445#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1446
1447#ifdef CONFIG_RCU_NOCB_CPU
 
 
 
 
 
 
 
 
1448
1449/*
1450 * Offload callback processing from the boot-time-specified set of CPUs
1451 * specified by rcu_nocb_mask.  For the CPUs in the set, there are kthreads
1452 * created that pull the callbacks from the corresponding CPU, wait for
1453 * a grace period to elapse, and invoke the callbacks.  These kthreads
1454 * are organized into GP kthreads, which manage incoming callbacks, wait for
1455 * grace periods, and awaken CB kthreads, and the CB kthreads, which only
1456 * invoke callbacks.  Each GP kthread invokes its own CBs.  The no-CBs CPUs
1457 * do a wake_up() on their GP kthread when they insert a callback into any
1458 * empty list, unless the rcu_nocb_poll boot parameter has been specified,
1459 * in which case each kthread actively polls its CPU.  (Which isn't so great
1460 * for energy efficiency, but which does reduce RCU's overhead on that CPU.)
1461 *
1462 * This is intended to be used in conjunction with Frederic Weisbecker's
1463 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1464 * running CPU-bound user-mode computations.
1465 *
1466 * Offloading of callbacks can also be used as an energy-efficiency
1467 * measure because CPUs with no RCU callbacks queued are more aggressive
1468 * about entering dyntick-idle mode.
1469 */
 
 
 
 
1470
 
 
 
 
 
 
 
 
1471
1472/*
1473 * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters.
1474 * The string after the "rcu_nocbs=" is either "all" for all CPUs, or a
1475 * comma-separated list of CPUs and/or CPU ranges.  If an invalid list is
1476 * given, a warning is emitted and all CPUs are offloaded.
 
1477 */
1478static int __init rcu_nocb_setup(char *str)
 
1479{
1480	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1481	if (!strcasecmp(str, "all"))
1482		cpumask_setall(rcu_nocb_mask);
1483	else
1484		if (cpulist_parse(str, rcu_nocb_mask)) {
1485			pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n");
1486			cpumask_setall(rcu_nocb_mask);
1487		}
1488	return 1;
 
 
 
 
 
 
 
 
 
 
 
 
1489}
1490__setup("rcu_nocbs=", rcu_nocb_setup);
1491
1492static int __init parse_rcu_nocb_poll(char *arg)
 
 
 
 
1493{
1494	rcu_nocb_poll = true;
1495	return 0;
1496}
1497early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
 
 
1498
1499/*
1500 * Don't bother bypassing ->cblist if the call_rcu() rate is low.
1501 * After all, the main point of bypassing is to avoid lock contention
1502 * on ->nocb_lock, which only can happen at high call_rcu() rates.
1503 */
1504int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ;
1505module_param(nocb_nobypass_lim_per_jiffy, int, 0);
1506
1507/*
1508 * Acquire the specified rcu_data structure's ->nocb_bypass_lock.  If the
1509 * lock isn't immediately available, increment ->nocb_lock_contended to
1510 * flag the contention.
1511 */
1512static void rcu_nocb_bypass_lock(struct rcu_data *rdp)
1513{
1514	lockdep_assert_irqs_disabled();
1515	if (raw_spin_trylock(&rdp->nocb_bypass_lock))
1516		return;
1517	atomic_inc(&rdp->nocb_lock_contended);
1518	WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
1519	smp_mb__after_atomic(); /* atomic_inc() before lock. */
1520	raw_spin_lock(&rdp->nocb_bypass_lock);
1521	smp_mb__before_atomic(); /* atomic_dec() after lock. */
1522	atomic_dec(&rdp->nocb_lock_contended);
1523}
1524
1525/*
1526 * Spinwait until the specified rcu_data structure's ->nocb_lock is
1527 * not contended.  Please note that this is extremely special-purpose,
1528 * relying on the fact that at most two kthreads and one CPU contend for
1529 * this lock, and also that the two kthreads are guaranteed to have frequent
1530 * grace-period-duration time intervals between successive acquisitions
1531 * of the lock.  This allows us to use an extremely simple throttling
1532 * mechanism, and further to apply it only to the CPU doing floods of
1533 * call_rcu() invocations.  Don't try this at home!
1534 */
1535static void rcu_nocb_wait_contended(struct rcu_data *rdp)
1536{
1537	WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
1538	while (WARN_ON_ONCE(atomic_read(&rdp->nocb_lock_contended)))
1539		cpu_relax();
1540}
1541
1542/*
1543 * Conditionally acquire the specified rcu_data structure's
1544 * ->nocb_bypass_lock.
1545 */
1546static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp)
1547{
1548	lockdep_assert_irqs_disabled();
1549	return raw_spin_trylock(&rdp->nocb_bypass_lock);
1550}
1551
1552/*
1553 * Release the specified rcu_data structure's ->nocb_bypass_lock.
1554 */
1555static void rcu_nocb_bypass_unlock(struct rcu_data *rdp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1556{
1557	lockdep_assert_irqs_disabled();
1558	raw_spin_unlock(&rdp->nocb_bypass_lock);
1559}
1560
1561/*
1562 * Acquire the specified rcu_data structure's ->nocb_lock, but only
1563 * if it corresponds to a no-CBs CPU.
1564 */
1565static void rcu_nocb_lock(struct rcu_data *rdp)
1566{
1567	lockdep_assert_irqs_disabled();
1568	if (!rcu_segcblist_is_offloaded(&rdp->cblist))
1569		return;
1570	raw_spin_lock(&rdp->nocb_lock);
1571}
1572
1573/*
1574 * Release the specified rcu_data structure's ->nocb_lock, but only
1575 * if it corresponds to a no-CBs CPU.
1576 */
1577static void rcu_nocb_unlock(struct rcu_data *rdp)
1578{
1579	if (rcu_segcblist_is_offloaded(&rdp->cblist)) {
1580		lockdep_assert_irqs_disabled();
1581		raw_spin_unlock(&rdp->nocb_lock);
1582	}
1583}
1584
 
 
1585/*
1586 * Release the specified rcu_data structure's ->nocb_lock and restore
1587 * interrupts, but only if it corresponds to a no-CBs CPU.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1588 */
1589static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
1590				       unsigned long flags)
 
 
1591{
1592	if (rcu_segcblist_is_offloaded(&rdp->cblist)) {
1593		lockdep_assert_irqs_disabled();
1594		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1595	} else {
1596		local_irq_restore(flags);
1597	}
1598}
 
1599
1600/* Lockdep check that ->cblist may be safely accessed. */
1601static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
1602{
1603	lockdep_assert_irqs_disabled();
1604	if (rcu_segcblist_is_offloaded(&rdp->cblist) &&
1605	    cpu_online(rdp->cpu))
1606		lockdep_assert_held(&rdp->nocb_lock);
1607}
 
1608
1609/*
1610 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1611 * grace period.
1612 */
1613static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1614{
1615	swake_up_all(sq);
1616}
1617
 
 
 
 
 
 
 
 
 
 
 
 
 
1618static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1619{
1620	return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1];
1621}
1622
1623static void rcu_init_one_nocb(struct rcu_node *rnp)
1624{
1625	init_swait_queue_head(&rnp->nocb_gp_wq[0]);
1626	init_swait_queue_head(&rnp->nocb_gp_wq[1]);
1627}
1628
 
1629/* Is the specified CPU a no-CBs CPU? */
1630bool rcu_is_nocb_cpu(int cpu)
1631{
1632	if (cpumask_available(rcu_nocb_mask))
1633		return cpumask_test_cpu(cpu, rcu_nocb_mask);
1634	return false;
1635}
 
1636
1637/*
1638 * Kick the GP kthread for this NOCB group.  Caller holds ->nocb_lock
1639 * and this function releases it.
1640 */
1641static void wake_nocb_gp(struct rcu_data *rdp, bool force,
1642			   unsigned long flags)
1643	__releases(rdp->nocb_lock)
1644{
1645	bool needwake = false;
1646	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1647
1648	lockdep_assert_held(&rdp->nocb_lock);
1649	if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) {
1650		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1651				    TPS("AlreadyAwake"));
1652		rcu_nocb_unlock_irqrestore(rdp, flags);
1653		return;
1654	}
1655	del_timer(&rdp->nocb_timer);
1656	rcu_nocb_unlock_irqrestore(rdp, flags);
1657	raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
1658	if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) {
1659		WRITE_ONCE(rdp_gp->nocb_gp_sleep, false);
1660		needwake = true;
1661		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake"));
1662	}
1663	raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
1664	if (needwake)
1665		wake_up_process(rdp_gp->nocb_gp_kthread);
1666}
1667
1668/*
1669 * Arrange to wake the GP kthread for this NOCB group at some future
1670 * time when it is safe to do so.
1671 */
1672static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype,
1673			       const char *reason)
1674{
1675	if (rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT)
1676		mod_timer(&rdp->nocb_timer, jiffies + 1);
1677	if (rdp->nocb_defer_wakeup < waketype)
1678		WRITE_ONCE(rdp->nocb_defer_wakeup, waketype);
1679	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason);
1680}
1681
1682/*
1683 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1684 * However, if there is a callback to be enqueued and if ->nocb_bypass
1685 * proves to be initially empty, just return false because the no-CB GP
1686 * kthread may need to be awakened in this case.
1687 *
1688 * Note that this function always returns true if rhp is NULL.
1689 */
1690static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1691				     unsigned long j)
1692{
1693	struct rcu_cblist rcl;
1694
1695	WARN_ON_ONCE(!rcu_segcblist_is_offloaded(&rdp->cblist));
1696	rcu_lockdep_assert_cblist_protected(rdp);
1697	lockdep_assert_held(&rdp->nocb_bypass_lock);
1698	if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) {
1699		raw_spin_unlock(&rdp->nocb_bypass_lock);
1700		return false;
1701	}
1702	/* Note: ->cblist.len already accounts for ->nocb_bypass contents. */
1703	if (rhp)
1704		rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
1705	rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp);
1706	rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl);
1707	WRITE_ONCE(rdp->nocb_bypass_first, j);
1708	rcu_nocb_bypass_unlock(rdp);
1709	return true;
1710}
1711
1712/*
1713 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1714 * However, if there is a callback to be enqueued and if ->nocb_bypass
1715 * proves to be initially empty, just return false because the no-CB GP
1716 * kthread may need to be awakened in this case.
1717 *
1718 * Note that this function always returns true if rhp is NULL.
1719 */
1720static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1721				  unsigned long j)
1722{
1723	if (!rcu_segcblist_is_offloaded(&rdp->cblist))
1724		return true;
1725	rcu_lockdep_assert_cblist_protected(rdp);
1726	rcu_nocb_bypass_lock(rdp);
1727	return rcu_nocb_do_flush_bypass(rdp, rhp, j);
1728}
1729
1730/*
1731 * If the ->nocb_bypass_lock is immediately available, flush the
1732 * ->nocb_bypass queue into ->cblist.
1733 */
1734static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j)
1735{
1736	rcu_lockdep_assert_cblist_protected(rdp);
1737	if (!rcu_segcblist_is_offloaded(&rdp->cblist) ||
1738	    !rcu_nocb_bypass_trylock(rdp))
1739		return;
1740	WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j));
1741}
 
1742
1743/*
1744 * See whether it is appropriate to use the ->nocb_bypass list in order
1745 * to control contention on ->nocb_lock.  A limited number of direct
1746 * enqueues are permitted into ->cblist per jiffy.  If ->nocb_bypass
1747 * is non-empty, further callbacks must be placed into ->nocb_bypass,
1748 * otherwise rcu_barrier() breaks.  Use rcu_nocb_flush_bypass() to switch
1749 * back to direct use of ->cblist.  However, ->nocb_bypass should not be
1750 * used if ->cblist is empty, because otherwise callbacks can be stranded
1751 * on ->nocb_bypass because we cannot count on the current CPU ever again
1752 * invoking call_rcu().  The general rule is that if ->nocb_bypass is
1753 * non-empty, the corresponding no-CBs grace-period kthread must not be
1754 * in an indefinite sleep state.
1755 *
1756 * Finally, it is not permitted to use the bypass during early boot,
1757 * as doing so would confuse the auto-initialization code.  Besides
1758 * which, there is no point in worrying about lock contention while
1759 * there is only one CPU in operation.
1760 */
1761static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1762				bool *was_alldone, unsigned long flags)
1763{
1764	unsigned long c;
1765	unsigned long cur_gp_seq;
1766	unsigned long j = jiffies;
1767	long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1768
1769	if (!rcu_segcblist_is_offloaded(&rdp->cblist)) {
1770		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1771		return false; /* Not offloaded, no bypassing. */
1772	}
1773	lockdep_assert_irqs_disabled();
1774
1775	// Don't use ->nocb_bypass during early boot.
1776	if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) {
1777		rcu_nocb_lock(rdp);
1778		WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1779		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1780		return false;
1781	}
 
1782
1783	// If we have advanced to a new jiffy, reset counts to allow
1784	// moving back from ->nocb_bypass to ->cblist.
1785	if (j == rdp->nocb_nobypass_last) {
1786		c = rdp->nocb_nobypass_count + 1;
1787	} else {
1788		WRITE_ONCE(rdp->nocb_nobypass_last, j);
1789		c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy;
1790		if (ULONG_CMP_LT(rdp->nocb_nobypass_count,
1791				 nocb_nobypass_lim_per_jiffy))
1792			c = 0;
1793		else if (c > nocb_nobypass_lim_per_jiffy)
1794			c = nocb_nobypass_lim_per_jiffy;
1795	}
1796	WRITE_ONCE(rdp->nocb_nobypass_count, c);
1797
1798	// If there hasn't yet been all that many ->cblist enqueues
1799	// this jiffy, tell the caller to enqueue onto ->cblist.  But flush
1800	// ->nocb_bypass first.
1801	if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy) {
1802		rcu_nocb_lock(rdp);
1803		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1804		if (*was_alldone)
1805			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1806					    TPS("FirstQ"));
1807		WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j));
1808		WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1809		return false; // Caller must enqueue the callback.
1810	}
1811
1812	// If ->nocb_bypass has been used too long or is too full,
1813	// flush ->nocb_bypass to ->cblist.
1814	if ((ncbs && j != READ_ONCE(rdp->nocb_bypass_first)) ||
1815	    ncbs >= qhimark) {
1816		rcu_nocb_lock(rdp);
1817		if (!rcu_nocb_flush_bypass(rdp, rhp, j)) {
1818			*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1819			if (*was_alldone)
1820				trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1821						    TPS("FirstQ"));
1822			WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1823			return false; // Caller must enqueue the callback.
1824		}
1825		if (j != rdp->nocb_gp_adv_time &&
1826		    rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1827		    rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
1828			rcu_advance_cbs_nowake(rdp->mynode, rdp);
1829			rdp->nocb_gp_adv_time = j;
1830		}
1831		rcu_nocb_unlock_irqrestore(rdp, flags);
1832		return true; // Callback already enqueued.
1833	}
1834
1835	// We need to use the bypass.
1836	rcu_nocb_wait_contended(rdp);
1837	rcu_nocb_bypass_lock(rdp);
1838	ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1839	rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
1840	rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
1841	if (!ncbs) {
1842		WRITE_ONCE(rdp->nocb_bypass_first, j);
1843		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ"));
1844	}
1845	rcu_nocb_bypass_unlock(rdp);
1846	smp_mb(); /* Order enqueue before wake. */
1847	if (ncbs) {
1848		local_irq_restore(flags);
1849	} else {
1850		// No-CBs GP kthread might be indefinitely asleep, if so, wake.
1851		rcu_nocb_lock(rdp); // Rare during call_rcu() flood.
1852		if (!rcu_segcblist_pend_cbs(&rdp->cblist)) {
1853			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1854					    TPS("FirstBQwake"));
1855			__call_rcu_nocb_wake(rdp, true, flags);
1856		} else {
1857			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1858					    TPS("FirstBQnoWake"));
1859			rcu_nocb_unlock_irqrestore(rdp, flags);
1860		}
1861	}
1862	return true; // Callback already enqueued.
1863}
1864
1865/*
1866 * Awaken the no-CBs grace-period kthead if needed, either due to it
1867 * legitimately being asleep or due to overload conditions.
 
 
1868 *
1869 * If warranted, also wake up the kthread servicing this CPUs queues.
1870 */
1871static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone,
1872				 unsigned long flags)
1873				 __releases(rdp->nocb_lock)
 
 
1874{
1875	unsigned long cur_gp_seq;
1876	unsigned long j;
1877	long len;
1878	struct task_struct *t;
1879
1880	// If we are being polled or there is no kthread, just leave.
1881	t = READ_ONCE(rdp->nocb_gp_kthread);
 
 
 
 
 
 
 
 
1882	if (rcu_nocb_poll || !t) {
1883		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1884				    TPS("WakeNotPoll"));
1885		rcu_nocb_unlock_irqrestore(rdp, flags);
1886		return;
1887	}
1888	// Need to actually to a wakeup.
1889	len = rcu_segcblist_n_cbs(&rdp->cblist);
1890	if (was_alldone) {
1891		rdp->qlen_last_fqs_check = len;
1892		if (!irqs_disabled_flags(flags)) {
1893			/* ... if queue was empty ... */
1894			wake_nocb_gp(rdp, false, flags);
1895			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1896					    TPS("WakeEmpty"));
1897		} else {
1898			wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE,
1899					   TPS("WakeEmptyIsDeferred"));
1900			rcu_nocb_unlock_irqrestore(rdp, flags);
1901		}
 
1902	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
1903		/* ... or if many callbacks queued. */
1904		rdp->qlen_last_fqs_check = len;
1905		j = jiffies;
1906		if (j != rdp->nocb_gp_adv_time &&
1907		    rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1908		    rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
1909			rcu_advance_cbs_nowake(rdp->mynode, rdp);
1910			rdp->nocb_gp_adv_time = j;
 
1911		}
1912		smp_mb(); /* Enqueue before timer_pending(). */
1913		if ((rdp->nocb_cb_sleep ||
1914		     !rcu_segcblist_ready_cbs(&rdp->cblist)) &&
1915		    !timer_pending(&rdp->nocb_bypass_timer))
1916			wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE,
1917					   TPS("WakeOvfIsDeferred"));
1918		rcu_nocb_unlock_irqrestore(rdp, flags);
1919	} else {
1920		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
1921		rcu_nocb_unlock_irqrestore(rdp, flags);
1922	}
1923	return;
1924}
1925
1926/* Wake up the no-CBs GP kthread to flush ->nocb_bypass. */
1927static void do_nocb_bypass_wakeup_timer(struct timer_list *t)
 
 
 
 
 
 
 
 
 
1928{
1929	unsigned long flags;
1930	struct rcu_data *rdp = from_timer(rdp, t, nocb_bypass_timer);
1931
1932	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer"));
1933	rcu_nocb_lock_irqsave(rdp, flags);
1934	smp_mb__after_spinlock(); /* Timer expire before wakeup. */
1935	__call_rcu_nocb_wake(rdp, true, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1936}
1937
1938/*
1939 * No-CBs GP kthreads come here to wait for additional callbacks to show up
1940 * or for grace periods to end.
1941 */
1942static void nocb_gp_wait(struct rcu_data *my_rdp)
 
 
1943{
1944	bool bypass = false;
1945	long bypass_ncbs;
1946	int __maybe_unused cpu = my_rdp->cpu;
1947	unsigned long cur_gp_seq;
1948	unsigned long flags;
1949	bool gotcbs;
1950	unsigned long j = jiffies;
1951	bool needwait_gp = false; // This prevents actual uninitialized use.
1952	bool needwake;
1953	bool needwake_gp;
1954	struct rcu_data *rdp;
1955	struct rcu_node *rnp;
1956	unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning.
1957
1958	/*
1959	 * Each pass through the following loop checks for CBs and for the
1960	 * nearest grace period (if any) to wait for next.  The CB kthreads
1961	 * and the global grace-period kthread are awakened if needed.
1962	 */
1963	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_cb_rdp) {
1964		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check"));
1965		rcu_nocb_lock_irqsave(rdp, flags);
1966		bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1967		if (bypass_ncbs &&
1968		    (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) ||
1969		     bypass_ncbs > 2 * qhimark)) {
1970			// Bypass full or old, so flush it.
1971			(void)rcu_nocb_try_flush_bypass(rdp, j);
1972			bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1973		} else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) {
1974			rcu_nocb_unlock_irqrestore(rdp, flags);
1975			continue; /* No callbacks here, try next. */
1976		}
1977		if (bypass_ncbs) {
1978			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1979					    TPS("Bypass"));
1980			bypass = true;
1981		}
1982		rnp = rdp->mynode;
1983		if (bypass) {  // Avoid race with first bypass CB.
1984			WRITE_ONCE(my_rdp->nocb_defer_wakeup,
1985				   RCU_NOCB_WAKE_NOT);
1986			del_timer(&my_rdp->nocb_timer);
1987		}
1988		// Advance callbacks if helpful and low contention.
1989		needwake_gp = false;
1990		if (!rcu_segcblist_restempty(&rdp->cblist,
1991					     RCU_NEXT_READY_TAIL) ||
1992		    (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1993		     rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) {
1994			raw_spin_lock_rcu_node(rnp); /* irqs disabled. */
1995			needwake_gp = rcu_advance_cbs(rnp, rdp);
1996			raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */
1997		}
1998		// Need to wait on some grace period?
1999		WARN_ON_ONCE(!rcu_segcblist_restempty(&rdp->cblist,
2000						      RCU_NEXT_READY_TAIL));
2001		if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) {
2002			if (!needwait_gp ||
2003			    ULONG_CMP_LT(cur_gp_seq, wait_gp_seq))
2004				wait_gp_seq = cur_gp_seq;
2005			needwait_gp = true;
2006			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
2007					    TPS("NeedWaitGP"));
2008		}
2009		if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
2010			needwake = rdp->nocb_cb_sleep;
2011			WRITE_ONCE(rdp->nocb_cb_sleep, false);
2012			smp_mb(); /* CB invocation -after- GP end. */
2013		} else {
2014			needwake = false;
2015		}
2016		rcu_nocb_unlock_irqrestore(rdp, flags);
2017		if (needwake) {
2018			swake_up_one(&rdp->nocb_cb_wq);
2019			gotcbs = true;
2020		}
2021		if (needwake_gp)
2022			rcu_gp_kthread_wake();
2023	}
2024
2025	my_rdp->nocb_gp_bypass = bypass;
2026	my_rdp->nocb_gp_gp = needwait_gp;
2027	my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0;
2028	if (bypass && !rcu_nocb_poll) {
2029		// At least one child with non-empty ->nocb_bypass, so set
2030		// timer in order to avoid stranding its callbacks.
2031		raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
2032		mod_timer(&my_rdp->nocb_bypass_timer, j + 2);
2033		raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
2034	}
2035	if (rcu_nocb_poll) {
2036		/* Polling, so trace if first poll in the series. */
2037		if (gotcbs)
2038			trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll"));
2039		schedule_timeout_interruptible(1);
2040	} else if (!needwait_gp) {
2041		/* Wait for callbacks to appear. */
2042		trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep"));
2043		swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq,
2044				!READ_ONCE(my_rdp->nocb_gp_sleep));
2045		trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep"));
2046	} else {
2047		rnp = my_rdp->mynode;
2048		trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait"));
2049		swait_event_interruptible_exclusive(
2050			rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1],
2051			rcu_seq_done(&rnp->gp_seq, wait_gp_seq) ||
2052			!READ_ONCE(my_rdp->nocb_gp_sleep));
2053		trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait"));
2054	}
2055	if (!rcu_nocb_poll) {
2056		raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
2057		if (bypass)
2058			del_timer(&my_rdp->nocb_bypass_timer);
2059		WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
2060		raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
2061	}
2062	my_rdp->nocb_gp_seq = -1;
2063	WARN_ON(signal_pending(current));
2064}
2065
2066/*
2067 * No-CBs grace-period-wait kthread.  There is one of these per group
2068 * of CPUs, but only once at least one CPU in that group has come online
2069 * at least once since boot.  This kthread checks for newly posted
2070 * callbacks from any of the CPUs it is responsible for, waits for a
2071 * grace period, then awakens all of the rcu_nocb_cb_kthread() instances
2072 * that then have callback-invocation work to do.
2073 */
2074static int rcu_nocb_gp_kthread(void *arg)
2075{
2076	struct rcu_data *rdp = arg;
 
 
 
 
 
 
 
 
 
 
2077
 
 
 
 
 
2078	for (;;) {
2079		WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1);
2080		nocb_gp_wait(rdp);
2081		cond_resched_tasks_rcu_qs();
 
 
 
 
2082	}
2083	return 0;
 
2084}
2085
2086/*
2087 * Invoke any ready callbacks from the corresponding no-CBs CPU,
2088 * then, if there are no more, wait for more to appear.
2089 */
2090static void nocb_cb_wait(struct rcu_data *rdp)
2091{
2092	unsigned long cur_gp_seq;
2093	unsigned long flags;
2094	bool needwake_gp = false;
2095	struct rcu_node *rnp = rdp->mynode;
 
 
 
 
 
 
 
 
 
 
 
 
 
2096
2097	local_irq_save(flags);
2098	rcu_momentary_dyntick_idle();
2099	local_irq_restore(flags);
2100	local_bh_disable();
2101	rcu_do_batch(rdp);
2102	local_bh_enable();
2103	lockdep_assert_irqs_enabled();
2104	rcu_nocb_lock_irqsave(rdp, flags);
2105	if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
2106	    rcu_seq_done(&rnp->gp_seq, cur_gp_seq) &&
2107	    raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */
2108		needwake_gp = rcu_advance_cbs(rdp->mynode, rdp);
2109		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
 
 
2110	}
2111	if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
2112		rcu_nocb_unlock_irqrestore(rdp, flags);
2113		if (needwake_gp)
2114			rcu_gp_kthread_wake();
2115		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2116	}
2117
2118	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep"));
2119	WRITE_ONCE(rdp->nocb_cb_sleep, true);
2120	rcu_nocb_unlock_irqrestore(rdp, flags);
2121	if (needwake_gp)
2122		rcu_gp_kthread_wake();
2123	swait_event_interruptible_exclusive(rdp->nocb_cb_wq,
2124				 !READ_ONCE(rdp->nocb_cb_sleep));
2125	if (!smp_load_acquire(&rdp->nocb_cb_sleep)) { /* VVV */
2126		/* ^^^ Ensure CB invocation follows _sleep test. */
2127		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2128	}
2129	WARN_ON(signal_pending(current));
2130	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty"));
 
 
2131}
2132
2133/*
2134 * Per-rcu_data kthread, but only for no-CBs CPUs.  Repeatedly invoke
2135 * nocb_cb_wait() to do the dirty work.
2136 */
2137static int rcu_nocb_cb_kthread(void *arg)
2138{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2139	struct rcu_data *rdp = arg;
2140
2141	// Each pass through this loop does one callback batch, and,
2142	// if there are no more ready callbacks, waits for them.
2143	for (;;) {
2144		nocb_cb_wait(rdp);
2145		cond_resched_tasks_rcu_qs();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2146	}
2147	return 0;
2148}
2149
2150/* Is a deferred wakeup of rcu_nocb_kthread() required? */
2151static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2152{
2153	return READ_ONCE(rdp->nocb_defer_wakeup);
2154}
2155
2156/* Do a deferred wakeup of rcu_nocb_kthread(). */
2157static void do_nocb_deferred_wakeup_common(struct rcu_data *rdp)
2158{
2159	unsigned long flags;
2160	int ndw;
2161
2162	rcu_nocb_lock_irqsave(rdp, flags);
2163	if (!rcu_nocb_need_deferred_wakeup(rdp)) {
2164		rcu_nocb_unlock_irqrestore(rdp, flags);
2165		return;
2166	}
2167	ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2168	WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
2169	wake_nocb_gp(rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
2170	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake"));
2171}
2172
2173/* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
2174static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
2175{
2176	struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);
2177
2178	do_nocb_deferred_wakeup_common(rdp);
2179}
2180
2181/*
2182 * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
2183 * This means we do an inexact common-case check.  Note that if
2184 * we miss, ->nocb_timer will eventually clean things up.
2185 */
2186static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2187{
2188	if (rcu_nocb_need_deferred_wakeup(rdp))
2189		do_nocb_deferred_wakeup_common(rdp);
2190}
2191
2192void __init rcu_init_nohz(void)
2193{
2194	int cpu;
2195	bool need_rcu_nocb_mask = false;
2196	struct rcu_data *rdp;
 
 
 
 
2197
2198#if defined(CONFIG_NO_HZ_FULL)
2199	if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2200		need_rcu_nocb_mask = true;
2201#endif /* #if defined(CONFIG_NO_HZ_FULL) */
2202
2203	if (!cpumask_available(rcu_nocb_mask) && need_rcu_nocb_mask) {
2204		if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2205			pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2206			return;
2207		}
 
2208	}
2209	if (!cpumask_available(rcu_nocb_mask))
2210		return;
2211
 
 
 
 
 
 
 
 
2212#if defined(CONFIG_NO_HZ_FULL)
2213	if (tick_nohz_full_running)
2214		cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2215#endif /* #if defined(CONFIG_NO_HZ_FULL) */
2216
2217	if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2218		pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
2219		cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2220			    rcu_nocb_mask);
2221	}
2222	if (cpumask_empty(rcu_nocb_mask))
2223		pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
2224	else
2225		pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2226			cpumask_pr_args(rcu_nocb_mask));
2227	if (rcu_nocb_poll)
2228		pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2229
2230	for_each_cpu(cpu, rcu_nocb_mask) {
2231		rdp = per_cpu_ptr(&rcu_data, cpu);
2232		if (rcu_segcblist_empty(&rdp->cblist))
2233			rcu_segcblist_init(&rdp->cblist);
2234		rcu_segcblist_offload(&rdp->cblist);
2235	}
2236	rcu_organize_nocb_kthreads();
2237}
2238
2239/* Initialize per-rcu_data variables for no-CBs CPUs. */
2240static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2241{
2242	init_swait_queue_head(&rdp->nocb_cb_wq);
2243	init_swait_queue_head(&rdp->nocb_gp_wq);
2244	raw_spin_lock_init(&rdp->nocb_lock);
2245	raw_spin_lock_init(&rdp->nocb_bypass_lock);
2246	raw_spin_lock_init(&rdp->nocb_gp_lock);
2247	timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
2248	timer_setup(&rdp->nocb_bypass_timer, do_nocb_bypass_wakeup_timer, 0);
2249	rcu_cblist_init(&rdp->nocb_bypass);
2250}
2251
2252/*
2253 * If the specified CPU is a no-CBs CPU that does not already have its
2254 * rcuo CB kthread, spawn it.  Additionally, if the rcuo GP kthread
2255 * for this CPU's group has not yet been created, spawn it as well.
 
2256 */
2257static void rcu_spawn_one_nocb_kthread(int cpu)
2258{
2259	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2260	struct rcu_data *rdp_gp;
 
 
2261	struct task_struct *t;
2262
2263	/*
2264	 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2265	 * then nothing to do.
2266	 */
2267	if (!rcu_is_nocb_cpu(cpu) || rdp->nocb_cb_kthread)
2268		return;
2269
2270	/* If we didn't spawn the GP kthread first, reorganize! */
2271	rdp_gp = rdp->nocb_gp_rdp;
2272	if (!rdp_gp->nocb_gp_kthread) {
2273		t = kthread_run(rcu_nocb_gp_kthread, rdp_gp,
2274				"rcuog/%d", rdp_gp->cpu);
2275		if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__))
2276			return;
2277		WRITE_ONCE(rdp_gp->nocb_gp_kthread, t);
 
 
 
 
 
 
 
 
 
 
2278	}
2279
2280	/* Spawn the kthread for this CPU. */
2281	t = kthread_run(rcu_nocb_cb_kthread, rdp,
2282			"rcuo%c/%d", rcu_state.abbr, cpu);
2283	if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__))
2284		return;
2285	WRITE_ONCE(rdp->nocb_cb_kthread, t);
2286	WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread);
2287}
2288
2289/*
2290 * If the specified CPU is a no-CBs CPU that does not already have its
2291 * rcuo kthread, spawn it.
2292 */
2293static void rcu_spawn_cpu_nocb_kthread(int cpu)
2294{
 
 
2295	if (rcu_scheduler_fully_active)
2296		rcu_spawn_one_nocb_kthread(cpu);
 
2297}
2298
2299/*
2300 * Once the scheduler is running, spawn rcuo kthreads for all online
2301 * no-CBs CPUs.  This assumes that the early_initcall()s happen before
2302 * non-boot CPUs come online -- if this changes, we will need to add
2303 * some mutual exclusion.
2304 */
2305static void __init rcu_spawn_nocb_kthreads(void)
2306{
2307	int cpu;
2308
2309	for_each_online_cpu(cpu)
2310		rcu_spawn_cpu_nocb_kthread(cpu);
2311}
2312
2313/* How many CB CPU IDs per GP kthread?  Default of -1 for sqrt(nr_cpu_ids). */
2314static int rcu_nocb_gp_stride = -1;
2315module_param(rcu_nocb_gp_stride, int, 0444);
2316
2317/*
2318 * Initialize GP-CB relationships for all no-CBs CPU.
2319 */
2320static void __init rcu_organize_nocb_kthreads(void)
2321{
2322	int cpu;
2323	bool firsttime = true;
2324	int ls = rcu_nocb_gp_stride;
2325	int nl = 0;  /* Next GP kthread. */
2326	struct rcu_data *rdp;
2327	struct rcu_data *rdp_gp = NULL;  /* Suppress misguided gcc warn. */
2328	struct rcu_data *rdp_prev = NULL;
2329
2330	if (!cpumask_available(rcu_nocb_mask))
2331		return;
2332	if (ls == -1) {
2333		ls = nr_cpu_ids / int_sqrt(nr_cpu_ids);
2334		rcu_nocb_gp_stride = ls;
2335	}
2336
2337	/*
2338	 * Each pass through this loop sets up one rcu_data structure.
2339	 * Should the corresponding CPU come online in the future, then
2340	 * we will spawn the needed set of rcu_nocb_kthread() kthreads.
2341	 */
2342	for_each_cpu(cpu, rcu_nocb_mask) {
2343		rdp = per_cpu_ptr(&rcu_data, cpu);
2344		if (rdp->cpu >= nl) {
2345			/* New GP kthread, set up for CBs & next GP. */
2346			nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2347			rdp->nocb_gp_rdp = rdp;
2348			rdp_gp = rdp;
2349			if (!firsttime && dump_tree)
2350				pr_cont("\n");
2351			firsttime = false;
2352			pr_alert("%s: No-CB GP kthread CPU %d:", __func__, cpu);
2353		} else {
2354			/* Another CB kthread, link to previous GP kthread. */
2355			rdp->nocb_gp_rdp = rdp_gp;
2356			rdp_prev->nocb_next_cb_rdp = rdp;
2357			pr_alert(" %d", cpu);
2358		}
2359		rdp_prev = rdp;
2360	}
2361}
2362
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2363/*
2364 * Bind the current task to the offloaded CPUs.  If there are no offloaded
2365 * CPUs, leave the task unbound.  Splat if the bind attempt fails.
 
 
 
 
 
2366 */
2367void rcu_bind_current_to_nocb(void)
2368{
2369	if (cpumask_available(rcu_nocb_mask) && cpumask_weight(rcu_nocb_mask))
2370		WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2371}
2372EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb);
2373
2374/*
2375 * Dump out nocb grace-period kthread state for the specified rcu_data
2376 * structure.
 
 
 
 
 
2377 */
2378static void show_rcu_nocb_gp_state(struct rcu_data *rdp)
2379{
2380	struct rcu_node *rnp = rdp->mynode;
 
2381
2382	pr_info("nocb GP %d %c%c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu\n",
2383		rdp->cpu,
2384		"kK"[!!rdp->nocb_gp_kthread],
2385		"lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)],
2386		"dD"[!!rdp->nocb_defer_wakeup],
2387		"tT"[timer_pending(&rdp->nocb_timer)],
2388		"bB"[timer_pending(&rdp->nocb_bypass_timer)],
2389		"sS"[!!rdp->nocb_gp_sleep],
2390		".W"[swait_active(&rdp->nocb_gp_wq)],
2391		".W"[swait_active(&rnp->nocb_gp_wq[0])],
2392		".W"[swait_active(&rnp->nocb_gp_wq[1])],
2393		".B"[!!rdp->nocb_gp_bypass],
2394		".G"[!!rdp->nocb_gp_gp],
2395		(long)rdp->nocb_gp_seq,
2396		rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops));
2397}
2398
2399/* Dump out nocb kthread state for the specified rcu_data structure. */
2400static void show_rcu_nocb_state(struct rcu_data *rdp)
2401{
2402	struct rcu_segcblist *rsclp = &rdp->cblist;
2403	bool waslocked;
2404	bool wastimer;
2405	bool wassleep;
2406
2407	if (rdp->nocb_gp_rdp == rdp)
2408		show_rcu_nocb_gp_state(rdp);
2409
2410	pr_info("   CB %d->%d %c%c%c%c%c%c F%ld L%ld C%d %c%c%c%c%c q%ld\n",
2411		rdp->cpu, rdp->nocb_gp_rdp->cpu,
2412		"kK"[!!rdp->nocb_cb_kthread],
2413		"bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)],
2414		"cC"[!!atomic_read(&rdp->nocb_lock_contended)],
2415		"lL"[raw_spin_is_locked(&rdp->nocb_lock)],
2416		"sS"[!!rdp->nocb_cb_sleep],
2417		".W"[swait_active(&rdp->nocb_cb_wq)],
2418		jiffies - rdp->nocb_bypass_first,
2419		jiffies - rdp->nocb_nobypass_last,
2420		rdp->nocb_nobypass_count,
2421		".D"[rcu_segcblist_ready_cbs(rsclp)],
2422		".W"[!rcu_segcblist_restempty(rsclp, RCU_DONE_TAIL)],
2423		".R"[!rcu_segcblist_restempty(rsclp, RCU_WAIT_TAIL)],
2424		".N"[!rcu_segcblist_restempty(rsclp, RCU_NEXT_READY_TAIL)],
2425		".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)],
2426		rcu_segcblist_n_cbs(&rdp->cblist));
2427
2428	/* It is OK for GP kthreads to have GP state. */
2429	if (rdp->nocb_gp_rdp == rdp)
2430		return;
2431
2432	waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock);
2433	wastimer = timer_pending(&rdp->nocb_timer);
2434	wassleep = swait_active(&rdp->nocb_gp_wq);
2435	if (!rdp->nocb_defer_wakeup && !rdp->nocb_gp_sleep &&
2436	    !waslocked && !wastimer && !wassleep)
2437		return;  /* Nothing untowards. */
2438
2439	pr_info("   !!! %c%c%c%c %c\n",
2440		"lL"[waslocked],
2441		"dD"[!!rdp->nocb_defer_wakeup],
2442		"tT"[wastimer],
2443		"sS"[!!rdp->nocb_gp_sleep],
2444		".W"[wassleep]);
2445}
2446
2447#else /* #ifdef CONFIG_RCU_NOCB_CPU */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2448
2449/* No ->nocb_lock to acquire.  */
2450static void rcu_nocb_lock(struct rcu_data *rdp)
 
 
 
 
 
2451{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2452}
2453
2454/* No ->nocb_lock to release.  */
2455static void rcu_nocb_unlock(struct rcu_data *rdp)
 
 
2456{
 
2457}
2458
2459/* No ->nocb_lock to release.  */
2460static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
2461				       unsigned long flags)
 
 
 
 
 
 
 
2462{
2463	local_irq_restore(flags);
 
 
2464}
2465
2466/* Lockdep check that ->cblist may be safely accessed. */
2467static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
 
 
 
2468{
2469	lockdep_assert_irqs_disabled();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2470}
2471
2472static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
 
 
 
 
2473{
 
 
 
2474}
2475
2476static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
 
 
 
 
 
2477{
2478	return NULL;
 
 
 
 
 
 
 
2479}
2480
2481static void rcu_init_one_nocb(struct rcu_node *rnp)
 
 
 
 
 
2482{
 
 
 
 
 
2483}
2484
2485static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
2486				  unsigned long j)
 
 
 
 
 
2487{
2488	return true;
 
 
 
 
 
 
 
 
 
 
2489}
2490
2491static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
2492				bool *was_alldone, unsigned long flags)
 
 
 
 
2493{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2494	return false;
2495}
2496
2497static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty,
2498				 unsigned long flags)
 
 
2499{
2500	WARN_ON_ONCE(1);  /* Should be dead code! */
2501}
2502
2503static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
 
 
2504{
2505}
2506
2507static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2508{
2509	return false;
2510}
2511
2512static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
 
2513{
2514}
2515
2516static void rcu_spawn_cpu_nocb_kthread(int cpu)
2517{
 
2518}
2519
2520static void __init rcu_spawn_nocb_kthreads(void)
 
2521{
2522}
2523
2524static void show_rcu_nocb_state(struct rcu_data *rdp)
2525{
2526}
2527
2528#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2529
2530/*
2531 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2532 * grace-period kthread will do force_quiescent_state() processing?
2533 * The idea is to avoid waking up RCU core processing on such a
2534 * CPU unless the grace period has extended for too long.
2535 *
2536 * This code relies on the fact that all NO_HZ_FULL CPUs are also
2537 * CONFIG_RCU_NOCB_CPU CPUs.
2538 */
2539static bool rcu_nohz_full_cpu(void)
2540{
2541#ifdef CONFIG_NO_HZ_FULL
2542	if (tick_nohz_full_cpu(smp_processor_id()) &&
2543	    (!rcu_gp_in_progress() ||
2544	     ULONG_CMP_LT(jiffies, READ_ONCE(rcu_state.gp_start) + HZ)))
2545		return true;
2546#endif /* #ifdef CONFIG_NO_HZ_FULL */
2547	return false;
2548}
2549
2550/*
2551 * Bind the RCU grace-period kthreads to the housekeeping CPU.
 
2552 */
2553static void rcu_bind_gp_kthread(void)
2554{
 
 
2555	if (!tick_nohz_full_enabled())
2556		return;
2557	housekeeping_affine(current, HK_FLAG_RCU);
 
 
 
 
 
 
2558}
2559
2560/* Record the current task on dyntick-idle entry. */
2561static void rcu_dynticks_task_enter(void)
2562{
2563#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2564	WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
2565#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2566}
2567
2568/* Record no current task on dyntick-idle exit. */
2569static void rcu_dynticks_task_exit(void)
2570{
2571#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2572	WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
2573#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2574}