Linux Audio

Check our new training course

Loading...
v4.6
   1/**************************************************************************
   2 *
   3 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
   4 * All Rights Reserved.
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a
   7 * copy of this software and associated documentation files (the
   8 * "Software"), to deal in the Software without restriction, including
   9 * without limitation the rights to use, copy, modify, merge, publish,
  10 * distribute, sub license, and/or sell copies of the Software, and to
  11 * permit persons to whom the Software is furnished to do so, subject to
  12 * the following conditions:
  13 *
  14 * The above copyright notice and this permission notice (including the
  15 * next paragraph) shall be included in all copies or substantial portions
  16 * of the Software.
  17 *
  18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
  22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
  23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
  24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
  25 *
  26 **************************************************************************/
  27/*
  28 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
  29 */
  30
  31#define pr_fmt(fmt) "[TTM] " fmt
  32
  33#include <drm/ttm/ttm_module.h>
  34#include <drm/ttm/ttm_bo_driver.h>
  35#include <drm/ttm/ttm_placement.h>
  36#include <linux/jiffies.h>
  37#include <linux/slab.h>
  38#include <linux/sched.h>
  39#include <linux/mm.h>
  40#include <linux/file.h>
  41#include <linux/module.h>
  42#include <linux/atomic.h>
  43#include <linux/reservation.h>
  44
  45#define TTM_ASSERT_LOCKED(param)
  46#define TTM_DEBUG(fmt, arg...)
  47#define TTM_BO_HASH_ORDER 13
  48
 
  49static int ttm_bo_swapout(struct ttm_mem_shrink *shrink);
  50static void ttm_bo_global_kobj_release(struct kobject *kobj);
  51
  52static struct attribute ttm_bo_count = {
  53	.name = "bo_count",
  54	.mode = S_IRUGO
  55};
  56
  57static inline int ttm_mem_type_from_place(const struct ttm_place *place,
  58					  uint32_t *mem_type)
  59{
  60	int i;
  61
  62	for (i = 0; i <= TTM_PL_PRIV5; i++)
  63		if (place->flags & (1 << i)) {
  64			*mem_type = i;
  65			return 0;
  66		}
  67	return -EINVAL;
  68}
  69
  70static void ttm_mem_type_debug(struct ttm_bo_device *bdev, int mem_type)
  71{
  72	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
  73
  74	pr_err("    has_type: %d\n", man->has_type);
  75	pr_err("    use_type: %d\n", man->use_type);
  76	pr_err("    flags: 0x%08X\n", man->flags);
  77	pr_err("    gpu_offset: 0x%08llX\n", man->gpu_offset);
  78	pr_err("    size: %llu\n", man->size);
  79	pr_err("    available_caching: 0x%08X\n", man->available_caching);
  80	pr_err("    default_caching: 0x%08X\n", man->default_caching);
 
 
  81	if (mem_type != TTM_PL_SYSTEM)
  82		(*man->func->debug)(man, TTM_PFX);
  83}
  84
  85static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
  86					struct ttm_placement *placement)
  87{
  88	int i, ret, mem_type;
  89
  90	pr_err("No space for %p (%lu pages, %luK, %luM)\n",
  91	       bo, bo->mem.num_pages, bo->mem.size >> 10,
  92	       bo->mem.size >> 20);
  93	for (i = 0; i < placement->num_placement; i++) {
  94		ret = ttm_mem_type_from_place(&placement->placement[i],
  95						&mem_type);
  96		if (ret)
  97			return;
  98		pr_err("  placement[%d]=0x%08X (%d)\n",
  99		       i, placement->placement[i].flags, mem_type);
 100		ttm_mem_type_debug(bo->bdev, mem_type);
 101	}
 102}
 103
 104static ssize_t ttm_bo_global_show(struct kobject *kobj,
 105				  struct attribute *attr,
 106				  char *buffer)
 107{
 108	struct ttm_bo_global *glob =
 109		container_of(kobj, struct ttm_bo_global, kobj);
 110
 111	return snprintf(buffer, PAGE_SIZE, "%lu\n",
 112			(unsigned long) atomic_read(&glob->bo_count));
 113}
 114
 115static struct attribute *ttm_bo_global_attrs[] = {
 116	&ttm_bo_count,
 117	NULL
 118};
 119
 120static const struct sysfs_ops ttm_bo_global_ops = {
 121	.show = &ttm_bo_global_show
 122};
 123
 124static struct kobj_type ttm_bo_glob_kobj_type  = {
 125	.release = &ttm_bo_global_kobj_release,
 126	.sysfs_ops = &ttm_bo_global_ops,
 127	.default_attrs = ttm_bo_global_attrs
 128};
 129
 130
 131static inline uint32_t ttm_bo_type_flags(unsigned type)
 132{
 133	return 1 << (type);
 134}
 135
 136static void ttm_bo_release_list(struct kref *list_kref)
 137{
 138	struct ttm_buffer_object *bo =
 139	    container_of(list_kref, struct ttm_buffer_object, list_kref);
 140	struct ttm_bo_device *bdev = bo->bdev;
 141	size_t acc_size = bo->acc_size;
 142
 143	BUG_ON(atomic_read(&bo->list_kref.refcount));
 144	BUG_ON(atomic_read(&bo->kref.refcount));
 145	BUG_ON(atomic_read(&bo->cpu_writers));
 
 146	BUG_ON(bo->mem.mm_node != NULL);
 147	BUG_ON(!list_empty(&bo->lru));
 148	BUG_ON(!list_empty(&bo->ddestroy));
 149
 150	if (bo->ttm)
 151		ttm_tt_destroy(bo->ttm);
 152	atomic_dec(&bo->glob->bo_count);
 153	if (bo->resv == &bo->ttm_resv)
 154		reservation_object_fini(&bo->ttm_resv);
 155	mutex_destroy(&bo->wu_mutex);
 156	if (bo->destroy)
 157		bo->destroy(bo);
 158	else {
 
 159		kfree(bo);
 160	}
 161	ttm_mem_global_free(bdev->glob->mem_glob, acc_size);
 162}
 163
 
 
 
 
 
 
 
 
 
 
 
 
 164void ttm_bo_add_to_lru(struct ttm_buffer_object *bo)
 165{
 166	struct ttm_bo_device *bdev = bo->bdev;
 167	struct ttm_mem_type_manager *man;
 168
 169	lockdep_assert_held(&bo->resv->lock.base);
 170
 171	if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
 172
 173		BUG_ON(!list_empty(&bo->lru));
 174
 175		man = &bdev->man[bo->mem.mem_type];
 176		list_add_tail(&bo->lru, &man->lru);
 177		kref_get(&bo->list_kref);
 178
 179		if (bo->ttm && !(bo->ttm->page_flags & TTM_PAGE_FLAG_SG)) {
 180			list_add_tail(&bo->swap, &bo->glob->swap_lru);
 181			kref_get(&bo->list_kref);
 182		}
 183	}
 184}
 185EXPORT_SYMBOL(ttm_bo_add_to_lru);
 186
 187int ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
 188{
 189	int put_count = 0;
 190
 191	if (!list_empty(&bo->swap)) {
 192		list_del_init(&bo->swap);
 193		++put_count;
 194	}
 195	if (!list_empty(&bo->lru)) {
 196		list_del_init(&bo->lru);
 197		++put_count;
 198	}
 199
 200	/*
 201	 * TODO: Add a driver hook to delete from
 202	 * driver-specific LRU's here.
 203	 */
 204
 205	return put_count;
 206}
 207
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 208static void ttm_bo_ref_bug(struct kref *list_kref)
 209{
 210	BUG();
 211}
 212
 213void ttm_bo_list_ref_sub(struct ttm_buffer_object *bo, int count,
 214			 bool never_free)
 215{
 216	kref_sub(&bo->list_kref, count,
 217		 (never_free) ? ttm_bo_ref_bug : ttm_bo_release_list);
 218}
 219
 220void ttm_bo_del_sub_from_lru(struct ttm_buffer_object *bo)
 
 
 221{
 222	int put_count;
 
 
 
 
 
 
 
 
 
 223
 224	spin_lock(&bo->glob->lru_lock);
 225	put_count = ttm_bo_del_from_lru(bo);
 226	spin_unlock(&bo->glob->lru_lock);
 227	ttm_bo_list_ref_sub(bo, put_count, true);
 
 
 228}
 229EXPORT_SYMBOL(ttm_bo_del_sub_from_lru);
 230
 231void ttm_bo_move_to_lru_tail(struct ttm_buffer_object *bo)
 232{
 233	int put_count = 0;
 
 
 
 234
 235	lockdep_assert_held(&bo->resv->lock.base);
 
 
 236
 237	put_count = ttm_bo_del_from_lru(bo);
 238	ttm_bo_list_ref_sub(bo, put_count, true);
 239	ttm_bo_add_to_lru(bo);
 240}
 241EXPORT_SYMBOL(ttm_bo_move_to_lru_tail);
 242
 243/*
 244 * Call bo->mutex locked.
 245 */
 246static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc)
 247{
 248	struct ttm_bo_device *bdev = bo->bdev;
 249	struct ttm_bo_global *glob = bo->glob;
 250	int ret = 0;
 251	uint32_t page_flags = 0;
 252
 253	TTM_ASSERT_LOCKED(&bo->mutex);
 254	bo->ttm = NULL;
 255
 256	if (bdev->need_dma32)
 257		page_flags |= TTM_PAGE_FLAG_DMA32;
 258
 259	switch (bo->type) {
 260	case ttm_bo_type_device:
 261		if (zero_alloc)
 262			page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC;
 263	case ttm_bo_type_kernel:
 264		bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
 265						      page_flags, glob->dummy_read_page);
 266		if (unlikely(bo->ttm == NULL))
 267			ret = -ENOMEM;
 268		break;
 269	case ttm_bo_type_sg:
 270		bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
 271						      page_flags | TTM_PAGE_FLAG_SG,
 272						      glob->dummy_read_page);
 273		if (unlikely(bo->ttm == NULL)) {
 274			ret = -ENOMEM;
 275			break;
 276		}
 277		bo->ttm->sg = bo->sg;
 
 
 
 
 
 
 278		break;
 279	default:
 280		pr_err("Illegal buffer object type\n");
 281		ret = -EINVAL;
 282		break;
 283	}
 284
 285	return ret;
 286}
 287
 288static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
 289				  struct ttm_mem_reg *mem,
 290				  bool evict, bool interruptible,
 291				  bool no_wait_gpu)
 292{
 293	struct ttm_bo_device *bdev = bo->bdev;
 294	bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem);
 295	bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem);
 296	struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
 297	struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
 298	int ret = 0;
 299
 300	if (old_is_pci || new_is_pci ||
 301	    ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) {
 302		ret = ttm_mem_io_lock(old_man, true);
 303		if (unlikely(ret != 0))
 304			goto out_err;
 305		ttm_bo_unmap_virtual_locked(bo);
 306		ttm_mem_io_unlock(old_man);
 307	}
 308
 309	/*
 310	 * Create and bind a ttm if required.
 311	 */
 312
 313	if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
 314		if (bo->ttm == NULL) {
 315			bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED);
 316			ret = ttm_bo_add_ttm(bo, zero);
 317			if (ret)
 318				goto out_err;
 319		}
 320
 321		ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
 322		if (ret)
 323			goto out_err;
 324
 325		if (mem->mem_type != TTM_PL_SYSTEM) {
 326			ret = ttm_tt_bind(bo->ttm, mem);
 327			if (ret)
 328				goto out_err;
 329		}
 330
 331		if (bo->mem.mem_type == TTM_PL_SYSTEM) {
 332			if (bdev->driver->move_notify)
 333				bdev->driver->move_notify(bo, mem);
 334			bo->mem = *mem;
 335			mem->mm_node = NULL;
 336			goto moved;
 337		}
 338	}
 339
 340	if (bdev->driver->move_notify)
 341		bdev->driver->move_notify(bo, mem);
 342
 343	if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
 344	    !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
 345		ret = ttm_bo_move_ttm(bo, evict, no_wait_gpu, mem);
 346	else if (bdev->driver->move)
 347		ret = bdev->driver->move(bo, evict, interruptible,
 348					 no_wait_gpu, mem);
 349	else
 350		ret = ttm_bo_move_memcpy(bo, evict, no_wait_gpu, mem);
 351
 352	if (ret) {
 353		if (bdev->driver->move_notify) {
 354			struct ttm_mem_reg tmp_mem = *mem;
 355			*mem = bo->mem;
 356			bo->mem = tmp_mem;
 357			bdev->driver->move_notify(bo, mem);
 358			bo->mem = *mem;
 359			*mem = tmp_mem;
 360		}
 361
 
 362		goto out_err;
 363	}
 364
 365moved:
 366	if (bo->evicted) {
 367		if (bdev->driver->invalidate_caches) {
 368			ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement);
 369			if (ret)
 370				pr_err("Can not flush read caches\n");
 371		}
 372		bo->evicted = false;
 373	}
 374
 375	if (bo->mem.mm_node) {
 376		bo->offset = (bo->mem.start << PAGE_SHIFT) +
 377		    bdev->man[bo->mem.mem_type].gpu_offset;
 378		bo->cur_placement = bo->mem.placement;
 379	} else
 380		bo->offset = 0;
 381
 382	return 0;
 383
 384out_err:
 385	new_man = &bdev->man[bo->mem.mem_type];
 386	if ((new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm) {
 387		ttm_tt_unbind(bo->ttm);
 388		ttm_tt_destroy(bo->ttm);
 389		bo->ttm = NULL;
 390	}
 391
 392	return ret;
 393}
 394
 395/**
 396 * Call bo::reserved.
 397 * Will release GPU memory type usage on destruction.
 398 * This is the place to put in driver specific hooks to release
 399 * driver private resources.
 400 * Will release the bo::reserved lock.
 401 */
 402
 403static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
 404{
 405	if (bo->bdev->driver->move_notify)
 406		bo->bdev->driver->move_notify(bo, NULL);
 407
 408	if (bo->ttm) {
 409		ttm_tt_unbind(bo->ttm);
 410		ttm_tt_destroy(bo->ttm);
 411		bo->ttm = NULL;
 412	}
 413	ttm_bo_mem_put(bo, &bo->mem);
 414
 415	ww_mutex_unlock (&bo->resv->lock);
 416}
 417
 418static void ttm_bo_flush_all_fences(struct ttm_buffer_object *bo)
 419{
 420	struct reservation_object_list *fobj;
 421	struct fence *fence;
 422	int i;
 423
 424	fobj = reservation_object_get_list(bo->resv);
 425	fence = reservation_object_get_excl(bo->resv);
 426	if (fence && !fence->ops->signaled)
 427		fence_enable_sw_signaling(fence);
 428
 429	for (i = 0; fobj && i < fobj->shared_count; ++i) {
 430		fence = rcu_dereference_protected(fobj->shared[i],
 431					reservation_object_held(bo->resv));
 432
 433		if (!fence->ops->signaled)
 434			fence_enable_sw_signaling(fence);
 435	}
 
 
 436}
 437
 438static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo)
 439{
 440	struct ttm_bo_device *bdev = bo->bdev;
 441	struct ttm_bo_global *glob = bo->glob;
 
 
 
 442	int put_count;
 443	int ret;
 444
 445	spin_lock(&glob->lru_lock);
 446	ret = __ttm_bo_reserve(bo, false, true, false, NULL);
 
 447
 448	if (!ret) {
 449		if (!ttm_bo_wait(bo, false, false, true)) {
 450			put_count = ttm_bo_del_from_lru(bo);
 451
 452			spin_unlock(&glob->lru_lock);
 453			ttm_bo_cleanup_memtype_use(bo);
 
 
 454
 455			ttm_bo_list_ref_sub(bo, put_count, true);
 456
 457			return;
 458		} else
 459			ttm_bo_flush_all_fences(bo);
 460
 461		/*
 462		 * Make NO_EVICT bos immediately available to
 463		 * shrinkers, now that they are queued for
 464		 * destruction.
 465		 */
 466		if (bo->mem.placement & TTM_PL_FLAG_NO_EVICT) {
 467			bo->mem.placement &= ~TTM_PL_FLAG_NO_EVICT;
 468			ttm_bo_add_to_lru(bo);
 469		}
 470
 471		__ttm_bo_unreserve(bo);
 
 
 
 
 
 
 
 472	}
 
 
 
 
 
 473
 474	kref_get(&bo->list_kref);
 475	list_add_tail(&bo->ddestroy, &bdev->ddestroy);
 476	spin_unlock(&glob->lru_lock);
 
 477
 
 
 
 
 478	schedule_delayed_work(&bdev->wq,
 479			      ((HZ / 100) < 1) ? 1 : HZ / 100);
 480}
 481
 482/**
 483 * function ttm_bo_cleanup_refs_and_unlock
 484 * If bo idle, remove from delayed- and lru lists, and unref.
 485 * If not idle, do nothing.
 486 *
 487 * Must be called with lru_lock and reservation held, this function
 488 * will drop both before returning.
 489 *
 490 * @interruptible         Any sleeps should occur interruptibly.
 
 491 * @no_wait_gpu           Never wait for gpu. Return -EBUSY instead.
 492 */
 493
 494static int ttm_bo_cleanup_refs_and_unlock(struct ttm_buffer_object *bo,
 495					  bool interruptible,
 496					  bool no_wait_gpu)
 
 497{
 
 498	struct ttm_bo_global *glob = bo->glob;
 499	int put_count;
 500	int ret;
 501
 502	ret = ttm_bo_wait(bo, false, false, true);
 503
 504	if (ret && !no_wait_gpu) {
 505		long lret;
 506		ww_mutex_unlock(&bo->resv->lock);
 507		spin_unlock(&glob->lru_lock);
 508
 509		lret = reservation_object_wait_timeout_rcu(bo->resv,
 510							   true,
 511							   interruptible,
 512							   30 * HZ);
 513
 514		if (lret < 0)
 515			return lret;
 516		else if (lret == 0)
 517			return -EBUSY;
 518
 519		spin_lock(&glob->lru_lock);
 520		ret = __ttm_bo_reserve(bo, false, true, false, NULL);
 521
 522		/*
 523		 * We raced, and lost, someone else holds the reservation now,
 524		 * and is probably busy in ttm_bo_cleanup_memtype_use.
 525		 *
 526		 * Even if it's not the case, because we finished waiting any
 527		 * delayed destruction would succeed, so just return success
 528		 * here.
 529		 */
 530		if (ret) {
 531			spin_unlock(&glob->lru_lock);
 532			return 0;
 533		}
 534
 535		/*
 536		 * remove sync_obj with ttm_bo_wait, the wait should be
 537		 * finished, and no new wait object should have been added.
 538		 */
 539		ret = ttm_bo_wait(bo, false, false, true);
 540		WARN_ON(ret);
 541	}
 542
 543	if (ret || unlikely(list_empty(&bo->ddestroy))) {
 544		__ttm_bo_unreserve(bo);
 
 
 
 
 
 
 
 
 
 545		spin_unlock(&glob->lru_lock);
 546		return ret;
 547	}
 548
 549	put_count = ttm_bo_del_from_lru(bo);
 550	list_del_init(&bo->ddestroy);
 551	++put_count;
 552
 553	spin_unlock(&glob->lru_lock);
 554	ttm_bo_cleanup_memtype_use(bo);
 555
 556	ttm_bo_list_ref_sub(bo, put_count, true);
 557
 558	return 0;
 559}
 560
 561/**
 562 * Traverse the delayed list, and call ttm_bo_cleanup_refs on all
 563 * encountered buffers.
 564 */
 565
 566static int ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
 567{
 568	struct ttm_bo_global *glob = bdev->glob;
 569	struct ttm_buffer_object *entry = NULL;
 570	int ret = 0;
 571
 572	spin_lock(&glob->lru_lock);
 573	if (list_empty(&bdev->ddestroy))
 574		goto out_unlock;
 575
 576	entry = list_first_entry(&bdev->ddestroy,
 577		struct ttm_buffer_object, ddestroy);
 578	kref_get(&entry->list_kref);
 579
 580	for (;;) {
 581		struct ttm_buffer_object *nentry = NULL;
 582
 583		if (entry->ddestroy.next != &bdev->ddestroy) {
 584			nentry = list_first_entry(&entry->ddestroy,
 585				struct ttm_buffer_object, ddestroy);
 586			kref_get(&nentry->list_kref);
 587		}
 588
 589		ret = __ttm_bo_reserve(entry, false, true, false, NULL);
 590		if (remove_all && ret) {
 591			spin_unlock(&glob->lru_lock);
 592			ret = __ttm_bo_reserve(entry, false, false,
 593					       false, NULL);
 594			spin_lock(&glob->lru_lock);
 595		}
 596
 597		if (!ret)
 598			ret = ttm_bo_cleanup_refs_and_unlock(entry, false,
 599							     !remove_all);
 600		else
 601			spin_unlock(&glob->lru_lock);
 602
 603		kref_put(&entry->list_kref, ttm_bo_release_list);
 604		entry = nentry;
 605
 606		if (ret || !entry)
 607			goto out;
 608
 609		spin_lock(&glob->lru_lock);
 610		if (list_empty(&entry->ddestroy))
 611			break;
 612	}
 613
 614out_unlock:
 615	spin_unlock(&glob->lru_lock);
 616out:
 617	if (entry)
 618		kref_put(&entry->list_kref, ttm_bo_release_list);
 619	return ret;
 620}
 621
 622static void ttm_bo_delayed_workqueue(struct work_struct *work)
 623{
 624	struct ttm_bo_device *bdev =
 625	    container_of(work, struct ttm_bo_device, wq.work);
 626
 627	if (ttm_bo_delayed_delete(bdev, false)) {
 628		schedule_delayed_work(&bdev->wq,
 629				      ((HZ / 100) < 1) ? 1 : HZ / 100);
 630	}
 631}
 632
 633static void ttm_bo_release(struct kref *kref)
 634{
 635	struct ttm_buffer_object *bo =
 636	    container_of(kref, struct ttm_buffer_object, kref);
 637	struct ttm_bo_device *bdev = bo->bdev;
 638	struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
 639
 640	drm_vma_offset_remove(&bdev->vma_manager, &bo->vma_node);
 
 
 
 
 
 641	ttm_mem_io_lock(man, false);
 642	ttm_mem_io_free_vm(bo);
 643	ttm_mem_io_unlock(man);
 644	ttm_bo_cleanup_refs_or_queue(bo);
 645	kref_put(&bo->list_kref, ttm_bo_release_list);
 
 646}
 647
 648void ttm_bo_unref(struct ttm_buffer_object **p_bo)
 649{
 650	struct ttm_buffer_object *bo = *p_bo;
 
 651
 652	*p_bo = NULL;
 
 653	kref_put(&bo->kref, ttm_bo_release);
 
 654}
 655EXPORT_SYMBOL(ttm_bo_unref);
 656
 657int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev)
 658{
 659	return cancel_delayed_work_sync(&bdev->wq);
 660}
 661EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue);
 662
 663void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched)
 664{
 665	if (resched)
 666		schedule_delayed_work(&bdev->wq,
 667				      ((HZ / 100) < 1) ? 1 : HZ / 100);
 668}
 669EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue);
 670
 671static int ttm_bo_evict(struct ttm_buffer_object *bo, bool interruptible,
 672			bool no_wait_gpu)
 673{
 674	struct ttm_bo_device *bdev = bo->bdev;
 675	struct ttm_mem_reg evict_mem;
 676	struct ttm_placement placement;
 677	int ret = 0;
 678
 
 679	ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
 
 680
 681	if (unlikely(ret != 0)) {
 682		if (ret != -ERESTARTSYS) {
 683			pr_err("Failed to expire sync object before buffer eviction\n");
 
 
 684		}
 685		goto out;
 686	}
 687
 688	lockdep_assert_held(&bo->resv->lock.base);
 689
 690	evict_mem = bo->mem;
 691	evict_mem.mm_node = NULL;
 692	evict_mem.bus.io_reserved_vm = false;
 693	evict_mem.bus.io_reserved_count = 0;
 694
 
 
 695	placement.num_placement = 0;
 696	placement.num_busy_placement = 0;
 697	bdev->driver->evict_flags(bo, &placement);
 698	ret = ttm_bo_mem_space(bo, &placement, &evict_mem, interruptible,
 699				no_wait_gpu);
 700	if (ret) {
 701		if (ret != -ERESTARTSYS) {
 702			pr_err("Failed to find memory space for buffer 0x%p eviction\n",
 703			       bo);
 
 704			ttm_bo_mem_space_debug(bo, &placement);
 705		}
 706		goto out;
 707	}
 708
 709	ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, interruptible,
 710				     no_wait_gpu);
 711	if (ret) {
 712		if (ret != -ERESTARTSYS)
 713			pr_err("Buffer eviction failed\n");
 714		ttm_bo_mem_put(bo, &evict_mem);
 715		goto out;
 716	}
 717	bo->evicted = true;
 718out:
 719	return ret;
 720}
 721
 722static int ttm_mem_evict_first(struct ttm_bo_device *bdev,
 723				uint32_t mem_type,
 724				const struct ttm_place *place,
 725				bool interruptible,
 726				bool no_wait_gpu)
 727{
 728	struct ttm_bo_global *glob = bdev->glob;
 729	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
 730	struct ttm_buffer_object *bo;
 731	int ret = -EBUSY, put_count;
 732
 
 733	spin_lock(&glob->lru_lock);
 734	list_for_each_entry(bo, &man->lru, lru) {
 735		ret = __ttm_bo_reserve(bo, false, true, false, NULL);
 736		if (!ret) {
 737			if (place && (place->fpfn || place->lpfn)) {
 738				/* Don't evict this BO if it's outside of the
 739				 * requested placement range
 740				 */
 741				if (place->fpfn >= (bo->mem.start + bo->mem.size) ||
 742				    (place->lpfn && place->lpfn <= bo->mem.start)) {
 743					__ttm_bo_unreserve(bo);
 744					ret = -EBUSY;
 745					continue;
 746				}
 747			}
 748
 749			break;
 750		}
 751	}
 752
 753	if (ret) {
 754		spin_unlock(&glob->lru_lock);
 755		return ret;
 756	}
 757
 
 758	kref_get(&bo->list_kref);
 759
 760	if (!list_empty(&bo->ddestroy)) {
 761		ret = ttm_bo_cleanup_refs_and_unlock(bo, interruptible,
 762						     no_wait_gpu);
 
 763		kref_put(&bo->list_kref, ttm_bo_release_list);
 764		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 765	}
 766
 767	put_count = ttm_bo_del_from_lru(bo);
 768	spin_unlock(&glob->lru_lock);
 769
 770	BUG_ON(ret != 0);
 771
 772	ttm_bo_list_ref_sub(bo, put_count, true);
 773
 774	ret = ttm_bo_evict(bo, interruptible, no_wait_gpu);
 775	ttm_bo_unreserve(bo);
 776
 777	kref_put(&bo->list_kref, ttm_bo_release_list);
 778	return ret;
 779}
 780
 781void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem)
 782{
 783	struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type];
 784
 785	if (mem->mm_node)
 786		(*man->func->put_node)(man, mem);
 787}
 788EXPORT_SYMBOL(ttm_bo_mem_put);
 789
 790/**
 791 * Repeatedly evict memory from the LRU for @mem_type until we create enough
 792 * space, or we've evicted everything and there isn't enough space.
 793 */
 794static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
 795					uint32_t mem_type,
 796					const struct ttm_place *place,
 797					struct ttm_mem_reg *mem,
 798					bool interruptible,
 
 799					bool no_wait_gpu)
 800{
 801	struct ttm_bo_device *bdev = bo->bdev;
 802	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
 803	int ret;
 804
 805	do {
 806		ret = (*man->func->get_node)(man, bo, place, mem);
 807		if (unlikely(ret != 0))
 808			return ret;
 809		if (mem->mm_node)
 810			break;
 811		ret = ttm_mem_evict_first(bdev, mem_type, place,
 812					  interruptible, no_wait_gpu);
 813		if (unlikely(ret != 0))
 814			return ret;
 815	} while (1);
 816	if (mem->mm_node == NULL)
 817		return -ENOMEM;
 818	mem->mem_type = mem_type;
 819	return 0;
 820}
 821
 822static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
 823				      uint32_t cur_placement,
 824				      uint32_t proposed_placement)
 825{
 826	uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
 827	uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
 828
 829	/**
 830	 * Keep current caching if possible.
 831	 */
 832
 833	if ((cur_placement & caching) != 0)
 834		result |= (cur_placement & caching);
 835	else if ((man->default_caching & caching) != 0)
 836		result |= man->default_caching;
 837	else if ((TTM_PL_FLAG_CACHED & caching) != 0)
 838		result |= TTM_PL_FLAG_CACHED;
 839	else if ((TTM_PL_FLAG_WC & caching) != 0)
 840		result |= TTM_PL_FLAG_WC;
 841	else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
 842		result |= TTM_PL_FLAG_UNCACHED;
 843
 844	return result;
 845}
 846
 847static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
 
 848				 uint32_t mem_type,
 849				 const struct ttm_place *place,
 850				 uint32_t *masked_placement)
 851{
 852	uint32_t cur_flags = ttm_bo_type_flags(mem_type);
 853
 854	if ((cur_flags & place->flags & TTM_PL_MASK_MEM) == 0)
 
 
 
 855		return false;
 856
 857	if ((place->flags & man->available_caching) == 0)
 858		return false;
 859
 860	cur_flags |= (place->flags & man->available_caching);
 861
 862	*masked_placement = cur_flags;
 863	return true;
 864}
 865
 866/**
 867 * Creates space for memory region @mem according to its type.
 868 *
 869 * This function first searches for free space in compatible memory types in
 870 * the priority order defined by the driver.  If free space isn't found, then
 871 * ttm_bo_mem_force_space is attempted in priority order to evict and find
 872 * space.
 873 */
 874int ttm_bo_mem_space(struct ttm_buffer_object *bo,
 875			struct ttm_placement *placement,
 876			struct ttm_mem_reg *mem,
 877			bool interruptible,
 878			bool no_wait_gpu)
 879{
 880	struct ttm_bo_device *bdev = bo->bdev;
 881	struct ttm_mem_type_manager *man;
 882	uint32_t mem_type = TTM_PL_SYSTEM;
 883	uint32_t cur_flags = 0;
 884	bool type_found = false;
 885	bool type_ok = false;
 886	bool has_erestartsys = false;
 887	int i, ret;
 888
 889	mem->mm_node = NULL;
 890	for (i = 0; i < placement->num_placement; ++i) {
 891		const struct ttm_place *place = &placement->placement[i];
 892
 893		ret = ttm_mem_type_from_place(place, &mem_type);
 894		if (ret)
 895			return ret;
 896		man = &bdev->man[mem_type];
 897		if (!man->has_type || !man->use_type)
 898			continue;
 899
 900		type_ok = ttm_bo_mt_compatible(man, mem_type, place,
 
 
 
 901						&cur_flags);
 902
 903		if (!type_ok)
 904			continue;
 905
 906		type_found = true;
 907		cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
 908						  cur_flags);
 909		/*
 910		 * Use the access and other non-mapping-related flag bits from
 911		 * the memory placement flags to the current flags
 912		 */
 913		ttm_flag_masked(&cur_flags, place->flags,
 914				~TTM_PL_MASK_MEMTYPE);
 915
 916		if (mem_type == TTM_PL_SYSTEM)
 917			break;
 918
 919		ret = (*man->func->get_node)(man, bo, place, mem);
 920		if (unlikely(ret))
 921			return ret;
 922		
 
 
 923		if (mem->mm_node)
 924			break;
 925	}
 926
 927	if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || mem->mm_node) {
 928		mem->mem_type = mem_type;
 929		mem->placement = cur_flags;
 930		return 0;
 931	}
 932
 933	for (i = 0; i < placement->num_busy_placement; ++i) {
 934		const struct ttm_place *place = &placement->busy_placement[i];
 935
 936		ret = ttm_mem_type_from_place(place, &mem_type);
 
 
 937		if (ret)
 938			return ret;
 939		man = &bdev->man[mem_type];
 940		if (!man->has_type || !man->use_type)
 941			continue;
 942		if (!ttm_bo_mt_compatible(man, mem_type, place, &cur_flags))
 
 
 
 
 943			continue;
 944
 945		type_found = true;
 946		cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
 947						  cur_flags);
 948		/*
 949		 * Use the access and other non-mapping-related flag bits from
 950		 * the memory placement flags to the current flags
 951		 */
 952		ttm_flag_masked(&cur_flags, place->flags,
 953				~TTM_PL_MASK_MEMTYPE);
 954
 
 955		if (mem_type == TTM_PL_SYSTEM) {
 956			mem->mem_type = mem_type;
 957			mem->placement = cur_flags;
 958			mem->mm_node = NULL;
 959			return 0;
 960		}
 961
 962		ret = ttm_bo_mem_force_space(bo, mem_type, place, mem,
 963						interruptible, no_wait_gpu);
 964		if (ret == 0 && mem->mm_node) {
 965			mem->placement = cur_flags;
 966			return 0;
 967		}
 968		if (ret == -ERESTARTSYS)
 969			has_erestartsys = true;
 970	}
 
 
 
 
 971
 972	if (!type_found) {
 973		printk(KERN_ERR TTM_PFX "No compatible memory type found.\n");
 974		return -EINVAL;
 975	}
 976
 977	return (has_erestartsys) ? -ERESTARTSYS : -ENOMEM;
 
 978}
 979EXPORT_SYMBOL(ttm_bo_mem_space);
 980
 981static int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
 982			struct ttm_placement *placement,
 983			bool interruptible,
 984			bool no_wait_gpu)
 985{
 986	int ret = 0;
 987	struct ttm_mem_reg mem;
 
 988
 989	lockdep_assert_held(&bo->resv->lock.base);
 990
 991	/*
 992	 * FIXME: It's possible to pipeline buffer moves.
 993	 * Have the driver move function wait for idle when necessary,
 994	 * instead of doing it here.
 995	 */
 
 996	ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
 
 997	if (ret)
 998		return ret;
 999	mem.num_pages = bo->num_pages;
1000	mem.size = mem.num_pages << PAGE_SHIFT;
1001	mem.page_alignment = bo->mem.page_alignment;
1002	mem.bus.io_reserved_vm = false;
1003	mem.bus.io_reserved_count = 0;
1004	/*
1005	 * Determine where to move the buffer.
1006	 */
1007	ret = ttm_bo_mem_space(bo, placement, &mem,
1008			       interruptible, no_wait_gpu);
1009	if (ret)
1010		goto out_unlock;
1011	ret = ttm_bo_handle_move_mem(bo, &mem, false,
1012				     interruptible, no_wait_gpu);
1013out_unlock:
1014	if (ret && mem.mm_node)
1015		ttm_bo_mem_put(bo, &mem);
1016	return ret;
1017}
1018
1019static bool ttm_bo_mem_compat(struct ttm_placement *placement,
1020			      struct ttm_mem_reg *mem,
1021			      uint32_t *new_flags)
1022{
1023	int i;
1024
1025	for (i = 0; i < placement->num_placement; i++) {
1026		const struct ttm_place *heap = &placement->placement[i];
1027		if (mem->mm_node &&
1028		    (mem->start < heap->fpfn ||
1029		     (heap->lpfn != 0 && (mem->start + mem->num_pages) > heap->lpfn)))
1030			continue;
1031
1032		*new_flags = heap->flags;
1033		if ((*new_flags & mem->placement & TTM_PL_MASK_CACHING) &&
1034		    (*new_flags & mem->placement & TTM_PL_MASK_MEM))
1035			return true;
1036	}
1037
1038	for (i = 0; i < placement->num_busy_placement; i++) {
1039		const struct ttm_place *heap = &placement->busy_placement[i];
1040		if (mem->mm_node &&
1041		    (mem->start < heap->fpfn ||
1042		     (heap->lpfn != 0 && (mem->start + mem->num_pages) > heap->lpfn)))
1043			continue;
1044
1045		*new_flags = heap->flags;
1046		if ((*new_flags & mem->placement & TTM_PL_MASK_CACHING) &&
1047		    (*new_flags & mem->placement & TTM_PL_MASK_MEM))
1048			return true;
 
 
1049	}
1050
1051	return false;
1052}
1053
1054int ttm_bo_validate(struct ttm_buffer_object *bo,
1055			struct ttm_placement *placement,
1056			bool interruptible,
1057			bool no_wait_gpu)
1058{
1059	int ret;
1060	uint32_t new_flags;
1061
1062	lockdep_assert_held(&bo->resv->lock.base);
 
 
 
 
 
1063	/*
1064	 * Check whether we need to move buffer.
1065	 */
1066	if (!ttm_bo_mem_compat(placement, &bo->mem, &new_flags)) {
1067		ret = ttm_bo_move_buffer(bo, placement, interruptible,
1068					 no_wait_gpu);
1069		if (ret)
1070			return ret;
1071	} else {
1072		/*
1073		 * Use the access and other non-mapping-related flag bits from
1074		 * the compatible memory placement flags to the active flags
1075		 */
1076		ttm_flag_masked(&bo->mem.placement, new_flags,
1077				~TTM_PL_MASK_MEMTYPE);
1078	}
1079	/*
1080	 * We might need to add a TTM.
1081	 */
1082	if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
1083		ret = ttm_bo_add_ttm(bo, true);
1084		if (ret)
1085			return ret;
1086	}
1087	return 0;
1088}
1089EXPORT_SYMBOL(ttm_bo_validate);
1090
 
 
 
 
 
 
 
 
 
1091int ttm_bo_init(struct ttm_bo_device *bdev,
1092		struct ttm_buffer_object *bo,
1093		unsigned long size,
1094		enum ttm_bo_type type,
1095		struct ttm_placement *placement,
1096		uint32_t page_alignment,
 
1097		bool interruptible,
1098		struct file *persistent_swap_storage,
1099		size_t acc_size,
1100		struct sg_table *sg,
1101		struct reservation_object *resv,
1102		void (*destroy) (struct ttm_buffer_object *))
1103{
1104	int ret = 0;
1105	unsigned long num_pages;
1106	struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
1107	bool locked;
1108
1109	ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false);
1110	if (ret) {
1111		pr_err("Out of kernel memory\n");
1112		if (destroy)
1113			(*destroy)(bo);
1114		else
1115			kfree(bo);
1116		return -ENOMEM;
1117	}
1118
 
1119	num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1120	if (num_pages == 0) {
1121		pr_err("Illegal buffer object size\n");
1122		if (destroy)
1123			(*destroy)(bo);
1124		else
1125			kfree(bo);
1126		ttm_mem_global_free(mem_glob, acc_size);
1127		return -EINVAL;
1128	}
1129	bo->destroy = destroy;
1130
1131	kref_init(&bo->kref);
1132	kref_init(&bo->list_kref);
1133	atomic_set(&bo->cpu_writers, 0);
 
 
1134	INIT_LIST_HEAD(&bo->lru);
1135	INIT_LIST_HEAD(&bo->ddestroy);
1136	INIT_LIST_HEAD(&bo->swap);
1137	INIT_LIST_HEAD(&bo->io_reserve_lru);
1138	mutex_init(&bo->wu_mutex);
1139	bo->bdev = bdev;
1140	bo->glob = bdev->glob;
1141	bo->type = type;
1142	bo->num_pages = num_pages;
1143	bo->mem.size = num_pages << PAGE_SHIFT;
1144	bo->mem.mem_type = TTM_PL_SYSTEM;
1145	bo->mem.num_pages = bo->num_pages;
1146	bo->mem.mm_node = NULL;
1147	bo->mem.page_alignment = page_alignment;
1148	bo->mem.bus.io_reserved_vm = false;
1149	bo->mem.bus.io_reserved_count = 0;
 
1150	bo->priv_flags = 0;
1151	bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
 
1152	bo->persistent_swap_storage = persistent_swap_storage;
1153	bo->acc_size = acc_size;
1154	bo->sg = sg;
1155	if (resv) {
1156		bo->resv = resv;
1157		lockdep_assert_held(&bo->resv->lock.base);
1158	} else {
1159		bo->resv = &bo->ttm_resv;
1160		reservation_object_init(&bo->ttm_resv);
1161	}
1162	atomic_inc(&bo->glob->bo_count);
1163	drm_vma_node_reset(&bo->vma_node);
 
 
 
1164
1165	/*
1166	 * For ttm_bo_type_device buffers, allocate
1167	 * address space from the device.
1168	 */
1169	if (bo->type == ttm_bo_type_device ||
1170	    bo->type == ttm_bo_type_sg)
1171		ret = drm_vma_offset_add(&bdev->vma_manager, &bo->vma_node,
1172					 bo->mem.num_pages);
1173
1174	/* passed reservation objects should already be locked,
1175	 * since otherwise lockdep will be angered in radeon.
1176	 */
1177	if (!resv) {
1178		locked = ww_mutex_trylock(&bo->resv->lock);
1179		WARN_ON(!locked);
1180	}
1181
1182	if (likely(!ret))
1183		ret = ttm_bo_validate(bo, placement, interruptible, false);
1184
1185	if (!resv) {
1186		ttm_bo_unreserve(bo);
1187
1188	} else if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
1189		spin_lock(&bo->glob->lru_lock);
1190		ttm_bo_add_to_lru(bo);
1191		spin_unlock(&bo->glob->lru_lock);
1192	}
1193
1194	if (unlikely(ret))
1195		ttm_bo_unref(&bo);
 
1196
1197	return ret;
1198}
1199EXPORT_SYMBOL(ttm_bo_init);
1200
1201size_t ttm_bo_acc_size(struct ttm_bo_device *bdev,
1202		       unsigned long bo_size,
1203		       unsigned struct_size)
1204{
1205	unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1206	size_t size = 0;
1207
1208	size += ttm_round_pot(struct_size);
1209	size += PAGE_ALIGN(npages * sizeof(void *));
1210	size += ttm_round_pot(sizeof(struct ttm_tt));
1211	return size;
1212}
1213EXPORT_SYMBOL(ttm_bo_acc_size);
1214
1215size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev,
1216			   unsigned long bo_size,
1217			   unsigned struct_size)
1218{
1219	unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1220	size_t size = 0;
1221
1222	size += ttm_round_pot(struct_size);
1223	size += PAGE_ALIGN(npages * sizeof(void *));
1224	size += PAGE_ALIGN(npages * sizeof(dma_addr_t));
1225	size += ttm_round_pot(sizeof(struct ttm_dma_tt));
1226	return size;
1227}
1228EXPORT_SYMBOL(ttm_bo_dma_acc_size);
1229
1230int ttm_bo_create(struct ttm_bo_device *bdev,
1231			unsigned long size,
1232			enum ttm_bo_type type,
1233			struct ttm_placement *placement,
1234			uint32_t page_alignment,
 
1235			bool interruptible,
1236			struct file *persistent_swap_storage,
1237			struct ttm_buffer_object **p_bo)
1238{
1239	struct ttm_buffer_object *bo;
1240	size_t acc_size;
1241	int ret;
1242
 
 
 
 
 
 
1243	bo = kzalloc(sizeof(*bo), GFP_KERNEL);
1244	if (unlikely(bo == NULL))
 
 
1245		return -ENOMEM;
 
1246
1247	acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object));
1248	ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment,
1249			  interruptible, persistent_swap_storage, acc_size,
1250			  NULL, NULL, NULL);
1251	if (likely(ret == 0))
1252		*p_bo = bo;
1253
1254	return ret;
1255}
1256EXPORT_SYMBOL(ttm_bo_create);
1257
1258static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
1259					unsigned mem_type, bool allow_errors)
1260{
1261	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1262	struct ttm_bo_global *glob = bdev->glob;
1263	int ret;
1264
1265	/*
1266	 * Can't use standard list traversal since we're unlocking.
1267	 */
1268
1269	spin_lock(&glob->lru_lock);
1270	while (!list_empty(&man->lru)) {
1271		spin_unlock(&glob->lru_lock);
1272		ret = ttm_mem_evict_first(bdev, mem_type, NULL, false, false);
1273		if (ret) {
1274			if (allow_errors) {
1275				return ret;
1276			} else {
1277				pr_err("Cleanup eviction failed\n");
 
1278			}
1279		}
1280		spin_lock(&glob->lru_lock);
1281	}
1282	spin_unlock(&glob->lru_lock);
1283	return 0;
1284}
1285
1286int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1287{
1288	struct ttm_mem_type_manager *man;
1289	int ret = -EINVAL;
1290
1291	if (mem_type >= TTM_NUM_MEM_TYPES) {
1292		pr_err("Illegal memory type %d\n", mem_type);
1293		return ret;
1294	}
1295	man = &bdev->man[mem_type];
1296
1297	if (!man->has_type) {
1298		pr_err("Trying to take down uninitialized memory manager type %u\n",
1299		       mem_type);
1300		return ret;
1301	}
1302
1303	man->use_type = false;
1304	man->has_type = false;
1305
1306	ret = 0;
1307	if (mem_type > 0) {
1308		ttm_bo_force_list_clean(bdev, mem_type, false);
1309
1310		ret = (*man->func->takedown)(man);
1311	}
1312
1313	return ret;
1314}
1315EXPORT_SYMBOL(ttm_bo_clean_mm);
1316
1317int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1318{
1319	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1320
1321	if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
1322		pr_err("Illegal memory manager memory type %u\n", mem_type);
 
 
1323		return -EINVAL;
1324	}
1325
1326	if (!man->has_type) {
1327		pr_err("Memory type %u has not been initialized\n", mem_type);
 
 
1328		return 0;
1329	}
1330
1331	return ttm_bo_force_list_clean(bdev, mem_type, true);
1332}
1333EXPORT_SYMBOL(ttm_bo_evict_mm);
1334
1335int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
1336			unsigned long p_size)
1337{
1338	int ret = -EINVAL;
1339	struct ttm_mem_type_manager *man;
1340
1341	BUG_ON(type >= TTM_NUM_MEM_TYPES);
1342	man = &bdev->man[type];
1343	BUG_ON(man->has_type);
1344	man->io_reserve_fastpath = true;
1345	man->use_io_reserve_lru = false;
1346	mutex_init(&man->io_reserve_mutex);
1347	INIT_LIST_HEAD(&man->io_reserve_lru);
1348
1349	ret = bdev->driver->init_mem_type(bdev, type, man);
1350	if (ret)
1351		return ret;
1352	man->bdev = bdev;
1353
1354	ret = 0;
1355	if (type != TTM_PL_SYSTEM) {
1356		ret = (*man->func->init)(man, p_size);
1357		if (ret)
1358			return ret;
1359	}
1360	man->has_type = true;
1361	man->use_type = true;
1362	man->size = p_size;
1363
1364	INIT_LIST_HEAD(&man->lru);
1365
1366	return 0;
1367}
1368EXPORT_SYMBOL(ttm_bo_init_mm);
1369
1370static void ttm_bo_global_kobj_release(struct kobject *kobj)
1371{
1372	struct ttm_bo_global *glob =
1373		container_of(kobj, struct ttm_bo_global, kobj);
1374
1375	ttm_mem_unregister_shrink(glob->mem_glob, &glob->shrink);
1376	__free_page(glob->dummy_read_page);
1377	kfree(glob);
1378}
1379
1380void ttm_bo_global_release(struct drm_global_reference *ref)
1381{
1382	struct ttm_bo_global *glob = ref->object;
1383
1384	kobject_del(&glob->kobj);
1385	kobject_put(&glob->kobj);
1386}
1387EXPORT_SYMBOL(ttm_bo_global_release);
1388
1389int ttm_bo_global_init(struct drm_global_reference *ref)
1390{
1391	struct ttm_bo_global_ref *bo_ref =
1392		container_of(ref, struct ttm_bo_global_ref, ref);
1393	struct ttm_bo_global *glob = ref->object;
1394	int ret;
1395
1396	mutex_init(&glob->device_list_mutex);
1397	spin_lock_init(&glob->lru_lock);
1398	glob->mem_glob = bo_ref->mem_glob;
1399	glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32);
1400
1401	if (unlikely(glob->dummy_read_page == NULL)) {
1402		ret = -ENOMEM;
1403		goto out_no_drp;
1404	}
1405
1406	INIT_LIST_HEAD(&glob->swap_lru);
1407	INIT_LIST_HEAD(&glob->device_list);
1408
1409	ttm_mem_init_shrink(&glob->shrink, ttm_bo_swapout);
1410	ret = ttm_mem_register_shrink(glob->mem_glob, &glob->shrink);
1411	if (unlikely(ret != 0)) {
1412		pr_err("Could not register buffer object swapout\n");
 
1413		goto out_no_shrink;
1414	}
1415
 
 
 
 
 
 
 
1416	atomic_set(&glob->bo_count, 0);
1417
1418	ret = kobject_init_and_add(
1419		&glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects");
1420	if (unlikely(ret != 0))
1421		kobject_put(&glob->kobj);
1422	return ret;
1423out_no_shrink:
1424	__free_page(glob->dummy_read_page);
1425out_no_drp:
1426	kfree(glob);
1427	return ret;
1428}
1429EXPORT_SYMBOL(ttm_bo_global_init);
1430
1431
1432int ttm_bo_device_release(struct ttm_bo_device *bdev)
1433{
1434	int ret = 0;
1435	unsigned i = TTM_NUM_MEM_TYPES;
1436	struct ttm_mem_type_manager *man;
1437	struct ttm_bo_global *glob = bdev->glob;
1438
1439	while (i--) {
1440		man = &bdev->man[i];
1441		if (man->has_type) {
1442			man->use_type = false;
1443			if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
1444				ret = -EBUSY;
1445				pr_err("DRM memory manager type %d is not clean\n",
1446				       i);
 
1447			}
1448			man->has_type = false;
1449		}
1450	}
1451
1452	mutex_lock(&glob->device_list_mutex);
1453	list_del(&bdev->device_list);
1454	mutex_unlock(&glob->device_list_mutex);
1455
1456	cancel_delayed_work_sync(&bdev->wq);
1457
1458	while (ttm_bo_delayed_delete(bdev, true))
1459		;
1460
1461	spin_lock(&glob->lru_lock);
1462	if (list_empty(&bdev->ddestroy))
1463		TTM_DEBUG("Delayed destroy list was clean\n");
1464
1465	if (list_empty(&bdev->man[0].lru))
1466		TTM_DEBUG("Swap list was clean\n");
1467	spin_unlock(&glob->lru_lock);
1468
1469	drm_vma_offset_manager_destroy(&bdev->vma_manager);
 
 
 
1470
1471	return ret;
1472}
1473EXPORT_SYMBOL(ttm_bo_device_release);
1474
1475int ttm_bo_device_init(struct ttm_bo_device *bdev,
1476		       struct ttm_bo_global *glob,
1477		       struct ttm_bo_driver *driver,
1478		       struct address_space *mapping,
1479		       uint64_t file_page_offset,
1480		       bool need_dma32)
1481{
1482	int ret = -EINVAL;
1483
 
1484	bdev->driver = driver;
1485
1486	memset(bdev->man, 0, sizeof(bdev->man));
1487
1488	/*
1489	 * Initialize the system memory buffer type.
1490	 * Other types need to be driver / IOCTL initialized.
1491	 */
1492	ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0);
1493	if (unlikely(ret != 0))
1494		goto out_no_sys;
1495
1496	drm_vma_offset_manager_init(&bdev->vma_manager, file_page_offset,
1497				    0x10000000);
 
 
 
1498	INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue);
 
1499	INIT_LIST_HEAD(&bdev->ddestroy);
1500	bdev->dev_mapping = mapping;
1501	bdev->glob = glob;
1502	bdev->need_dma32 = need_dma32;
1503	bdev->val_seq = 0;
 
1504	mutex_lock(&glob->device_list_mutex);
1505	list_add_tail(&bdev->device_list, &glob->device_list);
1506	mutex_unlock(&glob->device_list_mutex);
1507
1508	return 0;
 
 
1509out_no_sys:
1510	return ret;
1511}
1512EXPORT_SYMBOL(ttm_bo_device_init);
1513
1514/*
1515 * buffer object vm functions.
1516 */
1517
1518bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
1519{
1520	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
1521
1522	if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
1523		if (mem->mem_type == TTM_PL_SYSTEM)
1524			return false;
1525
1526		if (man->flags & TTM_MEMTYPE_FLAG_CMA)
1527			return false;
1528
1529		if (mem->placement & TTM_PL_FLAG_CACHED)
1530			return false;
1531	}
1532	return true;
1533}
1534
1535void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo)
1536{
1537	struct ttm_bo_device *bdev = bo->bdev;
 
 
1538
1539	drm_vma_node_unmap(&bo->vma_node, bdev->dev_mapping);
 
 
1540	ttm_mem_io_free_vm(bo);
1541}
1542
1543void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1544{
1545	struct ttm_bo_device *bdev = bo->bdev;
1546	struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
1547
1548	ttm_mem_io_lock(man, false);
1549	ttm_bo_unmap_virtual_locked(bo);
1550	ttm_mem_io_unlock(man);
1551}
1552
1553
1554EXPORT_SYMBOL(ttm_bo_unmap_virtual);
1555
1556int ttm_bo_wait(struct ttm_buffer_object *bo,
1557		bool lazy, bool interruptible, bool no_wait)
1558{
1559	struct reservation_object_list *fobj;
1560	struct reservation_object *resv;
1561	struct fence *excl;
1562	long timeout = 15 * HZ;
1563	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
1564
1565	resv = bo->resv;
1566	fobj = reservation_object_get_list(resv);
1567	excl = reservation_object_get_excl(resv);
1568	if (excl) {
1569		if (!fence_is_signaled(excl)) {
1570			if (no_wait)
1571				return -EBUSY;
1572
1573			timeout = fence_wait_timeout(excl,
1574						     interruptible, timeout);
1575		}
1576	}
 
 
 
 
 
 
1577
1578	for (i = 0; fobj && timeout > 0 && i < fobj->shared_count; ++i) {
1579		struct fence *fence;
1580		fence = rcu_dereference_protected(fobj->shared[i],
1581						reservation_object_held(resv));
1582
1583		if (!fence_is_signaled(fence)) {
1584			if (no_wait)
1585				return -EBUSY;
 
1586
1587			timeout = fence_wait_timeout(fence,
1588						     interruptible, timeout);
1589		}
 
 
 
 
1590	}
1591
1592	if (timeout < 0)
1593		return timeout;
1594
1595	if (timeout == 0)
1596		return -EBUSY;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1597
1598	reservation_object_add_excl_fence(resv, NULL);
1599	clear_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1600	return 0;
1601}
1602EXPORT_SYMBOL(ttm_bo_wait);
1603
1604int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait)
1605{
 
1606	int ret = 0;
1607
1608	/*
1609	 * Using ttm_bo_reserve makes sure the lru lists are updated.
1610	 */
1611
1612	ret = ttm_bo_reserve(bo, true, no_wait, false, NULL);
1613	if (unlikely(ret != 0))
1614		return ret;
 
1615	ret = ttm_bo_wait(bo, false, true, no_wait);
 
1616	if (likely(ret == 0))
1617		atomic_inc(&bo->cpu_writers);
1618	ttm_bo_unreserve(bo);
1619	return ret;
1620}
1621EXPORT_SYMBOL(ttm_bo_synccpu_write_grab);
1622
1623void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo)
1624{
1625	atomic_dec(&bo->cpu_writers);
 
1626}
1627EXPORT_SYMBOL(ttm_bo_synccpu_write_release);
1628
1629/**
1630 * A buffer object shrink method that tries to swap out the first
1631 * buffer object on the bo_global::swap_lru list.
1632 */
1633
1634static int ttm_bo_swapout(struct ttm_mem_shrink *shrink)
1635{
1636	struct ttm_bo_global *glob =
1637	    container_of(shrink, struct ttm_bo_global, shrink);
1638	struct ttm_buffer_object *bo;
1639	int ret = -EBUSY;
1640	int put_count;
1641	uint32_t swap_placement = (TTM_PL_FLAG_CACHED | TTM_PL_FLAG_SYSTEM);
1642
1643	spin_lock(&glob->lru_lock);
1644	list_for_each_entry(bo, &glob->swap_lru, swap) {
1645		ret = __ttm_bo_reserve(bo, false, true, false, NULL);
1646		if (!ret)
1647			break;
1648	}
1649
1650	if (ret) {
1651		spin_unlock(&glob->lru_lock);
1652		return ret;
1653	}
1654
1655	kref_get(&bo->list_kref);
 
 
 
 
 
1656
1657	if (!list_empty(&bo->ddestroy)) {
1658		ret = ttm_bo_cleanup_refs_and_unlock(bo, false, false);
1659		kref_put(&bo->list_kref, ttm_bo_release_list);
1660		return ret;
 
 
 
 
 
 
 
 
 
1661	}
1662
 
1663	put_count = ttm_bo_del_from_lru(bo);
1664	spin_unlock(&glob->lru_lock);
1665
1666	ttm_bo_list_ref_sub(bo, put_count, true);
1667
1668	/**
1669	 * Wait for GPU, then move to system cached.
1670	 */
1671
 
1672	ret = ttm_bo_wait(bo, false, false, false);
 
1673
1674	if (unlikely(ret != 0))
1675		goto out;
1676
1677	if ((bo->mem.placement & swap_placement) != swap_placement) {
1678		struct ttm_mem_reg evict_mem;
1679
1680		evict_mem = bo->mem;
1681		evict_mem.mm_node = NULL;
1682		evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
1683		evict_mem.mem_type = TTM_PL_SYSTEM;
1684
1685		ret = ttm_bo_handle_move_mem(bo, &evict_mem, true,
1686					     false, false);
1687		if (unlikely(ret != 0))
1688			goto out;
1689	}
1690
1691	ttm_bo_unmap_virtual(bo);
1692
1693	/**
1694	 * Swap out. Buffer will be swapped in again as soon as
1695	 * anyone tries to access a ttm page.
1696	 */
1697
1698	if (bo->bdev->driver->swap_notify)
1699		bo->bdev->driver->swap_notify(bo);
1700
1701	ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage);
1702out:
1703
1704	/**
1705	 *
1706	 * Unreserve without putting on LRU to avoid swapping out an
1707	 * already swapped buffer.
1708	 */
1709
1710	__ttm_bo_unreserve(bo);
 
1711	kref_put(&bo->list_kref, ttm_bo_release_list);
1712	return ret;
1713}
1714
1715void ttm_bo_swapout_all(struct ttm_bo_device *bdev)
1716{
1717	while (ttm_bo_swapout(&bdev->glob->shrink) == 0)
1718		;
1719}
1720EXPORT_SYMBOL(ttm_bo_swapout_all);
1721
1722/**
1723 * ttm_bo_wait_unreserved - interruptible wait for a buffer object to become
1724 * unreserved
1725 *
1726 * @bo: Pointer to buffer
1727 */
1728int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo)
1729{
1730	int ret;
1731
1732	/*
1733	 * In the absense of a wait_unlocked API,
1734	 * Use the bo::wu_mutex to avoid triggering livelocks due to
1735	 * concurrent use of this function. Note that this use of
1736	 * bo::wu_mutex can go away if we change locking order to
1737	 * mmap_sem -> bo::reserve.
1738	 */
1739	ret = mutex_lock_interruptible(&bo->wu_mutex);
1740	if (unlikely(ret != 0))
1741		return -ERESTARTSYS;
1742	if (!ww_mutex_is_locked(&bo->resv->lock))
1743		goto out_unlock;
1744	ret = __ttm_bo_reserve(bo, true, false, false, NULL);
1745	if (unlikely(ret != 0))
1746		goto out_unlock;
1747	__ttm_bo_unreserve(bo);
1748
1749out_unlock:
1750	mutex_unlock(&bo->wu_mutex);
1751	return ret;
1752}
v3.1
   1/**************************************************************************
   2 *
   3 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
   4 * All Rights Reserved.
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a
   7 * copy of this software and associated documentation files (the
   8 * "Software"), to deal in the Software without restriction, including
   9 * without limitation the rights to use, copy, modify, merge, publish,
  10 * distribute, sub license, and/or sell copies of the Software, and to
  11 * permit persons to whom the Software is furnished to do so, subject to
  12 * the following conditions:
  13 *
  14 * The above copyright notice and this permission notice (including the
  15 * next paragraph) shall be included in all copies or substantial portions
  16 * of the Software.
  17 *
  18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
  22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
  23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
  24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
  25 *
  26 **************************************************************************/
  27/*
  28 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
  29 */
  30
  31#include "ttm/ttm_module.h"
  32#include "ttm/ttm_bo_driver.h"
  33#include "ttm/ttm_placement.h"
 
 
  34#include <linux/jiffies.h>
  35#include <linux/slab.h>
  36#include <linux/sched.h>
  37#include <linux/mm.h>
  38#include <linux/file.h>
  39#include <linux/module.h>
  40#include <linux/atomic.h>
 
  41
  42#define TTM_ASSERT_LOCKED(param)
  43#define TTM_DEBUG(fmt, arg...)
  44#define TTM_BO_HASH_ORDER 13
  45
  46static int ttm_bo_setup_vm(struct ttm_buffer_object *bo);
  47static int ttm_bo_swapout(struct ttm_mem_shrink *shrink);
  48static void ttm_bo_global_kobj_release(struct kobject *kobj);
  49
  50static struct attribute ttm_bo_count = {
  51	.name = "bo_count",
  52	.mode = S_IRUGO
  53};
  54
  55static inline int ttm_mem_type_from_flags(uint32_t flags, uint32_t *mem_type)
 
  56{
  57	int i;
  58
  59	for (i = 0; i <= TTM_PL_PRIV5; i++)
  60		if (flags & (1 << i)) {
  61			*mem_type = i;
  62			return 0;
  63		}
  64	return -EINVAL;
  65}
  66
  67static void ttm_mem_type_debug(struct ttm_bo_device *bdev, int mem_type)
  68{
  69	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
  70
  71	printk(KERN_ERR TTM_PFX "    has_type: %d\n", man->has_type);
  72	printk(KERN_ERR TTM_PFX "    use_type: %d\n", man->use_type);
  73	printk(KERN_ERR TTM_PFX "    flags: 0x%08X\n", man->flags);
  74	printk(KERN_ERR TTM_PFX "    gpu_offset: 0x%08lX\n", man->gpu_offset);
  75	printk(KERN_ERR TTM_PFX "    size: %llu\n", man->size);
  76	printk(KERN_ERR TTM_PFX "    available_caching: 0x%08X\n",
  77		man->available_caching);
  78	printk(KERN_ERR TTM_PFX "    default_caching: 0x%08X\n",
  79		man->default_caching);
  80	if (mem_type != TTM_PL_SYSTEM)
  81		(*man->func->debug)(man, TTM_PFX);
  82}
  83
  84static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
  85					struct ttm_placement *placement)
  86{
  87	int i, ret, mem_type;
  88
  89	printk(KERN_ERR TTM_PFX "No space for %p (%lu pages, %luK, %luM)\n",
  90		bo, bo->mem.num_pages, bo->mem.size >> 10,
  91		bo->mem.size >> 20);
  92	for (i = 0; i < placement->num_placement; i++) {
  93		ret = ttm_mem_type_from_flags(placement->placement[i],
  94						&mem_type);
  95		if (ret)
  96			return;
  97		printk(KERN_ERR TTM_PFX "  placement[%d]=0x%08X (%d)\n",
  98			i, placement->placement[i], mem_type);
  99		ttm_mem_type_debug(bo->bdev, mem_type);
 100	}
 101}
 102
 103static ssize_t ttm_bo_global_show(struct kobject *kobj,
 104				  struct attribute *attr,
 105				  char *buffer)
 106{
 107	struct ttm_bo_global *glob =
 108		container_of(kobj, struct ttm_bo_global, kobj);
 109
 110	return snprintf(buffer, PAGE_SIZE, "%lu\n",
 111			(unsigned long) atomic_read(&glob->bo_count));
 112}
 113
 114static struct attribute *ttm_bo_global_attrs[] = {
 115	&ttm_bo_count,
 116	NULL
 117};
 118
 119static const struct sysfs_ops ttm_bo_global_ops = {
 120	.show = &ttm_bo_global_show
 121};
 122
 123static struct kobj_type ttm_bo_glob_kobj_type  = {
 124	.release = &ttm_bo_global_kobj_release,
 125	.sysfs_ops = &ttm_bo_global_ops,
 126	.default_attrs = ttm_bo_global_attrs
 127};
 128
 129
 130static inline uint32_t ttm_bo_type_flags(unsigned type)
 131{
 132	return 1 << (type);
 133}
 134
 135static void ttm_bo_release_list(struct kref *list_kref)
 136{
 137	struct ttm_buffer_object *bo =
 138	    container_of(list_kref, struct ttm_buffer_object, list_kref);
 139	struct ttm_bo_device *bdev = bo->bdev;
 
 140
 141	BUG_ON(atomic_read(&bo->list_kref.refcount));
 142	BUG_ON(atomic_read(&bo->kref.refcount));
 143	BUG_ON(atomic_read(&bo->cpu_writers));
 144	BUG_ON(bo->sync_obj != NULL);
 145	BUG_ON(bo->mem.mm_node != NULL);
 146	BUG_ON(!list_empty(&bo->lru));
 147	BUG_ON(!list_empty(&bo->ddestroy));
 148
 149	if (bo->ttm)
 150		ttm_tt_destroy(bo->ttm);
 151	atomic_dec(&bo->glob->bo_count);
 
 
 
 152	if (bo->destroy)
 153		bo->destroy(bo);
 154	else {
 155		ttm_mem_global_free(bdev->glob->mem_glob, bo->acc_size);
 156		kfree(bo);
 157	}
 
 158}
 159
 160int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo, bool interruptible)
 161{
 162	if (interruptible) {
 163		return wait_event_interruptible(bo->event_queue,
 164					       atomic_read(&bo->reserved) == 0);
 165	} else {
 166		wait_event(bo->event_queue, atomic_read(&bo->reserved) == 0);
 167		return 0;
 168	}
 169}
 170EXPORT_SYMBOL(ttm_bo_wait_unreserved);
 171
 172void ttm_bo_add_to_lru(struct ttm_buffer_object *bo)
 173{
 174	struct ttm_bo_device *bdev = bo->bdev;
 175	struct ttm_mem_type_manager *man;
 176
 177	BUG_ON(!atomic_read(&bo->reserved));
 178
 179	if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
 180
 181		BUG_ON(!list_empty(&bo->lru));
 182
 183		man = &bdev->man[bo->mem.mem_type];
 184		list_add_tail(&bo->lru, &man->lru);
 185		kref_get(&bo->list_kref);
 186
 187		if (bo->ttm != NULL) {
 188			list_add_tail(&bo->swap, &bo->glob->swap_lru);
 189			kref_get(&bo->list_kref);
 190		}
 191	}
 192}
 
 193
 194int ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
 195{
 196	int put_count = 0;
 197
 198	if (!list_empty(&bo->swap)) {
 199		list_del_init(&bo->swap);
 200		++put_count;
 201	}
 202	if (!list_empty(&bo->lru)) {
 203		list_del_init(&bo->lru);
 204		++put_count;
 205	}
 206
 207	/*
 208	 * TODO: Add a driver hook to delete from
 209	 * driver-specific LRU's here.
 210	 */
 211
 212	return put_count;
 213}
 214
 215int ttm_bo_reserve_locked(struct ttm_buffer_object *bo,
 216			  bool interruptible,
 217			  bool no_wait, bool use_sequence, uint32_t sequence)
 218{
 219	struct ttm_bo_global *glob = bo->glob;
 220	int ret;
 221
 222	while (unlikely(atomic_cmpxchg(&bo->reserved, 0, 1) != 0)) {
 223		/**
 224		 * Deadlock avoidance for multi-bo reserving.
 225		 */
 226		if (use_sequence && bo->seq_valid) {
 227			/**
 228			 * We've already reserved this one.
 229			 */
 230			if (unlikely(sequence == bo->val_seq))
 231				return -EDEADLK;
 232			/**
 233			 * Already reserved by a thread that will not back
 234			 * off for us. We need to back off.
 235			 */
 236			if (unlikely(sequence - bo->val_seq < (1 << 31)))
 237				return -EAGAIN;
 238		}
 239
 240		if (no_wait)
 241			return -EBUSY;
 242
 243		spin_unlock(&glob->lru_lock);
 244		ret = ttm_bo_wait_unreserved(bo, interruptible);
 245		spin_lock(&glob->lru_lock);
 246
 247		if (unlikely(ret))
 248			return ret;
 249	}
 250
 251	if (use_sequence) {
 252		/**
 253		 * Wake up waiters that may need to recheck for deadlock,
 254		 * if we decreased the sequence number.
 255		 */
 256		if (unlikely((bo->val_seq - sequence < (1 << 31))
 257			     || !bo->seq_valid))
 258			wake_up_all(&bo->event_queue);
 259
 260		bo->val_seq = sequence;
 261		bo->seq_valid = true;
 262	} else {
 263		bo->seq_valid = false;
 264	}
 265
 266	return 0;
 267}
 268EXPORT_SYMBOL(ttm_bo_reserve);
 269
 270static void ttm_bo_ref_bug(struct kref *list_kref)
 271{
 272	BUG();
 273}
 274
 275void ttm_bo_list_ref_sub(struct ttm_buffer_object *bo, int count,
 276			 bool never_free)
 277{
 278	kref_sub(&bo->list_kref, count,
 279		 (never_free) ? ttm_bo_ref_bug : ttm_bo_release_list);
 280}
 281
 282int ttm_bo_reserve(struct ttm_buffer_object *bo,
 283		   bool interruptible,
 284		   bool no_wait, bool use_sequence, uint32_t sequence)
 285{
 286	struct ttm_bo_global *glob = bo->glob;
 287	int put_count = 0;
 288	int ret;
 289
 290	spin_lock(&glob->lru_lock);
 291	ret = ttm_bo_reserve_locked(bo, interruptible, no_wait, use_sequence,
 292				    sequence);
 293	if (likely(ret == 0))
 294		put_count = ttm_bo_del_from_lru(bo);
 295	spin_unlock(&glob->lru_lock);
 296
 
 
 
 297	ttm_bo_list_ref_sub(bo, put_count, true);
 298
 299	return ret;
 300}
 
 301
 302void ttm_bo_unreserve_locked(struct ttm_buffer_object *bo)
 303{
 304	ttm_bo_add_to_lru(bo);
 305	atomic_set(&bo->reserved, 0);
 306	wake_up_all(&bo->event_queue);
 307}
 308
 309void ttm_bo_unreserve(struct ttm_buffer_object *bo)
 310{
 311	struct ttm_bo_global *glob = bo->glob;
 312
 313	spin_lock(&glob->lru_lock);
 314	ttm_bo_unreserve_locked(bo);
 315	spin_unlock(&glob->lru_lock);
 316}
 317EXPORT_SYMBOL(ttm_bo_unreserve);
 318
 319/*
 320 * Call bo->mutex locked.
 321 */
 322static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc)
 323{
 324	struct ttm_bo_device *bdev = bo->bdev;
 325	struct ttm_bo_global *glob = bo->glob;
 326	int ret = 0;
 327	uint32_t page_flags = 0;
 328
 329	TTM_ASSERT_LOCKED(&bo->mutex);
 330	bo->ttm = NULL;
 331
 332	if (bdev->need_dma32)
 333		page_flags |= TTM_PAGE_FLAG_DMA32;
 334
 335	switch (bo->type) {
 336	case ttm_bo_type_device:
 337		if (zero_alloc)
 338			page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC;
 339	case ttm_bo_type_kernel:
 340		bo->ttm = ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
 341					page_flags, glob->dummy_read_page);
 342		if (unlikely(bo->ttm == NULL))
 343			ret = -ENOMEM;
 344		break;
 345	case ttm_bo_type_user:
 346		bo->ttm = ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
 347					page_flags | TTM_PAGE_FLAG_USER,
 348					glob->dummy_read_page);
 349		if (unlikely(bo->ttm == NULL)) {
 350			ret = -ENOMEM;
 351			break;
 352		}
 353
 354		ret = ttm_tt_set_user(bo->ttm, current,
 355				      bo->buffer_start, bo->num_pages);
 356		if (unlikely(ret != 0)) {
 357			ttm_tt_destroy(bo->ttm);
 358			bo->ttm = NULL;
 359		}
 360		break;
 361	default:
 362		printk(KERN_ERR TTM_PFX "Illegal buffer object type\n");
 363		ret = -EINVAL;
 364		break;
 365	}
 366
 367	return ret;
 368}
 369
 370static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
 371				  struct ttm_mem_reg *mem,
 372				  bool evict, bool interruptible,
 373				  bool no_wait_reserve, bool no_wait_gpu)
 374{
 375	struct ttm_bo_device *bdev = bo->bdev;
 376	bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem);
 377	bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem);
 378	struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
 379	struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
 380	int ret = 0;
 381
 382	if (old_is_pci || new_is_pci ||
 383	    ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) {
 384		ret = ttm_mem_io_lock(old_man, true);
 385		if (unlikely(ret != 0))
 386			goto out_err;
 387		ttm_bo_unmap_virtual_locked(bo);
 388		ttm_mem_io_unlock(old_man);
 389	}
 390
 391	/*
 392	 * Create and bind a ttm if required.
 393	 */
 394
 395	if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
 396		if (bo->ttm == NULL) {
 397			bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED);
 398			ret = ttm_bo_add_ttm(bo, zero);
 399			if (ret)
 400				goto out_err;
 401		}
 402
 403		ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
 404		if (ret)
 405			goto out_err;
 406
 407		if (mem->mem_type != TTM_PL_SYSTEM) {
 408			ret = ttm_tt_bind(bo->ttm, mem);
 409			if (ret)
 410				goto out_err;
 411		}
 412
 413		if (bo->mem.mem_type == TTM_PL_SYSTEM) {
 414			if (bdev->driver->move_notify)
 415				bdev->driver->move_notify(bo, mem);
 416			bo->mem = *mem;
 417			mem->mm_node = NULL;
 418			goto moved;
 419		}
 420	}
 421
 422	if (bdev->driver->move_notify)
 423		bdev->driver->move_notify(bo, mem);
 424
 425	if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
 426	    !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
 427		ret = ttm_bo_move_ttm(bo, evict, no_wait_reserve, no_wait_gpu, mem);
 428	else if (bdev->driver->move)
 429		ret = bdev->driver->move(bo, evict, interruptible,
 430					 no_wait_reserve, no_wait_gpu, mem);
 431	else
 432		ret = ttm_bo_move_memcpy(bo, evict, no_wait_reserve, no_wait_gpu, mem);
 
 
 
 
 
 
 
 
 
 
 433
 434	if (ret)
 435		goto out_err;
 
 436
 437moved:
 438	if (bo->evicted) {
 439		ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement);
 440		if (ret)
 441			printk(KERN_ERR TTM_PFX "Can not flush read caches\n");
 
 
 442		bo->evicted = false;
 443	}
 444
 445	if (bo->mem.mm_node) {
 446		bo->offset = (bo->mem.start << PAGE_SHIFT) +
 447		    bdev->man[bo->mem.mem_type].gpu_offset;
 448		bo->cur_placement = bo->mem.placement;
 449	} else
 450		bo->offset = 0;
 451
 452	return 0;
 453
 454out_err:
 455	new_man = &bdev->man[bo->mem.mem_type];
 456	if ((new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm) {
 457		ttm_tt_unbind(bo->ttm);
 458		ttm_tt_destroy(bo->ttm);
 459		bo->ttm = NULL;
 460	}
 461
 462	return ret;
 463}
 464
 465/**
 466 * Call bo::reserved.
 467 * Will release GPU memory type usage on destruction.
 468 * This is the place to put in driver specific hooks to release
 469 * driver private resources.
 470 * Will release the bo::reserved lock.
 471 */
 472
 473static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
 474{
 
 
 
 475	if (bo->ttm) {
 476		ttm_tt_unbind(bo->ttm);
 477		ttm_tt_destroy(bo->ttm);
 478		bo->ttm = NULL;
 479	}
 480	ttm_bo_mem_put(bo, &bo->mem);
 481
 482	atomic_set(&bo->reserved, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 483
 484	/*
 485	 * Make processes trying to reserve really pick it up.
 486	 */
 487	smp_mb__after_atomic_dec();
 488	wake_up_all(&bo->event_queue);
 489}
 490
 491static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo)
 492{
 493	struct ttm_bo_device *bdev = bo->bdev;
 494	struct ttm_bo_global *glob = bo->glob;
 495	struct ttm_bo_driver *driver;
 496	void *sync_obj = NULL;
 497	void *sync_obj_arg;
 498	int put_count;
 499	int ret;
 500
 501	spin_lock(&bdev->fence_lock);
 502	(void) ttm_bo_wait(bo, false, false, true);
 503	if (!bo->sync_obj) {
 504
 505		spin_lock(&glob->lru_lock);
 
 
 506
 507		/**
 508		 * Lock inversion between bo:reserve and bdev::fence_lock here,
 509		 * but that's OK, since we're only trylocking.
 510		 */
 511
 512		ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
 513
 514		if (unlikely(ret == -EBUSY))
 515			goto queue;
 
 516
 517		spin_unlock(&bdev->fence_lock);
 518		put_count = ttm_bo_del_from_lru(bo);
 
 
 
 
 
 
 
 519
 520		spin_unlock(&glob->lru_lock);
 521		ttm_bo_cleanup_memtype_use(bo);
 522
 523		ttm_bo_list_ref_sub(bo, put_count, true);
 524
 525		return;
 526	} else {
 527		spin_lock(&glob->lru_lock);
 528	}
 529queue:
 530	driver = bdev->driver;
 531	if (bo->sync_obj)
 532		sync_obj = driver->sync_obj_ref(bo->sync_obj);
 533	sync_obj_arg = bo->sync_obj_arg;
 534
 535	kref_get(&bo->list_kref);
 536	list_add_tail(&bo->ddestroy, &bdev->ddestroy);
 537	spin_unlock(&glob->lru_lock);
 538	spin_unlock(&bdev->fence_lock);
 539
 540	if (sync_obj) {
 541		driver->sync_obj_flush(sync_obj, sync_obj_arg);
 542		driver->sync_obj_unref(&sync_obj);
 543	}
 544	schedule_delayed_work(&bdev->wq,
 545			      ((HZ / 100) < 1) ? 1 : HZ / 100);
 546}
 547
 548/**
 549 * function ttm_bo_cleanup_refs
 550 * If bo idle, remove from delayed- and lru lists, and unref.
 551 * If not idle, do nothing.
 552 *
 
 
 
 553 * @interruptible         Any sleeps should occur interruptibly.
 554 * @no_wait_reserve       Never wait for reserve. Return -EBUSY instead.
 555 * @no_wait_gpu           Never wait for gpu. Return -EBUSY instead.
 556 */
 557
 558static int ttm_bo_cleanup_refs(struct ttm_buffer_object *bo,
 559			       bool interruptible,
 560			       bool no_wait_reserve,
 561			       bool no_wait_gpu)
 562{
 563	struct ttm_bo_device *bdev = bo->bdev;
 564	struct ttm_bo_global *glob = bo->glob;
 565	int put_count;
 566	int ret = 0;
 
 
 
 
 
 
 
 567
 568retry:
 569	spin_lock(&bdev->fence_lock);
 570	ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
 571	spin_unlock(&bdev->fence_lock);
 
 
 
 
 
 572
 573	if (unlikely(ret != 0))
 574		return ret;
 575
 576	spin_lock(&glob->lru_lock);
 577	ret = ttm_bo_reserve_locked(bo, interruptible,
 578				    no_wait_reserve, false, 0);
 
 
 
 
 
 
 
 
 
 579
 580	if (unlikely(ret != 0) || list_empty(&bo->ddestroy)) {
 581		spin_unlock(&glob->lru_lock);
 582		return ret;
 
 
 
 583	}
 584
 585	/**
 586	 * We can re-check for sync object without taking
 587	 * the bo::lock since setting the sync object requires
 588	 * also bo::reserved. A busy object at this point may
 589	 * be caused by another thread recently starting an accelerated
 590	 * eviction.
 591	 */
 592
 593	if (unlikely(bo->sync_obj)) {
 594		atomic_set(&bo->reserved, 0);
 595		wake_up_all(&bo->event_queue);
 596		spin_unlock(&glob->lru_lock);
 597		goto retry;
 598	}
 599
 600	put_count = ttm_bo_del_from_lru(bo);
 601	list_del_init(&bo->ddestroy);
 602	++put_count;
 603
 604	spin_unlock(&glob->lru_lock);
 605	ttm_bo_cleanup_memtype_use(bo);
 606
 607	ttm_bo_list_ref_sub(bo, put_count, true);
 608
 609	return 0;
 610}
 611
 612/**
 613 * Traverse the delayed list, and call ttm_bo_cleanup_refs on all
 614 * encountered buffers.
 615 */
 616
 617static int ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
 618{
 619	struct ttm_bo_global *glob = bdev->glob;
 620	struct ttm_buffer_object *entry = NULL;
 621	int ret = 0;
 622
 623	spin_lock(&glob->lru_lock);
 624	if (list_empty(&bdev->ddestroy))
 625		goto out_unlock;
 626
 627	entry = list_first_entry(&bdev->ddestroy,
 628		struct ttm_buffer_object, ddestroy);
 629	kref_get(&entry->list_kref);
 630
 631	for (;;) {
 632		struct ttm_buffer_object *nentry = NULL;
 633
 634		if (entry->ddestroy.next != &bdev->ddestroy) {
 635			nentry = list_first_entry(&entry->ddestroy,
 636				struct ttm_buffer_object, ddestroy);
 637			kref_get(&nentry->list_kref);
 638		}
 639
 640		spin_unlock(&glob->lru_lock);
 641		ret = ttm_bo_cleanup_refs(entry, false, !remove_all,
 642					  !remove_all);
 
 
 
 
 
 
 
 
 
 
 
 643		kref_put(&entry->list_kref, ttm_bo_release_list);
 644		entry = nentry;
 645
 646		if (ret || !entry)
 647			goto out;
 648
 649		spin_lock(&glob->lru_lock);
 650		if (list_empty(&entry->ddestroy))
 651			break;
 652	}
 653
 654out_unlock:
 655	spin_unlock(&glob->lru_lock);
 656out:
 657	if (entry)
 658		kref_put(&entry->list_kref, ttm_bo_release_list);
 659	return ret;
 660}
 661
 662static void ttm_bo_delayed_workqueue(struct work_struct *work)
 663{
 664	struct ttm_bo_device *bdev =
 665	    container_of(work, struct ttm_bo_device, wq.work);
 666
 667	if (ttm_bo_delayed_delete(bdev, false)) {
 668		schedule_delayed_work(&bdev->wq,
 669				      ((HZ / 100) < 1) ? 1 : HZ / 100);
 670	}
 671}
 672
 673static void ttm_bo_release(struct kref *kref)
 674{
 675	struct ttm_buffer_object *bo =
 676	    container_of(kref, struct ttm_buffer_object, kref);
 677	struct ttm_bo_device *bdev = bo->bdev;
 678	struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
 679
 680	if (likely(bo->vm_node != NULL)) {
 681		rb_erase(&bo->vm_rb, &bdev->addr_space_rb);
 682		drm_mm_put_block(bo->vm_node);
 683		bo->vm_node = NULL;
 684	}
 685	write_unlock(&bdev->vm_lock);
 686	ttm_mem_io_lock(man, false);
 687	ttm_mem_io_free_vm(bo);
 688	ttm_mem_io_unlock(man);
 689	ttm_bo_cleanup_refs_or_queue(bo);
 690	kref_put(&bo->list_kref, ttm_bo_release_list);
 691	write_lock(&bdev->vm_lock);
 692}
 693
 694void ttm_bo_unref(struct ttm_buffer_object **p_bo)
 695{
 696	struct ttm_buffer_object *bo = *p_bo;
 697	struct ttm_bo_device *bdev = bo->bdev;
 698
 699	*p_bo = NULL;
 700	write_lock(&bdev->vm_lock);
 701	kref_put(&bo->kref, ttm_bo_release);
 702	write_unlock(&bdev->vm_lock);
 703}
 704EXPORT_SYMBOL(ttm_bo_unref);
 705
 706int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev)
 707{
 708	return cancel_delayed_work_sync(&bdev->wq);
 709}
 710EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue);
 711
 712void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched)
 713{
 714	if (resched)
 715		schedule_delayed_work(&bdev->wq,
 716				      ((HZ / 100) < 1) ? 1 : HZ / 100);
 717}
 718EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue);
 719
 720static int ttm_bo_evict(struct ttm_buffer_object *bo, bool interruptible,
 721			bool no_wait_reserve, bool no_wait_gpu)
 722{
 723	struct ttm_bo_device *bdev = bo->bdev;
 724	struct ttm_mem_reg evict_mem;
 725	struct ttm_placement placement;
 726	int ret = 0;
 727
 728	spin_lock(&bdev->fence_lock);
 729	ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
 730	spin_unlock(&bdev->fence_lock);
 731
 732	if (unlikely(ret != 0)) {
 733		if (ret != -ERESTARTSYS) {
 734			printk(KERN_ERR TTM_PFX
 735			       "Failed to expire sync object before "
 736			       "buffer eviction.\n");
 737		}
 738		goto out;
 739	}
 740
 741	BUG_ON(!atomic_read(&bo->reserved));
 742
 743	evict_mem = bo->mem;
 744	evict_mem.mm_node = NULL;
 745	evict_mem.bus.io_reserved_vm = false;
 746	evict_mem.bus.io_reserved_count = 0;
 747
 748	placement.fpfn = 0;
 749	placement.lpfn = 0;
 750	placement.num_placement = 0;
 751	placement.num_busy_placement = 0;
 752	bdev->driver->evict_flags(bo, &placement);
 753	ret = ttm_bo_mem_space(bo, &placement, &evict_mem, interruptible,
 754				no_wait_reserve, no_wait_gpu);
 755	if (ret) {
 756		if (ret != -ERESTARTSYS) {
 757			printk(KERN_ERR TTM_PFX
 758			       "Failed to find memory space for "
 759			       "buffer 0x%p eviction.\n", bo);
 760			ttm_bo_mem_space_debug(bo, &placement);
 761		}
 762		goto out;
 763	}
 764
 765	ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, interruptible,
 766				     no_wait_reserve, no_wait_gpu);
 767	if (ret) {
 768		if (ret != -ERESTARTSYS)
 769			printk(KERN_ERR TTM_PFX "Buffer eviction failed\n");
 770		ttm_bo_mem_put(bo, &evict_mem);
 771		goto out;
 772	}
 773	bo->evicted = true;
 774out:
 775	return ret;
 776}
 777
 778static int ttm_mem_evict_first(struct ttm_bo_device *bdev,
 779				uint32_t mem_type,
 780				bool interruptible, bool no_wait_reserve,
 
 781				bool no_wait_gpu)
 782{
 783	struct ttm_bo_global *glob = bdev->glob;
 784	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
 785	struct ttm_buffer_object *bo;
 786	int ret, put_count = 0;
 787
 788retry:
 789	spin_lock(&glob->lru_lock);
 790	if (list_empty(&man->lru)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 791		spin_unlock(&glob->lru_lock);
 792		return -EBUSY;
 793	}
 794
 795	bo = list_first_entry(&man->lru, struct ttm_buffer_object, lru);
 796	kref_get(&bo->list_kref);
 797
 798	if (!list_empty(&bo->ddestroy)) {
 799		spin_unlock(&glob->lru_lock);
 800		ret = ttm_bo_cleanup_refs(bo, interruptible,
 801					  no_wait_reserve, no_wait_gpu);
 802		kref_put(&bo->list_kref, ttm_bo_release_list);
 803
 804		if (likely(ret == 0 || ret == -ERESTARTSYS))
 805			return ret;
 806
 807		goto retry;
 808	}
 809
 810	ret = ttm_bo_reserve_locked(bo, false, no_wait_reserve, false, 0);
 811
 812	if (unlikely(ret == -EBUSY)) {
 813		spin_unlock(&glob->lru_lock);
 814		if (likely(!no_wait_gpu))
 815			ret = ttm_bo_wait_unreserved(bo, interruptible);
 816
 817		kref_put(&bo->list_kref, ttm_bo_release_list);
 818
 819		/**
 820		 * We *need* to retry after releasing the lru lock.
 821		 */
 822
 823		if (unlikely(ret != 0))
 824			return ret;
 825		goto retry;
 826	}
 827
 828	put_count = ttm_bo_del_from_lru(bo);
 829	spin_unlock(&glob->lru_lock);
 830
 831	BUG_ON(ret != 0);
 832
 833	ttm_bo_list_ref_sub(bo, put_count, true);
 834
 835	ret = ttm_bo_evict(bo, interruptible, no_wait_reserve, no_wait_gpu);
 836	ttm_bo_unreserve(bo);
 837
 838	kref_put(&bo->list_kref, ttm_bo_release_list);
 839	return ret;
 840}
 841
 842void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem)
 843{
 844	struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type];
 845
 846	if (mem->mm_node)
 847		(*man->func->put_node)(man, mem);
 848}
 849EXPORT_SYMBOL(ttm_bo_mem_put);
 850
 851/**
 852 * Repeatedly evict memory from the LRU for @mem_type until we create enough
 853 * space, or we've evicted everything and there isn't enough space.
 854 */
 855static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
 856					uint32_t mem_type,
 857					struct ttm_placement *placement,
 858					struct ttm_mem_reg *mem,
 859					bool interruptible,
 860					bool no_wait_reserve,
 861					bool no_wait_gpu)
 862{
 863	struct ttm_bo_device *bdev = bo->bdev;
 864	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
 865	int ret;
 866
 867	do {
 868		ret = (*man->func->get_node)(man, bo, placement, mem);
 869		if (unlikely(ret != 0))
 870			return ret;
 871		if (mem->mm_node)
 872			break;
 873		ret = ttm_mem_evict_first(bdev, mem_type, interruptible,
 874						no_wait_reserve, no_wait_gpu);
 875		if (unlikely(ret != 0))
 876			return ret;
 877	} while (1);
 878	if (mem->mm_node == NULL)
 879		return -ENOMEM;
 880	mem->mem_type = mem_type;
 881	return 0;
 882}
 883
 884static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
 885				      uint32_t cur_placement,
 886				      uint32_t proposed_placement)
 887{
 888	uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
 889	uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
 890
 891	/**
 892	 * Keep current caching if possible.
 893	 */
 894
 895	if ((cur_placement & caching) != 0)
 896		result |= (cur_placement & caching);
 897	else if ((man->default_caching & caching) != 0)
 898		result |= man->default_caching;
 899	else if ((TTM_PL_FLAG_CACHED & caching) != 0)
 900		result |= TTM_PL_FLAG_CACHED;
 901	else if ((TTM_PL_FLAG_WC & caching) != 0)
 902		result |= TTM_PL_FLAG_WC;
 903	else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
 904		result |= TTM_PL_FLAG_UNCACHED;
 905
 906	return result;
 907}
 908
 909static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
 910				 bool disallow_fixed,
 911				 uint32_t mem_type,
 912				 uint32_t proposed_placement,
 913				 uint32_t *masked_placement)
 914{
 915	uint32_t cur_flags = ttm_bo_type_flags(mem_type);
 916
 917	if ((man->flags & TTM_MEMTYPE_FLAG_FIXED) && disallow_fixed)
 918		return false;
 919
 920	if ((cur_flags & proposed_placement & TTM_PL_MASK_MEM) == 0)
 921		return false;
 922
 923	if ((proposed_placement & man->available_caching) == 0)
 924		return false;
 925
 926	cur_flags |= (proposed_placement & man->available_caching);
 927
 928	*masked_placement = cur_flags;
 929	return true;
 930}
 931
 932/**
 933 * Creates space for memory region @mem according to its type.
 934 *
 935 * This function first searches for free space in compatible memory types in
 936 * the priority order defined by the driver.  If free space isn't found, then
 937 * ttm_bo_mem_force_space is attempted in priority order to evict and find
 938 * space.
 939 */
 940int ttm_bo_mem_space(struct ttm_buffer_object *bo,
 941			struct ttm_placement *placement,
 942			struct ttm_mem_reg *mem,
 943			bool interruptible, bool no_wait_reserve,
 944			bool no_wait_gpu)
 945{
 946	struct ttm_bo_device *bdev = bo->bdev;
 947	struct ttm_mem_type_manager *man;
 948	uint32_t mem_type = TTM_PL_SYSTEM;
 949	uint32_t cur_flags = 0;
 950	bool type_found = false;
 951	bool type_ok = false;
 952	bool has_erestartsys = false;
 953	int i, ret;
 954
 955	mem->mm_node = NULL;
 956	for (i = 0; i < placement->num_placement; ++i) {
 957		ret = ttm_mem_type_from_flags(placement->placement[i],
 958						&mem_type);
 
 959		if (ret)
 960			return ret;
 961		man = &bdev->man[mem_type];
 
 
 962
 963		type_ok = ttm_bo_mt_compatible(man,
 964						bo->type == ttm_bo_type_user,
 965						mem_type,
 966						placement->placement[i],
 967						&cur_flags);
 968
 969		if (!type_ok)
 970			continue;
 971
 
 972		cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
 973						  cur_flags);
 974		/*
 975		 * Use the access and other non-mapping-related flag bits from
 976		 * the memory placement flags to the current flags
 977		 */
 978		ttm_flag_masked(&cur_flags, placement->placement[i],
 979				~TTM_PL_MASK_MEMTYPE);
 980
 981		if (mem_type == TTM_PL_SYSTEM)
 982			break;
 983
 984		if (man->has_type && man->use_type) {
 985			type_found = true;
 986			ret = (*man->func->get_node)(man, bo, placement, mem);
 987			if (unlikely(ret))
 988				return ret;
 989		}
 990		if (mem->mm_node)
 991			break;
 992	}
 993
 994	if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || mem->mm_node) {
 995		mem->mem_type = mem_type;
 996		mem->placement = cur_flags;
 997		return 0;
 998	}
 999
1000	if (!type_found)
1001		return -EINVAL;
1002
1003	for (i = 0; i < placement->num_busy_placement; ++i) {
1004		ret = ttm_mem_type_from_flags(placement->busy_placement[i],
1005						&mem_type);
1006		if (ret)
1007			return ret;
1008		man = &bdev->man[mem_type];
1009		if (!man->has_type)
1010			continue;
1011		if (!ttm_bo_mt_compatible(man,
1012						bo->type == ttm_bo_type_user,
1013						mem_type,
1014						placement->busy_placement[i],
1015						&cur_flags))
1016			continue;
1017
 
1018		cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
1019						  cur_flags);
1020		/*
1021		 * Use the access and other non-mapping-related flag bits from
1022		 * the memory placement flags to the current flags
1023		 */
1024		ttm_flag_masked(&cur_flags, placement->busy_placement[i],
1025				~TTM_PL_MASK_MEMTYPE);
1026
1027
1028		if (mem_type == TTM_PL_SYSTEM) {
1029			mem->mem_type = mem_type;
1030			mem->placement = cur_flags;
1031			mem->mm_node = NULL;
1032			return 0;
1033		}
1034
1035		ret = ttm_bo_mem_force_space(bo, mem_type, placement, mem,
1036						interruptible, no_wait_reserve, no_wait_gpu);
1037		if (ret == 0 && mem->mm_node) {
1038			mem->placement = cur_flags;
1039			return 0;
1040		}
1041		if (ret == -ERESTARTSYS)
1042			has_erestartsys = true;
1043	}
1044	ret = (has_erestartsys) ? -ERESTARTSYS : -ENOMEM;
1045	return ret;
1046}
1047EXPORT_SYMBOL(ttm_bo_mem_space);
1048
1049int ttm_bo_wait_cpu(struct ttm_buffer_object *bo, bool no_wait)
1050{
1051	if ((atomic_read(&bo->cpu_writers) > 0) && no_wait)
1052		return -EBUSY;
1053
1054	return wait_event_interruptible(bo->event_queue,
1055					atomic_read(&bo->cpu_writers) == 0);
1056}
1057EXPORT_SYMBOL(ttm_bo_wait_cpu);
1058
1059int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
1060			struct ttm_placement *placement,
1061			bool interruptible, bool no_wait_reserve,
1062			bool no_wait_gpu)
1063{
1064	int ret = 0;
1065	struct ttm_mem_reg mem;
1066	struct ttm_bo_device *bdev = bo->bdev;
1067
1068	BUG_ON(!atomic_read(&bo->reserved));
1069
1070	/*
1071	 * FIXME: It's possible to pipeline buffer moves.
1072	 * Have the driver move function wait for idle when necessary,
1073	 * instead of doing it here.
1074	 */
1075	spin_lock(&bdev->fence_lock);
1076	ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
1077	spin_unlock(&bdev->fence_lock);
1078	if (ret)
1079		return ret;
1080	mem.num_pages = bo->num_pages;
1081	mem.size = mem.num_pages << PAGE_SHIFT;
1082	mem.page_alignment = bo->mem.page_alignment;
1083	mem.bus.io_reserved_vm = false;
1084	mem.bus.io_reserved_count = 0;
1085	/*
1086	 * Determine where to move the buffer.
1087	 */
1088	ret = ttm_bo_mem_space(bo, placement, &mem, interruptible, no_wait_reserve, no_wait_gpu);
 
1089	if (ret)
1090		goto out_unlock;
1091	ret = ttm_bo_handle_move_mem(bo, &mem, false, interruptible, no_wait_reserve, no_wait_gpu);
 
1092out_unlock:
1093	if (ret && mem.mm_node)
1094		ttm_bo_mem_put(bo, &mem);
1095	return ret;
1096}
1097
1098static int ttm_bo_mem_compat(struct ttm_placement *placement,
1099			     struct ttm_mem_reg *mem)
 
1100{
1101	int i;
1102
1103	if (mem->mm_node && placement->lpfn != 0 &&
1104	    (mem->start < placement->fpfn ||
1105	     mem->start + mem->num_pages > placement->lpfn))
1106		return -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1107
1108	for (i = 0; i < placement->num_placement; i++) {
1109		if ((placement->placement[i] & mem->placement &
1110			TTM_PL_MASK_CACHING) &&
1111			(placement->placement[i] & mem->placement &
1112			TTM_PL_MASK_MEM))
1113			return i;
1114	}
1115	return -1;
 
1116}
1117
1118int ttm_bo_validate(struct ttm_buffer_object *bo,
1119			struct ttm_placement *placement,
1120			bool interruptible, bool no_wait_reserve,
1121			bool no_wait_gpu)
1122{
1123	int ret;
 
1124
1125	BUG_ON(!atomic_read(&bo->reserved));
1126	/* Check that range is valid */
1127	if (placement->lpfn || placement->fpfn)
1128		if (placement->fpfn > placement->lpfn ||
1129			(placement->lpfn - placement->fpfn) < bo->num_pages)
1130			return -EINVAL;
1131	/*
1132	 * Check whether we need to move buffer.
1133	 */
1134	ret = ttm_bo_mem_compat(placement, &bo->mem);
1135	if (ret < 0) {
1136		ret = ttm_bo_move_buffer(bo, placement, interruptible, no_wait_reserve, no_wait_gpu);
1137		if (ret)
1138			return ret;
1139	} else {
1140		/*
1141		 * Use the access and other non-mapping-related flag bits from
1142		 * the compatible memory placement flags to the active flags
1143		 */
1144		ttm_flag_masked(&bo->mem.placement, placement->placement[ret],
1145				~TTM_PL_MASK_MEMTYPE);
1146	}
1147	/*
1148	 * We might need to add a TTM.
1149	 */
1150	if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
1151		ret = ttm_bo_add_ttm(bo, true);
1152		if (ret)
1153			return ret;
1154	}
1155	return 0;
1156}
1157EXPORT_SYMBOL(ttm_bo_validate);
1158
1159int ttm_bo_check_placement(struct ttm_buffer_object *bo,
1160				struct ttm_placement *placement)
1161{
1162	BUG_ON((placement->fpfn || placement->lpfn) &&
1163	       (bo->mem.num_pages > (placement->lpfn - placement->fpfn)));
1164
1165	return 0;
1166}
1167
1168int ttm_bo_init(struct ttm_bo_device *bdev,
1169		struct ttm_buffer_object *bo,
1170		unsigned long size,
1171		enum ttm_bo_type type,
1172		struct ttm_placement *placement,
1173		uint32_t page_alignment,
1174		unsigned long buffer_start,
1175		bool interruptible,
1176		struct file *persistent_swap_storage,
1177		size_t acc_size,
 
 
1178		void (*destroy) (struct ttm_buffer_object *))
1179{
1180	int ret = 0;
1181	unsigned long num_pages;
 
 
 
 
 
 
 
 
 
 
 
 
1182
1183	size += buffer_start & ~PAGE_MASK;
1184	num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1185	if (num_pages == 0) {
1186		printk(KERN_ERR TTM_PFX "Illegal buffer object size.\n");
1187		if (destroy)
1188			(*destroy)(bo);
1189		else
1190			kfree(bo);
 
1191		return -EINVAL;
1192	}
1193	bo->destroy = destroy;
1194
1195	kref_init(&bo->kref);
1196	kref_init(&bo->list_kref);
1197	atomic_set(&bo->cpu_writers, 0);
1198	atomic_set(&bo->reserved, 1);
1199	init_waitqueue_head(&bo->event_queue);
1200	INIT_LIST_HEAD(&bo->lru);
1201	INIT_LIST_HEAD(&bo->ddestroy);
1202	INIT_LIST_HEAD(&bo->swap);
1203	INIT_LIST_HEAD(&bo->io_reserve_lru);
 
1204	bo->bdev = bdev;
1205	bo->glob = bdev->glob;
1206	bo->type = type;
1207	bo->num_pages = num_pages;
1208	bo->mem.size = num_pages << PAGE_SHIFT;
1209	bo->mem.mem_type = TTM_PL_SYSTEM;
1210	bo->mem.num_pages = bo->num_pages;
1211	bo->mem.mm_node = NULL;
1212	bo->mem.page_alignment = page_alignment;
1213	bo->mem.bus.io_reserved_vm = false;
1214	bo->mem.bus.io_reserved_count = 0;
1215	bo->buffer_start = buffer_start & PAGE_MASK;
1216	bo->priv_flags = 0;
1217	bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
1218	bo->seq_valid = false;
1219	bo->persistent_swap_storage = persistent_swap_storage;
1220	bo->acc_size = acc_size;
 
 
 
 
 
 
 
 
1221	atomic_inc(&bo->glob->bo_count);
1222
1223	ret = ttm_bo_check_placement(bo, placement);
1224	if (unlikely(ret != 0))
1225		goto out_err;
1226
1227	/*
1228	 * For ttm_bo_type_device buffers, allocate
1229	 * address space from the device.
1230	 */
1231	if (bo->type == ttm_bo_type_device) {
1232		ret = ttm_bo_setup_vm(bo);
1233		if (ret)
1234			goto out_err;
 
 
 
 
 
 
 
1235	}
1236
1237	ret = ttm_bo_validate(bo, placement, interruptible, false, false);
1238	if (ret)
1239		goto out_err;
 
 
1240
1241	ttm_bo_unreserve(bo);
1242	return 0;
 
 
 
1243
1244out_err:
1245	ttm_bo_unreserve(bo);
1246	ttm_bo_unref(&bo);
1247
1248	return ret;
1249}
1250EXPORT_SYMBOL(ttm_bo_init);
1251
1252static inline size_t ttm_bo_size(struct ttm_bo_global *glob,
1253				 unsigned long num_pages)
1254{
1255	size_t page_array_size = (num_pages * sizeof(void *) + PAGE_SIZE - 1) &
1256	    PAGE_MASK;
1257
1258	return glob->ttm_bo_size + 2 * page_array_size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1259}
 
1260
1261int ttm_bo_create(struct ttm_bo_device *bdev,
1262			unsigned long size,
1263			enum ttm_bo_type type,
1264			struct ttm_placement *placement,
1265			uint32_t page_alignment,
1266			unsigned long buffer_start,
1267			bool interruptible,
1268			struct file *persistent_swap_storage,
1269			struct ttm_buffer_object **p_bo)
1270{
1271	struct ttm_buffer_object *bo;
1272	struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
1273	int ret;
1274
1275	size_t acc_size =
1276	    ttm_bo_size(bdev->glob, (size + PAGE_SIZE - 1) >> PAGE_SHIFT);
1277	ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false);
1278	if (unlikely(ret != 0))
1279		return ret;
1280
1281	bo = kzalloc(sizeof(*bo), GFP_KERNEL);
1282
1283	if (unlikely(bo == NULL)) {
1284		ttm_mem_global_free(mem_glob, acc_size);
1285		return -ENOMEM;
1286	}
1287
 
1288	ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment,
1289				buffer_start, interruptible,
1290				persistent_swap_storage, acc_size, NULL);
1291	if (likely(ret == 0))
1292		*p_bo = bo;
1293
1294	return ret;
1295}
 
1296
1297static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
1298					unsigned mem_type, bool allow_errors)
1299{
1300	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1301	struct ttm_bo_global *glob = bdev->glob;
1302	int ret;
1303
1304	/*
1305	 * Can't use standard list traversal since we're unlocking.
1306	 */
1307
1308	spin_lock(&glob->lru_lock);
1309	while (!list_empty(&man->lru)) {
1310		spin_unlock(&glob->lru_lock);
1311		ret = ttm_mem_evict_first(bdev, mem_type, false, false, false);
1312		if (ret) {
1313			if (allow_errors) {
1314				return ret;
1315			} else {
1316				printk(KERN_ERR TTM_PFX
1317					"Cleanup eviction failed\n");
1318			}
1319		}
1320		spin_lock(&glob->lru_lock);
1321	}
1322	spin_unlock(&glob->lru_lock);
1323	return 0;
1324}
1325
1326int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1327{
1328	struct ttm_mem_type_manager *man;
1329	int ret = -EINVAL;
1330
1331	if (mem_type >= TTM_NUM_MEM_TYPES) {
1332		printk(KERN_ERR TTM_PFX "Illegal memory type %d\n", mem_type);
1333		return ret;
1334	}
1335	man = &bdev->man[mem_type];
1336
1337	if (!man->has_type) {
1338		printk(KERN_ERR TTM_PFX "Trying to take down uninitialized "
1339		       "memory manager type %u\n", mem_type);
1340		return ret;
1341	}
1342
1343	man->use_type = false;
1344	man->has_type = false;
1345
1346	ret = 0;
1347	if (mem_type > 0) {
1348		ttm_bo_force_list_clean(bdev, mem_type, false);
1349
1350		ret = (*man->func->takedown)(man);
1351	}
1352
1353	return ret;
1354}
1355EXPORT_SYMBOL(ttm_bo_clean_mm);
1356
1357int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1358{
1359	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1360
1361	if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
1362		printk(KERN_ERR TTM_PFX
1363		       "Illegal memory manager memory type %u.\n",
1364		       mem_type);
1365		return -EINVAL;
1366	}
1367
1368	if (!man->has_type) {
1369		printk(KERN_ERR TTM_PFX
1370		       "Memory type %u has not been initialized.\n",
1371		       mem_type);
1372		return 0;
1373	}
1374
1375	return ttm_bo_force_list_clean(bdev, mem_type, true);
1376}
1377EXPORT_SYMBOL(ttm_bo_evict_mm);
1378
1379int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
1380			unsigned long p_size)
1381{
1382	int ret = -EINVAL;
1383	struct ttm_mem_type_manager *man;
1384
1385	BUG_ON(type >= TTM_NUM_MEM_TYPES);
1386	man = &bdev->man[type];
1387	BUG_ON(man->has_type);
1388	man->io_reserve_fastpath = true;
1389	man->use_io_reserve_lru = false;
1390	mutex_init(&man->io_reserve_mutex);
1391	INIT_LIST_HEAD(&man->io_reserve_lru);
1392
1393	ret = bdev->driver->init_mem_type(bdev, type, man);
1394	if (ret)
1395		return ret;
1396	man->bdev = bdev;
1397
1398	ret = 0;
1399	if (type != TTM_PL_SYSTEM) {
1400		ret = (*man->func->init)(man, p_size);
1401		if (ret)
1402			return ret;
1403	}
1404	man->has_type = true;
1405	man->use_type = true;
1406	man->size = p_size;
1407
1408	INIT_LIST_HEAD(&man->lru);
1409
1410	return 0;
1411}
1412EXPORT_SYMBOL(ttm_bo_init_mm);
1413
1414static void ttm_bo_global_kobj_release(struct kobject *kobj)
1415{
1416	struct ttm_bo_global *glob =
1417		container_of(kobj, struct ttm_bo_global, kobj);
1418
1419	ttm_mem_unregister_shrink(glob->mem_glob, &glob->shrink);
1420	__free_page(glob->dummy_read_page);
1421	kfree(glob);
1422}
1423
1424void ttm_bo_global_release(struct drm_global_reference *ref)
1425{
1426	struct ttm_bo_global *glob = ref->object;
1427
1428	kobject_del(&glob->kobj);
1429	kobject_put(&glob->kobj);
1430}
1431EXPORT_SYMBOL(ttm_bo_global_release);
1432
1433int ttm_bo_global_init(struct drm_global_reference *ref)
1434{
1435	struct ttm_bo_global_ref *bo_ref =
1436		container_of(ref, struct ttm_bo_global_ref, ref);
1437	struct ttm_bo_global *glob = ref->object;
1438	int ret;
1439
1440	mutex_init(&glob->device_list_mutex);
1441	spin_lock_init(&glob->lru_lock);
1442	glob->mem_glob = bo_ref->mem_glob;
1443	glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32);
1444
1445	if (unlikely(glob->dummy_read_page == NULL)) {
1446		ret = -ENOMEM;
1447		goto out_no_drp;
1448	}
1449
1450	INIT_LIST_HEAD(&glob->swap_lru);
1451	INIT_LIST_HEAD(&glob->device_list);
1452
1453	ttm_mem_init_shrink(&glob->shrink, ttm_bo_swapout);
1454	ret = ttm_mem_register_shrink(glob->mem_glob, &glob->shrink);
1455	if (unlikely(ret != 0)) {
1456		printk(KERN_ERR TTM_PFX
1457		       "Could not register buffer object swapout.\n");
1458		goto out_no_shrink;
1459	}
1460
1461	glob->ttm_bo_extra_size =
1462		ttm_round_pot(sizeof(struct ttm_tt)) +
1463		ttm_round_pot(sizeof(struct ttm_backend));
1464
1465	glob->ttm_bo_size = glob->ttm_bo_extra_size +
1466		ttm_round_pot(sizeof(struct ttm_buffer_object));
1467
1468	atomic_set(&glob->bo_count, 0);
1469
1470	ret = kobject_init_and_add(
1471		&glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects");
1472	if (unlikely(ret != 0))
1473		kobject_put(&glob->kobj);
1474	return ret;
1475out_no_shrink:
1476	__free_page(glob->dummy_read_page);
1477out_no_drp:
1478	kfree(glob);
1479	return ret;
1480}
1481EXPORT_SYMBOL(ttm_bo_global_init);
1482
1483
1484int ttm_bo_device_release(struct ttm_bo_device *bdev)
1485{
1486	int ret = 0;
1487	unsigned i = TTM_NUM_MEM_TYPES;
1488	struct ttm_mem_type_manager *man;
1489	struct ttm_bo_global *glob = bdev->glob;
1490
1491	while (i--) {
1492		man = &bdev->man[i];
1493		if (man->has_type) {
1494			man->use_type = false;
1495			if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
1496				ret = -EBUSY;
1497				printk(KERN_ERR TTM_PFX
1498				       "DRM memory manager type %d "
1499				       "is not clean.\n", i);
1500			}
1501			man->has_type = false;
1502		}
1503	}
1504
1505	mutex_lock(&glob->device_list_mutex);
1506	list_del(&bdev->device_list);
1507	mutex_unlock(&glob->device_list_mutex);
1508
1509	cancel_delayed_work_sync(&bdev->wq);
1510
1511	while (ttm_bo_delayed_delete(bdev, true))
1512		;
1513
1514	spin_lock(&glob->lru_lock);
1515	if (list_empty(&bdev->ddestroy))
1516		TTM_DEBUG("Delayed destroy list was clean\n");
1517
1518	if (list_empty(&bdev->man[0].lru))
1519		TTM_DEBUG("Swap list was clean\n");
1520	spin_unlock(&glob->lru_lock);
1521
1522	BUG_ON(!drm_mm_clean(&bdev->addr_space_mm));
1523	write_lock(&bdev->vm_lock);
1524	drm_mm_takedown(&bdev->addr_space_mm);
1525	write_unlock(&bdev->vm_lock);
1526
1527	return ret;
1528}
1529EXPORT_SYMBOL(ttm_bo_device_release);
1530
1531int ttm_bo_device_init(struct ttm_bo_device *bdev,
1532		       struct ttm_bo_global *glob,
1533		       struct ttm_bo_driver *driver,
 
1534		       uint64_t file_page_offset,
1535		       bool need_dma32)
1536{
1537	int ret = -EINVAL;
1538
1539	rwlock_init(&bdev->vm_lock);
1540	bdev->driver = driver;
1541
1542	memset(bdev->man, 0, sizeof(bdev->man));
1543
1544	/*
1545	 * Initialize the system memory buffer type.
1546	 * Other types need to be driver / IOCTL initialized.
1547	 */
1548	ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0);
1549	if (unlikely(ret != 0))
1550		goto out_no_sys;
1551
1552	bdev->addr_space_rb = RB_ROOT;
1553	ret = drm_mm_init(&bdev->addr_space_mm, file_page_offset, 0x10000000);
1554	if (unlikely(ret != 0))
1555		goto out_no_addr_mm;
1556
1557	INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue);
1558	bdev->nice_mode = true;
1559	INIT_LIST_HEAD(&bdev->ddestroy);
1560	bdev->dev_mapping = NULL;
1561	bdev->glob = glob;
1562	bdev->need_dma32 = need_dma32;
1563	bdev->val_seq = 0;
1564	spin_lock_init(&bdev->fence_lock);
1565	mutex_lock(&glob->device_list_mutex);
1566	list_add_tail(&bdev->device_list, &glob->device_list);
1567	mutex_unlock(&glob->device_list_mutex);
1568
1569	return 0;
1570out_no_addr_mm:
1571	ttm_bo_clean_mm(bdev, 0);
1572out_no_sys:
1573	return ret;
1574}
1575EXPORT_SYMBOL(ttm_bo_device_init);
1576
1577/*
1578 * buffer object vm functions.
1579 */
1580
1581bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
1582{
1583	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
1584
1585	if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
1586		if (mem->mem_type == TTM_PL_SYSTEM)
1587			return false;
1588
1589		if (man->flags & TTM_MEMTYPE_FLAG_CMA)
1590			return false;
1591
1592		if (mem->placement & TTM_PL_FLAG_CACHED)
1593			return false;
1594	}
1595	return true;
1596}
1597
1598void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo)
1599{
1600	struct ttm_bo_device *bdev = bo->bdev;
1601	loff_t offset = (loff_t) bo->addr_space_offset;
1602	loff_t holelen = ((loff_t) bo->mem.num_pages) << PAGE_SHIFT;
1603
1604	if (!bdev->dev_mapping)
1605		return;
1606	unmap_mapping_range(bdev->dev_mapping, offset, holelen, 1);
1607	ttm_mem_io_free_vm(bo);
1608}
1609
1610void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1611{
1612	struct ttm_bo_device *bdev = bo->bdev;
1613	struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
1614
1615	ttm_mem_io_lock(man, false);
1616	ttm_bo_unmap_virtual_locked(bo);
1617	ttm_mem_io_unlock(man);
1618}
1619
1620
1621EXPORT_SYMBOL(ttm_bo_unmap_virtual);
1622
1623static void ttm_bo_vm_insert_rb(struct ttm_buffer_object *bo)
 
1624{
1625	struct ttm_bo_device *bdev = bo->bdev;
1626	struct rb_node **cur = &bdev->addr_space_rb.rb_node;
1627	struct rb_node *parent = NULL;
1628	struct ttm_buffer_object *cur_bo;
1629	unsigned long offset = bo->vm_node->start;
1630	unsigned long cur_offset;
1631
1632	while (*cur) {
1633		parent = *cur;
1634		cur_bo = rb_entry(parent, struct ttm_buffer_object, vm_rb);
1635		cur_offset = cur_bo->vm_node->start;
1636		if (offset < cur_offset)
1637			cur = &parent->rb_left;
1638		else if (offset > cur_offset)
1639			cur = &parent->rb_right;
1640		else
1641			BUG();
1642	}
1643
1644	rb_link_node(&bo->vm_rb, parent, cur);
1645	rb_insert_color(&bo->vm_rb, &bdev->addr_space_rb);
1646}
 
 
 
 
1647
1648/**
1649 * ttm_bo_setup_vm:
1650 *
1651 * @bo: the buffer to allocate address space for
1652 *
1653 * Allocate address space in the drm device so that applications
1654 * can mmap the buffer and access the contents. This only
1655 * applies to ttm_bo_type_device objects as others are not
1656 * placed in the drm device address space.
1657 */
1658
1659static int ttm_bo_setup_vm(struct ttm_buffer_object *bo)
1660{
1661	struct ttm_bo_device *bdev = bo->bdev;
1662	int ret;
1663
1664retry_pre_get:
1665	ret = drm_mm_pre_get(&bdev->addr_space_mm);
1666	if (unlikely(ret != 0))
1667		return ret;
1668
1669	write_lock(&bdev->vm_lock);
1670	bo->vm_node = drm_mm_search_free(&bdev->addr_space_mm,
1671					 bo->mem.num_pages, 0, 0);
1672
1673	if (unlikely(bo->vm_node == NULL)) {
1674		ret = -ENOMEM;
1675		goto out_unlock;
1676	}
1677
1678	bo->vm_node = drm_mm_get_block_atomic(bo->vm_node,
1679					      bo->mem.num_pages, 0);
1680
1681	if (unlikely(bo->vm_node == NULL)) {
1682		write_unlock(&bdev->vm_lock);
1683		goto retry_pre_get;
1684	}
1685
1686	ttm_bo_vm_insert_rb(bo);
1687	write_unlock(&bdev->vm_lock);
1688	bo->addr_space_offset = ((uint64_t) bo->vm_node->start) << PAGE_SHIFT;
1689
1690	return 0;
1691out_unlock:
1692	write_unlock(&bdev->vm_lock);
1693	return ret;
1694}
1695
1696int ttm_bo_wait(struct ttm_buffer_object *bo,
1697		bool lazy, bool interruptible, bool no_wait)
1698{
1699	struct ttm_bo_driver *driver = bo->bdev->driver;
1700	struct ttm_bo_device *bdev = bo->bdev;
1701	void *sync_obj;
1702	void *sync_obj_arg;
1703	int ret = 0;
1704
1705	if (likely(bo->sync_obj == NULL))
1706		return 0;
1707
1708	while (bo->sync_obj) {
1709
1710		if (driver->sync_obj_signaled(bo->sync_obj, bo->sync_obj_arg)) {
1711			void *tmp_obj = bo->sync_obj;
1712			bo->sync_obj = NULL;
1713			clear_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags);
1714			spin_unlock(&bdev->fence_lock);
1715			driver->sync_obj_unref(&tmp_obj);
1716			spin_lock(&bdev->fence_lock);
1717			continue;
1718		}
1719
1720		if (no_wait)
1721			return -EBUSY;
1722
1723		sync_obj = driver->sync_obj_ref(bo->sync_obj);
1724		sync_obj_arg = bo->sync_obj_arg;
1725		spin_unlock(&bdev->fence_lock);
1726		ret = driver->sync_obj_wait(sync_obj, sync_obj_arg,
1727					    lazy, interruptible);
1728		if (unlikely(ret != 0)) {
1729			driver->sync_obj_unref(&sync_obj);
1730			spin_lock(&bdev->fence_lock);
1731			return ret;
1732		}
1733		spin_lock(&bdev->fence_lock);
1734		if (likely(bo->sync_obj == sync_obj &&
1735			   bo->sync_obj_arg == sync_obj_arg)) {
1736			void *tmp_obj = bo->sync_obj;
1737			bo->sync_obj = NULL;
1738			clear_bit(TTM_BO_PRIV_FLAG_MOVING,
1739				  &bo->priv_flags);
1740			spin_unlock(&bdev->fence_lock);
1741			driver->sync_obj_unref(&sync_obj);
1742			driver->sync_obj_unref(&tmp_obj);
1743			spin_lock(&bdev->fence_lock);
1744		} else {
1745			spin_unlock(&bdev->fence_lock);
1746			driver->sync_obj_unref(&sync_obj);
1747			spin_lock(&bdev->fence_lock);
1748		}
1749	}
1750	return 0;
1751}
1752EXPORT_SYMBOL(ttm_bo_wait);
1753
1754int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait)
1755{
1756	struct ttm_bo_device *bdev = bo->bdev;
1757	int ret = 0;
1758
1759	/*
1760	 * Using ttm_bo_reserve makes sure the lru lists are updated.
1761	 */
1762
1763	ret = ttm_bo_reserve(bo, true, no_wait, false, 0);
1764	if (unlikely(ret != 0))
1765		return ret;
1766	spin_lock(&bdev->fence_lock);
1767	ret = ttm_bo_wait(bo, false, true, no_wait);
1768	spin_unlock(&bdev->fence_lock);
1769	if (likely(ret == 0))
1770		atomic_inc(&bo->cpu_writers);
1771	ttm_bo_unreserve(bo);
1772	return ret;
1773}
1774EXPORT_SYMBOL(ttm_bo_synccpu_write_grab);
1775
1776void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo)
1777{
1778	if (atomic_dec_and_test(&bo->cpu_writers))
1779		wake_up_all(&bo->event_queue);
1780}
1781EXPORT_SYMBOL(ttm_bo_synccpu_write_release);
1782
1783/**
1784 * A buffer object shrink method that tries to swap out the first
1785 * buffer object on the bo_global::swap_lru list.
1786 */
1787
1788static int ttm_bo_swapout(struct ttm_mem_shrink *shrink)
1789{
1790	struct ttm_bo_global *glob =
1791	    container_of(shrink, struct ttm_bo_global, shrink);
1792	struct ttm_buffer_object *bo;
1793	int ret = -EBUSY;
1794	int put_count;
1795	uint32_t swap_placement = (TTM_PL_FLAG_CACHED | TTM_PL_FLAG_SYSTEM);
1796
1797	spin_lock(&glob->lru_lock);
1798	while (ret == -EBUSY) {
1799		if (unlikely(list_empty(&glob->swap_lru))) {
1800			spin_unlock(&glob->lru_lock);
1801			return -EBUSY;
1802		}
1803
1804		bo = list_first_entry(&glob->swap_lru,
1805				      struct ttm_buffer_object, swap);
1806		kref_get(&bo->list_kref);
 
1807
1808		if (!list_empty(&bo->ddestroy)) {
1809			spin_unlock(&glob->lru_lock);
1810			(void) ttm_bo_cleanup_refs(bo, false, false, false);
1811			kref_put(&bo->list_kref, ttm_bo_release_list);
1812			continue;
1813		}
1814
1815		/**
1816		 * Reserve buffer. Since we unlock while sleeping, we need
1817		 * to re-check that nobody removed us from the swap-list while
1818		 * we slept.
1819		 */
1820
1821		ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
1822		if (unlikely(ret == -EBUSY)) {
1823			spin_unlock(&glob->lru_lock);
1824			ttm_bo_wait_unreserved(bo, false);
1825			kref_put(&bo->list_kref, ttm_bo_release_list);
1826			spin_lock(&glob->lru_lock);
1827		}
1828	}
1829
1830	BUG_ON(ret != 0);
1831	put_count = ttm_bo_del_from_lru(bo);
1832	spin_unlock(&glob->lru_lock);
1833
1834	ttm_bo_list_ref_sub(bo, put_count, true);
1835
1836	/**
1837	 * Wait for GPU, then move to system cached.
1838	 */
1839
1840	spin_lock(&bo->bdev->fence_lock);
1841	ret = ttm_bo_wait(bo, false, false, false);
1842	spin_unlock(&bo->bdev->fence_lock);
1843
1844	if (unlikely(ret != 0))
1845		goto out;
1846
1847	if ((bo->mem.placement & swap_placement) != swap_placement) {
1848		struct ttm_mem_reg evict_mem;
1849
1850		evict_mem = bo->mem;
1851		evict_mem.mm_node = NULL;
1852		evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
1853		evict_mem.mem_type = TTM_PL_SYSTEM;
1854
1855		ret = ttm_bo_handle_move_mem(bo, &evict_mem, true,
1856					     false, false, false);
1857		if (unlikely(ret != 0))
1858			goto out;
1859	}
1860
1861	ttm_bo_unmap_virtual(bo);
1862
1863	/**
1864	 * Swap out. Buffer will be swapped in again as soon as
1865	 * anyone tries to access a ttm page.
1866	 */
1867
1868	if (bo->bdev->driver->swap_notify)
1869		bo->bdev->driver->swap_notify(bo);
1870
1871	ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage);
1872out:
1873
1874	/**
1875	 *
1876	 * Unreserve without putting on LRU to avoid swapping out an
1877	 * already swapped buffer.
1878	 */
1879
1880	atomic_set(&bo->reserved, 0);
1881	wake_up_all(&bo->event_queue);
1882	kref_put(&bo->list_kref, ttm_bo_release_list);
1883	return ret;
1884}
1885
1886void ttm_bo_swapout_all(struct ttm_bo_device *bdev)
1887{
1888	while (ttm_bo_swapout(&bdev->glob->shrink) == 0)
1889		;
1890}
1891EXPORT_SYMBOL(ttm_bo_swapout_all);