Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*******************************************************************************
   2 *
   3 * Intel Ethernet Controller XL710 Family Linux Driver
   4 * Copyright(c) 2013 - 2016 Intel Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms and conditions of the GNU General Public License,
   8 * version 2, as published by the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along
  16 * with this program.  If not, see <http://www.gnu.org/licenses/>.
  17 *
  18 * The full GNU General Public License is included in this distribution in
  19 * the file called "COPYING".
  20 *
  21 * Contact Information:
  22 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  24 *
  25 ******************************************************************************/
  26
  27#include "i40e_type.h"
  28#include "i40e_adminq.h"
  29#include "i40e_prototype.h"
  30#include "i40e_virtchnl.h"
  31
  32/**
  33 * i40e_set_mac_type - Sets MAC type
  34 * @hw: pointer to the HW structure
  35 *
  36 * This function sets the mac type of the adapter based on the
  37 * vendor ID and device ID stored in the hw structure.
  38 **/
  39static i40e_status i40e_set_mac_type(struct i40e_hw *hw)
  40{
  41	i40e_status status = 0;
  42
  43	if (hw->vendor_id == PCI_VENDOR_ID_INTEL) {
  44		switch (hw->device_id) {
  45		case I40E_DEV_ID_SFP_XL710:
  46		case I40E_DEV_ID_QEMU:
  47		case I40E_DEV_ID_KX_B:
  48		case I40E_DEV_ID_KX_C:
  49		case I40E_DEV_ID_QSFP_A:
  50		case I40E_DEV_ID_QSFP_B:
  51		case I40E_DEV_ID_QSFP_C:
  52		case I40E_DEV_ID_10G_BASE_T:
  53		case I40E_DEV_ID_10G_BASE_T4:
  54		case I40E_DEV_ID_20G_KR2:
  55		case I40E_DEV_ID_20G_KR2_A:
  56			hw->mac.type = I40E_MAC_XL710;
  57			break;
  58		case I40E_DEV_ID_KX_X722:
  59		case I40E_DEV_ID_QSFP_X722:
  60		case I40E_DEV_ID_SFP_X722:
  61		case I40E_DEV_ID_1G_BASE_T_X722:
  62		case I40E_DEV_ID_10G_BASE_T_X722:
  63			hw->mac.type = I40E_MAC_X722;
  64			break;
  65		default:
  66			hw->mac.type = I40E_MAC_GENERIC;
  67			break;
  68		}
  69	} else {
  70		status = I40E_ERR_DEVICE_NOT_SUPPORTED;
  71	}
  72
  73	hw_dbg(hw, "i40e_set_mac_type found mac: %d, returns: %d\n",
  74		  hw->mac.type, status);
  75	return status;
  76}
  77
  78/**
  79 * i40e_aq_str - convert AQ err code to a string
  80 * @hw: pointer to the HW structure
  81 * @aq_err: the AQ error code to convert
  82 **/
  83const char *i40e_aq_str(struct i40e_hw *hw, enum i40e_admin_queue_err aq_err)
  84{
  85	switch (aq_err) {
  86	case I40E_AQ_RC_OK:
  87		return "OK";
  88	case I40E_AQ_RC_EPERM:
  89		return "I40E_AQ_RC_EPERM";
  90	case I40E_AQ_RC_ENOENT:
  91		return "I40E_AQ_RC_ENOENT";
  92	case I40E_AQ_RC_ESRCH:
  93		return "I40E_AQ_RC_ESRCH";
  94	case I40E_AQ_RC_EINTR:
  95		return "I40E_AQ_RC_EINTR";
  96	case I40E_AQ_RC_EIO:
  97		return "I40E_AQ_RC_EIO";
  98	case I40E_AQ_RC_ENXIO:
  99		return "I40E_AQ_RC_ENXIO";
 100	case I40E_AQ_RC_E2BIG:
 101		return "I40E_AQ_RC_E2BIG";
 102	case I40E_AQ_RC_EAGAIN:
 103		return "I40E_AQ_RC_EAGAIN";
 104	case I40E_AQ_RC_ENOMEM:
 105		return "I40E_AQ_RC_ENOMEM";
 106	case I40E_AQ_RC_EACCES:
 107		return "I40E_AQ_RC_EACCES";
 108	case I40E_AQ_RC_EFAULT:
 109		return "I40E_AQ_RC_EFAULT";
 110	case I40E_AQ_RC_EBUSY:
 111		return "I40E_AQ_RC_EBUSY";
 112	case I40E_AQ_RC_EEXIST:
 113		return "I40E_AQ_RC_EEXIST";
 114	case I40E_AQ_RC_EINVAL:
 115		return "I40E_AQ_RC_EINVAL";
 116	case I40E_AQ_RC_ENOTTY:
 117		return "I40E_AQ_RC_ENOTTY";
 118	case I40E_AQ_RC_ENOSPC:
 119		return "I40E_AQ_RC_ENOSPC";
 120	case I40E_AQ_RC_ENOSYS:
 121		return "I40E_AQ_RC_ENOSYS";
 122	case I40E_AQ_RC_ERANGE:
 123		return "I40E_AQ_RC_ERANGE";
 124	case I40E_AQ_RC_EFLUSHED:
 125		return "I40E_AQ_RC_EFLUSHED";
 126	case I40E_AQ_RC_BAD_ADDR:
 127		return "I40E_AQ_RC_BAD_ADDR";
 128	case I40E_AQ_RC_EMODE:
 129		return "I40E_AQ_RC_EMODE";
 130	case I40E_AQ_RC_EFBIG:
 131		return "I40E_AQ_RC_EFBIG";
 132	}
 133
 134	snprintf(hw->err_str, sizeof(hw->err_str), "%d", aq_err);
 135	return hw->err_str;
 136}
 137
 138/**
 139 * i40e_stat_str - convert status err code to a string
 140 * @hw: pointer to the HW structure
 141 * @stat_err: the status error code to convert
 142 **/
 143const char *i40e_stat_str(struct i40e_hw *hw, i40e_status stat_err)
 144{
 145	switch (stat_err) {
 146	case 0:
 147		return "OK";
 148	case I40E_ERR_NVM:
 149		return "I40E_ERR_NVM";
 150	case I40E_ERR_NVM_CHECKSUM:
 151		return "I40E_ERR_NVM_CHECKSUM";
 152	case I40E_ERR_PHY:
 153		return "I40E_ERR_PHY";
 154	case I40E_ERR_CONFIG:
 155		return "I40E_ERR_CONFIG";
 156	case I40E_ERR_PARAM:
 157		return "I40E_ERR_PARAM";
 158	case I40E_ERR_MAC_TYPE:
 159		return "I40E_ERR_MAC_TYPE";
 160	case I40E_ERR_UNKNOWN_PHY:
 161		return "I40E_ERR_UNKNOWN_PHY";
 162	case I40E_ERR_LINK_SETUP:
 163		return "I40E_ERR_LINK_SETUP";
 164	case I40E_ERR_ADAPTER_STOPPED:
 165		return "I40E_ERR_ADAPTER_STOPPED";
 166	case I40E_ERR_INVALID_MAC_ADDR:
 167		return "I40E_ERR_INVALID_MAC_ADDR";
 168	case I40E_ERR_DEVICE_NOT_SUPPORTED:
 169		return "I40E_ERR_DEVICE_NOT_SUPPORTED";
 170	case I40E_ERR_MASTER_REQUESTS_PENDING:
 171		return "I40E_ERR_MASTER_REQUESTS_PENDING";
 172	case I40E_ERR_INVALID_LINK_SETTINGS:
 173		return "I40E_ERR_INVALID_LINK_SETTINGS";
 174	case I40E_ERR_AUTONEG_NOT_COMPLETE:
 175		return "I40E_ERR_AUTONEG_NOT_COMPLETE";
 176	case I40E_ERR_RESET_FAILED:
 177		return "I40E_ERR_RESET_FAILED";
 178	case I40E_ERR_SWFW_SYNC:
 179		return "I40E_ERR_SWFW_SYNC";
 180	case I40E_ERR_NO_AVAILABLE_VSI:
 181		return "I40E_ERR_NO_AVAILABLE_VSI";
 182	case I40E_ERR_NO_MEMORY:
 183		return "I40E_ERR_NO_MEMORY";
 184	case I40E_ERR_BAD_PTR:
 185		return "I40E_ERR_BAD_PTR";
 186	case I40E_ERR_RING_FULL:
 187		return "I40E_ERR_RING_FULL";
 188	case I40E_ERR_INVALID_PD_ID:
 189		return "I40E_ERR_INVALID_PD_ID";
 190	case I40E_ERR_INVALID_QP_ID:
 191		return "I40E_ERR_INVALID_QP_ID";
 192	case I40E_ERR_INVALID_CQ_ID:
 193		return "I40E_ERR_INVALID_CQ_ID";
 194	case I40E_ERR_INVALID_CEQ_ID:
 195		return "I40E_ERR_INVALID_CEQ_ID";
 196	case I40E_ERR_INVALID_AEQ_ID:
 197		return "I40E_ERR_INVALID_AEQ_ID";
 198	case I40E_ERR_INVALID_SIZE:
 199		return "I40E_ERR_INVALID_SIZE";
 200	case I40E_ERR_INVALID_ARP_INDEX:
 201		return "I40E_ERR_INVALID_ARP_INDEX";
 202	case I40E_ERR_INVALID_FPM_FUNC_ID:
 203		return "I40E_ERR_INVALID_FPM_FUNC_ID";
 204	case I40E_ERR_QP_INVALID_MSG_SIZE:
 205		return "I40E_ERR_QP_INVALID_MSG_SIZE";
 206	case I40E_ERR_QP_TOOMANY_WRS_POSTED:
 207		return "I40E_ERR_QP_TOOMANY_WRS_POSTED";
 208	case I40E_ERR_INVALID_FRAG_COUNT:
 209		return "I40E_ERR_INVALID_FRAG_COUNT";
 210	case I40E_ERR_QUEUE_EMPTY:
 211		return "I40E_ERR_QUEUE_EMPTY";
 212	case I40E_ERR_INVALID_ALIGNMENT:
 213		return "I40E_ERR_INVALID_ALIGNMENT";
 214	case I40E_ERR_FLUSHED_QUEUE:
 215		return "I40E_ERR_FLUSHED_QUEUE";
 216	case I40E_ERR_INVALID_PUSH_PAGE_INDEX:
 217		return "I40E_ERR_INVALID_PUSH_PAGE_INDEX";
 218	case I40E_ERR_INVALID_IMM_DATA_SIZE:
 219		return "I40E_ERR_INVALID_IMM_DATA_SIZE";
 220	case I40E_ERR_TIMEOUT:
 221		return "I40E_ERR_TIMEOUT";
 222	case I40E_ERR_OPCODE_MISMATCH:
 223		return "I40E_ERR_OPCODE_MISMATCH";
 224	case I40E_ERR_CQP_COMPL_ERROR:
 225		return "I40E_ERR_CQP_COMPL_ERROR";
 226	case I40E_ERR_INVALID_VF_ID:
 227		return "I40E_ERR_INVALID_VF_ID";
 228	case I40E_ERR_INVALID_HMCFN_ID:
 229		return "I40E_ERR_INVALID_HMCFN_ID";
 230	case I40E_ERR_BACKING_PAGE_ERROR:
 231		return "I40E_ERR_BACKING_PAGE_ERROR";
 232	case I40E_ERR_NO_PBLCHUNKS_AVAILABLE:
 233		return "I40E_ERR_NO_PBLCHUNKS_AVAILABLE";
 234	case I40E_ERR_INVALID_PBLE_INDEX:
 235		return "I40E_ERR_INVALID_PBLE_INDEX";
 236	case I40E_ERR_INVALID_SD_INDEX:
 237		return "I40E_ERR_INVALID_SD_INDEX";
 238	case I40E_ERR_INVALID_PAGE_DESC_INDEX:
 239		return "I40E_ERR_INVALID_PAGE_DESC_INDEX";
 240	case I40E_ERR_INVALID_SD_TYPE:
 241		return "I40E_ERR_INVALID_SD_TYPE";
 242	case I40E_ERR_MEMCPY_FAILED:
 243		return "I40E_ERR_MEMCPY_FAILED";
 244	case I40E_ERR_INVALID_HMC_OBJ_INDEX:
 245		return "I40E_ERR_INVALID_HMC_OBJ_INDEX";
 246	case I40E_ERR_INVALID_HMC_OBJ_COUNT:
 247		return "I40E_ERR_INVALID_HMC_OBJ_COUNT";
 248	case I40E_ERR_INVALID_SRQ_ARM_LIMIT:
 249		return "I40E_ERR_INVALID_SRQ_ARM_LIMIT";
 250	case I40E_ERR_SRQ_ENABLED:
 251		return "I40E_ERR_SRQ_ENABLED";
 252	case I40E_ERR_ADMIN_QUEUE_ERROR:
 253		return "I40E_ERR_ADMIN_QUEUE_ERROR";
 254	case I40E_ERR_ADMIN_QUEUE_TIMEOUT:
 255		return "I40E_ERR_ADMIN_QUEUE_TIMEOUT";
 256	case I40E_ERR_BUF_TOO_SHORT:
 257		return "I40E_ERR_BUF_TOO_SHORT";
 258	case I40E_ERR_ADMIN_QUEUE_FULL:
 259		return "I40E_ERR_ADMIN_QUEUE_FULL";
 260	case I40E_ERR_ADMIN_QUEUE_NO_WORK:
 261		return "I40E_ERR_ADMIN_QUEUE_NO_WORK";
 262	case I40E_ERR_BAD_IWARP_CQE:
 263		return "I40E_ERR_BAD_IWARP_CQE";
 264	case I40E_ERR_NVM_BLANK_MODE:
 265		return "I40E_ERR_NVM_BLANK_MODE";
 266	case I40E_ERR_NOT_IMPLEMENTED:
 267		return "I40E_ERR_NOT_IMPLEMENTED";
 268	case I40E_ERR_PE_DOORBELL_NOT_ENABLED:
 269		return "I40E_ERR_PE_DOORBELL_NOT_ENABLED";
 270	case I40E_ERR_DIAG_TEST_FAILED:
 271		return "I40E_ERR_DIAG_TEST_FAILED";
 272	case I40E_ERR_NOT_READY:
 273		return "I40E_ERR_NOT_READY";
 274	case I40E_NOT_SUPPORTED:
 275		return "I40E_NOT_SUPPORTED";
 276	case I40E_ERR_FIRMWARE_API_VERSION:
 277		return "I40E_ERR_FIRMWARE_API_VERSION";
 278	}
 279
 280	snprintf(hw->err_str, sizeof(hw->err_str), "%d", stat_err);
 281	return hw->err_str;
 282}
 283
 284/**
 285 * i40e_debug_aq
 286 * @hw: debug mask related to admin queue
 287 * @mask: debug mask
 288 * @desc: pointer to admin queue descriptor
 289 * @buffer: pointer to command buffer
 290 * @buf_len: max length of buffer
 291 *
 292 * Dumps debug log about adminq command with descriptor contents.
 293 **/
 294void i40e_debug_aq(struct i40e_hw *hw, enum i40e_debug_mask mask, void *desc,
 295		   void *buffer, u16 buf_len)
 296{
 297	struct i40e_aq_desc *aq_desc = (struct i40e_aq_desc *)desc;
 298	u16 len = le16_to_cpu(aq_desc->datalen);
 299	u8 *buf = (u8 *)buffer;
 300	u16 i = 0;
 301
 302	if ((!(mask & hw->debug_mask)) || (desc == NULL))
 303		return;
 304
 305	i40e_debug(hw, mask,
 306		   "AQ CMD: opcode 0x%04X, flags 0x%04X, datalen 0x%04X, retval 0x%04X\n",
 307		   le16_to_cpu(aq_desc->opcode),
 308		   le16_to_cpu(aq_desc->flags),
 309		   le16_to_cpu(aq_desc->datalen),
 310		   le16_to_cpu(aq_desc->retval));
 311	i40e_debug(hw, mask, "\tcookie (h,l) 0x%08X 0x%08X\n",
 312		   le32_to_cpu(aq_desc->cookie_high),
 313		   le32_to_cpu(aq_desc->cookie_low));
 314	i40e_debug(hw, mask, "\tparam (0,1)  0x%08X 0x%08X\n",
 315		   le32_to_cpu(aq_desc->params.internal.param0),
 316		   le32_to_cpu(aq_desc->params.internal.param1));
 317	i40e_debug(hw, mask, "\taddr (h,l)   0x%08X 0x%08X\n",
 318		   le32_to_cpu(aq_desc->params.external.addr_high),
 319		   le32_to_cpu(aq_desc->params.external.addr_low));
 320
 321	if ((buffer != NULL) && (aq_desc->datalen != 0)) {
 322		i40e_debug(hw, mask, "AQ CMD Buffer:\n");
 323		if (buf_len < len)
 324			len = buf_len;
 325		/* write the full 16-byte chunks */
 326		for (i = 0; i < (len - 16); i += 16)
 327			i40e_debug(hw, mask, "\t0x%04X  %16ph\n", i, buf + i);
 328		/* write whatever's left over without overrunning the buffer */
 329		if (i < len)
 330			i40e_debug(hw, mask, "\t0x%04X  %*ph\n",
 331					     i, len - i, buf + i);
 332	}
 333}
 334
 335/**
 336 * i40e_check_asq_alive
 337 * @hw: pointer to the hw struct
 338 *
 339 * Returns true if Queue is enabled else false.
 340 **/
 341bool i40e_check_asq_alive(struct i40e_hw *hw)
 342{
 343	if (hw->aq.asq.len)
 344		return !!(rd32(hw, hw->aq.asq.len) &
 345			  I40E_PF_ATQLEN_ATQENABLE_MASK);
 346	else
 347		return false;
 348}
 349
 350/**
 351 * i40e_aq_queue_shutdown
 352 * @hw: pointer to the hw struct
 353 * @unloading: is the driver unloading itself
 354 *
 355 * Tell the Firmware that we're shutting down the AdminQ and whether
 356 * or not the driver is unloading as well.
 357 **/
 358i40e_status i40e_aq_queue_shutdown(struct i40e_hw *hw,
 359					     bool unloading)
 360{
 361	struct i40e_aq_desc desc;
 362	struct i40e_aqc_queue_shutdown *cmd =
 363		(struct i40e_aqc_queue_shutdown *)&desc.params.raw;
 364	i40e_status status;
 365
 366	i40e_fill_default_direct_cmd_desc(&desc,
 367					  i40e_aqc_opc_queue_shutdown);
 368
 369	if (unloading)
 370		cmd->driver_unloading = cpu_to_le32(I40E_AQ_DRIVER_UNLOADING);
 371	status = i40e_asq_send_command(hw, &desc, NULL, 0, NULL);
 372
 373	return status;
 374}
 375
 376/**
 377 * i40e_aq_get_set_rss_lut
 378 * @hw: pointer to the hardware structure
 379 * @vsi_id: vsi fw index
 380 * @pf_lut: for PF table set true, for VSI table set false
 381 * @lut: pointer to the lut buffer provided by the caller
 382 * @lut_size: size of the lut buffer
 383 * @set: set true to set the table, false to get the table
 384 *
 385 * Internal function to get or set RSS look up table
 386 **/
 387static i40e_status i40e_aq_get_set_rss_lut(struct i40e_hw *hw,
 388					   u16 vsi_id, bool pf_lut,
 389					   u8 *lut, u16 lut_size,
 390					   bool set)
 391{
 392	i40e_status status;
 393	struct i40e_aq_desc desc;
 394	struct i40e_aqc_get_set_rss_lut *cmd_resp =
 395		   (struct i40e_aqc_get_set_rss_lut *)&desc.params.raw;
 396
 397	if (set)
 398		i40e_fill_default_direct_cmd_desc(&desc,
 399						  i40e_aqc_opc_set_rss_lut);
 400	else
 401		i40e_fill_default_direct_cmd_desc(&desc,
 402						  i40e_aqc_opc_get_rss_lut);
 403
 404	/* Indirect command */
 405	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
 406	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_RD);
 407
 408	cmd_resp->vsi_id =
 409			cpu_to_le16((u16)((vsi_id <<
 410					  I40E_AQC_SET_RSS_LUT_VSI_ID_SHIFT) &
 411					  I40E_AQC_SET_RSS_LUT_VSI_ID_MASK));
 412	cmd_resp->vsi_id |= cpu_to_le16((u16)I40E_AQC_SET_RSS_LUT_VSI_VALID);
 413
 414	if (pf_lut)
 415		cmd_resp->flags |= cpu_to_le16((u16)
 416					((I40E_AQC_SET_RSS_LUT_TABLE_TYPE_PF <<
 417					I40E_AQC_SET_RSS_LUT_TABLE_TYPE_SHIFT) &
 418					I40E_AQC_SET_RSS_LUT_TABLE_TYPE_MASK));
 419	else
 420		cmd_resp->flags |= cpu_to_le16((u16)
 421					((I40E_AQC_SET_RSS_LUT_TABLE_TYPE_VSI <<
 422					I40E_AQC_SET_RSS_LUT_TABLE_TYPE_SHIFT) &
 423					I40E_AQC_SET_RSS_LUT_TABLE_TYPE_MASK));
 424
 425	status = i40e_asq_send_command(hw, &desc, lut, lut_size, NULL);
 426
 427	return status;
 428}
 429
 430/**
 431 * i40e_aq_get_rss_lut
 432 * @hw: pointer to the hardware structure
 433 * @vsi_id: vsi fw index
 434 * @pf_lut: for PF table set true, for VSI table set false
 435 * @lut: pointer to the lut buffer provided by the caller
 436 * @lut_size: size of the lut buffer
 437 *
 438 * get the RSS lookup table, PF or VSI type
 439 **/
 440i40e_status i40e_aq_get_rss_lut(struct i40e_hw *hw, u16 vsi_id,
 441				bool pf_lut, u8 *lut, u16 lut_size)
 442{
 443	return i40e_aq_get_set_rss_lut(hw, vsi_id, pf_lut, lut, lut_size,
 444				       false);
 445}
 446
 447/**
 448 * i40e_aq_set_rss_lut
 449 * @hw: pointer to the hardware structure
 450 * @vsi_id: vsi fw index
 451 * @pf_lut: for PF table set true, for VSI table set false
 452 * @lut: pointer to the lut buffer provided by the caller
 453 * @lut_size: size of the lut buffer
 454 *
 455 * set the RSS lookup table, PF or VSI type
 456 **/
 457i40e_status i40e_aq_set_rss_lut(struct i40e_hw *hw, u16 vsi_id,
 458				bool pf_lut, u8 *lut, u16 lut_size)
 459{
 460	return i40e_aq_get_set_rss_lut(hw, vsi_id, pf_lut, lut, lut_size, true);
 461}
 462
 463/**
 464 * i40e_aq_get_set_rss_key
 465 * @hw: pointer to the hw struct
 466 * @vsi_id: vsi fw index
 467 * @key: pointer to key info struct
 468 * @set: set true to set the key, false to get the key
 469 *
 470 * get the RSS key per VSI
 471 **/
 472static i40e_status i40e_aq_get_set_rss_key(struct i40e_hw *hw,
 473				      u16 vsi_id,
 474				      struct i40e_aqc_get_set_rss_key_data *key,
 475				      bool set)
 476{
 477	i40e_status status;
 478	struct i40e_aq_desc desc;
 479	struct i40e_aqc_get_set_rss_key *cmd_resp =
 480			(struct i40e_aqc_get_set_rss_key *)&desc.params.raw;
 481	u16 key_size = sizeof(struct i40e_aqc_get_set_rss_key_data);
 482
 483	if (set)
 484		i40e_fill_default_direct_cmd_desc(&desc,
 485						  i40e_aqc_opc_set_rss_key);
 486	else
 487		i40e_fill_default_direct_cmd_desc(&desc,
 488						  i40e_aqc_opc_get_rss_key);
 489
 490	/* Indirect command */
 491	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
 492	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_RD);
 493
 494	cmd_resp->vsi_id =
 495			cpu_to_le16((u16)((vsi_id <<
 496					  I40E_AQC_SET_RSS_KEY_VSI_ID_SHIFT) &
 497					  I40E_AQC_SET_RSS_KEY_VSI_ID_MASK));
 498	cmd_resp->vsi_id |= cpu_to_le16((u16)I40E_AQC_SET_RSS_KEY_VSI_VALID);
 499
 500	status = i40e_asq_send_command(hw, &desc, key, key_size, NULL);
 501
 502	return status;
 503}
 504
 505/**
 506 * i40e_aq_get_rss_key
 507 * @hw: pointer to the hw struct
 508 * @vsi_id: vsi fw index
 509 * @key: pointer to key info struct
 510 *
 511 **/
 512i40e_status i40e_aq_get_rss_key(struct i40e_hw *hw,
 513				u16 vsi_id,
 514				struct i40e_aqc_get_set_rss_key_data *key)
 515{
 516	return i40e_aq_get_set_rss_key(hw, vsi_id, key, false);
 517}
 518
 519/**
 520 * i40e_aq_set_rss_key
 521 * @hw: pointer to the hw struct
 522 * @vsi_id: vsi fw index
 523 * @key: pointer to key info struct
 524 *
 525 * set the RSS key per VSI
 526 **/
 527i40e_status i40e_aq_set_rss_key(struct i40e_hw *hw,
 528				u16 vsi_id,
 529				struct i40e_aqc_get_set_rss_key_data *key)
 530{
 531	return i40e_aq_get_set_rss_key(hw, vsi_id, key, true);
 532}
 533
 534/* The i40e_ptype_lookup table is used to convert from the 8-bit ptype in the
 535 * hardware to a bit-field that can be used by SW to more easily determine the
 536 * packet type.
 537 *
 538 * Macros are used to shorten the table lines and make this table human
 539 * readable.
 540 *
 541 * We store the PTYPE in the top byte of the bit field - this is just so that
 542 * we can check that the table doesn't have a row missing, as the index into
 543 * the table should be the PTYPE.
 544 *
 545 * Typical work flow:
 546 *
 547 * IF NOT i40e_ptype_lookup[ptype].known
 548 * THEN
 549 *      Packet is unknown
 550 * ELSE IF i40e_ptype_lookup[ptype].outer_ip == I40E_RX_PTYPE_OUTER_IP
 551 *      Use the rest of the fields to look at the tunnels, inner protocols, etc
 552 * ELSE
 553 *      Use the enum i40e_rx_l2_ptype to decode the packet type
 554 * ENDIF
 555 */
 556
 557/* macro to make the table lines short */
 558#define I40E_PTT(PTYPE, OUTER_IP, OUTER_IP_VER, OUTER_FRAG, T, TE, TEF, I, PL)\
 559	{	PTYPE, \
 560		1, \
 561		I40E_RX_PTYPE_OUTER_##OUTER_IP, \
 562		I40E_RX_PTYPE_OUTER_##OUTER_IP_VER, \
 563		I40E_RX_PTYPE_##OUTER_FRAG, \
 564		I40E_RX_PTYPE_TUNNEL_##T, \
 565		I40E_RX_PTYPE_TUNNEL_END_##TE, \
 566		I40E_RX_PTYPE_##TEF, \
 567		I40E_RX_PTYPE_INNER_PROT_##I, \
 568		I40E_RX_PTYPE_PAYLOAD_LAYER_##PL }
 569
 570#define I40E_PTT_UNUSED_ENTRY(PTYPE) \
 571		{ PTYPE, 0, 0, 0, 0, 0, 0, 0, 0, 0 }
 572
 573/* shorter macros makes the table fit but are terse */
 574#define I40E_RX_PTYPE_NOF		I40E_RX_PTYPE_NOT_FRAG
 575#define I40E_RX_PTYPE_FRG		I40E_RX_PTYPE_FRAG
 576#define I40E_RX_PTYPE_INNER_PROT_TS	I40E_RX_PTYPE_INNER_PROT_TIMESYNC
 577
 578/* Lookup table mapping the HW PTYPE to the bit field for decoding */
 579struct i40e_rx_ptype_decoded i40e_ptype_lookup[] = {
 580	/* L2 Packet types */
 581	I40E_PTT_UNUSED_ENTRY(0),
 582	I40E_PTT(1,  L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY2),
 583	I40E_PTT(2,  L2, NONE, NOF, NONE, NONE, NOF, TS,   PAY2),
 584	I40E_PTT(3,  L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY2),
 585	I40E_PTT_UNUSED_ENTRY(4),
 586	I40E_PTT_UNUSED_ENTRY(5),
 587	I40E_PTT(6,  L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY2),
 588	I40E_PTT(7,  L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY2),
 589	I40E_PTT_UNUSED_ENTRY(8),
 590	I40E_PTT_UNUSED_ENTRY(9),
 591	I40E_PTT(10, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY2),
 592	I40E_PTT(11, L2, NONE, NOF, NONE, NONE, NOF, NONE, NONE),
 593	I40E_PTT(12, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
 594	I40E_PTT(13, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
 595	I40E_PTT(14, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
 596	I40E_PTT(15, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
 597	I40E_PTT(16, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
 598	I40E_PTT(17, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
 599	I40E_PTT(18, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
 600	I40E_PTT(19, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
 601	I40E_PTT(20, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
 602	I40E_PTT(21, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
 603
 604	/* Non Tunneled IPv4 */
 605	I40E_PTT(22, IP, IPV4, FRG, NONE, NONE, NOF, NONE, PAY3),
 606	I40E_PTT(23, IP, IPV4, NOF, NONE, NONE, NOF, NONE, PAY3),
 607	I40E_PTT(24, IP, IPV4, NOF, NONE, NONE, NOF, UDP,  PAY4),
 608	I40E_PTT_UNUSED_ENTRY(25),
 609	I40E_PTT(26, IP, IPV4, NOF, NONE, NONE, NOF, TCP,  PAY4),
 610	I40E_PTT(27, IP, IPV4, NOF, NONE, NONE, NOF, SCTP, PAY4),
 611	I40E_PTT(28, IP, IPV4, NOF, NONE, NONE, NOF, ICMP, PAY4),
 612
 613	/* IPv4 --> IPv4 */
 614	I40E_PTT(29, IP, IPV4, NOF, IP_IP, IPV4, FRG, NONE, PAY3),
 615	I40E_PTT(30, IP, IPV4, NOF, IP_IP, IPV4, NOF, NONE, PAY3),
 616	I40E_PTT(31, IP, IPV4, NOF, IP_IP, IPV4, NOF, UDP,  PAY4),
 617	I40E_PTT_UNUSED_ENTRY(32),
 618	I40E_PTT(33, IP, IPV4, NOF, IP_IP, IPV4, NOF, TCP,  PAY4),
 619	I40E_PTT(34, IP, IPV4, NOF, IP_IP, IPV4, NOF, SCTP, PAY4),
 620	I40E_PTT(35, IP, IPV4, NOF, IP_IP, IPV4, NOF, ICMP, PAY4),
 621
 622	/* IPv4 --> IPv6 */
 623	I40E_PTT(36, IP, IPV4, NOF, IP_IP, IPV6, FRG, NONE, PAY3),
 624	I40E_PTT(37, IP, IPV4, NOF, IP_IP, IPV6, NOF, NONE, PAY3),
 625	I40E_PTT(38, IP, IPV4, NOF, IP_IP, IPV6, NOF, UDP,  PAY4),
 626	I40E_PTT_UNUSED_ENTRY(39),
 627	I40E_PTT(40, IP, IPV4, NOF, IP_IP, IPV6, NOF, TCP,  PAY4),
 628	I40E_PTT(41, IP, IPV4, NOF, IP_IP, IPV6, NOF, SCTP, PAY4),
 629	I40E_PTT(42, IP, IPV4, NOF, IP_IP, IPV6, NOF, ICMP, PAY4),
 630
 631	/* IPv4 --> GRE/NAT */
 632	I40E_PTT(43, IP, IPV4, NOF, IP_GRENAT, NONE, NOF, NONE, PAY3),
 633
 634	/* IPv4 --> GRE/NAT --> IPv4 */
 635	I40E_PTT(44, IP, IPV4, NOF, IP_GRENAT, IPV4, FRG, NONE, PAY3),
 636	I40E_PTT(45, IP, IPV4, NOF, IP_GRENAT, IPV4, NOF, NONE, PAY3),
 637	I40E_PTT(46, IP, IPV4, NOF, IP_GRENAT, IPV4, NOF, UDP,  PAY4),
 638	I40E_PTT_UNUSED_ENTRY(47),
 639	I40E_PTT(48, IP, IPV4, NOF, IP_GRENAT, IPV4, NOF, TCP,  PAY4),
 640	I40E_PTT(49, IP, IPV4, NOF, IP_GRENAT, IPV4, NOF, SCTP, PAY4),
 641	I40E_PTT(50, IP, IPV4, NOF, IP_GRENAT, IPV4, NOF, ICMP, PAY4),
 642
 643	/* IPv4 --> GRE/NAT --> IPv6 */
 644	I40E_PTT(51, IP, IPV4, NOF, IP_GRENAT, IPV6, FRG, NONE, PAY3),
 645	I40E_PTT(52, IP, IPV4, NOF, IP_GRENAT, IPV6, NOF, NONE, PAY3),
 646	I40E_PTT(53, IP, IPV4, NOF, IP_GRENAT, IPV6, NOF, UDP,  PAY4),
 647	I40E_PTT_UNUSED_ENTRY(54),
 648	I40E_PTT(55, IP, IPV4, NOF, IP_GRENAT, IPV6, NOF, TCP,  PAY4),
 649	I40E_PTT(56, IP, IPV4, NOF, IP_GRENAT, IPV6, NOF, SCTP, PAY4),
 650	I40E_PTT(57, IP, IPV4, NOF, IP_GRENAT, IPV6, NOF, ICMP, PAY4),
 651
 652	/* IPv4 --> GRE/NAT --> MAC */
 653	I40E_PTT(58, IP, IPV4, NOF, IP_GRENAT_MAC, NONE, NOF, NONE, PAY3),
 654
 655	/* IPv4 --> GRE/NAT --> MAC --> IPv4 */
 656	I40E_PTT(59, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, FRG, NONE, PAY3),
 657	I40E_PTT(60, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, NOF, NONE, PAY3),
 658	I40E_PTT(61, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, NOF, UDP,  PAY4),
 659	I40E_PTT_UNUSED_ENTRY(62),
 660	I40E_PTT(63, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, NOF, TCP,  PAY4),
 661	I40E_PTT(64, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, NOF, SCTP, PAY4),
 662	I40E_PTT(65, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, NOF, ICMP, PAY4),
 663
 664	/* IPv4 --> GRE/NAT -> MAC --> IPv6 */
 665	I40E_PTT(66, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, FRG, NONE, PAY3),
 666	I40E_PTT(67, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, NOF, NONE, PAY3),
 667	I40E_PTT(68, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, NOF, UDP,  PAY4),
 668	I40E_PTT_UNUSED_ENTRY(69),
 669	I40E_PTT(70, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, NOF, TCP,  PAY4),
 670	I40E_PTT(71, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, NOF, SCTP, PAY4),
 671	I40E_PTT(72, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, NOF, ICMP, PAY4),
 672
 673	/* IPv4 --> GRE/NAT --> MAC/VLAN */
 674	I40E_PTT(73, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, NONE, NOF, NONE, PAY3),
 675
 676	/* IPv4 ---> GRE/NAT -> MAC/VLAN --> IPv4 */
 677	I40E_PTT(74, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, FRG, NONE, PAY3),
 678	I40E_PTT(75, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, NONE, PAY3),
 679	I40E_PTT(76, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, UDP,  PAY4),
 680	I40E_PTT_UNUSED_ENTRY(77),
 681	I40E_PTT(78, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, TCP,  PAY4),
 682	I40E_PTT(79, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, SCTP, PAY4),
 683	I40E_PTT(80, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, ICMP, PAY4),
 684
 685	/* IPv4 -> GRE/NAT -> MAC/VLAN --> IPv6 */
 686	I40E_PTT(81, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, FRG, NONE, PAY3),
 687	I40E_PTT(82, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, NONE, PAY3),
 688	I40E_PTT(83, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, UDP,  PAY4),
 689	I40E_PTT_UNUSED_ENTRY(84),
 690	I40E_PTT(85, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, TCP,  PAY4),
 691	I40E_PTT(86, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, SCTP, PAY4),
 692	I40E_PTT(87, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, ICMP, PAY4),
 693
 694	/* Non Tunneled IPv6 */
 695	I40E_PTT(88, IP, IPV6, FRG, NONE, NONE, NOF, NONE, PAY3),
 696	I40E_PTT(89, IP, IPV6, NOF, NONE, NONE, NOF, NONE, PAY3),
 697	I40E_PTT(90, IP, IPV6, NOF, NONE, NONE, NOF, UDP,  PAY3),
 698	I40E_PTT_UNUSED_ENTRY(91),
 699	I40E_PTT(92, IP, IPV6, NOF, NONE, NONE, NOF, TCP,  PAY4),
 700	I40E_PTT(93, IP, IPV6, NOF, NONE, NONE, NOF, SCTP, PAY4),
 701	I40E_PTT(94, IP, IPV6, NOF, NONE, NONE, NOF, ICMP, PAY4),
 702
 703	/* IPv6 --> IPv4 */
 704	I40E_PTT(95,  IP, IPV6, NOF, IP_IP, IPV4, FRG, NONE, PAY3),
 705	I40E_PTT(96,  IP, IPV6, NOF, IP_IP, IPV4, NOF, NONE, PAY3),
 706	I40E_PTT(97,  IP, IPV6, NOF, IP_IP, IPV4, NOF, UDP,  PAY4),
 707	I40E_PTT_UNUSED_ENTRY(98),
 708	I40E_PTT(99,  IP, IPV6, NOF, IP_IP, IPV4, NOF, TCP,  PAY4),
 709	I40E_PTT(100, IP, IPV6, NOF, IP_IP, IPV4, NOF, SCTP, PAY4),
 710	I40E_PTT(101, IP, IPV6, NOF, IP_IP, IPV4, NOF, ICMP, PAY4),
 711
 712	/* IPv6 --> IPv6 */
 713	I40E_PTT(102, IP, IPV6, NOF, IP_IP, IPV6, FRG, NONE, PAY3),
 714	I40E_PTT(103, IP, IPV6, NOF, IP_IP, IPV6, NOF, NONE, PAY3),
 715	I40E_PTT(104, IP, IPV6, NOF, IP_IP, IPV6, NOF, UDP,  PAY4),
 716	I40E_PTT_UNUSED_ENTRY(105),
 717	I40E_PTT(106, IP, IPV6, NOF, IP_IP, IPV6, NOF, TCP,  PAY4),
 718	I40E_PTT(107, IP, IPV6, NOF, IP_IP, IPV6, NOF, SCTP, PAY4),
 719	I40E_PTT(108, IP, IPV6, NOF, IP_IP, IPV6, NOF, ICMP, PAY4),
 720
 721	/* IPv6 --> GRE/NAT */
 722	I40E_PTT(109, IP, IPV6, NOF, IP_GRENAT, NONE, NOF, NONE, PAY3),
 723
 724	/* IPv6 --> GRE/NAT -> IPv4 */
 725	I40E_PTT(110, IP, IPV6, NOF, IP_GRENAT, IPV4, FRG, NONE, PAY3),
 726	I40E_PTT(111, IP, IPV6, NOF, IP_GRENAT, IPV4, NOF, NONE, PAY3),
 727	I40E_PTT(112, IP, IPV6, NOF, IP_GRENAT, IPV4, NOF, UDP,  PAY4),
 728	I40E_PTT_UNUSED_ENTRY(113),
 729	I40E_PTT(114, IP, IPV6, NOF, IP_GRENAT, IPV4, NOF, TCP,  PAY4),
 730	I40E_PTT(115, IP, IPV6, NOF, IP_GRENAT, IPV4, NOF, SCTP, PAY4),
 731	I40E_PTT(116, IP, IPV6, NOF, IP_GRENAT, IPV4, NOF, ICMP, PAY4),
 732
 733	/* IPv6 --> GRE/NAT -> IPv6 */
 734	I40E_PTT(117, IP, IPV6, NOF, IP_GRENAT, IPV6, FRG, NONE, PAY3),
 735	I40E_PTT(118, IP, IPV6, NOF, IP_GRENAT, IPV6, NOF, NONE, PAY3),
 736	I40E_PTT(119, IP, IPV6, NOF, IP_GRENAT, IPV6, NOF, UDP,  PAY4),
 737	I40E_PTT_UNUSED_ENTRY(120),
 738	I40E_PTT(121, IP, IPV6, NOF, IP_GRENAT, IPV6, NOF, TCP,  PAY4),
 739	I40E_PTT(122, IP, IPV6, NOF, IP_GRENAT, IPV6, NOF, SCTP, PAY4),
 740	I40E_PTT(123, IP, IPV6, NOF, IP_GRENAT, IPV6, NOF, ICMP, PAY4),
 741
 742	/* IPv6 --> GRE/NAT -> MAC */
 743	I40E_PTT(124, IP, IPV6, NOF, IP_GRENAT_MAC, NONE, NOF, NONE, PAY3),
 744
 745	/* IPv6 --> GRE/NAT -> MAC -> IPv4 */
 746	I40E_PTT(125, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, FRG, NONE, PAY3),
 747	I40E_PTT(126, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, NOF, NONE, PAY3),
 748	I40E_PTT(127, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, NOF, UDP,  PAY4),
 749	I40E_PTT_UNUSED_ENTRY(128),
 750	I40E_PTT(129, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, NOF, TCP,  PAY4),
 751	I40E_PTT(130, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, NOF, SCTP, PAY4),
 752	I40E_PTT(131, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, NOF, ICMP, PAY4),
 753
 754	/* IPv6 --> GRE/NAT -> MAC -> IPv6 */
 755	I40E_PTT(132, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, FRG, NONE, PAY3),
 756	I40E_PTT(133, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, NOF, NONE, PAY3),
 757	I40E_PTT(134, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, NOF, UDP,  PAY4),
 758	I40E_PTT_UNUSED_ENTRY(135),
 759	I40E_PTT(136, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, NOF, TCP,  PAY4),
 760	I40E_PTT(137, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, NOF, SCTP, PAY4),
 761	I40E_PTT(138, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, NOF, ICMP, PAY4),
 762
 763	/* IPv6 --> GRE/NAT -> MAC/VLAN */
 764	I40E_PTT(139, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, NONE, NOF, NONE, PAY3),
 765
 766	/* IPv6 --> GRE/NAT -> MAC/VLAN --> IPv4 */
 767	I40E_PTT(140, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, FRG, NONE, PAY3),
 768	I40E_PTT(141, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, NONE, PAY3),
 769	I40E_PTT(142, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, UDP,  PAY4),
 770	I40E_PTT_UNUSED_ENTRY(143),
 771	I40E_PTT(144, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, TCP,  PAY4),
 772	I40E_PTT(145, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, SCTP, PAY4),
 773	I40E_PTT(146, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, ICMP, PAY4),
 774
 775	/* IPv6 --> GRE/NAT -> MAC/VLAN --> IPv6 */
 776	I40E_PTT(147, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, FRG, NONE, PAY3),
 777	I40E_PTT(148, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, NONE, PAY3),
 778	I40E_PTT(149, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, UDP,  PAY4),
 779	I40E_PTT_UNUSED_ENTRY(150),
 780	I40E_PTT(151, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, TCP,  PAY4),
 781	I40E_PTT(152, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, SCTP, PAY4),
 782	I40E_PTT(153, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, ICMP, PAY4),
 783
 784	/* unused entries */
 785	I40E_PTT_UNUSED_ENTRY(154),
 786	I40E_PTT_UNUSED_ENTRY(155),
 787	I40E_PTT_UNUSED_ENTRY(156),
 788	I40E_PTT_UNUSED_ENTRY(157),
 789	I40E_PTT_UNUSED_ENTRY(158),
 790	I40E_PTT_UNUSED_ENTRY(159),
 791
 792	I40E_PTT_UNUSED_ENTRY(160),
 793	I40E_PTT_UNUSED_ENTRY(161),
 794	I40E_PTT_UNUSED_ENTRY(162),
 795	I40E_PTT_UNUSED_ENTRY(163),
 796	I40E_PTT_UNUSED_ENTRY(164),
 797	I40E_PTT_UNUSED_ENTRY(165),
 798	I40E_PTT_UNUSED_ENTRY(166),
 799	I40E_PTT_UNUSED_ENTRY(167),
 800	I40E_PTT_UNUSED_ENTRY(168),
 801	I40E_PTT_UNUSED_ENTRY(169),
 802
 803	I40E_PTT_UNUSED_ENTRY(170),
 804	I40E_PTT_UNUSED_ENTRY(171),
 805	I40E_PTT_UNUSED_ENTRY(172),
 806	I40E_PTT_UNUSED_ENTRY(173),
 807	I40E_PTT_UNUSED_ENTRY(174),
 808	I40E_PTT_UNUSED_ENTRY(175),
 809	I40E_PTT_UNUSED_ENTRY(176),
 810	I40E_PTT_UNUSED_ENTRY(177),
 811	I40E_PTT_UNUSED_ENTRY(178),
 812	I40E_PTT_UNUSED_ENTRY(179),
 813
 814	I40E_PTT_UNUSED_ENTRY(180),
 815	I40E_PTT_UNUSED_ENTRY(181),
 816	I40E_PTT_UNUSED_ENTRY(182),
 817	I40E_PTT_UNUSED_ENTRY(183),
 818	I40E_PTT_UNUSED_ENTRY(184),
 819	I40E_PTT_UNUSED_ENTRY(185),
 820	I40E_PTT_UNUSED_ENTRY(186),
 821	I40E_PTT_UNUSED_ENTRY(187),
 822	I40E_PTT_UNUSED_ENTRY(188),
 823	I40E_PTT_UNUSED_ENTRY(189),
 824
 825	I40E_PTT_UNUSED_ENTRY(190),
 826	I40E_PTT_UNUSED_ENTRY(191),
 827	I40E_PTT_UNUSED_ENTRY(192),
 828	I40E_PTT_UNUSED_ENTRY(193),
 829	I40E_PTT_UNUSED_ENTRY(194),
 830	I40E_PTT_UNUSED_ENTRY(195),
 831	I40E_PTT_UNUSED_ENTRY(196),
 832	I40E_PTT_UNUSED_ENTRY(197),
 833	I40E_PTT_UNUSED_ENTRY(198),
 834	I40E_PTT_UNUSED_ENTRY(199),
 835
 836	I40E_PTT_UNUSED_ENTRY(200),
 837	I40E_PTT_UNUSED_ENTRY(201),
 838	I40E_PTT_UNUSED_ENTRY(202),
 839	I40E_PTT_UNUSED_ENTRY(203),
 840	I40E_PTT_UNUSED_ENTRY(204),
 841	I40E_PTT_UNUSED_ENTRY(205),
 842	I40E_PTT_UNUSED_ENTRY(206),
 843	I40E_PTT_UNUSED_ENTRY(207),
 844	I40E_PTT_UNUSED_ENTRY(208),
 845	I40E_PTT_UNUSED_ENTRY(209),
 846
 847	I40E_PTT_UNUSED_ENTRY(210),
 848	I40E_PTT_UNUSED_ENTRY(211),
 849	I40E_PTT_UNUSED_ENTRY(212),
 850	I40E_PTT_UNUSED_ENTRY(213),
 851	I40E_PTT_UNUSED_ENTRY(214),
 852	I40E_PTT_UNUSED_ENTRY(215),
 853	I40E_PTT_UNUSED_ENTRY(216),
 854	I40E_PTT_UNUSED_ENTRY(217),
 855	I40E_PTT_UNUSED_ENTRY(218),
 856	I40E_PTT_UNUSED_ENTRY(219),
 857
 858	I40E_PTT_UNUSED_ENTRY(220),
 859	I40E_PTT_UNUSED_ENTRY(221),
 860	I40E_PTT_UNUSED_ENTRY(222),
 861	I40E_PTT_UNUSED_ENTRY(223),
 862	I40E_PTT_UNUSED_ENTRY(224),
 863	I40E_PTT_UNUSED_ENTRY(225),
 864	I40E_PTT_UNUSED_ENTRY(226),
 865	I40E_PTT_UNUSED_ENTRY(227),
 866	I40E_PTT_UNUSED_ENTRY(228),
 867	I40E_PTT_UNUSED_ENTRY(229),
 868
 869	I40E_PTT_UNUSED_ENTRY(230),
 870	I40E_PTT_UNUSED_ENTRY(231),
 871	I40E_PTT_UNUSED_ENTRY(232),
 872	I40E_PTT_UNUSED_ENTRY(233),
 873	I40E_PTT_UNUSED_ENTRY(234),
 874	I40E_PTT_UNUSED_ENTRY(235),
 875	I40E_PTT_UNUSED_ENTRY(236),
 876	I40E_PTT_UNUSED_ENTRY(237),
 877	I40E_PTT_UNUSED_ENTRY(238),
 878	I40E_PTT_UNUSED_ENTRY(239),
 879
 880	I40E_PTT_UNUSED_ENTRY(240),
 881	I40E_PTT_UNUSED_ENTRY(241),
 882	I40E_PTT_UNUSED_ENTRY(242),
 883	I40E_PTT_UNUSED_ENTRY(243),
 884	I40E_PTT_UNUSED_ENTRY(244),
 885	I40E_PTT_UNUSED_ENTRY(245),
 886	I40E_PTT_UNUSED_ENTRY(246),
 887	I40E_PTT_UNUSED_ENTRY(247),
 888	I40E_PTT_UNUSED_ENTRY(248),
 889	I40E_PTT_UNUSED_ENTRY(249),
 890
 891	I40E_PTT_UNUSED_ENTRY(250),
 892	I40E_PTT_UNUSED_ENTRY(251),
 893	I40E_PTT_UNUSED_ENTRY(252),
 894	I40E_PTT_UNUSED_ENTRY(253),
 895	I40E_PTT_UNUSED_ENTRY(254),
 896	I40E_PTT_UNUSED_ENTRY(255)
 897};
 898
 899/**
 900 * i40e_init_shared_code - Initialize the shared code
 901 * @hw: pointer to hardware structure
 902 *
 903 * This assigns the MAC type and PHY code and inits the NVM.
 904 * Does not touch the hardware. This function must be called prior to any
 905 * other function in the shared code. The i40e_hw structure should be
 906 * memset to 0 prior to calling this function.  The following fields in
 907 * hw structure should be filled in prior to calling this function:
 908 * hw_addr, back, device_id, vendor_id, subsystem_device_id,
 909 * subsystem_vendor_id, and revision_id
 910 **/
 911i40e_status i40e_init_shared_code(struct i40e_hw *hw)
 912{
 913	i40e_status status = 0;
 914	u32 port, ari, func_rid;
 915
 916	i40e_set_mac_type(hw);
 917
 918	switch (hw->mac.type) {
 919	case I40E_MAC_XL710:
 920	case I40E_MAC_X722:
 921		break;
 922	default:
 923		return I40E_ERR_DEVICE_NOT_SUPPORTED;
 924	}
 925
 926	hw->phy.get_link_info = true;
 927
 928	/* Determine port number and PF number*/
 929	port = (rd32(hw, I40E_PFGEN_PORTNUM) & I40E_PFGEN_PORTNUM_PORT_NUM_MASK)
 930					   >> I40E_PFGEN_PORTNUM_PORT_NUM_SHIFT;
 931	hw->port = (u8)port;
 932	ari = (rd32(hw, I40E_GLPCI_CAPSUP) & I40E_GLPCI_CAPSUP_ARI_EN_MASK) >>
 933						 I40E_GLPCI_CAPSUP_ARI_EN_SHIFT;
 934	func_rid = rd32(hw, I40E_PF_FUNC_RID);
 935	if (ari)
 936		hw->pf_id = (u8)(func_rid & 0xff);
 937	else
 938		hw->pf_id = (u8)(func_rid & 0x7);
 939
 940	if (hw->mac.type == I40E_MAC_X722)
 941		hw->flags |= I40E_HW_FLAG_AQ_SRCTL_ACCESS_ENABLE;
 942
 943	status = i40e_init_nvm(hw);
 944	return status;
 945}
 946
 947/**
 948 * i40e_aq_mac_address_read - Retrieve the MAC addresses
 949 * @hw: pointer to the hw struct
 950 * @flags: a return indicator of what addresses were added to the addr store
 951 * @addrs: the requestor's mac addr store
 952 * @cmd_details: pointer to command details structure or NULL
 953 **/
 954static i40e_status i40e_aq_mac_address_read(struct i40e_hw *hw,
 955				   u16 *flags,
 956				   struct i40e_aqc_mac_address_read_data *addrs,
 957				   struct i40e_asq_cmd_details *cmd_details)
 958{
 959	struct i40e_aq_desc desc;
 960	struct i40e_aqc_mac_address_read *cmd_data =
 961		(struct i40e_aqc_mac_address_read *)&desc.params.raw;
 962	i40e_status status;
 963
 964	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_mac_address_read);
 965	desc.flags |= cpu_to_le16(I40E_AQ_FLAG_BUF);
 966
 967	status = i40e_asq_send_command(hw, &desc, addrs,
 968				       sizeof(*addrs), cmd_details);
 969	*flags = le16_to_cpu(cmd_data->command_flags);
 970
 971	return status;
 972}
 973
 974/**
 975 * i40e_aq_mac_address_write - Change the MAC addresses
 976 * @hw: pointer to the hw struct
 977 * @flags: indicates which MAC to be written
 978 * @mac_addr: address to write
 979 * @cmd_details: pointer to command details structure or NULL
 980 **/
 981i40e_status i40e_aq_mac_address_write(struct i40e_hw *hw,
 982				    u16 flags, u8 *mac_addr,
 983				    struct i40e_asq_cmd_details *cmd_details)
 984{
 985	struct i40e_aq_desc desc;
 986	struct i40e_aqc_mac_address_write *cmd_data =
 987		(struct i40e_aqc_mac_address_write *)&desc.params.raw;
 988	i40e_status status;
 989
 990	i40e_fill_default_direct_cmd_desc(&desc,
 991					  i40e_aqc_opc_mac_address_write);
 992	cmd_data->command_flags = cpu_to_le16(flags);
 993	cmd_data->mac_sah = cpu_to_le16((u16)mac_addr[0] << 8 | mac_addr[1]);
 994	cmd_data->mac_sal = cpu_to_le32(((u32)mac_addr[2] << 24) |
 995					((u32)mac_addr[3] << 16) |
 996					((u32)mac_addr[4] << 8) |
 997					mac_addr[5]);
 998
 999	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
1000
1001	return status;
1002}
1003
1004/**
1005 * i40e_get_mac_addr - get MAC address
1006 * @hw: pointer to the HW structure
1007 * @mac_addr: pointer to MAC address
1008 *
1009 * Reads the adapter's MAC address from register
1010 **/
1011i40e_status i40e_get_mac_addr(struct i40e_hw *hw, u8 *mac_addr)
1012{
1013	struct i40e_aqc_mac_address_read_data addrs;
1014	i40e_status status;
1015	u16 flags = 0;
1016
1017	status = i40e_aq_mac_address_read(hw, &flags, &addrs, NULL);
1018
1019	if (flags & I40E_AQC_LAN_ADDR_VALID)
1020		ether_addr_copy(mac_addr, addrs.pf_lan_mac);
1021
1022	return status;
1023}
1024
1025/**
1026 * i40e_get_port_mac_addr - get Port MAC address
1027 * @hw: pointer to the HW structure
1028 * @mac_addr: pointer to Port MAC address
1029 *
1030 * Reads the adapter's Port MAC address
1031 **/
1032i40e_status i40e_get_port_mac_addr(struct i40e_hw *hw, u8 *mac_addr)
1033{
1034	struct i40e_aqc_mac_address_read_data addrs;
1035	i40e_status status;
1036	u16 flags = 0;
1037
1038	status = i40e_aq_mac_address_read(hw, &flags, &addrs, NULL);
1039	if (status)
1040		return status;
1041
1042	if (flags & I40E_AQC_PORT_ADDR_VALID)
1043		ether_addr_copy(mac_addr, addrs.port_mac);
1044	else
1045		status = I40E_ERR_INVALID_MAC_ADDR;
1046
1047	return status;
1048}
1049
1050/**
1051 * i40e_pre_tx_queue_cfg - pre tx queue configure
1052 * @hw: pointer to the HW structure
1053 * @queue: target PF queue index
1054 * @enable: state change request
1055 *
1056 * Handles hw requirement to indicate intention to enable
1057 * or disable target queue.
1058 **/
1059void i40e_pre_tx_queue_cfg(struct i40e_hw *hw, u32 queue, bool enable)
1060{
1061	u32 abs_queue_idx = hw->func_caps.base_queue + queue;
1062	u32 reg_block = 0;
1063	u32 reg_val;
1064
1065	if (abs_queue_idx >= 128) {
1066		reg_block = abs_queue_idx / 128;
1067		abs_queue_idx %= 128;
1068	}
1069
1070	reg_val = rd32(hw, I40E_GLLAN_TXPRE_QDIS(reg_block));
1071	reg_val &= ~I40E_GLLAN_TXPRE_QDIS_QINDX_MASK;
1072	reg_val |= (abs_queue_idx << I40E_GLLAN_TXPRE_QDIS_QINDX_SHIFT);
1073
1074	if (enable)
1075		reg_val |= I40E_GLLAN_TXPRE_QDIS_CLEAR_QDIS_MASK;
1076	else
1077		reg_val |= I40E_GLLAN_TXPRE_QDIS_SET_QDIS_MASK;
1078
1079	wr32(hw, I40E_GLLAN_TXPRE_QDIS(reg_block), reg_val);
1080}
1081#ifdef I40E_FCOE
1082
1083/**
1084 * i40e_get_san_mac_addr - get SAN MAC address
1085 * @hw: pointer to the HW structure
1086 * @mac_addr: pointer to SAN MAC address
1087 *
1088 * Reads the adapter's SAN MAC address from NVM
1089 **/
1090i40e_status i40e_get_san_mac_addr(struct i40e_hw *hw, u8 *mac_addr)
1091{
1092	struct i40e_aqc_mac_address_read_data addrs;
1093	i40e_status status;
1094	u16 flags = 0;
1095
1096	status = i40e_aq_mac_address_read(hw, &flags, &addrs, NULL);
1097	if (status)
1098		return status;
1099
1100	if (flags & I40E_AQC_SAN_ADDR_VALID)
1101		ether_addr_copy(mac_addr, addrs.pf_san_mac);
1102	else
1103		status = I40E_ERR_INVALID_MAC_ADDR;
1104
1105	return status;
1106}
1107#endif
1108
1109/**
1110 *  i40e_read_pba_string - Reads part number string from EEPROM
1111 *  @hw: pointer to hardware structure
1112 *  @pba_num: stores the part number string from the EEPROM
1113 *  @pba_num_size: part number string buffer length
1114 *
1115 *  Reads the part number string from the EEPROM.
1116 **/
1117i40e_status i40e_read_pba_string(struct i40e_hw *hw, u8 *pba_num,
1118				 u32 pba_num_size)
1119{
1120	i40e_status status = 0;
1121	u16 pba_word = 0;
1122	u16 pba_size = 0;
1123	u16 pba_ptr = 0;
1124	u16 i = 0;
1125
1126	status = i40e_read_nvm_word(hw, I40E_SR_PBA_FLAGS, &pba_word);
1127	if (status || (pba_word != 0xFAFA)) {
1128		hw_dbg(hw, "Failed to read PBA flags or flag is invalid.\n");
1129		return status;
1130	}
1131
1132	status = i40e_read_nvm_word(hw, I40E_SR_PBA_BLOCK_PTR, &pba_ptr);
1133	if (status) {
1134		hw_dbg(hw, "Failed to read PBA Block pointer.\n");
1135		return status;
1136	}
1137
1138	status = i40e_read_nvm_word(hw, pba_ptr, &pba_size);
1139	if (status) {
1140		hw_dbg(hw, "Failed to read PBA Block size.\n");
1141		return status;
1142	}
1143
1144	/* Subtract one to get PBA word count (PBA Size word is included in
1145	 * total size)
1146	 */
1147	pba_size--;
1148	if (pba_num_size < (((u32)pba_size * 2) + 1)) {
1149		hw_dbg(hw, "Buffer to small for PBA data.\n");
1150		return I40E_ERR_PARAM;
1151	}
1152
1153	for (i = 0; i < pba_size; i++) {
1154		status = i40e_read_nvm_word(hw, (pba_ptr + 1) + i, &pba_word);
1155		if (status) {
1156			hw_dbg(hw, "Failed to read PBA Block word %d.\n", i);
1157			return status;
1158		}
1159
1160		pba_num[(i * 2)] = (pba_word >> 8) & 0xFF;
1161		pba_num[(i * 2) + 1] = pba_word & 0xFF;
1162	}
1163	pba_num[(pba_size * 2)] = '\0';
1164
1165	return status;
1166}
1167
1168/**
1169 * i40e_get_media_type - Gets media type
1170 * @hw: pointer to the hardware structure
1171 **/
1172static enum i40e_media_type i40e_get_media_type(struct i40e_hw *hw)
1173{
1174	enum i40e_media_type media;
1175
1176	switch (hw->phy.link_info.phy_type) {
1177	case I40E_PHY_TYPE_10GBASE_SR:
1178	case I40E_PHY_TYPE_10GBASE_LR:
1179	case I40E_PHY_TYPE_1000BASE_SX:
1180	case I40E_PHY_TYPE_1000BASE_LX:
1181	case I40E_PHY_TYPE_40GBASE_SR4:
1182	case I40E_PHY_TYPE_40GBASE_LR4:
1183		media = I40E_MEDIA_TYPE_FIBER;
1184		break;
1185	case I40E_PHY_TYPE_100BASE_TX:
1186	case I40E_PHY_TYPE_1000BASE_T:
1187	case I40E_PHY_TYPE_10GBASE_T:
1188		media = I40E_MEDIA_TYPE_BASET;
1189		break;
1190	case I40E_PHY_TYPE_10GBASE_CR1_CU:
1191	case I40E_PHY_TYPE_40GBASE_CR4_CU:
1192	case I40E_PHY_TYPE_10GBASE_CR1:
1193	case I40E_PHY_TYPE_40GBASE_CR4:
1194	case I40E_PHY_TYPE_10GBASE_SFPP_CU:
1195	case I40E_PHY_TYPE_40GBASE_AOC:
1196	case I40E_PHY_TYPE_10GBASE_AOC:
1197		media = I40E_MEDIA_TYPE_DA;
1198		break;
1199	case I40E_PHY_TYPE_1000BASE_KX:
1200	case I40E_PHY_TYPE_10GBASE_KX4:
1201	case I40E_PHY_TYPE_10GBASE_KR:
1202	case I40E_PHY_TYPE_40GBASE_KR4:
1203	case I40E_PHY_TYPE_20GBASE_KR2:
1204		media = I40E_MEDIA_TYPE_BACKPLANE;
1205		break;
1206	case I40E_PHY_TYPE_SGMII:
1207	case I40E_PHY_TYPE_XAUI:
1208	case I40E_PHY_TYPE_XFI:
1209	case I40E_PHY_TYPE_XLAUI:
1210	case I40E_PHY_TYPE_XLPPI:
1211	default:
1212		media = I40E_MEDIA_TYPE_UNKNOWN;
1213		break;
1214	}
1215
1216	return media;
1217}
1218
1219#define I40E_PF_RESET_WAIT_COUNT_A0	200
1220#define I40E_PF_RESET_WAIT_COUNT	200
1221/**
1222 * i40e_pf_reset - Reset the PF
1223 * @hw: pointer to the hardware structure
1224 *
1225 * Assuming someone else has triggered a global reset,
1226 * assure the global reset is complete and then reset the PF
1227 **/
1228i40e_status i40e_pf_reset(struct i40e_hw *hw)
1229{
1230	u32 cnt = 0;
1231	u32 cnt1 = 0;
1232	u32 reg = 0;
1233	u32 grst_del;
1234
1235	/* Poll for Global Reset steady state in case of recent GRST.
1236	 * The grst delay value is in 100ms units, and we'll wait a
1237	 * couple counts longer to be sure we don't just miss the end.
1238	 */
1239	grst_del = (rd32(hw, I40E_GLGEN_RSTCTL) &
1240		    I40E_GLGEN_RSTCTL_GRSTDEL_MASK) >>
1241		    I40E_GLGEN_RSTCTL_GRSTDEL_SHIFT;
1242
1243	/* It can take upto 15 secs for GRST steady state.
1244	 * Bump it to 16 secs max to be safe.
1245	 */
1246	grst_del = grst_del * 20;
1247
1248	for (cnt = 0; cnt < grst_del; cnt++) {
1249		reg = rd32(hw, I40E_GLGEN_RSTAT);
1250		if (!(reg & I40E_GLGEN_RSTAT_DEVSTATE_MASK))
1251			break;
1252		msleep(100);
1253	}
1254	if (reg & I40E_GLGEN_RSTAT_DEVSTATE_MASK) {
1255		hw_dbg(hw, "Global reset polling failed to complete.\n");
1256		return I40E_ERR_RESET_FAILED;
1257	}
1258
1259	/* Now Wait for the FW to be ready */
1260	for (cnt1 = 0; cnt1 < I40E_PF_RESET_WAIT_COUNT; cnt1++) {
1261		reg = rd32(hw, I40E_GLNVM_ULD);
1262		reg &= (I40E_GLNVM_ULD_CONF_CORE_DONE_MASK |
1263			I40E_GLNVM_ULD_CONF_GLOBAL_DONE_MASK);
1264		if (reg == (I40E_GLNVM_ULD_CONF_CORE_DONE_MASK |
1265			    I40E_GLNVM_ULD_CONF_GLOBAL_DONE_MASK)) {
1266			hw_dbg(hw, "Core and Global modules ready %d\n", cnt1);
1267			break;
1268		}
1269		usleep_range(10000, 20000);
1270	}
1271	if (!(reg & (I40E_GLNVM_ULD_CONF_CORE_DONE_MASK |
1272		     I40E_GLNVM_ULD_CONF_GLOBAL_DONE_MASK))) {
1273		hw_dbg(hw, "wait for FW Reset complete timedout\n");
1274		hw_dbg(hw, "I40E_GLNVM_ULD = 0x%x\n", reg);
1275		return I40E_ERR_RESET_FAILED;
1276	}
1277
1278	/* If there was a Global Reset in progress when we got here,
1279	 * we don't need to do the PF Reset
1280	 */
1281	if (!cnt) {
1282		if (hw->revision_id == 0)
1283			cnt = I40E_PF_RESET_WAIT_COUNT_A0;
1284		else
1285			cnt = I40E_PF_RESET_WAIT_COUNT;
1286		reg = rd32(hw, I40E_PFGEN_CTRL);
1287		wr32(hw, I40E_PFGEN_CTRL,
1288		     (reg | I40E_PFGEN_CTRL_PFSWR_MASK));
1289		for (; cnt; cnt--) {
1290			reg = rd32(hw, I40E_PFGEN_CTRL);
1291			if (!(reg & I40E_PFGEN_CTRL_PFSWR_MASK))
1292				break;
1293			usleep_range(1000, 2000);
1294		}
1295		if (reg & I40E_PFGEN_CTRL_PFSWR_MASK) {
1296			hw_dbg(hw, "PF reset polling failed to complete.\n");
1297			return I40E_ERR_RESET_FAILED;
1298		}
1299	}
1300
1301	i40e_clear_pxe_mode(hw);
1302
1303	return 0;
1304}
1305
1306/**
1307 * i40e_clear_hw - clear out any left over hw state
1308 * @hw: pointer to the hw struct
1309 *
1310 * Clear queues and interrupts, typically called at init time,
1311 * but after the capabilities have been found so we know how many
1312 * queues and msix vectors have been allocated.
1313 **/
1314void i40e_clear_hw(struct i40e_hw *hw)
1315{
1316	u32 num_queues, base_queue;
1317	u32 num_pf_int;
1318	u32 num_vf_int;
1319	u32 num_vfs;
1320	u32 i, j;
1321	u32 val;
1322	u32 eol = 0x7ff;
1323
1324	/* get number of interrupts, queues, and VFs */
1325	val = rd32(hw, I40E_GLPCI_CNF2);
1326	num_pf_int = (val & I40E_GLPCI_CNF2_MSI_X_PF_N_MASK) >>
1327		     I40E_GLPCI_CNF2_MSI_X_PF_N_SHIFT;
1328	num_vf_int = (val & I40E_GLPCI_CNF2_MSI_X_VF_N_MASK) >>
1329		     I40E_GLPCI_CNF2_MSI_X_VF_N_SHIFT;
1330
1331	val = rd32(hw, I40E_PFLAN_QALLOC);
1332	base_queue = (val & I40E_PFLAN_QALLOC_FIRSTQ_MASK) >>
1333		     I40E_PFLAN_QALLOC_FIRSTQ_SHIFT;
1334	j = (val & I40E_PFLAN_QALLOC_LASTQ_MASK) >>
1335	    I40E_PFLAN_QALLOC_LASTQ_SHIFT;
1336	if (val & I40E_PFLAN_QALLOC_VALID_MASK)
1337		num_queues = (j - base_queue) + 1;
1338	else
1339		num_queues = 0;
1340
1341	val = rd32(hw, I40E_PF_VT_PFALLOC);
1342	i = (val & I40E_PF_VT_PFALLOC_FIRSTVF_MASK) >>
1343	    I40E_PF_VT_PFALLOC_FIRSTVF_SHIFT;
1344	j = (val & I40E_PF_VT_PFALLOC_LASTVF_MASK) >>
1345	    I40E_PF_VT_PFALLOC_LASTVF_SHIFT;
1346	if (val & I40E_PF_VT_PFALLOC_VALID_MASK)
1347		num_vfs = (j - i) + 1;
1348	else
1349		num_vfs = 0;
1350
1351	/* stop all the interrupts */
1352	wr32(hw, I40E_PFINT_ICR0_ENA, 0);
1353	val = 0x3 << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT;
1354	for (i = 0; i < num_pf_int - 2; i++)
1355		wr32(hw, I40E_PFINT_DYN_CTLN(i), val);
1356
1357	/* Set the FIRSTQ_INDX field to 0x7FF in PFINT_LNKLSTx */
1358	val = eol << I40E_PFINT_LNKLST0_FIRSTQ_INDX_SHIFT;
1359	wr32(hw, I40E_PFINT_LNKLST0, val);
1360	for (i = 0; i < num_pf_int - 2; i++)
1361		wr32(hw, I40E_PFINT_LNKLSTN(i), val);
1362	val = eol << I40E_VPINT_LNKLST0_FIRSTQ_INDX_SHIFT;
1363	for (i = 0; i < num_vfs; i++)
1364		wr32(hw, I40E_VPINT_LNKLST0(i), val);
1365	for (i = 0; i < num_vf_int - 2; i++)
1366		wr32(hw, I40E_VPINT_LNKLSTN(i), val);
1367
1368	/* warn the HW of the coming Tx disables */
1369	for (i = 0; i < num_queues; i++) {
1370		u32 abs_queue_idx = base_queue + i;
1371		u32 reg_block = 0;
1372
1373		if (abs_queue_idx >= 128) {
1374			reg_block = abs_queue_idx / 128;
1375			abs_queue_idx %= 128;
1376		}
1377
1378		val = rd32(hw, I40E_GLLAN_TXPRE_QDIS(reg_block));
1379		val &= ~I40E_GLLAN_TXPRE_QDIS_QINDX_MASK;
1380		val |= (abs_queue_idx << I40E_GLLAN_TXPRE_QDIS_QINDX_SHIFT);
1381		val |= I40E_GLLAN_TXPRE_QDIS_SET_QDIS_MASK;
1382
1383		wr32(hw, I40E_GLLAN_TXPRE_QDIS(reg_block), val);
1384	}
1385	udelay(400);
1386
1387	/* stop all the queues */
1388	for (i = 0; i < num_queues; i++) {
1389		wr32(hw, I40E_QINT_TQCTL(i), 0);
1390		wr32(hw, I40E_QTX_ENA(i), 0);
1391		wr32(hw, I40E_QINT_RQCTL(i), 0);
1392		wr32(hw, I40E_QRX_ENA(i), 0);
1393	}
1394
1395	/* short wait for all queue disables to settle */
1396	udelay(50);
1397}
1398
1399/**
1400 * i40e_clear_pxe_mode - clear pxe operations mode
1401 * @hw: pointer to the hw struct
1402 *
1403 * Make sure all PXE mode settings are cleared, including things
1404 * like descriptor fetch/write-back mode.
1405 **/
1406void i40e_clear_pxe_mode(struct i40e_hw *hw)
1407{
1408	u32 reg;
1409
1410	if (i40e_check_asq_alive(hw))
1411		i40e_aq_clear_pxe_mode(hw, NULL);
1412
1413	/* Clear single descriptor fetch/write-back mode */
1414	reg = rd32(hw, I40E_GLLAN_RCTL_0);
1415
1416	if (hw->revision_id == 0) {
1417		/* As a work around clear PXE_MODE instead of setting it */
1418		wr32(hw, I40E_GLLAN_RCTL_0, (reg & (~I40E_GLLAN_RCTL_0_PXE_MODE_MASK)));
1419	} else {
1420		wr32(hw, I40E_GLLAN_RCTL_0, (reg | I40E_GLLAN_RCTL_0_PXE_MODE_MASK));
1421	}
1422}
1423
1424/**
1425 * i40e_led_is_mine - helper to find matching led
1426 * @hw: pointer to the hw struct
1427 * @idx: index into GPIO registers
1428 *
1429 * returns: 0 if no match, otherwise the value of the GPIO_CTL register
1430 */
1431static u32 i40e_led_is_mine(struct i40e_hw *hw, int idx)
1432{
1433	u32 gpio_val = 0;
1434	u32 port;
1435
1436	if (!hw->func_caps.led[idx])
1437		return 0;
1438
1439	gpio_val = rd32(hw, I40E_GLGEN_GPIO_CTL(idx));
1440	port = (gpio_val & I40E_GLGEN_GPIO_CTL_PRT_NUM_MASK) >>
1441		I40E_GLGEN_GPIO_CTL_PRT_NUM_SHIFT;
1442
1443	/* if PRT_NUM_NA is 1 then this LED is not port specific, OR
1444	 * if it is not our port then ignore
1445	 */
1446	if ((gpio_val & I40E_GLGEN_GPIO_CTL_PRT_NUM_NA_MASK) ||
1447	    (port != hw->port))
1448		return 0;
1449
1450	return gpio_val;
1451}
1452
1453#define I40E_COMBINED_ACTIVITY 0xA
1454#define I40E_FILTER_ACTIVITY 0xE
1455#define I40E_LINK_ACTIVITY 0xC
1456#define I40E_MAC_ACTIVITY 0xD
1457#define I40E_LED0 22
1458
1459/**
1460 * i40e_led_get - return current on/off mode
1461 * @hw: pointer to the hw struct
1462 *
1463 * The value returned is the 'mode' field as defined in the
1464 * GPIO register definitions: 0x0 = off, 0xf = on, and other
1465 * values are variations of possible behaviors relating to
1466 * blink, link, and wire.
1467 **/
1468u32 i40e_led_get(struct i40e_hw *hw)
1469{
1470	u32 current_mode = 0;
1471	u32 mode = 0;
1472	int i;
1473
1474	/* as per the documentation GPIO 22-29 are the LED
1475	 * GPIO pins named LED0..LED7
1476	 */
1477	for (i = I40E_LED0; i <= I40E_GLGEN_GPIO_CTL_MAX_INDEX; i++) {
1478		u32 gpio_val = i40e_led_is_mine(hw, i);
1479
1480		if (!gpio_val)
1481			continue;
1482
1483		/* ignore gpio LED src mode entries related to the activity
1484		 * LEDs
1485		 */
1486		current_mode = ((gpio_val & I40E_GLGEN_GPIO_CTL_LED_MODE_MASK)
1487				>> I40E_GLGEN_GPIO_CTL_LED_MODE_SHIFT);
1488		switch (current_mode) {
1489		case I40E_COMBINED_ACTIVITY:
1490		case I40E_FILTER_ACTIVITY:
1491		case I40E_MAC_ACTIVITY:
1492			continue;
1493		default:
1494			break;
1495		}
1496
1497		mode = (gpio_val & I40E_GLGEN_GPIO_CTL_LED_MODE_MASK) >>
1498			I40E_GLGEN_GPIO_CTL_LED_MODE_SHIFT;
1499		break;
1500	}
1501
1502	return mode;
1503}
1504
1505/**
1506 * i40e_led_set - set new on/off mode
1507 * @hw: pointer to the hw struct
1508 * @mode: 0=off, 0xf=on (else see manual for mode details)
1509 * @blink: true if the LED should blink when on, false if steady
1510 *
1511 * if this function is used to turn on the blink it should
1512 * be used to disable the blink when restoring the original state.
1513 **/
1514void i40e_led_set(struct i40e_hw *hw, u32 mode, bool blink)
1515{
1516	u32 current_mode = 0;
1517	int i;
1518
1519	if (mode & 0xfffffff0)
1520		hw_dbg(hw, "invalid mode passed in %X\n", mode);
1521
1522	/* as per the documentation GPIO 22-29 are the LED
1523	 * GPIO pins named LED0..LED7
1524	 */
1525	for (i = I40E_LED0; i <= I40E_GLGEN_GPIO_CTL_MAX_INDEX; i++) {
1526		u32 gpio_val = i40e_led_is_mine(hw, i);
1527
1528		if (!gpio_val)
1529			continue;
1530
1531		/* ignore gpio LED src mode entries related to the activity
1532		 * LEDs
1533		 */
1534		current_mode = ((gpio_val & I40E_GLGEN_GPIO_CTL_LED_MODE_MASK)
1535				>> I40E_GLGEN_GPIO_CTL_LED_MODE_SHIFT);
1536		switch (current_mode) {
1537		case I40E_COMBINED_ACTIVITY:
1538		case I40E_FILTER_ACTIVITY:
1539		case I40E_MAC_ACTIVITY:
1540			continue;
1541		default:
1542			break;
1543		}
1544
1545		gpio_val &= ~I40E_GLGEN_GPIO_CTL_LED_MODE_MASK;
1546		/* this & is a bit of paranoia, but serves as a range check */
1547		gpio_val |= ((mode << I40E_GLGEN_GPIO_CTL_LED_MODE_SHIFT) &
1548			     I40E_GLGEN_GPIO_CTL_LED_MODE_MASK);
1549
1550		if (mode == I40E_LINK_ACTIVITY)
1551			blink = false;
1552
1553		if (blink)
1554			gpio_val |= BIT(I40E_GLGEN_GPIO_CTL_LED_BLINK_SHIFT);
1555		else
1556			gpio_val &= ~BIT(I40E_GLGEN_GPIO_CTL_LED_BLINK_SHIFT);
1557
1558		wr32(hw, I40E_GLGEN_GPIO_CTL(i), gpio_val);
1559		break;
1560	}
1561}
1562
1563/* Admin command wrappers */
1564
1565/**
1566 * i40e_aq_get_phy_capabilities
1567 * @hw: pointer to the hw struct
1568 * @abilities: structure for PHY capabilities to be filled
1569 * @qualified_modules: report Qualified Modules
1570 * @report_init: report init capabilities (active are default)
1571 * @cmd_details: pointer to command details structure or NULL
1572 *
1573 * Returns the various PHY abilities supported on the Port.
1574 **/
1575i40e_status i40e_aq_get_phy_capabilities(struct i40e_hw *hw,
1576			bool qualified_modules, bool report_init,
1577			struct i40e_aq_get_phy_abilities_resp *abilities,
1578			struct i40e_asq_cmd_details *cmd_details)
1579{
1580	struct i40e_aq_desc desc;
1581	i40e_status status;
1582	u16 abilities_size = sizeof(struct i40e_aq_get_phy_abilities_resp);
1583
1584	if (!abilities)
1585		return I40E_ERR_PARAM;
1586
1587	i40e_fill_default_direct_cmd_desc(&desc,
1588					  i40e_aqc_opc_get_phy_abilities);
1589
1590	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
1591	if (abilities_size > I40E_AQ_LARGE_BUF)
1592		desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
1593
1594	if (qualified_modules)
1595		desc.params.external.param0 |=
1596			cpu_to_le32(I40E_AQ_PHY_REPORT_QUALIFIED_MODULES);
1597
1598	if (report_init)
1599		desc.params.external.param0 |=
1600			cpu_to_le32(I40E_AQ_PHY_REPORT_INITIAL_VALUES);
1601
1602	status = i40e_asq_send_command(hw, &desc, abilities, abilities_size,
1603				       cmd_details);
1604
1605	if (hw->aq.asq_last_status == I40E_AQ_RC_EIO)
1606		status = I40E_ERR_UNKNOWN_PHY;
1607
1608	if (report_init)
1609		hw->phy.phy_types = le32_to_cpu(abilities->phy_type);
1610
1611	return status;
1612}
1613
1614/**
1615 * i40e_aq_set_phy_config
1616 * @hw: pointer to the hw struct
1617 * @config: structure with PHY configuration to be set
1618 * @cmd_details: pointer to command details structure or NULL
1619 *
1620 * Set the various PHY configuration parameters
1621 * supported on the Port.One or more of the Set PHY config parameters may be
1622 * ignored in an MFP mode as the PF may not have the privilege to set some
1623 * of the PHY Config parameters. This status will be indicated by the
1624 * command response.
1625 **/
1626enum i40e_status_code i40e_aq_set_phy_config(struct i40e_hw *hw,
1627				struct i40e_aq_set_phy_config *config,
1628				struct i40e_asq_cmd_details *cmd_details)
1629{
1630	struct i40e_aq_desc desc;
1631	struct i40e_aq_set_phy_config *cmd =
1632			(struct i40e_aq_set_phy_config *)&desc.params.raw;
1633	enum i40e_status_code status;
1634
1635	if (!config)
1636		return I40E_ERR_PARAM;
1637
1638	i40e_fill_default_direct_cmd_desc(&desc,
1639					  i40e_aqc_opc_set_phy_config);
1640
1641	*cmd = *config;
1642
1643	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
1644
1645	return status;
1646}
1647
1648/**
1649 * i40e_set_fc
1650 * @hw: pointer to the hw struct
1651 *
1652 * Set the requested flow control mode using set_phy_config.
1653 **/
1654enum i40e_status_code i40e_set_fc(struct i40e_hw *hw, u8 *aq_failures,
1655				  bool atomic_restart)
1656{
1657	enum i40e_fc_mode fc_mode = hw->fc.requested_mode;
1658	struct i40e_aq_get_phy_abilities_resp abilities;
1659	struct i40e_aq_set_phy_config config;
1660	enum i40e_status_code status;
1661	u8 pause_mask = 0x0;
1662
1663	*aq_failures = 0x0;
1664
1665	switch (fc_mode) {
1666	case I40E_FC_FULL:
1667		pause_mask |= I40E_AQ_PHY_FLAG_PAUSE_TX;
1668		pause_mask |= I40E_AQ_PHY_FLAG_PAUSE_RX;
1669		break;
1670	case I40E_FC_RX_PAUSE:
1671		pause_mask |= I40E_AQ_PHY_FLAG_PAUSE_RX;
1672		break;
1673	case I40E_FC_TX_PAUSE:
1674		pause_mask |= I40E_AQ_PHY_FLAG_PAUSE_TX;
1675		break;
1676	default:
1677		break;
1678	}
1679
1680	/* Get the current phy config */
1681	status = i40e_aq_get_phy_capabilities(hw, false, false, &abilities,
1682					      NULL);
1683	if (status) {
1684		*aq_failures |= I40E_SET_FC_AQ_FAIL_GET;
1685		return status;
1686	}
1687
1688	memset(&config, 0, sizeof(struct i40e_aq_set_phy_config));
1689	/* clear the old pause settings */
1690	config.abilities = abilities.abilities & ~(I40E_AQ_PHY_FLAG_PAUSE_TX) &
1691			   ~(I40E_AQ_PHY_FLAG_PAUSE_RX);
1692	/* set the new abilities */
1693	config.abilities |= pause_mask;
1694	/* If the abilities have changed, then set the new config */
1695	if (config.abilities != abilities.abilities) {
1696		/* Auto restart link so settings take effect */
1697		if (atomic_restart)
1698			config.abilities |= I40E_AQ_PHY_ENABLE_ATOMIC_LINK;
1699		/* Copy over all the old settings */
1700		config.phy_type = abilities.phy_type;
1701		config.link_speed = abilities.link_speed;
1702		config.eee_capability = abilities.eee_capability;
1703		config.eeer = abilities.eeer_val;
1704		config.low_power_ctrl = abilities.d3_lpan;
1705		status = i40e_aq_set_phy_config(hw, &config, NULL);
1706
1707		if (status)
1708			*aq_failures |= I40E_SET_FC_AQ_FAIL_SET;
1709	}
1710	/* Update the link info */
1711	status = i40e_update_link_info(hw);
1712	if (status) {
1713		/* Wait a little bit (on 40G cards it sometimes takes a really
1714		 * long time for link to come back from the atomic reset)
1715		 * and try once more
1716		 */
1717		msleep(1000);
1718		status = i40e_update_link_info(hw);
1719	}
1720	if (status)
1721		*aq_failures |= I40E_SET_FC_AQ_FAIL_UPDATE;
1722
1723	return status;
1724}
1725
1726/**
1727 * i40e_aq_clear_pxe_mode
1728 * @hw: pointer to the hw struct
1729 * @cmd_details: pointer to command details structure or NULL
1730 *
1731 * Tell the firmware that the driver is taking over from PXE
1732 **/
1733i40e_status i40e_aq_clear_pxe_mode(struct i40e_hw *hw,
1734				struct i40e_asq_cmd_details *cmd_details)
1735{
1736	i40e_status status;
1737	struct i40e_aq_desc desc;
1738	struct i40e_aqc_clear_pxe *cmd =
1739		(struct i40e_aqc_clear_pxe *)&desc.params.raw;
1740
1741	i40e_fill_default_direct_cmd_desc(&desc,
1742					  i40e_aqc_opc_clear_pxe_mode);
1743
1744	cmd->rx_cnt = 0x2;
1745
1746	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
1747
1748	wr32(hw, I40E_GLLAN_RCTL_0, 0x1);
1749
1750	return status;
1751}
1752
1753/**
1754 * i40e_aq_set_link_restart_an
1755 * @hw: pointer to the hw struct
1756 * @enable_link: if true: enable link, if false: disable link
1757 * @cmd_details: pointer to command details structure or NULL
1758 *
1759 * Sets up the link and restarts the Auto-Negotiation over the link.
1760 **/
1761i40e_status i40e_aq_set_link_restart_an(struct i40e_hw *hw,
1762					bool enable_link,
1763					struct i40e_asq_cmd_details *cmd_details)
1764{
1765	struct i40e_aq_desc desc;
1766	struct i40e_aqc_set_link_restart_an *cmd =
1767		(struct i40e_aqc_set_link_restart_an *)&desc.params.raw;
1768	i40e_status status;
1769
1770	i40e_fill_default_direct_cmd_desc(&desc,
1771					  i40e_aqc_opc_set_link_restart_an);
1772
1773	cmd->command = I40E_AQ_PHY_RESTART_AN;
1774	if (enable_link)
1775		cmd->command |= I40E_AQ_PHY_LINK_ENABLE;
1776	else
1777		cmd->command &= ~I40E_AQ_PHY_LINK_ENABLE;
1778
1779	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
1780
1781	return status;
1782}
1783
1784/**
1785 * i40e_aq_get_link_info
1786 * @hw: pointer to the hw struct
1787 * @enable_lse: enable/disable LinkStatusEvent reporting
1788 * @link: pointer to link status structure - optional
1789 * @cmd_details: pointer to command details structure or NULL
1790 *
1791 * Returns the link status of the adapter.
1792 **/
1793i40e_status i40e_aq_get_link_info(struct i40e_hw *hw,
1794				bool enable_lse, struct i40e_link_status *link,
1795				struct i40e_asq_cmd_details *cmd_details)
1796{
1797	struct i40e_aq_desc desc;
1798	struct i40e_aqc_get_link_status *resp =
1799		(struct i40e_aqc_get_link_status *)&desc.params.raw;
1800	struct i40e_link_status *hw_link_info = &hw->phy.link_info;
1801	i40e_status status;
1802	bool tx_pause, rx_pause;
1803	u16 command_flags;
1804
1805	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_get_link_status);
1806
1807	if (enable_lse)
1808		command_flags = I40E_AQ_LSE_ENABLE;
1809	else
1810		command_flags = I40E_AQ_LSE_DISABLE;
1811	resp->command_flags = cpu_to_le16(command_flags);
1812
1813	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
1814
1815	if (status)
1816		goto aq_get_link_info_exit;
1817
1818	/* save off old link status information */
1819	hw->phy.link_info_old = *hw_link_info;
1820
1821	/* update link status */
1822	hw_link_info->phy_type = (enum i40e_aq_phy_type)resp->phy_type;
1823	hw->phy.media_type = i40e_get_media_type(hw);
1824	hw_link_info->link_speed = (enum i40e_aq_link_speed)resp->link_speed;
1825	hw_link_info->link_info = resp->link_info;
1826	hw_link_info->an_info = resp->an_info;
1827	hw_link_info->ext_info = resp->ext_info;
1828	hw_link_info->loopback = resp->loopback;
1829	hw_link_info->max_frame_size = le16_to_cpu(resp->max_frame_size);
1830	hw_link_info->pacing = resp->config & I40E_AQ_CONFIG_PACING_MASK;
1831
1832	/* update fc info */
1833	tx_pause = !!(resp->an_info & I40E_AQ_LINK_PAUSE_TX);
1834	rx_pause = !!(resp->an_info & I40E_AQ_LINK_PAUSE_RX);
1835	if (tx_pause & rx_pause)
1836		hw->fc.current_mode = I40E_FC_FULL;
1837	else if (tx_pause)
1838		hw->fc.current_mode = I40E_FC_TX_PAUSE;
1839	else if (rx_pause)
1840		hw->fc.current_mode = I40E_FC_RX_PAUSE;
1841	else
1842		hw->fc.current_mode = I40E_FC_NONE;
1843
1844	if (resp->config & I40E_AQ_CONFIG_CRC_ENA)
1845		hw_link_info->crc_enable = true;
1846	else
1847		hw_link_info->crc_enable = false;
1848
1849	if (resp->command_flags & cpu_to_le16(I40E_AQ_LSE_ENABLE))
1850		hw_link_info->lse_enable = true;
1851	else
1852		hw_link_info->lse_enable = false;
1853
1854	if ((hw->aq.fw_maj_ver < 4 || (hw->aq.fw_maj_ver == 4 &&
1855	     hw->aq.fw_min_ver < 40)) && hw_link_info->phy_type == 0xE)
1856		hw_link_info->phy_type = I40E_PHY_TYPE_10GBASE_SFPP_CU;
1857
1858	/* save link status information */
1859	if (link)
1860		*link = *hw_link_info;
1861
1862	/* flag cleared so helper functions don't call AQ again */
1863	hw->phy.get_link_info = false;
1864
1865aq_get_link_info_exit:
1866	return status;
1867}
1868
1869/**
1870 * i40e_aq_set_phy_int_mask
1871 * @hw: pointer to the hw struct
1872 * @mask: interrupt mask to be set
1873 * @cmd_details: pointer to command details structure or NULL
1874 *
1875 * Set link interrupt mask.
1876 **/
1877i40e_status i40e_aq_set_phy_int_mask(struct i40e_hw *hw,
1878				     u16 mask,
1879				     struct i40e_asq_cmd_details *cmd_details)
1880{
1881	struct i40e_aq_desc desc;
1882	struct i40e_aqc_set_phy_int_mask *cmd =
1883		(struct i40e_aqc_set_phy_int_mask *)&desc.params.raw;
1884	i40e_status status;
1885
1886	i40e_fill_default_direct_cmd_desc(&desc,
1887					  i40e_aqc_opc_set_phy_int_mask);
1888
1889	cmd->event_mask = cpu_to_le16(mask);
1890
1891	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
1892
1893	return status;
1894}
1895
1896/**
1897 * i40e_aq_set_phy_debug
1898 * @hw: pointer to the hw struct
1899 * @cmd_flags: debug command flags
1900 * @cmd_details: pointer to command details structure or NULL
1901 *
1902 * Reset the external PHY.
1903 **/
1904enum i40e_status_code i40e_aq_set_phy_debug(struct i40e_hw *hw, u8 cmd_flags,
1905					struct i40e_asq_cmd_details *cmd_details)
1906{
1907	struct i40e_aq_desc desc;
1908	struct i40e_aqc_set_phy_debug *cmd =
1909		(struct i40e_aqc_set_phy_debug *)&desc.params.raw;
1910	enum i40e_status_code status;
1911
1912	i40e_fill_default_direct_cmd_desc(&desc,
1913					  i40e_aqc_opc_set_phy_debug);
1914
1915	cmd->command_flags = cmd_flags;
1916
1917	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
1918
1919	return status;
1920}
1921
1922/**
1923 * i40e_aq_add_vsi
1924 * @hw: pointer to the hw struct
1925 * @vsi_ctx: pointer to a vsi context struct
1926 * @cmd_details: pointer to command details structure or NULL
1927 *
1928 * Add a VSI context to the hardware.
1929**/
1930i40e_status i40e_aq_add_vsi(struct i40e_hw *hw,
1931				struct i40e_vsi_context *vsi_ctx,
1932				struct i40e_asq_cmd_details *cmd_details)
1933{
1934	struct i40e_aq_desc desc;
1935	struct i40e_aqc_add_get_update_vsi *cmd =
1936		(struct i40e_aqc_add_get_update_vsi *)&desc.params.raw;
1937	struct i40e_aqc_add_get_update_vsi_completion *resp =
1938		(struct i40e_aqc_add_get_update_vsi_completion *)
1939		&desc.params.raw;
1940	i40e_status status;
1941
1942	i40e_fill_default_direct_cmd_desc(&desc,
1943					  i40e_aqc_opc_add_vsi);
1944
1945	cmd->uplink_seid = cpu_to_le16(vsi_ctx->uplink_seid);
1946	cmd->connection_type = vsi_ctx->connection_type;
1947	cmd->vf_id = vsi_ctx->vf_num;
1948	cmd->vsi_flags = cpu_to_le16(vsi_ctx->flags);
1949
1950	desc.flags |= cpu_to_le16((u16)(I40E_AQ_FLAG_BUF | I40E_AQ_FLAG_RD));
1951
1952	status = i40e_asq_send_command(hw, &desc, &vsi_ctx->info,
1953				    sizeof(vsi_ctx->info), cmd_details);
1954
1955	if (status)
1956		goto aq_add_vsi_exit;
1957
1958	vsi_ctx->seid = le16_to_cpu(resp->seid);
1959	vsi_ctx->vsi_number = le16_to_cpu(resp->vsi_number);
1960	vsi_ctx->vsis_allocated = le16_to_cpu(resp->vsi_used);
1961	vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free);
1962
1963aq_add_vsi_exit:
1964	return status;
1965}
1966
1967/**
1968 * i40e_aq_set_vsi_unicast_promiscuous
1969 * @hw: pointer to the hw struct
1970 * @seid: vsi number
1971 * @set: set unicast promiscuous enable/disable
1972 * @cmd_details: pointer to command details structure or NULL
1973 **/
1974i40e_status i40e_aq_set_vsi_unicast_promiscuous(struct i40e_hw *hw,
1975				u16 seid, bool set,
1976				struct i40e_asq_cmd_details *cmd_details)
1977{
1978	struct i40e_aq_desc desc;
1979	struct i40e_aqc_set_vsi_promiscuous_modes *cmd =
1980		(struct i40e_aqc_set_vsi_promiscuous_modes *)&desc.params.raw;
1981	i40e_status status;
1982	u16 flags = 0;
1983
1984	i40e_fill_default_direct_cmd_desc(&desc,
1985					i40e_aqc_opc_set_vsi_promiscuous_modes);
1986
1987	if (set) {
1988		flags |= I40E_AQC_SET_VSI_PROMISC_UNICAST;
1989		if (((hw->aq.api_maj_ver == 1) && (hw->aq.api_min_ver >= 5)) ||
1990		    (hw->aq.api_maj_ver > 1))
1991			flags |= I40E_AQC_SET_VSI_PROMISC_TX;
1992	}
1993
1994	cmd->promiscuous_flags = cpu_to_le16(flags);
1995
1996	cmd->valid_flags = cpu_to_le16(I40E_AQC_SET_VSI_PROMISC_UNICAST);
1997	if (((hw->aq.api_maj_ver >= 1) && (hw->aq.api_min_ver >= 5)) ||
1998	    (hw->aq.api_maj_ver > 1))
1999		cmd->valid_flags |= cpu_to_le16(I40E_AQC_SET_VSI_PROMISC_TX);
2000
2001	cmd->seid = cpu_to_le16(seid);
2002	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
2003
2004	return status;
2005}
2006
2007/**
2008 * i40e_aq_set_vsi_multicast_promiscuous
2009 * @hw: pointer to the hw struct
2010 * @seid: vsi number
2011 * @set: set multicast promiscuous enable/disable
2012 * @cmd_details: pointer to command details structure or NULL
2013 **/
2014i40e_status i40e_aq_set_vsi_multicast_promiscuous(struct i40e_hw *hw,
2015				u16 seid, bool set, struct i40e_asq_cmd_details *cmd_details)
2016{
2017	struct i40e_aq_desc desc;
2018	struct i40e_aqc_set_vsi_promiscuous_modes *cmd =
2019		(struct i40e_aqc_set_vsi_promiscuous_modes *)&desc.params.raw;
2020	i40e_status status;
2021	u16 flags = 0;
2022
2023	i40e_fill_default_direct_cmd_desc(&desc,
2024					i40e_aqc_opc_set_vsi_promiscuous_modes);
2025
2026	if (set)
2027		flags |= I40E_AQC_SET_VSI_PROMISC_MULTICAST;
2028
2029	cmd->promiscuous_flags = cpu_to_le16(flags);
2030
2031	cmd->valid_flags = cpu_to_le16(I40E_AQC_SET_VSI_PROMISC_MULTICAST);
2032
2033	cmd->seid = cpu_to_le16(seid);
2034	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
2035
2036	return status;
2037}
2038
2039/**
2040 * i40e_aq_set_vsi_broadcast
2041 * @hw: pointer to the hw struct
2042 * @seid: vsi number
2043 * @set_filter: true to set filter, false to clear filter
2044 * @cmd_details: pointer to command details structure or NULL
2045 *
2046 * Set or clear the broadcast promiscuous flag (filter) for a given VSI.
2047 **/
2048i40e_status i40e_aq_set_vsi_broadcast(struct i40e_hw *hw,
2049				u16 seid, bool set_filter,
2050				struct i40e_asq_cmd_details *cmd_details)
2051{
2052	struct i40e_aq_desc desc;
2053	struct i40e_aqc_set_vsi_promiscuous_modes *cmd =
2054		(struct i40e_aqc_set_vsi_promiscuous_modes *)&desc.params.raw;
2055	i40e_status status;
2056
2057	i40e_fill_default_direct_cmd_desc(&desc,
2058					i40e_aqc_opc_set_vsi_promiscuous_modes);
2059
2060	if (set_filter)
2061		cmd->promiscuous_flags
2062			    |= cpu_to_le16(I40E_AQC_SET_VSI_PROMISC_BROADCAST);
2063	else
2064		cmd->promiscuous_flags
2065			    &= cpu_to_le16(~I40E_AQC_SET_VSI_PROMISC_BROADCAST);
2066
2067	cmd->valid_flags = cpu_to_le16(I40E_AQC_SET_VSI_PROMISC_BROADCAST);
2068	cmd->seid = cpu_to_le16(seid);
2069	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
2070
2071	return status;
2072}
2073
2074/**
2075 * i40e_aq_set_vsi_vlan_promisc - control the VLAN promiscuous setting
2076 * @hw: pointer to the hw struct
2077 * @seid: vsi number
2078 * @enable: set MAC L2 layer unicast promiscuous enable/disable for a given VLAN
2079 * @cmd_details: pointer to command details structure or NULL
2080 **/
2081i40e_status i40e_aq_set_vsi_vlan_promisc(struct i40e_hw *hw,
2082				       u16 seid, bool enable,
2083				       struct i40e_asq_cmd_details *cmd_details)
2084{
2085	struct i40e_aq_desc desc;
2086	struct i40e_aqc_set_vsi_promiscuous_modes *cmd =
2087		(struct i40e_aqc_set_vsi_promiscuous_modes *)&desc.params.raw;
2088	i40e_status status;
2089	u16 flags = 0;
2090
2091	i40e_fill_default_direct_cmd_desc(&desc,
2092					i40e_aqc_opc_set_vsi_promiscuous_modes);
2093	if (enable)
2094		flags |= I40E_AQC_SET_VSI_PROMISC_VLAN;
2095
2096	cmd->promiscuous_flags = cpu_to_le16(flags);
2097	cmd->valid_flags = cpu_to_le16(I40E_AQC_SET_VSI_PROMISC_VLAN);
2098	cmd->seid = cpu_to_le16(seid);
2099
2100	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
2101
2102	return status;
2103}
2104
2105/**
2106 * i40e_get_vsi_params - get VSI configuration info
2107 * @hw: pointer to the hw struct
2108 * @vsi_ctx: pointer to a vsi context struct
2109 * @cmd_details: pointer to command details structure or NULL
2110 **/
2111i40e_status i40e_aq_get_vsi_params(struct i40e_hw *hw,
2112				struct i40e_vsi_context *vsi_ctx,
2113				struct i40e_asq_cmd_details *cmd_details)
2114{
2115	struct i40e_aq_desc desc;
2116	struct i40e_aqc_add_get_update_vsi *cmd =
2117		(struct i40e_aqc_add_get_update_vsi *)&desc.params.raw;
2118	struct i40e_aqc_add_get_update_vsi_completion *resp =
2119		(struct i40e_aqc_add_get_update_vsi_completion *)
2120		&desc.params.raw;
2121	i40e_status status;
2122
2123	i40e_fill_default_direct_cmd_desc(&desc,
2124					  i40e_aqc_opc_get_vsi_parameters);
2125
2126	cmd->uplink_seid = cpu_to_le16(vsi_ctx->seid);
2127
2128	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
2129
2130	status = i40e_asq_send_command(hw, &desc, &vsi_ctx->info,
2131				    sizeof(vsi_ctx->info), NULL);
2132
2133	if (status)
2134		goto aq_get_vsi_params_exit;
2135
2136	vsi_ctx->seid = le16_to_cpu(resp->seid);
2137	vsi_ctx->vsi_number = le16_to_cpu(resp->vsi_number);
2138	vsi_ctx->vsis_allocated = le16_to_cpu(resp->vsi_used);
2139	vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free);
2140
2141aq_get_vsi_params_exit:
2142	return status;
2143}
2144
2145/**
2146 * i40e_aq_update_vsi_params
2147 * @hw: pointer to the hw struct
2148 * @vsi_ctx: pointer to a vsi context struct
2149 * @cmd_details: pointer to command details structure or NULL
2150 *
2151 * Update a VSI context.
2152 **/
2153i40e_status i40e_aq_update_vsi_params(struct i40e_hw *hw,
2154				struct i40e_vsi_context *vsi_ctx,
2155				struct i40e_asq_cmd_details *cmd_details)
2156{
2157	struct i40e_aq_desc desc;
2158	struct i40e_aqc_add_get_update_vsi *cmd =
2159		(struct i40e_aqc_add_get_update_vsi *)&desc.params.raw;
2160	i40e_status status;
2161
2162	i40e_fill_default_direct_cmd_desc(&desc,
2163					  i40e_aqc_opc_update_vsi_parameters);
2164	cmd->uplink_seid = cpu_to_le16(vsi_ctx->seid);
2165
2166	desc.flags |= cpu_to_le16((u16)(I40E_AQ_FLAG_BUF | I40E_AQ_FLAG_RD));
2167
2168	status = i40e_asq_send_command(hw, &desc, &vsi_ctx->info,
2169				    sizeof(vsi_ctx->info), cmd_details);
2170
2171	return status;
2172}
2173
2174/**
2175 * i40e_aq_get_switch_config
2176 * @hw: pointer to the hardware structure
2177 * @buf: pointer to the result buffer
2178 * @buf_size: length of input buffer
2179 * @start_seid: seid to start for the report, 0 == beginning
2180 * @cmd_details: pointer to command details structure or NULL
2181 *
2182 * Fill the buf with switch configuration returned from AdminQ command
2183 **/
2184i40e_status i40e_aq_get_switch_config(struct i40e_hw *hw,
2185				struct i40e_aqc_get_switch_config_resp *buf,
2186				u16 buf_size, u16 *start_seid,
2187				struct i40e_asq_cmd_details *cmd_details)
2188{
2189	struct i40e_aq_desc desc;
2190	struct i40e_aqc_switch_seid *scfg =
2191		(struct i40e_aqc_switch_seid *)&desc.params.raw;
2192	i40e_status status;
2193
2194	i40e_fill_default_direct_cmd_desc(&desc,
2195					  i40e_aqc_opc_get_switch_config);
2196	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
2197	if (buf_size > I40E_AQ_LARGE_BUF)
2198		desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
2199	scfg->seid = cpu_to_le16(*start_seid);
2200
2201	status = i40e_asq_send_command(hw, &desc, buf, buf_size, cmd_details);
2202	*start_seid = le16_to_cpu(scfg->seid);
2203
2204	return status;
2205}
2206
2207/**
2208 * i40e_aq_get_firmware_version
2209 * @hw: pointer to the hw struct
2210 * @fw_major_version: firmware major version
2211 * @fw_minor_version: firmware minor version
2212 * @fw_build: firmware build number
2213 * @api_major_version: major queue version
2214 * @api_minor_version: minor queue version
2215 * @cmd_details: pointer to command details structure or NULL
2216 *
2217 * Get the firmware version from the admin queue commands
2218 **/
2219i40e_status i40e_aq_get_firmware_version(struct i40e_hw *hw,
2220				u16 *fw_major_version, u16 *fw_minor_version,
2221				u32 *fw_build,
2222				u16 *api_major_version, u16 *api_minor_version,
2223				struct i40e_asq_cmd_details *cmd_details)
2224{
2225	struct i40e_aq_desc desc;
2226	struct i40e_aqc_get_version *resp =
2227		(struct i40e_aqc_get_version *)&desc.params.raw;
2228	i40e_status status;
2229
2230	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_get_version);
2231
2232	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
2233
2234	if (!status) {
2235		if (fw_major_version)
2236			*fw_major_version = le16_to_cpu(resp->fw_major);
2237		if (fw_minor_version)
2238			*fw_minor_version = le16_to_cpu(resp->fw_minor);
2239		if (fw_build)
2240			*fw_build = le32_to_cpu(resp->fw_build);
2241		if (api_major_version)
2242			*api_major_version = le16_to_cpu(resp->api_major);
2243		if (api_minor_version)
2244			*api_minor_version = le16_to_cpu(resp->api_minor);
2245	}
2246
2247	return status;
2248}
2249
2250/**
2251 * i40e_aq_send_driver_version
2252 * @hw: pointer to the hw struct
2253 * @dv: driver's major, minor version
2254 * @cmd_details: pointer to command details structure or NULL
2255 *
2256 * Send the driver version to the firmware
2257 **/
2258i40e_status i40e_aq_send_driver_version(struct i40e_hw *hw,
2259				struct i40e_driver_version *dv,
2260				struct i40e_asq_cmd_details *cmd_details)
2261{
2262	struct i40e_aq_desc desc;
2263	struct i40e_aqc_driver_version *cmd =
2264		(struct i40e_aqc_driver_version *)&desc.params.raw;
2265	i40e_status status;
2266	u16 len;
2267
2268	if (dv == NULL)
2269		return I40E_ERR_PARAM;
2270
2271	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_driver_version);
2272
2273	desc.flags |= cpu_to_le16(I40E_AQ_FLAG_BUF | I40E_AQ_FLAG_RD);
2274	cmd->driver_major_ver = dv->major_version;
2275	cmd->driver_minor_ver = dv->minor_version;
2276	cmd->driver_build_ver = dv->build_version;
2277	cmd->driver_subbuild_ver = dv->subbuild_version;
2278
2279	len = 0;
2280	while (len < sizeof(dv->driver_string) &&
2281	       (dv->driver_string[len] < 0x80) &&
2282	       dv->driver_string[len])
2283		len++;
2284	status = i40e_asq_send_command(hw, &desc, dv->driver_string,
2285				       len, cmd_details);
2286
2287	return status;
2288}
2289
2290/**
2291 * i40e_get_link_status - get status of the HW network link
2292 * @hw: pointer to the hw struct
2293 * @link_up: pointer to bool (true/false = linkup/linkdown)
2294 *
2295 * Variable link_up true if link is up, false if link is down.
2296 * The variable link_up is invalid if returned value of status != 0
2297 *
2298 * Side effect: LinkStatusEvent reporting becomes enabled
2299 **/
2300i40e_status i40e_get_link_status(struct i40e_hw *hw, bool *link_up)
2301{
2302	i40e_status status = 0;
2303
2304	if (hw->phy.get_link_info) {
2305		status = i40e_update_link_info(hw);
2306
2307		if (status)
2308			i40e_debug(hw, I40E_DEBUG_LINK, "get link failed: status %d\n",
2309				   status);
2310	}
2311
2312	*link_up = hw->phy.link_info.link_info & I40E_AQ_LINK_UP;
2313
2314	return status;
2315}
2316
2317/**
2318 * i40e_updatelink_status - update status of the HW network link
2319 * @hw: pointer to the hw struct
2320 **/
2321i40e_status i40e_update_link_info(struct i40e_hw *hw)
2322{
2323	struct i40e_aq_get_phy_abilities_resp abilities;
2324	i40e_status status = 0;
2325
2326	status = i40e_aq_get_link_info(hw, true, NULL, NULL);
2327	if (status)
2328		return status;
2329
2330	if (hw->phy.link_info.link_info & I40E_AQ_MEDIA_AVAILABLE) {
2331		status = i40e_aq_get_phy_capabilities(hw, false, false,
2332						      &abilities, NULL);
2333		if (status)
2334			return status;
2335
2336		memcpy(hw->phy.link_info.module_type, &abilities.module_type,
2337		       sizeof(hw->phy.link_info.module_type));
2338	}
2339
2340	return status;
2341}
2342
2343/**
2344 * i40e_aq_add_veb - Insert a VEB between the VSI and the MAC
2345 * @hw: pointer to the hw struct
2346 * @uplink_seid: the MAC or other gizmo SEID
2347 * @downlink_seid: the VSI SEID
2348 * @enabled_tc: bitmap of TCs to be enabled
2349 * @default_port: true for default port VSI, false for control port
2350 * @veb_seid: pointer to where to put the resulting VEB SEID
2351 * @enable_stats: true to turn on VEB stats
2352 * @cmd_details: pointer to command details structure or NULL
2353 *
2354 * This asks the FW to add a VEB between the uplink and downlink
2355 * elements.  If the uplink SEID is 0, this will be a floating VEB.
2356 **/
2357i40e_status i40e_aq_add_veb(struct i40e_hw *hw, u16 uplink_seid,
2358				u16 downlink_seid, u8 enabled_tc,
2359				bool default_port, u16 *veb_seid,
2360				bool enable_stats,
2361				struct i40e_asq_cmd_details *cmd_details)
2362{
2363	struct i40e_aq_desc desc;
2364	struct i40e_aqc_add_veb *cmd =
2365		(struct i40e_aqc_add_veb *)&desc.params.raw;
2366	struct i40e_aqc_add_veb_completion *resp =
2367		(struct i40e_aqc_add_veb_completion *)&desc.params.raw;
2368	i40e_status status;
2369	u16 veb_flags = 0;
2370
2371	/* SEIDs need to either both be set or both be 0 for floating VEB */
2372	if (!!uplink_seid != !!downlink_seid)
2373		return I40E_ERR_PARAM;
2374
2375	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_add_veb);
2376
2377	cmd->uplink_seid = cpu_to_le16(uplink_seid);
2378	cmd->downlink_seid = cpu_to_le16(downlink_seid);
2379	cmd->enable_tcs = enabled_tc;
2380	if (!uplink_seid)
2381		veb_flags |= I40E_AQC_ADD_VEB_FLOATING;
2382	if (default_port)
2383		veb_flags |= I40E_AQC_ADD_VEB_PORT_TYPE_DEFAULT;
2384	else
2385		veb_flags |= I40E_AQC_ADD_VEB_PORT_TYPE_DATA;
2386
2387	/* reverse logic here: set the bitflag to disable the stats */
2388	if (!enable_stats)
2389		veb_flags |= I40E_AQC_ADD_VEB_ENABLE_DISABLE_STATS;
2390
2391	cmd->veb_flags = cpu_to_le16(veb_flags);
2392
2393	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
2394
2395	if (!status && veb_seid)
2396		*veb_seid = le16_to_cpu(resp->veb_seid);
2397
2398	return status;
2399}
2400
2401/**
2402 * i40e_aq_get_veb_parameters - Retrieve VEB parameters
2403 * @hw: pointer to the hw struct
2404 * @veb_seid: the SEID of the VEB to query
2405 * @switch_id: the uplink switch id
2406 * @floating: set to true if the VEB is floating
2407 * @statistic_index: index of the stats counter block for this VEB
2408 * @vebs_used: number of VEB's used by function
2409 * @vebs_free: total VEB's not reserved by any function
2410 * @cmd_details: pointer to command details structure or NULL
2411 *
2412 * This retrieves the parameters for a particular VEB, specified by
2413 * uplink_seid, and returns them to the caller.
2414 **/
2415i40e_status i40e_aq_get_veb_parameters(struct i40e_hw *hw,
2416				u16 veb_seid, u16 *switch_id,
2417				bool *floating, u16 *statistic_index,
2418				u16 *vebs_used, u16 *vebs_free,
2419				struct i40e_asq_cmd_details *cmd_details)
2420{
2421	struct i40e_aq_desc desc;
2422	struct i40e_aqc_get_veb_parameters_completion *cmd_resp =
2423		(struct i40e_aqc_get_veb_parameters_completion *)
2424		&desc.params.raw;
2425	i40e_status status;
2426
2427	if (veb_seid == 0)
2428		return I40E_ERR_PARAM;
2429
2430	i40e_fill_default_direct_cmd_desc(&desc,
2431					  i40e_aqc_opc_get_veb_parameters);
2432	cmd_resp->seid = cpu_to_le16(veb_seid);
2433
2434	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
2435	if (status)
2436		goto get_veb_exit;
2437
2438	if (switch_id)
2439		*switch_id = le16_to_cpu(cmd_resp->switch_id);
2440	if (statistic_index)
2441		*statistic_index = le16_to_cpu(cmd_resp->statistic_index);
2442	if (vebs_used)
2443		*vebs_used = le16_to_cpu(cmd_resp->vebs_used);
2444	if (vebs_free)
2445		*vebs_free = le16_to_cpu(cmd_resp->vebs_free);
2446	if (floating) {
2447		u16 flags = le16_to_cpu(cmd_resp->veb_flags);
2448
2449		if (flags & I40E_AQC_ADD_VEB_FLOATING)
2450			*floating = true;
2451		else
2452			*floating = false;
2453	}
2454
2455get_veb_exit:
2456	return status;
2457}
2458
2459/**
2460 * i40e_aq_add_macvlan
2461 * @hw: pointer to the hw struct
2462 * @seid: VSI for the mac address
2463 * @mv_list: list of macvlans to be added
2464 * @count: length of the list
2465 * @cmd_details: pointer to command details structure or NULL
2466 *
2467 * Add MAC/VLAN addresses to the HW filtering
2468 **/
2469i40e_status i40e_aq_add_macvlan(struct i40e_hw *hw, u16 seid,
2470			struct i40e_aqc_add_macvlan_element_data *mv_list,
2471			u16 count, struct i40e_asq_cmd_details *cmd_details)
2472{
2473	struct i40e_aq_desc desc;
2474	struct i40e_aqc_macvlan *cmd =
2475		(struct i40e_aqc_macvlan *)&desc.params.raw;
2476	i40e_status status;
2477	u16 buf_size;
2478	int i;
2479
2480	if (count == 0 || !mv_list || !hw)
2481		return I40E_ERR_PARAM;
2482
2483	buf_size = count * sizeof(*mv_list);
2484
2485	/* prep the rest of the request */
2486	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_add_macvlan);
2487	cmd->num_addresses = cpu_to_le16(count);
2488	cmd->seid[0] = cpu_to_le16(I40E_AQC_MACVLAN_CMD_SEID_VALID | seid);
2489	cmd->seid[1] = 0;
2490	cmd->seid[2] = 0;
2491
2492	for (i = 0; i < count; i++)
2493		if (is_multicast_ether_addr(mv_list[i].mac_addr))
2494			mv_list[i].flags |=
2495			       cpu_to_le16(I40E_AQC_MACVLAN_ADD_USE_SHARED_MAC);
2496
2497	desc.flags |= cpu_to_le16((u16)(I40E_AQ_FLAG_BUF | I40E_AQ_FLAG_RD));
2498	if (buf_size > I40E_AQ_LARGE_BUF)
2499		desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
2500
2501	status = i40e_asq_send_command(hw, &desc, mv_list, buf_size,
2502				       cmd_details);
2503
2504	return status;
2505}
2506
2507/**
2508 * i40e_aq_remove_macvlan
2509 * @hw: pointer to the hw struct
2510 * @seid: VSI for the mac address
2511 * @mv_list: list of macvlans to be removed
2512 * @count: length of the list
2513 * @cmd_details: pointer to command details structure or NULL
2514 *
2515 * Remove MAC/VLAN addresses from the HW filtering
2516 **/
2517i40e_status i40e_aq_remove_macvlan(struct i40e_hw *hw, u16 seid,
2518			struct i40e_aqc_remove_macvlan_element_data *mv_list,
2519			u16 count, struct i40e_asq_cmd_details *cmd_details)
2520{
2521	struct i40e_aq_desc desc;
2522	struct i40e_aqc_macvlan *cmd =
2523		(struct i40e_aqc_macvlan *)&desc.params.raw;
2524	i40e_status status;
2525	u16 buf_size;
2526
2527	if (count == 0 || !mv_list || !hw)
2528		return I40E_ERR_PARAM;
2529
2530	buf_size = count * sizeof(*mv_list);
2531
2532	/* prep the rest of the request */
2533	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_remove_macvlan);
2534	cmd->num_addresses = cpu_to_le16(count);
2535	cmd->seid[0] = cpu_to_le16(I40E_AQC_MACVLAN_CMD_SEID_VALID | seid);
2536	cmd->seid[1] = 0;
2537	cmd->seid[2] = 0;
2538
2539	desc.flags |= cpu_to_le16((u16)(I40E_AQ_FLAG_BUF | I40E_AQ_FLAG_RD));
2540	if (buf_size > I40E_AQ_LARGE_BUF)
2541		desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
2542
2543	status = i40e_asq_send_command(hw, &desc, mv_list, buf_size,
2544				       cmd_details);
2545
2546	return status;
2547}
2548
2549/**
2550 * i40e_mirrorrule_op - Internal helper function to add/delete mirror rule
2551 * @hw: pointer to the hw struct
2552 * @opcode: AQ opcode for add or delete mirror rule
2553 * @sw_seid: Switch SEID (to which rule refers)
2554 * @rule_type: Rule Type (ingress/egress/VLAN)
2555 * @id: Destination VSI SEID or Rule ID
2556 * @count: length of the list
2557 * @mr_list: list of mirrored VSI SEIDs or VLAN IDs
2558 * @cmd_details: pointer to command details structure or NULL
2559 * @rule_id: Rule ID returned from FW
2560 * @rule_used: Number of rules used in internal switch
2561 * @rule_free: Number of rules free in internal switch
2562 *
2563 * Add/Delete a mirror rule to a specific switch. Mirror rules are supported for
2564 * VEBs/VEPA elements only
2565 **/
2566static i40e_status i40e_mirrorrule_op(struct i40e_hw *hw,
2567				u16 opcode, u16 sw_seid, u16 rule_type, u16 id,
2568				u16 count, __le16 *mr_list,
2569				struct i40e_asq_cmd_details *cmd_details,
2570				u16 *rule_id, u16 *rules_used, u16 *rules_free)
2571{
2572	struct i40e_aq_desc desc;
2573	struct i40e_aqc_add_delete_mirror_rule *cmd =
2574		(struct i40e_aqc_add_delete_mirror_rule *)&desc.params.raw;
2575	struct i40e_aqc_add_delete_mirror_rule_completion *resp =
2576	(struct i40e_aqc_add_delete_mirror_rule_completion *)&desc.params.raw;
2577	i40e_status status;
2578	u16 buf_size;
2579
2580	buf_size = count * sizeof(*mr_list);
2581
2582	/* prep the rest of the request */
2583	i40e_fill_default_direct_cmd_desc(&desc, opcode);
2584	cmd->seid = cpu_to_le16(sw_seid);
2585	cmd->rule_type = cpu_to_le16(rule_type &
2586				     I40E_AQC_MIRROR_RULE_TYPE_MASK);
2587	cmd->num_entries = cpu_to_le16(count);
2588	/* Dest VSI for add, rule_id for delete */
2589	cmd->destination = cpu_to_le16(id);
2590	if (mr_list) {
2591		desc.flags |= cpu_to_le16((u16)(I40E_AQ_FLAG_BUF |
2592						I40E_AQ_FLAG_RD));
2593		if (buf_size > I40E_AQ_LARGE_BUF)
2594			desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
2595	}
2596
2597	status = i40e_asq_send_command(hw, &desc, mr_list, buf_size,
2598				       cmd_details);
2599	if (!status ||
2600	    hw->aq.asq_last_status == I40E_AQ_RC_ENOSPC) {
2601		if (rule_id)
2602			*rule_id = le16_to_cpu(resp->rule_id);
2603		if (rules_used)
2604			*rules_used = le16_to_cpu(resp->mirror_rules_used);
2605		if (rules_free)
2606			*rules_free = le16_to_cpu(resp->mirror_rules_free);
2607	}
2608	return status;
2609}
2610
2611/**
2612 * i40e_aq_add_mirrorrule - add a mirror rule
2613 * @hw: pointer to the hw struct
2614 * @sw_seid: Switch SEID (to which rule refers)
2615 * @rule_type: Rule Type (ingress/egress/VLAN)
2616 * @dest_vsi: SEID of VSI to which packets will be mirrored
2617 * @count: length of the list
2618 * @mr_list: list of mirrored VSI SEIDs or VLAN IDs
2619 * @cmd_details: pointer to command details structure or NULL
2620 * @rule_id: Rule ID returned from FW
2621 * @rule_used: Number of rules used in internal switch
2622 * @rule_free: Number of rules free in internal switch
2623 *
2624 * Add mirror rule. Mirror rules are supported for VEBs or VEPA elements only
2625 **/
2626i40e_status i40e_aq_add_mirrorrule(struct i40e_hw *hw, u16 sw_seid,
2627			u16 rule_type, u16 dest_vsi, u16 count, __le16 *mr_list,
2628			struct i40e_asq_cmd_details *cmd_details,
2629			u16 *rule_id, u16 *rules_used, u16 *rules_free)
2630{
2631	if (!(rule_type == I40E_AQC_MIRROR_RULE_TYPE_ALL_INGRESS ||
2632	    rule_type == I40E_AQC_MIRROR_RULE_TYPE_ALL_EGRESS)) {
2633		if (count == 0 || !mr_list)
2634			return I40E_ERR_PARAM;
2635	}
2636
2637	return i40e_mirrorrule_op(hw, i40e_aqc_opc_add_mirror_rule, sw_seid,
2638				  rule_type, dest_vsi, count, mr_list,
2639				  cmd_details, rule_id, rules_used, rules_free);
2640}
2641
2642/**
2643 * i40e_aq_delete_mirrorrule - delete a mirror rule
2644 * @hw: pointer to the hw struct
2645 * @sw_seid: Switch SEID (to which rule refers)
2646 * @rule_type: Rule Type (ingress/egress/VLAN)
2647 * @count: length of the list
2648 * @rule_id: Rule ID that is returned in the receive desc as part of
2649 *		add_mirrorrule.
2650 * @mr_list: list of mirrored VLAN IDs to be removed
2651 * @cmd_details: pointer to command details structure or NULL
2652 * @rule_used: Number of rules used in internal switch
2653 * @rule_free: Number of rules free in internal switch
2654 *
2655 * Delete a mirror rule. Mirror rules are supported for VEBs/VEPA elements only
2656 **/
2657i40e_status i40e_aq_delete_mirrorrule(struct i40e_hw *hw, u16 sw_seid,
2658			u16 rule_type, u16 rule_id, u16 count, __le16 *mr_list,
2659			struct i40e_asq_cmd_details *cmd_details,
2660			u16 *rules_used, u16 *rules_free)
2661{
2662	/* Rule ID has to be valid except rule_type: INGRESS VLAN mirroring */
2663	if (rule_type != I40E_AQC_MIRROR_RULE_TYPE_VLAN) {
2664		if (!rule_id)
2665			return I40E_ERR_PARAM;
2666	} else {
2667		/* count and mr_list shall be valid for rule_type INGRESS VLAN
2668		 * mirroring. For other rule_type, count and rule_type should
2669		 * not matter.
2670		 */
2671		if (count == 0 || !mr_list)
2672			return I40E_ERR_PARAM;
2673	}
2674
2675	return i40e_mirrorrule_op(hw, i40e_aqc_opc_delete_mirror_rule, sw_seid,
2676				  rule_type, rule_id, count, mr_list,
2677				  cmd_details, NULL, rules_used, rules_free);
2678}
2679
2680/**
2681 * i40e_aq_send_msg_to_vf
2682 * @hw: pointer to the hardware structure
2683 * @vfid: VF id to send msg
2684 * @v_opcode: opcodes for VF-PF communication
2685 * @v_retval: return error code
2686 * @msg: pointer to the msg buffer
2687 * @msglen: msg length
2688 * @cmd_details: pointer to command details
2689 *
2690 * send msg to vf
2691 **/
2692i40e_status i40e_aq_send_msg_to_vf(struct i40e_hw *hw, u16 vfid,
2693				u32 v_opcode, u32 v_retval, u8 *msg, u16 msglen,
2694				struct i40e_asq_cmd_details *cmd_details)
2695{
2696	struct i40e_aq_desc desc;
2697	struct i40e_aqc_pf_vf_message *cmd =
2698		(struct i40e_aqc_pf_vf_message *)&desc.params.raw;
2699	i40e_status status;
2700
2701	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_send_msg_to_vf);
2702	cmd->id = cpu_to_le32(vfid);
2703	desc.cookie_high = cpu_to_le32(v_opcode);
2704	desc.cookie_low = cpu_to_le32(v_retval);
2705	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_SI);
2706	if (msglen) {
2707		desc.flags |= cpu_to_le16((u16)(I40E_AQ_FLAG_BUF |
2708						I40E_AQ_FLAG_RD));
2709		if (msglen > I40E_AQ_LARGE_BUF)
2710			desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
2711		desc.datalen = cpu_to_le16(msglen);
2712	}
2713	status = i40e_asq_send_command(hw, &desc, msg, msglen, cmd_details);
2714
2715	return status;
2716}
2717
2718/**
2719 * i40e_aq_debug_read_register
2720 * @hw: pointer to the hw struct
2721 * @reg_addr: register address
2722 * @reg_val: register value
2723 * @cmd_details: pointer to command details structure or NULL
2724 *
2725 * Read the register using the admin queue commands
2726 **/
2727i40e_status i40e_aq_debug_read_register(struct i40e_hw *hw,
2728				u32 reg_addr, u64 *reg_val,
2729				struct i40e_asq_cmd_details *cmd_details)
2730{
2731	struct i40e_aq_desc desc;
2732	struct i40e_aqc_debug_reg_read_write *cmd_resp =
2733		(struct i40e_aqc_debug_reg_read_write *)&desc.params.raw;
2734	i40e_status status;
2735
2736	if (reg_val == NULL)
2737		return I40E_ERR_PARAM;
2738
2739	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_debug_read_reg);
2740
2741	cmd_resp->address = cpu_to_le32(reg_addr);
2742
2743	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
2744
2745	if (!status) {
2746		*reg_val = ((u64)le32_to_cpu(cmd_resp->value_high) << 32) |
2747			   (u64)le32_to_cpu(cmd_resp->value_low);
2748	}
2749
2750	return status;
2751}
2752
2753/**
2754 * i40e_aq_debug_write_register
2755 * @hw: pointer to the hw struct
2756 * @reg_addr: register address
2757 * @reg_val: register value
2758 * @cmd_details: pointer to command details structure or NULL
2759 *
2760 * Write to a register using the admin queue commands
2761 **/
2762i40e_status i40e_aq_debug_write_register(struct i40e_hw *hw,
2763					u32 reg_addr, u64 reg_val,
2764					struct i40e_asq_cmd_details *cmd_details)
2765{
2766	struct i40e_aq_desc desc;
2767	struct i40e_aqc_debug_reg_read_write *cmd =
2768		(struct i40e_aqc_debug_reg_read_write *)&desc.params.raw;
2769	i40e_status status;
2770
2771	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_debug_write_reg);
2772
2773	cmd->address = cpu_to_le32(reg_addr);
2774	cmd->value_high = cpu_to_le32((u32)(reg_val >> 32));
2775	cmd->value_low = cpu_to_le32((u32)(reg_val & 0xFFFFFFFF));
2776
2777	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
2778
2779	return status;
2780}
2781
2782/**
2783 * i40e_aq_set_hmc_resource_profile
2784 * @hw: pointer to the hw struct
2785 * @profile: type of profile the HMC is to be set as
2786 * @pe_vf_enabled_count: the number of PE enabled VFs the system has
2787 * @cmd_details: pointer to command details structure or NULL
2788 *
2789 * set the HMC profile of the device.
2790 **/
2791i40e_status i40e_aq_set_hmc_resource_profile(struct i40e_hw *hw,
2792				enum i40e_aq_hmc_profile profile,
2793				u8 pe_vf_enabled_count,
2794				struct i40e_asq_cmd_details *cmd_details)
2795{
2796	struct i40e_aq_desc desc;
2797	struct i40e_aq_get_set_hmc_resource_profile *cmd =
2798		(struct i40e_aq_get_set_hmc_resource_profile *)&desc.params.raw;
2799	i40e_status status;
2800
2801	i40e_fill_default_direct_cmd_desc(&desc,
2802					i40e_aqc_opc_set_hmc_resource_profile);
2803
2804	cmd->pm_profile = (u8)profile;
2805	cmd->pe_vf_enabled = pe_vf_enabled_count;
2806
2807	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
2808
2809	return status;
2810}
2811
2812/**
2813 * i40e_aq_request_resource
2814 * @hw: pointer to the hw struct
2815 * @resource: resource id
2816 * @access: access type
2817 * @sdp_number: resource number
2818 * @timeout: the maximum time in ms that the driver may hold the resource
2819 * @cmd_details: pointer to command details structure or NULL
2820 *
2821 * requests common resource using the admin queue commands
2822 **/
2823i40e_status i40e_aq_request_resource(struct i40e_hw *hw,
2824				enum i40e_aq_resources_ids resource,
2825				enum i40e_aq_resource_access_type access,
2826				u8 sdp_number, u64 *timeout,
2827				struct i40e_asq_cmd_details *cmd_details)
2828{
2829	struct i40e_aq_desc desc;
2830	struct i40e_aqc_request_resource *cmd_resp =
2831		(struct i40e_aqc_request_resource *)&desc.params.raw;
2832	i40e_status status;
2833
2834	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_request_resource);
2835
2836	cmd_resp->resource_id = cpu_to_le16(resource);
2837	cmd_resp->access_type = cpu_to_le16(access);
2838	cmd_resp->resource_number = cpu_to_le32(sdp_number);
2839
2840	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
2841	/* The completion specifies the maximum time in ms that the driver
2842	 * may hold the resource in the Timeout field.
2843	 * If the resource is held by someone else, the command completes with
2844	 * busy return value and the timeout field indicates the maximum time
2845	 * the current owner of the resource has to free it.
2846	 */
2847	if (!status || hw->aq.asq_last_status == I40E_AQ_RC_EBUSY)
2848		*timeout = le32_to_cpu(cmd_resp->timeout);
2849
2850	return status;
2851}
2852
2853/**
2854 * i40e_aq_release_resource
2855 * @hw: pointer to the hw struct
2856 * @resource: resource id
2857 * @sdp_number: resource number
2858 * @cmd_details: pointer to command details structure or NULL
2859 *
2860 * release common resource using the admin queue commands
2861 **/
2862i40e_status i40e_aq_release_resource(struct i40e_hw *hw,
2863				enum i40e_aq_resources_ids resource,
2864				u8 sdp_number,
2865				struct i40e_asq_cmd_details *cmd_details)
2866{
2867	struct i40e_aq_desc desc;
2868	struct i40e_aqc_request_resource *cmd =
2869		(struct i40e_aqc_request_resource *)&desc.params.raw;
2870	i40e_status status;
2871
2872	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_release_resource);
2873
2874	cmd->resource_id = cpu_to_le16(resource);
2875	cmd->resource_number = cpu_to_le32(sdp_number);
2876
2877	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
2878
2879	return status;
2880}
2881
2882/**
2883 * i40e_aq_read_nvm
2884 * @hw: pointer to the hw struct
2885 * @module_pointer: module pointer location in words from the NVM beginning
2886 * @offset: byte offset from the module beginning
2887 * @length: length of the section to be read (in bytes from the offset)
2888 * @data: command buffer (size [bytes] = length)
2889 * @last_command: tells if this is the last command in a series
2890 * @cmd_details: pointer to command details structure or NULL
2891 *
2892 * Read the NVM using the admin queue commands
2893 **/
2894i40e_status i40e_aq_read_nvm(struct i40e_hw *hw, u8 module_pointer,
2895				u32 offset, u16 length, void *data,
2896				bool last_command,
2897				struct i40e_asq_cmd_details *cmd_details)
2898{
2899	struct i40e_aq_desc desc;
2900	struct i40e_aqc_nvm_update *cmd =
2901		(struct i40e_aqc_nvm_update *)&desc.params.raw;
2902	i40e_status status;
2903
2904	/* In offset the highest byte must be zeroed. */
2905	if (offset & 0xFF000000) {
2906		status = I40E_ERR_PARAM;
2907		goto i40e_aq_read_nvm_exit;
2908	}
2909
2910	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_nvm_read);
2911
2912	/* If this is the last command in a series, set the proper flag. */
2913	if (last_command)
2914		cmd->command_flags |= I40E_AQ_NVM_LAST_CMD;
2915	cmd->module_pointer = module_pointer;
2916	cmd->offset = cpu_to_le32(offset);
2917	cmd->length = cpu_to_le16(length);
2918
2919	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
2920	if (length > I40E_AQ_LARGE_BUF)
2921		desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
2922
2923	status = i40e_asq_send_command(hw, &desc, data, length, cmd_details);
2924
2925i40e_aq_read_nvm_exit:
2926	return status;
2927}
2928
2929/**
2930 * i40e_aq_erase_nvm
2931 * @hw: pointer to the hw struct
2932 * @module_pointer: module pointer location in words from the NVM beginning
2933 * @offset: offset in the module (expressed in 4 KB from module's beginning)
2934 * @length: length of the section to be erased (expressed in 4 KB)
2935 * @last_command: tells if this is the last command in a series
2936 * @cmd_details: pointer to command details structure or NULL
2937 *
2938 * Erase the NVM sector using the admin queue commands
2939 **/
2940i40e_status i40e_aq_erase_nvm(struct i40e_hw *hw, u8 module_pointer,
2941			      u32 offset, u16 length, bool last_command,
2942			      struct i40e_asq_cmd_details *cmd_details)
2943{
2944	struct i40e_aq_desc desc;
2945	struct i40e_aqc_nvm_update *cmd =
2946		(struct i40e_aqc_nvm_update *)&desc.params.raw;
2947	i40e_status status;
2948
2949	/* In offset the highest byte must be zeroed. */
2950	if (offset & 0xFF000000) {
2951		status = I40E_ERR_PARAM;
2952		goto i40e_aq_erase_nvm_exit;
2953	}
2954
2955	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_nvm_erase);
2956
2957	/* If this is the last command in a series, set the proper flag. */
2958	if (last_command)
2959		cmd->command_flags |= I40E_AQ_NVM_LAST_CMD;
2960	cmd->module_pointer = module_pointer;
2961	cmd->offset = cpu_to_le32(offset);
2962	cmd->length = cpu_to_le16(length);
2963
2964	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
2965
2966i40e_aq_erase_nvm_exit:
2967	return status;
2968}
2969
2970/**
2971 * i40e_parse_discover_capabilities
2972 * @hw: pointer to the hw struct
2973 * @buff: pointer to a buffer containing device/function capability records
2974 * @cap_count: number of capability records in the list
2975 * @list_type_opc: type of capabilities list to parse
2976 *
2977 * Parse the device/function capabilities list.
2978 **/
2979static void i40e_parse_discover_capabilities(struct i40e_hw *hw, void *buff,
2980				     u32 cap_count,
2981				     enum i40e_admin_queue_opc list_type_opc)
2982{
2983	struct i40e_aqc_list_capabilities_element_resp *cap;
2984	u32 valid_functions, num_functions;
2985	u32 number, logical_id, phys_id;
2986	struct i40e_hw_capabilities *p;
2987	u8 major_rev;
2988	u32 i = 0;
2989	u16 id;
2990
2991	cap = (struct i40e_aqc_list_capabilities_element_resp *) buff;
2992
2993	if (list_type_opc == i40e_aqc_opc_list_dev_capabilities)
2994		p = &hw->dev_caps;
2995	else if (list_type_opc == i40e_aqc_opc_list_func_capabilities)
2996		p = &hw->func_caps;
2997	else
2998		return;
2999
3000	for (i = 0; i < cap_count; i++, cap++) {
3001		id = le16_to_cpu(cap->id);
3002		number = le32_to_cpu(cap->number);
3003		logical_id = le32_to_cpu(cap->logical_id);
3004		phys_id = le32_to_cpu(cap->phys_id);
3005		major_rev = cap->major_rev;
3006
3007		switch (id) {
3008		case I40E_AQ_CAP_ID_SWITCH_MODE:
3009			p->switch_mode = number;
3010			break;
3011		case I40E_AQ_CAP_ID_MNG_MODE:
3012			p->management_mode = number;
3013			break;
3014		case I40E_AQ_CAP_ID_NPAR_ACTIVE:
3015			p->npar_enable = number;
3016			break;
3017		case I40E_AQ_CAP_ID_OS2BMC_CAP:
3018			p->os2bmc = number;
3019			break;
3020		case I40E_AQ_CAP_ID_FUNCTIONS_VALID:
3021			p->valid_functions = number;
3022			break;
3023		case I40E_AQ_CAP_ID_SRIOV:
3024			if (number == 1)
3025				p->sr_iov_1_1 = true;
3026			break;
3027		case I40E_AQ_CAP_ID_VF:
3028			p->num_vfs = number;
3029			p->vf_base_id = logical_id;
3030			break;
3031		case I40E_AQ_CAP_ID_VMDQ:
3032			if (number == 1)
3033				p->vmdq = true;
3034			break;
3035		case I40E_AQ_CAP_ID_8021QBG:
3036			if (number == 1)
3037				p->evb_802_1_qbg = true;
3038			break;
3039		case I40E_AQ_CAP_ID_8021QBR:
3040			if (number == 1)
3041				p->evb_802_1_qbh = true;
3042			break;
3043		case I40E_AQ_CAP_ID_VSI:
3044			p->num_vsis = number;
3045			break;
3046		case I40E_AQ_CAP_ID_DCB:
3047			if (number == 1) {
3048				p->dcb = true;
3049				p->enabled_tcmap = logical_id;
3050				p->maxtc = phys_id;
3051			}
3052			break;
3053		case I40E_AQ_CAP_ID_FCOE:
3054			if (number == 1)
3055				p->fcoe = true;
3056			break;
3057		case I40E_AQ_CAP_ID_ISCSI:
3058			if (number == 1)
3059				p->iscsi = true;
3060			break;
3061		case I40E_AQ_CAP_ID_RSS:
3062			p->rss = true;
3063			p->rss_table_size = number;
3064			p->rss_table_entry_width = logical_id;
3065			break;
3066		case I40E_AQ_CAP_ID_RXQ:
3067			p->num_rx_qp = number;
3068			p->base_queue = phys_id;
3069			break;
3070		case I40E_AQ_CAP_ID_TXQ:
3071			p->num_tx_qp = number;
3072			p->base_queue = phys_id;
3073			break;
3074		case I40E_AQ_CAP_ID_MSIX:
3075			p->num_msix_vectors = number;
3076			break;
3077		case I40E_AQ_CAP_ID_VF_MSIX:
3078			p->num_msix_vectors_vf = number;
3079			break;
3080		case I40E_AQ_CAP_ID_FLEX10:
3081			if (major_rev == 1) {
3082				if (number == 1) {
3083					p->flex10_enable = true;
3084					p->flex10_capable = true;
3085				}
3086			} else {
3087				/* Capability revision >= 2 */
3088				if (number & 1)
3089					p->flex10_enable = true;
3090				if (number & 2)
3091					p->flex10_capable = true;
3092			}
3093			p->flex10_mode = logical_id;
3094			p->flex10_status = phys_id;
3095			break;
3096		case I40E_AQ_CAP_ID_CEM:
3097			if (number == 1)
3098				p->mgmt_cem = true;
3099			break;
3100		case I40E_AQ_CAP_ID_IWARP:
3101			if (number == 1)
3102				p->iwarp = true;
3103			break;
3104		case I40E_AQ_CAP_ID_LED:
3105			if (phys_id < I40E_HW_CAP_MAX_GPIO)
3106				p->led[phys_id] = true;
3107			break;
3108		case I40E_AQ_CAP_ID_SDP:
3109			if (phys_id < I40E_HW_CAP_MAX_GPIO)
3110				p->sdp[phys_id] = true;
3111			break;
3112		case I40E_AQ_CAP_ID_MDIO:
3113			if (number == 1) {
3114				p->mdio_port_num = phys_id;
3115				p->mdio_port_mode = logical_id;
3116			}
3117			break;
3118		case I40E_AQ_CAP_ID_1588:
3119			if (number == 1)
3120				p->ieee_1588 = true;
3121			break;
3122		case I40E_AQ_CAP_ID_FLOW_DIRECTOR:
3123			p->fd = true;
3124			p->fd_filters_guaranteed = number;
3125			p->fd_filters_best_effort = logical_id;
3126			break;
3127		case I40E_AQ_CAP_ID_WSR_PROT:
3128			p->wr_csr_prot = (u64)number;
3129			p->wr_csr_prot |= (u64)logical_id << 32;
3130			break;
3131		default:
3132			break;
3133		}
3134	}
3135
3136	if (p->fcoe)
3137		i40e_debug(hw, I40E_DEBUG_ALL, "device is FCoE capable\n");
3138
3139	/* Software override ensuring FCoE is disabled if npar or mfp
3140	 * mode because it is not supported in these modes.
3141	 */
3142	if (p->npar_enable || p->flex10_enable)
3143		p->fcoe = false;
3144
3145	/* count the enabled ports (aka the "not disabled" ports) */
3146	hw->num_ports = 0;
3147	for (i = 0; i < 4; i++) {
3148		u32 port_cfg_reg = I40E_PRTGEN_CNF + (4 * i);
3149		u64 port_cfg = 0;
3150
3151		/* use AQ read to get the physical register offset instead
3152		 * of the port relative offset
3153		 */
3154		i40e_aq_debug_read_register(hw, port_cfg_reg, &port_cfg, NULL);
3155		if (!(port_cfg & I40E_PRTGEN_CNF_PORT_DIS_MASK))
3156			hw->num_ports++;
3157	}
3158
3159	valid_functions = p->valid_functions;
3160	num_functions = 0;
3161	while (valid_functions) {
3162		if (valid_functions & 1)
3163			num_functions++;
3164		valid_functions >>= 1;
3165	}
3166
3167	/* partition id is 1-based, and functions are evenly spread
3168	 * across the ports as partitions
3169	 */
3170	hw->partition_id = (hw->pf_id / hw->num_ports) + 1;
3171	hw->num_partitions = num_functions / hw->num_ports;
3172
3173	/* additional HW specific goodies that might
3174	 * someday be HW version specific
3175	 */
3176	p->rx_buf_chain_len = I40E_MAX_CHAINED_RX_BUFFERS;
3177}
3178
3179/**
3180 * i40e_aq_discover_capabilities
3181 * @hw: pointer to the hw struct
3182 * @buff: a virtual buffer to hold the capabilities
3183 * @buff_size: Size of the virtual buffer
3184 * @data_size: Size of the returned data, or buff size needed if AQ err==ENOMEM
3185 * @list_type_opc: capabilities type to discover - pass in the command opcode
3186 * @cmd_details: pointer to command details structure or NULL
3187 *
3188 * Get the device capabilities descriptions from the firmware
3189 **/
3190i40e_status i40e_aq_discover_capabilities(struct i40e_hw *hw,
3191				void *buff, u16 buff_size, u16 *data_size,
3192				enum i40e_admin_queue_opc list_type_opc,
3193				struct i40e_asq_cmd_details *cmd_details)
3194{
3195	struct i40e_aqc_list_capabilites *cmd;
3196	struct i40e_aq_desc desc;
3197	i40e_status status = 0;
3198
3199	cmd = (struct i40e_aqc_list_capabilites *)&desc.params.raw;
3200
3201	if (list_type_opc != i40e_aqc_opc_list_func_capabilities &&
3202		list_type_opc != i40e_aqc_opc_list_dev_capabilities) {
3203		status = I40E_ERR_PARAM;
3204		goto exit;
3205	}
3206
3207	i40e_fill_default_direct_cmd_desc(&desc, list_type_opc);
3208
3209	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
3210	if (buff_size > I40E_AQ_LARGE_BUF)
3211		desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
3212
3213	status = i40e_asq_send_command(hw, &desc, buff, buff_size, cmd_details);
3214	*data_size = le16_to_cpu(desc.datalen);
3215
3216	if (status)
3217		goto exit;
3218
3219	i40e_parse_discover_capabilities(hw, buff, le32_to_cpu(cmd->count),
3220					 list_type_opc);
3221
3222exit:
3223	return status;
3224}
3225
3226/**
3227 * i40e_aq_update_nvm
3228 * @hw: pointer to the hw struct
3229 * @module_pointer: module pointer location in words from the NVM beginning
3230 * @offset: byte offset from the module beginning
3231 * @length: length of the section to be written (in bytes from the offset)
3232 * @data: command buffer (size [bytes] = length)
3233 * @last_command: tells if this is the last command in a series
3234 * @cmd_details: pointer to command details structure or NULL
3235 *
3236 * Update the NVM using the admin queue commands
3237 **/
3238i40e_status i40e_aq_update_nvm(struct i40e_hw *hw, u8 module_pointer,
3239			       u32 offset, u16 length, void *data,
3240			       bool last_command,
3241			       struct i40e_asq_cmd_details *cmd_details)
3242{
3243	struct i40e_aq_desc desc;
3244	struct i40e_aqc_nvm_update *cmd =
3245		(struct i40e_aqc_nvm_update *)&desc.params.raw;
3246	i40e_status status;
3247
3248	/* In offset the highest byte must be zeroed. */
3249	if (offset & 0xFF000000) {
3250		status = I40E_ERR_PARAM;
3251		goto i40e_aq_update_nvm_exit;
3252	}
3253
3254	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_nvm_update);
3255
3256	/* If this is the last command in a series, set the proper flag. */
3257	if (last_command)
3258		cmd->command_flags |= I40E_AQ_NVM_LAST_CMD;
3259	cmd->module_pointer = module_pointer;
3260	cmd->offset = cpu_to_le32(offset);
3261	cmd->length = cpu_to_le16(length);
3262
3263	desc.flags |= cpu_to_le16((u16)(I40E_AQ_FLAG_BUF | I40E_AQ_FLAG_RD));
3264	if (length > I40E_AQ_LARGE_BUF)
3265		desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
3266
3267	status = i40e_asq_send_command(hw, &desc, data, length, cmd_details);
3268
3269i40e_aq_update_nvm_exit:
3270	return status;
3271}
3272
3273/**
3274 * i40e_aq_get_lldp_mib
3275 * @hw: pointer to the hw struct
3276 * @bridge_type: type of bridge requested
3277 * @mib_type: Local, Remote or both Local and Remote MIBs
3278 * @buff: pointer to a user supplied buffer to store the MIB block
3279 * @buff_size: size of the buffer (in bytes)
3280 * @local_len : length of the returned Local LLDP MIB
3281 * @remote_len: length of the returned Remote LLDP MIB
3282 * @cmd_details: pointer to command details structure or NULL
3283 *
3284 * Requests the complete LLDP MIB (entire packet).
3285 **/
3286i40e_status i40e_aq_get_lldp_mib(struct i40e_hw *hw, u8 bridge_type,
3287				u8 mib_type, void *buff, u16 buff_size,
3288				u16 *local_len, u16 *remote_len,
3289				struct i40e_asq_cmd_details *cmd_details)
3290{
3291	struct i40e_aq_desc desc;
3292	struct i40e_aqc_lldp_get_mib *cmd =
3293		(struct i40e_aqc_lldp_get_mib *)&desc.params.raw;
3294	struct i40e_aqc_lldp_get_mib *resp =
3295		(struct i40e_aqc_lldp_get_mib *)&desc.params.raw;
3296	i40e_status status;
3297
3298	if (buff_size == 0 || !buff)
3299		return I40E_ERR_PARAM;
3300
3301	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_lldp_get_mib);
3302	/* Indirect Command */
3303	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
3304
3305	cmd->type = mib_type & I40E_AQ_LLDP_MIB_TYPE_MASK;
3306	cmd->type |= ((bridge_type << I40E_AQ_LLDP_BRIDGE_TYPE_SHIFT) &
3307		       I40E_AQ_LLDP_BRIDGE_TYPE_MASK);
3308
3309	desc.datalen = cpu_to_le16(buff_size);
3310
3311	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
3312	if (buff_size > I40E_AQ_LARGE_BUF)
3313		desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
3314
3315	status = i40e_asq_send_command(hw, &desc, buff, buff_size, cmd_details);
3316	if (!status) {
3317		if (local_len != NULL)
3318			*local_len = le16_to_cpu(resp->local_len);
3319		if (remote_len != NULL)
3320			*remote_len = le16_to_cpu(resp->remote_len);
3321	}
3322
3323	return status;
3324}
3325
3326/**
3327 * i40e_aq_cfg_lldp_mib_change_event
3328 * @hw: pointer to the hw struct
3329 * @enable_update: Enable or Disable event posting
3330 * @cmd_details: pointer to command details structure or NULL
3331 *
3332 * Enable or Disable posting of an event on ARQ when LLDP MIB
3333 * associated with the interface changes
3334 **/
3335i40e_status i40e_aq_cfg_lldp_mib_change_event(struct i40e_hw *hw,
3336				bool enable_update,
3337				struct i40e_asq_cmd_details *cmd_details)
3338{
3339	struct i40e_aq_desc desc;
3340	struct i40e_aqc_lldp_update_mib *cmd =
3341		(struct i40e_aqc_lldp_update_mib *)&desc.params.raw;
3342	i40e_status status;
3343
3344	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_lldp_update_mib);
3345
3346	if (!enable_update)
3347		cmd->command |= I40E_AQ_LLDP_MIB_UPDATE_DISABLE;
3348
3349	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
3350
3351	return status;
3352}
3353
3354/**
3355 * i40e_aq_stop_lldp
3356 * @hw: pointer to the hw struct
3357 * @shutdown_agent: True if LLDP Agent needs to be Shutdown
3358 * @cmd_details: pointer to command details structure or NULL
3359 *
3360 * Stop or Shutdown the embedded LLDP Agent
3361 **/
3362i40e_status i40e_aq_stop_lldp(struct i40e_hw *hw, bool shutdown_agent,
3363				struct i40e_asq_cmd_details *cmd_details)
3364{
3365	struct i40e_aq_desc desc;
3366	struct i40e_aqc_lldp_stop *cmd =
3367		(struct i40e_aqc_lldp_stop *)&desc.params.raw;
3368	i40e_status status;
3369
3370	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_lldp_stop);
3371
3372	if (shutdown_agent)
3373		cmd->command |= I40E_AQ_LLDP_AGENT_SHUTDOWN;
3374
3375	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
3376
3377	return status;
3378}
3379
3380/**
3381 * i40e_aq_start_lldp
3382 * @hw: pointer to the hw struct
3383 * @cmd_details: pointer to command details structure or NULL
3384 *
3385 * Start the embedded LLDP Agent on all ports.
3386 **/
3387i40e_status i40e_aq_start_lldp(struct i40e_hw *hw,
3388				struct i40e_asq_cmd_details *cmd_details)
3389{
3390	struct i40e_aq_desc desc;
3391	struct i40e_aqc_lldp_start *cmd =
3392		(struct i40e_aqc_lldp_start *)&desc.params.raw;
3393	i40e_status status;
3394
3395	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_lldp_start);
3396
3397	cmd->command = I40E_AQ_LLDP_AGENT_START;
3398
3399	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
3400
3401	return status;
3402}
3403
3404/**
3405 * i40e_aq_get_cee_dcb_config
3406 * @hw: pointer to the hw struct
3407 * @buff: response buffer that stores CEE operational configuration
3408 * @buff_size: size of the buffer passed
3409 * @cmd_details: pointer to command details structure or NULL
3410 *
3411 * Get CEE DCBX mode operational configuration from firmware
3412 **/
3413i40e_status i40e_aq_get_cee_dcb_config(struct i40e_hw *hw,
3414				       void *buff, u16 buff_size,
3415				       struct i40e_asq_cmd_details *cmd_details)
3416{
3417	struct i40e_aq_desc desc;
3418	i40e_status status;
3419
3420	if (buff_size == 0 || !buff)
3421		return I40E_ERR_PARAM;
3422
3423	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_get_cee_dcb_cfg);
3424
3425	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
3426	status = i40e_asq_send_command(hw, &desc, (void *)buff, buff_size,
3427				       cmd_details);
3428
3429	return status;
3430}
3431
3432/**
3433 * i40e_aq_add_udp_tunnel
3434 * @hw: pointer to the hw struct
3435 * @udp_port: the UDP port to add
3436 * @header_len: length of the tunneling header length in DWords
3437 * @protocol_index: protocol index type
3438 * @filter_index: pointer to filter index
3439 * @cmd_details: pointer to command details structure or NULL
3440 **/
3441i40e_status i40e_aq_add_udp_tunnel(struct i40e_hw *hw,
3442				u16 udp_port, u8 protocol_index,
3443				u8 *filter_index,
3444				struct i40e_asq_cmd_details *cmd_details)
3445{
3446	struct i40e_aq_desc desc;
3447	struct i40e_aqc_add_udp_tunnel *cmd =
3448		(struct i40e_aqc_add_udp_tunnel *)&desc.params.raw;
3449	struct i40e_aqc_del_udp_tunnel_completion *resp =
3450		(struct i40e_aqc_del_udp_tunnel_completion *)&desc.params.raw;
3451	i40e_status status;
3452
3453	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_add_udp_tunnel);
3454
3455	cmd->udp_port = cpu_to_le16(udp_port);
3456	cmd->protocol_type = protocol_index;
3457
3458	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
3459
3460	if (!status && filter_index)
3461		*filter_index = resp->index;
3462
3463	return status;
3464}
3465
3466/**
3467 * i40e_aq_del_udp_tunnel
3468 * @hw: pointer to the hw struct
3469 * @index: filter index
3470 * @cmd_details: pointer to command details structure or NULL
3471 **/
3472i40e_status i40e_aq_del_udp_tunnel(struct i40e_hw *hw, u8 index,
3473				struct i40e_asq_cmd_details *cmd_details)
3474{
3475	struct i40e_aq_desc desc;
3476	struct i40e_aqc_remove_udp_tunnel *cmd =
3477		(struct i40e_aqc_remove_udp_tunnel *)&desc.params.raw;
3478	i40e_status status;
3479
3480	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_del_udp_tunnel);
3481
3482	cmd->index = index;
3483
3484	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
3485
3486	return status;
3487}
3488
3489/**
3490 * i40e_aq_delete_element - Delete switch element
3491 * @hw: pointer to the hw struct
3492 * @seid: the SEID to delete from the switch
3493 * @cmd_details: pointer to command details structure or NULL
3494 *
3495 * This deletes a switch element from the switch.
3496 **/
3497i40e_status i40e_aq_delete_element(struct i40e_hw *hw, u16 seid,
3498				struct i40e_asq_cmd_details *cmd_details)
3499{
3500	struct i40e_aq_desc desc;
3501	struct i40e_aqc_switch_seid *cmd =
3502		(struct i40e_aqc_switch_seid *)&desc.params.raw;
3503	i40e_status status;
3504
3505	if (seid == 0)
3506		return I40E_ERR_PARAM;
3507
3508	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_delete_element);
3509
3510	cmd->seid = cpu_to_le16(seid);
3511
3512	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
3513
3514	return status;
3515}
3516
3517/**
3518 * i40e_aq_dcb_updated - DCB Updated Command
3519 * @hw: pointer to the hw struct
3520 * @cmd_details: pointer to command details structure or NULL
3521 *
3522 * EMP will return when the shared RPB settings have been
3523 * recomputed and modified. The retval field in the descriptor
3524 * will be set to 0 when RPB is modified.
3525 **/
3526i40e_status i40e_aq_dcb_updated(struct i40e_hw *hw,
3527				struct i40e_asq_cmd_details *cmd_details)
3528{
3529	struct i40e_aq_desc desc;
3530	i40e_status status;
3531
3532	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_dcb_updated);
3533
3534	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
3535
3536	return status;
3537}
3538
3539/**
3540 * i40e_aq_tx_sched_cmd - generic Tx scheduler AQ command handler
3541 * @hw: pointer to the hw struct
3542 * @seid: seid for the physical port/switching component/vsi
3543 * @buff: Indirect buffer to hold data parameters and response
3544 * @buff_size: Indirect buffer size
3545 * @opcode: Tx scheduler AQ command opcode
3546 * @cmd_details: pointer to command details structure or NULL
3547 *
3548 * Generic command handler for Tx scheduler AQ commands
3549 **/
3550static i40e_status i40e_aq_tx_sched_cmd(struct i40e_hw *hw, u16 seid,
3551				void *buff, u16 buff_size,
3552				 enum i40e_admin_queue_opc opcode,
3553				struct i40e_asq_cmd_details *cmd_details)
3554{
3555	struct i40e_aq_desc desc;
3556	struct i40e_aqc_tx_sched_ind *cmd =
3557		(struct i40e_aqc_tx_sched_ind *)&desc.params.raw;
3558	i40e_status status;
3559	bool cmd_param_flag = false;
3560
3561	switch (opcode) {
3562	case i40e_aqc_opc_configure_vsi_ets_sla_bw_limit:
3563	case i40e_aqc_opc_configure_vsi_tc_bw:
3564	case i40e_aqc_opc_enable_switching_comp_ets:
3565	case i40e_aqc_opc_modify_switching_comp_ets:
3566	case i40e_aqc_opc_disable_switching_comp_ets:
3567	case i40e_aqc_opc_configure_switching_comp_ets_bw_limit:
3568	case i40e_aqc_opc_configure_switching_comp_bw_config:
3569		cmd_param_flag = true;
3570		break;
3571	case i40e_aqc_opc_query_vsi_bw_config:
3572	case i40e_aqc_opc_query_vsi_ets_sla_config:
3573	case i40e_aqc_opc_query_switching_comp_ets_config:
3574	case i40e_aqc_opc_query_port_ets_config:
3575	case i40e_aqc_opc_query_switching_comp_bw_config:
3576		cmd_param_flag = false;
3577		break;
3578	default:
3579		return I40E_ERR_PARAM;
3580	}
3581
3582	i40e_fill_default_direct_cmd_desc(&desc, opcode);
3583
3584	/* Indirect command */
3585	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
3586	if (cmd_param_flag)
3587		desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_RD);
3588	if (buff_size > I40E_AQ_LARGE_BUF)
3589		desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
3590
3591	desc.datalen = cpu_to_le16(buff_size);
3592
3593	cmd->vsi_seid = cpu_to_le16(seid);
3594
3595	status = i40e_asq_send_command(hw, &desc, buff, buff_size, cmd_details);
3596
3597	return status;
3598}
3599
3600/**
3601 * i40e_aq_config_vsi_bw_limit - Configure VSI BW Limit
3602 * @hw: pointer to the hw struct
3603 * @seid: VSI seid
3604 * @credit: BW limit credits (0 = disabled)
3605 * @max_credit: Max BW limit credits
3606 * @cmd_details: pointer to command details structure or NULL
3607 **/
3608i40e_status i40e_aq_config_vsi_bw_limit(struct i40e_hw *hw,
3609				u16 seid, u16 credit, u8 max_credit,
3610				struct i40e_asq_cmd_details *cmd_details)
3611{
3612	struct i40e_aq_desc desc;
3613	struct i40e_aqc_configure_vsi_bw_limit *cmd =
3614		(struct i40e_aqc_configure_vsi_bw_limit *)&desc.params.raw;
3615	i40e_status status;
3616
3617	i40e_fill_default_direct_cmd_desc(&desc,
3618					  i40e_aqc_opc_configure_vsi_bw_limit);
3619
3620	cmd->vsi_seid = cpu_to_le16(seid);
3621	cmd->credit = cpu_to_le16(credit);
3622	cmd->max_credit = max_credit;
3623
3624	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
3625
3626	return status;
3627}
3628
3629/**
3630 * i40e_aq_config_vsi_tc_bw - Config VSI BW Allocation per TC
3631 * @hw: pointer to the hw struct
3632 * @seid: VSI seid
3633 * @bw_data: Buffer holding enabled TCs, relative TC BW limit/credits
3634 * @cmd_details: pointer to command details structure or NULL
3635 **/
3636i40e_status i40e_aq_config_vsi_tc_bw(struct i40e_hw *hw,
3637			u16 seid,
3638			struct i40e_aqc_configure_vsi_tc_bw_data *bw_data,
3639			struct i40e_asq_cmd_details *cmd_details)
3640{
3641	return i40e_aq_tx_sched_cmd(hw, seid, (void *)bw_data, sizeof(*bw_data),
3642				    i40e_aqc_opc_configure_vsi_tc_bw,
3643				    cmd_details);
3644}
3645
3646/**
3647 * i40e_aq_config_switch_comp_ets - Enable/Disable/Modify ETS on the port
3648 * @hw: pointer to the hw struct
3649 * @seid: seid of the switching component connected to Physical Port
3650 * @ets_data: Buffer holding ETS parameters
3651 * @cmd_details: pointer to command details structure or NULL
3652 **/
3653i40e_status i40e_aq_config_switch_comp_ets(struct i40e_hw *hw,
3654		u16 seid,
3655		struct i40e_aqc_configure_switching_comp_ets_data *ets_data,
3656		enum i40e_admin_queue_opc opcode,
3657		struct i40e_asq_cmd_details *cmd_details)
3658{
3659	return i40e_aq_tx_sched_cmd(hw, seid, (void *)ets_data,
3660				    sizeof(*ets_data), opcode, cmd_details);
3661}
3662
3663/**
3664 * i40e_aq_config_switch_comp_bw_config - Config Switch comp BW Alloc per TC
3665 * @hw: pointer to the hw struct
3666 * @seid: seid of the switching component
3667 * @bw_data: Buffer holding enabled TCs, relative/absolute TC BW limit/credits
3668 * @cmd_details: pointer to command details structure or NULL
3669 **/
3670i40e_status i40e_aq_config_switch_comp_bw_config(struct i40e_hw *hw,
3671	u16 seid,
3672	struct i40e_aqc_configure_switching_comp_bw_config_data *bw_data,
3673	struct i40e_asq_cmd_details *cmd_details)
3674{
3675	return i40e_aq_tx_sched_cmd(hw, seid, (void *)bw_data, sizeof(*bw_data),
3676			    i40e_aqc_opc_configure_switching_comp_bw_config,
3677			    cmd_details);
3678}
3679
3680/**
3681 * i40e_aq_query_vsi_bw_config - Query VSI BW configuration
3682 * @hw: pointer to the hw struct
3683 * @seid: seid of the VSI
3684 * @bw_data: Buffer to hold VSI BW configuration
3685 * @cmd_details: pointer to command details structure or NULL
3686 **/
3687i40e_status i40e_aq_query_vsi_bw_config(struct i40e_hw *hw,
3688			u16 seid,
3689			struct i40e_aqc_query_vsi_bw_config_resp *bw_data,
3690			struct i40e_asq_cmd_details *cmd_details)
3691{
3692	return i40e_aq_tx_sched_cmd(hw, seid, (void *)bw_data, sizeof(*bw_data),
3693				    i40e_aqc_opc_query_vsi_bw_config,
3694				    cmd_details);
3695}
3696
3697/**
3698 * i40e_aq_query_vsi_ets_sla_config - Query VSI BW configuration per TC
3699 * @hw: pointer to the hw struct
3700 * @seid: seid of the VSI
3701 * @bw_data: Buffer to hold VSI BW configuration per TC
3702 * @cmd_details: pointer to command details structure or NULL
3703 **/
3704i40e_status i40e_aq_query_vsi_ets_sla_config(struct i40e_hw *hw,
3705			u16 seid,
3706			struct i40e_aqc_query_vsi_ets_sla_config_resp *bw_data,
3707			struct i40e_asq_cmd_details *cmd_details)
3708{
3709	return i40e_aq_tx_sched_cmd(hw, seid, (void *)bw_data, sizeof(*bw_data),
3710				    i40e_aqc_opc_query_vsi_ets_sla_config,
3711				    cmd_details);
3712}
3713
3714/**
3715 * i40e_aq_query_switch_comp_ets_config - Query Switch comp BW config per TC
3716 * @hw: pointer to the hw struct
3717 * @seid: seid of the switching component
3718 * @bw_data: Buffer to hold switching component's per TC BW config
3719 * @cmd_details: pointer to command details structure or NULL
3720 **/
3721i40e_status i40e_aq_query_switch_comp_ets_config(struct i40e_hw *hw,
3722		u16 seid,
3723		struct i40e_aqc_query_switching_comp_ets_config_resp *bw_data,
3724		struct i40e_asq_cmd_details *cmd_details)
3725{
3726	return i40e_aq_tx_sched_cmd(hw, seid, (void *)bw_data, sizeof(*bw_data),
3727				   i40e_aqc_opc_query_switching_comp_ets_config,
3728				   cmd_details);
3729}
3730
3731/**
3732 * i40e_aq_query_port_ets_config - Query Physical Port ETS configuration
3733 * @hw: pointer to the hw struct
3734 * @seid: seid of the VSI or switching component connected to Physical Port
3735 * @bw_data: Buffer to hold current ETS configuration for the Physical Port
3736 * @cmd_details: pointer to command details structure or NULL
3737 **/
3738i40e_status i40e_aq_query_port_ets_config(struct i40e_hw *hw,
3739			u16 seid,
3740			struct i40e_aqc_query_port_ets_config_resp *bw_data,
3741			struct i40e_asq_cmd_details *cmd_details)
3742{
3743	return i40e_aq_tx_sched_cmd(hw, seid, (void *)bw_data, sizeof(*bw_data),
3744				    i40e_aqc_opc_query_port_ets_config,
3745				    cmd_details);
3746}
3747
3748/**
3749 * i40e_aq_query_switch_comp_bw_config - Query Switch comp BW configuration
3750 * @hw: pointer to the hw struct
3751 * @seid: seid of the switching component
3752 * @bw_data: Buffer to hold switching component's BW configuration
3753 * @cmd_details: pointer to command details structure or NULL
3754 **/
3755i40e_status i40e_aq_query_switch_comp_bw_config(struct i40e_hw *hw,
3756		u16 seid,
3757		struct i40e_aqc_query_switching_comp_bw_config_resp *bw_data,
3758		struct i40e_asq_cmd_details *cmd_details)
3759{
3760	return i40e_aq_tx_sched_cmd(hw, seid, (void *)bw_data, sizeof(*bw_data),
3761				    i40e_aqc_opc_query_switching_comp_bw_config,
3762				    cmd_details);
3763}
3764
3765/**
3766 * i40e_validate_filter_settings
3767 * @hw: pointer to the hardware structure
3768 * @settings: Filter control settings
3769 *
3770 * Check and validate the filter control settings passed.
3771 * The function checks for the valid filter/context sizes being
3772 * passed for FCoE and PE.
3773 *
3774 * Returns 0 if the values passed are valid and within
3775 * range else returns an error.
3776 **/
3777static i40e_status i40e_validate_filter_settings(struct i40e_hw *hw,
3778				struct i40e_filter_control_settings *settings)
3779{
3780	u32 fcoe_cntx_size, fcoe_filt_size;
3781	u32 pe_cntx_size, pe_filt_size;
3782	u32 fcoe_fmax;
3783	u32 val;
3784
3785	/* Validate FCoE settings passed */
3786	switch (settings->fcoe_filt_num) {
3787	case I40E_HASH_FILTER_SIZE_1K:
3788	case I40E_HASH_FILTER_SIZE_2K:
3789	case I40E_HASH_FILTER_SIZE_4K:
3790	case I40E_HASH_FILTER_SIZE_8K:
3791	case I40E_HASH_FILTER_SIZE_16K:
3792	case I40E_HASH_FILTER_SIZE_32K:
3793		fcoe_filt_size = I40E_HASH_FILTER_BASE_SIZE;
3794		fcoe_filt_size <<= (u32)settings->fcoe_filt_num;
3795		break;
3796	default:
3797		return I40E_ERR_PARAM;
3798	}
3799
3800	switch (settings->fcoe_cntx_num) {
3801	case I40E_DMA_CNTX_SIZE_512:
3802	case I40E_DMA_CNTX_SIZE_1K:
3803	case I40E_DMA_CNTX_SIZE_2K:
3804	case I40E_DMA_CNTX_SIZE_4K:
3805		fcoe_cntx_size = I40E_DMA_CNTX_BASE_SIZE;
3806		fcoe_cntx_size <<= (u32)settings->fcoe_cntx_num;
3807		break;
3808	default:
3809		return I40E_ERR_PARAM;
3810	}
3811
3812	/* Validate PE settings passed */
3813	switch (settings->pe_filt_num) {
3814	case I40E_HASH_FILTER_SIZE_1K:
3815	case I40E_HASH_FILTER_SIZE_2K:
3816	case I40E_HASH_FILTER_SIZE_4K:
3817	case I40E_HASH_FILTER_SIZE_8K:
3818	case I40E_HASH_FILTER_SIZE_16K:
3819	case I40E_HASH_FILTER_SIZE_32K:
3820	case I40E_HASH_FILTER_SIZE_64K:
3821	case I40E_HASH_FILTER_SIZE_128K:
3822	case I40E_HASH_FILTER_SIZE_256K:
3823	case I40E_HASH_FILTER_SIZE_512K:
3824	case I40E_HASH_FILTER_SIZE_1M:
3825		pe_filt_size = I40E_HASH_FILTER_BASE_SIZE;
3826		pe_filt_size <<= (u32)settings->pe_filt_num;
3827		break;
3828	default:
3829		return I40E_ERR_PARAM;
3830	}
3831
3832	switch (settings->pe_cntx_num) {
3833	case I40E_DMA_CNTX_SIZE_512:
3834	case I40E_DMA_CNTX_SIZE_1K:
3835	case I40E_DMA_CNTX_SIZE_2K:
3836	case I40E_DMA_CNTX_SIZE_4K:
3837	case I40E_DMA_CNTX_SIZE_8K:
3838	case I40E_DMA_CNTX_SIZE_16K:
3839	case I40E_DMA_CNTX_SIZE_32K:
3840	case I40E_DMA_CNTX_SIZE_64K:
3841	case I40E_DMA_CNTX_SIZE_128K:
3842	case I40E_DMA_CNTX_SIZE_256K:
3843		pe_cntx_size = I40E_DMA_CNTX_BASE_SIZE;
3844		pe_cntx_size <<= (u32)settings->pe_cntx_num;
3845		break;
3846	default:
3847		return I40E_ERR_PARAM;
3848	}
3849
3850	/* FCHSIZE + FCDSIZE should not be greater than PMFCOEFMAX */
3851	val = rd32(hw, I40E_GLHMC_FCOEFMAX);
3852	fcoe_fmax = (val & I40E_GLHMC_FCOEFMAX_PMFCOEFMAX_MASK)
3853		     >> I40E_GLHMC_FCOEFMAX_PMFCOEFMAX_SHIFT;
3854	if (fcoe_filt_size + fcoe_cntx_size >  fcoe_fmax)
3855		return I40E_ERR_INVALID_SIZE;
3856
3857	return 0;
3858}
3859
3860/**
3861 * i40e_set_filter_control
3862 * @hw: pointer to the hardware structure
3863 * @settings: Filter control settings
3864 *
3865 * Set the Queue Filters for PE/FCoE and enable filters required
3866 * for a single PF. It is expected that these settings are programmed
3867 * at the driver initialization time.
3868 **/
3869i40e_status i40e_set_filter_control(struct i40e_hw *hw,
3870				struct i40e_filter_control_settings *settings)
3871{
3872	i40e_status ret = 0;
3873	u32 hash_lut_size = 0;
3874	u32 val;
3875
3876	if (!settings)
3877		return I40E_ERR_PARAM;
3878
3879	/* Validate the input settings */
3880	ret = i40e_validate_filter_settings(hw, settings);
3881	if (ret)
3882		return ret;
3883
3884	/* Read the PF Queue Filter control register */
3885	val = i40e_read_rx_ctl(hw, I40E_PFQF_CTL_0);
3886
3887	/* Program required PE hash buckets for the PF */
3888	val &= ~I40E_PFQF_CTL_0_PEHSIZE_MASK;
3889	val |= ((u32)settings->pe_filt_num << I40E_PFQF_CTL_0_PEHSIZE_SHIFT) &
3890		I40E_PFQF_CTL_0_PEHSIZE_MASK;
3891	/* Program required PE contexts for the PF */
3892	val &= ~I40E_PFQF_CTL_0_PEDSIZE_MASK;
3893	val |= ((u32)settings->pe_cntx_num << I40E_PFQF_CTL_0_PEDSIZE_SHIFT) &
3894		I40E_PFQF_CTL_0_PEDSIZE_MASK;
3895
3896	/* Program required FCoE hash buckets for the PF */
3897	val &= ~I40E_PFQF_CTL_0_PFFCHSIZE_MASK;
3898	val |= ((u32)settings->fcoe_filt_num <<
3899			I40E_PFQF_CTL_0_PFFCHSIZE_SHIFT) &
3900		I40E_PFQF_CTL_0_PFFCHSIZE_MASK;
3901	/* Program required FCoE DDP contexts for the PF */
3902	val &= ~I40E_PFQF_CTL_0_PFFCDSIZE_MASK;
3903	val |= ((u32)settings->fcoe_cntx_num <<
3904			I40E_PFQF_CTL_0_PFFCDSIZE_SHIFT) &
3905		I40E_PFQF_CTL_0_PFFCDSIZE_MASK;
3906
3907	/* Program Hash LUT size for the PF */
3908	val &= ~I40E_PFQF_CTL_0_HASHLUTSIZE_MASK;
3909	if (settings->hash_lut_size == I40E_HASH_LUT_SIZE_512)
3910		hash_lut_size = 1;
3911	val |= (hash_lut_size << I40E_PFQF_CTL_0_HASHLUTSIZE_SHIFT) &
3912		I40E_PFQF_CTL_0_HASHLUTSIZE_MASK;
3913
3914	/* Enable FDIR, Ethertype and MACVLAN filters for PF and VFs */
3915	if (settings->enable_fdir)
3916		val |= I40E_PFQF_CTL_0_FD_ENA_MASK;
3917	if (settings->enable_ethtype)
3918		val |= I40E_PFQF_CTL_0_ETYPE_ENA_MASK;
3919	if (settings->enable_macvlan)
3920		val |= I40E_PFQF_CTL_0_MACVLAN_ENA_MASK;
3921
3922	i40e_write_rx_ctl(hw, I40E_PFQF_CTL_0, val);
3923
3924	return 0;
3925}
3926
3927/**
3928 * i40e_aq_add_rem_control_packet_filter - Add or Remove Control Packet Filter
3929 * @hw: pointer to the hw struct
3930 * @mac_addr: MAC address to use in the filter
3931 * @ethtype: Ethertype to use in the filter
3932 * @flags: Flags that needs to be applied to the filter
3933 * @vsi_seid: seid of the control VSI
3934 * @queue: VSI queue number to send the packet to
3935 * @is_add: Add control packet filter if True else remove
3936 * @stats: Structure to hold information on control filter counts
3937 * @cmd_details: pointer to command details structure or NULL
3938 *
3939 * This command will Add or Remove control packet filter for a control VSI.
3940 * In return it will update the total number of perfect filter count in
3941 * the stats member.
3942 **/
3943i40e_status i40e_aq_add_rem_control_packet_filter(struct i40e_hw *hw,
3944				u8 *mac_addr, u16 ethtype, u16 flags,
3945				u16 vsi_seid, u16 queue, bool is_add,
3946				struct i40e_control_filter_stats *stats,
3947				struct i40e_asq_cmd_details *cmd_details)
3948{
3949	struct i40e_aq_desc desc;
3950	struct i40e_aqc_add_remove_control_packet_filter *cmd =
3951		(struct i40e_aqc_add_remove_control_packet_filter *)
3952		&desc.params.raw;
3953	struct i40e_aqc_add_remove_control_packet_filter_completion *resp =
3954		(struct i40e_aqc_add_remove_control_packet_filter_completion *)
3955		&desc.params.raw;
3956	i40e_status status;
3957
3958	if (vsi_seid == 0)
3959		return I40E_ERR_PARAM;
3960
3961	if (is_add) {
3962		i40e_fill_default_direct_cmd_desc(&desc,
3963				i40e_aqc_opc_add_control_packet_filter);
3964		cmd->queue = cpu_to_le16(queue);
3965	} else {
3966		i40e_fill_default_direct_cmd_desc(&desc,
3967				i40e_aqc_opc_remove_control_packet_filter);
3968	}
3969
3970	if (mac_addr)
3971		ether_addr_copy(cmd->mac, mac_addr);
3972
3973	cmd->etype = cpu_to_le16(ethtype);
3974	cmd->flags = cpu_to_le16(flags);
3975	cmd->seid = cpu_to_le16(vsi_seid);
3976
3977	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
3978
3979	if (!status && stats) {
3980		stats->mac_etype_used = le16_to_cpu(resp->mac_etype_used);
3981		stats->etype_used = le16_to_cpu(resp->etype_used);
3982		stats->mac_etype_free = le16_to_cpu(resp->mac_etype_free);
3983		stats->etype_free = le16_to_cpu(resp->etype_free);
3984	}
3985
3986	return status;
3987}
3988
3989/**
3990 * i40e_add_filter_to_drop_tx_flow_control_frames- filter to drop flow control
3991 * @hw: pointer to the hw struct
3992 * @seid: VSI seid to add ethertype filter from
3993 **/
3994#define I40E_FLOW_CONTROL_ETHTYPE 0x8808
3995void i40e_add_filter_to_drop_tx_flow_control_frames(struct i40e_hw *hw,
3996						    u16 seid)
3997{
3998	u16 flag = I40E_AQC_ADD_CONTROL_PACKET_FLAGS_IGNORE_MAC |
3999		   I40E_AQC_ADD_CONTROL_PACKET_FLAGS_DROP |
4000		   I40E_AQC_ADD_CONTROL_PACKET_FLAGS_TX;
4001	u16 ethtype = I40E_FLOW_CONTROL_ETHTYPE;
4002	i40e_status status;
4003
4004	status = i40e_aq_add_rem_control_packet_filter(hw, NULL, ethtype, flag,
4005						       seid, 0, true, NULL,
4006						       NULL);
4007	if (status)
4008		hw_dbg(hw, "Ethtype Filter Add failed: Error pruning Tx flow control frames\n");
4009}
4010
4011/**
4012 * i40e_aq_alternate_read
4013 * @hw: pointer to the hardware structure
4014 * @reg_addr0: address of first dword to be read
4015 * @reg_val0: pointer for data read from 'reg_addr0'
4016 * @reg_addr1: address of second dword to be read
4017 * @reg_val1: pointer for data read from 'reg_addr1'
4018 *
4019 * Read one or two dwords from alternate structure. Fields are indicated
4020 * by 'reg_addr0' and 'reg_addr1' register numbers. If 'reg_val1' pointer
4021 * is not passed then only register at 'reg_addr0' is read.
4022 *
4023 **/
4024static i40e_status i40e_aq_alternate_read(struct i40e_hw *hw,
4025					  u32 reg_addr0, u32 *reg_val0,
4026					  u32 reg_addr1, u32 *reg_val1)
4027{
4028	struct i40e_aq_desc desc;
4029	struct i40e_aqc_alternate_write *cmd_resp =
4030		(struct i40e_aqc_alternate_write *)&desc.params.raw;
4031	i40e_status status;
4032
4033	if (!reg_val0)
4034		return I40E_ERR_PARAM;
4035
4036	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_alternate_read);
4037	cmd_resp->address0 = cpu_to_le32(reg_addr0);
4038	cmd_resp->address1 = cpu_to_le32(reg_addr1);
4039
4040	status = i40e_asq_send_command(hw, &desc, NULL, 0, NULL);
4041
4042	if (!status) {
4043		*reg_val0 = le32_to_cpu(cmd_resp->data0);
4044
4045		if (reg_val1)
4046			*reg_val1 = le32_to_cpu(cmd_resp->data1);
4047	}
4048
4049	return status;
4050}
4051
4052/**
4053 * i40e_aq_resume_port_tx
4054 * @hw: pointer to the hardware structure
4055 * @cmd_details: pointer to command details structure or NULL
4056 *
4057 * Resume port's Tx traffic
4058 **/
4059i40e_status i40e_aq_resume_port_tx(struct i40e_hw *hw,
4060				   struct i40e_asq_cmd_details *cmd_details)
4061{
4062	struct i40e_aq_desc desc;
4063	i40e_status status;
4064
4065	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_resume_port_tx);
4066
4067	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
4068
4069	return status;
4070}
4071
4072/**
4073 * i40e_set_pci_config_data - store PCI bus info
4074 * @hw: pointer to hardware structure
4075 * @link_status: the link status word from PCI config space
4076 *
4077 * Stores the PCI bus info (speed, width, type) within the i40e_hw structure
4078 **/
4079void i40e_set_pci_config_data(struct i40e_hw *hw, u16 link_status)
4080{
4081	hw->bus.type = i40e_bus_type_pci_express;
4082
4083	switch (link_status & PCI_EXP_LNKSTA_NLW) {
4084	case PCI_EXP_LNKSTA_NLW_X1:
4085		hw->bus.width = i40e_bus_width_pcie_x1;
4086		break;
4087	case PCI_EXP_LNKSTA_NLW_X2:
4088		hw->bus.width = i40e_bus_width_pcie_x2;
4089		break;
4090	case PCI_EXP_LNKSTA_NLW_X4:
4091		hw->bus.width = i40e_bus_width_pcie_x4;
4092		break;
4093	case PCI_EXP_LNKSTA_NLW_X8:
4094		hw->bus.width = i40e_bus_width_pcie_x8;
4095		break;
4096	default:
4097		hw->bus.width = i40e_bus_width_unknown;
4098		break;
4099	}
4100
4101	switch (link_status & PCI_EXP_LNKSTA_CLS) {
4102	case PCI_EXP_LNKSTA_CLS_2_5GB:
4103		hw->bus.speed = i40e_bus_speed_2500;
4104		break;
4105	case PCI_EXP_LNKSTA_CLS_5_0GB:
4106		hw->bus.speed = i40e_bus_speed_5000;
4107		break;
4108	case PCI_EXP_LNKSTA_CLS_8_0GB:
4109		hw->bus.speed = i40e_bus_speed_8000;
4110		break;
4111	default:
4112		hw->bus.speed = i40e_bus_speed_unknown;
4113		break;
4114	}
4115}
4116
4117/**
4118 * i40e_aq_debug_dump
4119 * @hw: pointer to the hardware structure
4120 * @cluster_id: specific cluster to dump
4121 * @table_id: table id within cluster
4122 * @start_index: index of line in the block to read
4123 * @buff_size: dump buffer size
4124 * @buff: dump buffer
4125 * @ret_buff_size: actual buffer size returned
4126 * @ret_next_table: next block to read
4127 * @ret_next_index: next index to read
4128 *
4129 * Dump internal FW/HW data for debug purposes.
4130 *
4131 **/
4132i40e_status i40e_aq_debug_dump(struct i40e_hw *hw, u8 cluster_id,
4133			       u8 table_id, u32 start_index, u16 buff_size,
4134			       void *buff, u16 *ret_buff_size,
4135			       u8 *ret_next_table, u32 *ret_next_index,
4136			       struct i40e_asq_cmd_details *cmd_details)
4137{
4138	struct i40e_aq_desc desc;
4139	struct i40e_aqc_debug_dump_internals *cmd =
4140		(struct i40e_aqc_debug_dump_internals *)&desc.params.raw;
4141	struct i40e_aqc_debug_dump_internals *resp =
4142		(struct i40e_aqc_debug_dump_internals *)&desc.params.raw;
4143	i40e_status status;
4144
4145	if (buff_size == 0 || !buff)
4146		return I40E_ERR_PARAM;
4147
4148	i40e_fill_default_direct_cmd_desc(&desc,
4149					  i40e_aqc_opc_debug_dump_internals);
4150	/* Indirect Command */
4151	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
4152	if (buff_size > I40E_AQ_LARGE_BUF)
4153		desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
4154
4155	cmd->cluster_id = cluster_id;
4156	cmd->table_id = table_id;
4157	cmd->idx = cpu_to_le32(start_index);
4158
4159	desc.datalen = cpu_to_le16(buff_size);
4160
4161	status = i40e_asq_send_command(hw, &desc, buff, buff_size, cmd_details);
4162	if (!status) {
4163		if (ret_buff_size)
4164			*ret_buff_size = le16_to_cpu(desc.datalen);
4165		if (ret_next_table)
4166			*ret_next_table = resp->table_id;
4167		if (ret_next_index)
4168			*ret_next_index = le32_to_cpu(resp->idx);
4169	}
4170
4171	return status;
4172}
4173
4174/**
4175 * i40e_read_bw_from_alt_ram
4176 * @hw: pointer to the hardware structure
4177 * @max_bw: pointer for max_bw read
4178 * @min_bw: pointer for min_bw read
4179 * @min_valid: pointer for bool that is true if min_bw is a valid value
4180 * @max_valid: pointer for bool that is true if max_bw is a valid value
4181 *
4182 * Read bw from the alternate ram for the given pf
4183 **/
4184i40e_status i40e_read_bw_from_alt_ram(struct i40e_hw *hw,
4185				      u32 *max_bw, u32 *min_bw,
4186				      bool *min_valid, bool *max_valid)
4187{
4188	i40e_status status;
4189	u32 max_bw_addr, min_bw_addr;
4190
4191	/* Calculate the address of the min/max bw registers */
4192	max_bw_addr = I40E_ALT_STRUCT_FIRST_PF_OFFSET +
4193		      I40E_ALT_STRUCT_MAX_BW_OFFSET +
4194		      (I40E_ALT_STRUCT_DWORDS_PER_PF * hw->pf_id);
4195	min_bw_addr = I40E_ALT_STRUCT_FIRST_PF_OFFSET +
4196		      I40E_ALT_STRUCT_MIN_BW_OFFSET +
4197		      (I40E_ALT_STRUCT_DWORDS_PER_PF * hw->pf_id);
4198
4199	/* Read the bandwidths from alt ram */
4200	status = i40e_aq_alternate_read(hw, max_bw_addr, max_bw,
4201					min_bw_addr, min_bw);
4202
4203	if (*min_bw & I40E_ALT_BW_VALID_MASK)
4204		*min_valid = true;
4205	else
4206		*min_valid = false;
4207
4208	if (*max_bw & I40E_ALT_BW_VALID_MASK)
4209		*max_valid = true;
4210	else
4211		*max_valid = false;
4212
4213	return status;
4214}
4215
4216/**
4217 * i40e_aq_configure_partition_bw
4218 * @hw: pointer to the hardware structure
4219 * @bw_data: Buffer holding valid pfs and bw limits
4220 * @cmd_details: pointer to command details
4221 *
4222 * Configure partitions guaranteed/max bw
4223 **/
4224i40e_status i40e_aq_configure_partition_bw(struct i40e_hw *hw,
4225			struct i40e_aqc_configure_partition_bw_data *bw_data,
4226			struct i40e_asq_cmd_details *cmd_details)
4227{
4228	i40e_status status;
4229	struct i40e_aq_desc desc;
4230	u16 bwd_size = sizeof(*bw_data);
4231
4232	i40e_fill_default_direct_cmd_desc(&desc,
4233					  i40e_aqc_opc_configure_partition_bw);
4234
4235	/* Indirect command */
4236	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
4237	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_RD);
4238
4239	if (bwd_size > I40E_AQ_LARGE_BUF)
4240		desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
4241
4242	desc.datalen = cpu_to_le16(bwd_size);
4243
4244	status = i40e_asq_send_command(hw, &desc, bw_data, bwd_size,
4245				       cmd_details);
4246
4247	return status;
4248}
4249
4250/**
4251 * i40e_read_phy_register
4252 * @hw: pointer to the HW structure
4253 * @page: registers page number
4254 * @reg: register address in the page
4255 * @phy_adr: PHY address on MDIO interface
4256 * @value: PHY register value
4257 *
4258 * Reads specified PHY register value
4259 **/
4260i40e_status i40e_read_phy_register(struct i40e_hw *hw,
4261				   u8 page, u16 reg, u8 phy_addr,
4262				   u16 *value)
4263{
4264	i40e_status status = I40E_ERR_TIMEOUT;
4265	u32 command = 0;
4266	u16 retry = 1000;
4267	u8 port_num = hw->func_caps.mdio_port_num;
4268
4269	command = (reg << I40E_GLGEN_MSCA_MDIADD_SHIFT) |
4270		  (page << I40E_GLGEN_MSCA_DEVADD_SHIFT) |
4271		  (phy_addr << I40E_GLGEN_MSCA_PHYADD_SHIFT) |
4272		  (I40E_MDIO_OPCODE_ADDRESS) |
4273		  (I40E_MDIO_STCODE) |
4274		  (I40E_GLGEN_MSCA_MDICMD_MASK) |
4275		  (I40E_GLGEN_MSCA_MDIINPROGEN_MASK);
4276	wr32(hw, I40E_GLGEN_MSCA(port_num), command);
4277	do {
4278		command = rd32(hw, I40E_GLGEN_MSCA(port_num));
4279		if (!(command & I40E_GLGEN_MSCA_MDICMD_MASK)) {
4280			status = 0;
4281			break;
4282		}
4283		usleep_range(10, 20);
4284		retry--;
4285	} while (retry);
4286
4287	if (status) {
4288		i40e_debug(hw, I40E_DEBUG_PHY,
4289			   "PHY: Can't write command to external PHY.\n");
4290		goto phy_read_end;
4291	}
4292
4293	command = (page << I40E_GLGEN_MSCA_DEVADD_SHIFT) |
4294		  (phy_addr << I40E_GLGEN_MSCA_PHYADD_SHIFT) |
4295		  (I40E_MDIO_OPCODE_READ) |
4296		  (I40E_MDIO_STCODE) |
4297		  (I40E_GLGEN_MSCA_MDICMD_MASK) |
4298		  (I40E_GLGEN_MSCA_MDIINPROGEN_MASK);
4299	status = I40E_ERR_TIMEOUT;
4300	retry = 1000;
4301	wr32(hw, I40E_GLGEN_MSCA(port_num), command);
4302	do {
4303		command = rd32(hw, I40E_GLGEN_MSCA(port_num));
4304		if (!(command & I40E_GLGEN_MSCA_MDICMD_MASK)) {
4305			status = 0;
4306			break;
4307		}
4308		usleep_range(10, 20);
4309		retry--;
4310	} while (retry);
4311
4312	if (!status) {
4313		command = rd32(hw, I40E_GLGEN_MSRWD(port_num));
4314		*value = (command & I40E_GLGEN_MSRWD_MDIRDDATA_MASK) >>
4315			 I40E_GLGEN_MSRWD_MDIRDDATA_SHIFT;
4316	} else {
4317		i40e_debug(hw, I40E_DEBUG_PHY,
4318			   "PHY: Can't read register value from external PHY.\n");
4319	}
4320
4321phy_read_end:
4322	return status;
4323}
4324
4325/**
4326 * i40e_write_phy_register
4327 * @hw: pointer to the HW structure
4328 * @page: registers page number
4329 * @reg: register address in the page
4330 * @phy_adr: PHY address on MDIO interface
4331 * @value: PHY register value
4332 *
4333 * Writes value to specified PHY register
4334 **/
4335i40e_status i40e_write_phy_register(struct i40e_hw *hw,
4336				    u8 page, u16 reg, u8 phy_addr,
4337				    u16 value)
4338{
4339	i40e_status status = I40E_ERR_TIMEOUT;
4340	u32 command = 0;
4341	u16 retry = 1000;
4342	u8 port_num = hw->func_caps.mdio_port_num;
4343
4344	command = (reg << I40E_GLGEN_MSCA_MDIADD_SHIFT) |
4345		  (page << I40E_GLGEN_MSCA_DEVADD_SHIFT) |
4346		  (phy_addr << I40E_GLGEN_MSCA_PHYADD_SHIFT) |
4347		  (I40E_MDIO_OPCODE_ADDRESS) |
4348		  (I40E_MDIO_STCODE) |
4349		  (I40E_GLGEN_MSCA_MDICMD_MASK) |
4350		  (I40E_GLGEN_MSCA_MDIINPROGEN_MASK);
4351	wr32(hw, I40E_GLGEN_MSCA(port_num), command);
4352	do {
4353		command = rd32(hw, I40E_GLGEN_MSCA(port_num));
4354		if (!(command & I40E_GLGEN_MSCA_MDICMD_MASK)) {
4355			status = 0;
4356			break;
4357		}
4358		usleep_range(10, 20);
4359		retry--;
4360	} while (retry);
4361	if (status) {
4362		i40e_debug(hw, I40E_DEBUG_PHY,
4363			   "PHY: Can't write command to external PHY.\n");
4364		goto phy_write_end;
4365	}
4366
4367	command = value << I40E_GLGEN_MSRWD_MDIWRDATA_SHIFT;
4368	wr32(hw, I40E_GLGEN_MSRWD(port_num), command);
4369
4370	command = (page << I40E_GLGEN_MSCA_DEVADD_SHIFT) |
4371		  (phy_addr << I40E_GLGEN_MSCA_PHYADD_SHIFT) |
4372		  (I40E_MDIO_OPCODE_WRITE) |
4373		  (I40E_MDIO_STCODE) |
4374		  (I40E_GLGEN_MSCA_MDICMD_MASK) |
4375		  (I40E_GLGEN_MSCA_MDIINPROGEN_MASK);
4376	status = I40E_ERR_TIMEOUT;
4377	retry = 1000;
4378	wr32(hw, I40E_GLGEN_MSCA(port_num), command);
4379	do {
4380		command = rd32(hw, I40E_GLGEN_MSCA(port_num));
4381		if (!(command & I40E_GLGEN_MSCA_MDICMD_MASK)) {
4382			status = 0;
4383			break;
4384		}
4385		usleep_range(10, 20);
4386		retry--;
4387	} while (retry);
4388
4389phy_write_end:
4390	return status;
4391}
4392
4393/**
4394 * i40e_get_phy_address
4395 * @hw: pointer to the HW structure
4396 * @dev_num: PHY port num that address we want
4397 * @phy_addr: Returned PHY address
4398 *
4399 * Gets PHY address for current port
4400 **/
4401u8 i40e_get_phy_address(struct i40e_hw *hw, u8 dev_num)
4402{
4403	u8 port_num = hw->func_caps.mdio_port_num;
4404	u32 reg_val = rd32(hw, I40E_GLGEN_MDIO_I2C_SEL(port_num));
4405
4406	return (u8)(reg_val >> ((dev_num + 1) * 5)) & 0x1f;
4407}
4408
4409/**
4410 * i40e_blink_phy_led
4411 * @hw: pointer to the HW structure
4412 * @time: time how long led will blinks in secs
4413 * @interval: gap between LED on and off in msecs
4414 *
4415 * Blinks PHY link LED
4416 **/
4417i40e_status i40e_blink_phy_link_led(struct i40e_hw *hw,
4418				    u32 time, u32 interval)
4419{
4420	i40e_status status = 0;
4421	u32 i;
4422	u16 led_ctl;
4423	u16 gpio_led_port;
4424	u16 led_reg;
4425	u16 led_addr = I40E_PHY_LED_PROV_REG_1;
4426	u8 phy_addr = 0;
4427	u8 port_num;
4428
4429	i = rd32(hw, I40E_PFGEN_PORTNUM);
4430	port_num = (u8)(i & I40E_PFGEN_PORTNUM_PORT_NUM_MASK);
4431	phy_addr = i40e_get_phy_address(hw, port_num);
4432
4433	for (gpio_led_port = 0; gpio_led_port < 3; gpio_led_port++,
4434	     led_addr++) {
4435		status = i40e_read_phy_register(hw, I40E_PHY_COM_REG_PAGE,
4436						led_addr, phy_addr, &led_reg);
4437		if (status)
4438			goto phy_blinking_end;
4439		led_ctl = led_reg;
4440		if (led_reg & I40E_PHY_LED_LINK_MODE_MASK) {
4441			led_reg = 0;
4442			status = i40e_write_phy_register(hw,
4443							 I40E_PHY_COM_REG_PAGE,
4444							 led_addr, phy_addr,
4445							 led_reg);
4446			if (status)
4447				goto phy_blinking_end;
4448			break;
4449		}
4450	}
4451
4452	if (time > 0 && interval > 0) {
4453		for (i = 0; i < time * 1000; i += interval) {
4454			status = i40e_read_phy_register(hw,
4455							I40E_PHY_COM_REG_PAGE,
4456							led_addr, phy_addr,
4457							&led_reg);
4458			if (status)
4459				goto restore_config;
4460			if (led_reg & I40E_PHY_LED_MANUAL_ON)
4461				led_reg = 0;
4462			else
4463				led_reg = I40E_PHY_LED_MANUAL_ON;
4464			status = i40e_write_phy_register(hw,
4465							 I40E_PHY_COM_REG_PAGE,
4466							 led_addr, phy_addr,
4467							 led_reg);
4468			if (status)
4469				goto restore_config;
4470			msleep(interval);
4471		}
4472	}
4473
4474restore_config:
4475	status = i40e_write_phy_register(hw, I40E_PHY_COM_REG_PAGE, led_addr,
4476					 phy_addr, led_ctl);
4477
4478phy_blinking_end:
4479	return status;
4480}
4481
4482/**
4483 * i40e_led_get_phy - return current on/off mode
4484 * @hw: pointer to the hw struct
4485 * @led_addr: address of led register to use
4486 * @val: original value of register to use
4487 *
4488 **/
4489i40e_status i40e_led_get_phy(struct i40e_hw *hw, u16 *led_addr,
4490			     u16 *val)
4491{
4492	i40e_status status = 0;
4493	u16 gpio_led_port;
4494	u8 phy_addr = 0;
4495	u16 reg_val;
4496	u16 temp_addr;
4497	u8 port_num;
4498	u32 i;
4499
4500	temp_addr = I40E_PHY_LED_PROV_REG_1;
4501	i = rd32(hw, I40E_PFGEN_PORTNUM);
4502	port_num = (u8)(i & I40E_PFGEN_PORTNUM_PORT_NUM_MASK);
4503	phy_addr = i40e_get_phy_address(hw, port_num);
4504
4505	for (gpio_led_port = 0; gpio_led_port < 3; gpio_led_port++,
4506	     temp_addr++) {
4507		status = i40e_read_phy_register(hw, I40E_PHY_COM_REG_PAGE,
4508						temp_addr, phy_addr, &reg_val);
4509		if (status)
4510			return status;
4511		*val = reg_val;
4512		if (reg_val & I40E_PHY_LED_LINK_MODE_MASK) {
4513			*led_addr = temp_addr;
4514			break;
4515		}
4516	}
4517	return status;
4518}
4519
4520/**
4521 * i40e_led_set_phy
4522 * @hw: pointer to the HW structure
4523 * @on: true or false
4524 * @mode: original val plus bit for set or ignore
4525 * Set led's on or off when controlled by the PHY
4526 *
4527 **/
4528i40e_status i40e_led_set_phy(struct i40e_hw *hw, bool on,
4529			     u16 led_addr, u32 mode)
4530{
4531	i40e_status status = 0;
4532	u16 led_ctl = 0;
4533	u16 led_reg = 0;
4534	u8 phy_addr = 0;
4535	u8 port_num;
4536	u32 i;
4537
4538	i = rd32(hw, I40E_PFGEN_PORTNUM);
4539	port_num = (u8)(i & I40E_PFGEN_PORTNUM_PORT_NUM_MASK);
4540	phy_addr = i40e_get_phy_address(hw, port_num);
4541
4542	status = i40e_read_phy_register(hw, I40E_PHY_COM_REG_PAGE, led_addr,
4543					phy_addr, &led_reg);
4544	if (status)
4545		return status;
4546	led_ctl = led_reg;
4547	if (led_reg & I40E_PHY_LED_LINK_MODE_MASK) {
4548		led_reg = 0;
4549		status = i40e_write_phy_register(hw, I40E_PHY_COM_REG_PAGE,
4550						 led_addr, phy_addr, led_reg);
4551		if (status)
4552			return status;
4553	}
4554	status = i40e_read_phy_register(hw, I40E_PHY_COM_REG_PAGE,
4555					led_addr, phy_addr, &led_reg);
4556	if (status)
4557		goto restore_config;
4558	if (on)
4559		led_reg = I40E_PHY_LED_MANUAL_ON;
4560	else
4561		led_reg = 0;
4562	status = i40e_write_phy_register(hw, I40E_PHY_COM_REG_PAGE,
4563					 led_addr, phy_addr, led_reg);
4564	if (status)
4565		goto restore_config;
4566	if (mode & I40E_PHY_LED_MODE_ORIG) {
4567		led_ctl = (mode & I40E_PHY_LED_MODE_MASK);
4568		status = i40e_write_phy_register(hw,
4569						 I40E_PHY_COM_REG_PAGE,
4570						 led_addr, phy_addr, led_ctl);
4571	}
4572	return status;
4573restore_config:
4574	status = i40e_write_phy_register(hw, I40E_PHY_COM_REG_PAGE, led_addr,
4575					 phy_addr, led_ctl);
4576	return status;
4577}
4578
4579/**
4580 * i40e_aq_rx_ctl_read_register - use FW to read from an Rx control register
4581 * @hw: pointer to the hw struct
4582 * @reg_addr: register address
4583 * @reg_val: ptr to register value
4584 * @cmd_details: pointer to command details structure or NULL
4585 *
4586 * Use the firmware to read the Rx control register,
4587 * especially useful if the Rx unit is under heavy pressure
4588 **/
4589i40e_status i40e_aq_rx_ctl_read_register(struct i40e_hw *hw,
4590				u32 reg_addr, u32 *reg_val,
4591				struct i40e_asq_cmd_details *cmd_details)
4592{
4593	struct i40e_aq_desc desc;
4594	struct i40e_aqc_rx_ctl_reg_read_write *cmd_resp =
4595		(struct i40e_aqc_rx_ctl_reg_read_write *)&desc.params.raw;
4596	i40e_status status;
4597
4598	if (!reg_val)
4599		return I40E_ERR_PARAM;
4600
4601	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_rx_ctl_reg_read);
4602
4603	cmd_resp->address = cpu_to_le32(reg_addr);
4604
4605	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
4606
4607	if (status == 0)
4608		*reg_val = le32_to_cpu(cmd_resp->value);
4609
4610	return status;
4611}
4612
4613/**
4614 * i40e_read_rx_ctl - read from an Rx control register
4615 * @hw: pointer to the hw struct
4616 * @reg_addr: register address
4617 **/
4618u32 i40e_read_rx_ctl(struct i40e_hw *hw, u32 reg_addr)
4619{
4620	i40e_status status = 0;
4621	bool use_register;
4622	int retry = 5;
4623	u32 val = 0;
4624
4625	use_register = (hw->aq.api_maj_ver == 1) && (hw->aq.api_min_ver < 5);
4626	if (!use_register) {
4627do_retry:
4628		status = i40e_aq_rx_ctl_read_register(hw, reg_addr, &val, NULL);
4629		if (hw->aq.asq_last_status == I40E_AQ_RC_EAGAIN && retry) {
4630			usleep_range(1000, 2000);
4631			retry--;
4632			goto do_retry;
4633		}
4634	}
4635
4636	/* if the AQ access failed, try the old-fashioned way */
4637	if (status || use_register)
4638		val = rd32(hw, reg_addr);
4639
4640	return val;
4641}
4642
4643/**
4644 * i40e_aq_rx_ctl_write_register
4645 * @hw: pointer to the hw struct
4646 * @reg_addr: register address
4647 * @reg_val: register value
4648 * @cmd_details: pointer to command details structure or NULL
4649 *
4650 * Use the firmware to write to an Rx control register,
4651 * especially useful if the Rx unit is under heavy pressure
4652 **/
4653i40e_status i40e_aq_rx_ctl_write_register(struct i40e_hw *hw,
4654				u32 reg_addr, u32 reg_val,
4655				struct i40e_asq_cmd_details *cmd_details)
4656{
4657	struct i40e_aq_desc desc;
4658	struct i40e_aqc_rx_ctl_reg_read_write *cmd =
4659		(struct i40e_aqc_rx_ctl_reg_read_write *)&desc.params.raw;
4660	i40e_status status;
4661
4662	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_rx_ctl_reg_write);
4663
4664	cmd->address = cpu_to_le32(reg_addr);
4665	cmd->value = cpu_to_le32(reg_val);
4666
4667	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
4668
4669	return status;
4670}
4671
4672/**
4673 * i40e_write_rx_ctl - write to an Rx control register
4674 * @hw: pointer to the hw struct
4675 * @reg_addr: register address
4676 * @reg_val: register value
4677 **/
4678void i40e_write_rx_ctl(struct i40e_hw *hw, u32 reg_addr, u32 reg_val)
4679{
4680	i40e_status status = 0;
4681	bool use_register;
4682	int retry = 5;
4683
4684	use_register = (hw->aq.api_maj_ver == 1) && (hw->aq.api_min_ver < 5);
4685	if (!use_register) {
4686do_retry:
4687		status = i40e_aq_rx_ctl_write_register(hw, reg_addr,
4688						       reg_val, NULL);
4689		if (hw->aq.asq_last_status == I40E_AQ_RC_EAGAIN && retry) {
4690			usleep_range(1000, 2000);
4691			retry--;
4692			goto do_retry;
4693		}
4694	}
4695
4696	/* if the AQ access failed, try the old-fashioned way */
4697	if (status || use_register)
4698		wr32(hw, reg_addr, reg_val);
4699}