Loading...
1/*
2 * linux/fs/buffer.c
3 *
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
6
7/*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9 *
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12 *
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
15 *
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17 *
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19 */
20
21#include <linux/kernel.h>
22#include <linux/syscalls.h>
23#include <linux/fs.h>
24#include <linux/mm.h>
25#include <linux/percpu.h>
26#include <linux/slab.h>
27#include <linux/capability.h>
28#include <linux/blkdev.h>
29#include <linux/file.h>
30#include <linux/quotaops.h>
31#include <linux/highmem.h>
32#include <linux/export.h>
33#include <linux/backing-dev.h>
34#include <linux/writeback.h>
35#include <linux/hash.h>
36#include <linux/suspend.h>
37#include <linux/buffer_head.h>
38#include <linux/task_io_accounting_ops.h>
39#include <linux/bio.h>
40#include <linux/notifier.h>
41#include <linux/cpu.h>
42#include <linux/bitops.h>
43#include <linux/mpage.h>
44#include <linux/bit_spinlock.h>
45#include <trace/events/block.h>
46
47static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
48static int submit_bh_wbc(int rw, struct buffer_head *bh,
49 unsigned long bio_flags,
50 struct writeback_control *wbc);
51
52#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
53
54void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
55{
56 bh->b_end_io = handler;
57 bh->b_private = private;
58}
59EXPORT_SYMBOL(init_buffer);
60
61inline void touch_buffer(struct buffer_head *bh)
62{
63 trace_block_touch_buffer(bh);
64 mark_page_accessed(bh->b_page);
65}
66EXPORT_SYMBOL(touch_buffer);
67
68void __lock_buffer(struct buffer_head *bh)
69{
70 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
71}
72EXPORT_SYMBOL(__lock_buffer);
73
74void unlock_buffer(struct buffer_head *bh)
75{
76 clear_bit_unlock(BH_Lock, &bh->b_state);
77 smp_mb__after_atomic();
78 wake_up_bit(&bh->b_state, BH_Lock);
79}
80EXPORT_SYMBOL(unlock_buffer);
81
82/*
83 * Returns if the page has dirty or writeback buffers. If all the buffers
84 * are unlocked and clean then the PageDirty information is stale. If
85 * any of the pages are locked, it is assumed they are locked for IO.
86 */
87void buffer_check_dirty_writeback(struct page *page,
88 bool *dirty, bool *writeback)
89{
90 struct buffer_head *head, *bh;
91 *dirty = false;
92 *writeback = false;
93
94 BUG_ON(!PageLocked(page));
95
96 if (!page_has_buffers(page))
97 return;
98
99 if (PageWriteback(page))
100 *writeback = true;
101
102 head = page_buffers(page);
103 bh = head;
104 do {
105 if (buffer_locked(bh))
106 *writeback = true;
107
108 if (buffer_dirty(bh))
109 *dirty = true;
110
111 bh = bh->b_this_page;
112 } while (bh != head);
113}
114EXPORT_SYMBOL(buffer_check_dirty_writeback);
115
116/*
117 * Block until a buffer comes unlocked. This doesn't stop it
118 * from becoming locked again - you have to lock it yourself
119 * if you want to preserve its state.
120 */
121void __wait_on_buffer(struct buffer_head * bh)
122{
123 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
124}
125EXPORT_SYMBOL(__wait_on_buffer);
126
127static void
128__clear_page_buffers(struct page *page)
129{
130 ClearPagePrivate(page);
131 set_page_private(page, 0);
132 put_page(page);
133}
134
135static void buffer_io_error(struct buffer_head *bh, char *msg)
136{
137 if (!test_bit(BH_Quiet, &bh->b_state))
138 printk_ratelimited(KERN_ERR
139 "Buffer I/O error on dev %pg, logical block %llu%s\n",
140 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
141}
142
143/*
144 * End-of-IO handler helper function which does not touch the bh after
145 * unlocking it.
146 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
147 * a race there is benign: unlock_buffer() only use the bh's address for
148 * hashing after unlocking the buffer, so it doesn't actually touch the bh
149 * itself.
150 */
151static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
152{
153 if (uptodate) {
154 set_buffer_uptodate(bh);
155 } else {
156 /* This happens, due to failed READA attempts. */
157 clear_buffer_uptodate(bh);
158 }
159 unlock_buffer(bh);
160}
161
162/*
163 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
164 * unlock the buffer. This is what ll_rw_block uses too.
165 */
166void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
167{
168 __end_buffer_read_notouch(bh, uptodate);
169 put_bh(bh);
170}
171EXPORT_SYMBOL(end_buffer_read_sync);
172
173void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
174{
175 if (uptodate) {
176 set_buffer_uptodate(bh);
177 } else {
178 buffer_io_error(bh, ", lost sync page write");
179 set_buffer_write_io_error(bh);
180 clear_buffer_uptodate(bh);
181 }
182 unlock_buffer(bh);
183 put_bh(bh);
184}
185EXPORT_SYMBOL(end_buffer_write_sync);
186
187/*
188 * Various filesystems appear to want __find_get_block to be non-blocking.
189 * But it's the page lock which protects the buffers. To get around this,
190 * we get exclusion from try_to_free_buffers with the blockdev mapping's
191 * private_lock.
192 *
193 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
194 * may be quite high. This code could TryLock the page, and if that
195 * succeeds, there is no need to take private_lock. (But if
196 * private_lock is contended then so is mapping->tree_lock).
197 */
198static struct buffer_head *
199__find_get_block_slow(struct block_device *bdev, sector_t block)
200{
201 struct inode *bd_inode = bdev->bd_inode;
202 struct address_space *bd_mapping = bd_inode->i_mapping;
203 struct buffer_head *ret = NULL;
204 pgoff_t index;
205 struct buffer_head *bh;
206 struct buffer_head *head;
207 struct page *page;
208 int all_mapped = 1;
209
210 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
211 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
212 if (!page)
213 goto out;
214
215 spin_lock(&bd_mapping->private_lock);
216 if (!page_has_buffers(page))
217 goto out_unlock;
218 head = page_buffers(page);
219 bh = head;
220 do {
221 if (!buffer_mapped(bh))
222 all_mapped = 0;
223 else if (bh->b_blocknr == block) {
224 ret = bh;
225 get_bh(bh);
226 goto out_unlock;
227 }
228 bh = bh->b_this_page;
229 } while (bh != head);
230
231 /* we might be here because some of the buffers on this page are
232 * not mapped. This is due to various races between
233 * file io on the block device and getblk. It gets dealt with
234 * elsewhere, don't buffer_error if we had some unmapped buffers
235 */
236 if (all_mapped) {
237 printk("__find_get_block_slow() failed. "
238 "block=%llu, b_blocknr=%llu\n",
239 (unsigned long long)block,
240 (unsigned long long)bh->b_blocknr);
241 printk("b_state=0x%08lx, b_size=%zu\n",
242 bh->b_state, bh->b_size);
243 printk("device %pg blocksize: %d\n", bdev,
244 1 << bd_inode->i_blkbits);
245 }
246out_unlock:
247 spin_unlock(&bd_mapping->private_lock);
248 put_page(page);
249out:
250 return ret;
251}
252
253/*
254 * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
255 */
256static void free_more_memory(void)
257{
258 struct zone *zone;
259 int nid;
260
261 wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
262 yield();
263
264 for_each_online_node(nid) {
265 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
266 gfp_zone(GFP_NOFS), NULL,
267 &zone);
268 if (zone)
269 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
270 GFP_NOFS, NULL);
271 }
272}
273
274/*
275 * I/O completion handler for block_read_full_page() - pages
276 * which come unlocked at the end of I/O.
277 */
278static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
279{
280 unsigned long flags;
281 struct buffer_head *first;
282 struct buffer_head *tmp;
283 struct page *page;
284 int page_uptodate = 1;
285
286 BUG_ON(!buffer_async_read(bh));
287
288 page = bh->b_page;
289 if (uptodate) {
290 set_buffer_uptodate(bh);
291 } else {
292 clear_buffer_uptodate(bh);
293 buffer_io_error(bh, ", async page read");
294 SetPageError(page);
295 }
296
297 /*
298 * Be _very_ careful from here on. Bad things can happen if
299 * two buffer heads end IO at almost the same time and both
300 * decide that the page is now completely done.
301 */
302 first = page_buffers(page);
303 local_irq_save(flags);
304 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
305 clear_buffer_async_read(bh);
306 unlock_buffer(bh);
307 tmp = bh;
308 do {
309 if (!buffer_uptodate(tmp))
310 page_uptodate = 0;
311 if (buffer_async_read(tmp)) {
312 BUG_ON(!buffer_locked(tmp));
313 goto still_busy;
314 }
315 tmp = tmp->b_this_page;
316 } while (tmp != bh);
317 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
318 local_irq_restore(flags);
319
320 /*
321 * If none of the buffers had errors and they are all
322 * uptodate then we can set the page uptodate.
323 */
324 if (page_uptodate && !PageError(page))
325 SetPageUptodate(page);
326 unlock_page(page);
327 return;
328
329still_busy:
330 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
331 local_irq_restore(flags);
332 return;
333}
334
335/*
336 * Completion handler for block_write_full_page() - pages which are unlocked
337 * during I/O, and which have PageWriteback cleared upon I/O completion.
338 */
339void end_buffer_async_write(struct buffer_head *bh, int uptodate)
340{
341 unsigned long flags;
342 struct buffer_head *first;
343 struct buffer_head *tmp;
344 struct page *page;
345
346 BUG_ON(!buffer_async_write(bh));
347
348 page = bh->b_page;
349 if (uptodate) {
350 set_buffer_uptodate(bh);
351 } else {
352 buffer_io_error(bh, ", lost async page write");
353 set_bit(AS_EIO, &page->mapping->flags);
354 set_buffer_write_io_error(bh);
355 clear_buffer_uptodate(bh);
356 SetPageError(page);
357 }
358
359 first = page_buffers(page);
360 local_irq_save(flags);
361 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
362
363 clear_buffer_async_write(bh);
364 unlock_buffer(bh);
365 tmp = bh->b_this_page;
366 while (tmp != bh) {
367 if (buffer_async_write(tmp)) {
368 BUG_ON(!buffer_locked(tmp));
369 goto still_busy;
370 }
371 tmp = tmp->b_this_page;
372 }
373 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
374 local_irq_restore(flags);
375 end_page_writeback(page);
376 return;
377
378still_busy:
379 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
380 local_irq_restore(flags);
381 return;
382}
383EXPORT_SYMBOL(end_buffer_async_write);
384
385/*
386 * If a page's buffers are under async readin (end_buffer_async_read
387 * completion) then there is a possibility that another thread of
388 * control could lock one of the buffers after it has completed
389 * but while some of the other buffers have not completed. This
390 * locked buffer would confuse end_buffer_async_read() into not unlocking
391 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
392 * that this buffer is not under async I/O.
393 *
394 * The page comes unlocked when it has no locked buffer_async buffers
395 * left.
396 *
397 * PageLocked prevents anyone starting new async I/O reads any of
398 * the buffers.
399 *
400 * PageWriteback is used to prevent simultaneous writeout of the same
401 * page.
402 *
403 * PageLocked prevents anyone from starting writeback of a page which is
404 * under read I/O (PageWriteback is only ever set against a locked page).
405 */
406static void mark_buffer_async_read(struct buffer_head *bh)
407{
408 bh->b_end_io = end_buffer_async_read;
409 set_buffer_async_read(bh);
410}
411
412static void mark_buffer_async_write_endio(struct buffer_head *bh,
413 bh_end_io_t *handler)
414{
415 bh->b_end_io = handler;
416 set_buffer_async_write(bh);
417}
418
419void mark_buffer_async_write(struct buffer_head *bh)
420{
421 mark_buffer_async_write_endio(bh, end_buffer_async_write);
422}
423EXPORT_SYMBOL(mark_buffer_async_write);
424
425
426/*
427 * fs/buffer.c contains helper functions for buffer-backed address space's
428 * fsync functions. A common requirement for buffer-based filesystems is
429 * that certain data from the backing blockdev needs to be written out for
430 * a successful fsync(). For example, ext2 indirect blocks need to be
431 * written back and waited upon before fsync() returns.
432 *
433 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
434 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
435 * management of a list of dependent buffers at ->i_mapping->private_list.
436 *
437 * Locking is a little subtle: try_to_free_buffers() will remove buffers
438 * from their controlling inode's queue when they are being freed. But
439 * try_to_free_buffers() will be operating against the *blockdev* mapping
440 * at the time, not against the S_ISREG file which depends on those buffers.
441 * So the locking for private_list is via the private_lock in the address_space
442 * which backs the buffers. Which is different from the address_space
443 * against which the buffers are listed. So for a particular address_space,
444 * mapping->private_lock does *not* protect mapping->private_list! In fact,
445 * mapping->private_list will always be protected by the backing blockdev's
446 * ->private_lock.
447 *
448 * Which introduces a requirement: all buffers on an address_space's
449 * ->private_list must be from the same address_space: the blockdev's.
450 *
451 * address_spaces which do not place buffers at ->private_list via these
452 * utility functions are free to use private_lock and private_list for
453 * whatever they want. The only requirement is that list_empty(private_list)
454 * be true at clear_inode() time.
455 *
456 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
457 * filesystems should do that. invalidate_inode_buffers() should just go
458 * BUG_ON(!list_empty).
459 *
460 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
461 * take an address_space, not an inode. And it should be called
462 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
463 * queued up.
464 *
465 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
466 * list if it is already on a list. Because if the buffer is on a list,
467 * it *must* already be on the right one. If not, the filesystem is being
468 * silly. This will save a ton of locking. But first we have to ensure
469 * that buffers are taken *off* the old inode's list when they are freed
470 * (presumably in truncate). That requires careful auditing of all
471 * filesystems (do it inside bforget()). It could also be done by bringing
472 * b_inode back.
473 */
474
475/*
476 * The buffer's backing address_space's private_lock must be held
477 */
478static void __remove_assoc_queue(struct buffer_head *bh)
479{
480 list_del_init(&bh->b_assoc_buffers);
481 WARN_ON(!bh->b_assoc_map);
482 if (buffer_write_io_error(bh))
483 set_bit(AS_EIO, &bh->b_assoc_map->flags);
484 bh->b_assoc_map = NULL;
485}
486
487int inode_has_buffers(struct inode *inode)
488{
489 return !list_empty(&inode->i_data.private_list);
490}
491
492/*
493 * osync is designed to support O_SYNC io. It waits synchronously for
494 * all already-submitted IO to complete, but does not queue any new
495 * writes to the disk.
496 *
497 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
498 * you dirty the buffers, and then use osync_inode_buffers to wait for
499 * completion. Any other dirty buffers which are not yet queued for
500 * write will not be flushed to disk by the osync.
501 */
502static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
503{
504 struct buffer_head *bh;
505 struct list_head *p;
506 int err = 0;
507
508 spin_lock(lock);
509repeat:
510 list_for_each_prev(p, list) {
511 bh = BH_ENTRY(p);
512 if (buffer_locked(bh)) {
513 get_bh(bh);
514 spin_unlock(lock);
515 wait_on_buffer(bh);
516 if (!buffer_uptodate(bh))
517 err = -EIO;
518 brelse(bh);
519 spin_lock(lock);
520 goto repeat;
521 }
522 }
523 spin_unlock(lock);
524 return err;
525}
526
527static void do_thaw_one(struct super_block *sb, void *unused)
528{
529 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
530 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
531}
532
533static void do_thaw_all(struct work_struct *work)
534{
535 iterate_supers(do_thaw_one, NULL);
536 kfree(work);
537 printk(KERN_WARNING "Emergency Thaw complete\n");
538}
539
540/**
541 * emergency_thaw_all -- forcibly thaw every frozen filesystem
542 *
543 * Used for emergency unfreeze of all filesystems via SysRq
544 */
545void emergency_thaw_all(void)
546{
547 struct work_struct *work;
548
549 work = kmalloc(sizeof(*work), GFP_ATOMIC);
550 if (work) {
551 INIT_WORK(work, do_thaw_all);
552 schedule_work(work);
553 }
554}
555
556/**
557 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
558 * @mapping: the mapping which wants those buffers written
559 *
560 * Starts I/O against the buffers at mapping->private_list, and waits upon
561 * that I/O.
562 *
563 * Basically, this is a convenience function for fsync().
564 * @mapping is a file or directory which needs those buffers to be written for
565 * a successful fsync().
566 */
567int sync_mapping_buffers(struct address_space *mapping)
568{
569 struct address_space *buffer_mapping = mapping->private_data;
570
571 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
572 return 0;
573
574 return fsync_buffers_list(&buffer_mapping->private_lock,
575 &mapping->private_list);
576}
577EXPORT_SYMBOL(sync_mapping_buffers);
578
579/*
580 * Called when we've recently written block `bblock', and it is known that
581 * `bblock' was for a buffer_boundary() buffer. This means that the block at
582 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
583 * dirty, schedule it for IO. So that indirects merge nicely with their data.
584 */
585void write_boundary_block(struct block_device *bdev,
586 sector_t bblock, unsigned blocksize)
587{
588 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
589 if (bh) {
590 if (buffer_dirty(bh))
591 ll_rw_block(WRITE, 1, &bh);
592 put_bh(bh);
593 }
594}
595
596void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
597{
598 struct address_space *mapping = inode->i_mapping;
599 struct address_space *buffer_mapping = bh->b_page->mapping;
600
601 mark_buffer_dirty(bh);
602 if (!mapping->private_data) {
603 mapping->private_data = buffer_mapping;
604 } else {
605 BUG_ON(mapping->private_data != buffer_mapping);
606 }
607 if (!bh->b_assoc_map) {
608 spin_lock(&buffer_mapping->private_lock);
609 list_move_tail(&bh->b_assoc_buffers,
610 &mapping->private_list);
611 bh->b_assoc_map = mapping;
612 spin_unlock(&buffer_mapping->private_lock);
613 }
614}
615EXPORT_SYMBOL(mark_buffer_dirty_inode);
616
617/*
618 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
619 * dirty.
620 *
621 * If warn is true, then emit a warning if the page is not uptodate and has
622 * not been truncated.
623 *
624 * The caller must hold lock_page_memcg().
625 */
626static void __set_page_dirty(struct page *page, struct address_space *mapping,
627 int warn)
628{
629 unsigned long flags;
630
631 spin_lock_irqsave(&mapping->tree_lock, flags);
632 if (page->mapping) { /* Race with truncate? */
633 WARN_ON_ONCE(warn && !PageUptodate(page));
634 account_page_dirtied(page, mapping);
635 radix_tree_tag_set(&mapping->page_tree,
636 page_index(page), PAGECACHE_TAG_DIRTY);
637 }
638 spin_unlock_irqrestore(&mapping->tree_lock, flags);
639}
640
641/*
642 * Add a page to the dirty page list.
643 *
644 * It is a sad fact of life that this function is called from several places
645 * deeply under spinlocking. It may not sleep.
646 *
647 * If the page has buffers, the uptodate buffers are set dirty, to preserve
648 * dirty-state coherency between the page and the buffers. It the page does
649 * not have buffers then when they are later attached they will all be set
650 * dirty.
651 *
652 * The buffers are dirtied before the page is dirtied. There's a small race
653 * window in which a writepage caller may see the page cleanness but not the
654 * buffer dirtiness. That's fine. If this code were to set the page dirty
655 * before the buffers, a concurrent writepage caller could clear the page dirty
656 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
657 * page on the dirty page list.
658 *
659 * We use private_lock to lock against try_to_free_buffers while using the
660 * page's buffer list. Also use this to protect against clean buffers being
661 * added to the page after it was set dirty.
662 *
663 * FIXME: may need to call ->reservepage here as well. That's rather up to the
664 * address_space though.
665 */
666int __set_page_dirty_buffers(struct page *page)
667{
668 int newly_dirty;
669 struct address_space *mapping = page_mapping(page);
670
671 if (unlikely(!mapping))
672 return !TestSetPageDirty(page);
673
674 spin_lock(&mapping->private_lock);
675 if (page_has_buffers(page)) {
676 struct buffer_head *head = page_buffers(page);
677 struct buffer_head *bh = head;
678
679 do {
680 set_buffer_dirty(bh);
681 bh = bh->b_this_page;
682 } while (bh != head);
683 }
684 /*
685 * Lock out page->mem_cgroup migration to keep PageDirty
686 * synchronized with per-memcg dirty page counters.
687 */
688 lock_page_memcg(page);
689 newly_dirty = !TestSetPageDirty(page);
690 spin_unlock(&mapping->private_lock);
691
692 if (newly_dirty)
693 __set_page_dirty(page, mapping, 1);
694
695 unlock_page_memcg(page);
696
697 if (newly_dirty)
698 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
699
700 return newly_dirty;
701}
702EXPORT_SYMBOL(__set_page_dirty_buffers);
703
704/*
705 * Write out and wait upon a list of buffers.
706 *
707 * We have conflicting pressures: we want to make sure that all
708 * initially dirty buffers get waited on, but that any subsequently
709 * dirtied buffers don't. After all, we don't want fsync to last
710 * forever if somebody is actively writing to the file.
711 *
712 * Do this in two main stages: first we copy dirty buffers to a
713 * temporary inode list, queueing the writes as we go. Then we clean
714 * up, waiting for those writes to complete.
715 *
716 * During this second stage, any subsequent updates to the file may end
717 * up refiling the buffer on the original inode's dirty list again, so
718 * there is a chance we will end up with a buffer queued for write but
719 * not yet completed on that list. So, as a final cleanup we go through
720 * the osync code to catch these locked, dirty buffers without requeuing
721 * any newly dirty buffers for write.
722 */
723static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
724{
725 struct buffer_head *bh;
726 struct list_head tmp;
727 struct address_space *mapping;
728 int err = 0, err2;
729 struct blk_plug plug;
730
731 INIT_LIST_HEAD(&tmp);
732 blk_start_plug(&plug);
733
734 spin_lock(lock);
735 while (!list_empty(list)) {
736 bh = BH_ENTRY(list->next);
737 mapping = bh->b_assoc_map;
738 __remove_assoc_queue(bh);
739 /* Avoid race with mark_buffer_dirty_inode() which does
740 * a lockless check and we rely on seeing the dirty bit */
741 smp_mb();
742 if (buffer_dirty(bh) || buffer_locked(bh)) {
743 list_add(&bh->b_assoc_buffers, &tmp);
744 bh->b_assoc_map = mapping;
745 if (buffer_dirty(bh)) {
746 get_bh(bh);
747 spin_unlock(lock);
748 /*
749 * Ensure any pending I/O completes so that
750 * write_dirty_buffer() actually writes the
751 * current contents - it is a noop if I/O is
752 * still in flight on potentially older
753 * contents.
754 */
755 write_dirty_buffer(bh, WRITE_SYNC);
756
757 /*
758 * Kick off IO for the previous mapping. Note
759 * that we will not run the very last mapping,
760 * wait_on_buffer() will do that for us
761 * through sync_buffer().
762 */
763 brelse(bh);
764 spin_lock(lock);
765 }
766 }
767 }
768
769 spin_unlock(lock);
770 blk_finish_plug(&plug);
771 spin_lock(lock);
772
773 while (!list_empty(&tmp)) {
774 bh = BH_ENTRY(tmp.prev);
775 get_bh(bh);
776 mapping = bh->b_assoc_map;
777 __remove_assoc_queue(bh);
778 /* Avoid race with mark_buffer_dirty_inode() which does
779 * a lockless check and we rely on seeing the dirty bit */
780 smp_mb();
781 if (buffer_dirty(bh)) {
782 list_add(&bh->b_assoc_buffers,
783 &mapping->private_list);
784 bh->b_assoc_map = mapping;
785 }
786 spin_unlock(lock);
787 wait_on_buffer(bh);
788 if (!buffer_uptodate(bh))
789 err = -EIO;
790 brelse(bh);
791 spin_lock(lock);
792 }
793
794 spin_unlock(lock);
795 err2 = osync_buffers_list(lock, list);
796 if (err)
797 return err;
798 else
799 return err2;
800}
801
802/*
803 * Invalidate any and all dirty buffers on a given inode. We are
804 * probably unmounting the fs, but that doesn't mean we have already
805 * done a sync(). Just drop the buffers from the inode list.
806 *
807 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
808 * assumes that all the buffers are against the blockdev. Not true
809 * for reiserfs.
810 */
811void invalidate_inode_buffers(struct inode *inode)
812{
813 if (inode_has_buffers(inode)) {
814 struct address_space *mapping = &inode->i_data;
815 struct list_head *list = &mapping->private_list;
816 struct address_space *buffer_mapping = mapping->private_data;
817
818 spin_lock(&buffer_mapping->private_lock);
819 while (!list_empty(list))
820 __remove_assoc_queue(BH_ENTRY(list->next));
821 spin_unlock(&buffer_mapping->private_lock);
822 }
823}
824EXPORT_SYMBOL(invalidate_inode_buffers);
825
826/*
827 * Remove any clean buffers from the inode's buffer list. This is called
828 * when we're trying to free the inode itself. Those buffers can pin it.
829 *
830 * Returns true if all buffers were removed.
831 */
832int remove_inode_buffers(struct inode *inode)
833{
834 int ret = 1;
835
836 if (inode_has_buffers(inode)) {
837 struct address_space *mapping = &inode->i_data;
838 struct list_head *list = &mapping->private_list;
839 struct address_space *buffer_mapping = mapping->private_data;
840
841 spin_lock(&buffer_mapping->private_lock);
842 while (!list_empty(list)) {
843 struct buffer_head *bh = BH_ENTRY(list->next);
844 if (buffer_dirty(bh)) {
845 ret = 0;
846 break;
847 }
848 __remove_assoc_queue(bh);
849 }
850 spin_unlock(&buffer_mapping->private_lock);
851 }
852 return ret;
853}
854
855/*
856 * Create the appropriate buffers when given a page for data area and
857 * the size of each buffer.. Use the bh->b_this_page linked list to
858 * follow the buffers created. Return NULL if unable to create more
859 * buffers.
860 *
861 * The retry flag is used to differentiate async IO (paging, swapping)
862 * which may not fail from ordinary buffer allocations.
863 */
864struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
865 int retry)
866{
867 struct buffer_head *bh, *head;
868 long offset;
869
870try_again:
871 head = NULL;
872 offset = PAGE_SIZE;
873 while ((offset -= size) >= 0) {
874 bh = alloc_buffer_head(GFP_NOFS);
875 if (!bh)
876 goto no_grow;
877
878 bh->b_this_page = head;
879 bh->b_blocknr = -1;
880 head = bh;
881
882 bh->b_size = size;
883
884 /* Link the buffer to its page */
885 set_bh_page(bh, page, offset);
886 }
887 return head;
888/*
889 * In case anything failed, we just free everything we got.
890 */
891no_grow:
892 if (head) {
893 do {
894 bh = head;
895 head = head->b_this_page;
896 free_buffer_head(bh);
897 } while (head);
898 }
899
900 /*
901 * Return failure for non-async IO requests. Async IO requests
902 * are not allowed to fail, so we have to wait until buffer heads
903 * become available. But we don't want tasks sleeping with
904 * partially complete buffers, so all were released above.
905 */
906 if (!retry)
907 return NULL;
908
909 /* We're _really_ low on memory. Now we just
910 * wait for old buffer heads to become free due to
911 * finishing IO. Since this is an async request and
912 * the reserve list is empty, we're sure there are
913 * async buffer heads in use.
914 */
915 free_more_memory();
916 goto try_again;
917}
918EXPORT_SYMBOL_GPL(alloc_page_buffers);
919
920static inline void
921link_dev_buffers(struct page *page, struct buffer_head *head)
922{
923 struct buffer_head *bh, *tail;
924
925 bh = head;
926 do {
927 tail = bh;
928 bh = bh->b_this_page;
929 } while (bh);
930 tail->b_this_page = head;
931 attach_page_buffers(page, head);
932}
933
934static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
935{
936 sector_t retval = ~((sector_t)0);
937 loff_t sz = i_size_read(bdev->bd_inode);
938
939 if (sz) {
940 unsigned int sizebits = blksize_bits(size);
941 retval = (sz >> sizebits);
942 }
943 return retval;
944}
945
946/*
947 * Initialise the state of a blockdev page's buffers.
948 */
949static sector_t
950init_page_buffers(struct page *page, struct block_device *bdev,
951 sector_t block, int size)
952{
953 struct buffer_head *head = page_buffers(page);
954 struct buffer_head *bh = head;
955 int uptodate = PageUptodate(page);
956 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
957
958 do {
959 if (!buffer_mapped(bh)) {
960 init_buffer(bh, NULL, NULL);
961 bh->b_bdev = bdev;
962 bh->b_blocknr = block;
963 if (uptodate)
964 set_buffer_uptodate(bh);
965 if (block < end_block)
966 set_buffer_mapped(bh);
967 }
968 block++;
969 bh = bh->b_this_page;
970 } while (bh != head);
971
972 /*
973 * Caller needs to validate requested block against end of device.
974 */
975 return end_block;
976}
977
978/*
979 * Create the page-cache page that contains the requested block.
980 *
981 * This is used purely for blockdev mappings.
982 */
983static int
984grow_dev_page(struct block_device *bdev, sector_t block,
985 pgoff_t index, int size, int sizebits, gfp_t gfp)
986{
987 struct inode *inode = bdev->bd_inode;
988 struct page *page;
989 struct buffer_head *bh;
990 sector_t end_block;
991 int ret = 0; /* Will call free_more_memory() */
992 gfp_t gfp_mask;
993
994 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
995
996 /*
997 * XXX: __getblk_slow() can not really deal with failure and
998 * will endlessly loop on improvised global reclaim. Prefer
999 * looping in the allocator rather than here, at least that
1000 * code knows what it's doing.
1001 */
1002 gfp_mask |= __GFP_NOFAIL;
1003
1004 page = find_or_create_page(inode->i_mapping, index, gfp_mask);
1005 if (!page)
1006 return ret;
1007
1008 BUG_ON(!PageLocked(page));
1009
1010 if (page_has_buffers(page)) {
1011 bh = page_buffers(page);
1012 if (bh->b_size == size) {
1013 end_block = init_page_buffers(page, bdev,
1014 (sector_t)index << sizebits,
1015 size);
1016 goto done;
1017 }
1018 if (!try_to_free_buffers(page))
1019 goto failed;
1020 }
1021
1022 /*
1023 * Allocate some buffers for this page
1024 */
1025 bh = alloc_page_buffers(page, size, 0);
1026 if (!bh)
1027 goto failed;
1028
1029 /*
1030 * Link the page to the buffers and initialise them. Take the
1031 * lock to be atomic wrt __find_get_block(), which does not
1032 * run under the page lock.
1033 */
1034 spin_lock(&inode->i_mapping->private_lock);
1035 link_dev_buffers(page, bh);
1036 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1037 size);
1038 spin_unlock(&inode->i_mapping->private_lock);
1039done:
1040 ret = (block < end_block) ? 1 : -ENXIO;
1041failed:
1042 unlock_page(page);
1043 put_page(page);
1044 return ret;
1045}
1046
1047/*
1048 * Create buffers for the specified block device block's page. If
1049 * that page was dirty, the buffers are set dirty also.
1050 */
1051static int
1052grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1053{
1054 pgoff_t index;
1055 int sizebits;
1056
1057 sizebits = -1;
1058 do {
1059 sizebits++;
1060 } while ((size << sizebits) < PAGE_SIZE);
1061
1062 index = block >> sizebits;
1063
1064 /*
1065 * Check for a block which wants to lie outside our maximum possible
1066 * pagecache index. (this comparison is done using sector_t types).
1067 */
1068 if (unlikely(index != block >> sizebits)) {
1069 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1070 "device %pg\n",
1071 __func__, (unsigned long long)block,
1072 bdev);
1073 return -EIO;
1074 }
1075
1076 /* Create a page with the proper size buffers.. */
1077 return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1078}
1079
1080struct buffer_head *
1081__getblk_slow(struct block_device *bdev, sector_t block,
1082 unsigned size, gfp_t gfp)
1083{
1084 /* Size must be multiple of hard sectorsize */
1085 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1086 (size < 512 || size > PAGE_SIZE))) {
1087 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1088 size);
1089 printk(KERN_ERR "logical block size: %d\n",
1090 bdev_logical_block_size(bdev));
1091
1092 dump_stack();
1093 return NULL;
1094 }
1095
1096 for (;;) {
1097 struct buffer_head *bh;
1098 int ret;
1099
1100 bh = __find_get_block(bdev, block, size);
1101 if (bh)
1102 return bh;
1103
1104 ret = grow_buffers(bdev, block, size, gfp);
1105 if (ret < 0)
1106 return NULL;
1107 if (ret == 0)
1108 free_more_memory();
1109 }
1110}
1111EXPORT_SYMBOL(__getblk_slow);
1112
1113/*
1114 * The relationship between dirty buffers and dirty pages:
1115 *
1116 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1117 * the page is tagged dirty in its radix tree.
1118 *
1119 * At all times, the dirtiness of the buffers represents the dirtiness of
1120 * subsections of the page. If the page has buffers, the page dirty bit is
1121 * merely a hint about the true dirty state.
1122 *
1123 * When a page is set dirty in its entirety, all its buffers are marked dirty
1124 * (if the page has buffers).
1125 *
1126 * When a buffer is marked dirty, its page is dirtied, but the page's other
1127 * buffers are not.
1128 *
1129 * Also. When blockdev buffers are explicitly read with bread(), they
1130 * individually become uptodate. But their backing page remains not
1131 * uptodate - even if all of its buffers are uptodate. A subsequent
1132 * block_read_full_page() against that page will discover all the uptodate
1133 * buffers, will set the page uptodate and will perform no I/O.
1134 */
1135
1136/**
1137 * mark_buffer_dirty - mark a buffer_head as needing writeout
1138 * @bh: the buffer_head to mark dirty
1139 *
1140 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1141 * backing page dirty, then tag the page as dirty in its address_space's radix
1142 * tree and then attach the address_space's inode to its superblock's dirty
1143 * inode list.
1144 *
1145 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1146 * mapping->tree_lock and mapping->host->i_lock.
1147 */
1148void mark_buffer_dirty(struct buffer_head *bh)
1149{
1150 WARN_ON_ONCE(!buffer_uptodate(bh));
1151
1152 trace_block_dirty_buffer(bh);
1153
1154 /*
1155 * Very *carefully* optimize the it-is-already-dirty case.
1156 *
1157 * Don't let the final "is it dirty" escape to before we
1158 * perhaps modified the buffer.
1159 */
1160 if (buffer_dirty(bh)) {
1161 smp_mb();
1162 if (buffer_dirty(bh))
1163 return;
1164 }
1165
1166 if (!test_set_buffer_dirty(bh)) {
1167 struct page *page = bh->b_page;
1168 struct address_space *mapping = NULL;
1169
1170 lock_page_memcg(page);
1171 if (!TestSetPageDirty(page)) {
1172 mapping = page_mapping(page);
1173 if (mapping)
1174 __set_page_dirty(page, mapping, 0);
1175 }
1176 unlock_page_memcg(page);
1177 if (mapping)
1178 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1179 }
1180}
1181EXPORT_SYMBOL(mark_buffer_dirty);
1182
1183/*
1184 * Decrement a buffer_head's reference count. If all buffers against a page
1185 * have zero reference count, are clean and unlocked, and if the page is clean
1186 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1187 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1188 * a page but it ends up not being freed, and buffers may later be reattached).
1189 */
1190void __brelse(struct buffer_head * buf)
1191{
1192 if (atomic_read(&buf->b_count)) {
1193 put_bh(buf);
1194 return;
1195 }
1196 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1197}
1198EXPORT_SYMBOL(__brelse);
1199
1200/*
1201 * bforget() is like brelse(), except it discards any
1202 * potentially dirty data.
1203 */
1204void __bforget(struct buffer_head *bh)
1205{
1206 clear_buffer_dirty(bh);
1207 if (bh->b_assoc_map) {
1208 struct address_space *buffer_mapping = bh->b_page->mapping;
1209
1210 spin_lock(&buffer_mapping->private_lock);
1211 list_del_init(&bh->b_assoc_buffers);
1212 bh->b_assoc_map = NULL;
1213 spin_unlock(&buffer_mapping->private_lock);
1214 }
1215 __brelse(bh);
1216}
1217EXPORT_SYMBOL(__bforget);
1218
1219static struct buffer_head *__bread_slow(struct buffer_head *bh)
1220{
1221 lock_buffer(bh);
1222 if (buffer_uptodate(bh)) {
1223 unlock_buffer(bh);
1224 return bh;
1225 } else {
1226 get_bh(bh);
1227 bh->b_end_io = end_buffer_read_sync;
1228 submit_bh(READ, bh);
1229 wait_on_buffer(bh);
1230 if (buffer_uptodate(bh))
1231 return bh;
1232 }
1233 brelse(bh);
1234 return NULL;
1235}
1236
1237/*
1238 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1239 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1240 * refcount elevated by one when they're in an LRU. A buffer can only appear
1241 * once in a particular CPU's LRU. A single buffer can be present in multiple
1242 * CPU's LRUs at the same time.
1243 *
1244 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1245 * sb_find_get_block().
1246 *
1247 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1248 * a local interrupt disable for that.
1249 */
1250
1251#define BH_LRU_SIZE 16
1252
1253struct bh_lru {
1254 struct buffer_head *bhs[BH_LRU_SIZE];
1255};
1256
1257static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1258
1259#ifdef CONFIG_SMP
1260#define bh_lru_lock() local_irq_disable()
1261#define bh_lru_unlock() local_irq_enable()
1262#else
1263#define bh_lru_lock() preempt_disable()
1264#define bh_lru_unlock() preempt_enable()
1265#endif
1266
1267static inline void check_irqs_on(void)
1268{
1269#ifdef irqs_disabled
1270 BUG_ON(irqs_disabled());
1271#endif
1272}
1273
1274/*
1275 * The LRU management algorithm is dopey-but-simple. Sorry.
1276 */
1277static void bh_lru_install(struct buffer_head *bh)
1278{
1279 struct buffer_head *evictee = NULL;
1280
1281 check_irqs_on();
1282 bh_lru_lock();
1283 if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1284 struct buffer_head *bhs[BH_LRU_SIZE];
1285 int in;
1286 int out = 0;
1287
1288 get_bh(bh);
1289 bhs[out++] = bh;
1290 for (in = 0; in < BH_LRU_SIZE; in++) {
1291 struct buffer_head *bh2 =
1292 __this_cpu_read(bh_lrus.bhs[in]);
1293
1294 if (bh2 == bh) {
1295 __brelse(bh2);
1296 } else {
1297 if (out >= BH_LRU_SIZE) {
1298 BUG_ON(evictee != NULL);
1299 evictee = bh2;
1300 } else {
1301 bhs[out++] = bh2;
1302 }
1303 }
1304 }
1305 while (out < BH_LRU_SIZE)
1306 bhs[out++] = NULL;
1307 memcpy(this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1308 }
1309 bh_lru_unlock();
1310
1311 if (evictee)
1312 __brelse(evictee);
1313}
1314
1315/*
1316 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1317 */
1318static struct buffer_head *
1319lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1320{
1321 struct buffer_head *ret = NULL;
1322 unsigned int i;
1323
1324 check_irqs_on();
1325 bh_lru_lock();
1326 for (i = 0; i < BH_LRU_SIZE; i++) {
1327 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1328
1329 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1330 bh->b_size == size) {
1331 if (i) {
1332 while (i) {
1333 __this_cpu_write(bh_lrus.bhs[i],
1334 __this_cpu_read(bh_lrus.bhs[i - 1]));
1335 i--;
1336 }
1337 __this_cpu_write(bh_lrus.bhs[0], bh);
1338 }
1339 get_bh(bh);
1340 ret = bh;
1341 break;
1342 }
1343 }
1344 bh_lru_unlock();
1345 return ret;
1346}
1347
1348/*
1349 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1350 * it in the LRU and mark it as accessed. If it is not present then return
1351 * NULL
1352 */
1353struct buffer_head *
1354__find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1355{
1356 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1357
1358 if (bh == NULL) {
1359 /* __find_get_block_slow will mark the page accessed */
1360 bh = __find_get_block_slow(bdev, block);
1361 if (bh)
1362 bh_lru_install(bh);
1363 } else
1364 touch_buffer(bh);
1365
1366 return bh;
1367}
1368EXPORT_SYMBOL(__find_get_block);
1369
1370/*
1371 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1372 * which corresponds to the passed block_device, block and size. The
1373 * returned buffer has its reference count incremented.
1374 *
1375 * __getblk_gfp() will lock up the machine if grow_dev_page's
1376 * try_to_free_buffers() attempt is failing. FIXME, perhaps?
1377 */
1378struct buffer_head *
1379__getblk_gfp(struct block_device *bdev, sector_t block,
1380 unsigned size, gfp_t gfp)
1381{
1382 struct buffer_head *bh = __find_get_block(bdev, block, size);
1383
1384 might_sleep();
1385 if (bh == NULL)
1386 bh = __getblk_slow(bdev, block, size, gfp);
1387 return bh;
1388}
1389EXPORT_SYMBOL(__getblk_gfp);
1390
1391/*
1392 * Do async read-ahead on a buffer..
1393 */
1394void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1395{
1396 struct buffer_head *bh = __getblk(bdev, block, size);
1397 if (likely(bh)) {
1398 ll_rw_block(READA, 1, &bh);
1399 brelse(bh);
1400 }
1401}
1402EXPORT_SYMBOL(__breadahead);
1403
1404/**
1405 * __bread_gfp() - reads a specified block and returns the bh
1406 * @bdev: the block_device to read from
1407 * @block: number of block
1408 * @size: size (in bytes) to read
1409 * @gfp: page allocation flag
1410 *
1411 * Reads a specified block, and returns buffer head that contains it.
1412 * The page cache can be allocated from non-movable area
1413 * not to prevent page migration if you set gfp to zero.
1414 * It returns NULL if the block was unreadable.
1415 */
1416struct buffer_head *
1417__bread_gfp(struct block_device *bdev, sector_t block,
1418 unsigned size, gfp_t gfp)
1419{
1420 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1421
1422 if (likely(bh) && !buffer_uptodate(bh))
1423 bh = __bread_slow(bh);
1424 return bh;
1425}
1426EXPORT_SYMBOL(__bread_gfp);
1427
1428/*
1429 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1430 * This doesn't race because it runs in each cpu either in irq
1431 * or with preempt disabled.
1432 */
1433static void invalidate_bh_lru(void *arg)
1434{
1435 struct bh_lru *b = &get_cpu_var(bh_lrus);
1436 int i;
1437
1438 for (i = 0; i < BH_LRU_SIZE; i++) {
1439 brelse(b->bhs[i]);
1440 b->bhs[i] = NULL;
1441 }
1442 put_cpu_var(bh_lrus);
1443}
1444
1445static bool has_bh_in_lru(int cpu, void *dummy)
1446{
1447 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1448 int i;
1449
1450 for (i = 0; i < BH_LRU_SIZE; i++) {
1451 if (b->bhs[i])
1452 return 1;
1453 }
1454
1455 return 0;
1456}
1457
1458void invalidate_bh_lrus(void)
1459{
1460 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1461}
1462EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1463
1464void set_bh_page(struct buffer_head *bh,
1465 struct page *page, unsigned long offset)
1466{
1467 bh->b_page = page;
1468 BUG_ON(offset >= PAGE_SIZE);
1469 if (PageHighMem(page))
1470 /*
1471 * This catches illegal uses and preserves the offset:
1472 */
1473 bh->b_data = (char *)(0 + offset);
1474 else
1475 bh->b_data = page_address(page) + offset;
1476}
1477EXPORT_SYMBOL(set_bh_page);
1478
1479/*
1480 * Called when truncating a buffer on a page completely.
1481 */
1482
1483/* Bits that are cleared during an invalidate */
1484#define BUFFER_FLAGS_DISCARD \
1485 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1486 1 << BH_Delay | 1 << BH_Unwritten)
1487
1488static void discard_buffer(struct buffer_head * bh)
1489{
1490 unsigned long b_state, b_state_old;
1491
1492 lock_buffer(bh);
1493 clear_buffer_dirty(bh);
1494 bh->b_bdev = NULL;
1495 b_state = bh->b_state;
1496 for (;;) {
1497 b_state_old = cmpxchg(&bh->b_state, b_state,
1498 (b_state & ~BUFFER_FLAGS_DISCARD));
1499 if (b_state_old == b_state)
1500 break;
1501 b_state = b_state_old;
1502 }
1503 unlock_buffer(bh);
1504}
1505
1506/**
1507 * block_invalidatepage - invalidate part or all of a buffer-backed page
1508 *
1509 * @page: the page which is affected
1510 * @offset: start of the range to invalidate
1511 * @length: length of the range to invalidate
1512 *
1513 * block_invalidatepage() is called when all or part of the page has become
1514 * invalidated by a truncate operation.
1515 *
1516 * block_invalidatepage() does not have to release all buffers, but it must
1517 * ensure that no dirty buffer is left outside @offset and that no I/O
1518 * is underway against any of the blocks which are outside the truncation
1519 * point. Because the caller is about to free (and possibly reuse) those
1520 * blocks on-disk.
1521 */
1522void block_invalidatepage(struct page *page, unsigned int offset,
1523 unsigned int length)
1524{
1525 struct buffer_head *head, *bh, *next;
1526 unsigned int curr_off = 0;
1527 unsigned int stop = length + offset;
1528
1529 BUG_ON(!PageLocked(page));
1530 if (!page_has_buffers(page))
1531 goto out;
1532
1533 /*
1534 * Check for overflow
1535 */
1536 BUG_ON(stop > PAGE_SIZE || stop < length);
1537
1538 head = page_buffers(page);
1539 bh = head;
1540 do {
1541 unsigned int next_off = curr_off + bh->b_size;
1542 next = bh->b_this_page;
1543
1544 /*
1545 * Are we still fully in range ?
1546 */
1547 if (next_off > stop)
1548 goto out;
1549
1550 /*
1551 * is this block fully invalidated?
1552 */
1553 if (offset <= curr_off)
1554 discard_buffer(bh);
1555 curr_off = next_off;
1556 bh = next;
1557 } while (bh != head);
1558
1559 /*
1560 * We release buffers only if the entire page is being invalidated.
1561 * The get_block cached value has been unconditionally invalidated,
1562 * so real IO is not possible anymore.
1563 */
1564 if (offset == 0)
1565 try_to_release_page(page, 0);
1566out:
1567 return;
1568}
1569EXPORT_SYMBOL(block_invalidatepage);
1570
1571
1572/*
1573 * We attach and possibly dirty the buffers atomically wrt
1574 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1575 * is already excluded via the page lock.
1576 */
1577void create_empty_buffers(struct page *page,
1578 unsigned long blocksize, unsigned long b_state)
1579{
1580 struct buffer_head *bh, *head, *tail;
1581
1582 head = alloc_page_buffers(page, blocksize, 1);
1583 bh = head;
1584 do {
1585 bh->b_state |= b_state;
1586 tail = bh;
1587 bh = bh->b_this_page;
1588 } while (bh);
1589 tail->b_this_page = head;
1590
1591 spin_lock(&page->mapping->private_lock);
1592 if (PageUptodate(page) || PageDirty(page)) {
1593 bh = head;
1594 do {
1595 if (PageDirty(page))
1596 set_buffer_dirty(bh);
1597 if (PageUptodate(page))
1598 set_buffer_uptodate(bh);
1599 bh = bh->b_this_page;
1600 } while (bh != head);
1601 }
1602 attach_page_buffers(page, head);
1603 spin_unlock(&page->mapping->private_lock);
1604}
1605EXPORT_SYMBOL(create_empty_buffers);
1606
1607/*
1608 * We are taking a block for data and we don't want any output from any
1609 * buffer-cache aliases starting from return from that function and
1610 * until the moment when something will explicitly mark the buffer
1611 * dirty (hopefully that will not happen until we will free that block ;-)
1612 * We don't even need to mark it not-uptodate - nobody can expect
1613 * anything from a newly allocated buffer anyway. We used to used
1614 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1615 * don't want to mark the alias unmapped, for example - it would confuse
1616 * anyone who might pick it with bread() afterwards...
1617 *
1618 * Also.. Note that bforget() doesn't lock the buffer. So there can
1619 * be writeout I/O going on against recently-freed buffers. We don't
1620 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1621 * only if we really need to. That happens here.
1622 */
1623void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1624{
1625 struct buffer_head *old_bh;
1626
1627 might_sleep();
1628
1629 old_bh = __find_get_block_slow(bdev, block);
1630 if (old_bh) {
1631 clear_buffer_dirty(old_bh);
1632 wait_on_buffer(old_bh);
1633 clear_buffer_req(old_bh);
1634 __brelse(old_bh);
1635 }
1636}
1637EXPORT_SYMBOL(unmap_underlying_metadata);
1638
1639/*
1640 * Size is a power-of-two in the range 512..PAGE_SIZE,
1641 * and the case we care about most is PAGE_SIZE.
1642 *
1643 * So this *could* possibly be written with those
1644 * constraints in mind (relevant mostly if some
1645 * architecture has a slow bit-scan instruction)
1646 */
1647static inline int block_size_bits(unsigned int blocksize)
1648{
1649 return ilog2(blocksize);
1650}
1651
1652static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1653{
1654 BUG_ON(!PageLocked(page));
1655
1656 if (!page_has_buffers(page))
1657 create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1658 return page_buffers(page);
1659}
1660
1661/*
1662 * NOTE! All mapped/uptodate combinations are valid:
1663 *
1664 * Mapped Uptodate Meaning
1665 *
1666 * No No "unknown" - must do get_block()
1667 * No Yes "hole" - zero-filled
1668 * Yes No "allocated" - allocated on disk, not read in
1669 * Yes Yes "valid" - allocated and up-to-date in memory.
1670 *
1671 * "Dirty" is valid only with the last case (mapped+uptodate).
1672 */
1673
1674/*
1675 * While block_write_full_page is writing back the dirty buffers under
1676 * the page lock, whoever dirtied the buffers may decide to clean them
1677 * again at any time. We handle that by only looking at the buffer
1678 * state inside lock_buffer().
1679 *
1680 * If block_write_full_page() is called for regular writeback
1681 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1682 * locked buffer. This only can happen if someone has written the buffer
1683 * directly, with submit_bh(). At the address_space level PageWriteback
1684 * prevents this contention from occurring.
1685 *
1686 * If block_write_full_page() is called with wbc->sync_mode ==
1687 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1688 * causes the writes to be flagged as synchronous writes.
1689 */
1690static int __block_write_full_page(struct inode *inode, struct page *page,
1691 get_block_t *get_block, struct writeback_control *wbc,
1692 bh_end_io_t *handler)
1693{
1694 int err;
1695 sector_t block;
1696 sector_t last_block;
1697 struct buffer_head *bh, *head;
1698 unsigned int blocksize, bbits;
1699 int nr_underway = 0;
1700 int write_op = (wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE);
1701
1702 head = create_page_buffers(page, inode,
1703 (1 << BH_Dirty)|(1 << BH_Uptodate));
1704
1705 /*
1706 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1707 * here, and the (potentially unmapped) buffers may become dirty at
1708 * any time. If a buffer becomes dirty here after we've inspected it
1709 * then we just miss that fact, and the page stays dirty.
1710 *
1711 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1712 * handle that here by just cleaning them.
1713 */
1714
1715 bh = head;
1716 blocksize = bh->b_size;
1717 bbits = block_size_bits(blocksize);
1718
1719 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1720 last_block = (i_size_read(inode) - 1) >> bbits;
1721
1722 /*
1723 * Get all the dirty buffers mapped to disk addresses and
1724 * handle any aliases from the underlying blockdev's mapping.
1725 */
1726 do {
1727 if (block > last_block) {
1728 /*
1729 * mapped buffers outside i_size will occur, because
1730 * this page can be outside i_size when there is a
1731 * truncate in progress.
1732 */
1733 /*
1734 * The buffer was zeroed by block_write_full_page()
1735 */
1736 clear_buffer_dirty(bh);
1737 set_buffer_uptodate(bh);
1738 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1739 buffer_dirty(bh)) {
1740 WARN_ON(bh->b_size != blocksize);
1741 err = get_block(inode, block, bh, 1);
1742 if (err)
1743 goto recover;
1744 clear_buffer_delay(bh);
1745 if (buffer_new(bh)) {
1746 /* blockdev mappings never come here */
1747 clear_buffer_new(bh);
1748 unmap_underlying_metadata(bh->b_bdev,
1749 bh->b_blocknr);
1750 }
1751 }
1752 bh = bh->b_this_page;
1753 block++;
1754 } while (bh != head);
1755
1756 do {
1757 if (!buffer_mapped(bh))
1758 continue;
1759 /*
1760 * If it's a fully non-blocking write attempt and we cannot
1761 * lock the buffer then redirty the page. Note that this can
1762 * potentially cause a busy-wait loop from writeback threads
1763 * and kswapd activity, but those code paths have their own
1764 * higher-level throttling.
1765 */
1766 if (wbc->sync_mode != WB_SYNC_NONE) {
1767 lock_buffer(bh);
1768 } else if (!trylock_buffer(bh)) {
1769 redirty_page_for_writepage(wbc, page);
1770 continue;
1771 }
1772 if (test_clear_buffer_dirty(bh)) {
1773 mark_buffer_async_write_endio(bh, handler);
1774 } else {
1775 unlock_buffer(bh);
1776 }
1777 } while ((bh = bh->b_this_page) != head);
1778
1779 /*
1780 * The page and its buffers are protected by PageWriteback(), so we can
1781 * drop the bh refcounts early.
1782 */
1783 BUG_ON(PageWriteback(page));
1784 set_page_writeback(page);
1785
1786 do {
1787 struct buffer_head *next = bh->b_this_page;
1788 if (buffer_async_write(bh)) {
1789 submit_bh_wbc(write_op, bh, 0, wbc);
1790 nr_underway++;
1791 }
1792 bh = next;
1793 } while (bh != head);
1794 unlock_page(page);
1795
1796 err = 0;
1797done:
1798 if (nr_underway == 0) {
1799 /*
1800 * The page was marked dirty, but the buffers were
1801 * clean. Someone wrote them back by hand with
1802 * ll_rw_block/submit_bh. A rare case.
1803 */
1804 end_page_writeback(page);
1805
1806 /*
1807 * The page and buffer_heads can be released at any time from
1808 * here on.
1809 */
1810 }
1811 return err;
1812
1813recover:
1814 /*
1815 * ENOSPC, or some other error. We may already have added some
1816 * blocks to the file, so we need to write these out to avoid
1817 * exposing stale data.
1818 * The page is currently locked and not marked for writeback
1819 */
1820 bh = head;
1821 /* Recovery: lock and submit the mapped buffers */
1822 do {
1823 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1824 !buffer_delay(bh)) {
1825 lock_buffer(bh);
1826 mark_buffer_async_write_endio(bh, handler);
1827 } else {
1828 /*
1829 * The buffer may have been set dirty during
1830 * attachment to a dirty page.
1831 */
1832 clear_buffer_dirty(bh);
1833 }
1834 } while ((bh = bh->b_this_page) != head);
1835 SetPageError(page);
1836 BUG_ON(PageWriteback(page));
1837 mapping_set_error(page->mapping, err);
1838 set_page_writeback(page);
1839 do {
1840 struct buffer_head *next = bh->b_this_page;
1841 if (buffer_async_write(bh)) {
1842 clear_buffer_dirty(bh);
1843 submit_bh_wbc(write_op, bh, 0, wbc);
1844 nr_underway++;
1845 }
1846 bh = next;
1847 } while (bh != head);
1848 unlock_page(page);
1849 goto done;
1850}
1851
1852/*
1853 * If a page has any new buffers, zero them out here, and mark them uptodate
1854 * and dirty so they'll be written out (in order to prevent uninitialised
1855 * block data from leaking). And clear the new bit.
1856 */
1857void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1858{
1859 unsigned int block_start, block_end;
1860 struct buffer_head *head, *bh;
1861
1862 BUG_ON(!PageLocked(page));
1863 if (!page_has_buffers(page))
1864 return;
1865
1866 bh = head = page_buffers(page);
1867 block_start = 0;
1868 do {
1869 block_end = block_start + bh->b_size;
1870
1871 if (buffer_new(bh)) {
1872 if (block_end > from && block_start < to) {
1873 if (!PageUptodate(page)) {
1874 unsigned start, size;
1875
1876 start = max(from, block_start);
1877 size = min(to, block_end) - start;
1878
1879 zero_user(page, start, size);
1880 set_buffer_uptodate(bh);
1881 }
1882
1883 clear_buffer_new(bh);
1884 mark_buffer_dirty(bh);
1885 }
1886 }
1887
1888 block_start = block_end;
1889 bh = bh->b_this_page;
1890 } while (bh != head);
1891}
1892EXPORT_SYMBOL(page_zero_new_buffers);
1893
1894int __block_write_begin(struct page *page, loff_t pos, unsigned len,
1895 get_block_t *get_block)
1896{
1897 unsigned from = pos & (PAGE_SIZE - 1);
1898 unsigned to = from + len;
1899 struct inode *inode = page->mapping->host;
1900 unsigned block_start, block_end;
1901 sector_t block;
1902 int err = 0;
1903 unsigned blocksize, bbits;
1904 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1905
1906 BUG_ON(!PageLocked(page));
1907 BUG_ON(from > PAGE_SIZE);
1908 BUG_ON(to > PAGE_SIZE);
1909 BUG_ON(from > to);
1910
1911 head = create_page_buffers(page, inode, 0);
1912 blocksize = head->b_size;
1913 bbits = block_size_bits(blocksize);
1914
1915 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1916
1917 for(bh = head, block_start = 0; bh != head || !block_start;
1918 block++, block_start=block_end, bh = bh->b_this_page) {
1919 block_end = block_start + blocksize;
1920 if (block_end <= from || block_start >= to) {
1921 if (PageUptodate(page)) {
1922 if (!buffer_uptodate(bh))
1923 set_buffer_uptodate(bh);
1924 }
1925 continue;
1926 }
1927 if (buffer_new(bh))
1928 clear_buffer_new(bh);
1929 if (!buffer_mapped(bh)) {
1930 WARN_ON(bh->b_size != blocksize);
1931 err = get_block(inode, block, bh, 1);
1932 if (err)
1933 break;
1934 if (buffer_new(bh)) {
1935 unmap_underlying_metadata(bh->b_bdev,
1936 bh->b_blocknr);
1937 if (PageUptodate(page)) {
1938 clear_buffer_new(bh);
1939 set_buffer_uptodate(bh);
1940 mark_buffer_dirty(bh);
1941 continue;
1942 }
1943 if (block_end > to || block_start < from)
1944 zero_user_segments(page,
1945 to, block_end,
1946 block_start, from);
1947 continue;
1948 }
1949 }
1950 if (PageUptodate(page)) {
1951 if (!buffer_uptodate(bh))
1952 set_buffer_uptodate(bh);
1953 continue;
1954 }
1955 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1956 !buffer_unwritten(bh) &&
1957 (block_start < from || block_end > to)) {
1958 ll_rw_block(READ, 1, &bh);
1959 *wait_bh++=bh;
1960 }
1961 }
1962 /*
1963 * If we issued read requests - let them complete.
1964 */
1965 while(wait_bh > wait) {
1966 wait_on_buffer(*--wait_bh);
1967 if (!buffer_uptodate(*wait_bh))
1968 err = -EIO;
1969 }
1970 if (unlikely(err))
1971 page_zero_new_buffers(page, from, to);
1972 return err;
1973}
1974EXPORT_SYMBOL(__block_write_begin);
1975
1976static int __block_commit_write(struct inode *inode, struct page *page,
1977 unsigned from, unsigned to)
1978{
1979 unsigned block_start, block_end;
1980 int partial = 0;
1981 unsigned blocksize;
1982 struct buffer_head *bh, *head;
1983
1984 bh = head = page_buffers(page);
1985 blocksize = bh->b_size;
1986
1987 block_start = 0;
1988 do {
1989 block_end = block_start + blocksize;
1990 if (block_end <= from || block_start >= to) {
1991 if (!buffer_uptodate(bh))
1992 partial = 1;
1993 } else {
1994 set_buffer_uptodate(bh);
1995 mark_buffer_dirty(bh);
1996 }
1997 clear_buffer_new(bh);
1998
1999 block_start = block_end;
2000 bh = bh->b_this_page;
2001 } while (bh != head);
2002
2003 /*
2004 * If this is a partial write which happened to make all buffers
2005 * uptodate then we can optimize away a bogus readpage() for
2006 * the next read(). Here we 'discover' whether the page went
2007 * uptodate as a result of this (potentially partial) write.
2008 */
2009 if (!partial)
2010 SetPageUptodate(page);
2011 return 0;
2012}
2013
2014/*
2015 * block_write_begin takes care of the basic task of block allocation and
2016 * bringing partial write blocks uptodate first.
2017 *
2018 * The filesystem needs to handle block truncation upon failure.
2019 */
2020int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2021 unsigned flags, struct page **pagep, get_block_t *get_block)
2022{
2023 pgoff_t index = pos >> PAGE_SHIFT;
2024 struct page *page;
2025 int status;
2026
2027 page = grab_cache_page_write_begin(mapping, index, flags);
2028 if (!page)
2029 return -ENOMEM;
2030
2031 status = __block_write_begin(page, pos, len, get_block);
2032 if (unlikely(status)) {
2033 unlock_page(page);
2034 put_page(page);
2035 page = NULL;
2036 }
2037
2038 *pagep = page;
2039 return status;
2040}
2041EXPORT_SYMBOL(block_write_begin);
2042
2043int block_write_end(struct file *file, struct address_space *mapping,
2044 loff_t pos, unsigned len, unsigned copied,
2045 struct page *page, void *fsdata)
2046{
2047 struct inode *inode = mapping->host;
2048 unsigned start;
2049
2050 start = pos & (PAGE_SIZE - 1);
2051
2052 if (unlikely(copied < len)) {
2053 /*
2054 * The buffers that were written will now be uptodate, so we
2055 * don't have to worry about a readpage reading them and
2056 * overwriting a partial write. However if we have encountered
2057 * a short write and only partially written into a buffer, it
2058 * will not be marked uptodate, so a readpage might come in and
2059 * destroy our partial write.
2060 *
2061 * Do the simplest thing, and just treat any short write to a
2062 * non uptodate page as a zero-length write, and force the
2063 * caller to redo the whole thing.
2064 */
2065 if (!PageUptodate(page))
2066 copied = 0;
2067
2068 page_zero_new_buffers(page, start+copied, start+len);
2069 }
2070 flush_dcache_page(page);
2071
2072 /* This could be a short (even 0-length) commit */
2073 __block_commit_write(inode, page, start, start+copied);
2074
2075 return copied;
2076}
2077EXPORT_SYMBOL(block_write_end);
2078
2079int generic_write_end(struct file *file, struct address_space *mapping,
2080 loff_t pos, unsigned len, unsigned copied,
2081 struct page *page, void *fsdata)
2082{
2083 struct inode *inode = mapping->host;
2084 loff_t old_size = inode->i_size;
2085 int i_size_changed = 0;
2086
2087 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2088
2089 /*
2090 * No need to use i_size_read() here, the i_size
2091 * cannot change under us because we hold i_mutex.
2092 *
2093 * But it's important to update i_size while still holding page lock:
2094 * page writeout could otherwise come in and zero beyond i_size.
2095 */
2096 if (pos+copied > inode->i_size) {
2097 i_size_write(inode, pos+copied);
2098 i_size_changed = 1;
2099 }
2100
2101 unlock_page(page);
2102 put_page(page);
2103
2104 if (old_size < pos)
2105 pagecache_isize_extended(inode, old_size, pos);
2106 /*
2107 * Don't mark the inode dirty under page lock. First, it unnecessarily
2108 * makes the holding time of page lock longer. Second, it forces lock
2109 * ordering of page lock and transaction start for journaling
2110 * filesystems.
2111 */
2112 if (i_size_changed)
2113 mark_inode_dirty(inode);
2114
2115 return copied;
2116}
2117EXPORT_SYMBOL(generic_write_end);
2118
2119/*
2120 * block_is_partially_uptodate checks whether buffers within a page are
2121 * uptodate or not.
2122 *
2123 * Returns true if all buffers which correspond to a file portion
2124 * we want to read are uptodate.
2125 */
2126int block_is_partially_uptodate(struct page *page, unsigned long from,
2127 unsigned long count)
2128{
2129 unsigned block_start, block_end, blocksize;
2130 unsigned to;
2131 struct buffer_head *bh, *head;
2132 int ret = 1;
2133
2134 if (!page_has_buffers(page))
2135 return 0;
2136
2137 head = page_buffers(page);
2138 blocksize = head->b_size;
2139 to = min_t(unsigned, PAGE_SIZE - from, count);
2140 to = from + to;
2141 if (from < blocksize && to > PAGE_SIZE - blocksize)
2142 return 0;
2143
2144 bh = head;
2145 block_start = 0;
2146 do {
2147 block_end = block_start + blocksize;
2148 if (block_end > from && block_start < to) {
2149 if (!buffer_uptodate(bh)) {
2150 ret = 0;
2151 break;
2152 }
2153 if (block_end >= to)
2154 break;
2155 }
2156 block_start = block_end;
2157 bh = bh->b_this_page;
2158 } while (bh != head);
2159
2160 return ret;
2161}
2162EXPORT_SYMBOL(block_is_partially_uptodate);
2163
2164/*
2165 * Generic "read page" function for block devices that have the normal
2166 * get_block functionality. This is most of the block device filesystems.
2167 * Reads the page asynchronously --- the unlock_buffer() and
2168 * set/clear_buffer_uptodate() functions propagate buffer state into the
2169 * page struct once IO has completed.
2170 */
2171int block_read_full_page(struct page *page, get_block_t *get_block)
2172{
2173 struct inode *inode = page->mapping->host;
2174 sector_t iblock, lblock;
2175 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2176 unsigned int blocksize, bbits;
2177 int nr, i;
2178 int fully_mapped = 1;
2179
2180 head = create_page_buffers(page, inode, 0);
2181 blocksize = head->b_size;
2182 bbits = block_size_bits(blocksize);
2183
2184 iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2185 lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2186 bh = head;
2187 nr = 0;
2188 i = 0;
2189
2190 do {
2191 if (buffer_uptodate(bh))
2192 continue;
2193
2194 if (!buffer_mapped(bh)) {
2195 int err = 0;
2196
2197 fully_mapped = 0;
2198 if (iblock < lblock) {
2199 WARN_ON(bh->b_size != blocksize);
2200 err = get_block(inode, iblock, bh, 0);
2201 if (err)
2202 SetPageError(page);
2203 }
2204 if (!buffer_mapped(bh)) {
2205 zero_user(page, i * blocksize, blocksize);
2206 if (!err)
2207 set_buffer_uptodate(bh);
2208 continue;
2209 }
2210 /*
2211 * get_block() might have updated the buffer
2212 * synchronously
2213 */
2214 if (buffer_uptodate(bh))
2215 continue;
2216 }
2217 arr[nr++] = bh;
2218 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2219
2220 if (fully_mapped)
2221 SetPageMappedToDisk(page);
2222
2223 if (!nr) {
2224 /*
2225 * All buffers are uptodate - we can set the page uptodate
2226 * as well. But not if get_block() returned an error.
2227 */
2228 if (!PageError(page))
2229 SetPageUptodate(page);
2230 unlock_page(page);
2231 return 0;
2232 }
2233
2234 /* Stage two: lock the buffers */
2235 for (i = 0; i < nr; i++) {
2236 bh = arr[i];
2237 lock_buffer(bh);
2238 mark_buffer_async_read(bh);
2239 }
2240
2241 /*
2242 * Stage 3: start the IO. Check for uptodateness
2243 * inside the buffer lock in case another process reading
2244 * the underlying blockdev brought it uptodate (the sct fix).
2245 */
2246 for (i = 0; i < nr; i++) {
2247 bh = arr[i];
2248 if (buffer_uptodate(bh))
2249 end_buffer_async_read(bh, 1);
2250 else
2251 submit_bh(READ, bh);
2252 }
2253 return 0;
2254}
2255EXPORT_SYMBOL(block_read_full_page);
2256
2257/* utility function for filesystems that need to do work on expanding
2258 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2259 * deal with the hole.
2260 */
2261int generic_cont_expand_simple(struct inode *inode, loff_t size)
2262{
2263 struct address_space *mapping = inode->i_mapping;
2264 struct page *page;
2265 void *fsdata;
2266 int err;
2267
2268 err = inode_newsize_ok(inode, size);
2269 if (err)
2270 goto out;
2271
2272 err = pagecache_write_begin(NULL, mapping, size, 0,
2273 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2274 &page, &fsdata);
2275 if (err)
2276 goto out;
2277
2278 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2279 BUG_ON(err > 0);
2280
2281out:
2282 return err;
2283}
2284EXPORT_SYMBOL(generic_cont_expand_simple);
2285
2286static int cont_expand_zero(struct file *file, struct address_space *mapping,
2287 loff_t pos, loff_t *bytes)
2288{
2289 struct inode *inode = mapping->host;
2290 unsigned blocksize = 1 << inode->i_blkbits;
2291 struct page *page;
2292 void *fsdata;
2293 pgoff_t index, curidx;
2294 loff_t curpos;
2295 unsigned zerofrom, offset, len;
2296 int err = 0;
2297
2298 index = pos >> PAGE_SHIFT;
2299 offset = pos & ~PAGE_MASK;
2300
2301 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2302 zerofrom = curpos & ~PAGE_MASK;
2303 if (zerofrom & (blocksize-1)) {
2304 *bytes |= (blocksize-1);
2305 (*bytes)++;
2306 }
2307 len = PAGE_SIZE - zerofrom;
2308
2309 err = pagecache_write_begin(file, mapping, curpos, len,
2310 AOP_FLAG_UNINTERRUPTIBLE,
2311 &page, &fsdata);
2312 if (err)
2313 goto out;
2314 zero_user(page, zerofrom, len);
2315 err = pagecache_write_end(file, mapping, curpos, len, len,
2316 page, fsdata);
2317 if (err < 0)
2318 goto out;
2319 BUG_ON(err != len);
2320 err = 0;
2321
2322 balance_dirty_pages_ratelimited(mapping);
2323
2324 if (unlikely(fatal_signal_pending(current))) {
2325 err = -EINTR;
2326 goto out;
2327 }
2328 }
2329
2330 /* page covers the boundary, find the boundary offset */
2331 if (index == curidx) {
2332 zerofrom = curpos & ~PAGE_MASK;
2333 /* if we will expand the thing last block will be filled */
2334 if (offset <= zerofrom) {
2335 goto out;
2336 }
2337 if (zerofrom & (blocksize-1)) {
2338 *bytes |= (blocksize-1);
2339 (*bytes)++;
2340 }
2341 len = offset - zerofrom;
2342
2343 err = pagecache_write_begin(file, mapping, curpos, len,
2344 AOP_FLAG_UNINTERRUPTIBLE,
2345 &page, &fsdata);
2346 if (err)
2347 goto out;
2348 zero_user(page, zerofrom, len);
2349 err = pagecache_write_end(file, mapping, curpos, len, len,
2350 page, fsdata);
2351 if (err < 0)
2352 goto out;
2353 BUG_ON(err != len);
2354 err = 0;
2355 }
2356out:
2357 return err;
2358}
2359
2360/*
2361 * For moronic filesystems that do not allow holes in file.
2362 * We may have to extend the file.
2363 */
2364int cont_write_begin(struct file *file, struct address_space *mapping,
2365 loff_t pos, unsigned len, unsigned flags,
2366 struct page **pagep, void **fsdata,
2367 get_block_t *get_block, loff_t *bytes)
2368{
2369 struct inode *inode = mapping->host;
2370 unsigned blocksize = 1 << inode->i_blkbits;
2371 unsigned zerofrom;
2372 int err;
2373
2374 err = cont_expand_zero(file, mapping, pos, bytes);
2375 if (err)
2376 return err;
2377
2378 zerofrom = *bytes & ~PAGE_MASK;
2379 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2380 *bytes |= (blocksize-1);
2381 (*bytes)++;
2382 }
2383
2384 return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2385}
2386EXPORT_SYMBOL(cont_write_begin);
2387
2388int block_commit_write(struct page *page, unsigned from, unsigned to)
2389{
2390 struct inode *inode = page->mapping->host;
2391 __block_commit_write(inode,page,from,to);
2392 return 0;
2393}
2394EXPORT_SYMBOL(block_commit_write);
2395
2396/*
2397 * block_page_mkwrite() is not allowed to change the file size as it gets
2398 * called from a page fault handler when a page is first dirtied. Hence we must
2399 * be careful to check for EOF conditions here. We set the page up correctly
2400 * for a written page which means we get ENOSPC checking when writing into
2401 * holes and correct delalloc and unwritten extent mapping on filesystems that
2402 * support these features.
2403 *
2404 * We are not allowed to take the i_mutex here so we have to play games to
2405 * protect against truncate races as the page could now be beyond EOF. Because
2406 * truncate writes the inode size before removing pages, once we have the
2407 * page lock we can determine safely if the page is beyond EOF. If it is not
2408 * beyond EOF, then the page is guaranteed safe against truncation until we
2409 * unlock the page.
2410 *
2411 * Direct callers of this function should protect against filesystem freezing
2412 * using sb_start_pagefault() - sb_end_pagefault() functions.
2413 */
2414int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2415 get_block_t get_block)
2416{
2417 struct page *page = vmf->page;
2418 struct inode *inode = file_inode(vma->vm_file);
2419 unsigned long end;
2420 loff_t size;
2421 int ret;
2422
2423 lock_page(page);
2424 size = i_size_read(inode);
2425 if ((page->mapping != inode->i_mapping) ||
2426 (page_offset(page) > size)) {
2427 /* We overload EFAULT to mean page got truncated */
2428 ret = -EFAULT;
2429 goto out_unlock;
2430 }
2431
2432 /* page is wholly or partially inside EOF */
2433 if (((page->index + 1) << PAGE_SHIFT) > size)
2434 end = size & ~PAGE_MASK;
2435 else
2436 end = PAGE_SIZE;
2437
2438 ret = __block_write_begin(page, 0, end, get_block);
2439 if (!ret)
2440 ret = block_commit_write(page, 0, end);
2441
2442 if (unlikely(ret < 0))
2443 goto out_unlock;
2444 set_page_dirty(page);
2445 wait_for_stable_page(page);
2446 return 0;
2447out_unlock:
2448 unlock_page(page);
2449 return ret;
2450}
2451EXPORT_SYMBOL(block_page_mkwrite);
2452
2453/*
2454 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2455 * immediately, while under the page lock. So it needs a special end_io
2456 * handler which does not touch the bh after unlocking it.
2457 */
2458static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2459{
2460 __end_buffer_read_notouch(bh, uptodate);
2461}
2462
2463/*
2464 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2465 * the page (converting it to circular linked list and taking care of page
2466 * dirty races).
2467 */
2468static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2469{
2470 struct buffer_head *bh;
2471
2472 BUG_ON(!PageLocked(page));
2473
2474 spin_lock(&page->mapping->private_lock);
2475 bh = head;
2476 do {
2477 if (PageDirty(page))
2478 set_buffer_dirty(bh);
2479 if (!bh->b_this_page)
2480 bh->b_this_page = head;
2481 bh = bh->b_this_page;
2482 } while (bh != head);
2483 attach_page_buffers(page, head);
2484 spin_unlock(&page->mapping->private_lock);
2485}
2486
2487/*
2488 * On entry, the page is fully not uptodate.
2489 * On exit the page is fully uptodate in the areas outside (from,to)
2490 * The filesystem needs to handle block truncation upon failure.
2491 */
2492int nobh_write_begin(struct address_space *mapping,
2493 loff_t pos, unsigned len, unsigned flags,
2494 struct page **pagep, void **fsdata,
2495 get_block_t *get_block)
2496{
2497 struct inode *inode = mapping->host;
2498 const unsigned blkbits = inode->i_blkbits;
2499 const unsigned blocksize = 1 << blkbits;
2500 struct buffer_head *head, *bh;
2501 struct page *page;
2502 pgoff_t index;
2503 unsigned from, to;
2504 unsigned block_in_page;
2505 unsigned block_start, block_end;
2506 sector_t block_in_file;
2507 int nr_reads = 0;
2508 int ret = 0;
2509 int is_mapped_to_disk = 1;
2510
2511 index = pos >> PAGE_SHIFT;
2512 from = pos & (PAGE_SIZE - 1);
2513 to = from + len;
2514
2515 page = grab_cache_page_write_begin(mapping, index, flags);
2516 if (!page)
2517 return -ENOMEM;
2518 *pagep = page;
2519 *fsdata = NULL;
2520
2521 if (page_has_buffers(page)) {
2522 ret = __block_write_begin(page, pos, len, get_block);
2523 if (unlikely(ret))
2524 goto out_release;
2525 return ret;
2526 }
2527
2528 if (PageMappedToDisk(page))
2529 return 0;
2530
2531 /*
2532 * Allocate buffers so that we can keep track of state, and potentially
2533 * attach them to the page if an error occurs. In the common case of
2534 * no error, they will just be freed again without ever being attached
2535 * to the page (which is all OK, because we're under the page lock).
2536 *
2537 * Be careful: the buffer linked list is a NULL terminated one, rather
2538 * than the circular one we're used to.
2539 */
2540 head = alloc_page_buffers(page, blocksize, 0);
2541 if (!head) {
2542 ret = -ENOMEM;
2543 goto out_release;
2544 }
2545
2546 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2547
2548 /*
2549 * We loop across all blocks in the page, whether or not they are
2550 * part of the affected region. This is so we can discover if the
2551 * page is fully mapped-to-disk.
2552 */
2553 for (block_start = 0, block_in_page = 0, bh = head;
2554 block_start < PAGE_SIZE;
2555 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2556 int create;
2557
2558 block_end = block_start + blocksize;
2559 bh->b_state = 0;
2560 create = 1;
2561 if (block_start >= to)
2562 create = 0;
2563 ret = get_block(inode, block_in_file + block_in_page,
2564 bh, create);
2565 if (ret)
2566 goto failed;
2567 if (!buffer_mapped(bh))
2568 is_mapped_to_disk = 0;
2569 if (buffer_new(bh))
2570 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2571 if (PageUptodate(page)) {
2572 set_buffer_uptodate(bh);
2573 continue;
2574 }
2575 if (buffer_new(bh) || !buffer_mapped(bh)) {
2576 zero_user_segments(page, block_start, from,
2577 to, block_end);
2578 continue;
2579 }
2580 if (buffer_uptodate(bh))
2581 continue; /* reiserfs does this */
2582 if (block_start < from || block_end > to) {
2583 lock_buffer(bh);
2584 bh->b_end_io = end_buffer_read_nobh;
2585 submit_bh(READ, bh);
2586 nr_reads++;
2587 }
2588 }
2589
2590 if (nr_reads) {
2591 /*
2592 * The page is locked, so these buffers are protected from
2593 * any VM or truncate activity. Hence we don't need to care
2594 * for the buffer_head refcounts.
2595 */
2596 for (bh = head; bh; bh = bh->b_this_page) {
2597 wait_on_buffer(bh);
2598 if (!buffer_uptodate(bh))
2599 ret = -EIO;
2600 }
2601 if (ret)
2602 goto failed;
2603 }
2604
2605 if (is_mapped_to_disk)
2606 SetPageMappedToDisk(page);
2607
2608 *fsdata = head; /* to be released by nobh_write_end */
2609
2610 return 0;
2611
2612failed:
2613 BUG_ON(!ret);
2614 /*
2615 * Error recovery is a bit difficult. We need to zero out blocks that
2616 * were newly allocated, and dirty them to ensure they get written out.
2617 * Buffers need to be attached to the page at this point, otherwise
2618 * the handling of potential IO errors during writeout would be hard
2619 * (could try doing synchronous writeout, but what if that fails too?)
2620 */
2621 attach_nobh_buffers(page, head);
2622 page_zero_new_buffers(page, from, to);
2623
2624out_release:
2625 unlock_page(page);
2626 put_page(page);
2627 *pagep = NULL;
2628
2629 return ret;
2630}
2631EXPORT_SYMBOL(nobh_write_begin);
2632
2633int nobh_write_end(struct file *file, struct address_space *mapping,
2634 loff_t pos, unsigned len, unsigned copied,
2635 struct page *page, void *fsdata)
2636{
2637 struct inode *inode = page->mapping->host;
2638 struct buffer_head *head = fsdata;
2639 struct buffer_head *bh;
2640 BUG_ON(fsdata != NULL && page_has_buffers(page));
2641
2642 if (unlikely(copied < len) && head)
2643 attach_nobh_buffers(page, head);
2644 if (page_has_buffers(page))
2645 return generic_write_end(file, mapping, pos, len,
2646 copied, page, fsdata);
2647
2648 SetPageUptodate(page);
2649 set_page_dirty(page);
2650 if (pos+copied > inode->i_size) {
2651 i_size_write(inode, pos+copied);
2652 mark_inode_dirty(inode);
2653 }
2654
2655 unlock_page(page);
2656 put_page(page);
2657
2658 while (head) {
2659 bh = head;
2660 head = head->b_this_page;
2661 free_buffer_head(bh);
2662 }
2663
2664 return copied;
2665}
2666EXPORT_SYMBOL(nobh_write_end);
2667
2668/*
2669 * nobh_writepage() - based on block_full_write_page() except
2670 * that it tries to operate without attaching bufferheads to
2671 * the page.
2672 */
2673int nobh_writepage(struct page *page, get_block_t *get_block,
2674 struct writeback_control *wbc)
2675{
2676 struct inode * const inode = page->mapping->host;
2677 loff_t i_size = i_size_read(inode);
2678 const pgoff_t end_index = i_size >> PAGE_SHIFT;
2679 unsigned offset;
2680 int ret;
2681
2682 /* Is the page fully inside i_size? */
2683 if (page->index < end_index)
2684 goto out;
2685
2686 /* Is the page fully outside i_size? (truncate in progress) */
2687 offset = i_size & (PAGE_SIZE-1);
2688 if (page->index >= end_index+1 || !offset) {
2689 /*
2690 * The page may have dirty, unmapped buffers. For example,
2691 * they may have been added in ext3_writepage(). Make them
2692 * freeable here, so the page does not leak.
2693 */
2694#if 0
2695 /* Not really sure about this - do we need this ? */
2696 if (page->mapping->a_ops->invalidatepage)
2697 page->mapping->a_ops->invalidatepage(page, offset);
2698#endif
2699 unlock_page(page);
2700 return 0; /* don't care */
2701 }
2702
2703 /*
2704 * The page straddles i_size. It must be zeroed out on each and every
2705 * writepage invocation because it may be mmapped. "A file is mapped
2706 * in multiples of the page size. For a file that is not a multiple of
2707 * the page size, the remaining memory is zeroed when mapped, and
2708 * writes to that region are not written out to the file."
2709 */
2710 zero_user_segment(page, offset, PAGE_SIZE);
2711out:
2712 ret = mpage_writepage(page, get_block, wbc);
2713 if (ret == -EAGAIN)
2714 ret = __block_write_full_page(inode, page, get_block, wbc,
2715 end_buffer_async_write);
2716 return ret;
2717}
2718EXPORT_SYMBOL(nobh_writepage);
2719
2720int nobh_truncate_page(struct address_space *mapping,
2721 loff_t from, get_block_t *get_block)
2722{
2723 pgoff_t index = from >> PAGE_SHIFT;
2724 unsigned offset = from & (PAGE_SIZE-1);
2725 unsigned blocksize;
2726 sector_t iblock;
2727 unsigned length, pos;
2728 struct inode *inode = mapping->host;
2729 struct page *page;
2730 struct buffer_head map_bh;
2731 int err;
2732
2733 blocksize = 1 << inode->i_blkbits;
2734 length = offset & (blocksize - 1);
2735
2736 /* Block boundary? Nothing to do */
2737 if (!length)
2738 return 0;
2739
2740 length = blocksize - length;
2741 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2742
2743 page = grab_cache_page(mapping, index);
2744 err = -ENOMEM;
2745 if (!page)
2746 goto out;
2747
2748 if (page_has_buffers(page)) {
2749has_buffers:
2750 unlock_page(page);
2751 put_page(page);
2752 return block_truncate_page(mapping, from, get_block);
2753 }
2754
2755 /* Find the buffer that contains "offset" */
2756 pos = blocksize;
2757 while (offset >= pos) {
2758 iblock++;
2759 pos += blocksize;
2760 }
2761
2762 map_bh.b_size = blocksize;
2763 map_bh.b_state = 0;
2764 err = get_block(inode, iblock, &map_bh, 0);
2765 if (err)
2766 goto unlock;
2767 /* unmapped? It's a hole - nothing to do */
2768 if (!buffer_mapped(&map_bh))
2769 goto unlock;
2770
2771 /* Ok, it's mapped. Make sure it's up-to-date */
2772 if (!PageUptodate(page)) {
2773 err = mapping->a_ops->readpage(NULL, page);
2774 if (err) {
2775 put_page(page);
2776 goto out;
2777 }
2778 lock_page(page);
2779 if (!PageUptodate(page)) {
2780 err = -EIO;
2781 goto unlock;
2782 }
2783 if (page_has_buffers(page))
2784 goto has_buffers;
2785 }
2786 zero_user(page, offset, length);
2787 set_page_dirty(page);
2788 err = 0;
2789
2790unlock:
2791 unlock_page(page);
2792 put_page(page);
2793out:
2794 return err;
2795}
2796EXPORT_SYMBOL(nobh_truncate_page);
2797
2798int block_truncate_page(struct address_space *mapping,
2799 loff_t from, get_block_t *get_block)
2800{
2801 pgoff_t index = from >> PAGE_SHIFT;
2802 unsigned offset = from & (PAGE_SIZE-1);
2803 unsigned blocksize;
2804 sector_t iblock;
2805 unsigned length, pos;
2806 struct inode *inode = mapping->host;
2807 struct page *page;
2808 struct buffer_head *bh;
2809 int err;
2810
2811 blocksize = 1 << inode->i_blkbits;
2812 length = offset & (blocksize - 1);
2813
2814 /* Block boundary? Nothing to do */
2815 if (!length)
2816 return 0;
2817
2818 length = blocksize - length;
2819 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2820
2821 page = grab_cache_page(mapping, index);
2822 err = -ENOMEM;
2823 if (!page)
2824 goto out;
2825
2826 if (!page_has_buffers(page))
2827 create_empty_buffers(page, blocksize, 0);
2828
2829 /* Find the buffer that contains "offset" */
2830 bh = page_buffers(page);
2831 pos = blocksize;
2832 while (offset >= pos) {
2833 bh = bh->b_this_page;
2834 iblock++;
2835 pos += blocksize;
2836 }
2837
2838 err = 0;
2839 if (!buffer_mapped(bh)) {
2840 WARN_ON(bh->b_size != blocksize);
2841 err = get_block(inode, iblock, bh, 0);
2842 if (err)
2843 goto unlock;
2844 /* unmapped? It's a hole - nothing to do */
2845 if (!buffer_mapped(bh))
2846 goto unlock;
2847 }
2848
2849 /* Ok, it's mapped. Make sure it's up-to-date */
2850 if (PageUptodate(page))
2851 set_buffer_uptodate(bh);
2852
2853 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2854 err = -EIO;
2855 ll_rw_block(READ, 1, &bh);
2856 wait_on_buffer(bh);
2857 /* Uhhuh. Read error. Complain and punt. */
2858 if (!buffer_uptodate(bh))
2859 goto unlock;
2860 }
2861
2862 zero_user(page, offset, length);
2863 mark_buffer_dirty(bh);
2864 err = 0;
2865
2866unlock:
2867 unlock_page(page);
2868 put_page(page);
2869out:
2870 return err;
2871}
2872EXPORT_SYMBOL(block_truncate_page);
2873
2874/*
2875 * The generic ->writepage function for buffer-backed address_spaces
2876 */
2877int block_write_full_page(struct page *page, get_block_t *get_block,
2878 struct writeback_control *wbc)
2879{
2880 struct inode * const inode = page->mapping->host;
2881 loff_t i_size = i_size_read(inode);
2882 const pgoff_t end_index = i_size >> PAGE_SHIFT;
2883 unsigned offset;
2884
2885 /* Is the page fully inside i_size? */
2886 if (page->index < end_index)
2887 return __block_write_full_page(inode, page, get_block, wbc,
2888 end_buffer_async_write);
2889
2890 /* Is the page fully outside i_size? (truncate in progress) */
2891 offset = i_size & (PAGE_SIZE-1);
2892 if (page->index >= end_index+1 || !offset) {
2893 /*
2894 * The page may have dirty, unmapped buffers. For example,
2895 * they may have been added in ext3_writepage(). Make them
2896 * freeable here, so the page does not leak.
2897 */
2898 do_invalidatepage(page, 0, PAGE_SIZE);
2899 unlock_page(page);
2900 return 0; /* don't care */
2901 }
2902
2903 /*
2904 * The page straddles i_size. It must be zeroed out on each and every
2905 * writepage invocation because it may be mmapped. "A file is mapped
2906 * in multiples of the page size. For a file that is not a multiple of
2907 * the page size, the remaining memory is zeroed when mapped, and
2908 * writes to that region are not written out to the file."
2909 */
2910 zero_user_segment(page, offset, PAGE_SIZE);
2911 return __block_write_full_page(inode, page, get_block, wbc,
2912 end_buffer_async_write);
2913}
2914EXPORT_SYMBOL(block_write_full_page);
2915
2916sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2917 get_block_t *get_block)
2918{
2919 struct buffer_head tmp;
2920 struct inode *inode = mapping->host;
2921 tmp.b_state = 0;
2922 tmp.b_blocknr = 0;
2923 tmp.b_size = 1 << inode->i_blkbits;
2924 get_block(inode, block, &tmp, 0);
2925 return tmp.b_blocknr;
2926}
2927EXPORT_SYMBOL(generic_block_bmap);
2928
2929static void end_bio_bh_io_sync(struct bio *bio)
2930{
2931 struct buffer_head *bh = bio->bi_private;
2932
2933 if (unlikely(bio_flagged(bio, BIO_QUIET)))
2934 set_bit(BH_Quiet, &bh->b_state);
2935
2936 bh->b_end_io(bh, !bio->bi_error);
2937 bio_put(bio);
2938}
2939
2940/*
2941 * This allows us to do IO even on the odd last sectors
2942 * of a device, even if the block size is some multiple
2943 * of the physical sector size.
2944 *
2945 * We'll just truncate the bio to the size of the device,
2946 * and clear the end of the buffer head manually.
2947 *
2948 * Truly out-of-range accesses will turn into actual IO
2949 * errors, this only handles the "we need to be able to
2950 * do IO at the final sector" case.
2951 */
2952void guard_bio_eod(int rw, struct bio *bio)
2953{
2954 sector_t maxsector;
2955 struct bio_vec *bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
2956 unsigned truncated_bytes;
2957
2958 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
2959 if (!maxsector)
2960 return;
2961
2962 /*
2963 * If the *whole* IO is past the end of the device,
2964 * let it through, and the IO layer will turn it into
2965 * an EIO.
2966 */
2967 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
2968 return;
2969
2970 maxsector -= bio->bi_iter.bi_sector;
2971 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
2972 return;
2973
2974 /* Uhhuh. We've got a bio that straddles the device size! */
2975 truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
2976
2977 /* Truncate the bio.. */
2978 bio->bi_iter.bi_size -= truncated_bytes;
2979 bvec->bv_len -= truncated_bytes;
2980
2981 /* ..and clear the end of the buffer for reads */
2982 if ((rw & RW_MASK) == READ) {
2983 zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len,
2984 truncated_bytes);
2985 }
2986}
2987
2988static int submit_bh_wbc(int rw, struct buffer_head *bh,
2989 unsigned long bio_flags, struct writeback_control *wbc)
2990{
2991 struct bio *bio;
2992
2993 BUG_ON(!buffer_locked(bh));
2994 BUG_ON(!buffer_mapped(bh));
2995 BUG_ON(!bh->b_end_io);
2996 BUG_ON(buffer_delay(bh));
2997 BUG_ON(buffer_unwritten(bh));
2998
2999 /*
3000 * Only clear out a write error when rewriting
3001 */
3002 if (test_set_buffer_req(bh) && (rw & WRITE))
3003 clear_buffer_write_io_error(bh);
3004
3005 /*
3006 * from here on down, it's all bio -- do the initial mapping,
3007 * submit_bio -> generic_make_request may further map this bio around
3008 */
3009 bio = bio_alloc(GFP_NOIO, 1);
3010
3011 if (wbc) {
3012 wbc_init_bio(wbc, bio);
3013 wbc_account_io(wbc, bh->b_page, bh->b_size);
3014 }
3015
3016 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3017 bio->bi_bdev = bh->b_bdev;
3018
3019 bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3020 BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3021
3022 bio->bi_end_io = end_bio_bh_io_sync;
3023 bio->bi_private = bh;
3024 bio->bi_flags |= bio_flags;
3025
3026 /* Take care of bh's that straddle the end of the device */
3027 guard_bio_eod(rw, bio);
3028
3029 if (buffer_meta(bh))
3030 rw |= REQ_META;
3031 if (buffer_prio(bh))
3032 rw |= REQ_PRIO;
3033
3034 submit_bio(rw, bio);
3035 return 0;
3036}
3037
3038int _submit_bh(int rw, struct buffer_head *bh, unsigned long bio_flags)
3039{
3040 return submit_bh_wbc(rw, bh, bio_flags, NULL);
3041}
3042EXPORT_SYMBOL_GPL(_submit_bh);
3043
3044int submit_bh(int rw, struct buffer_head *bh)
3045{
3046 return submit_bh_wbc(rw, bh, 0, NULL);
3047}
3048EXPORT_SYMBOL(submit_bh);
3049
3050/**
3051 * ll_rw_block: low-level access to block devices (DEPRECATED)
3052 * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
3053 * @nr: number of &struct buffer_heads in the array
3054 * @bhs: array of pointers to &struct buffer_head
3055 *
3056 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3057 * requests an I/O operation on them, either a %READ or a %WRITE. The third
3058 * %READA option is described in the documentation for generic_make_request()
3059 * which ll_rw_block() calls.
3060 *
3061 * This function drops any buffer that it cannot get a lock on (with the
3062 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3063 * request, and any buffer that appears to be up-to-date when doing read
3064 * request. Further it marks as clean buffers that are processed for
3065 * writing (the buffer cache won't assume that they are actually clean
3066 * until the buffer gets unlocked).
3067 *
3068 * ll_rw_block sets b_end_io to simple completion handler that marks
3069 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3070 * any waiters.
3071 *
3072 * All of the buffers must be for the same device, and must also be a
3073 * multiple of the current approved size for the device.
3074 */
3075void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
3076{
3077 int i;
3078
3079 for (i = 0; i < nr; i++) {
3080 struct buffer_head *bh = bhs[i];
3081
3082 if (!trylock_buffer(bh))
3083 continue;
3084 if (rw == WRITE) {
3085 if (test_clear_buffer_dirty(bh)) {
3086 bh->b_end_io = end_buffer_write_sync;
3087 get_bh(bh);
3088 submit_bh(WRITE, bh);
3089 continue;
3090 }
3091 } else {
3092 if (!buffer_uptodate(bh)) {
3093 bh->b_end_io = end_buffer_read_sync;
3094 get_bh(bh);
3095 submit_bh(rw, bh);
3096 continue;
3097 }
3098 }
3099 unlock_buffer(bh);
3100 }
3101}
3102EXPORT_SYMBOL(ll_rw_block);
3103
3104void write_dirty_buffer(struct buffer_head *bh, int rw)
3105{
3106 lock_buffer(bh);
3107 if (!test_clear_buffer_dirty(bh)) {
3108 unlock_buffer(bh);
3109 return;
3110 }
3111 bh->b_end_io = end_buffer_write_sync;
3112 get_bh(bh);
3113 submit_bh(rw, bh);
3114}
3115EXPORT_SYMBOL(write_dirty_buffer);
3116
3117/*
3118 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3119 * and then start new I/O and then wait upon it. The caller must have a ref on
3120 * the buffer_head.
3121 */
3122int __sync_dirty_buffer(struct buffer_head *bh, int rw)
3123{
3124 int ret = 0;
3125
3126 WARN_ON(atomic_read(&bh->b_count) < 1);
3127 lock_buffer(bh);
3128 if (test_clear_buffer_dirty(bh)) {
3129 get_bh(bh);
3130 bh->b_end_io = end_buffer_write_sync;
3131 ret = submit_bh(rw, bh);
3132 wait_on_buffer(bh);
3133 if (!ret && !buffer_uptodate(bh))
3134 ret = -EIO;
3135 } else {
3136 unlock_buffer(bh);
3137 }
3138 return ret;
3139}
3140EXPORT_SYMBOL(__sync_dirty_buffer);
3141
3142int sync_dirty_buffer(struct buffer_head *bh)
3143{
3144 return __sync_dirty_buffer(bh, WRITE_SYNC);
3145}
3146EXPORT_SYMBOL(sync_dirty_buffer);
3147
3148/*
3149 * try_to_free_buffers() checks if all the buffers on this particular page
3150 * are unused, and releases them if so.
3151 *
3152 * Exclusion against try_to_free_buffers may be obtained by either
3153 * locking the page or by holding its mapping's private_lock.
3154 *
3155 * If the page is dirty but all the buffers are clean then we need to
3156 * be sure to mark the page clean as well. This is because the page
3157 * may be against a block device, and a later reattachment of buffers
3158 * to a dirty page will set *all* buffers dirty. Which would corrupt
3159 * filesystem data on the same device.
3160 *
3161 * The same applies to regular filesystem pages: if all the buffers are
3162 * clean then we set the page clean and proceed. To do that, we require
3163 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3164 * private_lock.
3165 *
3166 * try_to_free_buffers() is non-blocking.
3167 */
3168static inline int buffer_busy(struct buffer_head *bh)
3169{
3170 return atomic_read(&bh->b_count) |
3171 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3172}
3173
3174static int
3175drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3176{
3177 struct buffer_head *head = page_buffers(page);
3178 struct buffer_head *bh;
3179
3180 bh = head;
3181 do {
3182 if (buffer_write_io_error(bh) && page->mapping)
3183 set_bit(AS_EIO, &page->mapping->flags);
3184 if (buffer_busy(bh))
3185 goto failed;
3186 bh = bh->b_this_page;
3187 } while (bh != head);
3188
3189 do {
3190 struct buffer_head *next = bh->b_this_page;
3191
3192 if (bh->b_assoc_map)
3193 __remove_assoc_queue(bh);
3194 bh = next;
3195 } while (bh != head);
3196 *buffers_to_free = head;
3197 __clear_page_buffers(page);
3198 return 1;
3199failed:
3200 return 0;
3201}
3202
3203int try_to_free_buffers(struct page *page)
3204{
3205 struct address_space * const mapping = page->mapping;
3206 struct buffer_head *buffers_to_free = NULL;
3207 int ret = 0;
3208
3209 BUG_ON(!PageLocked(page));
3210 if (PageWriteback(page))
3211 return 0;
3212
3213 if (mapping == NULL) { /* can this still happen? */
3214 ret = drop_buffers(page, &buffers_to_free);
3215 goto out;
3216 }
3217
3218 spin_lock(&mapping->private_lock);
3219 ret = drop_buffers(page, &buffers_to_free);
3220
3221 /*
3222 * If the filesystem writes its buffers by hand (eg ext3)
3223 * then we can have clean buffers against a dirty page. We
3224 * clean the page here; otherwise the VM will never notice
3225 * that the filesystem did any IO at all.
3226 *
3227 * Also, during truncate, discard_buffer will have marked all
3228 * the page's buffers clean. We discover that here and clean
3229 * the page also.
3230 *
3231 * private_lock must be held over this entire operation in order
3232 * to synchronise against __set_page_dirty_buffers and prevent the
3233 * dirty bit from being lost.
3234 */
3235 if (ret)
3236 cancel_dirty_page(page);
3237 spin_unlock(&mapping->private_lock);
3238out:
3239 if (buffers_to_free) {
3240 struct buffer_head *bh = buffers_to_free;
3241
3242 do {
3243 struct buffer_head *next = bh->b_this_page;
3244 free_buffer_head(bh);
3245 bh = next;
3246 } while (bh != buffers_to_free);
3247 }
3248 return ret;
3249}
3250EXPORT_SYMBOL(try_to_free_buffers);
3251
3252/*
3253 * There are no bdflush tunables left. But distributions are
3254 * still running obsolete flush daemons, so we terminate them here.
3255 *
3256 * Use of bdflush() is deprecated and will be removed in a future kernel.
3257 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3258 */
3259SYSCALL_DEFINE2(bdflush, int, func, long, data)
3260{
3261 static int msg_count;
3262
3263 if (!capable(CAP_SYS_ADMIN))
3264 return -EPERM;
3265
3266 if (msg_count < 5) {
3267 msg_count++;
3268 printk(KERN_INFO
3269 "warning: process `%s' used the obsolete bdflush"
3270 " system call\n", current->comm);
3271 printk(KERN_INFO "Fix your initscripts?\n");
3272 }
3273
3274 if (func == 1)
3275 do_exit(0);
3276 return 0;
3277}
3278
3279/*
3280 * Buffer-head allocation
3281 */
3282static struct kmem_cache *bh_cachep __read_mostly;
3283
3284/*
3285 * Once the number of bh's in the machine exceeds this level, we start
3286 * stripping them in writeback.
3287 */
3288static unsigned long max_buffer_heads;
3289
3290int buffer_heads_over_limit;
3291
3292struct bh_accounting {
3293 int nr; /* Number of live bh's */
3294 int ratelimit; /* Limit cacheline bouncing */
3295};
3296
3297static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3298
3299static void recalc_bh_state(void)
3300{
3301 int i;
3302 int tot = 0;
3303
3304 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3305 return;
3306 __this_cpu_write(bh_accounting.ratelimit, 0);
3307 for_each_online_cpu(i)
3308 tot += per_cpu(bh_accounting, i).nr;
3309 buffer_heads_over_limit = (tot > max_buffer_heads);
3310}
3311
3312struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3313{
3314 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3315 if (ret) {
3316 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3317 preempt_disable();
3318 __this_cpu_inc(bh_accounting.nr);
3319 recalc_bh_state();
3320 preempt_enable();
3321 }
3322 return ret;
3323}
3324EXPORT_SYMBOL(alloc_buffer_head);
3325
3326void free_buffer_head(struct buffer_head *bh)
3327{
3328 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3329 kmem_cache_free(bh_cachep, bh);
3330 preempt_disable();
3331 __this_cpu_dec(bh_accounting.nr);
3332 recalc_bh_state();
3333 preempt_enable();
3334}
3335EXPORT_SYMBOL(free_buffer_head);
3336
3337static void buffer_exit_cpu(int cpu)
3338{
3339 int i;
3340 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3341
3342 for (i = 0; i < BH_LRU_SIZE; i++) {
3343 brelse(b->bhs[i]);
3344 b->bhs[i] = NULL;
3345 }
3346 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3347 per_cpu(bh_accounting, cpu).nr = 0;
3348}
3349
3350static int buffer_cpu_notify(struct notifier_block *self,
3351 unsigned long action, void *hcpu)
3352{
3353 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3354 buffer_exit_cpu((unsigned long)hcpu);
3355 return NOTIFY_OK;
3356}
3357
3358/**
3359 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3360 * @bh: struct buffer_head
3361 *
3362 * Return true if the buffer is up-to-date and false,
3363 * with the buffer locked, if not.
3364 */
3365int bh_uptodate_or_lock(struct buffer_head *bh)
3366{
3367 if (!buffer_uptodate(bh)) {
3368 lock_buffer(bh);
3369 if (!buffer_uptodate(bh))
3370 return 0;
3371 unlock_buffer(bh);
3372 }
3373 return 1;
3374}
3375EXPORT_SYMBOL(bh_uptodate_or_lock);
3376
3377/**
3378 * bh_submit_read - Submit a locked buffer for reading
3379 * @bh: struct buffer_head
3380 *
3381 * Returns zero on success and -EIO on error.
3382 */
3383int bh_submit_read(struct buffer_head *bh)
3384{
3385 BUG_ON(!buffer_locked(bh));
3386
3387 if (buffer_uptodate(bh)) {
3388 unlock_buffer(bh);
3389 return 0;
3390 }
3391
3392 get_bh(bh);
3393 bh->b_end_io = end_buffer_read_sync;
3394 submit_bh(READ, bh);
3395 wait_on_buffer(bh);
3396 if (buffer_uptodate(bh))
3397 return 0;
3398 return -EIO;
3399}
3400EXPORT_SYMBOL(bh_submit_read);
3401
3402void __init buffer_init(void)
3403{
3404 unsigned long nrpages;
3405
3406 bh_cachep = kmem_cache_create("buffer_head",
3407 sizeof(struct buffer_head), 0,
3408 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3409 SLAB_MEM_SPREAD),
3410 NULL);
3411
3412 /*
3413 * Limit the bh occupancy to 10% of ZONE_NORMAL
3414 */
3415 nrpages = (nr_free_buffer_pages() * 10) / 100;
3416 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3417 hotcpu_notifier(buffer_cpu_notify, 0);
3418}
1/*
2 * linux/fs/buffer.c
3 *
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
6
7/*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9 *
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12 *
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
15 *
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17 *
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19 */
20
21#include <linux/kernel.h>
22#include <linux/syscalls.h>
23#include <linux/fs.h>
24#include <linux/mm.h>
25#include <linux/percpu.h>
26#include <linux/slab.h>
27#include <linux/capability.h>
28#include <linux/blkdev.h>
29#include <linux/file.h>
30#include <linux/quotaops.h>
31#include <linux/highmem.h>
32#include <linux/module.h>
33#include <linux/writeback.h>
34#include <linux/hash.h>
35#include <linux/suspend.h>
36#include <linux/buffer_head.h>
37#include <linux/task_io_accounting_ops.h>
38#include <linux/bio.h>
39#include <linux/notifier.h>
40#include <linux/cpu.h>
41#include <linux/bitops.h>
42#include <linux/mpage.h>
43#include <linux/bit_spinlock.h>
44#include <linux/cleancache.h>
45
46static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
47
48#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
49
50inline void
51init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
52{
53 bh->b_end_io = handler;
54 bh->b_private = private;
55}
56EXPORT_SYMBOL(init_buffer);
57
58static int sleep_on_buffer(void *word)
59{
60 io_schedule();
61 return 0;
62}
63
64void __lock_buffer(struct buffer_head *bh)
65{
66 wait_on_bit_lock(&bh->b_state, BH_Lock, sleep_on_buffer,
67 TASK_UNINTERRUPTIBLE);
68}
69EXPORT_SYMBOL(__lock_buffer);
70
71void unlock_buffer(struct buffer_head *bh)
72{
73 clear_bit_unlock(BH_Lock, &bh->b_state);
74 smp_mb__after_clear_bit();
75 wake_up_bit(&bh->b_state, BH_Lock);
76}
77EXPORT_SYMBOL(unlock_buffer);
78
79/*
80 * Block until a buffer comes unlocked. This doesn't stop it
81 * from becoming locked again - you have to lock it yourself
82 * if you want to preserve its state.
83 */
84void __wait_on_buffer(struct buffer_head * bh)
85{
86 wait_on_bit(&bh->b_state, BH_Lock, sleep_on_buffer, TASK_UNINTERRUPTIBLE);
87}
88EXPORT_SYMBOL(__wait_on_buffer);
89
90static void
91__clear_page_buffers(struct page *page)
92{
93 ClearPagePrivate(page);
94 set_page_private(page, 0);
95 page_cache_release(page);
96}
97
98
99static int quiet_error(struct buffer_head *bh)
100{
101 if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
102 return 0;
103 return 1;
104}
105
106
107static void buffer_io_error(struct buffer_head *bh)
108{
109 char b[BDEVNAME_SIZE];
110 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
111 bdevname(bh->b_bdev, b),
112 (unsigned long long)bh->b_blocknr);
113}
114
115/*
116 * End-of-IO handler helper function which does not touch the bh after
117 * unlocking it.
118 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
119 * a race there is benign: unlock_buffer() only use the bh's address for
120 * hashing after unlocking the buffer, so it doesn't actually touch the bh
121 * itself.
122 */
123static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
124{
125 if (uptodate) {
126 set_buffer_uptodate(bh);
127 } else {
128 /* This happens, due to failed READA attempts. */
129 clear_buffer_uptodate(bh);
130 }
131 unlock_buffer(bh);
132}
133
134/*
135 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
136 * unlock the buffer. This is what ll_rw_block uses too.
137 */
138void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
139{
140 __end_buffer_read_notouch(bh, uptodate);
141 put_bh(bh);
142}
143EXPORT_SYMBOL(end_buffer_read_sync);
144
145void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
146{
147 char b[BDEVNAME_SIZE];
148
149 if (uptodate) {
150 set_buffer_uptodate(bh);
151 } else {
152 if (!quiet_error(bh)) {
153 buffer_io_error(bh);
154 printk(KERN_WARNING "lost page write due to "
155 "I/O error on %s\n",
156 bdevname(bh->b_bdev, b));
157 }
158 set_buffer_write_io_error(bh);
159 clear_buffer_uptodate(bh);
160 }
161 unlock_buffer(bh);
162 put_bh(bh);
163}
164EXPORT_SYMBOL(end_buffer_write_sync);
165
166/*
167 * Various filesystems appear to want __find_get_block to be non-blocking.
168 * But it's the page lock which protects the buffers. To get around this,
169 * we get exclusion from try_to_free_buffers with the blockdev mapping's
170 * private_lock.
171 *
172 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
173 * may be quite high. This code could TryLock the page, and if that
174 * succeeds, there is no need to take private_lock. (But if
175 * private_lock is contended then so is mapping->tree_lock).
176 */
177static struct buffer_head *
178__find_get_block_slow(struct block_device *bdev, sector_t block)
179{
180 struct inode *bd_inode = bdev->bd_inode;
181 struct address_space *bd_mapping = bd_inode->i_mapping;
182 struct buffer_head *ret = NULL;
183 pgoff_t index;
184 struct buffer_head *bh;
185 struct buffer_head *head;
186 struct page *page;
187 int all_mapped = 1;
188
189 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
190 page = find_get_page(bd_mapping, index);
191 if (!page)
192 goto out;
193
194 spin_lock(&bd_mapping->private_lock);
195 if (!page_has_buffers(page))
196 goto out_unlock;
197 head = page_buffers(page);
198 bh = head;
199 do {
200 if (!buffer_mapped(bh))
201 all_mapped = 0;
202 else if (bh->b_blocknr == block) {
203 ret = bh;
204 get_bh(bh);
205 goto out_unlock;
206 }
207 bh = bh->b_this_page;
208 } while (bh != head);
209
210 /* we might be here because some of the buffers on this page are
211 * not mapped. This is due to various races between
212 * file io on the block device and getblk. It gets dealt with
213 * elsewhere, don't buffer_error if we had some unmapped buffers
214 */
215 if (all_mapped) {
216 printk("__find_get_block_slow() failed. "
217 "block=%llu, b_blocknr=%llu\n",
218 (unsigned long long)block,
219 (unsigned long long)bh->b_blocknr);
220 printk("b_state=0x%08lx, b_size=%zu\n",
221 bh->b_state, bh->b_size);
222 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
223 }
224out_unlock:
225 spin_unlock(&bd_mapping->private_lock);
226 page_cache_release(page);
227out:
228 return ret;
229}
230
231/* If invalidate_buffers() will trash dirty buffers, it means some kind
232 of fs corruption is going on. Trashing dirty data always imply losing
233 information that was supposed to be just stored on the physical layer
234 by the user.
235
236 Thus invalidate_buffers in general usage is not allwowed to trash
237 dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
238 be preserved. These buffers are simply skipped.
239
240 We also skip buffers which are still in use. For example this can
241 happen if a userspace program is reading the block device.
242
243 NOTE: In the case where the user removed a removable-media-disk even if
244 there's still dirty data not synced on disk (due a bug in the device driver
245 or due an error of the user), by not destroying the dirty buffers we could
246 generate corruption also on the next media inserted, thus a parameter is
247 necessary to handle this case in the most safe way possible (trying
248 to not corrupt also the new disk inserted with the data belonging to
249 the old now corrupted disk). Also for the ramdisk the natural thing
250 to do in order to release the ramdisk memory is to destroy dirty buffers.
251
252 These are two special cases. Normal usage imply the device driver
253 to issue a sync on the device (without waiting I/O completion) and
254 then an invalidate_buffers call that doesn't trash dirty buffers.
255
256 For handling cache coherency with the blkdev pagecache the 'update' case
257 is been introduced. It is needed to re-read from disk any pinned
258 buffer. NOTE: re-reading from disk is destructive so we can do it only
259 when we assume nobody is changing the buffercache under our I/O and when
260 we think the disk contains more recent information than the buffercache.
261 The update == 1 pass marks the buffers we need to update, the update == 2
262 pass does the actual I/O. */
263void invalidate_bdev(struct block_device *bdev)
264{
265 struct address_space *mapping = bdev->bd_inode->i_mapping;
266
267 if (mapping->nrpages == 0)
268 return;
269
270 invalidate_bh_lrus();
271 lru_add_drain_all(); /* make sure all lru add caches are flushed */
272 invalidate_mapping_pages(mapping, 0, -1);
273 /* 99% of the time, we don't need to flush the cleancache on the bdev.
274 * But, for the strange corners, lets be cautious
275 */
276 cleancache_flush_inode(mapping);
277}
278EXPORT_SYMBOL(invalidate_bdev);
279
280/*
281 * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
282 */
283static void free_more_memory(void)
284{
285 struct zone *zone;
286 int nid;
287
288 wakeup_flusher_threads(1024);
289 yield();
290
291 for_each_online_node(nid) {
292 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
293 gfp_zone(GFP_NOFS), NULL,
294 &zone);
295 if (zone)
296 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
297 GFP_NOFS, NULL);
298 }
299}
300
301/*
302 * I/O completion handler for block_read_full_page() - pages
303 * which come unlocked at the end of I/O.
304 */
305static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
306{
307 unsigned long flags;
308 struct buffer_head *first;
309 struct buffer_head *tmp;
310 struct page *page;
311 int page_uptodate = 1;
312
313 BUG_ON(!buffer_async_read(bh));
314
315 page = bh->b_page;
316 if (uptodate) {
317 set_buffer_uptodate(bh);
318 } else {
319 clear_buffer_uptodate(bh);
320 if (!quiet_error(bh))
321 buffer_io_error(bh);
322 SetPageError(page);
323 }
324
325 /*
326 * Be _very_ careful from here on. Bad things can happen if
327 * two buffer heads end IO at almost the same time and both
328 * decide that the page is now completely done.
329 */
330 first = page_buffers(page);
331 local_irq_save(flags);
332 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
333 clear_buffer_async_read(bh);
334 unlock_buffer(bh);
335 tmp = bh;
336 do {
337 if (!buffer_uptodate(tmp))
338 page_uptodate = 0;
339 if (buffer_async_read(tmp)) {
340 BUG_ON(!buffer_locked(tmp));
341 goto still_busy;
342 }
343 tmp = tmp->b_this_page;
344 } while (tmp != bh);
345 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
346 local_irq_restore(flags);
347
348 /*
349 * If none of the buffers had errors and they are all
350 * uptodate then we can set the page uptodate.
351 */
352 if (page_uptodate && !PageError(page))
353 SetPageUptodate(page);
354 unlock_page(page);
355 return;
356
357still_busy:
358 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
359 local_irq_restore(flags);
360 return;
361}
362
363/*
364 * Completion handler for block_write_full_page() - pages which are unlocked
365 * during I/O, and which have PageWriteback cleared upon I/O completion.
366 */
367void end_buffer_async_write(struct buffer_head *bh, int uptodate)
368{
369 char b[BDEVNAME_SIZE];
370 unsigned long flags;
371 struct buffer_head *first;
372 struct buffer_head *tmp;
373 struct page *page;
374
375 BUG_ON(!buffer_async_write(bh));
376
377 page = bh->b_page;
378 if (uptodate) {
379 set_buffer_uptodate(bh);
380 } else {
381 if (!quiet_error(bh)) {
382 buffer_io_error(bh);
383 printk(KERN_WARNING "lost page write due to "
384 "I/O error on %s\n",
385 bdevname(bh->b_bdev, b));
386 }
387 set_bit(AS_EIO, &page->mapping->flags);
388 set_buffer_write_io_error(bh);
389 clear_buffer_uptodate(bh);
390 SetPageError(page);
391 }
392
393 first = page_buffers(page);
394 local_irq_save(flags);
395 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
396
397 clear_buffer_async_write(bh);
398 unlock_buffer(bh);
399 tmp = bh->b_this_page;
400 while (tmp != bh) {
401 if (buffer_async_write(tmp)) {
402 BUG_ON(!buffer_locked(tmp));
403 goto still_busy;
404 }
405 tmp = tmp->b_this_page;
406 }
407 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
408 local_irq_restore(flags);
409 end_page_writeback(page);
410 return;
411
412still_busy:
413 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
414 local_irq_restore(flags);
415 return;
416}
417EXPORT_SYMBOL(end_buffer_async_write);
418
419/*
420 * If a page's buffers are under async readin (end_buffer_async_read
421 * completion) then there is a possibility that another thread of
422 * control could lock one of the buffers after it has completed
423 * but while some of the other buffers have not completed. This
424 * locked buffer would confuse end_buffer_async_read() into not unlocking
425 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
426 * that this buffer is not under async I/O.
427 *
428 * The page comes unlocked when it has no locked buffer_async buffers
429 * left.
430 *
431 * PageLocked prevents anyone starting new async I/O reads any of
432 * the buffers.
433 *
434 * PageWriteback is used to prevent simultaneous writeout of the same
435 * page.
436 *
437 * PageLocked prevents anyone from starting writeback of a page which is
438 * under read I/O (PageWriteback is only ever set against a locked page).
439 */
440static void mark_buffer_async_read(struct buffer_head *bh)
441{
442 bh->b_end_io = end_buffer_async_read;
443 set_buffer_async_read(bh);
444}
445
446static void mark_buffer_async_write_endio(struct buffer_head *bh,
447 bh_end_io_t *handler)
448{
449 bh->b_end_io = handler;
450 set_buffer_async_write(bh);
451}
452
453void mark_buffer_async_write(struct buffer_head *bh)
454{
455 mark_buffer_async_write_endio(bh, end_buffer_async_write);
456}
457EXPORT_SYMBOL(mark_buffer_async_write);
458
459
460/*
461 * fs/buffer.c contains helper functions for buffer-backed address space's
462 * fsync functions. A common requirement for buffer-based filesystems is
463 * that certain data from the backing blockdev needs to be written out for
464 * a successful fsync(). For example, ext2 indirect blocks need to be
465 * written back and waited upon before fsync() returns.
466 *
467 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
468 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
469 * management of a list of dependent buffers at ->i_mapping->private_list.
470 *
471 * Locking is a little subtle: try_to_free_buffers() will remove buffers
472 * from their controlling inode's queue when they are being freed. But
473 * try_to_free_buffers() will be operating against the *blockdev* mapping
474 * at the time, not against the S_ISREG file which depends on those buffers.
475 * So the locking for private_list is via the private_lock in the address_space
476 * which backs the buffers. Which is different from the address_space
477 * against which the buffers are listed. So for a particular address_space,
478 * mapping->private_lock does *not* protect mapping->private_list! In fact,
479 * mapping->private_list will always be protected by the backing blockdev's
480 * ->private_lock.
481 *
482 * Which introduces a requirement: all buffers on an address_space's
483 * ->private_list must be from the same address_space: the blockdev's.
484 *
485 * address_spaces which do not place buffers at ->private_list via these
486 * utility functions are free to use private_lock and private_list for
487 * whatever they want. The only requirement is that list_empty(private_list)
488 * be true at clear_inode() time.
489 *
490 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
491 * filesystems should do that. invalidate_inode_buffers() should just go
492 * BUG_ON(!list_empty).
493 *
494 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
495 * take an address_space, not an inode. And it should be called
496 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
497 * queued up.
498 *
499 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
500 * list if it is already on a list. Because if the buffer is on a list,
501 * it *must* already be on the right one. If not, the filesystem is being
502 * silly. This will save a ton of locking. But first we have to ensure
503 * that buffers are taken *off* the old inode's list when they are freed
504 * (presumably in truncate). That requires careful auditing of all
505 * filesystems (do it inside bforget()). It could also be done by bringing
506 * b_inode back.
507 */
508
509/*
510 * The buffer's backing address_space's private_lock must be held
511 */
512static void __remove_assoc_queue(struct buffer_head *bh)
513{
514 list_del_init(&bh->b_assoc_buffers);
515 WARN_ON(!bh->b_assoc_map);
516 if (buffer_write_io_error(bh))
517 set_bit(AS_EIO, &bh->b_assoc_map->flags);
518 bh->b_assoc_map = NULL;
519}
520
521int inode_has_buffers(struct inode *inode)
522{
523 return !list_empty(&inode->i_data.private_list);
524}
525
526/*
527 * osync is designed to support O_SYNC io. It waits synchronously for
528 * all already-submitted IO to complete, but does not queue any new
529 * writes to the disk.
530 *
531 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
532 * you dirty the buffers, and then use osync_inode_buffers to wait for
533 * completion. Any other dirty buffers which are not yet queued for
534 * write will not be flushed to disk by the osync.
535 */
536static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
537{
538 struct buffer_head *bh;
539 struct list_head *p;
540 int err = 0;
541
542 spin_lock(lock);
543repeat:
544 list_for_each_prev(p, list) {
545 bh = BH_ENTRY(p);
546 if (buffer_locked(bh)) {
547 get_bh(bh);
548 spin_unlock(lock);
549 wait_on_buffer(bh);
550 if (!buffer_uptodate(bh))
551 err = -EIO;
552 brelse(bh);
553 spin_lock(lock);
554 goto repeat;
555 }
556 }
557 spin_unlock(lock);
558 return err;
559}
560
561static void do_thaw_one(struct super_block *sb, void *unused)
562{
563 char b[BDEVNAME_SIZE];
564 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
565 printk(KERN_WARNING "Emergency Thaw on %s\n",
566 bdevname(sb->s_bdev, b));
567}
568
569static void do_thaw_all(struct work_struct *work)
570{
571 iterate_supers(do_thaw_one, NULL);
572 kfree(work);
573 printk(KERN_WARNING "Emergency Thaw complete\n");
574}
575
576/**
577 * emergency_thaw_all -- forcibly thaw every frozen filesystem
578 *
579 * Used for emergency unfreeze of all filesystems via SysRq
580 */
581void emergency_thaw_all(void)
582{
583 struct work_struct *work;
584
585 work = kmalloc(sizeof(*work), GFP_ATOMIC);
586 if (work) {
587 INIT_WORK(work, do_thaw_all);
588 schedule_work(work);
589 }
590}
591
592/**
593 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
594 * @mapping: the mapping which wants those buffers written
595 *
596 * Starts I/O against the buffers at mapping->private_list, and waits upon
597 * that I/O.
598 *
599 * Basically, this is a convenience function for fsync().
600 * @mapping is a file or directory which needs those buffers to be written for
601 * a successful fsync().
602 */
603int sync_mapping_buffers(struct address_space *mapping)
604{
605 struct address_space *buffer_mapping = mapping->assoc_mapping;
606
607 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
608 return 0;
609
610 return fsync_buffers_list(&buffer_mapping->private_lock,
611 &mapping->private_list);
612}
613EXPORT_SYMBOL(sync_mapping_buffers);
614
615/*
616 * Called when we've recently written block `bblock', and it is known that
617 * `bblock' was for a buffer_boundary() buffer. This means that the block at
618 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
619 * dirty, schedule it for IO. So that indirects merge nicely with their data.
620 */
621void write_boundary_block(struct block_device *bdev,
622 sector_t bblock, unsigned blocksize)
623{
624 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
625 if (bh) {
626 if (buffer_dirty(bh))
627 ll_rw_block(WRITE, 1, &bh);
628 put_bh(bh);
629 }
630}
631
632void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
633{
634 struct address_space *mapping = inode->i_mapping;
635 struct address_space *buffer_mapping = bh->b_page->mapping;
636
637 mark_buffer_dirty(bh);
638 if (!mapping->assoc_mapping) {
639 mapping->assoc_mapping = buffer_mapping;
640 } else {
641 BUG_ON(mapping->assoc_mapping != buffer_mapping);
642 }
643 if (!bh->b_assoc_map) {
644 spin_lock(&buffer_mapping->private_lock);
645 list_move_tail(&bh->b_assoc_buffers,
646 &mapping->private_list);
647 bh->b_assoc_map = mapping;
648 spin_unlock(&buffer_mapping->private_lock);
649 }
650}
651EXPORT_SYMBOL(mark_buffer_dirty_inode);
652
653/*
654 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
655 * dirty.
656 *
657 * If warn is true, then emit a warning if the page is not uptodate and has
658 * not been truncated.
659 */
660static void __set_page_dirty(struct page *page,
661 struct address_space *mapping, int warn)
662{
663 spin_lock_irq(&mapping->tree_lock);
664 if (page->mapping) { /* Race with truncate? */
665 WARN_ON_ONCE(warn && !PageUptodate(page));
666 account_page_dirtied(page, mapping);
667 radix_tree_tag_set(&mapping->page_tree,
668 page_index(page), PAGECACHE_TAG_DIRTY);
669 }
670 spin_unlock_irq(&mapping->tree_lock);
671 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
672}
673
674/*
675 * Add a page to the dirty page list.
676 *
677 * It is a sad fact of life that this function is called from several places
678 * deeply under spinlocking. It may not sleep.
679 *
680 * If the page has buffers, the uptodate buffers are set dirty, to preserve
681 * dirty-state coherency between the page and the buffers. It the page does
682 * not have buffers then when they are later attached they will all be set
683 * dirty.
684 *
685 * The buffers are dirtied before the page is dirtied. There's a small race
686 * window in which a writepage caller may see the page cleanness but not the
687 * buffer dirtiness. That's fine. If this code were to set the page dirty
688 * before the buffers, a concurrent writepage caller could clear the page dirty
689 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
690 * page on the dirty page list.
691 *
692 * We use private_lock to lock against try_to_free_buffers while using the
693 * page's buffer list. Also use this to protect against clean buffers being
694 * added to the page after it was set dirty.
695 *
696 * FIXME: may need to call ->reservepage here as well. That's rather up to the
697 * address_space though.
698 */
699int __set_page_dirty_buffers(struct page *page)
700{
701 int newly_dirty;
702 struct address_space *mapping = page_mapping(page);
703
704 if (unlikely(!mapping))
705 return !TestSetPageDirty(page);
706
707 spin_lock(&mapping->private_lock);
708 if (page_has_buffers(page)) {
709 struct buffer_head *head = page_buffers(page);
710 struct buffer_head *bh = head;
711
712 do {
713 set_buffer_dirty(bh);
714 bh = bh->b_this_page;
715 } while (bh != head);
716 }
717 newly_dirty = !TestSetPageDirty(page);
718 spin_unlock(&mapping->private_lock);
719
720 if (newly_dirty)
721 __set_page_dirty(page, mapping, 1);
722 return newly_dirty;
723}
724EXPORT_SYMBOL(__set_page_dirty_buffers);
725
726/*
727 * Write out and wait upon a list of buffers.
728 *
729 * We have conflicting pressures: we want to make sure that all
730 * initially dirty buffers get waited on, but that any subsequently
731 * dirtied buffers don't. After all, we don't want fsync to last
732 * forever if somebody is actively writing to the file.
733 *
734 * Do this in two main stages: first we copy dirty buffers to a
735 * temporary inode list, queueing the writes as we go. Then we clean
736 * up, waiting for those writes to complete.
737 *
738 * During this second stage, any subsequent updates to the file may end
739 * up refiling the buffer on the original inode's dirty list again, so
740 * there is a chance we will end up with a buffer queued for write but
741 * not yet completed on that list. So, as a final cleanup we go through
742 * the osync code to catch these locked, dirty buffers without requeuing
743 * any newly dirty buffers for write.
744 */
745static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
746{
747 struct buffer_head *bh;
748 struct list_head tmp;
749 struct address_space *mapping;
750 int err = 0, err2;
751 struct blk_plug plug;
752
753 INIT_LIST_HEAD(&tmp);
754 blk_start_plug(&plug);
755
756 spin_lock(lock);
757 while (!list_empty(list)) {
758 bh = BH_ENTRY(list->next);
759 mapping = bh->b_assoc_map;
760 __remove_assoc_queue(bh);
761 /* Avoid race with mark_buffer_dirty_inode() which does
762 * a lockless check and we rely on seeing the dirty bit */
763 smp_mb();
764 if (buffer_dirty(bh) || buffer_locked(bh)) {
765 list_add(&bh->b_assoc_buffers, &tmp);
766 bh->b_assoc_map = mapping;
767 if (buffer_dirty(bh)) {
768 get_bh(bh);
769 spin_unlock(lock);
770 /*
771 * Ensure any pending I/O completes so that
772 * write_dirty_buffer() actually writes the
773 * current contents - it is a noop if I/O is
774 * still in flight on potentially older
775 * contents.
776 */
777 write_dirty_buffer(bh, WRITE_SYNC);
778
779 /*
780 * Kick off IO for the previous mapping. Note
781 * that we will not run the very last mapping,
782 * wait_on_buffer() will do that for us
783 * through sync_buffer().
784 */
785 brelse(bh);
786 spin_lock(lock);
787 }
788 }
789 }
790
791 spin_unlock(lock);
792 blk_finish_plug(&plug);
793 spin_lock(lock);
794
795 while (!list_empty(&tmp)) {
796 bh = BH_ENTRY(tmp.prev);
797 get_bh(bh);
798 mapping = bh->b_assoc_map;
799 __remove_assoc_queue(bh);
800 /* Avoid race with mark_buffer_dirty_inode() which does
801 * a lockless check and we rely on seeing the dirty bit */
802 smp_mb();
803 if (buffer_dirty(bh)) {
804 list_add(&bh->b_assoc_buffers,
805 &mapping->private_list);
806 bh->b_assoc_map = mapping;
807 }
808 spin_unlock(lock);
809 wait_on_buffer(bh);
810 if (!buffer_uptodate(bh))
811 err = -EIO;
812 brelse(bh);
813 spin_lock(lock);
814 }
815
816 spin_unlock(lock);
817 err2 = osync_buffers_list(lock, list);
818 if (err)
819 return err;
820 else
821 return err2;
822}
823
824/*
825 * Invalidate any and all dirty buffers on a given inode. We are
826 * probably unmounting the fs, but that doesn't mean we have already
827 * done a sync(). Just drop the buffers from the inode list.
828 *
829 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
830 * assumes that all the buffers are against the blockdev. Not true
831 * for reiserfs.
832 */
833void invalidate_inode_buffers(struct inode *inode)
834{
835 if (inode_has_buffers(inode)) {
836 struct address_space *mapping = &inode->i_data;
837 struct list_head *list = &mapping->private_list;
838 struct address_space *buffer_mapping = mapping->assoc_mapping;
839
840 spin_lock(&buffer_mapping->private_lock);
841 while (!list_empty(list))
842 __remove_assoc_queue(BH_ENTRY(list->next));
843 spin_unlock(&buffer_mapping->private_lock);
844 }
845}
846EXPORT_SYMBOL(invalidate_inode_buffers);
847
848/*
849 * Remove any clean buffers from the inode's buffer list. This is called
850 * when we're trying to free the inode itself. Those buffers can pin it.
851 *
852 * Returns true if all buffers were removed.
853 */
854int remove_inode_buffers(struct inode *inode)
855{
856 int ret = 1;
857
858 if (inode_has_buffers(inode)) {
859 struct address_space *mapping = &inode->i_data;
860 struct list_head *list = &mapping->private_list;
861 struct address_space *buffer_mapping = mapping->assoc_mapping;
862
863 spin_lock(&buffer_mapping->private_lock);
864 while (!list_empty(list)) {
865 struct buffer_head *bh = BH_ENTRY(list->next);
866 if (buffer_dirty(bh)) {
867 ret = 0;
868 break;
869 }
870 __remove_assoc_queue(bh);
871 }
872 spin_unlock(&buffer_mapping->private_lock);
873 }
874 return ret;
875}
876
877/*
878 * Create the appropriate buffers when given a page for data area and
879 * the size of each buffer.. Use the bh->b_this_page linked list to
880 * follow the buffers created. Return NULL if unable to create more
881 * buffers.
882 *
883 * The retry flag is used to differentiate async IO (paging, swapping)
884 * which may not fail from ordinary buffer allocations.
885 */
886struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
887 int retry)
888{
889 struct buffer_head *bh, *head;
890 long offset;
891
892try_again:
893 head = NULL;
894 offset = PAGE_SIZE;
895 while ((offset -= size) >= 0) {
896 bh = alloc_buffer_head(GFP_NOFS);
897 if (!bh)
898 goto no_grow;
899
900 bh->b_bdev = NULL;
901 bh->b_this_page = head;
902 bh->b_blocknr = -1;
903 head = bh;
904
905 bh->b_state = 0;
906 atomic_set(&bh->b_count, 0);
907 bh->b_size = size;
908
909 /* Link the buffer to its page */
910 set_bh_page(bh, page, offset);
911
912 init_buffer(bh, NULL, NULL);
913 }
914 return head;
915/*
916 * In case anything failed, we just free everything we got.
917 */
918no_grow:
919 if (head) {
920 do {
921 bh = head;
922 head = head->b_this_page;
923 free_buffer_head(bh);
924 } while (head);
925 }
926
927 /*
928 * Return failure for non-async IO requests. Async IO requests
929 * are not allowed to fail, so we have to wait until buffer heads
930 * become available. But we don't want tasks sleeping with
931 * partially complete buffers, so all were released above.
932 */
933 if (!retry)
934 return NULL;
935
936 /* We're _really_ low on memory. Now we just
937 * wait for old buffer heads to become free due to
938 * finishing IO. Since this is an async request and
939 * the reserve list is empty, we're sure there are
940 * async buffer heads in use.
941 */
942 free_more_memory();
943 goto try_again;
944}
945EXPORT_SYMBOL_GPL(alloc_page_buffers);
946
947static inline void
948link_dev_buffers(struct page *page, struct buffer_head *head)
949{
950 struct buffer_head *bh, *tail;
951
952 bh = head;
953 do {
954 tail = bh;
955 bh = bh->b_this_page;
956 } while (bh);
957 tail->b_this_page = head;
958 attach_page_buffers(page, head);
959}
960
961/*
962 * Initialise the state of a blockdev page's buffers.
963 */
964static void
965init_page_buffers(struct page *page, struct block_device *bdev,
966 sector_t block, int size)
967{
968 struct buffer_head *head = page_buffers(page);
969 struct buffer_head *bh = head;
970 int uptodate = PageUptodate(page);
971
972 do {
973 if (!buffer_mapped(bh)) {
974 init_buffer(bh, NULL, NULL);
975 bh->b_bdev = bdev;
976 bh->b_blocknr = block;
977 if (uptodate)
978 set_buffer_uptodate(bh);
979 set_buffer_mapped(bh);
980 }
981 block++;
982 bh = bh->b_this_page;
983 } while (bh != head);
984}
985
986/*
987 * Create the page-cache page that contains the requested block.
988 *
989 * This is user purely for blockdev mappings.
990 */
991static struct page *
992grow_dev_page(struct block_device *bdev, sector_t block,
993 pgoff_t index, int size)
994{
995 struct inode *inode = bdev->bd_inode;
996 struct page *page;
997 struct buffer_head *bh;
998
999 page = find_or_create_page(inode->i_mapping, index,
1000 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
1001 if (!page)
1002 return NULL;
1003
1004 BUG_ON(!PageLocked(page));
1005
1006 if (page_has_buffers(page)) {
1007 bh = page_buffers(page);
1008 if (bh->b_size == size) {
1009 init_page_buffers(page, bdev, block, size);
1010 return page;
1011 }
1012 if (!try_to_free_buffers(page))
1013 goto failed;
1014 }
1015
1016 /*
1017 * Allocate some buffers for this page
1018 */
1019 bh = alloc_page_buffers(page, size, 0);
1020 if (!bh)
1021 goto failed;
1022
1023 /*
1024 * Link the page to the buffers and initialise them. Take the
1025 * lock to be atomic wrt __find_get_block(), which does not
1026 * run under the page lock.
1027 */
1028 spin_lock(&inode->i_mapping->private_lock);
1029 link_dev_buffers(page, bh);
1030 init_page_buffers(page, bdev, block, size);
1031 spin_unlock(&inode->i_mapping->private_lock);
1032 return page;
1033
1034failed:
1035 BUG();
1036 unlock_page(page);
1037 page_cache_release(page);
1038 return NULL;
1039}
1040
1041/*
1042 * Create buffers for the specified block device block's page. If
1043 * that page was dirty, the buffers are set dirty also.
1044 */
1045static int
1046grow_buffers(struct block_device *bdev, sector_t block, int size)
1047{
1048 struct page *page;
1049 pgoff_t index;
1050 int sizebits;
1051
1052 sizebits = -1;
1053 do {
1054 sizebits++;
1055 } while ((size << sizebits) < PAGE_SIZE);
1056
1057 index = block >> sizebits;
1058
1059 /*
1060 * Check for a block which wants to lie outside our maximum possible
1061 * pagecache index. (this comparison is done using sector_t types).
1062 */
1063 if (unlikely(index != block >> sizebits)) {
1064 char b[BDEVNAME_SIZE];
1065
1066 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1067 "device %s\n",
1068 __func__, (unsigned long long)block,
1069 bdevname(bdev, b));
1070 return -EIO;
1071 }
1072 block = index << sizebits;
1073 /* Create a page with the proper size buffers.. */
1074 page = grow_dev_page(bdev, block, index, size);
1075 if (!page)
1076 return 0;
1077 unlock_page(page);
1078 page_cache_release(page);
1079 return 1;
1080}
1081
1082static struct buffer_head *
1083__getblk_slow(struct block_device *bdev, sector_t block, int size)
1084{
1085 /* Size must be multiple of hard sectorsize */
1086 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1087 (size < 512 || size > PAGE_SIZE))) {
1088 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1089 size);
1090 printk(KERN_ERR "logical block size: %d\n",
1091 bdev_logical_block_size(bdev));
1092
1093 dump_stack();
1094 return NULL;
1095 }
1096
1097 for (;;) {
1098 struct buffer_head * bh;
1099 int ret;
1100
1101 bh = __find_get_block(bdev, block, size);
1102 if (bh)
1103 return bh;
1104
1105 ret = grow_buffers(bdev, block, size);
1106 if (ret < 0)
1107 return NULL;
1108 if (ret == 0)
1109 free_more_memory();
1110 }
1111}
1112
1113/*
1114 * The relationship between dirty buffers and dirty pages:
1115 *
1116 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1117 * the page is tagged dirty in its radix tree.
1118 *
1119 * At all times, the dirtiness of the buffers represents the dirtiness of
1120 * subsections of the page. If the page has buffers, the page dirty bit is
1121 * merely a hint about the true dirty state.
1122 *
1123 * When a page is set dirty in its entirety, all its buffers are marked dirty
1124 * (if the page has buffers).
1125 *
1126 * When a buffer is marked dirty, its page is dirtied, but the page's other
1127 * buffers are not.
1128 *
1129 * Also. When blockdev buffers are explicitly read with bread(), they
1130 * individually become uptodate. But their backing page remains not
1131 * uptodate - even if all of its buffers are uptodate. A subsequent
1132 * block_read_full_page() against that page will discover all the uptodate
1133 * buffers, will set the page uptodate and will perform no I/O.
1134 */
1135
1136/**
1137 * mark_buffer_dirty - mark a buffer_head as needing writeout
1138 * @bh: the buffer_head to mark dirty
1139 *
1140 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1141 * backing page dirty, then tag the page as dirty in its address_space's radix
1142 * tree and then attach the address_space's inode to its superblock's dirty
1143 * inode list.
1144 *
1145 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1146 * mapping->tree_lock and mapping->host->i_lock.
1147 */
1148void mark_buffer_dirty(struct buffer_head *bh)
1149{
1150 WARN_ON_ONCE(!buffer_uptodate(bh));
1151
1152 /*
1153 * Very *carefully* optimize the it-is-already-dirty case.
1154 *
1155 * Don't let the final "is it dirty" escape to before we
1156 * perhaps modified the buffer.
1157 */
1158 if (buffer_dirty(bh)) {
1159 smp_mb();
1160 if (buffer_dirty(bh))
1161 return;
1162 }
1163
1164 if (!test_set_buffer_dirty(bh)) {
1165 struct page *page = bh->b_page;
1166 if (!TestSetPageDirty(page)) {
1167 struct address_space *mapping = page_mapping(page);
1168 if (mapping)
1169 __set_page_dirty(page, mapping, 0);
1170 }
1171 }
1172}
1173EXPORT_SYMBOL(mark_buffer_dirty);
1174
1175/*
1176 * Decrement a buffer_head's reference count. If all buffers against a page
1177 * have zero reference count, are clean and unlocked, and if the page is clean
1178 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1179 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1180 * a page but it ends up not being freed, and buffers may later be reattached).
1181 */
1182void __brelse(struct buffer_head * buf)
1183{
1184 if (atomic_read(&buf->b_count)) {
1185 put_bh(buf);
1186 return;
1187 }
1188 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1189}
1190EXPORT_SYMBOL(__brelse);
1191
1192/*
1193 * bforget() is like brelse(), except it discards any
1194 * potentially dirty data.
1195 */
1196void __bforget(struct buffer_head *bh)
1197{
1198 clear_buffer_dirty(bh);
1199 if (bh->b_assoc_map) {
1200 struct address_space *buffer_mapping = bh->b_page->mapping;
1201
1202 spin_lock(&buffer_mapping->private_lock);
1203 list_del_init(&bh->b_assoc_buffers);
1204 bh->b_assoc_map = NULL;
1205 spin_unlock(&buffer_mapping->private_lock);
1206 }
1207 __brelse(bh);
1208}
1209EXPORT_SYMBOL(__bforget);
1210
1211static struct buffer_head *__bread_slow(struct buffer_head *bh)
1212{
1213 lock_buffer(bh);
1214 if (buffer_uptodate(bh)) {
1215 unlock_buffer(bh);
1216 return bh;
1217 } else {
1218 get_bh(bh);
1219 bh->b_end_io = end_buffer_read_sync;
1220 submit_bh(READ, bh);
1221 wait_on_buffer(bh);
1222 if (buffer_uptodate(bh))
1223 return bh;
1224 }
1225 brelse(bh);
1226 return NULL;
1227}
1228
1229/*
1230 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1231 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1232 * refcount elevated by one when they're in an LRU. A buffer can only appear
1233 * once in a particular CPU's LRU. A single buffer can be present in multiple
1234 * CPU's LRUs at the same time.
1235 *
1236 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1237 * sb_find_get_block().
1238 *
1239 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1240 * a local interrupt disable for that.
1241 */
1242
1243#define BH_LRU_SIZE 8
1244
1245struct bh_lru {
1246 struct buffer_head *bhs[BH_LRU_SIZE];
1247};
1248
1249static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1250
1251#ifdef CONFIG_SMP
1252#define bh_lru_lock() local_irq_disable()
1253#define bh_lru_unlock() local_irq_enable()
1254#else
1255#define bh_lru_lock() preempt_disable()
1256#define bh_lru_unlock() preempt_enable()
1257#endif
1258
1259static inline void check_irqs_on(void)
1260{
1261#ifdef irqs_disabled
1262 BUG_ON(irqs_disabled());
1263#endif
1264}
1265
1266/*
1267 * The LRU management algorithm is dopey-but-simple. Sorry.
1268 */
1269static void bh_lru_install(struct buffer_head *bh)
1270{
1271 struct buffer_head *evictee = NULL;
1272
1273 check_irqs_on();
1274 bh_lru_lock();
1275 if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1276 struct buffer_head *bhs[BH_LRU_SIZE];
1277 int in;
1278 int out = 0;
1279
1280 get_bh(bh);
1281 bhs[out++] = bh;
1282 for (in = 0; in < BH_LRU_SIZE; in++) {
1283 struct buffer_head *bh2 =
1284 __this_cpu_read(bh_lrus.bhs[in]);
1285
1286 if (bh2 == bh) {
1287 __brelse(bh2);
1288 } else {
1289 if (out >= BH_LRU_SIZE) {
1290 BUG_ON(evictee != NULL);
1291 evictee = bh2;
1292 } else {
1293 bhs[out++] = bh2;
1294 }
1295 }
1296 }
1297 while (out < BH_LRU_SIZE)
1298 bhs[out++] = NULL;
1299 memcpy(__this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1300 }
1301 bh_lru_unlock();
1302
1303 if (evictee)
1304 __brelse(evictee);
1305}
1306
1307/*
1308 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1309 */
1310static struct buffer_head *
1311lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1312{
1313 struct buffer_head *ret = NULL;
1314 unsigned int i;
1315
1316 check_irqs_on();
1317 bh_lru_lock();
1318 for (i = 0; i < BH_LRU_SIZE; i++) {
1319 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1320
1321 if (bh && bh->b_bdev == bdev &&
1322 bh->b_blocknr == block && bh->b_size == size) {
1323 if (i) {
1324 while (i) {
1325 __this_cpu_write(bh_lrus.bhs[i],
1326 __this_cpu_read(bh_lrus.bhs[i - 1]));
1327 i--;
1328 }
1329 __this_cpu_write(bh_lrus.bhs[0], bh);
1330 }
1331 get_bh(bh);
1332 ret = bh;
1333 break;
1334 }
1335 }
1336 bh_lru_unlock();
1337 return ret;
1338}
1339
1340/*
1341 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1342 * it in the LRU and mark it as accessed. If it is not present then return
1343 * NULL
1344 */
1345struct buffer_head *
1346__find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1347{
1348 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1349
1350 if (bh == NULL) {
1351 bh = __find_get_block_slow(bdev, block);
1352 if (bh)
1353 bh_lru_install(bh);
1354 }
1355 if (bh)
1356 touch_buffer(bh);
1357 return bh;
1358}
1359EXPORT_SYMBOL(__find_get_block);
1360
1361/*
1362 * __getblk will locate (and, if necessary, create) the buffer_head
1363 * which corresponds to the passed block_device, block and size. The
1364 * returned buffer has its reference count incremented.
1365 *
1366 * __getblk() cannot fail - it just keeps trying. If you pass it an
1367 * illegal block number, __getblk() will happily return a buffer_head
1368 * which represents the non-existent block. Very weird.
1369 *
1370 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1371 * attempt is failing. FIXME, perhaps?
1372 */
1373struct buffer_head *
1374__getblk(struct block_device *bdev, sector_t block, unsigned size)
1375{
1376 struct buffer_head *bh = __find_get_block(bdev, block, size);
1377
1378 might_sleep();
1379 if (bh == NULL)
1380 bh = __getblk_slow(bdev, block, size);
1381 return bh;
1382}
1383EXPORT_SYMBOL(__getblk);
1384
1385/*
1386 * Do async read-ahead on a buffer..
1387 */
1388void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1389{
1390 struct buffer_head *bh = __getblk(bdev, block, size);
1391 if (likely(bh)) {
1392 ll_rw_block(READA, 1, &bh);
1393 brelse(bh);
1394 }
1395}
1396EXPORT_SYMBOL(__breadahead);
1397
1398/**
1399 * __bread() - reads a specified block and returns the bh
1400 * @bdev: the block_device to read from
1401 * @block: number of block
1402 * @size: size (in bytes) to read
1403 *
1404 * Reads a specified block, and returns buffer head that contains it.
1405 * It returns NULL if the block was unreadable.
1406 */
1407struct buffer_head *
1408__bread(struct block_device *bdev, sector_t block, unsigned size)
1409{
1410 struct buffer_head *bh = __getblk(bdev, block, size);
1411
1412 if (likely(bh) && !buffer_uptodate(bh))
1413 bh = __bread_slow(bh);
1414 return bh;
1415}
1416EXPORT_SYMBOL(__bread);
1417
1418/*
1419 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1420 * This doesn't race because it runs in each cpu either in irq
1421 * or with preempt disabled.
1422 */
1423static void invalidate_bh_lru(void *arg)
1424{
1425 struct bh_lru *b = &get_cpu_var(bh_lrus);
1426 int i;
1427
1428 for (i = 0; i < BH_LRU_SIZE; i++) {
1429 brelse(b->bhs[i]);
1430 b->bhs[i] = NULL;
1431 }
1432 put_cpu_var(bh_lrus);
1433}
1434
1435void invalidate_bh_lrus(void)
1436{
1437 on_each_cpu(invalidate_bh_lru, NULL, 1);
1438}
1439EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1440
1441void set_bh_page(struct buffer_head *bh,
1442 struct page *page, unsigned long offset)
1443{
1444 bh->b_page = page;
1445 BUG_ON(offset >= PAGE_SIZE);
1446 if (PageHighMem(page))
1447 /*
1448 * This catches illegal uses and preserves the offset:
1449 */
1450 bh->b_data = (char *)(0 + offset);
1451 else
1452 bh->b_data = page_address(page) + offset;
1453}
1454EXPORT_SYMBOL(set_bh_page);
1455
1456/*
1457 * Called when truncating a buffer on a page completely.
1458 */
1459static void discard_buffer(struct buffer_head * bh)
1460{
1461 lock_buffer(bh);
1462 clear_buffer_dirty(bh);
1463 bh->b_bdev = NULL;
1464 clear_buffer_mapped(bh);
1465 clear_buffer_req(bh);
1466 clear_buffer_new(bh);
1467 clear_buffer_delay(bh);
1468 clear_buffer_unwritten(bh);
1469 unlock_buffer(bh);
1470}
1471
1472/**
1473 * block_invalidatepage - invalidate part of all of a buffer-backed page
1474 *
1475 * @page: the page which is affected
1476 * @offset: the index of the truncation point
1477 *
1478 * block_invalidatepage() is called when all or part of the page has become
1479 * invalidatedby a truncate operation.
1480 *
1481 * block_invalidatepage() does not have to release all buffers, but it must
1482 * ensure that no dirty buffer is left outside @offset and that no I/O
1483 * is underway against any of the blocks which are outside the truncation
1484 * point. Because the caller is about to free (and possibly reuse) those
1485 * blocks on-disk.
1486 */
1487void block_invalidatepage(struct page *page, unsigned long offset)
1488{
1489 struct buffer_head *head, *bh, *next;
1490 unsigned int curr_off = 0;
1491
1492 BUG_ON(!PageLocked(page));
1493 if (!page_has_buffers(page))
1494 goto out;
1495
1496 head = page_buffers(page);
1497 bh = head;
1498 do {
1499 unsigned int next_off = curr_off + bh->b_size;
1500 next = bh->b_this_page;
1501
1502 /*
1503 * is this block fully invalidated?
1504 */
1505 if (offset <= curr_off)
1506 discard_buffer(bh);
1507 curr_off = next_off;
1508 bh = next;
1509 } while (bh != head);
1510
1511 /*
1512 * We release buffers only if the entire page is being invalidated.
1513 * The get_block cached value has been unconditionally invalidated,
1514 * so real IO is not possible anymore.
1515 */
1516 if (offset == 0)
1517 try_to_release_page(page, 0);
1518out:
1519 return;
1520}
1521EXPORT_SYMBOL(block_invalidatepage);
1522
1523/*
1524 * We attach and possibly dirty the buffers atomically wrt
1525 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1526 * is already excluded via the page lock.
1527 */
1528void create_empty_buffers(struct page *page,
1529 unsigned long blocksize, unsigned long b_state)
1530{
1531 struct buffer_head *bh, *head, *tail;
1532
1533 head = alloc_page_buffers(page, blocksize, 1);
1534 bh = head;
1535 do {
1536 bh->b_state |= b_state;
1537 tail = bh;
1538 bh = bh->b_this_page;
1539 } while (bh);
1540 tail->b_this_page = head;
1541
1542 spin_lock(&page->mapping->private_lock);
1543 if (PageUptodate(page) || PageDirty(page)) {
1544 bh = head;
1545 do {
1546 if (PageDirty(page))
1547 set_buffer_dirty(bh);
1548 if (PageUptodate(page))
1549 set_buffer_uptodate(bh);
1550 bh = bh->b_this_page;
1551 } while (bh != head);
1552 }
1553 attach_page_buffers(page, head);
1554 spin_unlock(&page->mapping->private_lock);
1555}
1556EXPORT_SYMBOL(create_empty_buffers);
1557
1558/*
1559 * We are taking a block for data and we don't want any output from any
1560 * buffer-cache aliases starting from return from that function and
1561 * until the moment when something will explicitly mark the buffer
1562 * dirty (hopefully that will not happen until we will free that block ;-)
1563 * We don't even need to mark it not-uptodate - nobody can expect
1564 * anything from a newly allocated buffer anyway. We used to used
1565 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1566 * don't want to mark the alias unmapped, for example - it would confuse
1567 * anyone who might pick it with bread() afterwards...
1568 *
1569 * Also.. Note that bforget() doesn't lock the buffer. So there can
1570 * be writeout I/O going on against recently-freed buffers. We don't
1571 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1572 * only if we really need to. That happens here.
1573 */
1574void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1575{
1576 struct buffer_head *old_bh;
1577
1578 might_sleep();
1579
1580 old_bh = __find_get_block_slow(bdev, block);
1581 if (old_bh) {
1582 clear_buffer_dirty(old_bh);
1583 wait_on_buffer(old_bh);
1584 clear_buffer_req(old_bh);
1585 __brelse(old_bh);
1586 }
1587}
1588EXPORT_SYMBOL(unmap_underlying_metadata);
1589
1590/*
1591 * NOTE! All mapped/uptodate combinations are valid:
1592 *
1593 * Mapped Uptodate Meaning
1594 *
1595 * No No "unknown" - must do get_block()
1596 * No Yes "hole" - zero-filled
1597 * Yes No "allocated" - allocated on disk, not read in
1598 * Yes Yes "valid" - allocated and up-to-date in memory.
1599 *
1600 * "Dirty" is valid only with the last case (mapped+uptodate).
1601 */
1602
1603/*
1604 * While block_write_full_page is writing back the dirty buffers under
1605 * the page lock, whoever dirtied the buffers may decide to clean them
1606 * again at any time. We handle that by only looking at the buffer
1607 * state inside lock_buffer().
1608 *
1609 * If block_write_full_page() is called for regular writeback
1610 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1611 * locked buffer. This only can happen if someone has written the buffer
1612 * directly, with submit_bh(). At the address_space level PageWriteback
1613 * prevents this contention from occurring.
1614 *
1615 * If block_write_full_page() is called with wbc->sync_mode ==
1616 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1617 * causes the writes to be flagged as synchronous writes.
1618 */
1619static int __block_write_full_page(struct inode *inode, struct page *page,
1620 get_block_t *get_block, struct writeback_control *wbc,
1621 bh_end_io_t *handler)
1622{
1623 int err;
1624 sector_t block;
1625 sector_t last_block;
1626 struct buffer_head *bh, *head;
1627 const unsigned blocksize = 1 << inode->i_blkbits;
1628 int nr_underway = 0;
1629 int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
1630 WRITE_SYNC : WRITE);
1631
1632 BUG_ON(!PageLocked(page));
1633
1634 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1635
1636 if (!page_has_buffers(page)) {
1637 create_empty_buffers(page, blocksize,
1638 (1 << BH_Dirty)|(1 << BH_Uptodate));
1639 }
1640
1641 /*
1642 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1643 * here, and the (potentially unmapped) buffers may become dirty at
1644 * any time. If a buffer becomes dirty here after we've inspected it
1645 * then we just miss that fact, and the page stays dirty.
1646 *
1647 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1648 * handle that here by just cleaning them.
1649 */
1650
1651 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1652 head = page_buffers(page);
1653 bh = head;
1654
1655 /*
1656 * Get all the dirty buffers mapped to disk addresses and
1657 * handle any aliases from the underlying blockdev's mapping.
1658 */
1659 do {
1660 if (block > last_block) {
1661 /*
1662 * mapped buffers outside i_size will occur, because
1663 * this page can be outside i_size when there is a
1664 * truncate in progress.
1665 */
1666 /*
1667 * The buffer was zeroed by block_write_full_page()
1668 */
1669 clear_buffer_dirty(bh);
1670 set_buffer_uptodate(bh);
1671 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1672 buffer_dirty(bh)) {
1673 WARN_ON(bh->b_size != blocksize);
1674 err = get_block(inode, block, bh, 1);
1675 if (err)
1676 goto recover;
1677 clear_buffer_delay(bh);
1678 if (buffer_new(bh)) {
1679 /* blockdev mappings never come here */
1680 clear_buffer_new(bh);
1681 unmap_underlying_metadata(bh->b_bdev,
1682 bh->b_blocknr);
1683 }
1684 }
1685 bh = bh->b_this_page;
1686 block++;
1687 } while (bh != head);
1688
1689 do {
1690 if (!buffer_mapped(bh))
1691 continue;
1692 /*
1693 * If it's a fully non-blocking write attempt and we cannot
1694 * lock the buffer then redirty the page. Note that this can
1695 * potentially cause a busy-wait loop from writeback threads
1696 * and kswapd activity, but those code paths have their own
1697 * higher-level throttling.
1698 */
1699 if (wbc->sync_mode != WB_SYNC_NONE) {
1700 lock_buffer(bh);
1701 } else if (!trylock_buffer(bh)) {
1702 redirty_page_for_writepage(wbc, page);
1703 continue;
1704 }
1705 if (test_clear_buffer_dirty(bh)) {
1706 mark_buffer_async_write_endio(bh, handler);
1707 } else {
1708 unlock_buffer(bh);
1709 }
1710 } while ((bh = bh->b_this_page) != head);
1711
1712 /*
1713 * The page and its buffers are protected by PageWriteback(), so we can
1714 * drop the bh refcounts early.
1715 */
1716 BUG_ON(PageWriteback(page));
1717 set_page_writeback(page);
1718
1719 do {
1720 struct buffer_head *next = bh->b_this_page;
1721 if (buffer_async_write(bh)) {
1722 submit_bh(write_op, bh);
1723 nr_underway++;
1724 }
1725 bh = next;
1726 } while (bh != head);
1727 unlock_page(page);
1728
1729 err = 0;
1730done:
1731 if (nr_underway == 0) {
1732 /*
1733 * The page was marked dirty, but the buffers were
1734 * clean. Someone wrote them back by hand with
1735 * ll_rw_block/submit_bh. A rare case.
1736 */
1737 end_page_writeback(page);
1738
1739 /*
1740 * The page and buffer_heads can be released at any time from
1741 * here on.
1742 */
1743 }
1744 return err;
1745
1746recover:
1747 /*
1748 * ENOSPC, or some other error. We may already have added some
1749 * blocks to the file, so we need to write these out to avoid
1750 * exposing stale data.
1751 * The page is currently locked and not marked for writeback
1752 */
1753 bh = head;
1754 /* Recovery: lock and submit the mapped buffers */
1755 do {
1756 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1757 !buffer_delay(bh)) {
1758 lock_buffer(bh);
1759 mark_buffer_async_write_endio(bh, handler);
1760 } else {
1761 /*
1762 * The buffer may have been set dirty during
1763 * attachment to a dirty page.
1764 */
1765 clear_buffer_dirty(bh);
1766 }
1767 } while ((bh = bh->b_this_page) != head);
1768 SetPageError(page);
1769 BUG_ON(PageWriteback(page));
1770 mapping_set_error(page->mapping, err);
1771 set_page_writeback(page);
1772 do {
1773 struct buffer_head *next = bh->b_this_page;
1774 if (buffer_async_write(bh)) {
1775 clear_buffer_dirty(bh);
1776 submit_bh(write_op, bh);
1777 nr_underway++;
1778 }
1779 bh = next;
1780 } while (bh != head);
1781 unlock_page(page);
1782 goto done;
1783}
1784
1785/*
1786 * If a page has any new buffers, zero them out here, and mark them uptodate
1787 * and dirty so they'll be written out (in order to prevent uninitialised
1788 * block data from leaking). And clear the new bit.
1789 */
1790void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1791{
1792 unsigned int block_start, block_end;
1793 struct buffer_head *head, *bh;
1794
1795 BUG_ON(!PageLocked(page));
1796 if (!page_has_buffers(page))
1797 return;
1798
1799 bh = head = page_buffers(page);
1800 block_start = 0;
1801 do {
1802 block_end = block_start + bh->b_size;
1803
1804 if (buffer_new(bh)) {
1805 if (block_end > from && block_start < to) {
1806 if (!PageUptodate(page)) {
1807 unsigned start, size;
1808
1809 start = max(from, block_start);
1810 size = min(to, block_end) - start;
1811
1812 zero_user(page, start, size);
1813 set_buffer_uptodate(bh);
1814 }
1815
1816 clear_buffer_new(bh);
1817 mark_buffer_dirty(bh);
1818 }
1819 }
1820
1821 block_start = block_end;
1822 bh = bh->b_this_page;
1823 } while (bh != head);
1824}
1825EXPORT_SYMBOL(page_zero_new_buffers);
1826
1827int __block_write_begin(struct page *page, loff_t pos, unsigned len,
1828 get_block_t *get_block)
1829{
1830 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1831 unsigned to = from + len;
1832 struct inode *inode = page->mapping->host;
1833 unsigned block_start, block_end;
1834 sector_t block;
1835 int err = 0;
1836 unsigned blocksize, bbits;
1837 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1838
1839 BUG_ON(!PageLocked(page));
1840 BUG_ON(from > PAGE_CACHE_SIZE);
1841 BUG_ON(to > PAGE_CACHE_SIZE);
1842 BUG_ON(from > to);
1843
1844 blocksize = 1 << inode->i_blkbits;
1845 if (!page_has_buffers(page))
1846 create_empty_buffers(page, blocksize, 0);
1847 head = page_buffers(page);
1848
1849 bbits = inode->i_blkbits;
1850 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1851
1852 for(bh = head, block_start = 0; bh != head || !block_start;
1853 block++, block_start=block_end, bh = bh->b_this_page) {
1854 block_end = block_start + blocksize;
1855 if (block_end <= from || block_start >= to) {
1856 if (PageUptodate(page)) {
1857 if (!buffer_uptodate(bh))
1858 set_buffer_uptodate(bh);
1859 }
1860 continue;
1861 }
1862 if (buffer_new(bh))
1863 clear_buffer_new(bh);
1864 if (!buffer_mapped(bh)) {
1865 WARN_ON(bh->b_size != blocksize);
1866 err = get_block(inode, block, bh, 1);
1867 if (err)
1868 break;
1869 if (buffer_new(bh)) {
1870 unmap_underlying_metadata(bh->b_bdev,
1871 bh->b_blocknr);
1872 if (PageUptodate(page)) {
1873 clear_buffer_new(bh);
1874 set_buffer_uptodate(bh);
1875 mark_buffer_dirty(bh);
1876 continue;
1877 }
1878 if (block_end > to || block_start < from)
1879 zero_user_segments(page,
1880 to, block_end,
1881 block_start, from);
1882 continue;
1883 }
1884 }
1885 if (PageUptodate(page)) {
1886 if (!buffer_uptodate(bh))
1887 set_buffer_uptodate(bh);
1888 continue;
1889 }
1890 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1891 !buffer_unwritten(bh) &&
1892 (block_start < from || block_end > to)) {
1893 ll_rw_block(READ, 1, &bh);
1894 *wait_bh++=bh;
1895 }
1896 }
1897 /*
1898 * If we issued read requests - let them complete.
1899 */
1900 while(wait_bh > wait) {
1901 wait_on_buffer(*--wait_bh);
1902 if (!buffer_uptodate(*wait_bh))
1903 err = -EIO;
1904 }
1905 if (unlikely(err))
1906 page_zero_new_buffers(page, from, to);
1907 return err;
1908}
1909EXPORT_SYMBOL(__block_write_begin);
1910
1911static int __block_commit_write(struct inode *inode, struct page *page,
1912 unsigned from, unsigned to)
1913{
1914 unsigned block_start, block_end;
1915 int partial = 0;
1916 unsigned blocksize;
1917 struct buffer_head *bh, *head;
1918
1919 blocksize = 1 << inode->i_blkbits;
1920
1921 for(bh = head = page_buffers(page), block_start = 0;
1922 bh != head || !block_start;
1923 block_start=block_end, bh = bh->b_this_page) {
1924 block_end = block_start + blocksize;
1925 if (block_end <= from || block_start >= to) {
1926 if (!buffer_uptodate(bh))
1927 partial = 1;
1928 } else {
1929 set_buffer_uptodate(bh);
1930 mark_buffer_dirty(bh);
1931 }
1932 clear_buffer_new(bh);
1933 }
1934
1935 /*
1936 * If this is a partial write which happened to make all buffers
1937 * uptodate then we can optimize away a bogus readpage() for
1938 * the next read(). Here we 'discover' whether the page went
1939 * uptodate as a result of this (potentially partial) write.
1940 */
1941 if (!partial)
1942 SetPageUptodate(page);
1943 return 0;
1944}
1945
1946/*
1947 * block_write_begin takes care of the basic task of block allocation and
1948 * bringing partial write blocks uptodate first.
1949 *
1950 * The filesystem needs to handle block truncation upon failure.
1951 */
1952int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
1953 unsigned flags, struct page **pagep, get_block_t *get_block)
1954{
1955 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1956 struct page *page;
1957 int status;
1958
1959 page = grab_cache_page_write_begin(mapping, index, flags);
1960 if (!page)
1961 return -ENOMEM;
1962
1963 status = __block_write_begin(page, pos, len, get_block);
1964 if (unlikely(status)) {
1965 unlock_page(page);
1966 page_cache_release(page);
1967 page = NULL;
1968 }
1969
1970 *pagep = page;
1971 return status;
1972}
1973EXPORT_SYMBOL(block_write_begin);
1974
1975int block_write_end(struct file *file, struct address_space *mapping,
1976 loff_t pos, unsigned len, unsigned copied,
1977 struct page *page, void *fsdata)
1978{
1979 struct inode *inode = mapping->host;
1980 unsigned start;
1981
1982 start = pos & (PAGE_CACHE_SIZE - 1);
1983
1984 if (unlikely(copied < len)) {
1985 /*
1986 * The buffers that were written will now be uptodate, so we
1987 * don't have to worry about a readpage reading them and
1988 * overwriting a partial write. However if we have encountered
1989 * a short write and only partially written into a buffer, it
1990 * will not be marked uptodate, so a readpage might come in and
1991 * destroy our partial write.
1992 *
1993 * Do the simplest thing, and just treat any short write to a
1994 * non uptodate page as a zero-length write, and force the
1995 * caller to redo the whole thing.
1996 */
1997 if (!PageUptodate(page))
1998 copied = 0;
1999
2000 page_zero_new_buffers(page, start+copied, start+len);
2001 }
2002 flush_dcache_page(page);
2003
2004 /* This could be a short (even 0-length) commit */
2005 __block_commit_write(inode, page, start, start+copied);
2006
2007 return copied;
2008}
2009EXPORT_SYMBOL(block_write_end);
2010
2011int generic_write_end(struct file *file, struct address_space *mapping,
2012 loff_t pos, unsigned len, unsigned copied,
2013 struct page *page, void *fsdata)
2014{
2015 struct inode *inode = mapping->host;
2016 int i_size_changed = 0;
2017
2018 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2019
2020 /*
2021 * No need to use i_size_read() here, the i_size
2022 * cannot change under us because we hold i_mutex.
2023 *
2024 * But it's important to update i_size while still holding page lock:
2025 * page writeout could otherwise come in and zero beyond i_size.
2026 */
2027 if (pos+copied > inode->i_size) {
2028 i_size_write(inode, pos+copied);
2029 i_size_changed = 1;
2030 }
2031
2032 unlock_page(page);
2033 page_cache_release(page);
2034
2035 /*
2036 * Don't mark the inode dirty under page lock. First, it unnecessarily
2037 * makes the holding time of page lock longer. Second, it forces lock
2038 * ordering of page lock and transaction start for journaling
2039 * filesystems.
2040 */
2041 if (i_size_changed)
2042 mark_inode_dirty(inode);
2043
2044 return copied;
2045}
2046EXPORT_SYMBOL(generic_write_end);
2047
2048/*
2049 * block_is_partially_uptodate checks whether buffers within a page are
2050 * uptodate or not.
2051 *
2052 * Returns true if all buffers which correspond to a file portion
2053 * we want to read are uptodate.
2054 */
2055int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
2056 unsigned long from)
2057{
2058 struct inode *inode = page->mapping->host;
2059 unsigned block_start, block_end, blocksize;
2060 unsigned to;
2061 struct buffer_head *bh, *head;
2062 int ret = 1;
2063
2064 if (!page_has_buffers(page))
2065 return 0;
2066
2067 blocksize = 1 << inode->i_blkbits;
2068 to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count);
2069 to = from + to;
2070 if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2071 return 0;
2072
2073 head = page_buffers(page);
2074 bh = head;
2075 block_start = 0;
2076 do {
2077 block_end = block_start + blocksize;
2078 if (block_end > from && block_start < to) {
2079 if (!buffer_uptodate(bh)) {
2080 ret = 0;
2081 break;
2082 }
2083 if (block_end >= to)
2084 break;
2085 }
2086 block_start = block_end;
2087 bh = bh->b_this_page;
2088 } while (bh != head);
2089
2090 return ret;
2091}
2092EXPORT_SYMBOL(block_is_partially_uptodate);
2093
2094/*
2095 * Generic "read page" function for block devices that have the normal
2096 * get_block functionality. This is most of the block device filesystems.
2097 * Reads the page asynchronously --- the unlock_buffer() and
2098 * set/clear_buffer_uptodate() functions propagate buffer state into the
2099 * page struct once IO has completed.
2100 */
2101int block_read_full_page(struct page *page, get_block_t *get_block)
2102{
2103 struct inode *inode = page->mapping->host;
2104 sector_t iblock, lblock;
2105 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2106 unsigned int blocksize;
2107 int nr, i;
2108 int fully_mapped = 1;
2109
2110 BUG_ON(!PageLocked(page));
2111 blocksize = 1 << inode->i_blkbits;
2112 if (!page_has_buffers(page))
2113 create_empty_buffers(page, blocksize, 0);
2114 head = page_buffers(page);
2115
2116 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2117 lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2118 bh = head;
2119 nr = 0;
2120 i = 0;
2121
2122 do {
2123 if (buffer_uptodate(bh))
2124 continue;
2125
2126 if (!buffer_mapped(bh)) {
2127 int err = 0;
2128
2129 fully_mapped = 0;
2130 if (iblock < lblock) {
2131 WARN_ON(bh->b_size != blocksize);
2132 err = get_block(inode, iblock, bh, 0);
2133 if (err)
2134 SetPageError(page);
2135 }
2136 if (!buffer_mapped(bh)) {
2137 zero_user(page, i * blocksize, blocksize);
2138 if (!err)
2139 set_buffer_uptodate(bh);
2140 continue;
2141 }
2142 /*
2143 * get_block() might have updated the buffer
2144 * synchronously
2145 */
2146 if (buffer_uptodate(bh))
2147 continue;
2148 }
2149 arr[nr++] = bh;
2150 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2151
2152 if (fully_mapped)
2153 SetPageMappedToDisk(page);
2154
2155 if (!nr) {
2156 /*
2157 * All buffers are uptodate - we can set the page uptodate
2158 * as well. But not if get_block() returned an error.
2159 */
2160 if (!PageError(page))
2161 SetPageUptodate(page);
2162 unlock_page(page);
2163 return 0;
2164 }
2165
2166 /* Stage two: lock the buffers */
2167 for (i = 0; i < nr; i++) {
2168 bh = arr[i];
2169 lock_buffer(bh);
2170 mark_buffer_async_read(bh);
2171 }
2172
2173 /*
2174 * Stage 3: start the IO. Check for uptodateness
2175 * inside the buffer lock in case another process reading
2176 * the underlying blockdev brought it uptodate (the sct fix).
2177 */
2178 for (i = 0; i < nr; i++) {
2179 bh = arr[i];
2180 if (buffer_uptodate(bh))
2181 end_buffer_async_read(bh, 1);
2182 else
2183 submit_bh(READ, bh);
2184 }
2185 return 0;
2186}
2187EXPORT_SYMBOL(block_read_full_page);
2188
2189/* utility function for filesystems that need to do work on expanding
2190 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2191 * deal with the hole.
2192 */
2193int generic_cont_expand_simple(struct inode *inode, loff_t size)
2194{
2195 struct address_space *mapping = inode->i_mapping;
2196 struct page *page;
2197 void *fsdata;
2198 int err;
2199
2200 err = inode_newsize_ok(inode, size);
2201 if (err)
2202 goto out;
2203
2204 err = pagecache_write_begin(NULL, mapping, size, 0,
2205 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2206 &page, &fsdata);
2207 if (err)
2208 goto out;
2209
2210 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2211 BUG_ON(err > 0);
2212
2213out:
2214 return err;
2215}
2216EXPORT_SYMBOL(generic_cont_expand_simple);
2217
2218static int cont_expand_zero(struct file *file, struct address_space *mapping,
2219 loff_t pos, loff_t *bytes)
2220{
2221 struct inode *inode = mapping->host;
2222 unsigned blocksize = 1 << inode->i_blkbits;
2223 struct page *page;
2224 void *fsdata;
2225 pgoff_t index, curidx;
2226 loff_t curpos;
2227 unsigned zerofrom, offset, len;
2228 int err = 0;
2229
2230 index = pos >> PAGE_CACHE_SHIFT;
2231 offset = pos & ~PAGE_CACHE_MASK;
2232
2233 while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2234 zerofrom = curpos & ~PAGE_CACHE_MASK;
2235 if (zerofrom & (blocksize-1)) {
2236 *bytes |= (blocksize-1);
2237 (*bytes)++;
2238 }
2239 len = PAGE_CACHE_SIZE - zerofrom;
2240
2241 err = pagecache_write_begin(file, mapping, curpos, len,
2242 AOP_FLAG_UNINTERRUPTIBLE,
2243 &page, &fsdata);
2244 if (err)
2245 goto out;
2246 zero_user(page, zerofrom, len);
2247 err = pagecache_write_end(file, mapping, curpos, len, len,
2248 page, fsdata);
2249 if (err < 0)
2250 goto out;
2251 BUG_ON(err != len);
2252 err = 0;
2253
2254 balance_dirty_pages_ratelimited(mapping);
2255 }
2256
2257 /* page covers the boundary, find the boundary offset */
2258 if (index == curidx) {
2259 zerofrom = curpos & ~PAGE_CACHE_MASK;
2260 /* if we will expand the thing last block will be filled */
2261 if (offset <= zerofrom) {
2262 goto out;
2263 }
2264 if (zerofrom & (blocksize-1)) {
2265 *bytes |= (blocksize-1);
2266 (*bytes)++;
2267 }
2268 len = offset - zerofrom;
2269
2270 err = pagecache_write_begin(file, mapping, curpos, len,
2271 AOP_FLAG_UNINTERRUPTIBLE,
2272 &page, &fsdata);
2273 if (err)
2274 goto out;
2275 zero_user(page, zerofrom, len);
2276 err = pagecache_write_end(file, mapping, curpos, len, len,
2277 page, fsdata);
2278 if (err < 0)
2279 goto out;
2280 BUG_ON(err != len);
2281 err = 0;
2282 }
2283out:
2284 return err;
2285}
2286
2287/*
2288 * For moronic filesystems that do not allow holes in file.
2289 * We may have to extend the file.
2290 */
2291int cont_write_begin(struct file *file, struct address_space *mapping,
2292 loff_t pos, unsigned len, unsigned flags,
2293 struct page **pagep, void **fsdata,
2294 get_block_t *get_block, loff_t *bytes)
2295{
2296 struct inode *inode = mapping->host;
2297 unsigned blocksize = 1 << inode->i_blkbits;
2298 unsigned zerofrom;
2299 int err;
2300
2301 err = cont_expand_zero(file, mapping, pos, bytes);
2302 if (err)
2303 return err;
2304
2305 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2306 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2307 *bytes |= (blocksize-1);
2308 (*bytes)++;
2309 }
2310
2311 return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2312}
2313EXPORT_SYMBOL(cont_write_begin);
2314
2315int block_commit_write(struct page *page, unsigned from, unsigned to)
2316{
2317 struct inode *inode = page->mapping->host;
2318 __block_commit_write(inode,page,from,to);
2319 return 0;
2320}
2321EXPORT_SYMBOL(block_commit_write);
2322
2323/*
2324 * block_page_mkwrite() is not allowed to change the file size as it gets
2325 * called from a page fault handler when a page is first dirtied. Hence we must
2326 * be careful to check for EOF conditions here. We set the page up correctly
2327 * for a written page which means we get ENOSPC checking when writing into
2328 * holes and correct delalloc and unwritten extent mapping on filesystems that
2329 * support these features.
2330 *
2331 * We are not allowed to take the i_mutex here so we have to play games to
2332 * protect against truncate races as the page could now be beyond EOF. Because
2333 * truncate writes the inode size before removing pages, once we have the
2334 * page lock we can determine safely if the page is beyond EOF. If it is not
2335 * beyond EOF, then the page is guaranteed safe against truncation until we
2336 * unlock the page.
2337 *
2338 * Direct callers of this function should call vfs_check_frozen() so that page
2339 * fault does not busyloop until the fs is thawed.
2340 */
2341int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2342 get_block_t get_block)
2343{
2344 struct page *page = vmf->page;
2345 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
2346 unsigned long end;
2347 loff_t size;
2348 int ret;
2349
2350 lock_page(page);
2351 size = i_size_read(inode);
2352 if ((page->mapping != inode->i_mapping) ||
2353 (page_offset(page) > size)) {
2354 /* We overload EFAULT to mean page got truncated */
2355 ret = -EFAULT;
2356 goto out_unlock;
2357 }
2358
2359 /* page is wholly or partially inside EOF */
2360 if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2361 end = size & ~PAGE_CACHE_MASK;
2362 else
2363 end = PAGE_CACHE_SIZE;
2364
2365 ret = __block_write_begin(page, 0, end, get_block);
2366 if (!ret)
2367 ret = block_commit_write(page, 0, end);
2368
2369 if (unlikely(ret < 0))
2370 goto out_unlock;
2371 /*
2372 * Freezing in progress? We check after the page is marked dirty and
2373 * with page lock held so if the test here fails, we are sure freezing
2374 * code will wait during syncing until the page fault is done - at that
2375 * point page will be dirty and unlocked so freezing code will write it
2376 * and writeprotect it again.
2377 */
2378 set_page_dirty(page);
2379 if (inode->i_sb->s_frozen != SB_UNFROZEN) {
2380 ret = -EAGAIN;
2381 goto out_unlock;
2382 }
2383 wait_on_page_writeback(page);
2384 return 0;
2385out_unlock:
2386 unlock_page(page);
2387 return ret;
2388}
2389EXPORT_SYMBOL(__block_page_mkwrite);
2390
2391int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2392 get_block_t get_block)
2393{
2394 int ret;
2395 struct super_block *sb = vma->vm_file->f_path.dentry->d_inode->i_sb;
2396
2397 /*
2398 * This check is racy but catches the common case. The check in
2399 * __block_page_mkwrite() is reliable.
2400 */
2401 vfs_check_frozen(sb, SB_FREEZE_WRITE);
2402 ret = __block_page_mkwrite(vma, vmf, get_block);
2403 return block_page_mkwrite_return(ret);
2404}
2405EXPORT_SYMBOL(block_page_mkwrite);
2406
2407/*
2408 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2409 * immediately, while under the page lock. So it needs a special end_io
2410 * handler which does not touch the bh after unlocking it.
2411 */
2412static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2413{
2414 __end_buffer_read_notouch(bh, uptodate);
2415}
2416
2417/*
2418 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2419 * the page (converting it to circular linked list and taking care of page
2420 * dirty races).
2421 */
2422static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2423{
2424 struct buffer_head *bh;
2425
2426 BUG_ON(!PageLocked(page));
2427
2428 spin_lock(&page->mapping->private_lock);
2429 bh = head;
2430 do {
2431 if (PageDirty(page))
2432 set_buffer_dirty(bh);
2433 if (!bh->b_this_page)
2434 bh->b_this_page = head;
2435 bh = bh->b_this_page;
2436 } while (bh != head);
2437 attach_page_buffers(page, head);
2438 spin_unlock(&page->mapping->private_lock);
2439}
2440
2441/*
2442 * On entry, the page is fully not uptodate.
2443 * On exit the page is fully uptodate in the areas outside (from,to)
2444 * The filesystem needs to handle block truncation upon failure.
2445 */
2446int nobh_write_begin(struct address_space *mapping,
2447 loff_t pos, unsigned len, unsigned flags,
2448 struct page **pagep, void **fsdata,
2449 get_block_t *get_block)
2450{
2451 struct inode *inode = mapping->host;
2452 const unsigned blkbits = inode->i_blkbits;
2453 const unsigned blocksize = 1 << blkbits;
2454 struct buffer_head *head, *bh;
2455 struct page *page;
2456 pgoff_t index;
2457 unsigned from, to;
2458 unsigned block_in_page;
2459 unsigned block_start, block_end;
2460 sector_t block_in_file;
2461 int nr_reads = 0;
2462 int ret = 0;
2463 int is_mapped_to_disk = 1;
2464
2465 index = pos >> PAGE_CACHE_SHIFT;
2466 from = pos & (PAGE_CACHE_SIZE - 1);
2467 to = from + len;
2468
2469 page = grab_cache_page_write_begin(mapping, index, flags);
2470 if (!page)
2471 return -ENOMEM;
2472 *pagep = page;
2473 *fsdata = NULL;
2474
2475 if (page_has_buffers(page)) {
2476 ret = __block_write_begin(page, pos, len, get_block);
2477 if (unlikely(ret))
2478 goto out_release;
2479 return ret;
2480 }
2481
2482 if (PageMappedToDisk(page))
2483 return 0;
2484
2485 /*
2486 * Allocate buffers so that we can keep track of state, and potentially
2487 * attach them to the page if an error occurs. In the common case of
2488 * no error, they will just be freed again without ever being attached
2489 * to the page (which is all OK, because we're under the page lock).
2490 *
2491 * Be careful: the buffer linked list is a NULL terminated one, rather
2492 * than the circular one we're used to.
2493 */
2494 head = alloc_page_buffers(page, blocksize, 0);
2495 if (!head) {
2496 ret = -ENOMEM;
2497 goto out_release;
2498 }
2499
2500 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2501
2502 /*
2503 * We loop across all blocks in the page, whether or not they are
2504 * part of the affected region. This is so we can discover if the
2505 * page is fully mapped-to-disk.
2506 */
2507 for (block_start = 0, block_in_page = 0, bh = head;
2508 block_start < PAGE_CACHE_SIZE;
2509 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2510 int create;
2511
2512 block_end = block_start + blocksize;
2513 bh->b_state = 0;
2514 create = 1;
2515 if (block_start >= to)
2516 create = 0;
2517 ret = get_block(inode, block_in_file + block_in_page,
2518 bh, create);
2519 if (ret)
2520 goto failed;
2521 if (!buffer_mapped(bh))
2522 is_mapped_to_disk = 0;
2523 if (buffer_new(bh))
2524 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2525 if (PageUptodate(page)) {
2526 set_buffer_uptodate(bh);
2527 continue;
2528 }
2529 if (buffer_new(bh) || !buffer_mapped(bh)) {
2530 zero_user_segments(page, block_start, from,
2531 to, block_end);
2532 continue;
2533 }
2534 if (buffer_uptodate(bh))
2535 continue; /* reiserfs does this */
2536 if (block_start < from || block_end > to) {
2537 lock_buffer(bh);
2538 bh->b_end_io = end_buffer_read_nobh;
2539 submit_bh(READ, bh);
2540 nr_reads++;
2541 }
2542 }
2543
2544 if (nr_reads) {
2545 /*
2546 * The page is locked, so these buffers are protected from
2547 * any VM or truncate activity. Hence we don't need to care
2548 * for the buffer_head refcounts.
2549 */
2550 for (bh = head; bh; bh = bh->b_this_page) {
2551 wait_on_buffer(bh);
2552 if (!buffer_uptodate(bh))
2553 ret = -EIO;
2554 }
2555 if (ret)
2556 goto failed;
2557 }
2558
2559 if (is_mapped_to_disk)
2560 SetPageMappedToDisk(page);
2561
2562 *fsdata = head; /* to be released by nobh_write_end */
2563
2564 return 0;
2565
2566failed:
2567 BUG_ON(!ret);
2568 /*
2569 * Error recovery is a bit difficult. We need to zero out blocks that
2570 * were newly allocated, and dirty them to ensure they get written out.
2571 * Buffers need to be attached to the page at this point, otherwise
2572 * the handling of potential IO errors during writeout would be hard
2573 * (could try doing synchronous writeout, but what if that fails too?)
2574 */
2575 attach_nobh_buffers(page, head);
2576 page_zero_new_buffers(page, from, to);
2577
2578out_release:
2579 unlock_page(page);
2580 page_cache_release(page);
2581 *pagep = NULL;
2582
2583 return ret;
2584}
2585EXPORT_SYMBOL(nobh_write_begin);
2586
2587int nobh_write_end(struct file *file, struct address_space *mapping,
2588 loff_t pos, unsigned len, unsigned copied,
2589 struct page *page, void *fsdata)
2590{
2591 struct inode *inode = page->mapping->host;
2592 struct buffer_head *head = fsdata;
2593 struct buffer_head *bh;
2594 BUG_ON(fsdata != NULL && page_has_buffers(page));
2595
2596 if (unlikely(copied < len) && head)
2597 attach_nobh_buffers(page, head);
2598 if (page_has_buffers(page))
2599 return generic_write_end(file, mapping, pos, len,
2600 copied, page, fsdata);
2601
2602 SetPageUptodate(page);
2603 set_page_dirty(page);
2604 if (pos+copied > inode->i_size) {
2605 i_size_write(inode, pos+copied);
2606 mark_inode_dirty(inode);
2607 }
2608
2609 unlock_page(page);
2610 page_cache_release(page);
2611
2612 while (head) {
2613 bh = head;
2614 head = head->b_this_page;
2615 free_buffer_head(bh);
2616 }
2617
2618 return copied;
2619}
2620EXPORT_SYMBOL(nobh_write_end);
2621
2622/*
2623 * nobh_writepage() - based on block_full_write_page() except
2624 * that it tries to operate without attaching bufferheads to
2625 * the page.
2626 */
2627int nobh_writepage(struct page *page, get_block_t *get_block,
2628 struct writeback_control *wbc)
2629{
2630 struct inode * const inode = page->mapping->host;
2631 loff_t i_size = i_size_read(inode);
2632 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2633 unsigned offset;
2634 int ret;
2635
2636 /* Is the page fully inside i_size? */
2637 if (page->index < end_index)
2638 goto out;
2639
2640 /* Is the page fully outside i_size? (truncate in progress) */
2641 offset = i_size & (PAGE_CACHE_SIZE-1);
2642 if (page->index >= end_index+1 || !offset) {
2643 /*
2644 * The page may have dirty, unmapped buffers. For example,
2645 * they may have been added in ext3_writepage(). Make them
2646 * freeable here, so the page does not leak.
2647 */
2648#if 0
2649 /* Not really sure about this - do we need this ? */
2650 if (page->mapping->a_ops->invalidatepage)
2651 page->mapping->a_ops->invalidatepage(page, offset);
2652#endif
2653 unlock_page(page);
2654 return 0; /* don't care */
2655 }
2656
2657 /*
2658 * The page straddles i_size. It must be zeroed out on each and every
2659 * writepage invocation because it may be mmapped. "A file is mapped
2660 * in multiples of the page size. For a file that is not a multiple of
2661 * the page size, the remaining memory is zeroed when mapped, and
2662 * writes to that region are not written out to the file."
2663 */
2664 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2665out:
2666 ret = mpage_writepage(page, get_block, wbc);
2667 if (ret == -EAGAIN)
2668 ret = __block_write_full_page(inode, page, get_block, wbc,
2669 end_buffer_async_write);
2670 return ret;
2671}
2672EXPORT_SYMBOL(nobh_writepage);
2673
2674int nobh_truncate_page(struct address_space *mapping,
2675 loff_t from, get_block_t *get_block)
2676{
2677 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2678 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2679 unsigned blocksize;
2680 sector_t iblock;
2681 unsigned length, pos;
2682 struct inode *inode = mapping->host;
2683 struct page *page;
2684 struct buffer_head map_bh;
2685 int err;
2686
2687 blocksize = 1 << inode->i_blkbits;
2688 length = offset & (blocksize - 1);
2689
2690 /* Block boundary? Nothing to do */
2691 if (!length)
2692 return 0;
2693
2694 length = blocksize - length;
2695 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2696
2697 page = grab_cache_page(mapping, index);
2698 err = -ENOMEM;
2699 if (!page)
2700 goto out;
2701
2702 if (page_has_buffers(page)) {
2703has_buffers:
2704 unlock_page(page);
2705 page_cache_release(page);
2706 return block_truncate_page(mapping, from, get_block);
2707 }
2708
2709 /* Find the buffer that contains "offset" */
2710 pos = blocksize;
2711 while (offset >= pos) {
2712 iblock++;
2713 pos += blocksize;
2714 }
2715
2716 map_bh.b_size = blocksize;
2717 map_bh.b_state = 0;
2718 err = get_block(inode, iblock, &map_bh, 0);
2719 if (err)
2720 goto unlock;
2721 /* unmapped? It's a hole - nothing to do */
2722 if (!buffer_mapped(&map_bh))
2723 goto unlock;
2724
2725 /* Ok, it's mapped. Make sure it's up-to-date */
2726 if (!PageUptodate(page)) {
2727 err = mapping->a_ops->readpage(NULL, page);
2728 if (err) {
2729 page_cache_release(page);
2730 goto out;
2731 }
2732 lock_page(page);
2733 if (!PageUptodate(page)) {
2734 err = -EIO;
2735 goto unlock;
2736 }
2737 if (page_has_buffers(page))
2738 goto has_buffers;
2739 }
2740 zero_user(page, offset, length);
2741 set_page_dirty(page);
2742 err = 0;
2743
2744unlock:
2745 unlock_page(page);
2746 page_cache_release(page);
2747out:
2748 return err;
2749}
2750EXPORT_SYMBOL(nobh_truncate_page);
2751
2752int block_truncate_page(struct address_space *mapping,
2753 loff_t from, get_block_t *get_block)
2754{
2755 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2756 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2757 unsigned blocksize;
2758 sector_t iblock;
2759 unsigned length, pos;
2760 struct inode *inode = mapping->host;
2761 struct page *page;
2762 struct buffer_head *bh;
2763 int err;
2764
2765 blocksize = 1 << inode->i_blkbits;
2766 length = offset & (blocksize - 1);
2767
2768 /* Block boundary? Nothing to do */
2769 if (!length)
2770 return 0;
2771
2772 length = blocksize - length;
2773 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2774
2775 page = grab_cache_page(mapping, index);
2776 err = -ENOMEM;
2777 if (!page)
2778 goto out;
2779
2780 if (!page_has_buffers(page))
2781 create_empty_buffers(page, blocksize, 0);
2782
2783 /* Find the buffer that contains "offset" */
2784 bh = page_buffers(page);
2785 pos = blocksize;
2786 while (offset >= pos) {
2787 bh = bh->b_this_page;
2788 iblock++;
2789 pos += blocksize;
2790 }
2791
2792 err = 0;
2793 if (!buffer_mapped(bh)) {
2794 WARN_ON(bh->b_size != blocksize);
2795 err = get_block(inode, iblock, bh, 0);
2796 if (err)
2797 goto unlock;
2798 /* unmapped? It's a hole - nothing to do */
2799 if (!buffer_mapped(bh))
2800 goto unlock;
2801 }
2802
2803 /* Ok, it's mapped. Make sure it's up-to-date */
2804 if (PageUptodate(page))
2805 set_buffer_uptodate(bh);
2806
2807 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2808 err = -EIO;
2809 ll_rw_block(READ, 1, &bh);
2810 wait_on_buffer(bh);
2811 /* Uhhuh. Read error. Complain and punt. */
2812 if (!buffer_uptodate(bh))
2813 goto unlock;
2814 }
2815
2816 zero_user(page, offset, length);
2817 mark_buffer_dirty(bh);
2818 err = 0;
2819
2820unlock:
2821 unlock_page(page);
2822 page_cache_release(page);
2823out:
2824 return err;
2825}
2826EXPORT_SYMBOL(block_truncate_page);
2827
2828/*
2829 * The generic ->writepage function for buffer-backed address_spaces
2830 * this form passes in the end_io handler used to finish the IO.
2831 */
2832int block_write_full_page_endio(struct page *page, get_block_t *get_block,
2833 struct writeback_control *wbc, bh_end_io_t *handler)
2834{
2835 struct inode * const inode = page->mapping->host;
2836 loff_t i_size = i_size_read(inode);
2837 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2838 unsigned offset;
2839
2840 /* Is the page fully inside i_size? */
2841 if (page->index < end_index)
2842 return __block_write_full_page(inode, page, get_block, wbc,
2843 handler);
2844
2845 /* Is the page fully outside i_size? (truncate in progress) */
2846 offset = i_size & (PAGE_CACHE_SIZE-1);
2847 if (page->index >= end_index+1 || !offset) {
2848 /*
2849 * The page may have dirty, unmapped buffers. For example,
2850 * they may have been added in ext3_writepage(). Make them
2851 * freeable here, so the page does not leak.
2852 */
2853 do_invalidatepage(page, 0);
2854 unlock_page(page);
2855 return 0; /* don't care */
2856 }
2857
2858 /*
2859 * The page straddles i_size. It must be zeroed out on each and every
2860 * writepage invocation because it may be mmapped. "A file is mapped
2861 * in multiples of the page size. For a file that is not a multiple of
2862 * the page size, the remaining memory is zeroed when mapped, and
2863 * writes to that region are not written out to the file."
2864 */
2865 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2866 return __block_write_full_page(inode, page, get_block, wbc, handler);
2867}
2868EXPORT_SYMBOL(block_write_full_page_endio);
2869
2870/*
2871 * The generic ->writepage function for buffer-backed address_spaces
2872 */
2873int block_write_full_page(struct page *page, get_block_t *get_block,
2874 struct writeback_control *wbc)
2875{
2876 return block_write_full_page_endio(page, get_block, wbc,
2877 end_buffer_async_write);
2878}
2879EXPORT_SYMBOL(block_write_full_page);
2880
2881sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2882 get_block_t *get_block)
2883{
2884 struct buffer_head tmp;
2885 struct inode *inode = mapping->host;
2886 tmp.b_state = 0;
2887 tmp.b_blocknr = 0;
2888 tmp.b_size = 1 << inode->i_blkbits;
2889 get_block(inode, block, &tmp, 0);
2890 return tmp.b_blocknr;
2891}
2892EXPORT_SYMBOL(generic_block_bmap);
2893
2894static void end_bio_bh_io_sync(struct bio *bio, int err)
2895{
2896 struct buffer_head *bh = bio->bi_private;
2897
2898 if (err == -EOPNOTSUPP) {
2899 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2900 }
2901
2902 if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2903 set_bit(BH_Quiet, &bh->b_state);
2904
2905 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2906 bio_put(bio);
2907}
2908
2909int submit_bh(int rw, struct buffer_head * bh)
2910{
2911 struct bio *bio;
2912 int ret = 0;
2913
2914 BUG_ON(!buffer_locked(bh));
2915 BUG_ON(!buffer_mapped(bh));
2916 BUG_ON(!bh->b_end_io);
2917 BUG_ON(buffer_delay(bh));
2918 BUG_ON(buffer_unwritten(bh));
2919
2920 /*
2921 * Only clear out a write error when rewriting
2922 */
2923 if (test_set_buffer_req(bh) && (rw & WRITE))
2924 clear_buffer_write_io_error(bh);
2925
2926 /*
2927 * from here on down, it's all bio -- do the initial mapping,
2928 * submit_bio -> generic_make_request may further map this bio around
2929 */
2930 bio = bio_alloc(GFP_NOIO, 1);
2931
2932 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2933 bio->bi_bdev = bh->b_bdev;
2934 bio->bi_io_vec[0].bv_page = bh->b_page;
2935 bio->bi_io_vec[0].bv_len = bh->b_size;
2936 bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2937
2938 bio->bi_vcnt = 1;
2939 bio->bi_idx = 0;
2940 bio->bi_size = bh->b_size;
2941
2942 bio->bi_end_io = end_bio_bh_io_sync;
2943 bio->bi_private = bh;
2944
2945 bio_get(bio);
2946 submit_bio(rw, bio);
2947
2948 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2949 ret = -EOPNOTSUPP;
2950
2951 bio_put(bio);
2952 return ret;
2953}
2954EXPORT_SYMBOL(submit_bh);
2955
2956/**
2957 * ll_rw_block: low-level access to block devices (DEPRECATED)
2958 * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
2959 * @nr: number of &struct buffer_heads in the array
2960 * @bhs: array of pointers to &struct buffer_head
2961 *
2962 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2963 * requests an I/O operation on them, either a %READ or a %WRITE. The third
2964 * %READA option is described in the documentation for generic_make_request()
2965 * which ll_rw_block() calls.
2966 *
2967 * This function drops any buffer that it cannot get a lock on (with the
2968 * BH_Lock state bit), any buffer that appears to be clean when doing a write
2969 * request, and any buffer that appears to be up-to-date when doing read
2970 * request. Further it marks as clean buffers that are processed for
2971 * writing (the buffer cache won't assume that they are actually clean
2972 * until the buffer gets unlocked).
2973 *
2974 * ll_rw_block sets b_end_io to simple completion handler that marks
2975 * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2976 * any waiters.
2977 *
2978 * All of the buffers must be for the same device, and must also be a
2979 * multiple of the current approved size for the device.
2980 */
2981void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2982{
2983 int i;
2984
2985 for (i = 0; i < nr; i++) {
2986 struct buffer_head *bh = bhs[i];
2987
2988 if (!trylock_buffer(bh))
2989 continue;
2990 if (rw == WRITE) {
2991 if (test_clear_buffer_dirty(bh)) {
2992 bh->b_end_io = end_buffer_write_sync;
2993 get_bh(bh);
2994 submit_bh(WRITE, bh);
2995 continue;
2996 }
2997 } else {
2998 if (!buffer_uptodate(bh)) {
2999 bh->b_end_io = end_buffer_read_sync;
3000 get_bh(bh);
3001 submit_bh(rw, bh);
3002 continue;
3003 }
3004 }
3005 unlock_buffer(bh);
3006 }
3007}
3008EXPORT_SYMBOL(ll_rw_block);
3009
3010void write_dirty_buffer(struct buffer_head *bh, int rw)
3011{
3012 lock_buffer(bh);
3013 if (!test_clear_buffer_dirty(bh)) {
3014 unlock_buffer(bh);
3015 return;
3016 }
3017 bh->b_end_io = end_buffer_write_sync;
3018 get_bh(bh);
3019 submit_bh(rw, bh);
3020}
3021EXPORT_SYMBOL(write_dirty_buffer);
3022
3023/*
3024 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3025 * and then start new I/O and then wait upon it. The caller must have a ref on
3026 * the buffer_head.
3027 */
3028int __sync_dirty_buffer(struct buffer_head *bh, int rw)
3029{
3030 int ret = 0;
3031
3032 WARN_ON(atomic_read(&bh->b_count) < 1);
3033 lock_buffer(bh);
3034 if (test_clear_buffer_dirty(bh)) {
3035 get_bh(bh);
3036 bh->b_end_io = end_buffer_write_sync;
3037 ret = submit_bh(rw, bh);
3038 wait_on_buffer(bh);
3039 if (!ret && !buffer_uptodate(bh))
3040 ret = -EIO;
3041 } else {
3042 unlock_buffer(bh);
3043 }
3044 return ret;
3045}
3046EXPORT_SYMBOL(__sync_dirty_buffer);
3047
3048int sync_dirty_buffer(struct buffer_head *bh)
3049{
3050 return __sync_dirty_buffer(bh, WRITE_SYNC);
3051}
3052EXPORT_SYMBOL(sync_dirty_buffer);
3053
3054/*
3055 * try_to_free_buffers() checks if all the buffers on this particular page
3056 * are unused, and releases them if so.
3057 *
3058 * Exclusion against try_to_free_buffers may be obtained by either
3059 * locking the page or by holding its mapping's private_lock.
3060 *
3061 * If the page is dirty but all the buffers are clean then we need to
3062 * be sure to mark the page clean as well. This is because the page
3063 * may be against a block device, and a later reattachment of buffers
3064 * to a dirty page will set *all* buffers dirty. Which would corrupt
3065 * filesystem data on the same device.
3066 *
3067 * The same applies to regular filesystem pages: if all the buffers are
3068 * clean then we set the page clean and proceed. To do that, we require
3069 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3070 * private_lock.
3071 *
3072 * try_to_free_buffers() is non-blocking.
3073 */
3074static inline int buffer_busy(struct buffer_head *bh)
3075{
3076 return atomic_read(&bh->b_count) |
3077 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3078}
3079
3080static int
3081drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3082{
3083 struct buffer_head *head = page_buffers(page);
3084 struct buffer_head *bh;
3085
3086 bh = head;
3087 do {
3088 if (buffer_write_io_error(bh) && page->mapping)
3089 set_bit(AS_EIO, &page->mapping->flags);
3090 if (buffer_busy(bh))
3091 goto failed;
3092 bh = bh->b_this_page;
3093 } while (bh != head);
3094
3095 do {
3096 struct buffer_head *next = bh->b_this_page;
3097
3098 if (bh->b_assoc_map)
3099 __remove_assoc_queue(bh);
3100 bh = next;
3101 } while (bh != head);
3102 *buffers_to_free = head;
3103 __clear_page_buffers(page);
3104 return 1;
3105failed:
3106 return 0;
3107}
3108
3109int try_to_free_buffers(struct page *page)
3110{
3111 struct address_space * const mapping = page->mapping;
3112 struct buffer_head *buffers_to_free = NULL;
3113 int ret = 0;
3114
3115 BUG_ON(!PageLocked(page));
3116 if (PageWriteback(page))
3117 return 0;
3118
3119 if (mapping == NULL) { /* can this still happen? */
3120 ret = drop_buffers(page, &buffers_to_free);
3121 goto out;
3122 }
3123
3124 spin_lock(&mapping->private_lock);
3125 ret = drop_buffers(page, &buffers_to_free);
3126
3127 /*
3128 * If the filesystem writes its buffers by hand (eg ext3)
3129 * then we can have clean buffers against a dirty page. We
3130 * clean the page here; otherwise the VM will never notice
3131 * that the filesystem did any IO at all.
3132 *
3133 * Also, during truncate, discard_buffer will have marked all
3134 * the page's buffers clean. We discover that here and clean
3135 * the page also.
3136 *
3137 * private_lock must be held over this entire operation in order
3138 * to synchronise against __set_page_dirty_buffers and prevent the
3139 * dirty bit from being lost.
3140 */
3141 if (ret)
3142 cancel_dirty_page(page, PAGE_CACHE_SIZE);
3143 spin_unlock(&mapping->private_lock);
3144out:
3145 if (buffers_to_free) {
3146 struct buffer_head *bh = buffers_to_free;
3147
3148 do {
3149 struct buffer_head *next = bh->b_this_page;
3150 free_buffer_head(bh);
3151 bh = next;
3152 } while (bh != buffers_to_free);
3153 }
3154 return ret;
3155}
3156EXPORT_SYMBOL(try_to_free_buffers);
3157
3158/*
3159 * There are no bdflush tunables left. But distributions are
3160 * still running obsolete flush daemons, so we terminate them here.
3161 *
3162 * Use of bdflush() is deprecated and will be removed in a future kernel.
3163 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3164 */
3165SYSCALL_DEFINE2(bdflush, int, func, long, data)
3166{
3167 static int msg_count;
3168
3169 if (!capable(CAP_SYS_ADMIN))
3170 return -EPERM;
3171
3172 if (msg_count < 5) {
3173 msg_count++;
3174 printk(KERN_INFO
3175 "warning: process `%s' used the obsolete bdflush"
3176 " system call\n", current->comm);
3177 printk(KERN_INFO "Fix your initscripts?\n");
3178 }
3179
3180 if (func == 1)
3181 do_exit(0);
3182 return 0;
3183}
3184
3185/*
3186 * Buffer-head allocation
3187 */
3188static struct kmem_cache *bh_cachep;
3189
3190/*
3191 * Once the number of bh's in the machine exceeds this level, we start
3192 * stripping them in writeback.
3193 */
3194static int max_buffer_heads;
3195
3196int buffer_heads_over_limit;
3197
3198struct bh_accounting {
3199 int nr; /* Number of live bh's */
3200 int ratelimit; /* Limit cacheline bouncing */
3201};
3202
3203static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3204
3205static void recalc_bh_state(void)
3206{
3207 int i;
3208 int tot = 0;
3209
3210 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3211 return;
3212 __this_cpu_write(bh_accounting.ratelimit, 0);
3213 for_each_online_cpu(i)
3214 tot += per_cpu(bh_accounting, i).nr;
3215 buffer_heads_over_limit = (tot > max_buffer_heads);
3216}
3217
3218struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3219{
3220 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3221 if (ret) {
3222 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3223 preempt_disable();
3224 __this_cpu_inc(bh_accounting.nr);
3225 recalc_bh_state();
3226 preempt_enable();
3227 }
3228 return ret;
3229}
3230EXPORT_SYMBOL(alloc_buffer_head);
3231
3232void free_buffer_head(struct buffer_head *bh)
3233{
3234 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3235 kmem_cache_free(bh_cachep, bh);
3236 preempt_disable();
3237 __this_cpu_dec(bh_accounting.nr);
3238 recalc_bh_state();
3239 preempt_enable();
3240}
3241EXPORT_SYMBOL(free_buffer_head);
3242
3243static void buffer_exit_cpu(int cpu)
3244{
3245 int i;
3246 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3247
3248 for (i = 0; i < BH_LRU_SIZE; i++) {
3249 brelse(b->bhs[i]);
3250 b->bhs[i] = NULL;
3251 }
3252 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3253 per_cpu(bh_accounting, cpu).nr = 0;
3254}
3255
3256static int buffer_cpu_notify(struct notifier_block *self,
3257 unsigned long action, void *hcpu)
3258{
3259 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3260 buffer_exit_cpu((unsigned long)hcpu);
3261 return NOTIFY_OK;
3262}
3263
3264/**
3265 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3266 * @bh: struct buffer_head
3267 *
3268 * Return true if the buffer is up-to-date and false,
3269 * with the buffer locked, if not.
3270 */
3271int bh_uptodate_or_lock(struct buffer_head *bh)
3272{
3273 if (!buffer_uptodate(bh)) {
3274 lock_buffer(bh);
3275 if (!buffer_uptodate(bh))
3276 return 0;
3277 unlock_buffer(bh);
3278 }
3279 return 1;
3280}
3281EXPORT_SYMBOL(bh_uptodate_or_lock);
3282
3283/**
3284 * bh_submit_read - Submit a locked buffer for reading
3285 * @bh: struct buffer_head
3286 *
3287 * Returns zero on success and -EIO on error.
3288 */
3289int bh_submit_read(struct buffer_head *bh)
3290{
3291 BUG_ON(!buffer_locked(bh));
3292
3293 if (buffer_uptodate(bh)) {
3294 unlock_buffer(bh);
3295 return 0;
3296 }
3297
3298 get_bh(bh);
3299 bh->b_end_io = end_buffer_read_sync;
3300 submit_bh(READ, bh);
3301 wait_on_buffer(bh);
3302 if (buffer_uptodate(bh))
3303 return 0;
3304 return -EIO;
3305}
3306EXPORT_SYMBOL(bh_submit_read);
3307
3308void __init buffer_init(void)
3309{
3310 int nrpages;
3311
3312 bh_cachep = kmem_cache_create("buffer_head",
3313 sizeof(struct buffer_head), 0,
3314 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3315 SLAB_MEM_SPREAD),
3316 NULL);
3317
3318 /*
3319 * Limit the bh occupancy to 10% of ZONE_NORMAL
3320 */
3321 nrpages = (nr_free_buffer_pages() * 10) / 100;
3322 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3323 hotcpu_notifier(buffer_cpu_notify, 0);
3324}