Linux Audio

Check our new training course

Loading...
v4.6
  1/*
  2 *  linux/fs/fcntl.c
  3 *
  4 *  Copyright (C) 1991, 1992  Linus Torvalds
  5 */
  6
  7#include <linux/syscalls.h>
  8#include <linux/init.h>
  9#include <linux/mm.h>
 10#include <linux/fs.h>
 11#include <linux/file.h>
 12#include <linux/fdtable.h>
 13#include <linux/capability.h>
 14#include <linux/dnotify.h>
 15#include <linux/slab.h>
 16#include <linux/module.h>
 17#include <linux/pipe_fs_i.h>
 18#include <linux/security.h>
 19#include <linux/ptrace.h>
 20#include <linux/signal.h>
 21#include <linux/rcupdate.h>
 22#include <linux/pid_namespace.h>
 23#include <linux/user_namespace.h>
 24#include <linux/shmem_fs.h>
 25
 26#include <asm/poll.h>
 27#include <asm/siginfo.h>
 28#include <asm/uaccess.h>
 29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 30#define SETFL_MASK (O_APPEND | O_NONBLOCK | O_NDELAY | O_DIRECT | O_NOATIME)
 31
 32static int setfl(int fd, struct file * filp, unsigned long arg)
 33{
 34	struct inode * inode = file_inode(filp);
 35	int error = 0;
 36
 37	/*
 38	 * O_APPEND cannot be cleared if the file is marked as append-only
 39	 * and the file is open for write.
 40	 */
 41	if (((arg ^ filp->f_flags) & O_APPEND) && IS_APPEND(inode))
 42		return -EPERM;
 43
 44	/* O_NOATIME can only be set by the owner or superuser */
 45	if ((arg & O_NOATIME) && !(filp->f_flags & O_NOATIME))
 46		if (!inode_owner_or_capable(inode))
 47			return -EPERM;
 48
 49	/* required for strict SunOS emulation */
 50	if (O_NONBLOCK != O_NDELAY)
 51	       if (arg & O_NDELAY)
 52		   arg |= O_NONBLOCK;
 53
 54	/* Pipe packetized mode is controlled by O_DIRECT flag */
 55	if (!S_ISFIFO(filp->f_inode->i_mode) && (arg & O_DIRECT)) {
 56		if (!filp->f_mapping || !filp->f_mapping->a_ops ||
 57			!filp->f_mapping->a_ops->direct_IO)
 58				return -EINVAL;
 59	}
 60
 61	if (filp->f_op->check_flags)
 62		error = filp->f_op->check_flags(arg);
 63	if (error)
 64		return error;
 65
 66	/*
 67	 * ->fasync() is responsible for setting the FASYNC bit.
 68	 */
 69	if (((arg ^ filp->f_flags) & FASYNC) && filp->f_op->fasync) {
 
 70		error = filp->f_op->fasync(fd, filp, (arg & FASYNC) != 0);
 71		if (error < 0)
 72			goto out;
 73		if (error > 0)
 74			error = 0;
 75	}
 76	spin_lock(&filp->f_lock);
 77	filp->f_flags = (arg & SETFL_MASK) | (filp->f_flags & ~SETFL_MASK);
 78	spin_unlock(&filp->f_lock);
 79
 80 out:
 81	return error;
 82}
 83
 84static void f_modown(struct file *filp, struct pid *pid, enum pid_type type,
 85                     int force)
 86{
 87	write_lock_irq(&filp->f_owner.lock);
 88	if (force || !filp->f_owner.pid) {
 89		put_pid(filp->f_owner.pid);
 90		filp->f_owner.pid = get_pid(pid);
 91		filp->f_owner.pid_type = type;
 92
 93		if (pid) {
 94			const struct cred *cred = current_cred();
 95			filp->f_owner.uid = cred->uid;
 96			filp->f_owner.euid = cred->euid;
 97		}
 98	}
 99	write_unlock_irq(&filp->f_owner.lock);
100}
101
102void __f_setown(struct file *filp, struct pid *pid, enum pid_type type,
103		int force)
104{
105	security_file_set_fowner(filp);
 
 
 
 
 
106	f_modown(filp, pid, type, force);
 
107}
108EXPORT_SYMBOL(__f_setown);
109
110void f_setown(struct file *filp, unsigned long arg, int force)
111{
112	enum pid_type type;
113	struct pid *pid;
114	int who = arg;
 
115	type = PIDTYPE_PID;
116	if (who < 0) {
117		type = PIDTYPE_PGID;
118		who = -who;
119	}
120	rcu_read_lock();
121	pid = find_vpid(who);
122	__f_setown(filp, pid, type, force);
123	rcu_read_unlock();
 
124}
125EXPORT_SYMBOL(f_setown);
126
127void f_delown(struct file *filp)
128{
129	f_modown(filp, NULL, PIDTYPE_PID, 1);
130}
131
132pid_t f_getown(struct file *filp)
133{
134	pid_t pid;
135	read_lock(&filp->f_owner.lock);
136	pid = pid_vnr(filp->f_owner.pid);
137	if (filp->f_owner.pid_type == PIDTYPE_PGID)
138		pid = -pid;
139	read_unlock(&filp->f_owner.lock);
140	return pid;
141}
142
143static int f_setown_ex(struct file *filp, unsigned long arg)
144{
145	struct f_owner_ex __user *owner_p = (void __user *)arg;
146	struct f_owner_ex owner;
147	struct pid *pid;
148	int type;
149	int ret;
150
151	ret = copy_from_user(&owner, owner_p, sizeof(owner));
152	if (ret)
153		return -EFAULT;
154
155	switch (owner.type) {
156	case F_OWNER_TID:
157		type = PIDTYPE_MAX;
158		break;
159
160	case F_OWNER_PID:
161		type = PIDTYPE_PID;
162		break;
163
164	case F_OWNER_PGRP:
165		type = PIDTYPE_PGID;
166		break;
167
168	default:
169		return -EINVAL;
170	}
171
172	rcu_read_lock();
173	pid = find_vpid(owner.pid);
174	if (owner.pid && !pid)
175		ret = -ESRCH;
176	else
177		 __f_setown(filp, pid, type, 1);
178	rcu_read_unlock();
179
180	return ret;
181}
182
183static int f_getown_ex(struct file *filp, unsigned long arg)
184{
185	struct f_owner_ex __user *owner_p = (void __user *)arg;
186	struct f_owner_ex owner;
187	int ret = 0;
188
189	read_lock(&filp->f_owner.lock);
190	owner.pid = pid_vnr(filp->f_owner.pid);
191	switch (filp->f_owner.pid_type) {
192	case PIDTYPE_MAX:
193		owner.type = F_OWNER_TID;
194		break;
195
196	case PIDTYPE_PID:
197		owner.type = F_OWNER_PID;
198		break;
199
200	case PIDTYPE_PGID:
201		owner.type = F_OWNER_PGRP;
202		break;
203
204	default:
205		WARN_ON(1);
206		ret = -EINVAL;
207		break;
208	}
209	read_unlock(&filp->f_owner.lock);
210
211	if (!ret) {
212		ret = copy_to_user(owner_p, &owner, sizeof(owner));
213		if (ret)
214			ret = -EFAULT;
215	}
216	return ret;
217}
218
219#ifdef CONFIG_CHECKPOINT_RESTORE
220static int f_getowner_uids(struct file *filp, unsigned long arg)
221{
222	struct user_namespace *user_ns = current_user_ns();
223	uid_t __user *dst = (void __user *)arg;
224	uid_t src[2];
225	int err;
226
227	read_lock(&filp->f_owner.lock);
228	src[0] = from_kuid(user_ns, filp->f_owner.uid);
229	src[1] = from_kuid(user_ns, filp->f_owner.euid);
230	read_unlock(&filp->f_owner.lock);
231
232	err  = put_user(src[0], &dst[0]);
233	err |= put_user(src[1], &dst[1]);
234
235	return err;
236}
237#else
238static int f_getowner_uids(struct file *filp, unsigned long arg)
239{
240	return -EINVAL;
241}
242#endif
243
244static long do_fcntl(int fd, unsigned int cmd, unsigned long arg,
245		struct file *filp)
246{
247	long err = -EINVAL;
248
249	switch (cmd) {
250	case F_DUPFD:
251		err = f_dupfd(arg, filp, 0);
252		break;
253	case F_DUPFD_CLOEXEC:
254		err = f_dupfd(arg, filp, O_CLOEXEC);
 
 
 
 
 
 
255		break;
256	case F_GETFD:
257		err = get_close_on_exec(fd) ? FD_CLOEXEC : 0;
258		break;
259	case F_SETFD:
260		err = 0;
261		set_close_on_exec(fd, arg & FD_CLOEXEC);
262		break;
263	case F_GETFL:
264		err = filp->f_flags;
265		break;
266	case F_SETFL:
267		err = setfl(fd, filp, arg);
268		break;
269#if BITS_PER_LONG != 32
270	/* 32-bit arches must use fcntl64() */
271	case F_OFD_GETLK:
272#endif
273	case F_GETLK:
274		err = fcntl_getlk(filp, cmd, (struct flock __user *) arg);
275		break;
276#if BITS_PER_LONG != 32
277	/* 32-bit arches must use fcntl64() */
278	case F_OFD_SETLK:
279	case F_OFD_SETLKW:
280#endif
281		/* Fallthrough */
282	case F_SETLK:
283	case F_SETLKW:
284		err = fcntl_setlk(fd, filp, cmd, (struct flock __user *) arg);
285		break;
286	case F_GETOWN:
287		/*
288		 * XXX If f_owner is a process group, the
289		 * negative return value will get converted
290		 * into an error.  Oops.  If we keep the
291		 * current syscall conventions, the only way
292		 * to fix this will be in libc.
293		 */
294		err = f_getown(filp);
295		force_successful_syscall_return();
296		break;
297	case F_SETOWN:
298		f_setown(filp, arg, 1);
299		err = 0;
300		break;
301	case F_GETOWN_EX:
302		err = f_getown_ex(filp, arg);
303		break;
304	case F_SETOWN_EX:
305		err = f_setown_ex(filp, arg);
306		break;
307	case F_GETOWNER_UIDS:
308		err = f_getowner_uids(filp, arg);
309		break;
310	case F_GETSIG:
311		err = filp->f_owner.signum;
312		break;
313	case F_SETSIG:
314		/* arg == 0 restores default behaviour. */
315		if (!valid_signal(arg)) {
316			break;
317		}
318		err = 0;
319		filp->f_owner.signum = arg;
320		break;
321	case F_GETLEASE:
322		err = fcntl_getlease(filp);
323		break;
324	case F_SETLEASE:
325		err = fcntl_setlease(fd, filp, arg);
326		break;
327	case F_NOTIFY:
328		err = fcntl_dirnotify(fd, filp, arg);
329		break;
330	case F_SETPIPE_SZ:
331	case F_GETPIPE_SZ:
332		err = pipe_fcntl(filp, cmd, arg);
333		break;
334	case F_ADD_SEALS:
335	case F_GET_SEALS:
336		err = shmem_fcntl(filp, cmd, arg);
337		break;
338	default:
339		break;
340	}
341	return err;
342}
343
344static int check_fcntl_cmd(unsigned cmd)
345{
346	switch (cmd) {
347	case F_DUPFD:
348	case F_DUPFD_CLOEXEC:
349	case F_GETFD:
350	case F_SETFD:
351	case F_GETFL:
352		return 1;
353	}
354	return 0;
355}
356
357SYSCALL_DEFINE3(fcntl, unsigned int, fd, unsigned int, cmd, unsigned long, arg)
358{	
359	struct fd f = fdget_raw(fd);
360	long err = -EBADF;
361
362	if (!f.file)
 
363		goto out;
364
365	if (unlikely(f.file->f_mode & FMODE_PATH)) {
366		if (!check_fcntl_cmd(cmd))
367			goto out1;
 
 
 
 
 
 
 
 
368	}
369
370	err = security_file_fcntl(f.file, cmd, arg);
371	if (!err)
372		err = do_fcntl(fd, cmd, arg, f.file);
373
374out1:
375 	fdput(f);
376out:
377	return err;
378}
379
380#if BITS_PER_LONG == 32
381SYSCALL_DEFINE3(fcntl64, unsigned int, fd, unsigned int, cmd,
382		unsigned long, arg)
383{	
384	struct fd f = fdget_raw(fd);
385	long err = -EBADF;
386
387	if (!f.file)
 
 
388		goto out;
389
390	if (unlikely(f.file->f_mode & FMODE_PATH)) {
391		if (!check_fcntl_cmd(cmd))
392			goto out1;
 
 
393	}
394
395	err = security_file_fcntl(f.file, cmd, arg);
396	if (err)
397		goto out1;
 
 
 
398	
399	switch (cmd) {
400	case F_GETLK64:
401	case F_OFD_GETLK:
402		err = fcntl_getlk64(f.file, cmd, (struct flock64 __user *) arg);
403		break;
404	case F_SETLK64:
405	case F_SETLKW64:
406	case F_OFD_SETLK:
407	case F_OFD_SETLKW:
408		err = fcntl_setlk64(fd, f.file, cmd,
409				(struct flock64 __user *) arg);
410		break;
411	default:
412		err = do_fcntl(fd, cmd, arg, f.file);
413		break;
414	}
415out1:
416	fdput(f);
417out:
418	return err;
419}
420#endif
421
422/* Table to convert sigio signal codes into poll band bitmaps */
423
424static const long band_table[NSIGPOLL] = {
425	POLLIN | POLLRDNORM,			/* POLL_IN */
426	POLLOUT | POLLWRNORM | POLLWRBAND,	/* POLL_OUT */
427	POLLIN | POLLRDNORM | POLLMSG,		/* POLL_MSG */
428	POLLERR,				/* POLL_ERR */
429	POLLPRI | POLLRDBAND,			/* POLL_PRI */
430	POLLHUP | POLLERR			/* POLL_HUP */
431};
432
433static inline int sigio_perm(struct task_struct *p,
434                             struct fown_struct *fown, int sig)
435{
436	const struct cred *cred;
437	int ret;
438
439	rcu_read_lock();
440	cred = __task_cred(p);
441	ret = ((uid_eq(fown->euid, GLOBAL_ROOT_UID) ||
442		uid_eq(fown->euid, cred->suid) || uid_eq(fown->euid, cred->uid) ||
443		uid_eq(fown->uid,  cred->suid) || uid_eq(fown->uid,  cred->uid)) &&
444	       !security_file_send_sigiotask(p, fown, sig));
445	rcu_read_unlock();
446	return ret;
447}
448
449static void send_sigio_to_task(struct task_struct *p,
450			       struct fown_struct *fown,
451			       int fd, int reason, int group)
452{
453	/*
454	 * F_SETSIG can change ->signum lockless in parallel, make
455	 * sure we read it once and use the same value throughout.
456	 */
457	int signum = ACCESS_ONCE(fown->signum);
458
459	if (!sigio_perm(p, fown, signum))
460		return;
461
462	switch (signum) {
463		siginfo_t si;
464		default:
465			/* Queue a rt signal with the appropriate fd as its
466			   value.  We use SI_SIGIO as the source, not 
467			   SI_KERNEL, since kernel signals always get 
468			   delivered even if we can't queue.  Failure to
469			   queue in this case _should_ be reported; we fall
470			   back to SIGIO in that case. --sct */
471			si.si_signo = signum;
472			si.si_errno = 0;
473		        si.si_code  = reason;
474			/* Make sure we are called with one of the POLL_*
475			   reasons, otherwise we could leak kernel stack into
476			   userspace.  */
477			BUG_ON((reason & __SI_MASK) != __SI_POLL);
478			if (reason - POLL_IN >= NSIGPOLL)
479				si.si_band  = ~0L;
480			else
481				si.si_band = band_table[reason - POLL_IN];
482			si.si_fd    = fd;
483			if (!do_send_sig_info(signum, &si, p, group))
484				break;
485		/* fall-through: fall back on the old plain SIGIO signal */
486		case 0:
487			do_send_sig_info(SIGIO, SEND_SIG_PRIV, p, group);
488	}
489}
490
491void send_sigio(struct fown_struct *fown, int fd, int band)
492{
493	struct task_struct *p;
494	enum pid_type type;
495	struct pid *pid;
496	int group = 1;
497	
498	read_lock(&fown->lock);
499
500	type = fown->pid_type;
501	if (type == PIDTYPE_MAX) {
502		group = 0;
503		type = PIDTYPE_PID;
504	}
505
506	pid = fown->pid;
507	if (!pid)
508		goto out_unlock_fown;
509	
510	read_lock(&tasklist_lock);
511	do_each_pid_task(pid, type, p) {
512		send_sigio_to_task(p, fown, fd, band, group);
513	} while_each_pid_task(pid, type, p);
514	read_unlock(&tasklist_lock);
515 out_unlock_fown:
516	read_unlock(&fown->lock);
517}
518
519static void send_sigurg_to_task(struct task_struct *p,
520				struct fown_struct *fown, int group)
521{
522	if (sigio_perm(p, fown, SIGURG))
523		do_send_sig_info(SIGURG, SEND_SIG_PRIV, p, group);
524}
525
526int send_sigurg(struct fown_struct *fown)
527{
528	struct task_struct *p;
529	enum pid_type type;
530	struct pid *pid;
531	int group = 1;
532	int ret = 0;
533	
534	read_lock(&fown->lock);
535
536	type = fown->pid_type;
537	if (type == PIDTYPE_MAX) {
538		group = 0;
539		type = PIDTYPE_PID;
540	}
541
542	pid = fown->pid;
543	if (!pid)
544		goto out_unlock_fown;
545
546	ret = 1;
547	
548	read_lock(&tasklist_lock);
549	do_each_pid_task(pid, type, p) {
550		send_sigurg_to_task(p, fown, group);
551	} while_each_pid_task(pid, type, p);
552	read_unlock(&tasklist_lock);
553 out_unlock_fown:
554	read_unlock(&fown->lock);
555	return ret;
556}
557
558static DEFINE_SPINLOCK(fasync_lock);
559static struct kmem_cache *fasync_cache __read_mostly;
560
561static void fasync_free_rcu(struct rcu_head *head)
562{
563	kmem_cache_free(fasync_cache,
564			container_of(head, struct fasync_struct, fa_rcu));
565}
566
567/*
568 * Remove a fasync entry. If successfully removed, return
569 * positive and clear the FASYNC flag. If no entry exists,
570 * do nothing and return 0.
571 *
572 * NOTE! It is very important that the FASYNC flag always
573 * match the state "is the filp on a fasync list".
574 *
575 */
576int fasync_remove_entry(struct file *filp, struct fasync_struct **fapp)
577{
578	struct fasync_struct *fa, **fp;
579	int result = 0;
580
581	spin_lock(&filp->f_lock);
582	spin_lock(&fasync_lock);
583	for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) {
584		if (fa->fa_file != filp)
585			continue;
586
587		spin_lock_irq(&fa->fa_lock);
588		fa->fa_file = NULL;
589		spin_unlock_irq(&fa->fa_lock);
590
591		*fp = fa->fa_next;
592		call_rcu(&fa->fa_rcu, fasync_free_rcu);
593		filp->f_flags &= ~FASYNC;
594		result = 1;
595		break;
596	}
597	spin_unlock(&fasync_lock);
598	spin_unlock(&filp->f_lock);
599	return result;
600}
601
602struct fasync_struct *fasync_alloc(void)
603{
604	return kmem_cache_alloc(fasync_cache, GFP_KERNEL);
605}
606
607/*
608 * NOTE! This can be used only for unused fasync entries:
609 * entries that actually got inserted on the fasync list
610 * need to be released by rcu - see fasync_remove_entry.
611 */
612void fasync_free(struct fasync_struct *new)
613{
614	kmem_cache_free(fasync_cache, new);
615}
616
617/*
618 * Insert a new entry into the fasync list.  Return the pointer to the
619 * old one if we didn't use the new one.
620 *
621 * NOTE! It is very important that the FASYNC flag always
622 * match the state "is the filp on a fasync list".
623 */
624struct fasync_struct *fasync_insert_entry(int fd, struct file *filp, struct fasync_struct **fapp, struct fasync_struct *new)
625{
626        struct fasync_struct *fa, **fp;
627
628	spin_lock(&filp->f_lock);
629	spin_lock(&fasync_lock);
630	for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) {
631		if (fa->fa_file != filp)
632			continue;
633
634		spin_lock_irq(&fa->fa_lock);
635		fa->fa_fd = fd;
636		spin_unlock_irq(&fa->fa_lock);
637		goto out;
638	}
639
640	spin_lock_init(&new->fa_lock);
641	new->magic = FASYNC_MAGIC;
642	new->fa_file = filp;
643	new->fa_fd = fd;
644	new->fa_next = *fapp;
645	rcu_assign_pointer(*fapp, new);
646	filp->f_flags |= FASYNC;
647
648out:
649	spin_unlock(&fasync_lock);
650	spin_unlock(&filp->f_lock);
651	return fa;
652}
653
654/*
655 * Add a fasync entry. Return negative on error, positive if
656 * added, and zero if did nothing but change an existing one.
657 */
658static int fasync_add_entry(int fd, struct file *filp, struct fasync_struct **fapp)
659{
660	struct fasync_struct *new;
661
662	new = fasync_alloc();
663	if (!new)
664		return -ENOMEM;
665
666	/*
667	 * fasync_insert_entry() returns the old (update) entry if
668	 * it existed.
669	 *
670	 * So free the (unused) new entry and return 0 to let the
671	 * caller know that we didn't add any new fasync entries.
672	 */
673	if (fasync_insert_entry(fd, filp, fapp, new)) {
674		fasync_free(new);
675		return 0;
676	}
677
678	return 1;
679}
680
681/*
682 * fasync_helper() is used by almost all character device drivers
683 * to set up the fasync queue, and for regular files by the file
684 * lease code. It returns negative on error, 0 if it did no changes
685 * and positive if it added/deleted the entry.
686 */
687int fasync_helper(int fd, struct file * filp, int on, struct fasync_struct **fapp)
688{
689	if (!on)
690		return fasync_remove_entry(filp, fapp);
691	return fasync_add_entry(fd, filp, fapp);
692}
693
694EXPORT_SYMBOL(fasync_helper);
695
696/*
697 * rcu_read_lock() is held
698 */
699static void kill_fasync_rcu(struct fasync_struct *fa, int sig, int band)
700{
701	while (fa) {
702		struct fown_struct *fown;
703		unsigned long flags;
704
705		if (fa->magic != FASYNC_MAGIC) {
706			printk(KERN_ERR "kill_fasync: bad magic number in "
707			       "fasync_struct!\n");
708			return;
709		}
710		spin_lock_irqsave(&fa->fa_lock, flags);
711		if (fa->fa_file) {
712			fown = &fa->fa_file->f_owner;
713			/* Don't send SIGURG to processes which have not set a
714			   queued signum: SIGURG has its own default signalling
715			   mechanism. */
716			if (!(sig == SIGURG && fown->signum == 0))
717				send_sigio(fown, fa->fa_fd, band);
718		}
719		spin_unlock_irqrestore(&fa->fa_lock, flags);
720		fa = rcu_dereference(fa->fa_next);
721	}
722}
723
724void kill_fasync(struct fasync_struct **fp, int sig, int band)
725{
726	/* First a quick test without locking: usually
727	 * the list is empty.
728	 */
729	if (*fp) {
730		rcu_read_lock();
731		kill_fasync_rcu(rcu_dereference(*fp), sig, band);
732		rcu_read_unlock();
733	}
734}
735EXPORT_SYMBOL(kill_fasync);
736
737static int __init fcntl_init(void)
738{
739	/*
740	 * Please add new bits here to ensure allocation uniqueness.
741	 * Exceptions: O_NONBLOCK is a two bit define on parisc; O_NDELAY
742	 * is defined as O_NONBLOCK on some platforms and not on others.
743	 */
744	BUILD_BUG_ON(21 - 1 /* for O_RDONLY being 0 */ != HWEIGHT32(
745		O_RDONLY	| O_WRONLY	| O_RDWR	|
746		O_CREAT		| O_EXCL	| O_NOCTTY	|
747		O_TRUNC		| O_APPEND	| /* O_NONBLOCK	| */
748		__O_SYNC	| O_DSYNC	| FASYNC	|
749		O_DIRECT	| O_LARGEFILE	| O_DIRECTORY	|
750		O_NOFOLLOW	| O_NOATIME	| O_CLOEXEC	|
751		__FMODE_EXEC	| O_PATH	| __O_TMPFILE	|
752		__FMODE_NONOTIFY
753		));
754
755	fasync_cache = kmem_cache_create("fasync_cache",
756		sizeof(struct fasync_struct), 0, SLAB_PANIC, NULL);
757	return 0;
758}
759
760module_init(fcntl_init)
v3.1
  1/*
  2 *  linux/fs/fcntl.c
  3 *
  4 *  Copyright (C) 1991, 1992  Linus Torvalds
  5 */
  6
  7#include <linux/syscalls.h>
  8#include <linux/init.h>
  9#include <linux/mm.h>
 10#include <linux/fs.h>
 11#include <linux/file.h>
 12#include <linux/fdtable.h>
 13#include <linux/capability.h>
 14#include <linux/dnotify.h>
 15#include <linux/slab.h>
 16#include <linux/module.h>
 17#include <linux/pipe_fs_i.h>
 18#include <linux/security.h>
 19#include <linux/ptrace.h>
 20#include <linux/signal.h>
 21#include <linux/rcupdate.h>
 22#include <linux/pid_namespace.h>
 
 
 23
 24#include <asm/poll.h>
 25#include <asm/siginfo.h>
 26#include <asm/uaccess.h>
 27
 28void set_close_on_exec(unsigned int fd, int flag)
 29{
 30	struct files_struct *files = current->files;
 31	struct fdtable *fdt;
 32	spin_lock(&files->file_lock);
 33	fdt = files_fdtable(files);
 34	if (flag)
 35		FD_SET(fd, fdt->close_on_exec);
 36	else
 37		FD_CLR(fd, fdt->close_on_exec);
 38	spin_unlock(&files->file_lock);
 39}
 40
 41static int get_close_on_exec(unsigned int fd)
 42{
 43	struct files_struct *files = current->files;
 44	struct fdtable *fdt;
 45	int res;
 46	rcu_read_lock();
 47	fdt = files_fdtable(files);
 48	res = FD_ISSET(fd, fdt->close_on_exec);
 49	rcu_read_unlock();
 50	return res;
 51}
 52
 53SYSCALL_DEFINE3(dup3, unsigned int, oldfd, unsigned int, newfd, int, flags)
 54{
 55	int err = -EBADF;
 56	struct file * file, *tofree;
 57	struct files_struct * files = current->files;
 58	struct fdtable *fdt;
 59
 60	if ((flags & ~O_CLOEXEC) != 0)
 61		return -EINVAL;
 62
 63	if (unlikely(oldfd == newfd))
 64		return -EINVAL;
 65
 66	spin_lock(&files->file_lock);
 67	err = expand_files(files, newfd);
 68	file = fcheck(oldfd);
 69	if (unlikely(!file))
 70		goto Ebadf;
 71	if (unlikely(err < 0)) {
 72		if (err == -EMFILE)
 73			goto Ebadf;
 74		goto out_unlock;
 75	}
 76	/*
 77	 * We need to detect attempts to do dup2() over allocated but still
 78	 * not finished descriptor.  NB: OpenBSD avoids that at the price of
 79	 * extra work in their equivalent of fget() - they insert struct
 80	 * file immediately after grabbing descriptor, mark it larval if
 81	 * more work (e.g. actual opening) is needed and make sure that
 82	 * fget() treats larval files as absent.  Potentially interesting,
 83	 * but while extra work in fget() is trivial, locking implications
 84	 * and amount of surgery on open()-related paths in VFS are not.
 85	 * FreeBSD fails with -EBADF in the same situation, NetBSD "solution"
 86	 * deadlocks in rather amusing ways, AFAICS.  All of that is out of
 87	 * scope of POSIX or SUS, since neither considers shared descriptor
 88	 * tables and this condition does not arise without those.
 89	 */
 90	err = -EBUSY;
 91	fdt = files_fdtable(files);
 92	tofree = fdt->fd[newfd];
 93	if (!tofree && FD_ISSET(newfd, fdt->open_fds))
 94		goto out_unlock;
 95	get_file(file);
 96	rcu_assign_pointer(fdt->fd[newfd], file);
 97	FD_SET(newfd, fdt->open_fds);
 98	if (flags & O_CLOEXEC)
 99		FD_SET(newfd, fdt->close_on_exec);
100	else
101		FD_CLR(newfd, fdt->close_on_exec);
102	spin_unlock(&files->file_lock);
103
104	if (tofree)
105		filp_close(tofree, files);
106
107	return newfd;
108
109Ebadf:
110	err = -EBADF;
111out_unlock:
112	spin_unlock(&files->file_lock);
113	return err;
114}
115
116SYSCALL_DEFINE2(dup2, unsigned int, oldfd, unsigned int, newfd)
117{
118	if (unlikely(newfd == oldfd)) { /* corner case */
119		struct files_struct *files = current->files;
120		int retval = oldfd;
121
122		rcu_read_lock();
123		if (!fcheck_files(files, oldfd))
124			retval = -EBADF;
125		rcu_read_unlock();
126		return retval;
127	}
128	return sys_dup3(oldfd, newfd, 0);
129}
130
131SYSCALL_DEFINE1(dup, unsigned int, fildes)
132{
133	int ret = -EBADF;
134	struct file *file = fget_raw(fildes);
135
136	if (file) {
137		ret = get_unused_fd();
138		if (ret >= 0)
139			fd_install(ret, file);
140		else
141			fput(file);
142	}
143	return ret;
144}
145
146#define SETFL_MASK (O_APPEND | O_NONBLOCK | O_NDELAY | O_DIRECT | O_NOATIME)
147
148static int setfl(int fd, struct file * filp, unsigned long arg)
149{
150	struct inode * inode = filp->f_path.dentry->d_inode;
151	int error = 0;
152
153	/*
154	 * O_APPEND cannot be cleared if the file is marked as append-only
155	 * and the file is open for write.
156	 */
157	if (((arg ^ filp->f_flags) & O_APPEND) && IS_APPEND(inode))
158		return -EPERM;
159
160	/* O_NOATIME can only be set by the owner or superuser */
161	if ((arg & O_NOATIME) && !(filp->f_flags & O_NOATIME))
162		if (!inode_owner_or_capable(inode))
163			return -EPERM;
164
165	/* required for strict SunOS emulation */
166	if (O_NONBLOCK != O_NDELAY)
167	       if (arg & O_NDELAY)
168		   arg |= O_NONBLOCK;
169
170	if (arg & O_DIRECT) {
 
171		if (!filp->f_mapping || !filp->f_mapping->a_ops ||
172			!filp->f_mapping->a_ops->direct_IO)
173				return -EINVAL;
174	}
175
176	if (filp->f_op && filp->f_op->check_flags)
177		error = filp->f_op->check_flags(arg);
178	if (error)
179		return error;
180
181	/*
182	 * ->fasync() is responsible for setting the FASYNC bit.
183	 */
184	if (((arg ^ filp->f_flags) & FASYNC) && filp->f_op &&
185			filp->f_op->fasync) {
186		error = filp->f_op->fasync(fd, filp, (arg & FASYNC) != 0);
187		if (error < 0)
188			goto out;
189		if (error > 0)
190			error = 0;
191	}
192	spin_lock(&filp->f_lock);
193	filp->f_flags = (arg & SETFL_MASK) | (filp->f_flags & ~SETFL_MASK);
194	spin_unlock(&filp->f_lock);
195
196 out:
197	return error;
198}
199
200static void f_modown(struct file *filp, struct pid *pid, enum pid_type type,
201                     int force)
202{
203	write_lock_irq(&filp->f_owner.lock);
204	if (force || !filp->f_owner.pid) {
205		put_pid(filp->f_owner.pid);
206		filp->f_owner.pid = get_pid(pid);
207		filp->f_owner.pid_type = type;
208
209		if (pid) {
210			const struct cred *cred = current_cred();
211			filp->f_owner.uid = cred->uid;
212			filp->f_owner.euid = cred->euid;
213		}
214	}
215	write_unlock_irq(&filp->f_owner.lock);
216}
217
218int __f_setown(struct file *filp, struct pid *pid, enum pid_type type,
219		int force)
220{
221	int err;
222
223	err = security_file_set_fowner(filp);
224	if (err)
225		return err;
226
227	f_modown(filp, pid, type, force);
228	return 0;
229}
230EXPORT_SYMBOL(__f_setown);
231
232int f_setown(struct file *filp, unsigned long arg, int force)
233{
234	enum pid_type type;
235	struct pid *pid;
236	int who = arg;
237	int result;
238	type = PIDTYPE_PID;
239	if (who < 0) {
240		type = PIDTYPE_PGID;
241		who = -who;
242	}
243	rcu_read_lock();
244	pid = find_vpid(who);
245	result = __f_setown(filp, pid, type, force);
246	rcu_read_unlock();
247	return result;
248}
249EXPORT_SYMBOL(f_setown);
250
251void f_delown(struct file *filp)
252{
253	f_modown(filp, NULL, PIDTYPE_PID, 1);
254}
255
256pid_t f_getown(struct file *filp)
257{
258	pid_t pid;
259	read_lock(&filp->f_owner.lock);
260	pid = pid_vnr(filp->f_owner.pid);
261	if (filp->f_owner.pid_type == PIDTYPE_PGID)
262		pid = -pid;
263	read_unlock(&filp->f_owner.lock);
264	return pid;
265}
266
267static int f_setown_ex(struct file *filp, unsigned long arg)
268{
269	struct f_owner_ex * __user owner_p = (void * __user)arg;
270	struct f_owner_ex owner;
271	struct pid *pid;
272	int type;
273	int ret;
274
275	ret = copy_from_user(&owner, owner_p, sizeof(owner));
276	if (ret)
277		return -EFAULT;
278
279	switch (owner.type) {
280	case F_OWNER_TID:
281		type = PIDTYPE_MAX;
282		break;
283
284	case F_OWNER_PID:
285		type = PIDTYPE_PID;
286		break;
287
288	case F_OWNER_PGRP:
289		type = PIDTYPE_PGID;
290		break;
291
292	default:
293		return -EINVAL;
294	}
295
296	rcu_read_lock();
297	pid = find_vpid(owner.pid);
298	if (owner.pid && !pid)
299		ret = -ESRCH;
300	else
301		ret = __f_setown(filp, pid, type, 1);
302	rcu_read_unlock();
303
304	return ret;
305}
306
307static int f_getown_ex(struct file *filp, unsigned long arg)
308{
309	struct f_owner_ex * __user owner_p = (void * __user)arg;
310	struct f_owner_ex owner;
311	int ret = 0;
312
313	read_lock(&filp->f_owner.lock);
314	owner.pid = pid_vnr(filp->f_owner.pid);
315	switch (filp->f_owner.pid_type) {
316	case PIDTYPE_MAX:
317		owner.type = F_OWNER_TID;
318		break;
319
320	case PIDTYPE_PID:
321		owner.type = F_OWNER_PID;
322		break;
323
324	case PIDTYPE_PGID:
325		owner.type = F_OWNER_PGRP;
326		break;
327
328	default:
329		WARN_ON(1);
330		ret = -EINVAL;
331		break;
332	}
333	read_unlock(&filp->f_owner.lock);
334
335	if (!ret) {
336		ret = copy_to_user(owner_p, &owner, sizeof(owner));
337		if (ret)
338			ret = -EFAULT;
339	}
340	return ret;
341}
342
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
343static long do_fcntl(int fd, unsigned int cmd, unsigned long arg,
344		struct file *filp)
345{
346	long err = -EINVAL;
347
348	switch (cmd) {
349	case F_DUPFD:
 
 
350	case F_DUPFD_CLOEXEC:
351		if (arg >= rlimit(RLIMIT_NOFILE))
352			break;
353		err = alloc_fd(arg, cmd == F_DUPFD_CLOEXEC ? O_CLOEXEC : 0);
354		if (err >= 0) {
355			get_file(filp);
356			fd_install(err, filp);
357		}
358		break;
359	case F_GETFD:
360		err = get_close_on_exec(fd) ? FD_CLOEXEC : 0;
361		break;
362	case F_SETFD:
363		err = 0;
364		set_close_on_exec(fd, arg & FD_CLOEXEC);
365		break;
366	case F_GETFL:
367		err = filp->f_flags;
368		break;
369	case F_SETFL:
370		err = setfl(fd, filp, arg);
371		break;
 
 
 
 
372	case F_GETLK:
373		err = fcntl_getlk(filp, (struct flock __user *) arg);
374		break;
 
 
 
 
 
 
375	case F_SETLK:
376	case F_SETLKW:
377		err = fcntl_setlk(fd, filp, cmd, (struct flock __user *) arg);
378		break;
379	case F_GETOWN:
380		/*
381		 * XXX If f_owner is a process group, the
382		 * negative return value will get converted
383		 * into an error.  Oops.  If we keep the
384		 * current syscall conventions, the only way
385		 * to fix this will be in libc.
386		 */
387		err = f_getown(filp);
388		force_successful_syscall_return();
389		break;
390	case F_SETOWN:
391		err = f_setown(filp, arg, 1);
 
392		break;
393	case F_GETOWN_EX:
394		err = f_getown_ex(filp, arg);
395		break;
396	case F_SETOWN_EX:
397		err = f_setown_ex(filp, arg);
398		break;
 
 
 
399	case F_GETSIG:
400		err = filp->f_owner.signum;
401		break;
402	case F_SETSIG:
403		/* arg == 0 restores default behaviour. */
404		if (!valid_signal(arg)) {
405			break;
406		}
407		err = 0;
408		filp->f_owner.signum = arg;
409		break;
410	case F_GETLEASE:
411		err = fcntl_getlease(filp);
412		break;
413	case F_SETLEASE:
414		err = fcntl_setlease(fd, filp, arg);
415		break;
416	case F_NOTIFY:
417		err = fcntl_dirnotify(fd, filp, arg);
418		break;
419	case F_SETPIPE_SZ:
420	case F_GETPIPE_SZ:
421		err = pipe_fcntl(filp, cmd, arg);
422		break;
 
 
 
 
423	default:
424		break;
425	}
426	return err;
427}
428
429static int check_fcntl_cmd(unsigned cmd)
430{
431	switch (cmd) {
432	case F_DUPFD:
433	case F_DUPFD_CLOEXEC:
434	case F_GETFD:
435	case F_SETFD:
436	case F_GETFL:
437		return 1;
438	}
439	return 0;
440}
441
442SYSCALL_DEFINE3(fcntl, unsigned int, fd, unsigned int, cmd, unsigned long, arg)
443{	
444	struct file *filp;
445	long err = -EBADF;
446
447	filp = fget_raw(fd);
448	if (!filp)
449		goto out;
450
451	if (unlikely(filp->f_mode & FMODE_PATH)) {
452		if (!check_fcntl_cmd(cmd)) {
453			fput(filp);
454			goto out;
455		}
456	}
457
458	err = security_file_fcntl(filp, cmd, arg);
459	if (err) {
460		fput(filp);
461		return err;
462	}
463
464	err = do_fcntl(fd, cmd, arg, filp);
 
 
465
466 	fput(filp);
 
467out:
468	return err;
469}
470
471#if BITS_PER_LONG == 32
472SYSCALL_DEFINE3(fcntl64, unsigned int, fd, unsigned int, cmd,
473		unsigned long, arg)
474{	
475	struct file * filp;
476	long err;
477
478	err = -EBADF;
479	filp = fget_raw(fd);
480	if (!filp)
481		goto out;
482
483	if (unlikely(filp->f_mode & FMODE_PATH)) {
484		if (!check_fcntl_cmd(cmd)) {
485			fput(filp);
486			goto out;
487		}
488	}
489
490	err = security_file_fcntl(filp, cmd, arg);
491	if (err) {
492		fput(filp);
493		return err;
494	}
495	err = -EBADF;
496	
497	switch (cmd) {
498		case F_GETLK64:
499			err = fcntl_getlk64(filp, (struct flock64 __user *) arg);
500			break;
501		case F_SETLK64:
502		case F_SETLKW64:
503			err = fcntl_setlk64(fd, filp, cmd,
504					(struct flock64 __user *) arg);
505			break;
506		default:
507			err = do_fcntl(fd, cmd, arg, filp);
508			break;
 
 
 
509	}
510	fput(filp);
 
511out:
512	return err;
513}
514#endif
515
516/* Table to convert sigio signal codes into poll band bitmaps */
517
518static const long band_table[NSIGPOLL] = {
519	POLLIN | POLLRDNORM,			/* POLL_IN */
520	POLLOUT | POLLWRNORM | POLLWRBAND,	/* POLL_OUT */
521	POLLIN | POLLRDNORM | POLLMSG,		/* POLL_MSG */
522	POLLERR,				/* POLL_ERR */
523	POLLPRI | POLLRDBAND,			/* POLL_PRI */
524	POLLHUP | POLLERR			/* POLL_HUP */
525};
526
527static inline int sigio_perm(struct task_struct *p,
528                             struct fown_struct *fown, int sig)
529{
530	const struct cred *cred;
531	int ret;
532
533	rcu_read_lock();
534	cred = __task_cred(p);
535	ret = ((fown->euid == 0 ||
536		fown->euid == cred->suid || fown->euid == cred->uid ||
537		fown->uid  == cred->suid || fown->uid  == cred->uid) &&
538	       !security_file_send_sigiotask(p, fown, sig));
539	rcu_read_unlock();
540	return ret;
541}
542
543static void send_sigio_to_task(struct task_struct *p,
544			       struct fown_struct *fown,
545			       int fd, int reason, int group)
546{
547	/*
548	 * F_SETSIG can change ->signum lockless in parallel, make
549	 * sure we read it once and use the same value throughout.
550	 */
551	int signum = ACCESS_ONCE(fown->signum);
552
553	if (!sigio_perm(p, fown, signum))
554		return;
555
556	switch (signum) {
557		siginfo_t si;
558		default:
559			/* Queue a rt signal with the appropriate fd as its
560			   value.  We use SI_SIGIO as the source, not 
561			   SI_KERNEL, since kernel signals always get 
562			   delivered even if we can't queue.  Failure to
563			   queue in this case _should_ be reported; we fall
564			   back to SIGIO in that case. --sct */
565			si.si_signo = signum;
566			si.si_errno = 0;
567		        si.si_code  = reason;
568			/* Make sure we are called with one of the POLL_*
569			   reasons, otherwise we could leak kernel stack into
570			   userspace.  */
571			BUG_ON((reason & __SI_MASK) != __SI_POLL);
572			if (reason - POLL_IN >= NSIGPOLL)
573				si.si_band  = ~0L;
574			else
575				si.si_band = band_table[reason - POLL_IN];
576			si.si_fd    = fd;
577			if (!do_send_sig_info(signum, &si, p, group))
578				break;
579		/* fall-through: fall back on the old plain SIGIO signal */
580		case 0:
581			do_send_sig_info(SIGIO, SEND_SIG_PRIV, p, group);
582	}
583}
584
585void send_sigio(struct fown_struct *fown, int fd, int band)
586{
587	struct task_struct *p;
588	enum pid_type type;
589	struct pid *pid;
590	int group = 1;
591	
592	read_lock(&fown->lock);
593
594	type = fown->pid_type;
595	if (type == PIDTYPE_MAX) {
596		group = 0;
597		type = PIDTYPE_PID;
598	}
599
600	pid = fown->pid;
601	if (!pid)
602		goto out_unlock_fown;
603	
604	read_lock(&tasklist_lock);
605	do_each_pid_task(pid, type, p) {
606		send_sigio_to_task(p, fown, fd, band, group);
607	} while_each_pid_task(pid, type, p);
608	read_unlock(&tasklist_lock);
609 out_unlock_fown:
610	read_unlock(&fown->lock);
611}
612
613static void send_sigurg_to_task(struct task_struct *p,
614				struct fown_struct *fown, int group)
615{
616	if (sigio_perm(p, fown, SIGURG))
617		do_send_sig_info(SIGURG, SEND_SIG_PRIV, p, group);
618}
619
620int send_sigurg(struct fown_struct *fown)
621{
622	struct task_struct *p;
623	enum pid_type type;
624	struct pid *pid;
625	int group = 1;
626	int ret = 0;
627	
628	read_lock(&fown->lock);
629
630	type = fown->pid_type;
631	if (type == PIDTYPE_MAX) {
632		group = 0;
633		type = PIDTYPE_PID;
634	}
635
636	pid = fown->pid;
637	if (!pid)
638		goto out_unlock_fown;
639
640	ret = 1;
641	
642	read_lock(&tasklist_lock);
643	do_each_pid_task(pid, type, p) {
644		send_sigurg_to_task(p, fown, group);
645	} while_each_pid_task(pid, type, p);
646	read_unlock(&tasklist_lock);
647 out_unlock_fown:
648	read_unlock(&fown->lock);
649	return ret;
650}
651
652static DEFINE_SPINLOCK(fasync_lock);
653static struct kmem_cache *fasync_cache __read_mostly;
654
655static void fasync_free_rcu(struct rcu_head *head)
656{
657	kmem_cache_free(fasync_cache,
658			container_of(head, struct fasync_struct, fa_rcu));
659}
660
661/*
662 * Remove a fasync entry. If successfully removed, return
663 * positive and clear the FASYNC flag. If no entry exists,
664 * do nothing and return 0.
665 *
666 * NOTE! It is very important that the FASYNC flag always
667 * match the state "is the filp on a fasync list".
668 *
669 */
670int fasync_remove_entry(struct file *filp, struct fasync_struct **fapp)
671{
672	struct fasync_struct *fa, **fp;
673	int result = 0;
674
675	spin_lock(&filp->f_lock);
676	spin_lock(&fasync_lock);
677	for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) {
678		if (fa->fa_file != filp)
679			continue;
680
681		spin_lock_irq(&fa->fa_lock);
682		fa->fa_file = NULL;
683		spin_unlock_irq(&fa->fa_lock);
684
685		*fp = fa->fa_next;
686		call_rcu(&fa->fa_rcu, fasync_free_rcu);
687		filp->f_flags &= ~FASYNC;
688		result = 1;
689		break;
690	}
691	spin_unlock(&fasync_lock);
692	spin_unlock(&filp->f_lock);
693	return result;
694}
695
696struct fasync_struct *fasync_alloc(void)
697{
698	return kmem_cache_alloc(fasync_cache, GFP_KERNEL);
699}
700
701/*
702 * NOTE! This can be used only for unused fasync entries:
703 * entries that actually got inserted on the fasync list
704 * need to be released by rcu - see fasync_remove_entry.
705 */
706void fasync_free(struct fasync_struct *new)
707{
708	kmem_cache_free(fasync_cache, new);
709}
710
711/*
712 * Insert a new entry into the fasync list.  Return the pointer to the
713 * old one if we didn't use the new one.
714 *
715 * NOTE! It is very important that the FASYNC flag always
716 * match the state "is the filp on a fasync list".
717 */
718struct fasync_struct *fasync_insert_entry(int fd, struct file *filp, struct fasync_struct **fapp, struct fasync_struct *new)
719{
720        struct fasync_struct *fa, **fp;
721
722	spin_lock(&filp->f_lock);
723	spin_lock(&fasync_lock);
724	for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) {
725		if (fa->fa_file != filp)
726			continue;
727
728		spin_lock_irq(&fa->fa_lock);
729		fa->fa_fd = fd;
730		spin_unlock_irq(&fa->fa_lock);
731		goto out;
732	}
733
734	spin_lock_init(&new->fa_lock);
735	new->magic = FASYNC_MAGIC;
736	new->fa_file = filp;
737	new->fa_fd = fd;
738	new->fa_next = *fapp;
739	rcu_assign_pointer(*fapp, new);
740	filp->f_flags |= FASYNC;
741
742out:
743	spin_unlock(&fasync_lock);
744	spin_unlock(&filp->f_lock);
745	return fa;
746}
747
748/*
749 * Add a fasync entry. Return negative on error, positive if
750 * added, and zero if did nothing but change an existing one.
751 */
752static int fasync_add_entry(int fd, struct file *filp, struct fasync_struct **fapp)
753{
754	struct fasync_struct *new;
755
756	new = fasync_alloc();
757	if (!new)
758		return -ENOMEM;
759
760	/*
761	 * fasync_insert_entry() returns the old (update) entry if
762	 * it existed.
763	 *
764	 * So free the (unused) new entry and return 0 to let the
765	 * caller know that we didn't add any new fasync entries.
766	 */
767	if (fasync_insert_entry(fd, filp, fapp, new)) {
768		fasync_free(new);
769		return 0;
770	}
771
772	return 1;
773}
774
775/*
776 * fasync_helper() is used by almost all character device drivers
777 * to set up the fasync queue, and for regular files by the file
778 * lease code. It returns negative on error, 0 if it did no changes
779 * and positive if it added/deleted the entry.
780 */
781int fasync_helper(int fd, struct file * filp, int on, struct fasync_struct **fapp)
782{
783	if (!on)
784		return fasync_remove_entry(filp, fapp);
785	return fasync_add_entry(fd, filp, fapp);
786}
787
788EXPORT_SYMBOL(fasync_helper);
789
790/*
791 * rcu_read_lock() is held
792 */
793static void kill_fasync_rcu(struct fasync_struct *fa, int sig, int band)
794{
795	while (fa) {
796		struct fown_struct *fown;
797		unsigned long flags;
798
799		if (fa->magic != FASYNC_MAGIC) {
800			printk(KERN_ERR "kill_fasync: bad magic number in "
801			       "fasync_struct!\n");
802			return;
803		}
804		spin_lock_irqsave(&fa->fa_lock, flags);
805		if (fa->fa_file) {
806			fown = &fa->fa_file->f_owner;
807			/* Don't send SIGURG to processes which have not set a
808			   queued signum: SIGURG has its own default signalling
809			   mechanism. */
810			if (!(sig == SIGURG && fown->signum == 0))
811				send_sigio(fown, fa->fa_fd, band);
812		}
813		spin_unlock_irqrestore(&fa->fa_lock, flags);
814		fa = rcu_dereference(fa->fa_next);
815	}
816}
817
818void kill_fasync(struct fasync_struct **fp, int sig, int band)
819{
820	/* First a quick test without locking: usually
821	 * the list is empty.
822	 */
823	if (*fp) {
824		rcu_read_lock();
825		kill_fasync_rcu(rcu_dereference(*fp), sig, band);
826		rcu_read_unlock();
827	}
828}
829EXPORT_SYMBOL(kill_fasync);
830
831static int __init fcntl_init(void)
832{
833	/*
834	 * Please add new bits here to ensure allocation uniqueness.
835	 * Exceptions: O_NONBLOCK is a two bit define on parisc; O_NDELAY
836	 * is defined as O_NONBLOCK on some platforms and not on others.
837	 */
838	BUILD_BUG_ON(19 - 1 /* for O_RDONLY being 0 */ != HWEIGHT32(
839		O_RDONLY	| O_WRONLY	| O_RDWR	|
840		O_CREAT		| O_EXCL	| O_NOCTTY	|
841		O_TRUNC		| O_APPEND	| /* O_NONBLOCK	| */
842		__O_SYNC	| O_DSYNC	| FASYNC	|
843		O_DIRECT	| O_LARGEFILE	| O_DIRECTORY	|
844		O_NOFOLLOW	| O_NOATIME	| O_CLOEXEC	|
845		__FMODE_EXEC	| O_PATH
 
846		));
847
848	fasync_cache = kmem_cache_create("fasync_cache",
849		sizeof(struct fasync_struct), 0, SLAB_PANIC, NULL);
850	return 0;
851}
852
853module_init(fcntl_init)