Loading...
1/*
2 * linux/fs/buffer.c
3 *
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
6
7/*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9 *
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12 *
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
15 *
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17 *
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19 */
20
21#include <linux/kernel.h>
22#include <linux/syscalls.h>
23#include <linux/fs.h>
24#include <linux/mm.h>
25#include <linux/percpu.h>
26#include <linux/slab.h>
27#include <linux/capability.h>
28#include <linux/blkdev.h>
29#include <linux/file.h>
30#include <linux/quotaops.h>
31#include <linux/highmem.h>
32#include <linux/export.h>
33#include <linux/backing-dev.h>
34#include <linux/writeback.h>
35#include <linux/hash.h>
36#include <linux/suspend.h>
37#include <linux/buffer_head.h>
38#include <linux/task_io_accounting_ops.h>
39#include <linux/bio.h>
40#include <linux/notifier.h>
41#include <linux/cpu.h>
42#include <linux/bitops.h>
43#include <linux/mpage.h>
44#include <linux/bit_spinlock.h>
45#include <trace/events/block.h>
46
47static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
48static int submit_bh_wbc(int rw, struct buffer_head *bh,
49 unsigned long bio_flags,
50 struct writeback_control *wbc);
51
52#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
53
54void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
55{
56 bh->b_end_io = handler;
57 bh->b_private = private;
58}
59EXPORT_SYMBOL(init_buffer);
60
61inline void touch_buffer(struct buffer_head *bh)
62{
63 trace_block_touch_buffer(bh);
64 mark_page_accessed(bh->b_page);
65}
66EXPORT_SYMBOL(touch_buffer);
67
68void __lock_buffer(struct buffer_head *bh)
69{
70 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
71}
72EXPORT_SYMBOL(__lock_buffer);
73
74void unlock_buffer(struct buffer_head *bh)
75{
76 clear_bit_unlock(BH_Lock, &bh->b_state);
77 smp_mb__after_atomic();
78 wake_up_bit(&bh->b_state, BH_Lock);
79}
80EXPORT_SYMBOL(unlock_buffer);
81
82/*
83 * Returns if the page has dirty or writeback buffers. If all the buffers
84 * are unlocked and clean then the PageDirty information is stale. If
85 * any of the pages are locked, it is assumed they are locked for IO.
86 */
87void buffer_check_dirty_writeback(struct page *page,
88 bool *dirty, bool *writeback)
89{
90 struct buffer_head *head, *bh;
91 *dirty = false;
92 *writeback = false;
93
94 BUG_ON(!PageLocked(page));
95
96 if (!page_has_buffers(page))
97 return;
98
99 if (PageWriteback(page))
100 *writeback = true;
101
102 head = page_buffers(page);
103 bh = head;
104 do {
105 if (buffer_locked(bh))
106 *writeback = true;
107
108 if (buffer_dirty(bh))
109 *dirty = true;
110
111 bh = bh->b_this_page;
112 } while (bh != head);
113}
114EXPORT_SYMBOL(buffer_check_dirty_writeback);
115
116/*
117 * Block until a buffer comes unlocked. This doesn't stop it
118 * from becoming locked again - you have to lock it yourself
119 * if you want to preserve its state.
120 */
121void __wait_on_buffer(struct buffer_head * bh)
122{
123 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
124}
125EXPORT_SYMBOL(__wait_on_buffer);
126
127static void
128__clear_page_buffers(struct page *page)
129{
130 ClearPagePrivate(page);
131 set_page_private(page, 0);
132 put_page(page);
133}
134
135static void buffer_io_error(struct buffer_head *bh, char *msg)
136{
137 if (!test_bit(BH_Quiet, &bh->b_state))
138 printk_ratelimited(KERN_ERR
139 "Buffer I/O error on dev %pg, logical block %llu%s\n",
140 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
141}
142
143/*
144 * End-of-IO handler helper function which does not touch the bh after
145 * unlocking it.
146 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
147 * a race there is benign: unlock_buffer() only use the bh's address for
148 * hashing after unlocking the buffer, so it doesn't actually touch the bh
149 * itself.
150 */
151static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
152{
153 if (uptodate) {
154 set_buffer_uptodate(bh);
155 } else {
156 /* This happens, due to failed READA attempts. */
157 clear_buffer_uptodate(bh);
158 }
159 unlock_buffer(bh);
160}
161
162/*
163 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
164 * unlock the buffer. This is what ll_rw_block uses too.
165 */
166void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
167{
168 __end_buffer_read_notouch(bh, uptodate);
169 put_bh(bh);
170}
171EXPORT_SYMBOL(end_buffer_read_sync);
172
173void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
174{
175 if (uptodate) {
176 set_buffer_uptodate(bh);
177 } else {
178 buffer_io_error(bh, ", lost sync page write");
179 set_buffer_write_io_error(bh);
180 clear_buffer_uptodate(bh);
181 }
182 unlock_buffer(bh);
183 put_bh(bh);
184}
185EXPORT_SYMBOL(end_buffer_write_sync);
186
187/*
188 * Various filesystems appear to want __find_get_block to be non-blocking.
189 * But it's the page lock which protects the buffers. To get around this,
190 * we get exclusion from try_to_free_buffers with the blockdev mapping's
191 * private_lock.
192 *
193 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
194 * may be quite high. This code could TryLock the page, and if that
195 * succeeds, there is no need to take private_lock. (But if
196 * private_lock is contended then so is mapping->tree_lock).
197 */
198static struct buffer_head *
199__find_get_block_slow(struct block_device *bdev, sector_t block)
200{
201 struct inode *bd_inode = bdev->bd_inode;
202 struct address_space *bd_mapping = bd_inode->i_mapping;
203 struct buffer_head *ret = NULL;
204 pgoff_t index;
205 struct buffer_head *bh;
206 struct buffer_head *head;
207 struct page *page;
208 int all_mapped = 1;
209
210 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
211 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
212 if (!page)
213 goto out;
214
215 spin_lock(&bd_mapping->private_lock);
216 if (!page_has_buffers(page))
217 goto out_unlock;
218 head = page_buffers(page);
219 bh = head;
220 do {
221 if (!buffer_mapped(bh))
222 all_mapped = 0;
223 else if (bh->b_blocknr == block) {
224 ret = bh;
225 get_bh(bh);
226 goto out_unlock;
227 }
228 bh = bh->b_this_page;
229 } while (bh != head);
230
231 /* we might be here because some of the buffers on this page are
232 * not mapped. This is due to various races between
233 * file io on the block device and getblk. It gets dealt with
234 * elsewhere, don't buffer_error if we had some unmapped buffers
235 */
236 if (all_mapped) {
237 printk("__find_get_block_slow() failed. "
238 "block=%llu, b_blocknr=%llu\n",
239 (unsigned long long)block,
240 (unsigned long long)bh->b_blocknr);
241 printk("b_state=0x%08lx, b_size=%zu\n",
242 bh->b_state, bh->b_size);
243 printk("device %pg blocksize: %d\n", bdev,
244 1 << bd_inode->i_blkbits);
245 }
246out_unlock:
247 spin_unlock(&bd_mapping->private_lock);
248 put_page(page);
249out:
250 return ret;
251}
252
253/*
254 * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
255 */
256static void free_more_memory(void)
257{
258 struct zone *zone;
259 int nid;
260
261 wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
262 yield();
263
264 for_each_online_node(nid) {
265 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
266 gfp_zone(GFP_NOFS), NULL,
267 &zone);
268 if (zone)
269 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
270 GFP_NOFS, NULL);
271 }
272}
273
274/*
275 * I/O completion handler for block_read_full_page() - pages
276 * which come unlocked at the end of I/O.
277 */
278static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
279{
280 unsigned long flags;
281 struct buffer_head *first;
282 struct buffer_head *tmp;
283 struct page *page;
284 int page_uptodate = 1;
285
286 BUG_ON(!buffer_async_read(bh));
287
288 page = bh->b_page;
289 if (uptodate) {
290 set_buffer_uptodate(bh);
291 } else {
292 clear_buffer_uptodate(bh);
293 buffer_io_error(bh, ", async page read");
294 SetPageError(page);
295 }
296
297 /*
298 * Be _very_ careful from here on. Bad things can happen if
299 * two buffer heads end IO at almost the same time and both
300 * decide that the page is now completely done.
301 */
302 first = page_buffers(page);
303 local_irq_save(flags);
304 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
305 clear_buffer_async_read(bh);
306 unlock_buffer(bh);
307 tmp = bh;
308 do {
309 if (!buffer_uptodate(tmp))
310 page_uptodate = 0;
311 if (buffer_async_read(tmp)) {
312 BUG_ON(!buffer_locked(tmp));
313 goto still_busy;
314 }
315 tmp = tmp->b_this_page;
316 } while (tmp != bh);
317 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
318 local_irq_restore(flags);
319
320 /*
321 * If none of the buffers had errors and they are all
322 * uptodate then we can set the page uptodate.
323 */
324 if (page_uptodate && !PageError(page))
325 SetPageUptodate(page);
326 unlock_page(page);
327 return;
328
329still_busy:
330 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
331 local_irq_restore(flags);
332 return;
333}
334
335/*
336 * Completion handler for block_write_full_page() - pages which are unlocked
337 * during I/O, and which have PageWriteback cleared upon I/O completion.
338 */
339void end_buffer_async_write(struct buffer_head *bh, int uptodate)
340{
341 unsigned long flags;
342 struct buffer_head *first;
343 struct buffer_head *tmp;
344 struct page *page;
345
346 BUG_ON(!buffer_async_write(bh));
347
348 page = bh->b_page;
349 if (uptodate) {
350 set_buffer_uptodate(bh);
351 } else {
352 buffer_io_error(bh, ", lost async page write");
353 set_bit(AS_EIO, &page->mapping->flags);
354 set_buffer_write_io_error(bh);
355 clear_buffer_uptodate(bh);
356 SetPageError(page);
357 }
358
359 first = page_buffers(page);
360 local_irq_save(flags);
361 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
362
363 clear_buffer_async_write(bh);
364 unlock_buffer(bh);
365 tmp = bh->b_this_page;
366 while (tmp != bh) {
367 if (buffer_async_write(tmp)) {
368 BUG_ON(!buffer_locked(tmp));
369 goto still_busy;
370 }
371 tmp = tmp->b_this_page;
372 }
373 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
374 local_irq_restore(flags);
375 end_page_writeback(page);
376 return;
377
378still_busy:
379 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
380 local_irq_restore(flags);
381 return;
382}
383EXPORT_SYMBOL(end_buffer_async_write);
384
385/*
386 * If a page's buffers are under async readin (end_buffer_async_read
387 * completion) then there is a possibility that another thread of
388 * control could lock one of the buffers after it has completed
389 * but while some of the other buffers have not completed. This
390 * locked buffer would confuse end_buffer_async_read() into not unlocking
391 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
392 * that this buffer is not under async I/O.
393 *
394 * The page comes unlocked when it has no locked buffer_async buffers
395 * left.
396 *
397 * PageLocked prevents anyone starting new async I/O reads any of
398 * the buffers.
399 *
400 * PageWriteback is used to prevent simultaneous writeout of the same
401 * page.
402 *
403 * PageLocked prevents anyone from starting writeback of a page which is
404 * under read I/O (PageWriteback is only ever set against a locked page).
405 */
406static void mark_buffer_async_read(struct buffer_head *bh)
407{
408 bh->b_end_io = end_buffer_async_read;
409 set_buffer_async_read(bh);
410}
411
412static void mark_buffer_async_write_endio(struct buffer_head *bh,
413 bh_end_io_t *handler)
414{
415 bh->b_end_io = handler;
416 set_buffer_async_write(bh);
417}
418
419void mark_buffer_async_write(struct buffer_head *bh)
420{
421 mark_buffer_async_write_endio(bh, end_buffer_async_write);
422}
423EXPORT_SYMBOL(mark_buffer_async_write);
424
425
426/*
427 * fs/buffer.c contains helper functions for buffer-backed address space's
428 * fsync functions. A common requirement for buffer-based filesystems is
429 * that certain data from the backing blockdev needs to be written out for
430 * a successful fsync(). For example, ext2 indirect blocks need to be
431 * written back and waited upon before fsync() returns.
432 *
433 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
434 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
435 * management of a list of dependent buffers at ->i_mapping->private_list.
436 *
437 * Locking is a little subtle: try_to_free_buffers() will remove buffers
438 * from their controlling inode's queue when they are being freed. But
439 * try_to_free_buffers() will be operating against the *blockdev* mapping
440 * at the time, not against the S_ISREG file which depends on those buffers.
441 * So the locking for private_list is via the private_lock in the address_space
442 * which backs the buffers. Which is different from the address_space
443 * against which the buffers are listed. So for a particular address_space,
444 * mapping->private_lock does *not* protect mapping->private_list! In fact,
445 * mapping->private_list will always be protected by the backing blockdev's
446 * ->private_lock.
447 *
448 * Which introduces a requirement: all buffers on an address_space's
449 * ->private_list must be from the same address_space: the blockdev's.
450 *
451 * address_spaces which do not place buffers at ->private_list via these
452 * utility functions are free to use private_lock and private_list for
453 * whatever they want. The only requirement is that list_empty(private_list)
454 * be true at clear_inode() time.
455 *
456 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
457 * filesystems should do that. invalidate_inode_buffers() should just go
458 * BUG_ON(!list_empty).
459 *
460 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
461 * take an address_space, not an inode. And it should be called
462 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
463 * queued up.
464 *
465 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
466 * list if it is already on a list. Because if the buffer is on a list,
467 * it *must* already be on the right one. If not, the filesystem is being
468 * silly. This will save a ton of locking. But first we have to ensure
469 * that buffers are taken *off* the old inode's list when they are freed
470 * (presumably in truncate). That requires careful auditing of all
471 * filesystems (do it inside bforget()). It could also be done by bringing
472 * b_inode back.
473 */
474
475/*
476 * The buffer's backing address_space's private_lock must be held
477 */
478static void __remove_assoc_queue(struct buffer_head *bh)
479{
480 list_del_init(&bh->b_assoc_buffers);
481 WARN_ON(!bh->b_assoc_map);
482 if (buffer_write_io_error(bh))
483 set_bit(AS_EIO, &bh->b_assoc_map->flags);
484 bh->b_assoc_map = NULL;
485}
486
487int inode_has_buffers(struct inode *inode)
488{
489 return !list_empty(&inode->i_data.private_list);
490}
491
492/*
493 * osync is designed to support O_SYNC io. It waits synchronously for
494 * all already-submitted IO to complete, but does not queue any new
495 * writes to the disk.
496 *
497 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
498 * you dirty the buffers, and then use osync_inode_buffers to wait for
499 * completion. Any other dirty buffers which are not yet queued for
500 * write will not be flushed to disk by the osync.
501 */
502static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
503{
504 struct buffer_head *bh;
505 struct list_head *p;
506 int err = 0;
507
508 spin_lock(lock);
509repeat:
510 list_for_each_prev(p, list) {
511 bh = BH_ENTRY(p);
512 if (buffer_locked(bh)) {
513 get_bh(bh);
514 spin_unlock(lock);
515 wait_on_buffer(bh);
516 if (!buffer_uptodate(bh))
517 err = -EIO;
518 brelse(bh);
519 spin_lock(lock);
520 goto repeat;
521 }
522 }
523 spin_unlock(lock);
524 return err;
525}
526
527static void do_thaw_one(struct super_block *sb, void *unused)
528{
529 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
530 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
531}
532
533static void do_thaw_all(struct work_struct *work)
534{
535 iterate_supers(do_thaw_one, NULL);
536 kfree(work);
537 printk(KERN_WARNING "Emergency Thaw complete\n");
538}
539
540/**
541 * emergency_thaw_all -- forcibly thaw every frozen filesystem
542 *
543 * Used for emergency unfreeze of all filesystems via SysRq
544 */
545void emergency_thaw_all(void)
546{
547 struct work_struct *work;
548
549 work = kmalloc(sizeof(*work), GFP_ATOMIC);
550 if (work) {
551 INIT_WORK(work, do_thaw_all);
552 schedule_work(work);
553 }
554}
555
556/**
557 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
558 * @mapping: the mapping which wants those buffers written
559 *
560 * Starts I/O against the buffers at mapping->private_list, and waits upon
561 * that I/O.
562 *
563 * Basically, this is a convenience function for fsync().
564 * @mapping is a file or directory which needs those buffers to be written for
565 * a successful fsync().
566 */
567int sync_mapping_buffers(struct address_space *mapping)
568{
569 struct address_space *buffer_mapping = mapping->private_data;
570
571 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
572 return 0;
573
574 return fsync_buffers_list(&buffer_mapping->private_lock,
575 &mapping->private_list);
576}
577EXPORT_SYMBOL(sync_mapping_buffers);
578
579/*
580 * Called when we've recently written block `bblock', and it is known that
581 * `bblock' was for a buffer_boundary() buffer. This means that the block at
582 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
583 * dirty, schedule it for IO. So that indirects merge nicely with their data.
584 */
585void write_boundary_block(struct block_device *bdev,
586 sector_t bblock, unsigned blocksize)
587{
588 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
589 if (bh) {
590 if (buffer_dirty(bh))
591 ll_rw_block(WRITE, 1, &bh);
592 put_bh(bh);
593 }
594}
595
596void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
597{
598 struct address_space *mapping = inode->i_mapping;
599 struct address_space *buffer_mapping = bh->b_page->mapping;
600
601 mark_buffer_dirty(bh);
602 if (!mapping->private_data) {
603 mapping->private_data = buffer_mapping;
604 } else {
605 BUG_ON(mapping->private_data != buffer_mapping);
606 }
607 if (!bh->b_assoc_map) {
608 spin_lock(&buffer_mapping->private_lock);
609 list_move_tail(&bh->b_assoc_buffers,
610 &mapping->private_list);
611 bh->b_assoc_map = mapping;
612 spin_unlock(&buffer_mapping->private_lock);
613 }
614}
615EXPORT_SYMBOL(mark_buffer_dirty_inode);
616
617/*
618 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
619 * dirty.
620 *
621 * If warn is true, then emit a warning if the page is not uptodate and has
622 * not been truncated.
623 *
624 * The caller must hold lock_page_memcg().
625 */
626static void __set_page_dirty(struct page *page, struct address_space *mapping,
627 int warn)
628{
629 unsigned long flags;
630
631 spin_lock_irqsave(&mapping->tree_lock, flags);
632 if (page->mapping) { /* Race with truncate? */
633 WARN_ON_ONCE(warn && !PageUptodate(page));
634 account_page_dirtied(page, mapping);
635 radix_tree_tag_set(&mapping->page_tree,
636 page_index(page), PAGECACHE_TAG_DIRTY);
637 }
638 spin_unlock_irqrestore(&mapping->tree_lock, flags);
639}
640
641/*
642 * Add a page to the dirty page list.
643 *
644 * It is a sad fact of life that this function is called from several places
645 * deeply under spinlocking. It may not sleep.
646 *
647 * If the page has buffers, the uptodate buffers are set dirty, to preserve
648 * dirty-state coherency between the page and the buffers. It the page does
649 * not have buffers then when they are later attached they will all be set
650 * dirty.
651 *
652 * The buffers are dirtied before the page is dirtied. There's a small race
653 * window in which a writepage caller may see the page cleanness but not the
654 * buffer dirtiness. That's fine. If this code were to set the page dirty
655 * before the buffers, a concurrent writepage caller could clear the page dirty
656 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
657 * page on the dirty page list.
658 *
659 * We use private_lock to lock against try_to_free_buffers while using the
660 * page's buffer list. Also use this to protect against clean buffers being
661 * added to the page after it was set dirty.
662 *
663 * FIXME: may need to call ->reservepage here as well. That's rather up to the
664 * address_space though.
665 */
666int __set_page_dirty_buffers(struct page *page)
667{
668 int newly_dirty;
669 struct address_space *mapping = page_mapping(page);
670
671 if (unlikely(!mapping))
672 return !TestSetPageDirty(page);
673
674 spin_lock(&mapping->private_lock);
675 if (page_has_buffers(page)) {
676 struct buffer_head *head = page_buffers(page);
677 struct buffer_head *bh = head;
678
679 do {
680 set_buffer_dirty(bh);
681 bh = bh->b_this_page;
682 } while (bh != head);
683 }
684 /*
685 * Lock out page->mem_cgroup migration to keep PageDirty
686 * synchronized with per-memcg dirty page counters.
687 */
688 lock_page_memcg(page);
689 newly_dirty = !TestSetPageDirty(page);
690 spin_unlock(&mapping->private_lock);
691
692 if (newly_dirty)
693 __set_page_dirty(page, mapping, 1);
694
695 unlock_page_memcg(page);
696
697 if (newly_dirty)
698 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
699
700 return newly_dirty;
701}
702EXPORT_SYMBOL(__set_page_dirty_buffers);
703
704/*
705 * Write out and wait upon a list of buffers.
706 *
707 * We have conflicting pressures: we want to make sure that all
708 * initially dirty buffers get waited on, but that any subsequently
709 * dirtied buffers don't. After all, we don't want fsync to last
710 * forever if somebody is actively writing to the file.
711 *
712 * Do this in two main stages: first we copy dirty buffers to a
713 * temporary inode list, queueing the writes as we go. Then we clean
714 * up, waiting for those writes to complete.
715 *
716 * During this second stage, any subsequent updates to the file may end
717 * up refiling the buffer on the original inode's dirty list again, so
718 * there is a chance we will end up with a buffer queued for write but
719 * not yet completed on that list. So, as a final cleanup we go through
720 * the osync code to catch these locked, dirty buffers without requeuing
721 * any newly dirty buffers for write.
722 */
723static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
724{
725 struct buffer_head *bh;
726 struct list_head tmp;
727 struct address_space *mapping;
728 int err = 0, err2;
729 struct blk_plug plug;
730
731 INIT_LIST_HEAD(&tmp);
732 blk_start_plug(&plug);
733
734 spin_lock(lock);
735 while (!list_empty(list)) {
736 bh = BH_ENTRY(list->next);
737 mapping = bh->b_assoc_map;
738 __remove_assoc_queue(bh);
739 /* Avoid race with mark_buffer_dirty_inode() which does
740 * a lockless check and we rely on seeing the dirty bit */
741 smp_mb();
742 if (buffer_dirty(bh) || buffer_locked(bh)) {
743 list_add(&bh->b_assoc_buffers, &tmp);
744 bh->b_assoc_map = mapping;
745 if (buffer_dirty(bh)) {
746 get_bh(bh);
747 spin_unlock(lock);
748 /*
749 * Ensure any pending I/O completes so that
750 * write_dirty_buffer() actually writes the
751 * current contents - it is a noop if I/O is
752 * still in flight on potentially older
753 * contents.
754 */
755 write_dirty_buffer(bh, WRITE_SYNC);
756
757 /*
758 * Kick off IO for the previous mapping. Note
759 * that we will not run the very last mapping,
760 * wait_on_buffer() will do that for us
761 * through sync_buffer().
762 */
763 brelse(bh);
764 spin_lock(lock);
765 }
766 }
767 }
768
769 spin_unlock(lock);
770 blk_finish_plug(&plug);
771 spin_lock(lock);
772
773 while (!list_empty(&tmp)) {
774 bh = BH_ENTRY(tmp.prev);
775 get_bh(bh);
776 mapping = bh->b_assoc_map;
777 __remove_assoc_queue(bh);
778 /* Avoid race with mark_buffer_dirty_inode() which does
779 * a lockless check and we rely on seeing the dirty bit */
780 smp_mb();
781 if (buffer_dirty(bh)) {
782 list_add(&bh->b_assoc_buffers,
783 &mapping->private_list);
784 bh->b_assoc_map = mapping;
785 }
786 spin_unlock(lock);
787 wait_on_buffer(bh);
788 if (!buffer_uptodate(bh))
789 err = -EIO;
790 brelse(bh);
791 spin_lock(lock);
792 }
793
794 spin_unlock(lock);
795 err2 = osync_buffers_list(lock, list);
796 if (err)
797 return err;
798 else
799 return err2;
800}
801
802/*
803 * Invalidate any and all dirty buffers on a given inode. We are
804 * probably unmounting the fs, but that doesn't mean we have already
805 * done a sync(). Just drop the buffers from the inode list.
806 *
807 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
808 * assumes that all the buffers are against the blockdev. Not true
809 * for reiserfs.
810 */
811void invalidate_inode_buffers(struct inode *inode)
812{
813 if (inode_has_buffers(inode)) {
814 struct address_space *mapping = &inode->i_data;
815 struct list_head *list = &mapping->private_list;
816 struct address_space *buffer_mapping = mapping->private_data;
817
818 spin_lock(&buffer_mapping->private_lock);
819 while (!list_empty(list))
820 __remove_assoc_queue(BH_ENTRY(list->next));
821 spin_unlock(&buffer_mapping->private_lock);
822 }
823}
824EXPORT_SYMBOL(invalidate_inode_buffers);
825
826/*
827 * Remove any clean buffers from the inode's buffer list. This is called
828 * when we're trying to free the inode itself. Those buffers can pin it.
829 *
830 * Returns true if all buffers were removed.
831 */
832int remove_inode_buffers(struct inode *inode)
833{
834 int ret = 1;
835
836 if (inode_has_buffers(inode)) {
837 struct address_space *mapping = &inode->i_data;
838 struct list_head *list = &mapping->private_list;
839 struct address_space *buffer_mapping = mapping->private_data;
840
841 spin_lock(&buffer_mapping->private_lock);
842 while (!list_empty(list)) {
843 struct buffer_head *bh = BH_ENTRY(list->next);
844 if (buffer_dirty(bh)) {
845 ret = 0;
846 break;
847 }
848 __remove_assoc_queue(bh);
849 }
850 spin_unlock(&buffer_mapping->private_lock);
851 }
852 return ret;
853}
854
855/*
856 * Create the appropriate buffers when given a page for data area and
857 * the size of each buffer.. Use the bh->b_this_page linked list to
858 * follow the buffers created. Return NULL if unable to create more
859 * buffers.
860 *
861 * The retry flag is used to differentiate async IO (paging, swapping)
862 * which may not fail from ordinary buffer allocations.
863 */
864struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
865 int retry)
866{
867 struct buffer_head *bh, *head;
868 long offset;
869
870try_again:
871 head = NULL;
872 offset = PAGE_SIZE;
873 while ((offset -= size) >= 0) {
874 bh = alloc_buffer_head(GFP_NOFS);
875 if (!bh)
876 goto no_grow;
877
878 bh->b_this_page = head;
879 bh->b_blocknr = -1;
880 head = bh;
881
882 bh->b_size = size;
883
884 /* Link the buffer to its page */
885 set_bh_page(bh, page, offset);
886 }
887 return head;
888/*
889 * In case anything failed, we just free everything we got.
890 */
891no_grow:
892 if (head) {
893 do {
894 bh = head;
895 head = head->b_this_page;
896 free_buffer_head(bh);
897 } while (head);
898 }
899
900 /*
901 * Return failure for non-async IO requests. Async IO requests
902 * are not allowed to fail, so we have to wait until buffer heads
903 * become available. But we don't want tasks sleeping with
904 * partially complete buffers, so all were released above.
905 */
906 if (!retry)
907 return NULL;
908
909 /* We're _really_ low on memory. Now we just
910 * wait for old buffer heads to become free due to
911 * finishing IO. Since this is an async request and
912 * the reserve list is empty, we're sure there are
913 * async buffer heads in use.
914 */
915 free_more_memory();
916 goto try_again;
917}
918EXPORT_SYMBOL_GPL(alloc_page_buffers);
919
920static inline void
921link_dev_buffers(struct page *page, struct buffer_head *head)
922{
923 struct buffer_head *bh, *tail;
924
925 bh = head;
926 do {
927 tail = bh;
928 bh = bh->b_this_page;
929 } while (bh);
930 tail->b_this_page = head;
931 attach_page_buffers(page, head);
932}
933
934static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
935{
936 sector_t retval = ~((sector_t)0);
937 loff_t sz = i_size_read(bdev->bd_inode);
938
939 if (sz) {
940 unsigned int sizebits = blksize_bits(size);
941 retval = (sz >> sizebits);
942 }
943 return retval;
944}
945
946/*
947 * Initialise the state of a blockdev page's buffers.
948 */
949static sector_t
950init_page_buffers(struct page *page, struct block_device *bdev,
951 sector_t block, int size)
952{
953 struct buffer_head *head = page_buffers(page);
954 struct buffer_head *bh = head;
955 int uptodate = PageUptodate(page);
956 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
957
958 do {
959 if (!buffer_mapped(bh)) {
960 init_buffer(bh, NULL, NULL);
961 bh->b_bdev = bdev;
962 bh->b_blocknr = block;
963 if (uptodate)
964 set_buffer_uptodate(bh);
965 if (block < end_block)
966 set_buffer_mapped(bh);
967 }
968 block++;
969 bh = bh->b_this_page;
970 } while (bh != head);
971
972 /*
973 * Caller needs to validate requested block against end of device.
974 */
975 return end_block;
976}
977
978/*
979 * Create the page-cache page that contains the requested block.
980 *
981 * This is used purely for blockdev mappings.
982 */
983static int
984grow_dev_page(struct block_device *bdev, sector_t block,
985 pgoff_t index, int size, int sizebits, gfp_t gfp)
986{
987 struct inode *inode = bdev->bd_inode;
988 struct page *page;
989 struct buffer_head *bh;
990 sector_t end_block;
991 int ret = 0; /* Will call free_more_memory() */
992 gfp_t gfp_mask;
993
994 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
995
996 /*
997 * XXX: __getblk_slow() can not really deal with failure and
998 * will endlessly loop on improvised global reclaim. Prefer
999 * looping in the allocator rather than here, at least that
1000 * code knows what it's doing.
1001 */
1002 gfp_mask |= __GFP_NOFAIL;
1003
1004 page = find_or_create_page(inode->i_mapping, index, gfp_mask);
1005 if (!page)
1006 return ret;
1007
1008 BUG_ON(!PageLocked(page));
1009
1010 if (page_has_buffers(page)) {
1011 bh = page_buffers(page);
1012 if (bh->b_size == size) {
1013 end_block = init_page_buffers(page, bdev,
1014 (sector_t)index << sizebits,
1015 size);
1016 goto done;
1017 }
1018 if (!try_to_free_buffers(page))
1019 goto failed;
1020 }
1021
1022 /*
1023 * Allocate some buffers for this page
1024 */
1025 bh = alloc_page_buffers(page, size, 0);
1026 if (!bh)
1027 goto failed;
1028
1029 /*
1030 * Link the page to the buffers and initialise them. Take the
1031 * lock to be atomic wrt __find_get_block(), which does not
1032 * run under the page lock.
1033 */
1034 spin_lock(&inode->i_mapping->private_lock);
1035 link_dev_buffers(page, bh);
1036 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1037 size);
1038 spin_unlock(&inode->i_mapping->private_lock);
1039done:
1040 ret = (block < end_block) ? 1 : -ENXIO;
1041failed:
1042 unlock_page(page);
1043 put_page(page);
1044 return ret;
1045}
1046
1047/*
1048 * Create buffers for the specified block device block's page. If
1049 * that page was dirty, the buffers are set dirty also.
1050 */
1051static int
1052grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1053{
1054 pgoff_t index;
1055 int sizebits;
1056
1057 sizebits = -1;
1058 do {
1059 sizebits++;
1060 } while ((size << sizebits) < PAGE_SIZE);
1061
1062 index = block >> sizebits;
1063
1064 /*
1065 * Check for a block which wants to lie outside our maximum possible
1066 * pagecache index. (this comparison is done using sector_t types).
1067 */
1068 if (unlikely(index != block >> sizebits)) {
1069 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1070 "device %pg\n",
1071 __func__, (unsigned long long)block,
1072 bdev);
1073 return -EIO;
1074 }
1075
1076 /* Create a page with the proper size buffers.. */
1077 return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1078}
1079
1080struct buffer_head *
1081__getblk_slow(struct block_device *bdev, sector_t block,
1082 unsigned size, gfp_t gfp)
1083{
1084 /* Size must be multiple of hard sectorsize */
1085 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1086 (size < 512 || size > PAGE_SIZE))) {
1087 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1088 size);
1089 printk(KERN_ERR "logical block size: %d\n",
1090 bdev_logical_block_size(bdev));
1091
1092 dump_stack();
1093 return NULL;
1094 }
1095
1096 for (;;) {
1097 struct buffer_head *bh;
1098 int ret;
1099
1100 bh = __find_get_block(bdev, block, size);
1101 if (bh)
1102 return bh;
1103
1104 ret = grow_buffers(bdev, block, size, gfp);
1105 if (ret < 0)
1106 return NULL;
1107 if (ret == 0)
1108 free_more_memory();
1109 }
1110}
1111EXPORT_SYMBOL(__getblk_slow);
1112
1113/*
1114 * The relationship between dirty buffers and dirty pages:
1115 *
1116 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1117 * the page is tagged dirty in its radix tree.
1118 *
1119 * At all times, the dirtiness of the buffers represents the dirtiness of
1120 * subsections of the page. If the page has buffers, the page dirty bit is
1121 * merely a hint about the true dirty state.
1122 *
1123 * When a page is set dirty in its entirety, all its buffers are marked dirty
1124 * (if the page has buffers).
1125 *
1126 * When a buffer is marked dirty, its page is dirtied, but the page's other
1127 * buffers are not.
1128 *
1129 * Also. When blockdev buffers are explicitly read with bread(), they
1130 * individually become uptodate. But their backing page remains not
1131 * uptodate - even if all of its buffers are uptodate. A subsequent
1132 * block_read_full_page() against that page will discover all the uptodate
1133 * buffers, will set the page uptodate and will perform no I/O.
1134 */
1135
1136/**
1137 * mark_buffer_dirty - mark a buffer_head as needing writeout
1138 * @bh: the buffer_head to mark dirty
1139 *
1140 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1141 * backing page dirty, then tag the page as dirty in its address_space's radix
1142 * tree and then attach the address_space's inode to its superblock's dirty
1143 * inode list.
1144 *
1145 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1146 * mapping->tree_lock and mapping->host->i_lock.
1147 */
1148void mark_buffer_dirty(struct buffer_head *bh)
1149{
1150 WARN_ON_ONCE(!buffer_uptodate(bh));
1151
1152 trace_block_dirty_buffer(bh);
1153
1154 /*
1155 * Very *carefully* optimize the it-is-already-dirty case.
1156 *
1157 * Don't let the final "is it dirty" escape to before we
1158 * perhaps modified the buffer.
1159 */
1160 if (buffer_dirty(bh)) {
1161 smp_mb();
1162 if (buffer_dirty(bh))
1163 return;
1164 }
1165
1166 if (!test_set_buffer_dirty(bh)) {
1167 struct page *page = bh->b_page;
1168 struct address_space *mapping = NULL;
1169
1170 lock_page_memcg(page);
1171 if (!TestSetPageDirty(page)) {
1172 mapping = page_mapping(page);
1173 if (mapping)
1174 __set_page_dirty(page, mapping, 0);
1175 }
1176 unlock_page_memcg(page);
1177 if (mapping)
1178 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1179 }
1180}
1181EXPORT_SYMBOL(mark_buffer_dirty);
1182
1183/*
1184 * Decrement a buffer_head's reference count. If all buffers against a page
1185 * have zero reference count, are clean and unlocked, and if the page is clean
1186 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1187 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1188 * a page but it ends up not being freed, and buffers may later be reattached).
1189 */
1190void __brelse(struct buffer_head * buf)
1191{
1192 if (atomic_read(&buf->b_count)) {
1193 put_bh(buf);
1194 return;
1195 }
1196 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1197}
1198EXPORT_SYMBOL(__brelse);
1199
1200/*
1201 * bforget() is like brelse(), except it discards any
1202 * potentially dirty data.
1203 */
1204void __bforget(struct buffer_head *bh)
1205{
1206 clear_buffer_dirty(bh);
1207 if (bh->b_assoc_map) {
1208 struct address_space *buffer_mapping = bh->b_page->mapping;
1209
1210 spin_lock(&buffer_mapping->private_lock);
1211 list_del_init(&bh->b_assoc_buffers);
1212 bh->b_assoc_map = NULL;
1213 spin_unlock(&buffer_mapping->private_lock);
1214 }
1215 __brelse(bh);
1216}
1217EXPORT_SYMBOL(__bforget);
1218
1219static struct buffer_head *__bread_slow(struct buffer_head *bh)
1220{
1221 lock_buffer(bh);
1222 if (buffer_uptodate(bh)) {
1223 unlock_buffer(bh);
1224 return bh;
1225 } else {
1226 get_bh(bh);
1227 bh->b_end_io = end_buffer_read_sync;
1228 submit_bh(READ, bh);
1229 wait_on_buffer(bh);
1230 if (buffer_uptodate(bh))
1231 return bh;
1232 }
1233 brelse(bh);
1234 return NULL;
1235}
1236
1237/*
1238 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1239 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1240 * refcount elevated by one when they're in an LRU. A buffer can only appear
1241 * once in a particular CPU's LRU. A single buffer can be present in multiple
1242 * CPU's LRUs at the same time.
1243 *
1244 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1245 * sb_find_get_block().
1246 *
1247 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1248 * a local interrupt disable for that.
1249 */
1250
1251#define BH_LRU_SIZE 16
1252
1253struct bh_lru {
1254 struct buffer_head *bhs[BH_LRU_SIZE];
1255};
1256
1257static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1258
1259#ifdef CONFIG_SMP
1260#define bh_lru_lock() local_irq_disable()
1261#define bh_lru_unlock() local_irq_enable()
1262#else
1263#define bh_lru_lock() preempt_disable()
1264#define bh_lru_unlock() preempt_enable()
1265#endif
1266
1267static inline void check_irqs_on(void)
1268{
1269#ifdef irqs_disabled
1270 BUG_ON(irqs_disabled());
1271#endif
1272}
1273
1274/*
1275 * The LRU management algorithm is dopey-but-simple. Sorry.
1276 */
1277static void bh_lru_install(struct buffer_head *bh)
1278{
1279 struct buffer_head *evictee = NULL;
1280
1281 check_irqs_on();
1282 bh_lru_lock();
1283 if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1284 struct buffer_head *bhs[BH_LRU_SIZE];
1285 int in;
1286 int out = 0;
1287
1288 get_bh(bh);
1289 bhs[out++] = bh;
1290 for (in = 0; in < BH_LRU_SIZE; in++) {
1291 struct buffer_head *bh2 =
1292 __this_cpu_read(bh_lrus.bhs[in]);
1293
1294 if (bh2 == bh) {
1295 __brelse(bh2);
1296 } else {
1297 if (out >= BH_LRU_SIZE) {
1298 BUG_ON(evictee != NULL);
1299 evictee = bh2;
1300 } else {
1301 bhs[out++] = bh2;
1302 }
1303 }
1304 }
1305 while (out < BH_LRU_SIZE)
1306 bhs[out++] = NULL;
1307 memcpy(this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1308 }
1309 bh_lru_unlock();
1310
1311 if (evictee)
1312 __brelse(evictee);
1313}
1314
1315/*
1316 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1317 */
1318static struct buffer_head *
1319lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1320{
1321 struct buffer_head *ret = NULL;
1322 unsigned int i;
1323
1324 check_irqs_on();
1325 bh_lru_lock();
1326 for (i = 0; i < BH_LRU_SIZE; i++) {
1327 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1328
1329 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1330 bh->b_size == size) {
1331 if (i) {
1332 while (i) {
1333 __this_cpu_write(bh_lrus.bhs[i],
1334 __this_cpu_read(bh_lrus.bhs[i - 1]));
1335 i--;
1336 }
1337 __this_cpu_write(bh_lrus.bhs[0], bh);
1338 }
1339 get_bh(bh);
1340 ret = bh;
1341 break;
1342 }
1343 }
1344 bh_lru_unlock();
1345 return ret;
1346}
1347
1348/*
1349 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1350 * it in the LRU and mark it as accessed. If it is not present then return
1351 * NULL
1352 */
1353struct buffer_head *
1354__find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1355{
1356 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1357
1358 if (bh == NULL) {
1359 /* __find_get_block_slow will mark the page accessed */
1360 bh = __find_get_block_slow(bdev, block);
1361 if (bh)
1362 bh_lru_install(bh);
1363 } else
1364 touch_buffer(bh);
1365
1366 return bh;
1367}
1368EXPORT_SYMBOL(__find_get_block);
1369
1370/*
1371 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1372 * which corresponds to the passed block_device, block and size. The
1373 * returned buffer has its reference count incremented.
1374 *
1375 * __getblk_gfp() will lock up the machine if grow_dev_page's
1376 * try_to_free_buffers() attempt is failing. FIXME, perhaps?
1377 */
1378struct buffer_head *
1379__getblk_gfp(struct block_device *bdev, sector_t block,
1380 unsigned size, gfp_t gfp)
1381{
1382 struct buffer_head *bh = __find_get_block(bdev, block, size);
1383
1384 might_sleep();
1385 if (bh == NULL)
1386 bh = __getblk_slow(bdev, block, size, gfp);
1387 return bh;
1388}
1389EXPORT_SYMBOL(__getblk_gfp);
1390
1391/*
1392 * Do async read-ahead on a buffer..
1393 */
1394void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1395{
1396 struct buffer_head *bh = __getblk(bdev, block, size);
1397 if (likely(bh)) {
1398 ll_rw_block(READA, 1, &bh);
1399 brelse(bh);
1400 }
1401}
1402EXPORT_SYMBOL(__breadahead);
1403
1404/**
1405 * __bread_gfp() - reads a specified block and returns the bh
1406 * @bdev: the block_device to read from
1407 * @block: number of block
1408 * @size: size (in bytes) to read
1409 * @gfp: page allocation flag
1410 *
1411 * Reads a specified block, and returns buffer head that contains it.
1412 * The page cache can be allocated from non-movable area
1413 * not to prevent page migration if you set gfp to zero.
1414 * It returns NULL if the block was unreadable.
1415 */
1416struct buffer_head *
1417__bread_gfp(struct block_device *bdev, sector_t block,
1418 unsigned size, gfp_t gfp)
1419{
1420 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1421
1422 if (likely(bh) && !buffer_uptodate(bh))
1423 bh = __bread_slow(bh);
1424 return bh;
1425}
1426EXPORT_SYMBOL(__bread_gfp);
1427
1428/*
1429 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1430 * This doesn't race because it runs in each cpu either in irq
1431 * or with preempt disabled.
1432 */
1433static void invalidate_bh_lru(void *arg)
1434{
1435 struct bh_lru *b = &get_cpu_var(bh_lrus);
1436 int i;
1437
1438 for (i = 0; i < BH_LRU_SIZE; i++) {
1439 brelse(b->bhs[i]);
1440 b->bhs[i] = NULL;
1441 }
1442 put_cpu_var(bh_lrus);
1443}
1444
1445static bool has_bh_in_lru(int cpu, void *dummy)
1446{
1447 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1448 int i;
1449
1450 for (i = 0; i < BH_LRU_SIZE; i++) {
1451 if (b->bhs[i])
1452 return 1;
1453 }
1454
1455 return 0;
1456}
1457
1458void invalidate_bh_lrus(void)
1459{
1460 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1461}
1462EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1463
1464void set_bh_page(struct buffer_head *bh,
1465 struct page *page, unsigned long offset)
1466{
1467 bh->b_page = page;
1468 BUG_ON(offset >= PAGE_SIZE);
1469 if (PageHighMem(page))
1470 /*
1471 * This catches illegal uses and preserves the offset:
1472 */
1473 bh->b_data = (char *)(0 + offset);
1474 else
1475 bh->b_data = page_address(page) + offset;
1476}
1477EXPORT_SYMBOL(set_bh_page);
1478
1479/*
1480 * Called when truncating a buffer on a page completely.
1481 */
1482
1483/* Bits that are cleared during an invalidate */
1484#define BUFFER_FLAGS_DISCARD \
1485 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1486 1 << BH_Delay | 1 << BH_Unwritten)
1487
1488static void discard_buffer(struct buffer_head * bh)
1489{
1490 unsigned long b_state, b_state_old;
1491
1492 lock_buffer(bh);
1493 clear_buffer_dirty(bh);
1494 bh->b_bdev = NULL;
1495 b_state = bh->b_state;
1496 for (;;) {
1497 b_state_old = cmpxchg(&bh->b_state, b_state,
1498 (b_state & ~BUFFER_FLAGS_DISCARD));
1499 if (b_state_old == b_state)
1500 break;
1501 b_state = b_state_old;
1502 }
1503 unlock_buffer(bh);
1504}
1505
1506/**
1507 * block_invalidatepage - invalidate part or all of a buffer-backed page
1508 *
1509 * @page: the page which is affected
1510 * @offset: start of the range to invalidate
1511 * @length: length of the range to invalidate
1512 *
1513 * block_invalidatepage() is called when all or part of the page has become
1514 * invalidated by a truncate operation.
1515 *
1516 * block_invalidatepage() does not have to release all buffers, but it must
1517 * ensure that no dirty buffer is left outside @offset and that no I/O
1518 * is underway against any of the blocks which are outside the truncation
1519 * point. Because the caller is about to free (and possibly reuse) those
1520 * blocks on-disk.
1521 */
1522void block_invalidatepage(struct page *page, unsigned int offset,
1523 unsigned int length)
1524{
1525 struct buffer_head *head, *bh, *next;
1526 unsigned int curr_off = 0;
1527 unsigned int stop = length + offset;
1528
1529 BUG_ON(!PageLocked(page));
1530 if (!page_has_buffers(page))
1531 goto out;
1532
1533 /*
1534 * Check for overflow
1535 */
1536 BUG_ON(stop > PAGE_SIZE || stop < length);
1537
1538 head = page_buffers(page);
1539 bh = head;
1540 do {
1541 unsigned int next_off = curr_off + bh->b_size;
1542 next = bh->b_this_page;
1543
1544 /*
1545 * Are we still fully in range ?
1546 */
1547 if (next_off > stop)
1548 goto out;
1549
1550 /*
1551 * is this block fully invalidated?
1552 */
1553 if (offset <= curr_off)
1554 discard_buffer(bh);
1555 curr_off = next_off;
1556 bh = next;
1557 } while (bh != head);
1558
1559 /*
1560 * We release buffers only if the entire page is being invalidated.
1561 * The get_block cached value has been unconditionally invalidated,
1562 * so real IO is not possible anymore.
1563 */
1564 if (offset == 0)
1565 try_to_release_page(page, 0);
1566out:
1567 return;
1568}
1569EXPORT_SYMBOL(block_invalidatepage);
1570
1571
1572/*
1573 * We attach and possibly dirty the buffers atomically wrt
1574 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1575 * is already excluded via the page lock.
1576 */
1577void create_empty_buffers(struct page *page,
1578 unsigned long blocksize, unsigned long b_state)
1579{
1580 struct buffer_head *bh, *head, *tail;
1581
1582 head = alloc_page_buffers(page, blocksize, 1);
1583 bh = head;
1584 do {
1585 bh->b_state |= b_state;
1586 tail = bh;
1587 bh = bh->b_this_page;
1588 } while (bh);
1589 tail->b_this_page = head;
1590
1591 spin_lock(&page->mapping->private_lock);
1592 if (PageUptodate(page) || PageDirty(page)) {
1593 bh = head;
1594 do {
1595 if (PageDirty(page))
1596 set_buffer_dirty(bh);
1597 if (PageUptodate(page))
1598 set_buffer_uptodate(bh);
1599 bh = bh->b_this_page;
1600 } while (bh != head);
1601 }
1602 attach_page_buffers(page, head);
1603 spin_unlock(&page->mapping->private_lock);
1604}
1605EXPORT_SYMBOL(create_empty_buffers);
1606
1607/*
1608 * We are taking a block for data and we don't want any output from any
1609 * buffer-cache aliases starting from return from that function and
1610 * until the moment when something will explicitly mark the buffer
1611 * dirty (hopefully that will not happen until we will free that block ;-)
1612 * We don't even need to mark it not-uptodate - nobody can expect
1613 * anything from a newly allocated buffer anyway. We used to used
1614 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1615 * don't want to mark the alias unmapped, for example - it would confuse
1616 * anyone who might pick it with bread() afterwards...
1617 *
1618 * Also.. Note that bforget() doesn't lock the buffer. So there can
1619 * be writeout I/O going on against recently-freed buffers. We don't
1620 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1621 * only if we really need to. That happens here.
1622 */
1623void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1624{
1625 struct buffer_head *old_bh;
1626
1627 might_sleep();
1628
1629 old_bh = __find_get_block_slow(bdev, block);
1630 if (old_bh) {
1631 clear_buffer_dirty(old_bh);
1632 wait_on_buffer(old_bh);
1633 clear_buffer_req(old_bh);
1634 __brelse(old_bh);
1635 }
1636}
1637EXPORT_SYMBOL(unmap_underlying_metadata);
1638
1639/*
1640 * Size is a power-of-two in the range 512..PAGE_SIZE,
1641 * and the case we care about most is PAGE_SIZE.
1642 *
1643 * So this *could* possibly be written with those
1644 * constraints in mind (relevant mostly if some
1645 * architecture has a slow bit-scan instruction)
1646 */
1647static inline int block_size_bits(unsigned int blocksize)
1648{
1649 return ilog2(blocksize);
1650}
1651
1652static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1653{
1654 BUG_ON(!PageLocked(page));
1655
1656 if (!page_has_buffers(page))
1657 create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1658 return page_buffers(page);
1659}
1660
1661/*
1662 * NOTE! All mapped/uptodate combinations are valid:
1663 *
1664 * Mapped Uptodate Meaning
1665 *
1666 * No No "unknown" - must do get_block()
1667 * No Yes "hole" - zero-filled
1668 * Yes No "allocated" - allocated on disk, not read in
1669 * Yes Yes "valid" - allocated and up-to-date in memory.
1670 *
1671 * "Dirty" is valid only with the last case (mapped+uptodate).
1672 */
1673
1674/*
1675 * While block_write_full_page is writing back the dirty buffers under
1676 * the page lock, whoever dirtied the buffers may decide to clean them
1677 * again at any time. We handle that by only looking at the buffer
1678 * state inside lock_buffer().
1679 *
1680 * If block_write_full_page() is called for regular writeback
1681 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1682 * locked buffer. This only can happen if someone has written the buffer
1683 * directly, with submit_bh(). At the address_space level PageWriteback
1684 * prevents this contention from occurring.
1685 *
1686 * If block_write_full_page() is called with wbc->sync_mode ==
1687 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1688 * causes the writes to be flagged as synchronous writes.
1689 */
1690static int __block_write_full_page(struct inode *inode, struct page *page,
1691 get_block_t *get_block, struct writeback_control *wbc,
1692 bh_end_io_t *handler)
1693{
1694 int err;
1695 sector_t block;
1696 sector_t last_block;
1697 struct buffer_head *bh, *head;
1698 unsigned int blocksize, bbits;
1699 int nr_underway = 0;
1700 int write_op = (wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE);
1701
1702 head = create_page_buffers(page, inode,
1703 (1 << BH_Dirty)|(1 << BH_Uptodate));
1704
1705 /*
1706 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1707 * here, and the (potentially unmapped) buffers may become dirty at
1708 * any time. If a buffer becomes dirty here after we've inspected it
1709 * then we just miss that fact, and the page stays dirty.
1710 *
1711 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1712 * handle that here by just cleaning them.
1713 */
1714
1715 bh = head;
1716 blocksize = bh->b_size;
1717 bbits = block_size_bits(blocksize);
1718
1719 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1720 last_block = (i_size_read(inode) - 1) >> bbits;
1721
1722 /*
1723 * Get all the dirty buffers mapped to disk addresses and
1724 * handle any aliases from the underlying blockdev's mapping.
1725 */
1726 do {
1727 if (block > last_block) {
1728 /*
1729 * mapped buffers outside i_size will occur, because
1730 * this page can be outside i_size when there is a
1731 * truncate in progress.
1732 */
1733 /*
1734 * The buffer was zeroed by block_write_full_page()
1735 */
1736 clear_buffer_dirty(bh);
1737 set_buffer_uptodate(bh);
1738 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1739 buffer_dirty(bh)) {
1740 WARN_ON(bh->b_size != blocksize);
1741 err = get_block(inode, block, bh, 1);
1742 if (err)
1743 goto recover;
1744 clear_buffer_delay(bh);
1745 if (buffer_new(bh)) {
1746 /* blockdev mappings never come here */
1747 clear_buffer_new(bh);
1748 unmap_underlying_metadata(bh->b_bdev,
1749 bh->b_blocknr);
1750 }
1751 }
1752 bh = bh->b_this_page;
1753 block++;
1754 } while (bh != head);
1755
1756 do {
1757 if (!buffer_mapped(bh))
1758 continue;
1759 /*
1760 * If it's a fully non-blocking write attempt and we cannot
1761 * lock the buffer then redirty the page. Note that this can
1762 * potentially cause a busy-wait loop from writeback threads
1763 * and kswapd activity, but those code paths have their own
1764 * higher-level throttling.
1765 */
1766 if (wbc->sync_mode != WB_SYNC_NONE) {
1767 lock_buffer(bh);
1768 } else if (!trylock_buffer(bh)) {
1769 redirty_page_for_writepage(wbc, page);
1770 continue;
1771 }
1772 if (test_clear_buffer_dirty(bh)) {
1773 mark_buffer_async_write_endio(bh, handler);
1774 } else {
1775 unlock_buffer(bh);
1776 }
1777 } while ((bh = bh->b_this_page) != head);
1778
1779 /*
1780 * The page and its buffers are protected by PageWriteback(), so we can
1781 * drop the bh refcounts early.
1782 */
1783 BUG_ON(PageWriteback(page));
1784 set_page_writeback(page);
1785
1786 do {
1787 struct buffer_head *next = bh->b_this_page;
1788 if (buffer_async_write(bh)) {
1789 submit_bh_wbc(write_op, bh, 0, wbc);
1790 nr_underway++;
1791 }
1792 bh = next;
1793 } while (bh != head);
1794 unlock_page(page);
1795
1796 err = 0;
1797done:
1798 if (nr_underway == 0) {
1799 /*
1800 * The page was marked dirty, but the buffers were
1801 * clean. Someone wrote them back by hand with
1802 * ll_rw_block/submit_bh. A rare case.
1803 */
1804 end_page_writeback(page);
1805
1806 /*
1807 * The page and buffer_heads can be released at any time from
1808 * here on.
1809 */
1810 }
1811 return err;
1812
1813recover:
1814 /*
1815 * ENOSPC, or some other error. We may already have added some
1816 * blocks to the file, so we need to write these out to avoid
1817 * exposing stale data.
1818 * The page is currently locked and not marked for writeback
1819 */
1820 bh = head;
1821 /* Recovery: lock and submit the mapped buffers */
1822 do {
1823 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1824 !buffer_delay(bh)) {
1825 lock_buffer(bh);
1826 mark_buffer_async_write_endio(bh, handler);
1827 } else {
1828 /*
1829 * The buffer may have been set dirty during
1830 * attachment to a dirty page.
1831 */
1832 clear_buffer_dirty(bh);
1833 }
1834 } while ((bh = bh->b_this_page) != head);
1835 SetPageError(page);
1836 BUG_ON(PageWriteback(page));
1837 mapping_set_error(page->mapping, err);
1838 set_page_writeback(page);
1839 do {
1840 struct buffer_head *next = bh->b_this_page;
1841 if (buffer_async_write(bh)) {
1842 clear_buffer_dirty(bh);
1843 submit_bh_wbc(write_op, bh, 0, wbc);
1844 nr_underway++;
1845 }
1846 bh = next;
1847 } while (bh != head);
1848 unlock_page(page);
1849 goto done;
1850}
1851
1852/*
1853 * If a page has any new buffers, zero them out here, and mark them uptodate
1854 * and dirty so they'll be written out (in order to prevent uninitialised
1855 * block data from leaking). And clear the new bit.
1856 */
1857void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1858{
1859 unsigned int block_start, block_end;
1860 struct buffer_head *head, *bh;
1861
1862 BUG_ON(!PageLocked(page));
1863 if (!page_has_buffers(page))
1864 return;
1865
1866 bh = head = page_buffers(page);
1867 block_start = 0;
1868 do {
1869 block_end = block_start + bh->b_size;
1870
1871 if (buffer_new(bh)) {
1872 if (block_end > from && block_start < to) {
1873 if (!PageUptodate(page)) {
1874 unsigned start, size;
1875
1876 start = max(from, block_start);
1877 size = min(to, block_end) - start;
1878
1879 zero_user(page, start, size);
1880 set_buffer_uptodate(bh);
1881 }
1882
1883 clear_buffer_new(bh);
1884 mark_buffer_dirty(bh);
1885 }
1886 }
1887
1888 block_start = block_end;
1889 bh = bh->b_this_page;
1890 } while (bh != head);
1891}
1892EXPORT_SYMBOL(page_zero_new_buffers);
1893
1894int __block_write_begin(struct page *page, loff_t pos, unsigned len,
1895 get_block_t *get_block)
1896{
1897 unsigned from = pos & (PAGE_SIZE - 1);
1898 unsigned to = from + len;
1899 struct inode *inode = page->mapping->host;
1900 unsigned block_start, block_end;
1901 sector_t block;
1902 int err = 0;
1903 unsigned blocksize, bbits;
1904 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1905
1906 BUG_ON(!PageLocked(page));
1907 BUG_ON(from > PAGE_SIZE);
1908 BUG_ON(to > PAGE_SIZE);
1909 BUG_ON(from > to);
1910
1911 head = create_page_buffers(page, inode, 0);
1912 blocksize = head->b_size;
1913 bbits = block_size_bits(blocksize);
1914
1915 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1916
1917 for(bh = head, block_start = 0; bh != head || !block_start;
1918 block++, block_start=block_end, bh = bh->b_this_page) {
1919 block_end = block_start + blocksize;
1920 if (block_end <= from || block_start >= to) {
1921 if (PageUptodate(page)) {
1922 if (!buffer_uptodate(bh))
1923 set_buffer_uptodate(bh);
1924 }
1925 continue;
1926 }
1927 if (buffer_new(bh))
1928 clear_buffer_new(bh);
1929 if (!buffer_mapped(bh)) {
1930 WARN_ON(bh->b_size != blocksize);
1931 err = get_block(inode, block, bh, 1);
1932 if (err)
1933 break;
1934 if (buffer_new(bh)) {
1935 unmap_underlying_metadata(bh->b_bdev,
1936 bh->b_blocknr);
1937 if (PageUptodate(page)) {
1938 clear_buffer_new(bh);
1939 set_buffer_uptodate(bh);
1940 mark_buffer_dirty(bh);
1941 continue;
1942 }
1943 if (block_end > to || block_start < from)
1944 zero_user_segments(page,
1945 to, block_end,
1946 block_start, from);
1947 continue;
1948 }
1949 }
1950 if (PageUptodate(page)) {
1951 if (!buffer_uptodate(bh))
1952 set_buffer_uptodate(bh);
1953 continue;
1954 }
1955 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1956 !buffer_unwritten(bh) &&
1957 (block_start < from || block_end > to)) {
1958 ll_rw_block(READ, 1, &bh);
1959 *wait_bh++=bh;
1960 }
1961 }
1962 /*
1963 * If we issued read requests - let them complete.
1964 */
1965 while(wait_bh > wait) {
1966 wait_on_buffer(*--wait_bh);
1967 if (!buffer_uptodate(*wait_bh))
1968 err = -EIO;
1969 }
1970 if (unlikely(err))
1971 page_zero_new_buffers(page, from, to);
1972 return err;
1973}
1974EXPORT_SYMBOL(__block_write_begin);
1975
1976static int __block_commit_write(struct inode *inode, struct page *page,
1977 unsigned from, unsigned to)
1978{
1979 unsigned block_start, block_end;
1980 int partial = 0;
1981 unsigned blocksize;
1982 struct buffer_head *bh, *head;
1983
1984 bh = head = page_buffers(page);
1985 blocksize = bh->b_size;
1986
1987 block_start = 0;
1988 do {
1989 block_end = block_start + blocksize;
1990 if (block_end <= from || block_start >= to) {
1991 if (!buffer_uptodate(bh))
1992 partial = 1;
1993 } else {
1994 set_buffer_uptodate(bh);
1995 mark_buffer_dirty(bh);
1996 }
1997 clear_buffer_new(bh);
1998
1999 block_start = block_end;
2000 bh = bh->b_this_page;
2001 } while (bh != head);
2002
2003 /*
2004 * If this is a partial write which happened to make all buffers
2005 * uptodate then we can optimize away a bogus readpage() for
2006 * the next read(). Here we 'discover' whether the page went
2007 * uptodate as a result of this (potentially partial) write.
2008 */
2009 if (!partial)
2010 SetPageUptodate(page);
2011 return 0;
2012}
2013
2014/*
2015 * block_write_begin takes care of the basic task of block allocation and
2016 * bringing partial write blocks uptodate first.
2017 *
2018 * The filesystem needs to handle block truncation upon failure.
2019 */
2020int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2021 unsigned flags, struct page **pagep, get_block_t *get_block)
2022{
2023 pgoff_t index = pos >> PAGE_SHIFT;
2024 struct page *page;
2025 int status;
2026
2027 page = grab_cache_page_write_begin(mapping, index, flags);
2028 if (!page)
2029 return -ENOMEM;
2030
2031 status = __block_write_begin(page, pos, len, get_block);
2032 if (unlikely(status)) {
2033 unlock_page(page);
2034 put_page(page);
2035 page = NULL;
2036 }
2037
2038 *pagep = page;
2039 return status;
2040}
2041EXPORT_SYMBOL(block_write_begin);
2042
2043int block_write_end(struct file *file, struct address_space *mapping,
2044 loff_t pos, unsigned len, unsigned copied,
2045 struct page *page, void *fsdata)
2046{
2047 struct inode *inode = mapping->host;
2048 unsigned start;
2049
2050 start = pos & (PAGE_SIZE - 1);
2051
2052 if (unlikely(copied < len)) {
2053 /*
2054 * The buffers that were written will now be uptodate, so we
2055 * don't have to worry about a readpage reading them and
2056 * overwriting a partial write. However if we have encountered
2057 * a short write and only partially written into a buffer, it
2058 * will not be marked uptodate, so a readpage might come in and
2059 * destroy our partial write.
2060 *
2061 * Do the simplest thing, and just treat any short write to a
2062 * non uptodate page as a zero-length write, and force the
2063 * caller to redo the whole thing.
2064 */
2065 if (!PageUptodate(page))
2066 copied = 0;
2067
2068 page_zero_new_buffers(page, start+copied, start+len);
2069 }
2070 flush_dcache_page(page);
2071
2072 /* This could be a short (even 0-length) commit */
2073 __block_commit_write(inode, page, start, start+copied);
2074
2075 return copied;
2076}
2077EXPORT_SYMBOL(block_write_end);
2078
2079int generic_write_end(struct file *file, struct address_space *mapping,
2080 loff_t pos, unsigned len, unsigned copied,
2081 struct page *page, void *fsdata)
2082{
2083 struct inode *inode = mapping->host;
2084 loff_t old_size = inode->i_size;
2085 int i_size_changed = 0;
2086
2087 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2088
2089 /*
2090 * No need to use i_size_read() here, the i_size
2091 * cannot change under us because we hold i_mutex.
2092 *
2093 * But it's important to update i_size while still holding page lock:
2094 * page writeout could otherwise come in and zero beyond i_size.
2095 */
2096 if (pos+copied > inode->i_size) {
2097 i_size_write(inode, pos+copied);
2098 i_size_changed = 1;
2099 }
2100
2101 unlock_page(page);
2102 put_page(page);
2103
2104 if (old_size < pos)
2105 pagecache_isize_extended(inode, old_size, pos);
2106 /*
2107 * Don't mark the inode dirty under page lock. First, it unnecessarily
2108 * makes the holding time of page lock longer. Second, it forces lock
2109 * ordering of page lock and transaction start for journaling
2110 * filesystems.
2111 */
2112 if (i_size_changed)
2113 mark_inode_dirty(inode);
2114
2115 return copied;
2116}
2117EXPORT_SYMBOL(generic_write_end);
2118
2119/*
2120 * block_is_partially_uptodate checks whether buffers within a page are
2121 * uptodate or not.
2122 *
2123 * Returns true if all buffers which correspond to a file portion
2124 * we want to read are uptodate.
2125 */
2126int block_is_partially_uptodate(struct page *page, unsigned long from,
2127 unsigned long count)
2128{
2129 unsigned block_start, block_end, blocksize;
2130 unsigned to;
2131 struct buffer_head *bh, *head;
2132 int ret = 1;
2133
2134 if (!page_has_buffers(page))
2135 return 0;
2136
2137 head = page_buffers(page);
2138 blocksize = head->b_size;
2139 to = min_t(unsigned, PAGE_SIZE - from, count);
2140 to = from + to;
2141 if (from < blocksize && to > PAGE_SIZE - blocksize)
2142 return 0;
2143
2144 bh = head;
2145 block_start = 0;
2146 do {
2147 block_end = block_start + blocksize;
2148 if (block_end > from && block_start < to) {
2149 if (!buffer_uptodate(bh)) {
2150 ret = 0;
2151 break;
2152 }
2153 if (block_end >= to)
2154 break;
2155 }
2156 block_start = block_end;
2157 bh = bh->b_this_page;
2158 } while (bh != head);
2159
2160 return ret;
2161}
2162EXPORT_SYMBOL(block_is_partially_uptodate);
2163
2164/*
2165 * Generic "read page" function for block devices that have the normal
2166 * get_block functionality. This is most of the block device filesystems.
2167 * Reads the page asynchronously --- the unlock_buffer() and
2168 * set/clear_buffer_uptodate() functions propagate buffer state into the
2169 * page struct once IO has completed.
2170 */
2171int block_read_full_page(struct page *page, get_block_t *get_block)
2172{
2173 struct inode *inode = page->mapping->host;
2174 sector_t iblock, lblock;
2175 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2176 unsigned int blocksize, bbits;
2177 int nr, i;
2178 int fully_mapped = 1;
2179
2180 head = create_page_buffers(page, inode, 0);
2181 blocksize = head->b_size;
2182 bbits = block_size_bits(blocksize);
2183
2184 iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2185 lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2186 bh = head;
2187 nr = 0;
2188 i = 0;
2189
2190 do {
2191 if (buffer_uptodate(bh))
2192 continue;
2193
2194 if (!buffer_mapped(bh)) {
2195 int err = 0;
2196
2197 fully_mapped = 0;
2198 if (iblock < lblock) {
2199 WARN_ON(bh->b_size != blocksize);
2200 err = get_block(inode, iblock, bh, 0);
2201 if (err)
2202 SetPageError(page);
2203 }
2204 if (!buffer_mapped(bh)) {
2205 zero_user(page, i * blocksize, blocksize);
2206 if (!err)
2207 set_buffer_uptodate(bh);
2208 continue;
2209 }
2210 /*
2211 * get_block() might have updated the buffer
2212 * synchronously
2213 */
2214 if (buffer_uptodate(bh))
2215 continue;
2216 }
2217 arr[nr++] = bh;
2218 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2219
2220 if (fully_mapped)
2221 SetPageMappedToDisk(page);
2222
2223 if (!nr) {
2224 /*
2225 * All buffers are uptodate - we can set the page uptodate
2226 * as well. But not if get_block() returned an error.
2227 */
2228 if (!PageError(page))
2229 SetPageUptodate(page);
2230 unlock_page(page);
2231 return 0;
2232 }
2233
2234 /* Stage two: lock the buffers */
2235 for (i = 0; i < nr; i++) {
2236 bh = arr[i];
2237 lock_buffer(bh);
2238 mark_buffer_async_read(bh);
2239 }
2240
2241 /*
2242 * Stage 3: start the IO. Check for uptodateness
2243 * inside the buffer lock in case another process reading
2244 * the underlying blockdev brought it uptodate (the sct fix).
2245 */
2246 for (i = 0; i < nr; i++) {
2247 bh = arr[i];
2248 if (buffer_uptodate(bh))
2249 end_buffer_async_read(bh, 1);
2250 else
2251 submit_bh(READ, bh);
2252 }
2253 return 0;
2254}
2255EXPORT_SYMBOL(block_read_full_page);
2256
2257/* utility function for filesystems that need to do work on expanding
2258 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2259 * deal with the hole.
2260 */
2261int generic_cont_expand_simple(struct inode *inode, loff_t size)
2262{
2263 struct address_space *mapping = inode->i_mapping;
2264 struct page *page;
2265 void *fsdata;
2266 int err;
2267
2268 err = inode_newsize_ok(inode, size);
2269 if (err)
2270 goto out;
2271
2272 err = pagecache_write_begin(NULL, mapping, size, 0,
2273 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2274 &page, &fsdata);
2275 if (err)
2276 goto out;
2277
2278 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2279 BUG_ON(err > 0);
2280
2281out:
2282 return err;
2283}
2284EXPORT_SYMBOL(generic_cont_expand_simple);
2285
2286static int cont_expand_zero(struct file *file, struct address_space *mapping,
2287 loff_t pos, loff_t *bytes)
2288{
2289 struct inode *inode = mapping->host;
2290 unsigned blocksize = 1 << inode->i_blkbits;
2291 struct page *page;
2292 void *fsdata;
2293 pgoff_t index, curidx;
2294 loff_t curpos;
2295 unsigned zerofrom, offset, len;
2296 int err = 0;
2297
2298 index = pos >> PAGE_SHIFT;
2299 offset = pos & ~PAGE_MASK;
2300
2301 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2302 zerofrom = curpos & ~PAGE_MASK;
2303 if (zerofrom & (blocksize-1)) {
2304 *bytes |= (blocksize-1);
2305 (*bytes)++;
2306 }
2307 len = PAGE_SIZE - zerofrom;
2308
2309 err = pagecache_write_begin(file, mapping, curpos, len,
2310 AOP_FLAG_UNINTERRUPTIBLE,
2311 &page, &fsdata);
2312 if (err)
2313 goto out;
2314 zero_user(page, zerofrom, len);
2315 err = pagecache_write_end(file, mapping, curpos, len, len,
2316 page, fsdata);
2317 if (err < 0)
2318 goto out;
2319 BUG_ON(err != len);
2320 err = 0;
2321
2322 balance_dirty_pages_ratelimited(mapping);
2323
2324 if (unlikely(fatal_signal_pending(current))) {
2325 err = -EINTR;
2326 goto out;
2327 }
2328 }
2329
2330 /* page covers the boundary, find the boundary offset */
2331 if (index == curidx) {
2332 zerofrom = curpos & ~PAGE_MASK;
2333 /* if we will expand the thing last block will be filled */
2334 if (offset <= zerofrom) {
2335 goto out;
2336 }
2337 if (zerofrom & (blocksize-1)) {
2338 *bytes |= (blocksize-1);
2339 (*bytes)++;
2340 }
2341 len = offset - zerofrom;
2342
2343 err = pagecache_write_begin(file, mapping, curpos, len,
2344 AOP_FLAG_UNINTERRUPTIBLE,
2345 &page, &fsdata);
2346 if (err)
2347 goto out;
2348 zero_user(page, zerofrom, len);
2349 err = pagecache_write_end(file, mapping, curpos, len, len,
2350 page, fsdata);
2351 if (err < 0)
2352 goto out;
2353 BUG_ON(err != len);
2354 err = 0;
2355 }
2356out:
2357 return err;
2358}
2359
2360/*
2361 * For moronic filesystems that do not allow holes in file.
2362 * We may have to extend the file.
2363 */
2364int cont_write_begin(struct file *file, struct address_space *mapping,
2365 loff_t pos, unsigned len, unsigned flags,
2366 struct page **pagep, void **fsdata,
2367 get_block_t *get_block, loff_t *bytes)
2368{
2369 struct inode *inode = mapping->host;
2370 unsigned blocksize = 1 << inode->i_blkbits;
2371 unsigned zerofrom;
2372 int err;
2373
2374 err = cont_expand_zero(file, mapping, pos, bytes);
2375 if (err)
2376 return err;
2377
2378 zerofrom = *bytes & ~PAGE_MASK;
2379 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2380 *bytes |= (blocksize-1);
2381 (*bytes)++;
2382 }
2383
2384 return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2385}
2386EXPORT_SYMBOL(cont_write_begin);
2387
2388int block_commit_write(struct page *page, unsigned from, unsigned to)
2389{
2390 struct inode *inode = page->mapping->host;
2391 __block_commit_write(inode,page,from,to);
2392 return 0;
2393}
2394EXPORT_SYMBOL(block_commit_write);
2395
2396/*
2397 * block_page_mkwrite() is not allowed to change the file size as it gets
2398 * called from a page fault handler when a page is first dirtied. Hence we must
2399 * be careful to check for EOF conditions here. We set the page up correctly
2400 * for a written page which means we get ENOSPC checking when writing into
2401 * holes and correct delalloc and unwritten extent mapping on filesystems that
2402 * support these features.
2403 *
2404 * We are not allowed to take the i_mutex here so we have to play games to
2405 * protect against truncate races as the page could now be beyond EOF. Because
2406 * truncate writes the inode size before removing pages, once we have the
2407 * page lock we can determine safely if the page is beyond EOF. If it is not
2408 * beyond EOF, then the page is guaranteed safe against truncation until we
2409 * unlock the page.
2410 *
2411 * Direct callers of this function should protect against filesystem freezing
2412 * using sb_start_pagefault() - sb_end_pagefault() functions.
2413 */
2414int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2415 get_block_t get_block)
2416{
2417 struct page *page = vmf->page;
2418 struct inode *inode = file_inode(vma->vm_file);
2419 unsigned long end;
2420 loff_t size;
2421 int ret;
2422
2423 lock_page(page);
2424 size = i_size_read(inode);
2425 if ((page->mapping != inode->i_mapping) ||
2426 (page_offset(page) > size)) {
2427 /* We overload EFAULT to mean page got truncated */
2428 ret = -EFAULT;
2429 goto out_unlock;
2430 }
2431
2432 /* page is wholly or partially inside EOF */
2433 if (((page->index + 1) << PAGE_SHIFT) > size)
2434 end = size & ~PAGE_MASK;
2435 else
2436 end = PAGE_SIZE;
2437
2438 ret = __block_write_begin(page, 0, end, get_block);
2439 if (!ret)
2440 ret = block_commit_write(page, 0, end);
2441
2442 if (unlikely(ret < 0))
2443 goto out_unlock;
2444 set_page_dirty(page);
2445 wait_for_stable_page(page);
2446 return 0;
2447out_unlock:
2448 unlock_page(page);
2449 return ret;
2450}
2451EXPORT_SYMBOL(block_page_mkwrite);
2452
2453/*
2454 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2455 * immediately, while under the page lock. So it needs a special end_io
2456 * handler which does not touch the bh after unlocking it.
2457 */
2458static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2459{
2460 __end_buffer_read_notouch(bh, uptodate);
2461}
2462
2463/*
2464 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2465 * the page (converting it to circular linked list and taking care of page
2466 * dirty races).
2467 */
2468static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2469{
2470 struct buffer_head *bh;
2471
2472 BUG_ON(!PageLocked(page));
2473
2474 spin_lock(&page->mapping->private_lock);
2475 bh = head;
2476 do {
2477 if (PageDirty(page))
2478 set_buffer_dirty(bh);
2479 if (!bh->b_this_page)
2480 bh->b_this_page = head;
2481 bh = bh->b_this_page;
2482 } while (bh != head);
2483 attach_page_buffers(page, head);
2484 spin_unlock(&page->mapping->private_lock);
2485}
2486
2487/*
2488 * On entry, the page is fully not uptodate.
2489 * On exit the page is fully uptodate in the areas outside (from,to)
2490 * The filesystem needs to handle block truncation upon failure.
2491 */
2492int nobh_write_begin(struct address_space *mapping,
2493 loff_t pos, unsigned len, unsigned flags,
2494 struct page **pagep, void **fsdata,
2495 get_block_t *get_block)
2496{
2497 struct inode *inode = mapping->host;
2498 const unsigned blkbits = inode->i_blkbits;
2499 const unsigned blocksize = 1 << blkbits;
2500 struct buffer_head *head, *bh;
2501 struct page *page;
2502 pgoff_t index;
2503 unsigned from, to;
2504 unsigned block_in_page;
2505 unsigned block_start, block_end;
2506 sector_t block_in_file;
2507 int nr_reads = 0;
2508 int ret = 0;
2509 int is_mapped_to_disk = 1;
2510
2511 index = pos >> PAGE_SHIFT;
2512 from = pos & (PAGE_SIZE - 1);
2513 to = from + len;
2514
2515 page = grab_cache_page_write_begin(mapping, index, flags);
2516 if (!page)
2517 return -ENOMEM;
2518 *pagep = page;
2519 *fsdata = NULL;
2520
2521 if (page_has_buffers(page)) {
2522 ret = __block_write_begin(page, pos, len, get_block);
2523 if (unlikely(ret))
2524 goto out_release;
2525 return ret;
2526 }
2527
2528 if (PageMappedToDisk(page))
2529 return 0;
2530
2531 /*
2532 * Allocate buffers so that we can keep track of state, and potentially
2533 * attach them to the page if an error occurs. In the common case of
2534 * no error, they will just be freed again without ever being attached
2535 * to the page (which is all OK, because we're under the page lock).
2536 *
2537 * Be careful: the buffer linked list is a NULL terminated one, rather
2538 * than the circular one we're used to.
2539 */
2540 head = alloc_page_buffers(page, blocksize, 0);
2541 if (!head) {
2542 ret = -ENOMEM;
2543 goto out_release;
2544 }
2545
2546 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2547
2548 /*
2549 * We loop across all blocks in the page, whether or not they are
2550 * part of the affected region. This is so we can discover if the
2551 * page is fully mapped-to-disk.
2552 */
2553 for (block_start = 0, block_in_page = 0, bh = head;
2554 block_start < PAGE_SIZE;
2555 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2556 int create;
2557
2558 block_end = block_start + blocksize;
2559 bh->b_state = 0;
2560 create = 1;
2561 if (block_start >= to)
2562 create = 0;
2563 ret = get_block(inode, block_in_file + block_in_page,
2564 bh, create);
2565 if (ret)
2566 goto failed;
2567 if (!buffer_mapped(bh))
2568 is_mapped_to_disk = 0;
2569 if (buffer_new(bh))
2570 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2571 if (PageUptodate(page)) {
2572 set_buffer_uptodate(bh);
2573 continue;
2574 }
2575 if (buffer_new(bh) || !buffer_mapped(bh)) {
2576 zero_user_segments(page, block_start, from,
2577 to, block_end);
2578 continue;
2579 }
2580 if (buffer_uptodate(bh))
2581 continue; /* reiserfs does this */
2582 if (block_start < from || block_end > to) {
2583 lock_buffer(bh);
2584 bh->b_end_io = end_buffer_read_nobh;
2585 submit_bh(READ, bh);
2586 nr_reads++;
2587 }
2588 }
2589
2590 if (nr_reads) {
2591 /*
2592 * The page is locked, so these buffers are protected from
2593 * any VM or truncate activity. Hence we don't need to care
2594 * for the buffer_head refcounts.
2595 */
2596 for (bh = head; bh; bh = bh->b_this_page) {
2597 wait_on_buffer(bh);
2598 if (!buffer_uptodate(bh))
2599 ret = -EIO;
2600 }
2601 if (ret)
2602 goto failed;
2603 }
2604
2605 if (is_mapped_to_disk)
2606 SetPageMappedToDisk(page);
2607
2608 *fsdata = head; /* to be released by nobh_write_end */
2609
2610 return 0;
2611
2612failed:
2613 BUG_ON(!ret);
2614 /*
2615 * Error recovery is a bit difficult. We need to zero out blocks that
2616 * were newly allocated, and dirty them to ensure they get written out.
2617 * Buffers need to be attached to the page at this point, otherwise
2618 * the handling of potential IO errors during writeout would be hard
2619 * (could try doing synchronous writeout, but what if that fails too?)
2620 */
2621 attach_nobh_buffers(page, head);
2622 page_zero_new_buffers(page, from, to);
2623
2624out_release:
2625 unlock_page(page);
2626 put_page(page);
2627 *pagep = NULL;
2628
2629 return ret;
2630}
2631EXPORT_SYMBOL(nobh_write_begin);
2632
2633int nobh_write_end(struct file *file, struct address_space *mapping,
2634 loff_t pos, unsigned len, unsigned copied,
2635 struct page *page, void *fsdata)
2636{
2637 struct inode *inode = page->mapping->host;
2638 struct buffer_head *head = fsdata;
2639 struct buffer_head *bh;
2640 BUG_ON(fsdata != NULL && page_has_buffers(page));
2641
2642 if (unlikely(copied < len) && head)
2643 attach_nobh_buffers(page, head);
2644 if (page_has_buffers(page))
2645 return generic_write_end(file, mapping, pos, len,
2646 copied, page, fsdata);
2647
2648 SetPageUptodate(page);
2649 set_page_dirty(page);
2650 if (pos+copied > inode->i_size) {
2651 i_size_write(inode, pos+copied);
2652 mark_inode_dirty(inode);
2653 }
2654
2655 unlock_page(page);
2656 put_page(page);
2657
2658 while (head) {
2659 bh = head;
2660 head = head->b_this_page;
2661 free_buffer_head(bh);
2662 }
2663
2664 return copied;
2665}
2666EXPORT_SYMBOL(nobh_write_end);
2667
2668/*
2669 * nobh_writepage() - based on block_full_write_page() except
2670 * that it tries to operate without attaching bufferheads to
2671 * the page.
2672 */
2673int nobh_writepage(struct page *page, get_block_t *get_block,
2674 struct writeback_control *wbc)
2675{
2676 struct inode * const inode = page->mapping->host;
2677 loff_t i_size = i_size_read(inode);
2678 const pgoff_t end_index = i_size >> PAGE_SHIFT;
2679 unsigned offset;
2680 int ret;
2681
2682 /* Is the page fully inside i_size? */
2683 if (page->index < end_index)
2684 goto out;
2685
2686 /* Is the page fully outside i_size? (truncate in progress) */
2687 offset = i_size & (PAGE_SIZE-1);
2688 if (page->index >= end_index+1 || !offset) {
2689 /*
2690 * The page may have dirty, unmapped buffers. For example,
2691 * they may have been added in ext3_writepage(). Make them
2692 * freeable here, so the page does not leak.
2693 */
2694#if 0
2695 /* Not really sure about this - do we need this ? */
2696 if (page->mapping->a_ops->invalidatepage)
2697 page->mapping->a_ops->invalidatepage(page, offset);
2698#endif
2699 unlock_page(page);
2700 return 0; /* don't care */
2701 }
2702
2703 /*
2704 * The page straddles i_size. It must be zeroed out on each and every
2705 * writepage invocation because it may be mmapped. "A file is mapped
2706 * in multiples of the page size. For a file that is not a multiple of
2707 * the page size, the remaining memory is zeroed when mapped, and
2708 * writes to that region are not written out to the file."
2709 */
2710 zero_user_segment(page, offset, PAGE_SIZE);
2711out:
2712 ret = mpage_writepage(page, get_block, wbc);
2713 if (ret == -EAGAIN)
2714 ret = __block_write_full_page(inode, page, get_block, wbc,
2715 end_buffer_async_write);
2716 return ret;
2717}
2718EXPORT_SYMBOL(nobh_writepage);
2719
2720int nobh_truncate_page(struct address_space *mapping,
2721 loff_t from, get_block_t *get_block)
2722{
2723 pgoff_t index = from >> PAGE_SHIFT;
2724 unsigned offset = from & (PAGE_SIZE-1);
2725 unsigned blocksize;
2726 sector_t iblock;
2727 unsigned length, pos;
2728 struct inode *inode = mapping->host;
2729 struct page *page;
2730 struct buffer_head map_bh;
2731 int err;
2732
2733 blocksize = 1 << inode->i_blkbits;
2734 length = offset & (blocksize - 1);
2735
2736 /* Block boundary? Nothing to do */
2737 if (!length)
2738 return 0;
2739
2740 length = blocksize - length;
2741 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2742
2743 page = grab_cache_page(mapping, index);
2744 err = -ENOMEM;
2745 if (!page)
2746 goto out;
2747
2748 if (page_has_buffers(page)) {
2749has_buffers:
2750 unlock_page(page);
2751 put_page(page);
2752 return block_truncate_page(mapping, from, get_block);
2753 }
2754
2755 /* Find the buffer that contains "offset" */
2756 pos = blocksize;
2757 while (offset >= pos) {
2758 iblock++;
2759 pos += blocksize;
2760 }
2761
2762 map_bh.b_size = blocksize;
2763 map_bh.b_state = 0;
2764 err = get_block(inode, iblock, &map_bh, 0);
2765 if (err)
2766 goto unlock;
2767 /* unmapped? It's a hole - nothing to do */
2768 if (!buffer_mapped(&map_bh))
2769 goto unlock;
2770
2771 /* Ok, it's mapped. Make sure it's up-to-date */
2772 if (!PageUptodate(page)) {
2773 err = mapping->a_ops->readpage(NULL, page);
2774 if (err) {
2775 put_page(page);
2776 goto out;
2777 }
2778 lock_page(page);
2779 if (!PageUptodate(page)) {
2780 err = -EIO;
2781 goto unlock;
2782 }
2783 if (page_has_buffers(page))
2784 goto has_buffers;
2785 }
2786 zero_user(page, offset, length);
2787 set_page_dirty(page);
2788 err = 0;
2789
2790unlock:
2791 unlock_page(page);
2792 put_page(page);
2793out:
2794 return err;
2795}
2796EXPORT_SYMBOL(nobh_truncate_page);
2797
2798int block_truncate_page(struct address_space *mapping,
2799 loff_t from, get_block_t *get_block)
2800{
2801 pgoff_t index = from >> PAGE_SHIFT;
2802 unsigned offset = from & (PAGE_SIZE-1);
2803 unsigned blocksize;
2804 sector_t iblock;
2805 unsigned length, pos;
2806 struct inode *inode = mapping->host;
2807 struct page *page;
2808 struct buffer_head *bh;
2809 int err;
2810
2811 blocksize = 1 << inode->i_blkbits;
2812 length = offset & (blocksize - 1);
2813
2814 /* Block boundary? Nothing to do */
2815 if (!length)
2816 return 0;
2817
2818 length = blocksize - length;
2819 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2820
2821 page = grab_cache_page(mapping, index);
2822 err = -ENOMEM;
2823 if (!page)
2824 goto out;
2825
2826 if (!page_has_buffers(page))
2827 create_empty_buffers(page, blocksize, 0);
2828
2829 /* Find the buffer that contains "offset" */
2830 bh = page_buffers(page);
2831 pos = blocksize;
2832 while (offset >= pos) {
2833 bh = bh->b_this_page;
2834 iblock++;
2835 pos += blocksize;
2836 }
2837
2838 err = 0;
2839 if (!buffer_mapped(bh)) {
2840 WARN_ON(bh->b_size != blocksize);
2841 err = get_block(inode, iblock, bh, 0);
2842 if (err)
2843 goto unlock;
2844 /* unmapped? It's a hole - nothing to do */
2845 if (!buffer_mapped(bh))
2846 goto unlock;
2847 }
2848
2849 /* Ok, it's mapped. Make sure it's up-to-date */
2850 if (PageUptodate(page))
2851 set_buffer_uptodate(bh);
2852
2853 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2854 err = -EIO;
2855 ll_rw_block(READ, 1, &bh);
2856 wait_on_buffer(bh);
2857 /* Uhhuh. Read error. Complain and punt. */
2858 if (!buffer_uptodate(bh))
2859 goto unlock;
2860 }
2861
2862 zero_user(page, offset, length);
2863 mark_buffer_dirty(bh);
2864 err = 0;
2865
2866unlock:
2867 unlock_page(page);
2868 put_page(page);
2869out:
2870 return err;
2871}
2872EXPORT_SYMBOL(block_truncate_page);
2873
2874/*
2875 * The generic ->writepage function for buffer-backed address_spaces
2876 */
2877int block_write_full_page(struct page *page, get_block_t *get_block,
2878 struct writeback_control *wbc)
2879{
2880 struct inode * const inode = page->mapping->host;
2881 loff_t i_size = i_size_read(inode);
2882 const pgoff_t end_index = i_size >> PAGE_SHIFT;
2883 unsigned offset;
2884
2885 /* Is the page fully inside i_size? */
2886 if (page->index < end_index)
2887 return __block_write_full_page(inode, page, get_block, wbc,
2888 end_buffer_async_write);
2889
2890 /* Is the page fully outside i_size? (truncate in progress) */
2891 offset = i_size & (PAGE_SIZE-1);
2892 if (page->index >= end_index+1 || !offset) {
2893 /*
2894 * The page may have dirty, unmapped buffers. For example,
2895 * they may have been added in ext3_writepage(). Make them
2896 * freeable here, so the page does not leak.
2897 */
2898 do_invalidatepage(page, 0, PAGE_SIZE);
2899 unlock_page(page);
2900 return 0; /* don't care */
2901 }
2902
2903 /*
2904 * The page straddles i_size. It must be zeroed out on each and every
2905 * writepage invocation because it may be mmapped. "A file is mapped
2906 * in multiples of the page size. For a file that is not a multiple of
2907 * the page size, the remaining memory is zeroed when mapped, and
2908 * writes to that region are not written out to the file."
2909 */
2910 zero_user_segment(page, offset, PAGE_SIZE);
2911 return __block_write_full_page(inode, page, get_block, wbc,
2912 end_buffer_async_write);
2913}
2914EXPORT_SYMBOL(block_write_full_page);
2915
2916sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2917 get_block_t *get_block)
2918{
2919 struct buffer_head tmp;
2920 struct inode *inode = mapping->host;
2921 tmp.b_state = 0;
2922 tmp.b_blocknr = 0;
2923 tmp.b_size = 1 << inode->i_blkbits;
2924 get_block(inode, block, &tmp, 0);
2925 return tmp.b_blocknr;
2926}
2927EXPORT_SYMBOL(generic_block_bmap);
2928
2929static void end_bio_bh_io_sync(struct bio *bio)
2930{
2931 struct buffer_head *bh = bio->bi_private;
2932
2933 if (unlikely(bio_flagged(bio, BIO_QUIET)))
2934 set_bit(BH_Quiet, &bh->b_state);
2935
2936 bh->b_end_io(bh, !bio->bi_error);
2937 bio_put(bio);
2938}
2939
2940/*
2941 * This allows us to do IO even on the odd last sectors
2942 * of a device, even if the block size is some multiple
2943 * of the physical sector size.
2944 *
2945 * We'll just truncate the bio to the size of the device,
2946 * and clear the end of the buffer head manually.
2947 *
2948 * Truly out-of-range accesses will turn into actual IO
2949 * errors, this only handles the "we need to be able to
2950 * do IO at the final sector" case.
2951 */
2952void guard_bio_eod(int rw, struct bio *bio)
2953{
2954 sector_t maxsector;
2955 struct bio_vec *bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
2956 unsigned truncated_bytes;
2957
2958 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
2959 if (!maxsector)
2960 return;
2961
2962 /*
2963 * If the *whole* IO is past the end of the device,
2964 * let it through, and the IO layer will turn it into
2965 * an EIO.
2966 */
2967 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
2968 return;
2969
2970 maxsector -= bio->bi_iter.bi_sector;
2971 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
2972 return;
2973
2974 /* Uhhuh. We've got a bio that straddles the device size! */
2975 truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
2976
2977 /* Truncate the bio.. */
2978 bio->bi_iter.bi_size -= truncated_bytes;
2979 bvec->bv_len -= truncated_bytes;
2980
2981 /* ..and clear the end of the buffer for reads */
2982 if ((rw & RW_MASK) == READ) {
2983 zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len,
2984 truncated_bytes);
2985 }
2986}
2987
2988static int submit_bh_wbc(int rw, struct buffer_head *bh,
2989 unsigned long bio_flags, struct writeback_control *wbc)
2990{
2991 struct bio *bio;
2992
2993 BUG_ON(!buffer_locked(bh));
2994 BUG_ON(!buffer_mapped(bh));
2995 BUG_ON(!bh->b_end_io);
2996 BUG_ON(buffer_delay(bh));
2997 BUG_ON(buffer_unwritten(bh));
2998
2999 /*
3000 * Only clear out a write error when rewriting
3001 */
3002 if (test_set_buffer_req(bh) && (rw & WRITE))
3003 clear_buffer_write_io_error(bh);
3004
3005 /*
3006 * from here on down, it's all bio -- do the initial mapping,
3007 * submit_bio -> generic_make_request may further map this bio around
3008 */
3009 bio = bio_alloc(GFP_NOIO, 1);
3010
3011 if (wbc) {
3012 wbc_init_bio(wbc, bio);
3013 wbc_account_io(wbc, bh->b_page, bh->b_size);
3014 }
3015
3016 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3017 bio->bi_bdev = bh->b_bdev;
3018
3019 bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3020 BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3021
3022 bio->bi_end_io = end_bio_bh_io_sync;
3023 bio->bi_private = bh;
3024 bio->bi_flags |= bio_flags;
3025
3026 /* Take care of bh's that straddle the end of the device */
3027 guard_bio_eod(rw, bio);
3028
3029 if (buffer_meta(bh))
3030 rw |= REQ_META;
3031 if (buffer_prio(bh))
3032 rw |= REQ_PRIO;
3033
3034 submit_bio(rw, bio);
3035 return 0;
3036}
3037
3038int _submit_bh(int rw, struct buffer_head *bh, unsigned long bio_flags)
3039{
3040 return submit_bh_wbc(rw, bh, bio_flags, NULL);
3041}
3042EXPORT_SYMBOL_GPL(_submit_bh);
3043
3044int submit_bh(int rw, struct buffer_head *bh)
3045{
3046 return submit_bh_wbc(rw, bh, 0, NULL);
3047}
3048EXPORT_SYMBOL(submit_bh);
3049
3050/**
3051 * ll_rw_block: low-level access to block devices (DEPRECATED)
3052 * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
3053 * @nr: number of &struct buffer_heads in the array
3054 * @bhs: array of pointers to &struct buffer_head
3055 *
3056 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3057 * requests an I/O operation on them, either a %READ or a %WRITE. The third
3058 * %READA option is described in the documentation for generic_make_request()
3059 * which ll_rw_block() calls.
3060 *
3061 * This function drops any buffer that it cannot get a lock on (with the
3062 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3063 * request, and any buffer that appears to be up-to-date when doing read
3064 * request. Further it marks as clean buffers that are processed for
3065 * writing (the buffer cache won't assume that they are actually clean
3066 * until the buffer gets unlocked).
3067 *
3068 * ll_rw_block sets b_end_io to simple completion handler that marks
3069 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3070 * any waiters.
3071 *
3072 * All of the buffers must be for the same device, and must also be a
3073 * multiple of the current approved size for the device.
3074 */
3075void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
3076{
3077 int i;
3078
3079 for (i = 0; i < nr; i++) {
3080 struct buffer_head *bh = bhs[i];
3081
3082 if (!trylock_buffer(bh))
3083 continue;
3084 if (rw == WRITE) {
3085 if (test_clear_buffer_dirty(bh)) {
3086 bh->b_end_io = end_buffer_write_sync;
3087 get_bh(bh);
3088 submit_bh(WRITE, bh);
3089 continue;
3090 }
3091 } else {
3092 if (!buffer_uptodate(bh)) {
3093 bh->b_end_io = end_buffer_read_sync;
3094 get_bh(bh);
3095 submit_bh(rw, bh);
3096 continue;
3097 }
3098 }
3099 unlock_buffer(bh);
3100 }
3101}
3102EXPORT_SYMBOL(ll_rw_block);
3103
3104void write_dirty_buffer(struct buffer_head *bh, int rw)
3105{
3106 lock_buffer(bh);
3107 if (!test_clear_buffer_dirty(bh)) {
3108 unlock_buffer(bh);
3109 return;
3110 }
3111 bh->b_end_io = end_buffer_write_sync;
3112 get_bh(bh);
3113 submit_bh(rw, bh);
3114}
3115EXPORT_SYMBOL(write_dirty_buffer);
3116
3117/*
3118 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3119 * and then start new I/O and then wait upon it. The caller must have a ref on
3120 * the buffer_head.
3121 */
3122int __sync_dirty_buffer(struct buffer_head *bh, int rw)
3123{
3124 int ret = 0;
3125
3126 WARN_ON(atomic_read(&bh->b_count) < 1);
3127 lock_buffer(bh);
3128 if (test_clear_buffer_dirty(bh)) {
3129 get_bh(bh);
3130 bh->b_end_io = end_buffer_write_sync;
3131 ret = submit_bh(rw, bh);
3132 wait_on_buffer(bh);
3133 if (!ret && !buffer_uptodate(bh))
3134 ret = -EIO;
3135 } else {
3136 unlock_buffer(bh);
3137 }
3138 return ret;
3139}
3140EXPORT_SYMBOL(__sync_dirty_buffer);
3141
3142int sync_dirty_buffer(struct buffer_head *bh)
3143{
3144 return __sync_dirty_buffer(bh, WRITE_SYNC);
3145}
3146EXPORT_SYMBOL(sync_dirty_buffer);
3147
3148/*
3149 * try_to_free_buffers() checks if all the buffers on this particular page
3150 * are unused, and releases them if so.
3151 *
3152 * Exclusion against try_to_free_buffers may be obtained by either
3153 * locking the page or by holding its mapping's private_lock.
3154 *
3155 * If the page is dirty but all the buffers are clean then we need to
3156 * be sure to mark the page clean as well. This is because the page
3157 * may be against a block device, and a later reattachment of buffers
3158 * to a dirty page will set *all* buffers dirty. Which would corrupt
3159 * filesystem data on the same device.
3160 *
3161 * The same applies to regular filesystem pages: if all the buffers are
3162 * clean then we set the page clean and proceed. To do that, we require
3163 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3164 * private_lock.
3165 *
3166 * try_to_free_buffers() is non-blocking.
3167 */
3168static inline int buffer_busy(struct buffer_head *bh)
3169{
3170 return atomic_read(&bh->b_count) |
3171 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3172}
3173
3174static int
3175drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3176{
3177 struct buffer_head *head = page_buffers(page);
3178 struct buffer_head *bh;
3179
3180 bh = head;
3181 do {
3182 if (buffer_write_io_error(bh) && page->mapping)
3183 set_bit(AS_EIO, &page->mapping->flags);
3184 if (buffer_busy(bh))
3185 goto failed;
3186 bh = bh->b_this_page;
3187 } while (bh != head);
3188
3189 do {
3190 struct buffer_head *next = bh->b_this_page;
3191
3192 if (bh->b_assoc_map)
3193 __remove_assoc_queue(bh);
3194 bh = next;
3195 } while (bh != head);
3196 *buffers_to_free = head;
3197 __clear_page_buffers(page);
3198 return 1;
3199failed:
3200 return 0;
3201}
3202
3203int try_to_free_buffers(struct page *page)
3204{
3205 struct address_space * const mapping = page->mapping;
3206 struct buffer_head *buffers_to_free = NULL;
3207 int ret = 0;
3208
3209 BUG_ON(!PageLocked(page));
3210 if (PageWriteback(page))
3211 return 0;
3212
3213 if (mapping == NULL) { /* can this still happen? */
3214 ret = drop_buffers(page, &buffers_to_free);
3215 goto out;
3216 }
3217
3218 spin_lock(&mapping->private_lock);
3219 ret = drop_buffers(page, &buffers_to_free);
3220
3221 /*
3222 * If the filesystem writes its buffers by hand (eg ext3)
3223 * then we can have clean buffers against a dirty page. We
3224 * clean the page here; otherwise the VM will never notice
3225 * that the filesystem did any IO at all.
3226 *
3227 * Also, during truncate, discard_buffer will have marked all
3228 * the page's buffers clean. We discover that here and clean
3229 * the page also.
3230 *
3231 * private_lock must be held over this entire operation in order
3232 * to synchronise against __set_page_dirty_buffers and prevent the
3233 * dirty bit from being lost.
3234 */
3235 if (ret)
3236 cancel_dirty_page(page);
3237 spin_unlock(&mapping->private_lock);
3238out:
3239 if (buffers_to_free) {
3240 struct buffer_head *bh = buffers_to_free;
3241
3242 do {
3243 struct buffer_head *next = bh->b_this_page;
3244 free_buffer_head(bh);
3245 bh = next;
3246 } while (bh != buffers_to_free);
3247 }
3248 return ret;
3249}
3250EXPORT_SYMBOL(try_to_free_buffers);
3251
3252/*
3253 * There are no bdflush tunables left. But distributions are
3254 * still running obsolete flush daemons, so we terminate them here.
3255 *
3256 * Use of bdflush() is deprecated and will be removed in a future kernel.
3257 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3258 */
3259SYSCALL_DEFINE2(bdflush, int, func, long, data)
3260{
3261 static int msg_count;
3262
3263 if (!capable(CAP_SYS_ADMIN))
3264 return -EPERM;
3265
3266 if (msg_count < 5) {
3267 msg_count++;
3268 printk(KERN_INFO
3269 "warning: process `%s' used the obsolete bdflush"
3270 " system call\n", current->comm);
3271 printk(KERN_INFO "Fix your initscripts?\n");
3272 }
3273
3274 if (func == 1)
3275 do_exit(0);
3276 return 0;
3277}
3278
3279/*
3280 * Buffer-head allocation
3281 */
3282static struct kmem_cache *bh_cachep __read_mostly;
3283
3284/*
3285 * Once the number of bh's in the machine exceeds this level, we start
3286 * stripping them in writeback.
3287 */
3288static unsigned long max_buffer_heads;
3289
3290int buffer_heads_over_limit;
3291
3292struct bh_accounting {
3293 int nr; /* Number of live bh's */
3294 int ratelimit; /* Limit cacheline bouncing */
3295};
3296
3297static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3298
3299static void recalc_bh_state(void)
3300{
3301 int i;
3302 int tot = 0;
3303
3304 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3305 return;
3306 __this_cpu_write(bh_accounting.ratelimit, 0);
3307 for_each_online_cpu(i)
3308 tot += per_cpu(bh_accounting, i).nr;
3309 buffer_heads_over_limit = (tot > max_buffer_heads);
3310}
3311
3312struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3313{
3314 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3315 if (ret) {
3316 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3317 preempt_disable();
3318 __this_cpu_inc(bh_accounting.nr);
3319 recalc_bh_state();
3320 preempt_enable();
3321 }
3322 return ret;
3323}
3324EXPORT_SYMBOL(alloc_buffer_head);
3325
3326void free_buffer_head(struct buffer_head *bh)
3327{
3328 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3329 kmem_cache_free(bh_cachep, bh);
3330 preempt_disable();
3331 __this_cpu_dec(bh_accounting.nr);
3332 recalc_bh_state();
3333 preempt_enable();
3334}
3335EXPORT_SYMBOL(free_buffer_head);
3336
3337static void buffer_exit_cpu(int cpu)
3338{
3339 int i;
3340 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3341
3342 for (i = 0; i < BH_LRU_SIZE; i++) {
3343 brelse(b->bhs[i]);
3344 b->bhs[i] = NULL;
3345 }
3346 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3347 per_cpu(bh_accounting, cpu).nr = 0;
3348}
3349
3350static int buffer_cpu_notify(struct notifier_block *self,
3351 unsigned long action, void *hcpu)
3352{
3353 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3354 buffer_exit_cpu((unsigned long)hcpu);
3355 return NOTIFY_OK;
3356}
3357
3358/**
3359 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3360 * @bh: struct buffer_head
3361 *
3362 * Return true if the buffer is up-to-date and false,
3363 * with the buffer locked, if not.
3364 */
3365int bh_uptodate_or_lock(struct buffer_head *bh)
3366{
3367 if (!buffer_uptodate(bh)) {
3368 lock_buffer(bh);
3369 if (!buffer_uptodate(bh))
3370 return 0;
3371 unlock_buffer(bh);
3372 }
3373 return 1;
3374}
3375EXPORT_SYMBOL(bh_uptodate_or_lock);
3376
3377/**
3378 * bh_submit_read - Submit a locked buffer for reading
3379 * @bh: struct buffer_head
3380 *
3381 * Returns zero on success and -EIO on error.
3382 */
3383int bh_submit_read(struct buffer_head *bh)
3384{
3385 BUG_ON(!buffer_locked(bh));
3386
3387 if (buffer_uptodate(bh)) {
3388 unlock_buffer(bh);
3389 return 0;
3390 }
3391
3392 get_bh(bh);
3393 bh->b_end_io = end_buffer_read_sync;
3394 submit_bh(READ, bh);
3395 wait_on_buffer(bh);
3396 if (buffer_uptodate(bh))
3397 return 0;
3398 return -EIO;
3399}
3400EXPORT_SYMBOL(bh_submit_read);
3401
3402void __init buffer_init(void)
3403{
3404 unsigned long nrpages;
3405
3406 bh_cachep = kmem_cache_create("buffer_head",
3407 sizeof(struct buffer_head), 0,
3408 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3409 SLAB_MEM_SPREAD),
3410 NULL);
3411
3412 /*
3413 * Limit the bh occupancy to 10% of ZONE_NORMAL
3414 */
3415 nrpages = (nr_free_buffer_pages() * 10) / 100;
3416 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3417 hotcpu_notifier(buffer_cpu_notify, 0);
3418}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/fs/buffer.c
4 *
5 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
6 */
7
8/*
9 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 *
11 * Removed a lot of unnecessary code and simplified things now that
12 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 *
14 * Speed up hash, lru, and free list operations. Use gfp() for allocating
15 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 *
17 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 *
19 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
20 */
21
22#include <linux/kernel.h>
23#include <linux/sched/signal.h>
24#include <linux/syscalls.h>
25#include <linux/fs.h>
26#include <linux/iomap.h>
27#include <linux/mm.h>
28#include <linux/percpu.h>
29#include <linux/slab.h>
30#include <linux/capability.h>
31#include <linux/blkdev.h>
32#include <linux/file.h>
33#include <linux/quotaops.h>
34#include <linux/highmem.h>
35#include <linux/export.h>
36#include <linux/backing-dev.h>
37#include <linux/writeback.h>
38#include <linux/hash.h>
39#include <linux/suspend.h>
40#include <linux/buffer_head.h>
41#include <linux/task_io_accounting_ops.h>
42#include <linux/bio.h>
43#include <linux/cpu.h>
44#include <linux/bitops.h>
45#include <linux/mpage.h>
46#include <linux/bit_spinlock.h>
47#include <linux/pagevec.h>
48#include <linux/sched/mm.h>
49#include <trace/events/block.h>
50#include <linux/fscrypt.h>
51
52#include "internal.h"
53
54static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
55static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
56 enum rw_hint hint, struct writeback_control *wbc);
57
58#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
59
60inline void touch_buffer(struct buffer_head *bh)
61{
62 trace_block_touch_buffer(bh);
63 mark_page_accessed(bh->b_page);
64}
65EXPORT_SYMBOL(touch_buffer);
66
67void __lock_buffer(struct buffer_head *bh)
68{
69 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
70}
71EXPORT_SYMBOL(__lock_buffer);
72
73void unlock_buffer(struct buffer_head *bh)
74{
75 clear_bit_unlock(BH_Lock, &bh->b_state);
76 smp_mb__after_atomic();
77 wake_up_bit(&bh->b_state, BH_Lock);
78}
79EXPORT_SYMBOL(unlock_buffer);
80
81/*
82 * Returns if the page has dirty or writeback buffers. If all the buffers
83 * are unlocked and clean then the PageDirty information is stale. If
84 * any of the pages are locked, it is assumed they are locked for IO.
85 */
86void buffer_check_dirty_writeback(struct page *page,
87 bool *dirty, bool *writeback)
88{
89 struct buffer_head *head, *bh;
90 *dirty = false;
91 *writeback = false;
92
93 BUG_ON(!PageLocked(page));
94
95 if (!page_has_buffers(page))
96 return;
97
98 if (PageWriteback(page))
99 *writeback = true;
100
101 head = page_buffers(page);
102 bh = head;
103 do {
104 if (buffer_locked(bh))
105 *writeback = true;
106
107 if (buffer_dirty(bh))
108 *dirty = true;
109
110 bh = bh->b_this_page;
111 } while (bh != head);
112}
113EXPORT_SYMBOL(buffer_check_dirty_writeback);
114
115/*
116 * Block until a buffer comes unlocked. This doesn't stop it
117 * from becoming locked again - you have to lock it yourself
118 * if you want to preserve its state.
119 */
120void __wait_on_buffer(struct buffer_head * bh)
121{
122 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
123}
124EXPORT_SYMBOL(__wait_on_buffer);
125
126static void buffer_io_error(struct buffer_head *bh, char *msg)
127{
128 if (!test_bit(BH_Quiet, &bh->b_state))
129 printk_ratelimited(KERN_ERR
130 "Buffer I/O error on dev %pg, logical block %llu%s\n",
131 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
132}
133
134/*
135 * End-of-IO handler helper function which does not touch the bh after
136 * unlocking it.
137 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
138 * a race there is benign: unlock_buffer() only use the bh's address for
139 * hashing after unlocking the buffer, so it doesn't actually touch the bh
140 * itself.
141 */
142static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
143{
144 if (uptodate) {
145 set_buffer_uptodate(bh);
146 } else {
147 /* This happens, due to failed read-ahead attempts. */
148 clear_buffer_uptodate(bh);
149 }
150 unlock_buffer(bh);
151}
152
153/*
154 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
155 * unlock the buffer. This is what ll_rw_block uses too.
156 */
157void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
158{
159 __end_buffer_read_notouch(bh, uptodate);
160 put_bh(bh);
161}
162EXPORT_SYMBOL(end_buffer_read_sync);
163
164void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
165{
166 if (uptodate) {
167 set_buffer_uptodate(bh);
168 } else {
169 buffer_io_error(bh, ", lost sync page write");
170 mark_buffer_write_io_error(bh);
171 clear_buffer_uptodate(bh);
172 }
173 unlock_buffer(bh);
174 put_bh(bh);
175}
176EXPORT_SYMBOL(end_buffer_write_sync);
177
178/*
179 * Various filesystems appear to want __find_get_block to be non-blocking.
180 * But it's the page lock which protects the buffers. To get around this,
181 * we get exclusion from try_to_free_buffers with the blockdev mapping's
182 * private_lock.
183 *
184 * Hack idea: for the blockdev mapping, private_lock contention
185 * may be quite high. This code could TryLock the page, and if that
186 * succeeds, there is no need to take private_lock.
187 */
188static struct buffer_head *
189__find_get_block_slow(struct block_device *bdev, sector_t block)
190{
191 struct inode *bd_inode = bdev->bd_inode;
192 struct address_space *bd_mapping = bd_inode->i_mapping;
193 struct buffer_head *ret = NULL;
194 pgoff_t index;
195 struct buffer_head *bh;
196 struct buffer_head *head;
197 struct page *page;
198 int all_mapped = 1;
199 static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
200
201 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
202 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
203 if (!page)
204 goto out;
205
206 spin_lock(&bd_mapping->private_lock);
207 if (!page_has_buffers(page))
208 goto out_unlock;
209 head = page_buffers(page);
210 bh = head;
211 do {
212 if (!buffer_mapped(bh))
213 all_mapped = 0;
214 else if (bh->b_blocknr == block) {
215 ret = bh;
216 get_bh(bh);
217 goto out_unlock;
218 }
219 bh = bh->b_this_page;
220 } while (bh != head);
221
222 /* we might be here because some of the buffers on this page are
223 * not mapped. This is due to various races between
224 * file io on the block device and getblk. It gets dealt with
225 * elsewhere, don't buffer_error if we had some unmapped buffers
226 */
227 ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
228 if (all_mapped && __ratelimit(&last_warned)) {
229 printk("__find_get_block_slow() failed. block=%llu, "
230 "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
231 "device %pg blocksize: %d\n",
232 (unsigned long long)block,
233 (unsigned long long)bh->b_blocknr,
234 bh->b_state, bh->b_size, bdev,
235 1 << bd_inode->i_blkbits);
236 }
237out_unlock:
238 spin_unlock(&bd_mapping->private_lock);
239 put_page(page);
240out:
241 return ret;
242}
243
244static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
245{
246 unsigned long flags;
247 struct buffer_head *first;
248 struct buffer_head *tmp;
249 struct page *page;
250 int page_uptodate = 1;
251
252 BUG_ON(!buffer_async_read(bh));
253
254 page = bh->b_page;
255 if (uptodate) {
256 set_buffer_uptodate(bh);
257 } else {
258 clear_buffer_uptodate(bh);
259 buffer_io_error(bh, ", async page read");
260 SetPageError(page);
261 }
262
263 /*
264 * Be _very_ careful from here on. Bad things can happen if
265 * two buffer heads end IO at almost the same time and both
266 * decide that the page is now completely done.
267 */
268 first = page_buffers(page);
269 spin_lock_irqsave(&first->b_uptodate_lock, flags);
270 clear_buffer_async_read(bh);
271 unlock_buffer(bh);
272 tmp = bh;
273 do {
274 if (!buffer_uptodate(tmp))
275 page_uptodate = 0;
276 if (buffer_async_read(tmp)) {
277 BUG_ON(!buffer_locked(tmp));
278 goto still_busy;
279 }
280 tmp = tmp->b_this_page;
281 } while (tmp != bh);
282 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
283
284 /*
285 * If none of the buffers had errors and they are all
286 * uptodate then we can set the page uptodate.
287 */
288 if (page_uptodate && !PageError(page))
289 SetPageUptodate(page);
290 unlock_page(page);
291 return;
292
293still_busy:
294 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
295 return;
296}
297
298struct decrypt_bh_ctx {
299 struct work_struct work;
300 struct buffer_head *bh;
301};
302
303static void decrypt_bh(struct work_struct *work)
304{
305 struct decrypt_bh_ctx *ctx =
306 container_of(work, struct decrypt_bh_ctx, work);
307 struct buffer_head *bh = ctx->bh;
308 int err;
309
310 err = fscrypt_decrypt_pagecache_blocks(bh->b_page, bh->b_size,
311 bh_offset(bh));
312 end_buffer_async_read(bh, err == 0);
313 kfree(ctx);
314}
315
316/*
317 * I/O completion handler for block_read_full_page() - pages
318 * which come unlocked at the end of I/O.
319 */
320static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
321{
322 /* Decrypt if needed */
323 if (uptodate &&
324 fscrypt_inode_uses_fs_layer_crypto(bh->b_page->mapping->host)) {
325 struct decrypt_bh_ctx *ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
326
327 if (ctx) {
328 INIT_WORK(&ctx->work, decrypt_bh);
329 ctx->bh = bh;
330 fscrypt_enqueue_decrypt_work(&ctx->work);
331 return;
332 }
333 uptodate = 0;
334 }
335 end_buffer_async_read(bh, uptodate);
336}
337
338/*
339 * Completion handler for block_write_full_page() - pages which are unlocked
340 * during I/O, and which have PageWriteback cleared upon I/O completion.
341 */
342void end_buffer_async_write(struct buffer_head *bh, int uptodate)
343{
344 unsigned long flags;
345 struct buffer_head *first;
346 struct buffer_head *tmp;
347 struct page *page;
348
349 BUG_ON(!buffer_async_write(bh));
350
351 page = bh->b_page;
352 if (uptodate) {
353 set_buffer_uptodate(bh);
354 } else {
355 buffer_io_error(bh, ", lost async page write");
356 mark_buffer_write_io_error(bh);
357 clear_buffer_uptodate(bh);
358 SetPageError(page);
359 }
360
361 first = page_buffers(page);
362 spin_lock_irqsave(&first->b_uptodate_lock, flags);
363
364 clear_buffer_async_write(bh);
365 unlock_buffer(bh);
366 tmp = bh->b_this_page;
367 while (tmp != bh) {
368 if (buffer_async_write(tmp)) {
369 BUG_ON(!buffer_locked(tmp));
370 goto still_busy;
371 }
372 tmp = tmp->b_this_page;
373 }
374 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
375 end_page_writeback(page);
376 return;
377
378still_busy:
379 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
380 return;
381}
382EXPORT_SYMBOL(end_buffer_async_write);
383
384/*
385 * If a page's buffers are under async readin (end_buffer_async_read
386 * completion) then there is a possibility that another thread of
387 * control could lock one of the buffers after it has completed
388 * but while some of the other buffers have not completed. This
389 * locked buffer would confuse end_buffer_async_read() into not unlocking
390 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
391 * that this buffer is not under async I/O.
392 *
393 * The page comes unlocked when it has no locked buffer_async buffers
394 * left.
395 *
396 * PageLocked prevents anyone starting new async I/O reads any of
397 * the buffers.
398 *
399 * PageWriteback is used to prevent simultaneous writeout of the same
400 * page.
401 *
402 * PageLocked prevents anyone from starting writeback of a page which is
403 * under read I/O (PageWriteback is only ever set against a locked page).
404 */
405static void mark_buffer_async_read(struct buffer_head *bh)
406{
407 bh->b_end_io = end_buffer_async_read_io;
408 set_buffer_async_read(bh);
409}
410
411static void mark_buffer_async_write_endio(struct buffer_head *bh,
412 bh_end_io_t *handler)
413{
414 bh->b_end_io = handler;
415 set_buffer_async_write(bh);
416}
417
418void mark_buffer_async_write(struct buffer_head *bh)
419{
420 mark_buffer_async_write_endio(bh, end_buffer_async_write);
421}
422EXPORT_SYMBOL(mark_buffer_async_write);
423
424
425/*
426 * fs/buffer.c contains helper functions for buffer-backed address space's
427 * fsync functions. A common requirement for buffer-based filesystems is
428 * that certain data from the backing blockdev needs to be written out for
429 * a successful fsync(). For example, ext2 indirect blocks need to be
430 * written back and waited upon before fsync() returns.
431 *
432 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
433 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
434 * management of a list of dependent buffers at ->i_mapping->private_list.
435 *
436 * Locking is a little subtle: try_to_free_buffers() will remove buffers
437 * from their controlling inode's queue when they are being freed. But
438 * try_to_free_buffers() will be operating against the *blockdev* mapping
439 * at the time, not against the S_ISREG file which depends on those buffers.
440 * So the locking for private_list is via the private_lock in the address_space
441 * which backs the buffers. Which is different from the address_space
442 * against which the buffers are listed. So for a particular address_space,
443 * mapping->private_lock does *not* protect mapping->private_list! In fact,
444 * mapping->private_list will always be protected by the backing blockdev's
445 * ->private_lock.
446 *
447 * Which introduces a requirement: all buffers on an address_space's
448 * ->private_list must be from the same address_space: the blockdev's.
449 *
450 * address_spaces which do not place buffers at ->private_list via these
451 * utility functions are free to use private_lock and private_list for
452 * whatever they want. The only requirement is that list_empty(private_list)
453 * be true at clear_inode() time.
454 *
455 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
456 * filesystems should do that. invalidate_inode_buffers() should just go
457 * BUG_ON(!list_empty).
458 *
459 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
460 * take an address_space, not an inode. And it should be called
461 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
462 * queued up.
463 *
464 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
465 * list if it is already on a list. Because if the buffer is on a list,
466 * it *must* already be on the right one. If not, the filesystem is being
467 * silly. This will save a ton of locking. But first we have to ensure
468 * that buffers are taken *off* the old inode's list when they are freed
469 * (presumably in truncate). That requires careful auditing of all
470 * filesystems (do it inside bforget()). It could also be done by bringing
471 * b_inode back.
472 */
473
474/*
475 * The buffer's backing address_space's private_lock must be held
476 */
477static void __remove_assoc_queue(struct buffer_head *bh)
478{
479 list_del_init(&bh->b_assoc_buffers);
480 WARN_ON(!bh->b_assoc_map);
481 bh->b_assoc_map = NULL;
482}
483
484int inode_has_buffers(struct inode *inode)
485{
486 return !list_empty(&inode->i_data.private_list);
487}
488
489/*
490 * osync is designed to support O_SYNC io. It waits synchronously for
491 * all already-submitted IO to complete, but does not queue any new
492 * writes to the disk.
493 *
494 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
495 * you dirty the buffers, and then use osync_inode_buffers to wait for
496 * completion. Any other dirty buffers which are not yet queued for
497 * write will not be flushed to disk by the osync.
498 */
499static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
500{
501 struct buffer_head *bh;
502 struct list_head *p;
503 int err = 0;
504
505 spin_lock(lock);
506repeat:
507 list_for_each_prev(p, list) {
508 bh = BH_ENTRY(p);
509 if (buffer_locked(bh)) {
510 get_bh(bh);
511 spin_unlock(lock);
512 wait_on_buffer(bh);
513 if (!buffer_uptodate(bh))
514 err = -EIO;
515 brelse(bh);
516 spin_lock(lock);
517 goto repeat;
518 }
519 }
520 spin_unlock(lock);
521 return err;
522}
523
524void emergency_thaw_bdev(struct super_block *sb)
525{
526 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
527 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
528}
529
530/**
531 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
532 * @mapping: the mapping which wants those buffers written
533 *
534 * Starts I/O against the buffers at mapping->private_list, and waits upon
535 * that I/O.
536 *
537 * Basically, this is a convenience function for fsync().
538 * @mapping is a file or directory which needs those buffers to be written for
539 * a successful fsync().
540 */
541int sync_mapping_buffers(struct address_space *mapping)
542{
543 struct address_space *buffer_mapping = mapping->private_data;
544
545 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
546 return 0;
547
548 return fsync_buffers_list(&buffer_mapping->private_lock,
549 &mapping->private_list);
550}
551EXPORT_SYMBOL(sync_mapping_buffers);
552
553/*
554 * Called when we've recently written block `bblock', and it is known that
555 * `bblock' was for a buffer_boundary() buffer. This means that the block at
556 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
557 * dirty, schedule it for IO. So that indirects merge nicely with their data.
558 */
559void write_boundary_block(struct block_device *bdev,
560 sector_t bblock, unsigned blocksize)
561{
562 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
563 if (bh) {
564 if (buffer_dirty(bh))
565 ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
566 put_bh(bh);
567 }
568}
569
570void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
571{
572 struct address_space *mapping = inode->i_mapping;
573 struct address_space *buffer_mapping = bh->b_page->mapping;
574
575 mark_buffer_dirty(bh);
576 if (!mapping->private_data) {
577 mapping->private_data = buffer_mapping;
578 } else {
579 BUG_ON(mapping->private_data != buffer_mapping);
580 }
581 if (!bh->b_assoc_map) {
582 spin_lock(&buffer_mapping->private_lock);
583 list_move_tail(&bh->b_assoc_buffers,
584 &mapping->private_list);
585 bh->b_assoc_map = mapping;
586 spin_unlock(&buffer_mapping->private_lock);
587 }
588}
589EXPORT_SYMBOL(mark_buffer_dirty_inode);
590
591/*
592 * Mark the page dirty, and set it dirty in the page cache, and mark the inode
593 * dirty.
594 *
595 * If warn is true, then emit a warning if the page is not uptodate and has
596 * not been truncated.
597 *
598 * The caller must hold lock_page_memcg().
599 */
600void __set_page_dirty(struct page *page, struct address_space *mapping,
601 int warn)
602{
603 unsigned long flags;
604
605 xa_lock_irqsave(&mapping->i_pages, flags);
606 if (page->mapping) { /* Race with truncate? */
607 WARN_ON_ONCE(warn && !PageUptodate(page));
608 account_page_dirtied(page, mapping);
609 __xa_set_mark(&mapping->i_pages, page_index(page),
610 PAGECACHE_TAG_DIRTY);
611 }
612 xa_unlock_irqrestore(&mapping->i_pages, flags);
613}
614EXPORT_SYMBOL_GPL(__set_page_dirty);
615
616/*
617 * Add a page to the dirty page list.
618 *
619 * It is a sad fact of life that this function is called from several places
620 * deeply under spinlocking. It may not sleep.
621 *
622 * If the page has buffers, the uptodate buffers are set dirty, to preserve
623 * dirty-state coherency between the page and the buffers. It the page does
624 * not have buffers then when they are later attached they will all be set
625 * dirty.
626 *
627 * The buffers are dirtied before the page is dirtied. There's a small race
628 * window in which a writepage caller may see the page cleanness but not the
629 * buffer dirtiness. That's fine. If this code were to set the page dirty
630 * before the buffers, a concurrent writepage caller could clear the page dirty
631 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
632 * page on the dirty page list.
633 *
634 * We use private_lock to lock against try_to_free_buffers while using the
635 * page's buffer list. Also use this to protect against clean buffers being
636 * added to the page after it was set dirty.
637 *
638 * FIXME: may need to call ->reservepage here as well. That's rather up to the
639 * address_space though.
640 */
641int __set_page_dirty_buffers(struct page *page)
642{
643 int newly_dirty;
644 struct address_space *mapping = page_mapping(page);
645
646 if (unlikely(!mapping))
647 return !TestSetPageDirty(page);
648
649 spin_lock(&mapping->private_lock);
650 if (page_has_buffers(page)) {
651 struct buffer_head *head = page_buffers(page);
652 struct buffer_head *bh = head;
653
654 do {
655 set_buffer_dirty(bh);
656 bh = bh->b_this_page;
657 } while (bh != head);
658 }
659 /*
660 * Lock out page->mem_cgroup migration to keep PageDirty
661 * synchronized with per-memcg dirty page counters.
662 */
663 lock_page_memcg(page);
664 newly_dirty = !TestSetPageDirty(page);
665 spin_unlock(&mapping->private_lock);
666
667 if (newly_dirty)
668 __set_page_dirty(page, mapping, 1);
669
670 unlock_page_memcg(page);
671
672 if (newly_dirty)
673 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
674
675 return newly_dirty;
676}
677EXPORT_SYMBOL(__set_page_dirty_buffers);
678
679/*
680 * Write out and wait upon a list of buffers.
681 *
682 * We have conflicting pressures: we want to make sure that all
683 * initially dirty buffers get waited on, but that any subsequently
684 * dirtied buffers don't. After all, we don't want fsync to last
685 * forever if somebody is actively writing to the file.
686 *
687 * Do this in two main stages: first we copy dirty buffers to a
688 * temporary inode list, queueing the writes as we go. Then we clean
689 * up, waiting for those writes to complete.
690 *
691 * During this second stage, any subsequent updates to the file may end
692 * up refiling the buffer on the original inode's dirty list again, so
693 * there is a chance we will end up with a buffer queued for write but
694 * not yet completed on that list. So, as a final cleanup we go through
695 * the osync code to catch these locked, dirty buffers without requeuing
696 * any newly dirty buffers for write.
697 */
698static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
699{
700 struct buffer_head *bh;
701 struct list_head tmp;
702 struct address_space *mapping;
703 int err = 0, err2;
704 struct blk_plug plug;
705
706 INIT_LIST_HEAD(&tmp);
707 blk_start_plug(&plug);
708
709 spin_lock(lock);
710 while (!list_empty(list)) {
711 bh = BH_ENTRY(list->next);
712 mapping = bh->b_assoc_map;
713 __remove_assoc_queue(bh);
714 /* Avoid race with mark_buffer_dirty_inode() which does
715 * a lockless check and we rely on seeing the dirty bit */
716 smp_mb();
717 if (buffer_dirty(bh) || buffer_locked(bh)) {
718 list_add(&bh->b_assoc_buffers, &tmp);
719 bh->b_assoc_map = mapping;
720 if (buffer_dirty(bh)) {
721 get_bh(bh);
722 spin_unlock(lock);
723 /*
724 * Ensure any pending I/O completes so that
725 * write_dirty_buffer() actually writes the
726 * current contents - it is a noop if I/O is
727 * still in flight on potentially older
728 * contents.
729 */
730 write_dirty_buffer(bh, REQ_SYNC);
731
732 /*
733 * Kick off IO for the previous mapping. Note
734 * that we will not run the very last mapping,
735 * wait_on_buffer() will do that for us
736 * through sync_buffer().
737 */
738 brelse(bh);
739 spin_lock(lock);
740 }
741 }
742 }
743
744 spin_unlock(lock);
745 blk_finish_plug(&plug);
746 spin_lock(lock);
747
748 while (!list_empty(&tmp)) {
749 bh = BH_ENTRY(tmp.prev);
750 get_bh(bh);
751 mapping = bh->b_assoc_map;
752 __remove_assoc_queue(bh);
753 /* Avoid race with mark_buffer_dirty_inode() which does
754 * a lockless check and we rely on seeing the dirty bit */
755 smp_mb();
756 if (buffer_dirty(bh)) {
757 list_add(&bh->b_assoc_buffers,
758 &mapping->private_list);
759 bh->b_assoc_map = mapping;
760 }
761 spin_unlock(lock);
762 wait_on_buffer(bh);
763 if (!buffer_uptodate(bh))
764 err = -EIO;
765 brelse(bh);
766 spin_lock(lock);
767 }
768
769 spin_unlock(lock);
770 err2 = osync_buffers_list(lock, list);
771 if (err)
772 return err;
773 else
774 return err2;
775}
776
777/*
778 * Invalidate any and all dirty buffers on a given inode. We are
779 * probably unmounting the fs, but that doesn't mean we have already
780 * done a sync(). Just drop the buffers from the inode list.
781 *
782 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
783 * assumes that all the buffers are against the blockdev. Not true
784 * for reiserfs.
785 */
786void invalidate_inode_buffers(struct inode *inode)
787{
788 if (inode_has_buffers(inode)) {
789 struct address_space *mapping = &inode->i_data;
790 struct list_head *list = &mapping->private_list;
791 struct address_space *buffer_mapping = mapping->private_data;
792
793 spin_lock(&buffer_mapping->private_lock);
794 while (!list_empty(list))
795 __remove_assoc_queue(BH_ENTRY(list->next));
796 spin_unlock(&buffer_mapping->private_lock);
797 }
798}
799EXPORT_SYMBOL(invalidate_inode_buffers);
800
801/*
802 * Remove any clean buffers from the inode's buffer list. This is called
803 * when we're trying to free the inode itself. Those buffers can pin it.
804 *
805 * Returns true if all buffers were removed.
806 */
807int remove_inode_buffers(struct inode *inode)
808{
809 int ret = 1;
810
811 if (inode_has_buffers(inode)) {
812 struct address_space *mapping = &inode->i_data;
813 struct list_head *list = &mapping->private_list;
814 struct address_space *buffer_mapping = mapping->private_data;
815
816 spin_lock(&buffer_mapping->private_lock);
817 while (!list_empty(list)) {
818 struct buffer_head *bh = BH_ENTRY(list->next);
819 if (buffer_dirty(bh)) {
820 ret = 0;
821 break;
822 }
823 __remove_assoc_queue(bh);
824 }
825 spin_unlock(&buffer_mapping->private_lock);
826 }
827 return ret;
828}
829
830/*
831 * Create the appropriate buffers when given a page for data area and
832 * the size of each buffer.. Use the bh->b_this_page linked list to
833 * follow the buffers created. Return NULL if unable to create more
834 * buffers.
835 *
836 * The retry flag is used to differentiate async IO (paging, swapping)
837 * which may not fail from ordinary buffer allocations.
838 */
839struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
840 bool retry)
841{
842 struct buffer_head *bh, *head;
843 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
844 long offset;
845 struct mem_cgroup *memcg;
846
847 if (retry)
848 gfp |= __GFP_NOFAIL;
849
850 memcg = get_mem_cgroup_from_page(page);
851 memalloc_use_memcg(memcg);
852
853 head = NULL;
854 offset = PAGE_SIZE;
855 while ((offset -= size) >= 0) {
856 bh = alloc_buffer_head(gfp);
857 if (!bh)
858 goto no_grow;
859
860 bh->b_this_page = head;
861 bh->b_blocknr = -1;
862 head = bh;
863
864 bh->b_size = size;
865
866 /* Link the buffer to its page */
867 set_bh_page(bh, page, offset);
868 }
869out:
870 memalloc_unuse_memcg();
871 mem_cgroup_put(memcg);
872 return head;
873/*
874 * In case anything failed, we just free everything we got.
875 */
876no_grow:
877 if (head) {
878 do {
879 bh = head;
880 head = head->b_this_page;
881 free_buffer_head(bh);
882 } while (head);
883 }
884
885 goto out;
886}
887EXPORT_SYMBOL_GPL(alloc_page_buffers);
888
889static inline void
890link_dev_buffers(struct page *page, struct buffer_head *head)
891{
892 struct buffer_head *bh, *tail;
893
894 bh = head;
895 do {
896 tail = bh;
897 bh = bh->b_this_page;
898 } while (bh);
899 tail->b_this_page = head;
900 attach_page_private(page, head);
901}
902
903static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
904{
905 sector_t retval = ~((sector_t)0);
906 loff_t sz = i_size_read(bdev->bd_inode);
907
908 if (sz) {
909 unsigned int sizebits = blksize_bits(size);
910 retval = (sz >> sizebits);
911 }
912 return retval;
913}
914
915/*
916 * Initialise the state of a blockdev page's buffers.
917 */
918static sector_t
919init_page_buffers(struct page *page, struct block_device *bdev,
920 sector_t block, int size)
921{
922 struct buffer_head *head = page_buffers(page);
923 struct buffer_head *bh = head;
924 int uptodate = PageUptodate(page);
925 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
926
927 do {
928 if (!buffer_mapped(bh)) {
929 bh->b_end_io = NULL;
930 bh->b_private = NULL;
931 bh->b_bdev = bdev;
932 bh->b_blocknr = block;
933 if (uptodate)
934 set_buffer_uptodate(bh);
935 if (block < end_block)
936 set_buffer_mapped(bh);
937 }
938 block++;
939 bh = bh->b_this_page;
940 } while (bh != head);
941
942 /*
943 * Caller needs to validate requested block against end of device.
944 */
945 return end_block;
946}
947
948/*
949 * Create the page-cache page that contains the requested block.
950 *
951 * This is used purely for blockdev mappings.
952 */
953static int
954grow_dev_page(struct block_device *bdev, sector_t block,
955 pgoff_t index, int size, int sizebits, gfp_t gfp)
956{
957 struct inode *inode = bdev->bd_inode;
958 struct page *page;
959 struct buffer_head *bh;
960 sector_t end_block;
961 int ret = 0;
962 gfp_t gfp_mask;
963
964 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
965
966 /*
967 * XXX: __getblk_slow() can not really deal with failure and
968 * will endlessly loop on improvised global reclaim. Prefer
969 * looping in the allocator rather than here, at least that
970 * code knows what it's doing.
971 */
972 gfp_mask |= __GFP_NOFAIL;
973
974 page = find_or_create_page(inode->i_mapping, index, gfp_mask);
975
976 BUG_ON(!PageLocked(page));
977
978 if (page_has_buffers(page)) {
979 bh = page_buffers(page);
980 if (bh->b_size == size) {
981 end_block = init_page_buffers(page, bdev,
982 (sector_t)index << sizebits,
983 size);
984 goto done;
985 }
986 if (!try_to_free_buffers(page))
987 goto failed;
988 }
989
990 /*
991 * Allocate some buffers for this page
992 */
993 bh = alloc_page_buffers(page, size, true);
994
995 /*
996 * Link the page to the buffers and initialise them. Take the
997 * lock to be atomic wrt __find_get_block(), which does not
998 * run under the page lock.
999 */
1000 spin_lock(&inode->i_mapping->private_lock);
1001 link_dev_buffers(page, bh);
1002 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1003 size);
1004 spin_unlock(&inode->i_mapping->private_lock);
1005done:
1006 ret = (block < end_block) ? 1 : -ENXIO;
1007failed:
1008 unlock_page(page);
1009 put_page(page);
1010 return ret;
1011}
1012
1013/*
1014 * Create buffers for the specified block device block's page. If
1015 * that page was dirty, the buffers are set dirty also.
1016 */
1017static int
1018grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1019{
1020 pgoff_t index;
1021 int sizebits;
1022
1023 sizebits = -1;
1024 do {
1025 sizebits++;
1026 } while ((size << sizebits) < PAGE_SIZE);
1027
1028 index = block >> sizebits;
1029
1030 /*
1031 * Check for a block which wants to lie outside our maximum possible
1032 * pagecache index. (this comparison is done using sector_t types).
1033 */
1034 if (unlikely(index != block >> sizebits)) {
1035 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1036 "device %pg\n",
1037 __func__, (unsigned long long)block,
1038 bdev);
1039 return -EIO;
1040 }
1041
1042 /* Create a page with the proper size buffers.. */
1043 return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1044}
1045
1046static struct buffer_head *
1047__getblk_slow(struct block_device *bdev, sector_t block,
1048 unsigned size, gfp_t gfp)
1049{
1050 /* Size must be multiple of hard sectorsize */
1051 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1052 (size < 512 || size > PAGE_SIZE))) {
1053 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1054 size);
1055 printk(KERN_ERR "logical block size: %d\n",
1056 bdev_logical_block_size(bdev));
1057
1058 dump_stack();
1059 return NULL;
1060 }
1061
1062 for (;;) {
1063 struct buffer_head *bh;
1064 int ret;
1065
1066 bh = __find_get_block(bdev, block, size);
1067 if (bh)
1068 return bh;
1069
1070 ret = grow_buffers(bdev, block, size, gfp);
1071 if (ret < 0)
1072 return NULL;
1073 }
1074}
1075
1076/*
1077 * The relationship between dirty buffers and dirty pages:
1078 *
1079 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1080 * the page is tagged dirty in the page cache.
1081 *
1082 * At all times, the dirtiness of the buffers represents the dirtiness of
1083 * subsections of the page. If the page has buffers, the page dirty bit is
1084 * merely a hint about the true dirty state.
1085 *
1086 * When a page is set dirty in its entirety, all its buffers are marked dirty
1087 * (if the page has buffers).
1088 *
1089 * When a buffer is marked dirty, its page is dirtied, but the page's other
1090 * buffers are not.
1091 *
1092 * Also. When blockdev buffers are explicitly read with bread(), they
1093 * individually become uptodate. But their backing page remains not
1094 * uptodate - even if all of its buffers are uptodate. A subsequent
1095 * block_read_full_page() against that page will discover all the uptodate
1096 * buffers, will set the page uptodate and will perform no I/O.
1097 */
1098
1099/**
1100 * mark_buffer_dirty - mark a buffer_head as needing writeout
1101 * @bh: the buffer_head to mark dirty
1102 *
1103 * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1104 * its backing page dirty, then tag the page as dirty in the page cache
1105 * and then attach the address_space's inode to its superblock's dirty
1106 * inode list.
1107 *
1108 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1109 * i_pages lock and mapping->host->i_lock.
1110 */
1111void mark_buffer_dirty(struct buffer_head *bh)
1112{
1113 WARN_ON_ONCE(!buffer_uptodate(bh));
1114
1115 trace_block_dirty_buffer(bh);
1116
1117 /*
1118 * Very *carefully* optimize the it-is-already-dirty case.
1119 *
1120 * Don't let the final "is it dirty" escape to before we
1121 * perhaps modified the buffer.
1122 */
1123 if (buffer_dirty(bh)) {
1124 smp_mb();
1125 if (buffer_dirty(bh))
1126 return;
1127 }
1128
1129 if (!test_set_buffer_dirty(bh)) {
1130 struct page *page = bh->b_page;
1131 struct address_space *mapping = NULL;
1132
1133 lock_page_memcg(page);
1134 if (!TestSetPageDirty(page)) {
1135 mapping = page_mapping(page);
1136 if (mapping)
1137 __set_page_dirty(page, mapping, 0);
1138 }
1139 unlock_page_memcg(page);
1140 if (mapping)
1141 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1142 }
1143}
1144EXPORT_SYMBOL(mark_buffer_dirty);
1145
1146void mark_buffer_write_io_error(struct buffer_head *bh)
1147{
1148 struct super_block *sb;
1149
1150 set_buffer_write_io_error(bh);
1151 /* FIXME: do we need to set this in both places? */
1152 if (bh->b_page && bh->b_page->mapping)
1153 mapping_set_error(bh->b_page->mapping, -EIO);
1154 if (bh->b_assoc_map)
1155 mapping_set_error(bh->b_assoc_map, -EIO);
1156 rcu_read_lock();
1157 sb = READ_ONCE(bh->b_bdev->bd_super);
1158 if (sb)
1159 errseq_set(&sb->s_wb_err, -EIO);
1160 rcu_read_unlock();
1161}
1162EXPORT_SYMBOL(mark_buffer_write_io_error);
1163
1164/*
1165 * Decrement a buffer_head's reference count. If all buffers against a page
1166 * have zero reference count, are clean and unlocked, and if the page is clean
1167 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1168 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1169 * a page but it ends up not being freed, and buffers may later be reattached).
1170 */
1171void __brelse(struct buffer_head * buf)
1172{
1173 if (atomic_read(&buf->b_count)) {
1174 put_bh(buf);
1175 return;
1176 }
1177 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1178}
1179EXPORT_SYMBOL(__brelse);
1180
1181/*
1182 * bforget() is like brelse(), except it discards any
1183 * potentially dirty data.
1184 */
1185void __bforget(struct buffer_head *bh)
1186{
1187 clear_buffer_dirty(bh);
1188 if (bh->b_assoc_map) {
1189 struct address_space *buffer_mapping = bh->b_page->mapping;
1190
1191 spin_lock(&buffer_mapping->private_lock);
1192 list_del_init(&bh->b_assoc_buffers);
1193 bh->b_assoc_map = NULL;
1194 spin_unlock(&buffer_mapping->private_lock);
1195 }
1196 __brelse(bh);
1197}
1198EXPORT_SYMBOL(__bforget);
1199
1200static struct buffer_head *__bread_slow(struct buffer_head *bh)
1201{
1202 lock_buffer(bh);
1203 if (buffer_uptodate(bh)) {
1204 unlock_buffer(bh);
1205 return bh;
1206 } else {
1207 get_bh(bh);
1208 bh->b_end_io = end_buffer_read_sync;
1209 submit_bh(REQ_OP_READ, 0, bh);
1210 wait_on_buffer(bh);
1211 if (buffer_uptodate(bh))
1212 return bh;
1213 }
1214 brelse(bh);
1215 return NULL;
1216}
1217
1218/*
1219 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1220 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1221 * refcount elevated by one when they're in an LRU. A buffer can only appear
1222 * once in a particular CPU's LRU. A single buffer can be present in multiple
1223 * CPU's LRUs at the same time.
1224 *
1225 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1226 * sb_find_get_block().
1227 *
1228 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1229 * a local interrupt disable for that.
1230 */
1231
1232#define BH_LRU_SIZE 16
1233
1234struct bh_lru {
1235 struct buffer_head *bhs[BH_LRU_SIZE];
1236};
1237
1238static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1239
1240#ifdef CONFIG_SMP
1241#define bh_lru_lock() local_irq_disable()
1242#define bh_lru_unlock() local_irq_enable()
1243#else
1244#define bh_lru_lock() preempt_disable()
1245#define bh_lru_unlock() preempt_enable()
1246#endif
1247
1248static inline void check_irqs_on(void)
1249{
1250#ifdef irqs_disabled
1251 BUG_ON(irqs_disabled());
1252#endif
1253}
1254
1255/*
1256 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is
1257 * inserted at the front, and the buffer_head at the back if any is evicted.
1258 * Or, if already in the LRU it is moved to the front.
1259 */
1260static void bh_lru_install(struct buffer_head *bh)
1261{
1262 struct buffer_head *evictee = bh;
1263 struct bh_lru *b;
1264 int i;
1265
1266 check_irqs_on();
1267 bh_lru_lock();
1268
1269 b = this_cpu_ptr(&bh_lrus);
1270 for (i = 0; i < BH_LRU_SIZE; i++) {
1271 swap(evictee, b->bhs[i]);
1272 if (evictee == bh) {
1273 bh_lru_unlock();
1274 return;
1275 }
1276 }
1277
1278 get_bh(bh);
1279 bh_lru_unlock();
1280 brelse(evictee);
1281}
1282
1283/*
1284 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1285 */
1286static struct buffer_head *
1287lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1288{
1289 struct buffer_head *ret = NULL;
1290 unsigned int i;
1291
1292 check_irqs_on();
1293 bh_lru_lock();
1294 for (i = 0; i < BH_LRU_SIZE; i++) {
1295 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1296
1297 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1298 bh->b_size == size) {
1299 if (i) {
1300 while (i) {
1301 __this_cpu_write(bh_lrus.bhs[i],
1302 __this_cpu_read(bh_lrus.bhs[i - 1]));
1303 i--;
1304 }
1305 __this_cpu_write(bh_lrus.bhs[0], bh);
1306 }
1307 get_bh(bh);
1308 ret = bh;
1309 break;
1310 }
1311 }
1312 bh_lru_unlock();
1313 return ret;
1314}
1315
1316/*
1317 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1318 * it in the LRU and mark it as accessed. If it is not present then return
1319 * NULL
1320 */
1321struct buffer_head *
1322__find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1323{
1324 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1325
1326 if (bh == NULL) {
1327 /* __find_get_block_slow will mark the page accessed */
1328 bh = __find_get_block_slow(bdev, block);
1329 if (bh)
1330 bh_lru_install(bh);
1331 } else
1332 touch_buffer(bh);
1333
1334 return bh;
1335}
1336EXPORT_SYMBOL(__find_get_block);
1337
1338/*
1339 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1340 * which corresponds to the passed block_device, block and size. The
1341 * returned buffer has its reference count incremented.
1342 *
1343 * __getblk_gfp() will lock up the machine if grow_dev_page's
1344 * try_to_free_buffers() attempt is failing. FIXME, perhaps?
1345 */
1346struct buffer_head *
1347__getblk_gfp(struct block_device *bdev, sector_t block,
1348 unsigned size, gfp_t gfp)
1349{
1350 struct buffer_head *bh = __find_get_block(bdev, block, size);
1351
1352 might_sleep();
1353 if (bh == NULL)
1354 bh = __getblk_slow(bdev, block, size, gfp);
1355 return bh;
1356}
1357EXPORT_SYMBOL(__getblk_gfp);
1358
1359/*
1360 * Do async read-ahead on a buffer..
1361 */
1362void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1363{
1364 struct buffer_head *bh = __getblk(bdev, block, size);
1365 if (likely(bh)) {
1366 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1367 brelse(bh);
1368 }
1369}
1370EXPORT_SYMBOL(__breadahead);
1371
1372void __breadahead_gfp(struct block_device *bdev, sector_t block, unsigned size,
1373 gfp_t gfp)
1374{
1375 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1376 if (likely(bh)) {
1377 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1378 brelse(bh);
1379 }
1380}
1381EXPORT_SYMBOL(__breadahead_gfp);
1382
1383/**
1384 * __bread_gfp() - reads a specified block and returns the bh
1385 * @bdev: the block_device to read from
1386 * @block: number of block
1387 * @size: size (in bytes) to read
1388 * @gfp: page allocation flag
1389 *
1390 * Reads a specified block, and returns buffer head that contains it.
1391 * The page cache can be allocated from non-movable area
1392 * not to prevent page migration if you set gfp to zero.
1393 * It returns NULL if the block was unreadable.
1394 */
1395struct buffer_head *
1396__bread_gfp(struct block_device *bdev, sector_t block,
1397 unsigned size, gfp_t gfp)
1398{
1399 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1400
1401 if (likely(bh) && !buffer_uptodate(bh))
1402 bh = __bread_slow(bh);
1403 return bh;
1404}
1405EXPORT_SYMBOL(__bread_gfp);
1406
1407/*
1408 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1409 * This doesn't race because it runs in each cpu either in irq
1410 * or with preempt disabled.
1411 */
1412static void invalidate_bh_lru(void *arg)
1413{
1414 struct bh_lru *b = &get_cpu_var(bh_lrus);
1415 int i;
1416
1417 for (i = 0; i < BH_LRU_SIZE; i++) {
1418 brelse(b->bhs[i]);
1419 b->bhs[i] = NULL;
1420 }
1421 put_cpu_var(bh_lrus);
1422}
1423
1424static bool has_bh_in_lru(int cpu, void *dummy)
1425{
1426 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1427 int i;
1428
1429 for (i = 0; i < BH_LRU_SIZE; i++) {
1430 if (b->bhs[i])
1431 return true;
1432 }
1433
1434 return false;
1435}
1436
1437void invalidate_bh_lrus(void)
1438{
1439 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1440}
1441EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1442
1443void set_bh_page(struct buffer_head *bh,
1444 struct page *page, unsigned long offset)
1445{
1446 bh->b_page = page;
1447 BUG_ON(offset >= PAGE_SIZE);
1448 if (PageHighMem(page))
1449 /*
1450 * This catches illegal uses and preserves the offset:
1451 */
1452 bh->b_data = (char *)(0 + offset);
1453 else
1454 bh->b_data = page_address(page) + offset;
1455}
1456EXPORT_SYMBOL(set_bh_page);
1457
1458/*
1459 * Called when truncating a buffer on a page completely.
1460 */
1461
1462/* Bits that are cleared during an invalidate */
1463#define BUFFER_FLAGS_DISCARD \
1464 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1465 1 << BH_Delay | 1 << BH_Unwritten)
1466
1467static void discard_buffer(struct buffer_head * bh)
1468{
1469 unsigned long b_state, b_state_old;
1470
1471 lock_buffer(bh);
1472 clear_buffer_dirty(bh);
1473 bh->b_bdev = NULL;
1474 b_state = bh->b_state;
1475 for (;;) {
1476 b_state_old = cmpxchg(&bh->b_state, b_state,
1477 (b_state & ~BUFFER_FLAGS_DISCARD));
1478 if (b_state_old == b_state)
1479 break;
1480 b_state = b_state_old;
1481 }
1482 unlock_buffer(bh);
1483}
1484
1485/**
1486 * block_invalidatepage - invalidate part or all of a buffer-backed page
1487 *
1488 * @page: the page which is affected
1489 * @offset: start of the range to invalidate
1490 * @length: length of the range to invalidate
1491 *
1492 * block_invalidatepage() is called when all or part of the page has become
1493 * invalidated by a truncate operation.
1494 *
1495 * block_invalidatepage() does not have to release all buffers, but it must
1496 * ensure that no dirty buffer is left outside @offset and that no I/O
1497 * is underway against any of the blocks which are outside the truncation
1498 * point. Because the caller is about to free (and possibly reuse) those
1499 * blocks on-disk.
1500 */
1501void block_invalidatepage(struct page *page, unsigned int offset,
1502 unsigned int length)
1503{
1504 struct buffer_head *head, *bh, *next;
1505 unsigned int curr_off = 0;
1506 unsigned int stop = length + offset;
1507
1508 BUG_ON(!PageLocked(page));
1509 if (!page_has_buffers(page))
1510 goto out;
1511
1512 /*
1513 * Check for overflow
1514 */
1515 BUG_ON(stop > PAGE_SIZE || stop < length);
1516
1517 head = page_buffers(page);
1518 bh = head;
1519 do {
1520 unsigned int next_off = curr_off + bh->b_size;
1521 next = bh->b_this_page;
1522
1523 /*
1524 * Are we still fully in range ?
1525 */
1526 if (next_off > stop)
1527 goto out;
1528
1529 /*
1530 * is this block fully invalidated?
1531 */
1532 if (offset <= curr_off)
1533 discard_buffer(bh);
1534 curr_off = next_off;
1535 bh = next;
1536 } while (bh != head);
1537
1538 /*
1539 * We release buffers only if the entire page is being invalidated.
1540 * The get_block cached value has been unconditionally invalidated,
1541 * so real IO is not possible anymore.
1542 */
1543 if (length == PAGE_SIZE)
1544 try_to_release_page(page, 0);
1545out:
1546 return;
1547}
1548EXPORT_SYMBOL(block_invalidatepage);
1549
1550
1551/*
1552 * We attach and possibly dirty the buffers atomically wrt
1553 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1554 * is already excluded via the page lock.
1555 */
1556void create_empty_buffers(struct page *page,
1557 unsigned long blocksize, unsigned long b_state)
1558{
1559 struct buffer_head *bh, *head, *tail;
1560
1561 head = alloc_page_buffers(page, blocksize, true);
1562 bh = head;
1563 do {
1564 bh->b_state |= b_state;
1565 tail = bh;
1566 bh = bh->b_this_page;
1567 } while (bh);
1568 tail->b_this_page = head;
1569
1570 spin_lock(&page->mapping->private_lock);
1571 if (PageUptodate(page) || PageDirty(page)) {
1572 bh = head;
1573 do {
1574 if (PageDirty(page))
1575 set_buffer_dirty(bh);
1576 if (PageUptodate(page))
1577 set_buffer_uptodate(bh);
1578 bh = bh->b_this_page;
1579 } while (bh != head);
1580 }
1581 attach_page_private(page, head);
1582 spin_unlock(&page->mapping->private_lock);
1583}
1584EXPORT_SYMBOL(create_empty_buffers);
1585
1586/**
1587 * clean_bdev_aliases: clean a range of buffers in block device
1588 * @bdev: Block device to clean buffers in
1589 * @block: Start of a range of blocks to clean
1590 * @len: Number of blocks to clean
1591 *
1592 * We are taking a range of blocks for data and we don't want writeback of any
1593 * buffer-cache aliases starting from return from this function and until the
1594 * moment when something will explicitly mark the buffer dirty (hopefully that
1595 * will not happen until we will free that block ;-) We don't even need to mark
1596 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1597 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1598 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1599 * would confuse anyone who might pick it with bread() afterwards...
1600 *
1601 * Also.. Note that bforget() doesn't lock the buffer. So there can be
1602 * writeout I/O going on against recently-freed buffers. We don't wait on that
1603 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1604 * need to. That happens here.
1605 */
1606void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1607{
1608 struct inode *bd_inode = bdev->bd_inode;
1609 struct address_space *bd_mapping = bd_inode->i_mapping;
1610 struct pagevec pvec;
1611 pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1612 pgoff_t end;
1613 int i, count;
1614 struct buffer_head *bh;
1615 struct buffer_head *head;
1616
1617 end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1618 pagevec_init(&pvec);
1619 while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) {
1620 count = pagevec_count(&pvec);
1621 for (i = 0; i < count; i++) {
1622 struct page *page = pvec.pages[i];
1623
1624 if (!page_has_buffers(page))
1625 continue;
1626 /*
1627 * We use page lock instead of bd_mapping->private_lock
1628 * to pin buffers here since we can afford to sleep and
1629 * it scales better than a global spinlock lock.
1630 */
1631 lock_page(page);
1632 /* Recheck when the page is locked which pins bhs */
1633 if (!page_has_buffers(page))
1634 goto unlock_page;
1635 head = page_buffers(page);
1636 bh = head;
1637 do {
1638 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1639 goto next;
1640 if (bh->b_blocknr >= block + len)
1641 break;
1642 clear_buffer_dirty(bh);
1643 wait_on_buffer(bh);
1644 clear_buffer_req(bh);
1645next:
1646 bh = bh->b_this_page;
1647 } while (bh != head);
1648unlock_page:
1649 unlock_page(page);
1650 }
1651 pagevec_release(&pvec);
1652 cond_resched();
1653 /* End of range already reached? */
1654 if (index > end || !index)
1655 break;
1656 }
1657}
1658EXPORT_SYMBOL(clean_bdev_aliases);
1659
1660/*
1661 * Size is a power-of-two in the range 512..PAGE_SIZE,
1662 * and the case we care about most is PAGE_SIZE.
1663 *
1664 * So this *could* possibly be written with those
1665 * constraints in mind (relevant mostly if some
1666 * architecture has a slow bit-scan instruction)
1667 */
1668static inline int block_size_bits(unsigned int blocksize)
1669{
1670 return ilog2(blocksize);
1671}
1672
1673static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1674{
1675 BUG_ON(!PageLocked(page));
1676
1677 if (!page_has_buffers(page))
1678 create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits),
1679 b_state);
1680 return page_buffers(page);
1681}
1682
1683/*
1684 * NOTE! All mapped/uptodate combinations are valid:
1685 *
1686 * Mapped Uptodate Meaning
1687 *
1688 * No No "unknown" - must do get_block()
1689 * No Yes "hole" - zero-filled
1690 * Yes No "allocated" - allocated on disk, not read in
1691 * Yes Yes "valid" - allocated and up-to-date in memory.
1692 *
1693 * "Dirty" is valid only with the last case (mapped+uptodate).
1694 */
1695
1696/*
1697 * While block_write_full_page is writing back the dirty buffers under
1698 * the page lock, whoever dirtied the buffers may decide to clean them
1699 * again at any time. We handle that by only looking at the buffer
1700 * state inside lock_buffer().
1701 *
1702 * If block_write_full_page() is called for regular writeback
1703 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1704 * locked buffer. This only can happen if someone has written the buffer
1705 * directly, with submit_bh(). At the address_space level PageWriteback
1706 * prevents this contention from occurring.
1707 *
1708 * If block_write_full_page() is called with wbc->sync_mode ==
1709 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1710 * causes the writes to be flagged as synchronous writes.
1711 */
1712int __block_write_full_page(struct inode *inode, struct page *page,
1713 get_block_t *get_block, struct writeback_control *wbc,
1714 bh_end_io_t *handler)
1715{
1716 int err;
1717 sector_t block;
1718 sector_t last_block;
1719 struct buffer_head *bh, *head;
1720 unsigned int blocksize, bbits;
1721 int nr_underway = 0;
1722 int write_flags = wbc_to_write_flags(wbc);
1723
1724 head = create_page_buffers(page, inode,
1725 (1 << BH_Dirty)|(1 << BH_Uptodate));
1726
1727 /*
1728 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1729 * here, and the (potentially unmapped) buffers may become dirty at
1730 * any time. If a buffer becomes dirty here after we've inspected it
1731 * then we just miss that fact, and the page stays dirty.
1732 *
1733 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1734 * handle that here by just cleaning them.
1735 */
1736
1737 bh = head;
1738 blocksize = bh->b_size;
1739 bbits = block_size_bits(blocksize);
1740
1741 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1742 last_block = (i_size_read(inode) - 1) >> bbits;
1743
1744 /*
1745 * Get all the dirty buffers mapped to disk addresses and
1746 * handle any aliases from the underlying blockdev's mapping.
1747 */
1748 do {
1749 if (block > last_block) {
1750 /*
1751 * mapped buffers outside i_size will occur, because
1752 * this page can be outside i_size when there is a
1753 * truncate in progress.
1754 */
1755 /*
1756 * The buffer was zeroed by block_write_full_page()
1757 */
1758 clear_buffer_dirty(bh);
1759 set_buffer_uptodate(bh);
1760 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1761 buffer_dirty(bh)) {
1762 WARN_ON(bh->b_size != blocksize);
1763 err = get_block(inode, block, bh, 1);
1764 if (err)
1765 goto recover;
1766 clear_buffer_delay(bh);
1767 if (buffer_new(bh)) {
1768 /* blockdev mappings never come here */
1769 clear_buffer_new(bh);
1770 clean_bdev_bh_alias(bh);
1771 }
1772 }
1773 bh = bh->b_this_page;
1774 block++;
1775 } while (bh != head);
1776
1777 do {
1778 if (!buffer_mapped(bh))
1779 continue;
1780 /*
1781 * If it's a fully non-blocking write attempt and we cannot
1782 * lock the buffer then redirty the page. Note that this can
1783 * potentially cause a busy-wait loop from writeback threads
1784 * and kswapd activity, but those code paths have their own
1785 * higher-level throttling.
1786 */
1787 if (wbc->sync_mode != WB_SYNC_NONE) {
1788 lock_buffer(bh);
1789 } else if (!trylock_buffer(bh)) {
1790 redirty_page_for_writepage(wbc, page);
1791 continue;
1792 }
1793 if (test_clear_buffer_dirty(bh)) {
1794 mark_buffer_async_write_endio(bh, handler);
1795 } else {
1796 unlock_buffer(bh);
1797 }
1798 } while ((bh = bh->b_this_page) != head);
1799
1800 /*
1801 * The page and its buffers are protected by PageWriteback(), so we can
1802 * drop the bh refcounts early.
1803 */
1804 BUG_ON(PageWriteback(page));
1805 set_page_writeback(page);
1806
1807 do {
1808 struct buffer_head *next = bh->b_this_page;
1809 if (buffer_async_write(bh)) {
1810 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1811 inode->i_write_hint, wbc);
1812 nr_underway++;
1813 }
1814 bh = next;
1815 } while (bh != head);
1816 unlock_page(page);
1817
1818 err = 0;
1819done:
1820 if (nr_underway == 0) {
1821 /*
1822 * The page was marked dirty, but the buffers were
1823 * clean. Someone wrote them back by hand with
1824 * ll_rw_block/submit_bh. A rare case.
1825 */
1826 end_page_writeback(page);
1827
1828 /*
1829 * The page and buffer_heads can be released at any time from
1830 * here on.
1831 */
1832 }
1833 return err;
1834
1835recover:
1836 /*
1837 * ENOSPC, or some other error. We may already have added some
1838 * blocks to the file, so we need to write these out to avoid
1839 * exposing stale data.
1840 * The page is currently locked and not marked for writeback
1841 */
1842 bh = head;
1843 /* Recovery: lock and submit the mapped buffers */
1844 do {
1845 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1846 !buffer_delay(bh)) {
1847 lock_buffer(bh);
1848 mark_buffer_async_write_endio(bh, handler);
1849 } else {
1850 /*
1851 * The buffer may have been set dirty during
1852 * attachment to a dirty page.
1853 */
1854 clear_buffer_dirty(bh);
1855 }
1856 } while ((bh = bh->b_this_page) != head);
1857 SetPageError(page);
1858 BUG_ON(PageWriteback(page));
1859 mapping_set_error(page->mapping, err);
1860 set_page_writeback(page);
1861 do {
1862 struct buffer_head *next = bh->b_this_page;
1863 if (buffer_async_write(bh)) {
1864 clear_buffer_dirty(bh);
1865 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1866 inode->i_write_hint, wbc);
1867 nr_underway++;
1868 }
1869 bh = next;
1870 } while (bh != head);
1871 unlock_page(page);
1872 goto done;
1873}
1874EXPORT_SYMBOL(__block_write_full_page);
1875
1876/*
1877 * If a page has any new buffers, zero them out here, and mark them uptodate
1878 * and dirty so they'll be written out (in order to prevent uninitialised
1879 * block data from leaking). And clear the new bit.
1880 */
1881void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1882{
1883 unsigned int block_start, block_end;
1884 struct buffer_head *head, *bh;
1885
1886 BUG_ON(!PageLocked(page));
1887 if (!page_has_buffers(page))
1888 return;
1889
1890 bh = head = page_buffers(page);
1891 block_start = 0;
1892 do {
1893 block_end = block_start + bh->b_size;
1894
1895 if (buffer_new(bh)) {
1896 if (block_end > from && block_start < to) {
1897 if (!PageUptodate(page)) {
1898 unsigned start, size;
1899
1900 start = max(from, block_start);
1901 size = min(to, block_end) - start;
1902
1903 zero_user(page, start, size);
1904 set_buffer_uptodate(bh);
1905 }
1906
1907 clear_buffer_new(bh);
1908 mark_buffer_dirty(bh);
1909 }
1910 }
1911
1912 block_start = block_end;
1913 bh = bh->b_this_page;
1914 } while (bh != head);
1915}
1916EXPORT_SYMBOL(page_zero_new_buffers);
1917
1918static void
1919iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1920 struct iomap *iomap)
1921{
1922 loff_t offset = block << inode->i_blkbits;
1923
1924 bh->b_bdev = iomap->bdev;
1925
1926 /*
1927 * Block points to offset in file we need to map, iomap contains
1928 * the offset at which the map starts. If the map ends before the
1929 * current block, then do not map the buffer and let the caller
1930 * handle it.
1931 */
1932 BUG_ON(offset >= iomap->offset + iomap->length);
1933
1934 switch (iomap->type) {
1935 case IOMAP_HOLE:
1936 /*
1937 * If the buffer is not up to date or beyond the current EOF,
1938 * we need to mark it as new to ensure sub-block zeroing is
1939 * executed if necessary.
1940 */
1941 if (!buffer_uptodate(bh) ||
1942 (offset >= i_size_read(inode)))
1943 set_buffer_new(bh);
1944 break;
1945 case IOMAP_DELALLOC:
1946 if (!buffer_uptodate(bh) ||
1947 (offset >= i_size_read(inode)))
1948 set_buffer_new(bh);
1949 set_buffer_uptodate(bh);
1950 set_buffer_mapped(bh);
1951 set_buffer_delay(bh);
1952 break;
1953 case IOMAP_UNWRITTEN:
1954 /*
1955 * For unwritten regions, we always need to ensure that regions
1956 * in the block we are not writing to are zeroed. Mark the
1957 * buffer as new to ensure this.
1958 */
1959 set_buffer_new(bh);
1960 set_buffer_unwritten(bh);
1961 fallthrough;
1962 case IOMAP_MAPPED:
1963 if ((iomap->flags & IOMAP_F_NEW) ||
1964 offset >= i_size_read(inode))
1965 set_buffer_new(bh);
1966 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
1967 inode->i_blkbits;
1968 set_buffer_mapped(bh);
1969 break;
1970 }
1971}
1972
1973int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1974 get_block_t *get_block, struct iomap *iomap)
1975{
1976 unsigned from = pos & (PAGE_SIZE - 1);
1977 unsigned to = from + len;
1978 struct inode *inode = page->mapping->host;
1979 unsigned block_start, block_end;
1980 sector_t block;
1981 int err = 0;
1982 unsigned blocksize, bbits;
1983 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1984
1985 BUG_ON(!PageLocked(page));
1986 BUG_ON(from > PAGE_SIZE);
1987 BUG_ON(to > PAGE_SIZE);
1988 BUG_ON(from > to);
1989
1990 head = create_page_buffers(page, inode, 0);
1991 blocksize = head->b_size;
1992 bbits = block_size_bits(blocksize);
1993
1994 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1995
1996 for(bh = head, block_start = 0; bh != head || !block_start;
1997 block++, block_start=block_end, bh = bh->b_this_page) {
1998 block_end = block_start + blocksize;
1999 if (block_end <= from || block_start >= to) {
2000 if (PageUptodate(page)) {
2001 if (!buffer_uptodate(bh))
2002 set_buffer_uptodate(bh);
2003 }
2004 continue;
2005 }
2006 if (buffer_new(bh))
2007 clear_buffer_new(bh);
2008 if (!buffer_mapped(bh)) {
2009 WARN_ON(bh->b_size != blocksize);
2010 if (get_block) {
2011 err = get_block(inode, block, bh, 1);
2012 if (err)
2013 break;
2014 } else {
2015 iomap_to_bh(inode, block, bh, iomap);
2016 }
2017
2018 if (buffer_new(bh)) {
2019 clean_bdev_bh_alias(bh);
2020 if (PageUptodate(page)) {
2021 clear_buffer_new(bh);
2022 set_buffer_uptodate(bh);
2023 mark_buffer_dirty(bh);
2024 continue;
2025 }
2026 if (block_end > to || block_start < from)
2027 zero_user_segments(page,
2028 to, block_end,
2029 block_start, from);
2030 continue;
2031 }
2032 }
2033 if (PageUptodate(page)) {
2034 if (!buffer_uptodate(bh))
2035 set_buffer_uptodate(bh);
2036 continue;
2037 }
2038 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2039 !buffer_unwritten(bh) &&
2040 (block_start < from || block_end > to)) {
2041 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2042 *wait_bh++=bh;
2043 }
2044 }
2045 /*
2046 * If we issued read requests - let them complete.
2047 */
2048 while(wait_bh > wait) {
2049 wait_on_buffer(*--wait_bh);
2050 if (!buffer_uptodate(*wait_bh))
2051 err = -EIO;
2052 }
2053 if (unlikely(err))
2054 page_zero_new_buffers(page, from, to);
2055 return err;
2056}
2057
2058int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2059 get_block_t *get_block)
2060{
2061 return __block_write_begin_int(page, pos, len, get_block, NULL);
2062}
2063EXPORT_SYMBOL(__block_write_begin);
2064
2065static int __block_commit_write(struct inode *inode, struct page *page,
2066 unsigned from, unsigned to)
2067{
2068 unsigned block_start, block_end;
2069 int partial = 0;
2070 unsigned blocksize;
2071 struct buffer_head *bh, *head;
2072
2073 bh = head = page_buffers(page);
2074 blocksize = bh->b_size;
2075
2076 block_start = 0;
2077 do {
2078 block_end = block_start + blocksize;
2079 if (block_end <= from || block_start >= to) {
2080 if (!buffer_uptodate(bh))
2081 partial = 1;
2082 } else {
2083 set_buffer_uptodate(bh);
2084 mark_buffer_dirty(bh);
2085 }
2086 clear_buffer_new(bh);
2087
2088 block_start = block_end;
2089 bh = bh->b_this_page;
2090 } while (bh != head);
2091
2092 /*
2093 * If this is a partial write which happened to make all buffers
2094 * uptodate then we can optimize away a bogus readpage() for
2095 * the next read(). Here we 'discover' whether the page went
2096 * uptodate as a result of this (potentially partial) write.
2097 */
2098 if (!partial)
2099 SetPageUptodate(page);
2100 return 0;
2101}
2102
2103/*
2104 * block_write_begin takes care of the basic task of block allocation and
2105 * bringing partial write blocks uptodate first.
2106 *
2107 * The filesystem needs to handle block truncation upon failure.
2108 */
2109int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2110 unsigned flags, struct page **pagep, get_block_t *get_block)
2111{
2112 pgoff_t index = pos >> PAGE_SHIFT;
2113 struct page *page;
2114 int status;
2115
2116 page = grab_cache_page_write_begin(mapping, index, flags);
2117 if (!page)
2118 return -ENOMEM;
2119
2120 status = __block_write_begin(page, pos, len, get_block);
2121 if (unlikely(status)) {
2122 unlock_page(page);
2123 put_page(page);
2124 page = NULL;
2125 }
2126
2127 *pagep = page;
2128 return status;
2129}
2130EXPORT_SYMBOL(block_write_begin);
2131
2132int block_write_end(struct file *file, struct address_space *mapping,
2133 loff_t pos, unsigned len, unsigned copied,
2134 struct page *page, void *fsdata)
2135{
2136 struct inode *inode = mapping->host;
2137 unsigned start;
2138
2139 start = pos & (PAGE_SIZE - 1);
2140
2141 if (unlikely(copied < len)) {
2142 /*
2143 * The buffers that were written will now be uptodate, so we
2144 * don't have to worry about a readpage reading them and
2145 * overwriting a partial write. However if we have encountered
2146 * a short write and only partially written into a buffer, it
2147 * will not be marked uptodate, so a readpage might come in and
2148 * destroy our partial write.
2149 *
2150 * Do the simplest thing, and just treat any short write to a
2151 * non uptodate page as a zero-length write, and force the
2152 * caller to redo the whole thing.
2153 */
2154 if (!PageUptodate(page))
2155 copied = 0;
2156
2157 page_zero_new_buffers(page, start+copied, start+len);
2158 }
2159 flush_dcache_page(page);
2160
2161 /* This could be a short (even 0-length) commit */
2162 __block_commit_write(inode, page, start, start+copied);
2163
2164 return copied;
2165}
2166EXPORT_SYMBOL(block_write_end);
2167
2168int generic_write_end(struct file *file, struct address_space *mapping,
2169 loff_t pos, unsigned len, unsigned copied,
2170 struct page *page, void *fsdata)
2171{
2172 struct inode *inode = mapping->host;
2173 loff_t old_size = inode->i_size;
2174 bool i_size_changed = false;
2175
2176 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2177
2178 /*
2179 * No need to use i_size_read() here, the i_size cannot change under us
2180 * because we hold i_rwsem.
2181 *
2182 * But it's important to update i_size while still holding page lock:
2183 * page writeout could otherwise come in and zero beyond i_size.
2184 */
2185 if (pos + copied > inode->i_size) {
2186 i_size_write(inode, pos + copied);
2187 i_size_changed = true;
2188 }
2189
2190 unlock_page(page);
2191 put_page(page);
2192
2193 if (old_size < pos)
2194 pagecache_isize_extended(inode, old_size, pos);
2195 /*
2196 * Don't mark the inode dirty under page lock. First, it unnecessarily
2197 * makes the holding time of page lock longer. Second, it forces lock
2198 * ordering of page lock and transaction start for journaling
2199 * filesystems.
2200 */
2201 if (i_size_changed)
2202 mark_inode_dirty(inode);
2203 return copied;
2204}
2205EXPORT_SYMBOL(generic_write_end);
2206
2207/*
2208 * block_is_partially_uptodate checks whether buffers within a page are
2209 * uptodate or not.
2210 *
2211 * Returns true if all buffers which correspond to a file portion
2212 * we want to read are uptodate.
2213 */
2214int block_is_partially_uptodate(struct page *page, unsigned long from,
2215 unsigned long count)
2216{
2217 unsigned block_start, block_end, blocksize;
2218 unsigned to;
2219 struct buffer_head *bh, *head;
2220 int ret = 1;
2221
2222 if (!page_has_buffers(page))
2223 return 0;
2224
2225 head = page_buffers(page);
2226 blocksize = head->b_size;
2227 to = min_t(unsigned, PAGE_SIZE - from, count);
2228 to = from + to;
2229 if (from < blocksize && to > PAGE_SIZE - blocksize)
2230 return 0;
2231
2232 bh = head;
2233 block_start = 0;
2234 do {
2235 block_end = block_start + blocksize;
2236 if (block_end > from && block_start < to) {
2237 if (!buffer_uptodate(bh)) {
2238 ret = 0;
2239 break;
2240 }
2241 if (block_end >= to)
2242 break;
2243 }
2244 block_start = block_end;
2245 bh = bh->b_this_page;
2246 } while (bh != head);
2247
2248 return ret;
2249}
2250EXPORT_SYMBOL(block_is_partially_uptodate);
2251
2252/*
2253 * Generic "read page" function for block devices that have the normal
2254 * get_block functionality. This is most of the block device filesystems.
2255 * Reads the page asynchronously --- the unlock_buffer() and
2256 * set/clear_buffer_uptodate() functions propagate buffer state into the
2257 * page struct once IO has completed.
2258 */
2259int block_read_full_page(struct page *page, get_block_t *get_block)
2260{
2261 struct inode *inode = page->mapping->host;
2262 sector_t iblock, lblock;
2263 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2264 unsigned int blocksize, bbits;
2265 int nr, i;
2266 int fully_mapped = 1;
2267
2268 head = create_page_buffers(page, inode, 0);
2269 blocksize = head->b_size;
2270 bbits = block_size_bits(blocksize);
2271
2272 iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2273 lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2274 bh = head;
2275 nr = 0;
2276 i = 0;
2277
2278 do {
2279 if (buffer_uptodate(bh))
2280 continue;
2281
2282 if (!buffer_mapped(bh)) {
2283 int err = 0;
2284
2285 fully_mapped = 0;
2286 if (iblock < lblock) {
2287 WARN_ON(bh->b_size != blocksize);
2288 err = get_block(inode, iblock, bh, 0);
2289 if (err)
2290 SetPageError(page);
2291 }
2292 if (!buffer_mapped(bh)) {
2293 zero_user(page, i * blocksize, blocksize);
2294 if (!err)
2295 set_buffer_uptodate(bh);
2296 continue;
2297 }
2298 /*
2299 * get_block() might have updated the buffer
2300 * synchronously
2301 */
2302 if (buffer_uptodate(bh))
2303 continue;
2304 }
2305 arr[nr++] = bh;
2306 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2307
2308 if (fully_mapped)
2309 SetPageMappedToDisk(page);
2310
2311 if (!nr) {
2312 /*
2313 * All buffers are uptodate - we can set the page uptodate
2314 * as well. But not if get_block() returned an error.
2315 */
2316 if (!PageError(page))
2317 SetPageUptodate(page);
2318 unlock_page(page);
2319 return 0;
2320 }
2321
2322 /* Stage two: lock the buffers */
2323 for (i = 0; i < nr; i++) {
2324 bh = arr[i];
2325 lock_buffer(bh);
2326 mark_buffer_async_read(bh);
2327 }
2328
2329 /*
2330 * Stage 3: start the IO. Check for uptodateness
2331 * inside the buffer lock in case another process reading
2332 * the underlying blockdev brought it uptodate (the sct fix).
2333 */
2334 for (i = 0; i < nr; i++) {
2335 bh = arr[i];
2336 if (buffer_uptodate(bh))
2337 end_buffer_async_read(bh, 1);
2338 else
2339 submit_bh(REQ_OP_READ, 0, bh);
2340 }
2341 return 0;
2342}
2343EXPORT_SYMBOL(block_read_full_page);
2344
2345/* utility function for filesystems that need to do work on expanding
2346 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2347 * deal with the hole.
2348 */
2349int generic_cont_expand_simple(struct inode *inode, loff_t size)
2350{
2351 struct address_space *mapping = inode->i_mapping;
2352 struct page *page;
2353 void *fsdata;
2354 int err;
2355
2356 err = inode_newsize_ok(inode, size);
2357 if (err)
2358 goto out;
2359
2360 err = pagecache_write_begin(NULL, mapping, size, 0,
2361 AOP_FLAG_CONT_EXPAND, &page, &fsdata);
2362 if (err)
2363 goto out;
2364
2365 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2366 BUG_ON(err > 0);
2367
2368out:
2369 return err;
2370}
2371EXPORT_SYMBOL(generic_cont_expand_simple);
2372
2373static int cont_expand_zero(struct file *file, struct address_space *mapping,
2374 loff_t pos, loff_t *bytes)
2375{
2376 struct inode *inode = mapping->host;
2377 unsigned int blocksize = i_blocksize(inode);
2378 struct page *page;
2379 void *fsdata;
2380 pgoff_t index, curidx;
2381 loff_t curpos;
2382 unsigned zerofrom, offset, len;
2383 int err = 0;
2384
2385 index = pos >> PAGE_SHIFT;
2386 offset = pos & ~PAGE_MASK;
2387
2388 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2389 zerofrom = curpos & ~PAGE_MASK;
2390 if (zerofrom & (blocksize-1)) {
2391 *bytes |= (blocksize-1);
2392 (*bytes)++;
2393 }
2394 len = PAGE_SIZE - zerofrom;
2395
2396 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2397 &page, &fsdata);
2398 if (err)
2399 goto out;
2400 zero_user(page, zerofrom, len);
2401 err = pagecache_write_end(file, mapping, curpos, len, len,
2402 page, fsdata);
2403 if (err < 0)
2404 goto out;
2405 BUG_ON(err != len);
2406 err = 0;
2407
2408 balance_dirty_pages_ratelimited(mapping);
2409
2410 if (fatal_signal_pending(current)) {
2411 err = -EINTR;
2412 goto out;
2413 }
2414 }
2415
2416 /* page covers the boundary, find the boundary offset */
2417 if (index == curidx) {
2418 zerofrom = curpos & ~PAGE_MASK;
2419 /* if we will expand the thing last block will be filled */
2420 if (offset <= zerofrom) {
2421 goto out;
2422 }
2423 if (zerofrom & (blocksize-1)) {
2424 *bytes |= (blocksize-1);
2425 (*bytes)++;
2426 }
2427 len = offset - zerofrom;
2428
2429 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2430 &page, &fsdata);
2431 if (err)
2432 goto out;
2433 zero_user(page, zerofrom, len);
2434 err = pagecache_write_end(file, mapping, curpos, len, len,
2435 page, fsdata);
2436 if (err < 0)
2437 goto out;
2438 BUG_ON(err != len);
2439 err = 0;
2440 }
2441out:
2442 return err;
2443}
2444
2445/*
2446 * For moronic filesystems that do not allow holes in file.
2447 * We may have to extend the file.
2448 */
2449int cont_write_begin(struct file *file, struct address_space *mapping,
2450 loff_t pos, unsigned len, unsigned flags,
2451 struct page **pagep, void **fsdata,
2452 get_block_t *get_block, loff_t *bytes)
2453{
2454 struct inode *inode = mapping->host;
2455 unsigned int blocksize = i_blocksize(inode);
2456 unsigned int zerofrom;
2457 int err;
2458
2459 err = cont_expand_zero(file, mapping, pos, bytes);
2460 if (err)
2461 return err;
2462
2463 zerofrom = *bytes & ~PAGE_MASK;
2464 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2465 *bytes |= (blocksize-1);
2466 (*bytes)++;
2467 }
2468
2469 return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2470}
2471EXPORT_SYMBOL(cont_write_begin);
2472
2473int block_commit_write(struct page *page, unsigned from, unsigned to)
2474{
2475 struct inode *inode = page->mapping->host;
2476 __block_commit_write(inode,page,from,to);
2477 return 0;
2478}
2479EXPORT_SYMBOL(block_commit_write);
2480
2481/*
2482 * block_page_mkwrite() is not allowed to change the file size as it gets
2483 * called from a page fault handler when a page is first dirtied. Hence we must
2484 * be careful to check for EOF conditions here. We set the page up correctly
2485 * for a written page which means we get ENOSPC checking when writing into
2486 * holes and correct delalloc and unwritten extent mapping on filesystems that
2487 * support these features.
2488 *
2489 * We are not allowed to take the i_mutex here so we have to play games to
2490 * protect against truncate races as the page could now be beyond EOF. Because
2491 * truncate writes the inode size before removing pages, once we have the
2492 * page lock we can determine safely if the page is beyond EOF. If it is not
2493 * beyond EOF, then the page is guaranteed safe against truncation until we
2494 * unlock the page.
2495 *
2496 * Direct callers of this function should protect against filesystem freezing
2497 * using sb_start_pagefault() - sb_end_pagefault() functions.
2498 */
2499int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2500 get_block_t get_block)
2501{
2502 struct page *page = vmf->page;
2503 struct inode *inode = file_inode(vma->vm_file);
2504 unsigned long end;
2505 loff_t size;
2506 int ret;
2507
2508 lock_page(page);
2509 size = i_size_read(inode);
2510 if ((page->mapping != inode->i_mapping) ||
2511 (page_offset(page) > size)) {
2512 /* We overload EFAULT to mean page got truncated */
2513 ret = -EFAULT;
2514 goto out_unlock;
2515 }
2516
2517 /* page is wholly or partially inside EOF */
2518 if (((page->index + 1) << PAGE_SHIFT) > size)
2519 end = size & ~PAGE_MASK;
2520 else
2521 end = PAGE_SIZE;
2522
2523 ret = __block_write_begin(page, 0, end, get_block);
2524 if (!ret)
2525 ret = block_commit_write(page, 0, end);
2526
2527 if (unlikely(ret < 0))
2528 goto out_unlock;
2529 set_page_dirty(page);
2530 wait_for_stable_page(page);
2531 return 0;
2532out_unlock:
2533 unlock_page(page);
2534 return ret;
2535}
2536EXPORT_SYMBOL(block_page_mkwrite);
2537
2538/*
2539 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2540 * immediately, while under the page lock. So it needs a special end_io
2541 * handler which does not touch the bh after unlocking it.
2542 */
2543static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2544{
2545 __end_buffer_read_notouch(bh, uptodate);
2546}
2547
2548/*
2549 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2550 * the page (converting it to circular linked list and taking care of page
2551 * dirty races).
2552 */
2553static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2554{
2555 struct buffer_head *bh;
2556
2557 BUG_ON(!PageLocked(page));
2558
2559 spin_lock(&page->mapping->private_lock);
2560 bh = head;
2561 do {
2562 if (PageDirty(page))
2563 set_buffer_dirty(bh);
2564 if (!bh->b_this_page)
2565 bh->b_this_page = head;
2566 bh = bh->b_this_page;
2567 } while (bh != head);
2568 attach_page_private(page, head);
2569 spin_unlock(&page->mapping->private_lock);
2570}
2571
2572/*
2573 * On entry, the page is fully not uptodate.
2574 * On exit the page is fully uptodate in the areas outside (from,to)
2575 * The filesystem needs to handle block truncation upon failure.
2576 */
2577int nobh_write_begin(struct address_space *mapping,
2578 loff_t pos, unsigned len, unsigned flags,
2579 struct page **pagep, void **fsdata,
2580 get_block_t *get_block)
2581{
2582 struct inode *inode = mapping->host;
2583 const unsigned blkbits = inode->i_blkbits;
2584 const unsigned blocksize = 1 << blkbits;
2585 struct buffer_head *head, *bh;
2586 struct page *page;
2587 pgoff_t index;
2588 unsigned from, to;
2589 unsigned block_in_page;
2590 unsigned block_start, block_end;
2591 sector_t block_in_file;
2592 int nr_reads = 0;
2593 int ret = 0;
2594 int is_mapped_to_disk = 1;
2595
2596 index = pos >> PAGE_SHIFT;
2597 from = pos & (PAGE_SIZE - 1);
2598 to = from + len;
2599
2600 page = grab_cache_page_write_begin(mapping, index, flags);
2601 if (!page)
2602 return -ENOMEM;
2603 *pagep = page;
2604 *fsdata = NULL;
2605
2606 if (page_has_buffers(page)) {
2607 ret = __block_write_begin(page, pos, len, get_block);
2608 if (unlikely(ret))
2609 goto out_release;
2610 return ret;
2611 }
2612
2613 if (PageMappedToDisk(page))
2614 return 0;
2615
2616 /*
2617 * Allocate buffers so that we can keep track of state, and potentially
2618 * attach them to the page if an error occurs. In the common case of
2619 * no error, they will just be freed again without ever being attached
2620 * to the page (which is all OK, because we're under the page lock).
2621 *
2622 * Be careful: the buffer linked list is a NULL terminated one, rather
2623 * than the circular one we're used to.
2624 */
2625 head = alloc_page_buffers(page, blocksize, false);
2626 if (!head) {
2627 ret = -ENOMEM;
2628 goto out_release;
2629 }
2630
2631 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2632
2633 /*
2634 * We loop across all blocks in the page, whether or not they are
2635 * part of the affected region. This is so we can discover if the
2636 * page is fully mapped-to-disk.
2637 */
2638 for (block_start = 0, block_in_page = 0, bh = head;
2639 block_start < PAGE_SIZE;
2640 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2641 int create;
2642
2643 block_end = block_start + blocksize;
2644 bh->b_state = 0;
2645 create = 1;
2646 if (block_start >= to)
2647 create = 0;
2648 ret = get_block(inode, block_in_file + block_in_page,
2649 bh, create);
2650 if (ret)
2651 goto failed;
2652 if (!buffer_mapped(bh))
2653 is_mapped_to_disk = 0;
2654 if (buffer_new(bh))
2655 clean_bdev_bh_alias(bh);
2656 if (PageUptodate(page)) {
2657 set_buffer_uptodate(bh);
2658 continue;
2659 }
2660 if (buffer_new(bh) || !buffer_mapped(bh)) {
2661 zero_user_segments(page, block_start, from,
2662 to, block_end);
2663 continue;
2664 }
2665 if (buffer_uptodate(bh))
2666 continue; /* reiserfs does this */
2667 if (block_start < from || block_end > to) {
2668 lock_buffer(bh);
2669 bh->b_end_io = end_buffer_read_nobh;
2670 submit_bh(REQ_OP_READ, 0, bh);
2671 nr_reads++;
2672 }
2673 }
2674
2675 if (nr_reads) {
2676 /*
2677 * The page is locked, so these buffers are protected from
2678 * any VM or truncate activity. Hence we don't need to care
2679 * for the buffer_head refcounts.
2680 */
2681 for (bh = head; bh; bh = bh->b_this_page) {
2682 wait_on_buffer(bh);
2683 if (!buffer_uptodate(bh))
2684 ret = -EIO;
2685 }
2686 if (ret)
2687 goto failed;
2688 }
2689
2690 if (is_mapped_to_disk)
2691 SetPageMappedToDisk(page);
2692
2693 *fsdata = head; /* to be released by nobh_write_end */
2694
2695 return 0;
2696
2697failed:
2698 BUG_ON(!ret);
2699 /*
2700 * Error recovery is a bit difficult. We need to zero out blocks that
2701 * were newly allocated, and dirty them to ensure they get written out.
2702 * Buffers need to be attached to the page at this point, otherwise
2703 * the handling of potential IO errors during writeout would be hard
2704 * (could try doing synchronous writeout, but what if that fails too?)
2705 */
2706 attach_nobh_buffers(page, head);
2707 page_zero_new_buffers(page, from, to);
2708
2709out_release:
2710 unlock_page(page);
2711 put_page(page);
2712 *pagep = NULL;
2713
2714 return ret;
2715}
2716EXPORT_SYMBOL(nobh_write_begin);
2717
2718int nobh_write_end(struct file *file, struct address_space *mapping,
2719 loff_t pos, unsigned len, unsigned copied,
2720 struct page *page, void *fsdata)
2721{
2722 struct inode *inode = page->mapping->host;
2723 struct buffer_head *head = fsdata;
2724 struct buffer_head *bh;
2725 BUG_ON(fsdata != NULL && page_has_buffers(page));
2726
2727 if (unlikely(copied < len) && head)
2728 attach_nobh_buffers(page, head);
2729 if (page_has_buffers(page))
2730 return generic_write_end(file, mapping, pos, len,
2731 copied, page, fsdata);
2732
2733 SetPageUptodate(page);
2734 set_page_dirty(page);
2735 if (pos+copied > inode->i_size) {
2736 i_size_write(inode, pos+copied);
2737 mark_inode_dirty(inode);
2738 }
2739
2740 unlock_page(page);
2741 put_page(page);
2742
2743 while (head) {
2744 bh = head;
2745 head = head->b_this_page;
2746 free_buffer_head(bh);
2747 }
2748
2749 return copied;
2750}
2751EXPORT_SYMBOL(nobh_write_end);
2752
2753/*
2754 * nobh_writepage() - based on block_full_write_page() except
2755 * that it tries to operate without attaching bufferheads to
2756 * the page.
2757 */
2758int nobh_writepage(struct page *page, get_block_t *get_block,
2759 struct writeback_control *wbc)
2760{
2761 struct inode * const inode = page->mapping->host;
2762 loff_t i_size = i_size_read(inode);
2763 const pgoff_t end_index = i_size >> PAGE_SHIFT;
2764 unsigned offset;
2765 int ret;
2766
2767 /* Is the page fully inside i_size? */
2768 if (page->index < end_index)
2769 goto out;
2770
2771 /* Is the page fully outside i_size? (truncate in progress) */
2772 offset = i_size & (PAGE_SIZE-1);
2773 if (page->index >= end_index+1 || !offset) {
2774 /*
2775 * The page may have dirty, unmapped buffers. For example,
2776 * they may have been added in ext3_writepage(). Make them
2777 * freeable here, so the page does not leak.
2778 */
2779#if 0
2780 /* Not really sure about this - do we need this ? */
2781 if (page->mapping->a_ops->invalidatepage)
2782 page->mapping->a_ops->invalidatepage(page, offset);
2783#endif
2784 unlock_page(page);
2785 return 0; /* don't care */
2786 }
2787
2788 /*
2789 * The page straddles i_size. It must be zeroed out on each and every
2790 * writepage invocation because it may be mmapped. "A file is mapped
2791 * in multiples of the page size. For a file that is not a multiple of
2792 * the page size, the remaining memory is zeroed when mapped, and
2793 * writes to that region are not written out to the file."
2794 */
2795 zero_user_segment(page, offset, PAGE_SIZE);
2796out:
2797 ret = mpage_writepage(page, get_block, wbc);
2798 if (ret == -EAGAIN)
2799 ret = __block_write_full_page(inode, page, get_block, wbc,
2800 end_buffer_async_write);
2801 return ret;
2802}
2803EXPORT_SYMBOL(nobh_writepage);
2804
2805int nobh_truncate_page(struct address_space *mapping,
2806 loff_t from, get_block_t *get_block)
2807{
2808 pgoff_t index = from >> PAGE_SHIFT;
2809 unsigned offset = from & (PAGE_SIZE-1);
2810 unsigned blocksize;
2811 sector_t iblock;
2812 unsigned length, pos;
2813 struct inode *inode = mapping->host;
2814 struct page *page;
2815 struct buffer_head map_bh;
2816 int err;
2817
2818 blocksize = i_blocksize(inode);
2819 length = offset & (blocksize - 1);
2820
2821 /* Block boundary? Nothing to do */
2822 if (!length)
2823 return 0;
2824
2825 length = blocksize - length;
2826 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2827
2828 page = grab_cache_page(mapping, index);
2829 err = -ENOMEM;
2830 if (!page)
2831 goto out;
2832
2833 if (page_has_buffers(page)) {
2834has_buffers:
2835 unlock_page(page);
2836 put_page(page);
2837 return block_truncate_page(mapping, from, get_block);
2838 }
2839
2840 /* Find the buffer that contains "offset" */
2841 pos = blocksize;
2842 while (offset >= pos) {
2843 iblock++;
2844 pos += blocksize;
2845 }
2846
2847 map_bh.b_size = blocksize;
2848 map_bh.b_state = 0;
2849 err = get_block(inode, iblock, &map_bh, 0);
2850 if (err)
2851 goto unlock;
2852 /* unmapped? It's a hole - nothing to do */
2853 if (!buffer_mapped(&map_bh))
2854 goto unlock;
2855
2856 /* Ok, it's mapped. Make sure it's up-to-date */
2857 if (!PageUptodate(page)) {
2858 err = mapping->a_ops->readpage(NULL, page);
2859 if (err) {
2860 put_page(page);
2861 goto out;
2862 }
2863 lock_page(page);
2864 if (!PageUptodate(page)) {
2865 err = -EIO;
2866 goto unlock;
2867 }
2868 if (page_has_buffers(page))
2869 goto has_buffers;
2870 }
2871 zero_user(page, offset, length);
2872 set_page_dirty(page);
2873 err = 0;
2874
2875unlock:
2876 unlock_page(page);
2877 put_page(page);
2878out:
2879 return err;
2880}
2881EXPORT_SYMBOL(nobh_truncate_page);
2882
2883int block_truncate_page(struct address_space *mapping,
2884 loff_t from, get_block_t *get_block)
2885{
2886 pgoff_t index = from >> PAGE_SHIFT;
2887 unsigned offset = from & (PAGE_SIZE-1);
2888 unsigned blocksize;
2889 sector_t iblock;
2890 unsigned length, pos;
2891 struct inode *inode = mapping->host;
2892 struct page *page;
2893 struct buffer_head *bh;
2894 int err;
2895
2896 blocksize = i_blocksize(inode);
2897 length = offset & (blocksize - 1);
2898
2899 /* Block boundary? Nothing to do */
2900 if (!length)
2901 return 0;
2902
2903 length = blocksize - length;
2904 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2905
2906 page = grab_cache_page(mapping, index);
2907 err = -ENOMEM;
2908 if (!page)
2909 goto out;
2910
2911 if (!page_has_buffers(page))
2912 create_empty_buffers(page, blocksize, 0);
2913
2914 /* Find the buffer that contains "offset" */
2915 bh = page_buffers(page);
2916 pos = blocksize;
2917 while (offset >= pos) {
2918 bh = bh->b_this_page;
2919 iblock++;
2920 pos += blocksize;
2921 }
2922
2923 err = 0;
2924 if (!buffer_mapped(bh)) {
2925 WARN_ON(bh->b_size != blocksize);
2926 err = get_block(inode, iblock, bh, 0);
2927 if (err)
2928 goto unlock;
2929 /* unmapped? It's a hole - nothing to do */
2930 if (!buffer_mapped(bh))
2931 goto unlock;
2932 }
2933
2934 /* Ok, it's mapped. Make sure it's up-to-date */
2935 if (PageUptodate(page))
2936 set_buffer_uptodate(bh);
2937
2938 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2939 err = -EIO;
2940 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2941 wait_on_buffer(bh);
2942 /* Uhhuh. Read error. Complain and punt. */
2943 if (!buffer_uptodate(bh))
2944 goto unlock;
2945 }
2946
2947 zero_user(page, offset, length);
2948 mark_buffer_dirty(bh);
2949 err = 0;
2950
2951unlock:
2952 unlock_page(page);
2953 put_page(page);
2954out:
2955 return err;
2956}
2957EXPORT_SYMBOL(block_truncate_page);
2958
2959/*
2960 * The generic ->writepage function for buffer-backed address_spaces
2961 */
2962int block_write_full_page(struct page *page, get_block_t *get_block,
2963 struct writeback_control *wbc)
2964{
2965 struct inode * const inode = page->mapping->host;
2966 loff_t i_size = i_size_read(inode);
2967 const pgoff_t end_index = i_size >> PAGE_SHIFT;
2968 unsigned offset;
2969
2970 /* Is the page fully inside i_size? */
2971 if (page->index < end_index)
2972 return __block_write_full_page(inode, page, get_block, wbc,
2973 end_buffer_async_write);
2974
2975 /* Is the page fully outside i_size? (truncate in progress) */
2976 offset = i_size & (PAGE_SIZE-1);
2977 if (page->index >= end_index+1 || !offset) {
2978 /*
2979 * The page may have dirty, unmapped buffers. For example,
2980 * they may have been added in ext3_writepage(). Make them
2981 * freeable here, so the page does not leak.
2982 */
2983 do_invalidatepage(page, 0, PAGE_SIZE);
2984 unlock_page(page);
2985 return 0; /* don't care */
2986 }
2987
2988 /*
2989 * The page straddles i_size. It must be zeroed out on each and every
2990 * writepage invocation because it may be mmapped. "A file is mapped
2991 * in multiples of the page size. For a file that is not a multiple of
2992 * the page size, the remaining memory is zeroed when mapped, and
2993 * writes to that region are not written out to the file."
2994 */
2995 zero_user_segment(page, offset, PAGE_SIZE);
2996 return __block_write_full_page(inode, page, get_block, wbc,
2997 end_buffer_async_write);
2998}
2999EXPORT_SYMBOL(block_write_full_page);
3000
3001sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
3002 get_block_t *get_block)
3003{
3004 struct inode *inode = mapping->host;
3005 struct buffer_head tmp = {
3006 .b_size = i_blocksize(inode),
3007 };
3008
3009 get_block(inode, block, &tmp, 0);
3010 return tmp.b_blocknr;
3011}
3012EXPORT_SYMBOL(generic_block_bmap);
3013
3014static void end_bio_bh_io_sync(struct bio *bio)
3015{
3016 struct buffer_head *bh = bio->bi_private;
3017
3018 if (unlikely(bio_flagged(bio, BIO_QUIET)))
3019 set_bit(BH_Quiet, &bh->b_state);
3020
3021 bh->b_end_io(bh, !bio->bi_status);
3022 bio_put(bio);
3023}
3024
3025static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3026 enum rw_hint write_hint, struct writeback_control *wbc)
3027{
3028 struct bio *bio;
3029
3030 BUG_ON(!buffer_locked(bh));
3031 BUG_ON(!buffer_mapped(bh));
3032 BUG_ON(!bh->b_end_io);
3033 BUG_ON(buffer_delay(bh));
3034 BUG_ON(buffer_unwritten(bh));
3035
3036 /*
3037 * Only clear out a write error when rewriting
3038 */
3039 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3040 clear_buffer_write_io_error(bh);
3041
3042 bio = bio_alloc(GFP_NOIO, 1);
3043
3044 fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
3045
3046 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3047 bio_set_dev(bio, bh->b_bdev);
3048 bio->bi_write_hint = write_hint;
3049
3050 bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3051 BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3052
3053 bio->bi_end_io = end_bio_bh_io_sync;
3054 bio->bi_private = bh;
3055
3056 if (buffer_meta(bh))
3057 op_flags |= REQ_META;
3058 if (buffer_prio(bh))
3059 op_flags |= REQ_PRIO;
3060 bio_set_op_attrs(bio, op, op_flags);
3061
3062 /* Take care of bh's that straddle the end of the device */
3063 guard_bio_eod(bio);
3064
3065 if (wbc) {
3066 wbc_init_bio(wbc, bio);
3067 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
3068 }
3069
3070 submit_bio(bio);
3071 return 0;
3072}
3073
3074int submit_bh(int op, int op_flags, struct buffer_head *bh)
3075{
3076 return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3077}
3078EXPORT_SYMBOL(submit_bh);
3079
3080/**
3081 * ll_rw_block: low-level access to block devices (DEPRECATED)
3082 * @op: whether to %READ or %WRITE
3083 * @op_flags: req_flag_bits
3084 * @nr: number of &struct buffer_heads in the array
3085 * @bhs: array of pointers to &struct buffer_head
3086 *
3087 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3088 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3089 * @op_flags contains flags modifying the detailed I/O behavior, most notably
3090 * %REQ_RAHEAD.
3091 *
3092 * This function drops any buffer that it cannot get a lock on (with the
3093 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3094 * request, and any buffer that appears to be up-to-date when doing read
3095 * request. Further it marks as clean buffers that are processed for
3096 * writing (the buffer cache won't assume that they are actually clean
3097 * until the buffer gets unlocked).
3098 *
3099 * ll_rw_block sets b_end_io to simple completion handler that marks
3100 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3101 * any waiters.
3102 *
3103 * All of the buffers must be for the same device, and must also be a
3104 * multiple of the current approved size for the device.
3105 */
3106void ll_rw_block(int op, int op_flags, int nr, struct buffer_head *bhs[])
3107{
3108 int i;
3109
3110 for (i = 0; i < nr; i++) {
3111 struct buffer_head *bh = bhs[i];
3112
3113 if (!trylock_buffer(bh))
3114 continue;
3115 if (op == WRITE) {
3116 if (test_clear_buffer_dirty(bh)) {
3117 bh->b_end_io = end_buffer_write_sync;
3118 get_bh(bh);
3119 submit_bh(op, op_flags, bh);
3120 continue;
3121 }
3122 } else {
3123 if (!buffer_uptodate(bh)) {
3124 bh->b_end_io = end_buffer_read_sync;
3125 get_bh(bh);
3126 submit_bh(op, op_flags, bh);
3127 continue;
3128 }
3129 }
3130 unlock_buffer(bh);
3131 }
3132}
3133EXPORT_SYMBOL(ll_rw_block);
3134
3135void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3136{
3137 lock_buffer(bh);
3138 if (!test_clear_buffer_dirty(bh)) {
3139 unlock_buffer(bh);
3140 return;
3141 }
3142 bh->b_end_io = end_buffer_write_sync;
3143 get_bh(bh);
3144 submit_bh(REQ_OP_WRITE, op_flags, bh);
3145}
3146EXPORT_SYMBOL(write_dirty_buffer);
3147
3148/*
3149 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3150 * and then start new I/O and then wait upon it. The caller must have a ref on
3151 * the buffer_head.
3152 */
3153int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3154{
3155 int ret = 0;
3156
3157 WARN_ON(atomic_read(&bh->b_count) < 1);
3158 lock_buffer(bh);
3159 if (test_clear_buffer_dirty(bh)) {
3160 /*
3161 * The bh should be mapped, but it might not be if the
3162 * device was hot-removed. Not much we can do but fail the I/O.
3163 */
3164 if (!buffer_mapped(bh)) {
3165 unlock_buffer(bh);
3166 return -EIO;
3167 }
3168
3169 get_bh(bh);
3170 bh->b_end_io = end_buffer_write_sync;
3171 ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3172 wait_on_buffer(bh);
3173 if (!ret && !buffer_uptodate(bh))
3174 ret = -EIO;
3175 } else {
3176 unlock_buffer(bh);
3177 }
3178 return ret;
3179}
3180EXPORT_SYMBOL(__sync_dirty_buffer);
3181
3182int sync_dirty_buffer(struct buffer_head *bh)
3183{
3184 return __sync_dirty_buffer(bh, REQ_SYNC);
3185}
3186EXPORT_SYMBOL(sync_dirty_buffer);
3187
3188/*
3189 * try_to_free_buffers() checks if all the buffers on this particular page
3190 * are unused, and releases them if so.
3191 *
3192 * Exclusion against try_to_free_buffers may be obtained by either
3193 * locking the page or by holding its mapping's private_lock.
3194 *
3195 * If the page is dirty but all the buffers are clean then we need to
3196 * be sure to mark the page clean as well. This is because the page
3197 * may be against a block device, and a later reattachment of buffers
3198 * to a dirty page will set *all* buffers dirty. Which would corrupt
3199 * filesystem data on the same device.
3200 *
3201 * The same applies to regular filesystem pages: if all the buffers are
3202 * clean then we set the page clean and proceed. To do that, we require
3203 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3204 * private_lock.
3205 *
3206 * try_to_free_buffers() is non-blocking.
3207 */
3208static inline int buffer_busy(struct buffer_head *bh)
3209{
3210 return atomic_read(&bh->b_count) |
3211 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3212}
3213
3214static int
3215drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3216{
3217 struct buffer_head *head = page_buffers(page);
3218 struct buffer_head *bh;
3219
3220 bh = head;
3221 do {
3222 if (buffer_busy(bh))
3223 goto failed;
3224 bh = bh->b_this_page;
3225 } while (bh != head);
3226
3227 do {
3228 struct buffer_head *next = bh->b_this_page;
3229
3230 if (bh->b_assoc_map)
3231 __remove_assoc_queue(bh);
3232 bh = next;
3233 } while (bh != head);
3234 *buffers_to_free = head;
3235 detach_page_private(page);
3236 return 1;
3237failed:
3238 return 0;
3239}
3240
3241int try_to_free_buffers(struct page *page)
3242{
3243 struct address_space * const mapping = page->mapping;
3244 struct buffer_head *buffers_to_free = NULL;
3245 int ret = 0;
3246
3247 BUG_ON(!PageLocked(page));
3248 if (PageWriteback(page))
3249 return 0;
3250
3251 if (mapping == NULL) { /* can this still happen? */
3252 ret = drop_buffers(page, &buffers_to_free);
3253 goto out;
3254 }
3255
3256 spin_lock(&mapping->private_lock);
3257 ret = drop_buffers(page, &buffers_to_free);
3258
3259 /*
3260 * If the filesystem writes its buffers by hand (eg ext3)
3261 * then we can have clean buffers against a dirty page. We
3262 * clean the page here; otherwise the VM will never notice
3263 * that the filesystem did any IO at all.
3264 *
3265 * Also, during truncate, discard_buffer will have marked all
3266 * the page's buffers clean. We discover that here and clean
3267 * the page also.
3268 *
3269 * private_lock must be held over this entire operation in order
3270 * to synchronise against __set_page_dirty_buffers and prevent the
3271 * dirty bit from being lost.
3272 */
3273 if (ret)
3274 cancel_dirty_page(page);
3275 spin_unlock(&mapping->private_lock);
3276out:
3277 if (buffers_to_free) {
3278 struct buffer_head *bh = buffers_to_free;
3279
3280 do {
3281 struct buffer_head *next = bh->b_this_page;
3282 free_buffer_head(bh);
3283 bh = next;
3284 } while (bh != buffers_to_free);
3285 }
3286 return ret;
3287}
3288EXPORT_SYMBOL(try_to_free_buffers);
3289
3290/*
3291 * There are no bdflush tunables left. But distributions are
3292 * still running obsolete flush daemons, so we terminate them here.
3293 *
3294 * Use of bdflush() is deprecated and will be removed in a future kernel.
3295 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3296 */
3297SYSCALL_DEFINE2(bdflush, int, func, long, data)
3298{
3299 static int msg_count;
3300
3301 if (!capable(CAP_SYS_ADMIN))
3302 return -EPERM;
3303
3304 if (msg_count < 5) {
3305 msg_count++;
3306 printk(KERN_INFO
3307 "warning: process `%s' used the obsolete bdflush"
3308 " system call\n", current->comm);
3309 printk(KERN_INFO "Fix your initscripts?\n");
3310 }
3311
3312 if (func == 1)
3313 do_exit(0);
3314 return 0;
3315}
3316
3317/*
3318 * Buffer-head allocation
3319 */
3320static struct kmem_cache *bh_cachep __read_mostly;
3321
3322/*
3323 * Once the number of bh's in the machine exceeds this level, we start
3324 * stripping them in writeback.
3325 */
3326static unsigned long max_buffer_heads;
3327
3328int buffer_heads_over_limit;
3329
3330struct bh_accounting {
3331 int nr; /* Number of live bh's */
3332 int ratelimit; /* Limit cacheline bouncing */
3333};
3334
3335static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3336
3337static void recalc_bh_state(void)
3338{
3339 int i;
3340 int tot = 0;
3341
3342 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3343 return;
3344 __this_cpu_write(bh_accounting.ratelimit, 0);
3345 for_each_online_cpu(i)
3346 tot += per_cpu(bh_accounting, i).nr;
3347 buffer_heads_over_limit = (tot > max_buffer_heads);
3348}
3349
3350struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3351{
3352 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3353 if (ret) {
3354 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3355 spin_lock_init(&ret->b_uptodate_lock);
3356 preempt_disable();
3357 __this_cpu_inc(bh_accounting.nr);
3358 recalc_bh_state();
3359 preempt_enable();
3360 }
3361 return ret;
3362}
3363EXPORT_SYMBOL(alloc_buffer_head);
3364
3365void free_buffer_head(struct buffer_head *bh)
3366{
3367 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3368 kmem_cache_free(bh_cachep, bh);
3369 preempt_disable();
3370 __this_cpu_dec(bh_accounting.nr);
3371 recalc_bh_state();
3372 preempt_enable();
3373}
3374EXPORT_SYMBOL(free_buffer_head);
3375
3376static int buffer_exit_cpu_dead(unsigned int cpu)
3377{
3378 int i;
3379 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3380
3381 for (i = 0; i < BH_LRU_SIZE; i++) {
3382 brelse(b->bhs[i]);
3383 b->bhs[i] = NULL;
3384 }
3385 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3386 per_cpu(bh_accounting, cpu).nr = 0;
3387 return 0;
3388}
3389
3390/**
3391 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3392 * @bh: struct buffer_head
3393 *
3394 * Return true if the buffer is up-to-date and false,
3395 * with the buffer locked, if not.
3396 */
3397int bh_uptodate_or_lock(struct buffer_head *bh)
3398{
3399 if (!buffer_uptodate(bh)) {
3400 lock_buffer(bh);
3401 if (!buffer_uptodate(bh))
3402 return 0;
3403 unlock_buffer(bh);
3404 }
3405 return 1;
3406}
3407EXPORT_SYMBOL(bh_uptodate_or_lock);
3408
3409/**
3410 * bh_submit_read - Submit a locked buffer for reading
3411 * @bh: struct buffer_head
3412 *
3413 * Returns zero on success and -EIO on error.
3414 */
3415int bh_submit_read(struct buffer_head *bh)
3416{
3417 BUG_ON(!buffer_locked(bh));
3418
3419 if (buffer_uptodate(bh)) {
3420 unlock_buffer(bh);
3421 return 0;
3422 }
3423
3424 get_bh(bh);
3425 bh->b_end_io = end_buffer_read_sync;
3426 submit_bh(REQ_OP_READ, 0, bh);
3427 wait_on_buffer(bh);
3428 if (buffer_uptodate(bh))
3429 return 0;
3430 return -EIO;
3431}
3432EXPORT_SYMBOL(bh_submit_read);
3433
3434void __init buffer_init(void)
3435{
3436 unsigned long nrpages;
3437 int ret;
3438
3439 bh_cachep = kmem_cache_create("buffer_head",
3440 sizeof(struct buffer_head), 0,
3441 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3442 SLAB_MEM_SPREAD),
3443 NULL);
3444
3445 /*
3446 * Limit the bh occupancy to 10% of ZONE_NORMAL
3447 */
3448 nrpages = (nr_free_buffer_pages() * 10) / 100;
3449 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3450 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3451 NULL, buffer_exit_cpu_dead);
3452 WARN_ON(ret < 0);
3453}