Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Feb 10-13, 2025
Register
Loading...
  1/*
  2 *  linux/kernel/panic.c
  3 *
  4 *  Copyright (C) 1991, 1992  Linus Torvalds
  5 */
  6
  7/*
  8 * This function is used through-out the kernel (including mm and fs)
  9 * to indicate a major problem.
 10 */
 11#include <linux/debug_locks.h>
 12#include <linux/interrupt.h>
 13#include <linux/kmsg_dump.h>
 14#include <linux/kallsyms.h>
 15#include <linux/notifier.h>
 16#include <linux/module.h>
 17#include <linux/random.h>
 18#include <linux/ftrace.h>
 19#include <linux/reboot.h>
 20#include <linux/delay.h>
 21#include <linux/kexec.h>
 22#include <linux/sched.h>
 23#include <linux/sysrq.h>
 24#include <linux/init.h>
 25#include <linux/nmi.h>
 26#include <linux/console.h>
 27#include <linux/bug.h>
 28
 29#define PANIC_TIMER_STEP 100
 30#define PANIC_BLINK_SPD 18
 31
 32int panic_on_oops = CONFIG_PANIC_ON_OOPS_VALUE;
 33static unsigned long tainted_mask;
 34static int pause_on_oops;
 35static int pause_on_oops_flag;
 36static DEFINE_SPINLOCK(pause_on_oops_lock);
 37bool crash_kexec_post_notifiers;
 38int panic_on_warn __read_mostly;
 39
 40int panic_timeout = CONFIG_PANIC_TIMEOUT;
 41EXPORT_SYMBOL_GPL(panic_timeout);
 42
 43ATOMIC_NOTIFIER_HEAD(panic_notifier_list);
 44
 45EXPORT_SYMBOL(panic_notifier_list);
 46
 47static long no_blink(int state)
 48{
 49	return 0;
 50}
 51
 52/* Returns how long it waited in ms */
 53long (*panic_blink)(int state);
 54EXPORT_SYMBOL(panic_blink);
 55
 56/*
 57 * Stop ourself in panic -- architecture code may override this
 58 */
 59void __weak panic_smp_self_stop(void)
 60{
 61	while (1)
 62		cpu_relax();
 63}
 64
 65/*
 66 * Stop ourselves in NMI context if another CPU has already panicked. Arch code
 67 * may override this to prepare for crash dumping, e.g. save regs info.
 68 */
 69void __weak nmi_panic_self_stop(struct pt_regs *regs)
 70{
 71	panic_smp_self_stop();
 72}
 73
 74atomic_t panic_cpu = ATOMIC_INIT(PANIC_CPU_INVALID);
 75
 76/*
 77 * A variant of panic() called from NMI context. We return if we've already
 78 * panicked on this CPU. If another CPU already panicked, loop in
 79 * nmi_panic_self_stop() which can provide architecture dependent code such
 80 * as saving register state for crash dump.
 81 */
 82void nmi_panic(struct pt_regs *regs, const char *msg)
 83{
 84	int old_cpu, cpu;
 85
 86	cpu = raw_smp_processor_id();
 87	old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, cpu);
 88
 89	if (old_cpu == PANIC_CPU_INVALID)
 90		panic("%s", msg);
 91	else if (old_cpu != cpu)
 92		nmi_panic_self_stop(regs);
 93}
 94EXPORT_SYMBOL(nmi_panic);
 95
 96/**
 97 *	panic - halt the system
 98 *	@fmt: The text string to print
 99 *
100 *	Display a message, then perform cleanups.
101 *
102 *	This function never returns.
103 */
104void panic(const char *fmt, ...)
105{
106	static char buf[1024];
107	va_list args;
108	long i, i_next = 0;
109	int state = 0;
110	int old_cpu, this_cpu;
111
112	/*
113	 * Disable local interrupts. This will prevent panic_smp_self_stop
114	 * from deadlocking the first cpu that invokes the panic, since
115	 * there is nothing to prevent an interrupt handler (that runs
116	 * after setting panic_cpu) from invoking panic() again.
117	 */
118	local_irq_disable();
119
120	/*
121	 * It's possible to come here directly from a panic-assertion and
122	 * not have preempt disabled. Some functions called from here want
123	 * preempt to be disabled. No point enabling it later though...
124	 *
125	 * Only one CPU is allowed to execute the panic code from here. For
126	 * multiple parallel invocations of panic, all other CPUs either
127	 * stop themself or will wait until they are stopped by the 1st CPU
128	 * with smp_send_stop().
129	 *
130	 * `old_cpu == PANIC_CPU_INVALID' means this is the 1st CPU which
131	 * comes here, so go ahead.
132	 * `old_cpu == this_cpu' means we came from nmi_panic() which sets
133	 * panic_cpu to this CPU.  In this case, this is also the 1st CPU.
134	 */
135	this_cpu = raw_smp_processor_id();
136	old_cpu  = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu);
137
138	if (old_cpu != PANIC_CPU_INVALID && old_cpu != this_cpu)
139		panic_smp_self_stop();
140
141	console_verbose();
142	bust_spinlocks(1);
143	va_start(args, fmt);
144	vsnprintf(buf, sizeof(buf), fmt, args);
145	va_end(args);
146	pr_emerg("Kernel panic - not syncing: %s\n", buf);
147#ifdef CONFIG_DEBUG_BUGVERBOSE
148	/*
149	 * Avoid nested stack-dumping if a panic occurs during oops processing
150	 */
151	if (!test_taint(TAINT_DIE) && oops_in_progress <= 1)
152		dump_stack();
153#endif
154
155	/*
156	 * If we have crashed and we have a crash kernel loaded let it handle
157	 * everything else.
158	 * If we want to run this after calling panic_notifiers, pass
159	 * the "crash_kexec_post_notifiers" option to the kernel.
160	 *
161	 * Bypass the panic_cpu check and call __crash_kexec directly.
162	 */
163	if (!crash_kexec_post_notifiers)
164		__crash_kexec(NULL);
165
166	/*
167	 * Note smp_send_stop is the usual smp shutdown function, which
168	 * unfortunately means it may not be hardened to work in a panic
169	 * situation.
170	 */
171	smp_send_stop();
172
173	/*
174	 * Run any panic handlers, including those that might need to
175	 * add information to the kmsg dump output.
176	 */
177	atomic_notifier_call_chain(&panic_notifier_list, 0, buf);
178
179	kmsg_dump(KMSG_DUMP_PANIC);
180
181	/*
182	 * If you doubt kdump always works fine in any situation,
183	 * "crash_kexec_post_notifiers" offers you a chance to run
184	 * panic_notifiers and dumping kmsg before kdump.
185	 * Note: since some panic_notifiers can make crashed kernel
186	 * more unstable, it can increase risks of the kdump failure too.
187	 *
188	 * Bypass the panic_cpu check and call __crash_kexec directly.
189	 */
190	if (crash_kexec_post_notifiers)
191		__crash_kexec(NULL);
192
193	bust_spinlocks(0);
194
195	/*
196	 * We may have ended up stopping the CPU holding the lock (in
197	 * smp_send_stop()) while still having some valuable data in the console
198	 * buffer.  Try to acquire the lock then release it regardless of the
199	 * result.  The release will also print the buffers out.  Locks debug
200	 * should be disabled to avoid reporting bad unlock balance when
201	 * panic() is not being callled from OOPS.
202	 */
203	debug_locks_off();
204	console_flush_on_panic();
205
206	if (!panic_blink)
207		panic_blink = no_blink;
208
209	if (panic_timeout > 0) {
210		/*
211		 * Delay timeout seconds before rebooting the machine.
212		 * We can't use the "normal" timers since we just panicked.
213		 */
214		pr_emerg("Rebooting in %d seconds..", panic_timeout);
215
216		for (i = 0; i < panic_timeout * 1000; i += PANIC_TIMER_STEP) {
217			touch_nmi_watchdog();
218			if (i >= i_next) {
219				i += panic_blink(state ^= 1);
220				i_next = i + 3600 / PANIC_BLINK_SPD;
221			}
222			mdelay(PANIC_TIMER_STEP);
223		}
224	}
225	if (panic_timeout != 0) {
226		/*
227		 * This will not be a clean reboot, with everything
228		 * shutting down.  But if there is a chance of
229		 * rebooting the system it will be rebooted.
230		 */
231		emergency_restart();
232	}
233#ifdef __sparc__
234	{
235		extern int stop_a_enabled;
236		/* Make sure the user can actually press Stop-A (L1-A) */
237		stop_a_enabled = 1;
238		pr_emerg("Press Stop-A (L1-A) to return to the boot prom\n");
239	}
240#endif
241#if defined(CONFIG_S390)
242	{
243		unsigned long caller;
244
245		caller = (unsigned long)__builtin_return_address(0);
246		disabled_wait(caller);
247	}
248#endif
249	pr_emerg("---[ end Kernel panic - not syncing: %s\n", buf);
250	local_irq_enable();
251	for (i = 0; ; i += PANIC_TIMER_STEP) {
252		touch_softlockup_watchdog();
253		if (i >= i_next) {
254			i += panic_blink(state ^= 1);
255			i_next = i + 3600 / PANIC_BLINK_SPD;
256		}
257		mdelay(PANIC_TIMER_STEP);
258	}
259}
260
261EXPORT_SYMBOL(panic);
262
263
264struct tnt {
265	u8	bit;
266	char	true;
267	char	false;
268};
269
270static const struct tnt tnts[] = {
271	{ TAINT_PROPRIETARY_MODULE,	'P', 'G' },
272	{ TAINT_FORCED_MODULE,		'F', ' ' },
273	{ TAINT_CPU_OUT_OF_SPEC,	'S', ' ' },
274	{ TAINT_FORCED_RMMOD,		'R', ' ' },
275	{ TAINT_MACHINE_CHECK,		'M', ' ' },
276	{ TAINT_BAD_PAGE,		'B', ' ' },
277	{ TAINT_USER,			'U', ' ' },
278	{ TAINT_DIE,			'D', ' ' },
279	{ TAINT_OVERRIDDEN_ACPI_TABLE,	'A', ' ' },
280	{ TAINT_WARN,			'W', ' ' },
281	{ TAINT_CRAP,			'C', ' ' },
282	{ TAINT_FIRMWARE_WORKAROUND,	'I', ' ' },
283	{ TAINT_OOT_MODULE,		'O', ' ' },
284	{ TAINT_UNSIGNED_MODULE,	'E', ' ' },
285	{ TAINT_SOFTLOCKUP,		'L', ' ' },
286	{ TAINT_LIVEPATCH,		'K', ' ' },
287};
288
289/**
290 *	print_tainted - return a string to represent the kernel taint state.
291 *
292 *  'P' - Proprietary module has been loaded.
293 *  'F' - Module has been forcibly loaded.
294 *  'S' - SMP with CPUs not designed for SMP.
295 *  'R' - User forced a module unload.
296 *  'M' - System experienced a machine check exception.
297 *  'B' - System has hit bad_page.
298 *  'U' - Userspace-defined naughtiness.
299 *  'D' - Kernel has oopsed before
300 *  'A' - ACPI table overridden.
301 *  'W' - Taint on warning.
302 *  'C' - modules from drivers/staging are loaded.
303 *  'I' - Working around severe firmware bug.
304 *  'O' - Out-of-tree module has been loaded.
305 *  'E' - Unsigned module has been loaded.
306 *  'L' - A soft lockup has previously occurred.
307 *  'K' - Kernel has been live patched.
308 *
309 *	The string is overwritten by the next call to print_tainted().
310 */
311const char *print_tainted(void)
312{
313	static char buf[ARRAY_SIZE(tnts) + sizeof("Tainted: ")];
314
315	if (tainted_mask) {
316		char *s;
317		int i;
318
319		s = buf + sprintf(buf, "Tainted: ");
320		for (i = 0; i < ARRAY_SIZE(tnts); i++) {
321			const struct tnt *t = &tnts[i];
322			*s++ = test_bit(t->bit, &tainted_mask) ?
323					t->true : t->false;
324		}
325		*s = 0;
326	} else
327		snprintf(buf, sizeof(buf), "Not tainted");
328
329	return buf;
330}
331
332int test_taint(unsigned flag)
333{
334	return test_bit(flag, &tainted_mask);
335}
336EXPORT_SYMBOL(test_taint);
337
338unsigned long get_taint(void)
339{
340	return tainted_mask;
341}
342
343/**
344 * add_taint: add a taint flag if not already set.
345 * @flag: one of the TAINT_* constants.
346 * @lockdep_ok: whether lock debugging is still OK.
347 *
348 * If something bad has gone wrong, you'll want @lockdebug_ok = false, but for
349 * some notewortht-but-not-corrupting cases, it can be set to true.
350 */
351void add_taint(unsigned flag, enum lockdep_ok lockdep_ok)
352{
353	if (lockdep_ok == LOCKDEP_NOW_UNRELIABLE && __debug_locks_off())
354		pr_warn("Disabling lock debugging due to kernel taint\n");
355
356	set_bit(flag, &tainted_mask);
357}
358EXPORT_SYMBOL(add_taint);
359
360static void spin_msec(int msecs)
361{
362	int i;
363
364	for (i = 0; i < msecs; i++) {
365		touch_nmi_watchdog();
366		mdelay(1);
367	}
368}
369
370/*
371 * It just happens that oops_enter() and oops_exit() are identically
372 * implemented...
373 */
374static void do_oops_enter_exit(void)
375{
376	unsigned long flags;
377	static int spin_counter;
378
379	if (!pause_on_oops)
380		return;
381
382	spin_lock_irqsave(&pause_on_oops_lock, flags);
383	if (pause_on_oops_flag == 0) {
384		/* This CPU may now print the oops message */
385		pause_on_oops_flag = 1;
386	} else {
387		/* We need to stall this CPU */
388		if (!spin_counter) {
389			/* This CPU gets to do the counting */
390			spin_counter = pause_on_oops;
391			do {
392				spin_unlock(&pause_on_oops_lock);
393				spin_msec(MSEC_PER_SEC);
394				spin_lock(&pause_on_oops_lock);
395			} while (--spin_counter);
396			pause_on_oops_flag = 0;
397		} else {
398			/* This CPU waits for a different one */
399			while (spin_counter) {
400				spin_unlock(&pause_on_oops_lock);
401				spin_msec(1);
402				spin_lock(&pause_on_oops_lock);
403			}
404		}
405	}
406	spin_unlock_irqrestore(&pause_on_oops_lock, flags);
407}
408
409/*
410 * Return true if the calling CPU is allowed to print oops-related info.
411 * This is a bit racy..
412 */
413int oops_may_print(void)
414{
415	return pause_on_oops_flag == 0;
416}
417
418/*
419 * Called when the architecture enters its oops handler, before it prints
420 * anything.  If this is the first CPU to oops, and it's oopsing the first
421 * time then let it proceed.
422 *
423 * This is all enabled by the pause_on_oops kernel boot option.  We do all
424 * this to ensure that oopses don't scroll off the screen.  It has the
425 * side-effect of preventing later-oopsing CPUs from mucking up the display,
426 * too.
427 *
428 * It turns out that the CPU which is allowed to print ends up pausing for
429 * the right duration, whereas all the other CPUs pause for twice as long:
430 * once in oops_enter(), once in oops_exit().
431 */
432void oops_enter(void)
433{
434	tracing_off();
435	/* can't trust the integrity of the kernel anymore: */
436	debug_locks_off();
437	do_oops_enter_exit();
438}
439
440/*
441 * 64-bit random ID for oopses:
442 */
443static u64 oops_id;
444
445static int init_oops_id(void)
446{
447	if (!oops_id)
448		get_random_bytes(&oops_id, sizeof(oops_id));
449	else
450		oops_id++;
451
452	return 0;
453}
454late_initcall(init_oops_id);
455
456void print_oops_end_marker(void)
457{
458	init_oops_id();
459	pr_warn("---[ end trace %016llx ]---\n", (unsigned long long)oops_id);
460}
461
462/*
463 * Called when the architecture exits its oops handler, after printing
464 * everything.
465 */
466void oops_exit(void)
467{
468	do_oops_enter_exit();
469	print_oops_end_marker();
470	kmsg_dump(KMSG_DUMP_OOPS);
471}
472
473struct warn_args {
474	const char *fmt;
475	va_list args;
476};
477
478void __warn(const char *file, int line, void *caller, unsigned taint,
479	    struct pt_regs *regs, struct warn_args *args)
480{
481	disable_trace_on_warning();
482
483	pr_warn("------------[ cut here ]------------\n");
484
485	if (file)
486		pr_warn("WARNING: CPU: %d PID: %d at %s:%d %pS\n",
487			raw_smp_processor_id(), current->pid, file, line,
488			caller);
489	else
490		pr_warn("WARNING: CPU: %d PID: %d at %pS\n",
491			raw_smp_processor_id(), current->pid, caller);
492
493	if (args)
494		vprintk(args->fmt, args->args);
495
496	if (panic_on_warn) {
497		/*
498		 * This thread may hit another WARN() in the panic path.
499		 * Resetting this prevents additional WARN() from panicking the
500		 * system on this thread.  Other threads are blocked by the
501		 * panic_mutex in panic().
502		 */
503		panic_on_warn = 0;
504		panic("panic_on_warn set ...\n");
505	}
506
507	print_modules();
508
509	if (regs)
510		show_regs(regs);
511	else
512		dump_stack();
513
514	print_oops_end_marker();
515
516	/* Just a warning, don't kill lockdep. */
517	add_taint(taint, LOCKDEP_STILL_OK);
518}
519
520#ifdef WANT_WARN_ON_SLOWPATH
521void warn_slowpath_fmt(const char *file, int line, const char *fmt, ...)
522{
523	struct warn_args args;
524
525	args.fmt = fmt;
526	va_start(args.args, fmt);
527	__warn(file, line, __builtin_return_address(0), TAINT_WARN, NULL,
528	       &args);
529	va_end(args.args);
530}
531EXPORT_SYMBOL(warn_slowpath_fmt);
532
533void warn_slowpath_fmt_taint(const char *file, int line,
534			     unsigned taint, const char *fmt, ...)
535{
536	struct warn_args args;
537
538	args.fmt = fmt;
539	va_start(args.args, fmt);
540	__warn(file, line, __builtin_return_address(0), taint, NULL, &args);
541	va_end(args.args);
542}
543EXPORT_SYMBOL(warn_slowpath_fmt_taint);
544
545void warn_slowpath_null(const char *file, int line)
546{
547	__warn(file, line, __builtin_return_address(0), TAINT_WARN, NULL, NULL);
548}
549EXPORT_SYMBOL(warn_slowpath_null);
550#endif
551
552#ifdef CONFIG_CC_STACKPROTECTOR
553
554/*
555 * Called when gcc's -fstack-protector feature is used, and
556 * gcc detects corruption of the on-stack canary value
557 */
558__visible void __stack_chk_fail(void)
559{
560	panic("stack-protector: Kernel stack is corrupted in: %p\n",
561		__builtin_return_address(0));
562}
563EXPORT_SYMBOL(__stack_chk_fail);
564
565#endif
566
567core_param(panic, panic_timeout, int, 0644);
568core_param(pause_on_oops, pause_on_oops, int, 0644);
569core_param(panic_on_warn, panic_on_warn, int, 0644);
570
571static int __init setup_crash_kexec_post_notifiers(char *s)
572{
573	crash_kexec_post_notifiers = true;
574	return 0;
575}
576early_param("crash_kexec_post_notifiers", setup_crash_kexec_post_notifiers);
577
578static int __init oops_setup(char *s)
579{
580	if (!s)
581		return -EINVAL;
582	if (!strcmp(s, "panic"))
583		panic_on_oops = 1;
584	return 0;
585}
586early_param("oops", oops_setup);
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  linux/kernel/panic.c
  4 *
  5 *  Copyright (C) 1991, 1992  Linus Torvalds
  6 */
  7
  8/*
  9 * This function is used through-out the kernel (including mm and fs)
 10 * to indicate a major problem.
 11 */
 12#include <linux/debug_locks.h>
 13#include <linux/sched/debug.h>
 14#include <linux/interrupt.h>
 15#include <linux/kgdb.h>
 16#include <linux/kmsg_dump.h>
 17#include <linux/kallsyms.h>
 18#include <linux/notifier.h>
 19#include <linux/vt_kern.h>
 20#include <linux/module.h>
 21#include <linux/random.h>
 22#include <linux/ftrace.h>
 23#include <linux/reboot.h>
 24#include <linux/delay.h>
 25#include <linux/kexec.h>
 26#include <linux/sched.h>
 27#include <linux/sysrq.h>
 28#include <linux/init.h>
 29#include <linux/nmi.h>
 30#include <linux/console.h>
 31#include <linux/bug.h>
 32#include <linux/ratelimit.h>
 33#include <linux/debugfs.h>
 34#include <asm/sections.h>
 35
 36#define PANIC_TIMER_STEP 100
 37#define PANIC_BLINK_SPD 18
 38
 39int panic_on_oops = CONFIG_PANIC_ON_OOPS_VALUE;
 40static unsigned long tainted_mask =
 41	IS_ENABLED(CONFIG_GCC_PLUGIN_RANDSTRUCT) ? (1 << TAINT_RANDSTRUCT) : 0;
 42static int pause_on_oops;
 43static int pause_on_oops_flag;
 44static DEFINE_SPINLOCK(pause_on_oops_lock);
 45bool crash_kexec_post_notifiers;
 46int panic_on_warn __read_mostly;
 47
 48int panic_timeout = CONFIG_PANIC_TIMEOUT;
 49EXPORT_SYMBOL_GPL(panic_timeout);
 50
 51#define PANIC_PRINT_TASK_INFO		0x00000001
 52#define PANIC_PRINT_MEM_INFO		0x00000002
 53#define PANIC_PRINT_TIMER_INFO		0x00000004
 54#define PANIC_PRINT_LOCK_INFO		0x00000008
 55#define PANIC_PRINT_FTRACE_INFO		0x00000010
 56#define PANIC_PRINT_ALL_PRINTK_MSG	0x00000020
 57unsigned long panic_print;
 58
 59ATOMIC_NOTIFIER_HEAD(panic_notifier_list);
 60
 61EXPORT_SYMBOL(panic_notifier_list);
 62
 63static long no_blink(int state)
 64{
 65	return 0;
 66}
 67
 68/* Returns how long it waited in ms */
 69long (*panic_blink)(int state);
 70EXPORT_SYMBOL(panic_blink);
 71
 72/*
 73 * Stop ourself in panic -- architecture code may override this
 74 */
 75void __weak panic_smp_self_stop(void)
 76{
 77	while (1)
 78		cpu_relax();
 79}
 80
 81/*
 82 * Stop ourselves in NMI context if another CPU has already panicked. Arch code
 83 * may override this to prepare for crash dumping, e.g. save regs info.
 84 */
 85void __weak nmi_panic_self_stop(struct pt_regs *regs)
 86{
 87	panic_smp_self_stop();
 88}
 89
 90/*
 91 * Stop other CPUs in panic.  Architecture dependent code may override this
 92 * with more suitable version.  For example, if the architecture supports
 93 * crash dump, it should save registers of each stopped CPU and disable
 94 * per-CPU features such as virtualization extensions.
 95 */
 96void __weak crash_smp_send_stop(void)
 97{
 98	static int cpus_stopped;
 99
100	/*
101	 * This function can be called twice in panic path, but obviously
102	 * we execute this only once.
103	 */
104	if (cpus_stopped)
105		return;
106
107	/*
108	 * Note smp_send_stop is the usual smp shutdown function, which
109	 * unfortunately means it may not be hardened to work in a panic
110	 * situation.
111	 */
112	smp_send_stop();
113	cpus_stopped = 1;
114}
115
116atomic_t panic_cpu = ATOMIC_INIT(PANIC_CPU_INVALID);
117
118/*
119 * A variant of panic() called from NMI context. We return if we've already
120 * panicked on this CPU. If another CPU already panicked, loop in
121 * nmi_panic_self_stop() which can provide architecture dependent code such
122 * as saving register state for crash dump.
123 */
124void nmi_panic(struct pt_regs *regs, const char *msg)
125{
126	int old_cpu, cpu;
127
128	cpu = raw_smp_processor_id();
129	old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, cpu);
130
131	if (old_cpu == PANIC_CPU_INVALID)
132		panic("%s", msg);
133	else if (old_cpu != cpu)
134		nmi_panic_self_stop(regs);
135}
136EXPORT_SYMBOL(nmi_panic);
137
138static void panic_print_sys_info(void)
139{
140	if (panic_print & PANIC_PRINT_ALL_PRINTK_MSG)
141		console_flush_on_panic(CONSOLE_REPLAY_ALL);
142
143	if (panic_print & PANIC_PRINT_TASK_INFO)
144		show_state();
145
146	if (panic_print & PANIC_PRINT_MEM_INFO)
147		show_mem(0, NULL);
148
149	if (panic_print & PANIC_PRINT_TIMER_INFO)
150		sysrq_timer_list_show();
151
152	if (panic_print & PANIC_PRINT_LOCK_INFO)
153		debug_show_all_locks();
154
155	if (panic_print & PANIC_PRINT_FTRACE_INFO)
156		ftrace_dump(DUMP_ALL);
157}
158
159/**
160 *	panic - halt the system
161 *	@fmt: The text string to print
162 *
163 *	Display a message, then perform cleanups.
164 *
165 *	This function never returns.
166 */
167void panic(const char *fmt, ...)
168{
169	static char buf[1024];
170	va_list args;
171	long i, i_next = 0, len;
172	int state = 0;
173	int old_cpu, this_cpu;
174	bool _crash_kexec_post_notifiers = crash_kexec_post_notifiers;
175
176	/*
177	 * Disable local interrupts. This will prevent panic_smp_self_stop
178	 * from deadlocking the first cpu that invokes the panic, since
179	 * there is nothing to prevent an interrupt handler (that runs
180	 * after setting panic_cpu) from invoking panic() again.
181	 */
182	local_irq_disable();
183	preempt_disable_notrace();
184
185	/*
186	 * It's possible to come here directly from a panic-assertion and
187	 * not have preempt disabled. Some functions called from here want
188	 * preempt to be disabled. No point enabling it later though...
189	 *
190	 * Only one CPU is allowed to execute the panic code from here. For
191	 * multiple parallel invocations of panic, all other CPUs either
192	 * stop themself or will wait until they are stopped by the 1st CPU
193	 * with smp_send_stop().
194	 *
195	 * `old_cpu == PANIC_CPU_INVALID' means this is the 1st CPU which
196	 * comes here, so go ahead.
197	 * `old_cpu == this_cpu' means we came from nmi_panic() which sets
198	 * panic_cpu to this CPU.  In this case, this is also the 1st CPU.
199	 */
200	this_cpu = raw_smp_processor_id();
201	old_cpu  = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu);
202
203	if (old_cpu != PANIC_CPU_INVALID && old_cpu != this_cpu)
204		panic_smp_self_stop();
205
206	console_verbose();
207	bust_spinlocks(1);
208	va_start(args, fmt);
209	len = vscnprintf(buf, sizeof(buf), fmt, args);
210	va_end(args);
211
212	if (len && buf[len - 1] == '\n')
213		buf[len - 1] = '\0';
214
215	pr_emerg("Kernel panic - not syncing: %s\n", buf);
216#ifdef CONFIG_DEBUG_BUGVERBOSE
217	/*
218	 * Avoid nested stack-dumping if a panic occurs during oops processing
219	 */
220	if (!test_taint(TAINT_DIE) && oops_in_progress <= 1)
221		dump_stack();
222#endif
223
224	/*
225	 * If kgdb is enabled, give it a chance to run before we stop all
226	 * the other CPUs or else we won't be able to debug processes left
227	 * running on them.
228	 */
229	kgdb_panic(buf);
230
231	/*
232	 * If we have crashed and we have a crash kernel loaded let it handle
233	 * everything else.
234	 * If we want to run this after calling panic_notifiers, pass
235	 * the "crash_kexec_post_notifiers" option to the kernel.
236	 *
237	 * Bypass the panic_cpu check and call __crash_kexec directly.
238	 */
239	if (!_crash_kexec_post_notifiers) {
240		printk_safe_flush_on_panic();
241		__crash_kexec(NULL);
242
243		/*
244		 * Note smp_send_stop is the usual smp shutdown function, which
245		 * unfortunately means it may not be hardened to work in a
246		 * panic situation.
247		 */
248		smp_send_stop();
249	} else {
250		/*
251		 * If we want to do crash dump after notifier calls and
252		 * kmsg_dump, we will need architecture dependent extra
253		 * works in addition to stopping other CPUs.
254		 */
255		crash_smp_send_stop();
256	}
257
258	/*
259	 * Run any panic handlers, including those that might need to
260	 * add information to the kmsg dump output.
261	 */
262	atomic_notifier_call_chain(&panic_notifier_list, 0, buf);
263
264	/* Call flush even twice. It tries harder with a single online CPU */
265	printk_safe_flush_on_panic();
266	kmsg_dump(KMSG_DUMP_PANIC);
267
268	/*
269	 * If you doubt kdump always works fine in any situation,
270	 * "crash_kexec_post_notifiers" offers you a chance to run
271	 * panic_notifiers and dumping kmsg before kdump.
272	 * Note: since some panic_notifiers can make crashed kernel
273	 * more unstable, it can increase risks of the kdump failure too.
274	 *
275	 * Bypass the panic_cpu check and call __crash_kexec directly.
276	 */
277	if (_crash_kexec_post_notifiers)
278		__crash_kexec(NULL);
279
280#ifdef CONFIG_VT
281	unblank_screen();
282#endif
283	console_unblank();
284
285	/*
286	 * We may have ended up stopping the CPU holding the lock (in
287	 * smp_send_stop()) while still having some valuable data in the console
288	 * buffer.  Try to acquire the lock then release it regardless of the
289	 * result.  The release will also print the buffers out.  Locks debug
290	 * should be disabled to avoid reporting bad unlock balance when
291	 * panic() is not being callled from OOPS.
292	 */
293	debug_locks_off();
294	console_flush_on_panic(CONSOLE_FLUSH_PENDING);
295
296	panic_print_sys_info();
297
298	if (!panic_blink)
299		panic_blink = no_blink;
300
301	if (panic_timeout > 0) {
302		/*
303		 * Delay timeout seconds before rebooting the machine.
304		 * We can't use the "normal" timers since we just panicked.
305		 */
306		pr_emerg("Rebooting in %d seconds..\n", panic_timeout);
307
308		for (i = 0; i < panic_timeout * 1000; i += PANIC_TIMER_STEP) {
309			touch_nmi_watchdog();
310			if (i >= i_next) {
311				i += panic_blink(state ^= 1);
312				i_next = i + 3600 / PANIC_BLINK_SPD;
313			}
314			mdelay(PANIC_TIMER_STEP);
315		}
316	}
317	if (panic_timeout != 0) {
318		/*
319		 * This will not be a clean reboot, with everything
320		 * shutting down.  But if there is a chance of
321		 * rebooting the system it will be rebooted.
322		 */
323		if (panic_reboot_mode != REBOOT_UNDEFINED)
324			reboot_mode = panic_reboot_mode;
325		emergency_restart();
326	}
327#ifdef __sparc__
328	{
329		extern int stop_a_enabled;
330		/* Make sure the user can actually press Stop-A (L1-A) */
331		stop_a_enabled = 1;
332		pr_emerg("Press Stop-A (L1-A) from sun keyboard or send break\n"
333			 "twice on console to return to the boot prom\n");
334	}
335#endif
336#if defined(CONFIG_S390)
337	disabled_wait();
338#endif
339	pr_emerg("---[ end Kernel panic - not syncing: %s ]---\n", buf);
340
341	/* Do not scroll important messages printed above */
342	suppress_printk = 1;
343	local_irq_enable();
344	for (i = 0; ; i += PANIC_TIMER_STEP) {
345		touch_softlockup_watchdog();
346		if (i >= i_next) {
347			i += panic_blink(state ^= 1);
348			i_next = i + 3600 / PANIC_BLINK_SPD;
349		}
350		mdelay(PANIC_TIMER_STEP);
351	}
352}
353
354EXPORT_SYMBOL(panic);
355
356/*
357 * TAINT_FORCED_RMMOD could be a per-module flag but the module
358 * is being removed anyway.
359 */
360const struct taint_flag taint_flags[TAINT_FLAGS_COUNT] = {
361	[ TAINT_PROPRIETARY_MODULE ]	= { 'P', 'G', true },
362	[ TAINT_FORCED_MODULE ]		= { 'F', ' ', true },
363	[ TAINT_CPU_OUT_OF_SPEC ]	= { 'S', ' ', false },
364	[ TAINT_FORCED_RMMOD ]		= { 'R', ' ', false },
365	[ TAINT_MACHINE_CHECK ]		= { 'M', ' ', false },
366	[ TAINT_BAD_PAGE ]		= { 'B', ' ', false },
367	[ TAINT_USER ]			= { 'U', ' ', false },
368	[ TAINT_DIE ]			= { 'D', ' ', false },
369	[ TAINT_OVERRIDDEN_ACPI_TABLE ]	= { 'A', ' ', false },
370	[ TAINT_WARN ]			= { 'W', ' ', false },
371	[ TAINT_CRAP ]			= { 'C', ' ', true },
372	[ TAINT_FIRMWARE_WORKAROUND ]	= { 'I', ' ', false },
373	[ TAINT_OOT_MODULE ]		= { 'O', ' ', true },
374	[ TAINT_UNSIGNED_MODULE ]	= { 'E', ' ', true },
375	[ TAINT_SOFTLOCKUP ]		= { 'L', ' ', false },
376	[ TAINT_LIVEPATCH ]		= { 'K', ' ', true },
377	[ TAINT_AUX ]			= { 'X', ' ', true },
378	[ TAINT_RANDSTRUCT ]		= { 'T', ' ', true },
379};
380
381/**
382 * print_tainted - return a string to represent the kernel taint state.
383 *
384 * For individual taint flag meanings, see Documentation/admin-guide/sysctl/kernel.rst
385 *
386 * The string is overwritten by the next call to print_tainted(),
387 * but is always NULL terminated.
388 */
389const char *print_tainted(void)
390{
391	static char buf[TAINT_FLAGS_COUNT + sizeof("Tainted: ")];
392
393	BUILD_BUG_ON(ARRAY_SIZE(taint_flags) != TAINT_FLAGS_COUNT);
394
395	if (tainted_mask) {
396		char *s;
397		int i;
398
399		s = buf + sprintf(buf, "Tainted: ");
400		for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
401			const struct taint_flag *t = &taint_flags[i];
402			*s++ = test_bit(i, &tainted_mask) ?
403					t->c_true : t->c_false;
404		}
405		*s = 0;
406	} else
407		snprintf(buf, sizeof(buf), "Not tainted");
408
409	return buf;
410}
411
412int test_taint(unsigned flag)
413{
414	return test_bit(flag, &tainted_mask);
415}
416EXPORT_SYMBOL(test_taint);
417
418unsigned long get_taint(void)
419{
420	return tainted_mask;
421}
422
423/**
424 * add_taint: add a taint flag if not already set.
425 * @flag: one of the TAINT_* constants.
426 * @lockdep_ok: whether lock debugging is still OK.
427 *
428 * If something bad has gone wrong, you'll want @lockdebug_ok = false, but for
429 * some notewortht-but-not-corrupting cases, it can be set to true.
430 */
431void add_taint(unsigned flag, enum lockdep_ok lockdep_ok)
432{
433	if (lockdep_ok == LOCKDEP_NOW_UNRELIABLE && __debug_locks_off())
434		pr_warn("Disabling lock debugging due to kernel taint\n");
435
436	set_bit(flag, &tainted_mask);
437}
438EXPORT_SYMBOL(add_taint);
439
440static void spin_msec(int msecs)
441{
442	int i;
443
444	for (i = 0; i < msecs; i++) {
445		touch_nmi_watchdog();
446		mdelay(1);
447	}
448}
449
450/*
451 * It just happens that oops_enter() and oops_exit() are identically
452 * implemented...
453 */
454static void do_oops_enter_exit(void)
455{
456	unsigned long flags;
457	static int spin_counter;
458
459	if (!pause_on_oops)
460		return;
461
462	spin_lock_irqsave(&pause_on_oops_lock, flags);
463	if (pause_on_oops_flag == 0) {
464		/* This CPU may now print the oops message */
465		pause_on_oops_flag = 1;
466	} else {
467		/* We need to stall this CPU */
468		if (!spin_counter) {
469			/* This CPU gets to do the counting */
470			spin_counter = pause_on_oops;
471			do {
472				spin_unlock(&pause_on_oops_lock);
473				spin_msec(MSEC_PER_SEC);
474				spin_lock(&pause_on_oops_lock);
475			} while (--spin_counter);
476			pause_on_oops_flag = 0;
477		} else {
478			/* This CPU waits for a different one */
479			while (spin_counter) {
480				spin_unlock(&pause_on_oops_lock);
481				spin_msec(1);
482				spin_lock(&pause_on_oops_lock);
483			}
484		}
485	}
486	spin_unlock_irqrestore(&pause_on_oops_lock, flags);
487}
488
489/*
490 * Return true if the calling CPU is allowed to print oops-related info.
491 * This is a bit racy..
492 */
493int oops_may_print(void)
494{
495	return pause_on_oops_flag == 0;
496}
497
498/*
499 * Called when the architecture enters its oops handler, before it prints
500 * anything.  If this is the first CPU to oops, and it's oopsing the first
501 * time then let it proceed.
502 *
503 * This is all enabled by the pause_on_oops kernel boot option.  We do all
504 * this to ensure that oopses don't scroll off the screen.  It has the
505 * side-effect of preventing later-oopsing CPUs from mucking up the display,
506 * too.
507 *
508 * It turns out that the CPU which is allowed to print ends up pausing for
509 * the right duration, whereas all the other CPUs pause for twice as long:
510 * once in oops_enter(), once in oops_exit().
511 */
512void oops_enter(void)
513{
514	tracing_off();
515	/* can't trust the integrity of the kernel anymore: */
516	debug_locks_off();
517	do_oops_enter_exit();
518}
519
520/*
521 * 64-bit random ID for oopses:
522 */
523static u64 oops_id;
524
525static int init_oops_id(void)
526{
527	if (!oops_id)
528		get_random_bytes(&oops_id, sizeof(oops_id));
529	else
530		oops_id++;
531
532	return 0;
533}
534late_initcall(init_oops_id);
535
536void print_oops_end_marker(void)
537{
538	init_oops_id();
539	pr_warn("---[ end trace %016llx ]---\n", (unsigned long long)oops_id);
540}
541
542/*
543 * Called when the architecture exits its oops handler, after printing
544 * everything.
545 */
546void oops_exit(void)
547{
548	do_oops_enter_exit();
549	print_oops_end_marker();
550	kmsg_dump(KMSG_DUMP_OOPS);
551}
552
553struct warn_args {
554	const char *fmt;
555	va_list args;
556};
557
558void __warn(const char *file, int line, void *caller, unsigned taint,
559	    struct pt_regs *regs, struct warn_args *args)
560{
561	disable_trace_on_warning();
562
563	if (file)
564		pr_warn("WARNING: CPU: %d PID: %d at %s:%d %pS\n",
565			raw_smp_processor_id(), current->pid, file, line,
566			caller);
567	else
568		pr_warn("WARNING: CPU: %d PID: %d at %pS\n",
569			raw_smp_processor_id(), current->pid, caller);
570
571	if (args)
572		vprintk(args->fmt, args->args);
573
574	if (panic_on_warn) {
575		/*
576		 * This thread may hit another WARN() in the panic path.
577		 * Resetting this prevents additional WARN() from panicking the
578		 * system on this thread.  Other threads are blocked by the
579		 * panic_mutex in panic().
580		 */
581		panic_on_warn = 0;
582		panic("panic_on_warn set ...\n");
583	}
584
585	print_modules();
586
587	if (regs)
588		show_regs(regs);
589	else
590		dump_stack();
591
592	print_irqtrace_events(current);
593
594	print_oops_end_marker();
595
596	/* Just a warning, don't kill lockdep. */
597	add_taint(taint, LOCKDEP_STILL_OK);
598}
599
600#ifndef __WARN_FLAGS
601void warn_slowpath_fmt(const char *file, int line, unsigned taint,
602		       const char *fmt, ...)
603{
604	struct warn_args args;
605
606	pr_warn(CUT_HERE);
607
608	if (!fmt) {
609		__warn(file, line, __builtin_return_address(0), taint,
610		       NULL, NULL);
611		return;
612	}
613
614	args.fmt = fmt;
615	va_start(args.args, fmt);
616	__warn(file, line, __builtin_return_address(0), taint, NULL, &args);
617	va_end(args.args);
618}
619EXPORT_SYMBOL(warn_slowpath_fmt);
620#else
621void __warn_printk(const char *fmt, ...)
622{
623	va_list args;
624
625	pr_warn(CUT_HERE);
626
627	va_start(args, fmt);
628	vprintk(fmt, args);
629	va_end(args);
630}
631EXPORT_SYMBOL(__warn_printk);
632#endif
633
634#ifdef CONFIG_BUG
635
636/* Support resetting WARN*_ONCE state */
637
638static int clear_warn_once_set(void *data, u64 val)
639{
640	generic_bug_clear_once();
641	memset(__start_once, 0, __end_once - __start_once);
642	return 0;
643}
644
645DEFINE_DEBUGFS_ATTRIBUTE(clear_warn_once_fops, NULL, clear_warn_once_set,
646			 "%lld\n");
647
648static __init int register_warn_debugfs(void)
649{
650	/* Don't care about failure */
651	debugfs_create_file_unsafe("clear_warn_once", 0200, NULL, NULL,
652				   &clear_warn_once_fops);
653	return 0;
654}
655
656device_initcall(register_warn_debugfs);
657#endif
658
659#ifdef CONFIG_STACKPROTECTOR
660
661/*
662 * Called when gcc's -fstack-protector feature is used, and
663 * gcc detects corruption of the on-stack canary value
664 */
665__visible void __stack_chk_fail(void)
666{
667	panic("stack-protector: Kernel stack is corrupted in: %pB",
668		__builtin_return_address(0));
669}
670EXPORT_SYMBOL(__stack_chk_fail);
671
672#endif
673
674#ifdef CONFIG_ARCH_HAS_REFCOUNT
675void refcount_error_report(struct pt_regs *regs, const char *err)
676{
677	WARN_RATELIMIT(1, "refcount_t %s at %pB in %s[%d], uid/euid: %u/%u\n",
678		err, (void *)instruction_pointer(regs),
679		current->comm, task_pid_nr(current),
680		from_kuid_munged(&init_user_ns, current_uid()),
681		from_kuid_munged(&init_user_ns, current_euid()));
682}
683#endif
684
685core_param(panic, panic_timeout, int, 0644);
686core_param(panic_print, panic_print, ulong, 0644);
687core_param(pause_on_oops, pause_on_oops, int, 0644);
688core_param(panic_on_warn, panic_on_warn, int, 0644);
689core_param(crash_kexec_post_notifiers, crash_kexec_post_notifiers, bool, 0644);
690
691static int __init oops_setup(char *s)
692{
693	if (!s)
694		return -EINVAL;
695	if (!strcmp(s, "panic"))
696		panic_on_oops = 1;
697	return 0;
698}
699early_param("oops", oops_setup);