Linux Audio

Check our new training course

Loading...
v4.6
  1/*
  2 *  linux/kernel/panic.c
  3 *
  4 *  Copyright (C) 1991, 1992  Linus Torvalds
  5 */
  6
  7/*
  8 * This function is used through-out the kernel (including mm and fs)
  9 * to indicate a major problem.
 10 */
 11#include <linux/debug_locks.h>
 12#include <linux/interrupt.h>
 13#include <linux/kmsg_dump.h>
 14#include <linux/kallsyms.h>
 15#include <linux/notifier.h>
 16#include <linux/module.h>
 17#include <linux/random.h>
 18#include <linux/ftrace.h>
 19#include <linux/reboot.h>
 20#include <linux/delay.h>
 21#include <linux/kexec.h>
 22#include <linux/sched.h>
 23#include <linux/sysrq.h>
 24#include <linux/init.h>
 25#include <linux/nmi.h>
 26#include <linux/console.h>
 27#include <linux/bug.h>
 28
 29#define PANIC_TIMER_STEP 100
 30#define PANIC_BLINK_SPD 18
 31
 32int panic_on_oops = CONFIG_PANIC_ON_OOPS_VALUE;
 33static unsigned long tainted_mask;
 34static int pause_on_oops;
 35static int pause_on_oops_flag;
 36static DEFINE_SPINLOCK(pause_on_oops_lock);
 37bool crash_kexec_post_notifiers;
 38int panic_on_warn __read_mostly;
 39
 40int panic_timeout = CONFIG_PANIC_TIMEOUT;
 41EXPORT_SYMBOL_GPL(panic_timeout);
 42
 43ATOMIC_NOTIFIER_HEAD(panic_notifier_list);
 44
 45EXPORT_SYMBOL(panic_notifier_list);
 46
 47static long no_blink(int state)
 48{
 49	return 0;
 50}
 51
 52/* Returns how long it waited in ms */
 53long (*panic_blink)(int state);
 54EXPORT_SYMBOL(panic_blink);
 55
 56/*
 57 * Stop ourself in panic -- architecture code may override this
 58 */
 59void __weak panic_smp_self_stop(void)
 60{
 61	while (1)
 62		cpu_relax();
 63}
 64
 65/*
 66 * Stop ourselves in NMI context if another CPU has already panicked. Arch code
 67 * may override this to prepare for crash dumping, e.g. save regs info.
 68 */
 69void __weak nmi_panic_self_stop(struct pt_regs *regs)
 70{
 71	panic_smp_self_stop();
 72}
 73
 74atomic_t panic_cpu = ATOMIC_INIT(PANIC_CPU_INVALID);
 75
 76/*
 77 * A variant of panic() called from NMI context. We return if we've already
 78 * panicked on this CPU. If another CPU already panicked, loop in
 79 * nmi_panic_self_stop() which can provide architecture dependent code such
 80 * as saving register state for crash dump.
 81 */
 82void nmi_panic(struct pt_regs *regs, const char *msg)
 83{
 84	int old_cpu, cpu;
 85
 86	cpu = raw_smp_processor_id();
 87	old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, cpu);
 88
 89	if (old_cpu == PANIC_CPU_INVALID)
 90		panic("%s", msg);
 91	else if (old_cpu != cpu)
 92		nmi_panic_self_stop(regs);
 93}
 94EXPORT_SYMBOL(nmi_panic);
 95
 96/**
 97 *	panic - halt the system
 98 *	@fmt: The text string to print
 99 *
100 *	Display a message, then perform cleanups.
101 *
102 *	This function never returns.
103 */
104void panic(const char *fmt, ...)
105{
106	static char buf[1024];
107	va_list args;
108	long i, i_next = 0;
109	int state = 0;
110	int old_cpu, this_cpu;
111
112	/*
113	 * Disable local interrupts. This will prevent panic_smp_self_stop
114	 * from deadlocking the first cpu that invokes the panic, since
115	 * there is nothing to prevent an interrupt handler (that runs
116	 * after setting panic_cpu) from invoking panic() again.
117	 */
118	local_irq_disable();
119
120	/*
121	 * It's possible to come here directly from a panic-assertion and
122	 * not have preempt disabled. Some functions called from here want
123	 * preempt to be disabled. No point enabling it later though...
124	 *
125	 * Only one CPU is allowed to execute the panic code from here. For
126	 * multiple parallel invocations of panic, all other CPUs either
127	 * stop themself or will wait until they are stopped by the 1st CPU
128	 * with smp_send_stop().
129	 *
130	 * `old_cpu == PANIC_CPU_INVALID' means this is the 1st CPU which
131	 * comes here, so go ahead.
132	 * `old_cpu == this_cpu' means we came from nmi_panic() which sets
133	 * panic_cpu to this CPU.  In this case, this is also the 1st CPU.
134	 */
135	this_cpu = raw_smp_processor_id();
136	old_cpu  = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu);
137
138	if (old_cpu != PANIC_CPU_INVALID && old_cpu != this_cpu)
139		panic_smp_self_stop();
140
141	console_verbose();
142	bust_spinlocks(1);
143	va_start(args, fmt);
144	vsnprintf(buf, sizeof(buf), fmt, args);
145	va_end(args);
146	pr_emerg("Kernel panic - not syncing: %s\n", buf);
147#ifdef CONFIG_DEBUG_BUGVERBOSE
148	/*
149	 * Avoid nested stack-dumping if a panic occurs during oops processing
150	 */
151	if (!test_taint(TAINT_DIE) && oops_in_progress <= 1)
152		dump_stack();
153#endif
154
155	/*
156	 * If we have crashed and we have a crash kernel loaded let it handle
157	 * everything else.
158	 * If we want to run this after calling panic_notifiers, pass
159	 * the "crash_kexec_post_notifiers" option to the kernel.
160	 *
161	 * Bypass the panic_cpu check and call __crash_kexec directly.
162	 */
163	if (!crash_kexec_post_notifiers)
164		__crash_kexec(NULL);
 
165
166	/*
167	 * Note smp_send_stop is the usual smp shutdown function, which
168	 * unfortunately means it may not be hardened to work in a panic
169	 * situation.
170	 */
171	smp_send_stop();
172
173	/*
174	 * Run any panic handlers, including those that might need to
175	 * add information to the kmsg dump output.
176	 */
177	atomic_notifier_call_chain(&panic_notifier_list, 0, buf);
178
179	kmsg_dump(KMSG_DUMP_PANIC);
180
181	/*
182	 * If you doubt kdump always works fine in any situation,
183	 * "crash_kexec_post_notifiers" offers you a chance to run
184	 * panic_notifiers and dumping kmsg before kdump.
185	 * Note: since some panic_notifiers can make crashed kernel
186	 * more unstable, it can increase risks of the kdump failure too.
187	 *
188	 * Bypass the panic_cpu check and call __crash_kexec directly.
189	 */
190	if (crash_kexec_post_notifiers)
191		__crash_kexec(NULL);
192
193	bust_spinlocks(0);
194
195	/*
196	 * We may have ended up stopping the CPU holding the lock (in
197	 * smp_send_stop()) while still having some valuable data in the console
198	 * buffer.  Try to acquire the lock then release it regardless of the
199	 * result.  The release will also print the buffers out.  Locks debug
200	 * should be disabled to avoid reporting bad unlock balance when
201	 * panic() is not being callled from OOPS.
202	 */
203	debug_locks_off();
204	console_flush_on_panic();
205
206	if (!panic_blink)
207		panic_blink = no_blink;
208
209	if (panic_timeout > 0) {
210		/*
211		 * Delay timeout seconds before rebooting the machine.
212		 * We can't use the "normal" timers since we just panicked.
213		 */
214		pr_emerg("Rebooting in %d seconds..", panic_timeout);
215
216		for (i = 0; i < panic_timeout * 1000; i += PANIC_TIMER_STEP) {
217			touch_nmi_watchdog();
218			if (i >= i_next) {
219				i += panic_blink(state ^= 1);
220				i_next = i + 3600 / PANIC_BLINK_SPD;
221			}
222			mdelay(PANIC_TIMER_STEP);
223		}
224	}
225	if (panic_timeout != 0) {
226		/*
227		 * This will not be a clean reboot, with everything
228		 * shutting down.  But if there is a chance of
229		 * rebooting the system it will be rebooted.
230		 */
231		emergency_restart();
232	}
233#ifdef __sparc__
234	{
235		extern int stop_a_enabled;
236		/* Make sure the user can actually press Stop-A (L1-A) */
237		stop_a_enabled = 1;
238		pr_emerg("Press Stop-A (L1-A) to return to the boot prom\n");
239	}
240#endif
241#if defined(CONFIG_S390)
242	{
243		unsigned long caller;
244
245		caller = (unsigned long)__builtin_return_address(0);
246		disabled_wait(caller);
247	}
248#endif
249	pr_emerg("---[ end Kernel panic - not syncing: %s\n", buf);
250	local_irq_enable();
251	for (i = 0; ; i += PANIC_TIMER_STEP) {
252		touch_softlockup_watchdog();
253		if (i >= i_next) {
254			i += panic_blink(state ^= 1);
255			i_next = i + 3600 / PANIC_BLINK_SPD;
256		}
257		mdelay(PANIC_TIMER_STEP);
258	}
259}
260
261EXPORT_SYMBOL(panic);
262
263
264struct tnt {
265	u8	bit;
266	char	true;
267	char	false;
268};
269
270static const struct tnt tnts[] = {
271	{ TAINT_PROPRIETARY_MODULE,	'P', 'G' },
272	{ TAINT_FORCED_MODULE,		'F', ' ' },
273	{ TAINT_CPU_OUT_OF_SPEC,	'S', ' ' },
274	{ TAINT_FORCED_RMMOD,		'R', ' ' },
275	{ TAINT_MACHINE_CHECK,		'M', ' ' },
276	{ TAINT_BAD_PAGE,		'B', ' ' },
277	{ TAINT_USER,			'U', ' ' },
278	{ TAINT_DIE,			'D', ' ' },
279	{ TAINT_OVERRIDDEN_ACPI_TABLE,	'A', ' ' },
280	{ TAINT_WARN,			'W', ' ' },
281	{ TAINT_CRAP,			'C', ' ' },
282	{ TAINT_FIRMWARE_WORKAROUND,	'I', ' ' },
283	{ TAINT_OOT_MODULE,		'O', ' ' },
284	{ TAINT_UNSIGNED_MODULE,	'E', ' ' },
285	{ TAINT_SOFTLOCKUP,		'L', ' ' },
286	{ TAINT_LIVEPATCH,		'K', ' ' },
287};
288
289/**
290 *	print_tainted - return a string to represent the kernel taint state.
291 *
292 *  'P' - Proprietary module has been loaded.
293 *  'F' - Module has been forcibly loaded.
294 *  'S' - SMP with CPUs not designed for SMP.
295 *  'R' - User forced a module unload.
296 *  'M' - System experienced a machine check exception.
297 *  'B' - System has hit bad_page.
298 *  'U' - Userspace-defined naughtiness.
299 *  'D' - Kernel has oopsed before
300 *  'A' - ACPI table overridden.
301 *  'W' - Taint on warning.
302 *  'C' - modules from drivers/staging are loaded.
303 *  'I' - Working around severe firmware bug.
304 *  'O' - Out-of-tree module has been loaded.
305 *  'E' - Unsigned module has been loaded.
306 *  'L' - A soft lockup has previously occurred.
307 *  'K' - Kernel has been live patched.
308 *
309 *	The string is overwritten by the next call to print_tainted().
310 */
311const char *print_tainted(void)
312{
313	static char buf[ARRAY_SIZE(tnts) + sizeof("Tainted: ")];
314
315	if (tainted_mask) {
316		char *s;
317		int i;
318
319		s = buf + sprintf(buf, "Tainted: ");
320		for (i = 0; i < ARRAY_SIZE(tnts); i++) {
321			const struct tnt *t = &tnts[i];
322			*s++ = test_bit(t->bit, &tainted_mask) ?
323					t->true : t->false;
324		}
325		*s = 0;
326	} else
327		snprintf(buf, sizeof(buf), "Not tainted");
328
329	return buf;
330}
331
332int test_taint(unsigned flag)
333{
334	return test_bit(flag, &tainted_mask);
335}
336EXPORT_SYMBOL(test_taint);
337
338unsigned long get_taint(void)
339{
340	return tainted_mask;
341}
342
343/**
344 * add_taint: add a taint flag if not already set.
345 * @flag: one of the TAINT_* constants.
346 * @lockdep_ok: whether lock debugging is still OK.
347 *
348 * If something bad has gone wrong, you'll want @lockdebug_ok = false, but for
349 * some notewortht-but-not-corrupting cases, it can be set to true.
350 */
351void add_taint(unsigned flag, enum lockdep_ok lockdep_ok)
352{
353	if (lockdep_ok == LOCKDEP_NOW_UNRELIABLE && __debug_locks_off())
354		pr_warn("Disabling lock debugging due to kernel taint\n");
 
 
 
 
 
 
 
355
356	set_bit(flag, &tainted_mask);
357}
358EXPORT_SYMBOL(add_taint);
359
360static void spin_msec(int msecs)
361{
362	int i;
363
364	for (i = 0; i < msecs; i++) {
365		touch_nmi_watchdog();
366		mdelay(1);
367	}
368}
369
370/*
371 * It just happens that oops_enter() and oops_exit() are identically
372 * implemented...
373 */
374static void do_oops_enter_exit(void)
375{
376	unsigned long flags;
377	static int spin_counter;
378
379	if (!pause_on_oops)
380		return;
381
382	spin_lock_irqsave(&pause_on_oops_lock, flags);
383	if (pause_on_oops_flag == 0) {
384		/* This CPU may now print the oops message */
385		pause_on_oops_flag = 1;
386	} else {
387		/* We need to stall this CPU */
388		if (!spin_counter) {
389			/* This CPU gets to do the counting */
390			spin_counter = pause_on_oops;
391			do {
392				spin_unlock(&pause_on_oops_lock);
393				spin_msec(MSEC_PER_SEC);
394				spin_lock(&pause_on_oops_lock);
395			} while (--spin_counter);
396			pause_on_oops_flag = 0;
397		} else {
398			/* This CPU waits for a different one */
399			while (spin_counter) {
400				spin_unlock(&pause_on_oops_lock);
401				spin_msec(1);
402				spin_lock(&pause_on_oops_lock);
403			}
404		}
405	}
406	spin_unlock_irqrestore(&pause_on_oops_lock, flags);
407}
408
409/*
410 * Return true if the calling CPU is allowed to print oops-related info.
411 * This is a bit racy..
412 */
413int oops_may_print(void)
414{
415	return pause_on_oops_flag == 0;
416}
417
418/*
419 * Called when the architecture enters its oops handler, before it prints
420 * anything.  If this is the first CPU to oops, and it's oopsing the first
421 * time then let it proceed.
422 *
423 * This is all enabled by the pause_on_oops kernel boot option.  We do all
424 * this to ensure that oopses don't scroll off the screen.  It has the
425 * side-effect of preventing later-oopsing CPUs from mucking up the display,
426 * too.
427 *
428 * It turns out that the CPU which is allowed to print ends up pausing for
429 * the right duration, whereas all the other CPUs pause for twice as long:
430 * once in oops_enter(), once in oops_exit().
431 */
432void oops_enter(void)
433{
434	tracing_off();
435	/* can't trust the integrity of the kernel anymore: */
436	debug_locks_off();
437	do_oops_enter_exit();
438}
439
440/*
441 * 64-bit random ID for oopses:
442 */
443static u64 oops_id;
444
445static int init_oops_id(void)
446{
447	if (!oops_id)
448		get_random_bytes(&oops_id, sizeof(oops_id));
449	else
450		oops_id++;
451
452	return 0;
453}
454late_initcall(init_oops_id);
455
456void print_oops_end_marker(void)
457{
458	init_oops_id();
459	pr_warn("---[ end trace %016llx ]---\n", (unsigned long long)oops_id);
 
460}
461
462/*
463 * Called when the architecture exits its oops handler, after printing
464 * everything.
465 */
466void oops_exit(void)
467{
468	do_oops_enter_exit();
469	print_oops_end_marker();
470	kmsg_dump(KMSG_DUMP_OOPS);
471}
472
473struct warn_args {
 
474	const char *fmt;
475	va_list args;
476};
477
478void __warn(const char *file, int line, void *caller, unsigned taint,
479	    struct pt_regs *regs, struct warn_args *args)
480{
481	disable_trace_on_warning();
482
483	pr_warn("------------[ cut here ]------------\n");
484
485	if (file)
486		pr_warn("WARNING: CPU: %d PID: %d at %s:%d %pS\n",
487			raw_smp_processor_id(), current->pid, file, line,
488			caller);
489	else
490		pr_warn("WARNING: CPU: %d PID: %d at %pS\n",
491			raw_smp_processor_id(), current->pid, caller);
492
493	if (args)
494		vprintk(args->fmt, args->args);
495
496	if (panic_on_warn) {
497		/*
498		 * This thread may hit another WARN() in the panic path.
499		 * Resetting this prevents additional WARN() from panicking the
500		 * system on this thread.  Other threads are blocked by the
501		 * panic_mutex in panic().
502		 */
503		panic_on_warn = 0;
504		panic("panic_on_warn set ...\n");
505	}
506
507	print_modules();
508
509	if (regs)
510		show_regs(regs);
511	else
512		dump_stack();
513
514	print_oops_end_marker();
515
516	/* Just a warning, don't kill lockdep. */
517	add_taint(taint, LOCKDEP_STILL_OK);
518}
519
520#ifdef WANT_WARN_ON_SLOWPATH
521void warn_slowpath_fmt(const char *file, int line, const char *fmt, ...)
522{
523	struct warn_args args;
524
525	args.fmt = fmt;
526	va_start(args.args, fmt);
527	__warn(file, line, __builtin_return_address(0), TAINT_WARN, NULL,
528	       &args);
529	va_end(args.args);
530}
531EXPORT_SYMBOL(warn_slowpath_fmt);
532
533void warn_slowpath_fmt_taint(const char *file, int line,
534			     unsigned taint, const char *fmt, ...)
535{
536	struct warn_args args;
537
538	args.fmt = fmt;
539	va_start(args.args, fmt);
540	__warn(file, line, __builtin_return_address(0), taint, NULL, &args);
 
541	va_end(args.args);
542}
543EXPORT_SYMBOL(warn_slowpath_fmt_taint);
544
545void warn_slowpath_null(const char *file, int line)
546{
547	__warn(file, line, __builtin_return_address(0), TAINT_WARN, NULL, NULL);
 
548}
549EXPORT_SYMBOL(warn_slowpath_null);
550#endif
551
552#ifdef CONFIG_CC_STACKPROTECTOR
553
554/*
555 * Called when gcc's -fstack-protector feature is used, and
556 * gcc detects corruption of the on-stack canary value
557 */
558__visible void __stack_chk_fail(void)
559{
560	panic("stack-protector: Kernel stack is corrupted in: %p\n",
561		__builtin_return_address(0));
562}
563EXPORT_SYMBOL(__stack_chk_fail);
564
565#endif
566
567core_param(panic, panic_timeout, int, 0644);
568core_param(pause_on_oops, pause_on_oops, int, 0644);
569core_param(panic_on_warn, panic_on_warn, int, 0644);
570
571static int __init setup_crash_kexec_post_notifiers(char *s)
572{
573	crash_kexec_post_notifiers = true;
574	return 0;
575}
576early_param("crash_kexec_post_notifiers", setup_crash_kexec_post_notifiers);
577
578static int __init oops_setup(char *s)
579{
580	if (!s)
581		return -EINVAL;
582	if (!strcmp(s, "panic"))
583		panic_on_oops = 1;
584	return 0;
585}
586early_param("oops", oops_setup);
v3.1
  1/*
  2 *  linux/kernel/panic.c
  3 *
  4 *  Copyright (C) 1991, 1992  Linus Torvalds
  5 */
  6
  7/*
  8 * This function is used through-out the kernel (including mm and fs)
  9 * to indicate a major problem.
 10 */
 11#include <linux/debug_locks.h>
 12#include <linux/interrupt.h>
 13#include <linux/kmsg_dump.h>
 14#include <linux/kallsyms.h>
 15#include <linux/notifier.h>
 16#include <linux/module.h>
 17#include <linux/random.h>
 
 18#include <linux/reboot.h>
 19#include <linux/delay.h>
 20#include <linux/kexec.h>
 21#include <linux/sched.h>
 22#include <linux/sysrq.h>
 23#include <linux/init.h>
 24#include <linux/nmi.h>
 25#include <linux/dmi.h>
 
 26
 27#define PANIC_TIMER_STEP 100
 28#define PANIC_BLINK_SPD 18
 29
 30int panic_on_oops;
 31static unsigned long tainted_mask;
 32static int pause_on_oops;
 33static int pause_on_oops_flag;
 34static DEFINE_SPINLOCK(pause_on_oops_lock);
 
 
 35
 36int panic_timeout;
 37EXPORT_SYMBOL_GPL(panic_timeout);
 38
 39ATOMIC_NOTIFIER_HEAD(panic_notifier_list);
 40
 41EXPORT_SYMBOL(panic_notifier_list);
 42
 43static long no_blink(int state)
 44{
 45	return 0;
 46}
 47
 48/* Returns how long it waited in ms */
 49long (*panic_blink)(int state);
 50EXPORT_SYMBOL(panic_blink);
 51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 52/**
 53 *	panic - halt the system
 54 *	@fmt: The text string to print
 55 *
 56 *	Display a message, then perform cleanups.
 57 *
 58 *	This function never returns.
 59 */
 60NORET_TYPE void panic(const char * fmt, ...)
 61{
 62	static char buf[1024];
 63	va_list args;
 64	long i, i_next = 0;
 65	int state = 0;
 
 
 
 
 
 
 
 
 
 66
 67	/*
 68	 * It's possible to come here directly from a panic-assertion and
 69	 * not have preempt disabled. Some functions called from here want
 70	 * preempt to be disabled. No point enabling it later though...
 
 
 
 
 
 
 
 
 
 
 71	 */
 72	preempt_disable();
 
 
 
 
 73
 74	console_verbose();
 75	bust_spinlocks(1);
 76	va_start(args, fmt);
 77	vsnprintf(buf, sizeof(buf), fmt, args);
 78	va_end(args);
 79	printk(KERN_EMERG "Kernel panic - not syncing: %s\n",buf);
 80#ifdef CONFIG_DEBUG_BUGVERBOSE
 81	dump_stack();
 
 
 
 
 82#endif
 83
 84	/*
 85	 * If we have crashed and we have a crash kernel loaded let it handle
 86	 * everything else.
 87	 * Do we want to call this before we try to display a message?
 
 
 
 88	 */
 89	crash_kexec(NULL);
 90
 91	kmsg_dump(KMSG_DUMP_PANIC);
 92
 93	/*
 94	 * Note smp_send_stop is the usual smp shutdown function, which
 95	 * unfortunately means it may not be hardened to work in a panic
 96	 * situation.
 97	 */
 98	smp_send_stop();
 99
 
 
 
 
100	atomic_notifier_call_chain(&panic_notifier_list, 0, buf);
101
 
 
 
 
 
 
 
 
 
 
 
 
 
 
102	bust_spinlocks(0);
103
 
 
 
 
 
 
 
 
 
 
 
104	if (!panic_blink)
105		panic_blink = no_blink;
106
107	if (panic_timeout > 0) {
108		/*
109		 * Delay timeout seconds before rebooting the machine.
110		 * We can't use the "normal" timers since we just panicked.
111		 */
112		printk(KERN_EMERG "Rebooting in %d seconds..", panic_timeout);
113
114		for (i = 0; i < panic_timeout * 1000; i += PANIC_TIMER_STEP) {
115			touch_nmi_watchdog();
116			if (i >= i_next) {
117				i += panic_blink(state ^= 1);
118				i_next = i + 3600 / PANIC_BLINK_SPD;
119			}
120			mdelay(PANIC_TIMER_STEP);
121		}
122	}
123	if (panic_timeout != 0) {
124		/*
125		 * This will not be a clean reboot, with everything
126		 * shutting down.  But if there is a chance of
127		 * rebooting the system it will be rebooted.
128		 */
129		emergency_restart();
130	}
131#ifdef __sparc__
132	{
133		extern int stop_a_enabled;
134		/* Make sure the user can actually press Stop-A (L1-A) */
135		stop_a_enabled = 1;
136		printk(KERN_EMERG "Press Stop-A (L1-A) to return to the boot prom\n");
137	}
138#endif
139#if defined(CONFIG_S390)
140	{
141		unsigned long caller;
142
143		caller = (unsigned long)__builtin_return_address(0);
144		disabled_wait(caller);
145	}
146#endif
 
147	local_irq_enable();
148	for (i = 0; ; i += PANIC_TIMER_STEP) {
149		touch_softlockup_watchdog();
150		if (i >= i_next) {
151			i += panic_blink(state ^= 1);
152			i_next = i + 3600 / PANIC_BLINK_SPD;
153		}
154		mdelay(PANIC_TIMER_STEP);
155	}
156}
157
158EXPORT_SYMBOL(panic);
159
160
161struct tnt {
162	u8	bit;
163	char	true;
164	char	false;
165};
166
167static const struct tnt tnts[] = {
168	{ TAINT_PROPRIETARY_MODULE,	'P', 'G' },
169	{ TAINT_FORCED_MODULE,		'F', ' ' },
170	{ TAINT_UNSAFE_SMP,		'S', ' ' },
171	{ TAINT_FORCED_RMMOD,		'R', ' ' },
172	{ TAINT_MACHINE_CHECK,		'M', ' ' },
173	{ TAINT_BAD_PAGE,		'B', ' ' },
174	{ TAINT_USER,			'U', ' ' },
175	{ TAINT_DIE,			'D', ' ' },
176	{ TAINT_OVERRIDDEN_ACPI_TABLE,	'A', ' ' },
177	{ TAINT_WARN,			'W', ' ' },
178	{ TAINT_CRAP,			'C', ' ' },
179	{ TAINT_FIRMWARE_WORKAROUND,	'I', ' ' },
 
 
 
 
180};
181
182/**
183 *	print_tainted - return a string to represent the kernel taint state.
184 *
185 *  'P' - Proprietary module has been loaded.
186 *  'F' - Module has been forcibly loaded.
187 *  'S' - SMP with CPUs not designed for SMP.
188 *  'R' - User forced a module unload.
189 *  'M' - System experienced a machine check exception.
190 *  'B' - System has hit bad_page.
191 *  'U' - Userspace-defined naughtiness.
192 *  'D' - Kernel has oopsed before
193 *  'A' - ACPI table overridden.
194 *  'W' - Taint on warning.
195 *  'C' - modules from drivers/staging are loaded.
196 *  'I' - Working around severe firmware bug.
 
 
 
 
197 *
198 *	The string is overwritten by the next call to print_tainted().
199 */
200const char *print_tainted(void)
201{
202	static char buf[ARRAY_SIZE(tnts) + sizeof("Tainted: ") + 1];
203
204	if (tainted_mask) {
205		char *s;
206		int i;
207
208		s = buf + sprintf(buf, "Tainted: ");
209		for (i = 0; i < ARRAY_SIZE(tnts); i++) {
210			const struct tnt *t = &tnts[i];
211			*s++ = test_bit(t->bit, &tainted_mask) ?
212					t->true : t->false;
213		}
214		*s = 0;
215	} else
216		snprintf(buf, sizeof(buf), "Not tainted");
217
218	return buf;
219}
220
221int test_taint(unsigned flag)
222{
223	return test_bit(flag, &tainted_mask);
224}
225EXPORT_SYMBOL(test_taint);
226
227unsigned long get_taint(void)
228{
229	return tainted_mask;
230}
231
232void add_taint(unsigned flag)
 
 
 
 
 
 
 
 
233{
234	/*
235	 * Can't trust the integrity of the kernel anymore.
236	 * We don't call directly debug_locks_off() because the issue
237	 * is not necessarily serious enough to set oops_in_progress to 1
238	 * Also we want to keep up lockdep for staging development and
239	 * post-warning case.
240	 */
241	if (flag != TAINT_CRAP && flag != TAINT_WARN && __debug_locks_off())
242		printk(KERN_WARNING "Disabling lock debugging due to kernel taint\n");
243
244	set_bit(flag, &tainted_mask);
245}
246EXPORT_SYMBOL(add_taint);
247
248static void spin_msec(int msecs)
249{
250	int i;
251
252	for (i = 0; i < msecs; i++) {
253		touch_nmi_watchdog();
254		mdelay(1);
255	}
256}
257
258/*
259 * It just happens that oops_enter() and oops_exit() are identically
260 * implemented...
261 */
262static void do_oops_enter_exit(void)
263{
264	unsigned long flags;
265	static int spin_counter;
266
267	if (!pause_on_oops)
268		return;
269
270	spin_lock_irqsave(&pause_on_oops_lock, flags);
271	if (pause_on_oops_flag == 0) {
272		/* This CPU may now print the oops message */
273		pause_on_oops_flag = 1;
274	} else {
275		/* We need to stall this CPU */
276		if (!spin_counter) {
277			/* This CPU gets to do the counting */
278			spin_counter = pause_on_oops;
279			do {
280				spin_unlock(&pause_on_oops_lock);
281				spin_msec(MSEC_PER_SEC);
282				spin_lock(&pause_on_oops_lock);
283			} while (--spin_counter);
284			pause_on_oops_flag = 0;
285		} else {
286			/* This CPU waits for a different one */
287			while (spin_counter) {
288				spin_unlock(&pause_on_oops_lock);
289				spin_msec(1);
290				spin_lock(&pause_on_oops_lock);
291			}
292		}
293	}
294	spin_unlock_irqrestore(&pause_on_oops_lock, flags);
295}
296
297/*
298 * Return true if the calling CPU is allowed to print oops-related info.
299 * This is a bit racy..
300 */
301int oops_may_print(void)
302{
303	return pause_on_oops_flag == 0;
304}
305
306/*
307 * Called when the architecture enters its oops handler, before it prints
308 * anything.  If this is the first CPU to oops, and it's oopsing the first
309 * time then let it proceed.
310 *
311 * This is all enabled by the pause_on_oops kernel boot option.  We do all
312 * this to ensure that oopses don't scroll off the screen.  It has the
313 * side-effect of preventing later-oopsing CPUs from mucking up the display,
314 * too.
315 *
316 * It turns out that the CPU which is allowed to print ends up pausing for
317 * the right duration, whereas all the other CPUs pause for twice as long:
318 * once in oops_enter(), once in oops_exit().
319 */
320void oops_enter(void)
321{
322	tracing_off();
323	/* can't trust the integrity of the kernel anymore: */
324	debug_locks_off();
325	do_oops_enter_exit();
326}
327
328/*
329 * 64-bit random ID for oopses:
330 */
331static u64 oops_id;
332
333static int init_oops_id(void)
334{
335	if (!oops_id)
336		get_random_bytes(&oops_id, sizeof(oops_id));
337	else
338		oops_id++;
339
340	return 0;
341}
342late_initcall(init_oops_id);
343
344void print_oops_end_marker(void)
345{
346	init_oops_id();
347	printk(KERN_WARNING "---[ end trace %016llx ]---\n",
348		(unsigned long long)oops_id);
349}
350
351/*
352 * Called when the architecture exits its oops handler, after printing
353 * everything.
354 */
355void oops_exit(void)
356{
357	do_oops_enter_exit();
358	print_oops_end_marker();
359	kmsg_dump(KMSG_DUMP_OOPS);
360}
361
362#ifdef WANT_WARN_ON_SLOWPATH
363struct slowpath_args {
364	const char *fmt;
365	va_list args;
366};
367
368static void warn_slowpath_common(const char *file, int line, void *caller,
369				 unsigned taint, struct slowpath_args *args)
370{
371	const char *board;
372
373	printk(KERN_WARNING "------------[ cut here ]------------\n");
374	printk(KERN_WARNING "WARNING: at %s:%d %pS()\n", file, line, caller);
375	board = dmi_get_system_info(DMI_PRODUCT_NAME);
376	if (board)
377		printk(KERN_WARNING "Hardware name: %s\n", board);
 
 
 
 
378
379	if (args)
380		vprintk(args->fmt, args->args);
381
 
 
 
 
 
 
 
 
 
 
 
382	print_modules();
383	dump_stack();
 
 
 
 
 
384	print_oops_end_marker();
385	add_taint(taint);
 
 
386}
387
 
388void warn_slowpath_fmt(const char *file, int line, const char *fmt, ...)
389{
390	struct slowpath_args args;
391
392	args.fmt = fmt;
393	va_start(args.args, fmt);
394	warn_slowpath_common(file, line, __builtin_return_address(0),
395			     TAINT_WARN, &args);
396	va_end(args.args);
397}
398EXPORT_SYMBOL(warn_slowpath_fmt);
399
400void warn_slowpath_fmt_taint(const char *file, int line,
401			     unsigned taint, const char *fmt, ...)
402{
403	struct slowpath_args args;
404
405	args.fmt = fmt;
406	va_start(args.args, fmt);
407	warn_slowpath_common(file, line, __builtin_return_address(0),
408			     taint, &args);
409	va_end(args.args);
410}
411EXPORT_SYMBOL(warn_slowpath_fmt_taint);
412
413void warn_slowpath_null(const char *file, int line)
414{
415	warn_slowpath_common(file, line, __builtin_return_address(0),
416			     TAINT_WARN, NULL);
417}
418EXPORT_SYMBOL(warn_slowpath_null);
419#endif
420
421#ifdef CONFIG_CC_STACKPROTECTOR
422
423/*
424 * Called when gcc's -fstack-protector feature is used, and
425 * gcc detects corruption of the on-stack canary value
426 */
427void __stack_chk_fail(void)
428{
429	panic("stack-protector: Kernel stack is corrupted in: %p\n",
430		__builtin_return_address(0));
431}
432EXPORT_SYMBOL(__stack_chk_fail);
433
434#endif
435
436core_param(panic, panic_timeout, int, 0644);
437core_param(pause_on_oops, pause_on_oops, int, 0644);
 
 
 
 
 
 
 
 
438
439static int __init oops_setup(char *s)
440{
441	if (!s)
442		return -EINVAL;
443	if (!strcmp(s, "panic"))
444		panic_on_oops = 1;
445	return 0;
446}
447early_param("oops", oops_setup);