Linux Audio

Check our new training course

Loading...
v4.6
 
   1/**************************************************************************
   2 *
   3 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
   4 * All Rights Reserved.
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a
   7 * copy of this software and associated documentation files (the
   8 * "Software"), to deal in the Software without restriction, including
   9 * without limitation the rights to use, copy, modify, merge, publish,
  10 * distribute, sub license, and/or sell copies of the Software, and to
  11 * permit persons to whom the Software is furnished to do so, subject to
  12 * the following conditions:
  13 *
  14 * The above copyright notice and this permission notice (including the
  15 * next paragraph) shall be included in all copies or substantial portions
  16 * of the Software.
  17 *
  18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
  22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
  23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
  24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
  25 *
  26 **************************************************************************/
  27/*
  28 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
  29 */
  30
  31#define pr_fmt(fmt) "[TTM] " fmt
  32
  33#include <drm/ttm/ttm_module.h>
  34#include <drm/ttm/ttm_bo_driver.h>
  35#include <drm/ttm/ttm_placement.h>
 
 
  36#include <linux/jiffies.h>
  37#include <linux/slab.h>
  38#include <linux/sched.h>
  39#include <linux/mm.h>
  40#include <linux/file.h>
  41#include <linux/module.h>
  42#include <linux/atomic.h>
  43#include <linux/reservation.h>
  44
  45#define TTM_ASSERT_LOCKED(param)
  46#define TTM_DEBUG(fmt, arg...)
  47#define TTM_BO_HASH_ORDER 13
  48
  49static int ttm_bo_swapout(struct ttm_mem_shrink *shrink);
  50static void ttm_bo_global_kobj_release(struct kobject *kobj);
  51
  52static struct attribute ttm_bo_count = {
  53	.name = "bo_count",
  54	.mode = S_IRUGO
  55};
  56
  57static inline int ttm_mem_type_from_place(const struct ttm_place *place,
  58					  uint32_t *mem_type)
  59{
  60	int i;
  61
  62	for (i = 0; i <= TTM_PL_PRIV5; i++)
  63		if (place->flags & (1 << i)) {
  64			*mem_type = i;
  65			return 0;
  66		}
  67	return -EINVAL;
  68}
  69
  70static void ttm_mem_type_debug(struct ttm_bo_device *bdev, int mem_type)
  71{
  72	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
  73
  74	pr_err("    has_type: %d\n", man->has_type);
  75	pr_err("    use_type: %d\n", man->use_type);
  76	pr_err("    flags: 0x%08X\n", man->flags);
  77	pr_err("    gpu_offset: 0x%08llX\n", man->gpu_offset);
  78	pr_err("    size: %llu\n", man->size);
  79	pr_err("    available_caching: 0x%08X\n", man->available_caching);
  80	pr_err("    default_caching: 0x%08X\n", man->default_caching);
  81	if (mem_type != TTM_PL_SYSTEM)
  82		(*man->func->debug)(man, TTM_PFX);
  83}
  84
  85static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
  86					struct ttm_placement *placement)
  87{
  88	int i, ret, mem_type;
 
 
  89
  90	pr_err("No space for %p (%lu pages, %luK, %luM)\n",
  91	       bo, bo->mem.num_pages, bo->mem.size >> 10,
  92	       bo->mem.size >> 20);
  93	for (i = 0; i < placement->num_placement; i++) {
  94		ret = ttm_mem_type_from_place(&placement->placement[i],
  95						&mem_type);
  96		if (ret)
  97			return;
  98		pr_err("  placement[%d]=0x%08X (%d)\n",
  99		       i, placement->placement[i].flags, mem_type);
 100		ttm_mem_type_debug(bo->bdev, mem_type);
 101	}
 102}
 103
 104static ssize_t ttm_bo_global_show(struct kobject *kobj,
 105				  struct attribute *attr,
 106				  char *buffer)
 107{
 108	struct ttm_bo_global *glob =
 109		container_of(kobj, struct ttm_bo_global, kobj);
 110
 111	return snprintf(buffer, PAGE_SIZE, "%lu\n",
 112			(unsigned long) atomic_read(&glob->bo_count));
 113}
 114
 115static struct attribute *ttm_bo_global_attrs[] = {
 116	&ttm_bo_count,
 117	NULL
 118};
 119
 120static const struct sysfs_ops ttm_bo_global_ops = {
 121	.show = &ttm_bo_global_show
 122};
 123
 124static struct kobj_type ttm_bo_glob_kobj_type  = {
 125	.release = &ttm_bo_global_kobj_release,
 126	.sysfs_ops = &ttm_bo_global_ops,
 127	.default_attrs = ttm_bo_global_attrs
 128};
 129
 130
 131static inline uint32_t ttm_bo_type_flags(unsigned type)
 132{
 133	return 1 << (type);
 134}
 135
 136static void ttm_bo_release_list(struct kref *list_kref)
 137{
 138	struct ttm_buffer_object *bo =
 139	    container_of(list_kref, struct ttm_buffer_object, list_kref);
 140	struct ttm_bo_device *bdev = bo->bdev;
 141	size_t acc_size = bo->acc_size;
 142
 143	BUG_ON(atomic_read(&bo->list_kref.refcount));
 144	BUG_ON(atomic_read(&bo->kref.refcount));
 145	BUG_ON(atomic_read(&bo->cpu_writers));
 146	BUG_ON(bo->mem.mm_node != NULL);
 147	BUG_ON(!list_empty(&bo->lru));
 148	BUG_ON(!list_empty(&bo->ddestroy));
 149
 150	if (bo->ttm)
 151		ttm_tt_destroy(bo->ttm);
 152	atomic_dec(&bo->glob->bo_count);
 153	if (bo->resv == &bo->ttm_resv)
 154		reservation_object_fini(&bo->ttm_resv);
 155	mutex_destroy(&bo->wu_mutex);
 156	if (bo->destroy)
 157		bo->destroy(bo);
 158	else {
 159		kfree(bo);
 160	}
 161	ttm_mem_global_free(bdev->glob->mem_glob, acc_size);
 162}
 163
 164void ttm_bo_add_to_lru(struct ttm_buffer_object *bo)
 165{
 166	struct ttm_bo_device *bdev = bo->bdev;
 167	struct ttm_mem_type_manager *man;
 168
 169	lockdep_assert_held(&bo->resv->lock.base);
 170
 171	if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
 172
 173		BUG_ON(!list_empty(&bo->lru));
 174
 175		man = &bdev->man[bo->mem.mem_type];
 176		list_add_tail(&bo->lru, &man->lru);
 177		kref_get(&bo->list_kref);
 178
 179		if (bo->ttm && !(bo->ttm->page_flags & TTM_PAGE_FLAG_SG)) {
 180			list_add_tail(&bo->swap, &bo->glob->swap_lru);
 181			kref_get(&bo->list_kref);
 182		}
 183	}
 184}
 185EXPORT_SYMBOL(ttm_bo_add_to_lru);
 186
 187int ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
 188{
 189	int put_count = 0;
 190
 191	if (!list_empty(&bo->swap)) {
 192		list_del_init(&bo->swap);
 193		++put_count;
 194	}
 195	if (!list_empty(&bo->lru)) {
 196		list_del_init(&bo->lru);
 197		++put_count;
 198	}
 199
 200	/*
 201	 * TODO: Add a driver hook to delete from
 202	 * driver-specific LRU's here.
 203	 */
 204
 205	return put_count;
 206}
 207
 208static void ttm_bo_ref_bug(struct kref *list_kref)
 209{
 210	BUG();
 211}
 212
 213void ttm_bo_list_ref_sub(struct ttm_buffer_object *bo, int count,
 214			 bool never_free)
 215{
 216	kref_sub(&bo->list_kref, count,
 217		 (never_free) ? ttm_bo_ref_bug : ttm_bo_release_list);
 218}
 219
 220void ttm_bo_del_sub_from_lru(struct ttm_buffer_object *bo)
 221{
 222	int put_count;
 223
 224	spin_lock(&bo->glob->lru_lock);
 225	put_count = ttm_bo_del_from_lru(bo);
 226	spin_unlock(&bo->glob->lru_lock);
 227	ttm_bo_list_ref_sub(bo, put_count, true);
 228}
 229EXPORT_SYMBOL(ttm_bo_del_sub_from_lru);
 230
 231void ttm_bo_move_to_lru_tail(struct ttm_buffer_object *bo)
 232{
 233	int put_count = 0;
 234
 235	lockdep_assert_held(&bo->resv->lock.base);
 236
 237	put_count = ttm_bo_del_from_lru(bo);
 238	ttm_bo_list_ref_sub(bo, put_count, true);
 239	ttm_bo_add_to_lru(bo);
 240}
 241EXPORT_SYMBOL(ttm_bo_move_to_lru_tail);
 242
 243/*
 244 * Call bo->mutex locked.
 
 
 
 
 
 
 
 
 
 
 
 245 */
 246static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc)
 
 247{
 248	struct ttm_bo_device *bdev = bo->bdev;
 249	struct ttm_bo_global *glob = bo->glob;
 250	int ret = 0;
 251	uint32_t page_flags = 0;
 252
 253	TTM_ASSERT_LOCKED(&bo->mutex);
 254	bo->ttm = NULL;
 255
 256	if (bdev->need_dma32)
 257		page_flags |= TTM_PAGE_FLAG_DMA32;
 258
 259	switch (bo->type) {
 260	case ttm_bo_type_device:
 261		if (zero_alloc)
 262			page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC;
 263	case ttm_bo_type_kernel:
 264		bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
 265						      page_flags, glob->dummy_read_page);
 266		if (unlikely(bo->ttm == NULL))
 267			ret = -ENOMEM;
 268		break;
 269	case ttm_bo_type_sg:
 270		bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
 271						      page_flags | TTM_PAGE_FLAG_SG,
 272						      glob->dummy_read_page);
 273		if (unlikely(bo->ttm == NULL)) {
 274			ret = -ENOMEM;
 275			break;
 276		}
 277		bo->ttm->sg = bo->sg;
 278		break;
 279	default:
 280		pr_err("Illegal buffer object type\n");
 281		ret = -EINVAL;
 282		break;
 283	}
 284
 285	return ret;
 
 
 
 
 
 
 286}
 
 287
 288static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
 289				  struct ttm_mem_reg *mem,
 290				  bool evict, bool interruptible,
 291				  bool no_wait_gpu)
 292{
 293	struct ttm_bo_device *bdev = bo->bdev;
 294	bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem);
 295	bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem);
 296	struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
 297	struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
 298	int ret = 0;
 299
 300	if (old_is_pci || new_is_pci ||
 301	    ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) {
 302		ret = ttm_mem_io_lock(old_man, true);
 303		if (unlikely(ret != 0))
 304			goto out_err;
 305		ttm_bo_unmap_virtual_locked(bo);
 306		ttm_mem_io_unlock(old_man);
 307	}
 308
 309	/*
 310	 * Create and bind a ttm if required.
 311	 */
 312
 313	if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
 314		if (bo->ttm == NULL) {
 315			bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED);
 316			ret = ttm_bo_add_ttm(bo, zero);
 317			if (ret)
 318				goto out_err;
 319		}
 320
 321		ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
 322		if (ret)
 323			goto out_err;
 324
 325		if (mem->mem_type != TTM_PL_SYSTEM) {
 326			ret = ttm_tt_bind(bo->ttm, mem);
 327			if (ret)
 328				goto out_err;
 329		}
 330
 331		if (bo->mem.mem_type == TTM_PL_SYSTEM) {
 332			if (bdev->driver->move_notify)
 333				bdev->driver->move_notify(bo, mem);
 334			bo->mem = *mem;
 335			mem->mm_node = NULL;
 336			goto moved;
 337		}
 338	}
 339
 340	if (bdev->driver->move_notify)
 341		bdev->driver->move_notify(bo, mem);
 342
 343	if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
 344	    !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
 345		ret = ttm_bo_move_ttm(bo, evict, no_wait_gpu, mem);
 346	else if (bdev->driver->move)
 347		ret = bdev->driver->move(bo, evict, interruptible,
 348					 no_wait_gpu, mem);
 349	else
 350		ret = ttm_bo_move_memcpy(bo, evict, no_wait_gpu, mem);
 351
 
 352	if (ret) {
 353		if (bdev->driver->move_notify) {
 354			struct ttm_mem_reg tmp_mem = *mem;
 355			*mem = bo->mem;
 356			bo->mem = tmp_mem;
 357			bdev->driver->move_notify(bo, mem);
 358			bo->mem = *mem;
 359			*mem = tmp_mem;
 360		}
 361
 362		goto out_err;
 363	}
 364
 365moved:
 366	if (bo->evicted) {
 367		if (bdev->driver->invalidate_caches) {
 368			ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement);
 369			if (ret)
 370				pr_err("Can not flush read caches\n");
 371		}
 372		bo->evicted = false;
 373	}
 374
 375	if (bo->mem.mm_node) {
 376		bo->offset = (bo->mem.start << PAGE_SHIFT) +
 377		    bdev->man[bo->mem.mem_type].gpu_offset;
 378		bo->cur_placement = bo->mem.placement;
 379	} else
 380		bo->offset = 0;
 381
 382	return 0;
 383
 384out_err:
 385	new_man = &bdev->man[bo->mem.mem_type];
 386	if ((new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm) {
 387		ttm_tt_unbind(bo->ttm);
 388		ttm_tt_destroy(bo->ttm);
 389		bo->ttm = NULL;
 390	}
 391
 392	return ret;
 393}
 394
 395/**
 396 * Call bo::reserved.
 397 * Will release GPU memory type usage on destruction.
 398 * This is the place to put in driver specific hooks to release
 399 * driver private resources.
 400 * Will release the bo::reserved lock.
 401 */
 402
 403static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
 404{
 405	if (bo->bdev->driver->move_notify)
 406		bo->bdev->driver->move_notify(bo, NULL);
 407
 408	if (bo->ttm) {
 409		ttm_tt_unbind(bo->ttm);
 410		ttm_tt_destroy(bo->ttm);
 411		bo->ttm = NULL;
 412	}
 413	ttm_bo_mem_put(bo, &bo->mem);
 414
 415	ww_mutex_unlock (&bo->resv->lock);
 416}
 417
 418static void ttm_bo_flush_all_fences(struct ttm_buffer_object *bo)
 419{
 420	struct reservation_object_list *fobj;
 421	struct fence *fence;
 422	int i;
 423
 424	fobj = reservation_object_get_list(bo->resv);
 425	fence = reservation_object_get_excl(bo->resv);
 426	if (fence && !fence->ops->signaled)
 427		fence_enable_sw_signaling(fence);
 428
 429	for (i = 0; fobj && i < fobj->shared_count; ++i) {
 430		fence = rcu_dereference_protected(fobj->shared[i],
 431					reservation_object_held(bo->resv));
 432
 433		if (!fence->ops->signaled)
 434			fence_enable_sw_signaling(fence);
 435	}
 436}
 437
 438static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo)
 439{
 440	struct ttm_bo_device *bdev = bo->bdev;
 441	struct ttm_bo_global *glob = bo->glob;
 442	int put_count;
 443	int ret;
 444
 445	spin_lock(&glob->lru_lock);
 446	ret = __ttm_bo_reserve(bo, false, true, false, NULL);
 447
 448	if (!ret) {
 449		if (!ttm_bo_wait(bo, false, false, true)) {
 450			put_count = ttm_bo_del_from_lru(bo);
 451
 452			spin_unlock(&glob->lru_lock);
 453			ttm_bo_cleanup_memtype_use(bo);
 454
 455			ttm_bo_list_ref_sub(bo, put_count, true);
 456
 457			return;
 458		} else
 459			ttm_bo_flush_all_fences(bo);
 460
 461		/*
 462		 * Make NO_EVICT bos immediately available to
 463		 * shrinkers, now that they are queued for
 464		 * destruction.
 
 465		 */
 466		if (bo->mem.placement & TTM_PL_FLAG_NO_EVICT) {
 467			bo->mem.placement &= ~TTM_PL_FLAG_NO_EVICT;
 468			ttm_bo_add_to_lru(bo);
 469		}
 470
 471		__ttm_bo_unreserve(bo);
 472	}
 473
 474	kref_get(&bo->list_kref);
 475	list_add_tail(&bo->ddestroy, &bdev->ddestroy);
 476	spin_unlock(&glob->lru_lock);
 477
 478	schedule_delayed_work(&bdev->wq,
 479			      ((HZ / 100) < 1) ? 1 : HZ / 100);
 480}
 481
 482/**
 483 * function ttm_bo_cleanup_refs_and_unlock
 484 * If bo idle, remove from delayed- and lru lists, and unref.
 485 * If not idle, do nothing.
 486 *
 487 * Must be called with lru_lock and reservation held, this function
 488 * will drop both before returning.
 489 *
 490 * @interruptible         Any sleeps should occur interruptibly.
 491 * @no_wait_gpu           Never wait for gpu. Return -EBUSY instead.
 492 */
 493
 494static int ttm_bo_cleanup_refs_and_unlock(struct ttm_buffer_object *bo,
 495					  bool interruptible,
 496					  bool no_wait_gpu)
 497{
 498	struct ttm_bo_global *glob = bo->glob;
 499	int put_count;
 500	int ret;
 501
 502	ret = ttm_bo_wait(bo, false, false, true);
 503
 504	if (ret && !no_wait_gpu) {
 505		long lret;
 506		ww_mutex_unlock(&bo->resv->lock);
 507		spin_unlock(&glob->lru_lock);
 508
 509		lret = reservation_object_wait_timeout_rcu(bo->resv,
 510							   true,
 511							   interruptible,
 512							   30 * HZ);
 513
 514		if (lret < 0)
 515			return lret;
 516		else if (lret == 0)
 517			return -EBUSY;
 518
 519		spin_lock(&glob->lru_lock);
 520		ret = __ttm_bo_reserve(bo, false, true, false, NULL);
 521
 522		/*
 523		 * We raced, and lost, someone else holds the reservation now,
 524		 * and is probably busy in ttm_bo_cleanup_memtype_use.
 525		 *
 526		 * Even if it's not the case, because we finished waiting any
 527		 * delayed destruction would succeed, so just return success
 528		 * here.
 529		 */
 530		if (ret) {
 531			spin_unlock(&glob->lru_lock);
 532			return 0;
 533		}
 534
 535		/*
 536		 * remove sync_obj with ttm_bo_wait, the wait should be
 537		 * finished, and no new wait object should have been added.
 538		 */
 539		ret = ttm_bo_wait(bo, false, false, true);
 540		WARN_ON(ret);
 541	}
 
 
 542
 543	if (ret || unlikely(list_empty(&bo->ddestroy))) {
 544		__ttm_bo_unreserve(bo);
 545		spin_unlock(&glob->lru_lock);
 546		return ret;
 547	}
 
 
 548
 549	put_count = ttm_bo_del_from_lru(bo);
 550	list_del_init(&bo->ddestroy);
 551	++put_count;
 552
 553	spin_unlock(&glob->lru_lock);
 
 
 554	ttm_bo_cleanup_memtype_use(bo);
 555
 556	ttm_bo_list_ref_sub(bo, put_count, true);
 557
 558	return 0;
 559}
 560
 561/**
 562 * Traverse the delayed list, and call ttm_bo_cleanup_refs on all
 563 * encountered buffers.
 564 */
 565
 566static int ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
 567{
 568	struct ttm_bo_global *glob = bdev->glob;
 569	struct ttm_buffer_object *entry = NULL;
 570	int ret = 0;
 571
 572	spin_lock(&glob->lru_lock);
 573	if (list_empty(&bdev->ddestroy))
 574		goto out_unlock;
 575
 576	entry = list_first_entry(&bdev->ddestroy,
 577		struct ttm_buffer_object, ddestroy);
 578	kref_get(&entry->list_kref);
 579
 580	for (;;) {
 581		struct ttm_buffer_object *nentry = NULL;
 582
 583		if (entry->ddestroy.next != &bdev->ddestroy) {
 584			nentry = list_first_entry(&entry->ddestroy,
 585				struct ttm_buffer_object, ddestroy);
 586			kref_get(&nentry->list_kref);
 587		}
 588
 589		ret = __ttm_bo_reserve(entry, false, true, false, NULL);
 590		if (remove_all && ret) {
 591			spin_unlock(&glob->lru_lock);
 592			ret = __ttm_bo_reserve(entry, false, false,
 593					       false, NULL);
 594			spin_lock(&glob->lru_lock);
 595		}
 596
 597		if (!ret)
 598			ret = ttm_bo_cleanup_refs_and_unlock(entry, false,
 599							     !remove_all);
 600		else
 601			spin_unlock(&glob->lru_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 602
 603		kref_put(&entry->list_kref, ttm_bo_release_list);
 604		entry = nentry;
 605
 606		if (ret || !entry)
 607			goto out;
 
 
 
 
 
 
 
 
 
 
 608
 609		spin_lock(&glob->lru_lock);
 610		if (list_empty(&entry->ddestroy))
 611			break;
 612	}
 613
 614out_unlock:
 615	spin_unlock(&glob->lru_lock);
 616out:
 617	if (entry)
 618		kref_put(&entry->list_kref, ttm_bo_release_list);
 619	return ret;
 620}
 621
 622static void ttm_bo_delayed_workqueue(struct work_struct *work)
 623{
 624	struct ttm_bo_device *bdev =
 625	    container_of(work, struct ttm_bo_device, wq.work);
 
 
 
 
 626
 627	if (ttm_bo_delayed_delete(bdev, false)) {
 628		schedule_delayed_work(&bdev->wq,
 629				      ((HZ / 100) < 1) ? 1 : HZ / 100);
 630	}
 631}
 632
 633static void ttm_bo_release(struct kref *kref)
 634{
 635	struct ttm_buffer_object *bo =
 636	    container_of(kref, struct ttm_buffer_object, kref);
 637	struct ttm_bo_device *bdev = bo->bdev;
 638	struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
 639
 640	drm_vma_offset_remove(&bdev->vma_manager, &bo->vma_node);
 641	ttm_mem_io_lock(man, false);
 642	ttm_mem_io_free_vm(bo);
 643	ttm_mem_io_unlock(man);
 644	ttm_bo_cleanup_refs_or_queue(bo);
 645	kref_put(&bo->list_kref, ttm_bo_release_list);
 646}
 647
 648void ttm_bo_unref(struct ttm_buffer_object **p_bo)
 
 
 
 
 
 
 
 649{
 650	struct ttm_buffer_object *bo = *p_bo;
 651
 652	*p_bo = NULL;
 653	kref_put(&bo->kref, ttm_bo_release);
 654}
 655EXPORT_SYMBOL(ttm_bo_unref);
 656
 657int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev)
 
 
 658{
 659	return cancel_delayed_work_sync(&bdev->wq);
 660}
 661EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue);
 662
 663void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched)
 664{
 665	if (resched)
 666		schedule_delayed_work(&bdev->wq,
 667				      ((HZ / 100) < 1) ? 1 : HZ / 100);
 
 
 
 
 
 
 
 
 
 668}
 669EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue);
 670
 671static int ttm_bo_evict(struct ttm_buffer_object *bo, bool interruptible,
 672			bool no_wait_gpu)
 673{
 674	struct ttm_bo_device *bdev = bo->bdev;
 675	struct ttm_mem_reg evict_mem;
 676	struct ttm_placement placement;
 
 677	int ret = 0;
 678
 679	ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
 680
 681	if (unlikely(ret != 0)) {
 682		if (ret != -ERESTARTSYS) {
 683			pr_err("Failed to expire sync object before buffer eviction\n");
 684		}
 685		goto out;
 686	}
 687
 688	lockdep_assert_held(&bo->resv->lock.base);
 
 689
 690	evict_mem = bo->mem;
 691	evict_mem.mm_node = NULL;
 692	evict_mem.bus.io_reserved_vm = false;
 693	evict_mem.bus.io_reserved_count = 0;
 694
 695	placement.num_placement = 0;
 696	placement.num_busy_placement = 0;
 697	bdev->driver->evict_flags(bo, &placement);
 698	ret = ttm_bo_mem_space(bo, &placement, &evict_mem, interruptible,
 699				no_wait_gpu);
 
 
 
 700	if (ret) {
 701		if (ret != -ERESTARTSYS) {
 702			pr_err("Failed to find memory space for buffer 0x%p eviction\n",
 703			       bo);
 704			ttm_bo_mem_space_debug(bo, &placement);
 705		}
 706		goto out;
 707	}
 708
 709	ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, interruptible,
 710				     no_wait_gpu);
 
 
 
 
 
 
 711	if (ret) {
 712		if (ret != -ERESTARTSYS)
 
 713			pr_err("Buffer eviction failed\n");
 714		ttm_bo_mem_put(bo, &evict_mem);
 715		goto out;
 716	}
 717	bo->evicted = true;
 718out:
 719	return ret;
 720}
 721
 722static int ttm_mem_evict_first(struct ttm_bo_device *bdev,
 723				uint32_t mem_type,
 724				const struct ttm_place *place,
 725				bool interruptible,
 726				bool no_wait_gpu)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 727{
 728	struct ttm_bo_global *glob = bdev->glob;
 729	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
 730	struct ttm_buffer_object *bo;
 731	int ret = -EBUSY, put_count;
 
 
 732
 733	spin_lock(&glob->lru_lock);
 734	list_for_each_entry(bo, &man->lru, lru) {
 735		ret = __ttm_bo_reserve(bo, false, true, false, NULL);
 736		if (!ret) {
 737			if (place && (place->fpfn || place->lpfn)) {
 738				/* Don't evict this BO if it's outside of the
 739				 * requested placement range
 740				 */
 741				if (place->fpfn >= (bo->mem.start + bo->mem.size) ||
 742				    (place->lpfn && place->lpfn <= bo->mem.start)) {
 743					__ttm_bo_unreserve(bo);
 744					ret = -EBUSY;
 745					continue;
 746				}
 747			}
 
 
 748
 749			break;
 750		}
 
 
 
 
 751	}
 
 
 
 
 
 752
 753	if (ret) {
 754		spin_unlock(&glob->lru_lock);
 755		return ret;
 756	}
 757
 758	kref_get(&bo->list_kref);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 759
 760	if (!list_empty(&bo->ddestroy)) {
 761		ret = ttm_bo_cleanup_refs_and_unlock(bo, interruptible,
 762						     no_wait_gpu);
 763		kref_put(&bo->list_kref, ttm_bo_release_list);
 764		return ret;
 765	}
 766
 767	put_count = ttm_bo_del_from_lru(bo);
 768	spin_unlock(&glob->lru_lock);
 769
 770	BUG_ON(ret != 0);
 
 
 
 
 
 
 771
 772	ttm_bo_list_ref_sub(bo, put_count, true);
 
 773
 774	ret = ttm_bo_evict(bo, interruptible, no_wait_gpu);
 775	ttm_bo_unreserve(bo);
 
 
 
 
 
 
 
 
 776
 777	kref_put(&bo->list_kref, ttm_bo_release_list);
 778	return ret;
 779}
 780
 781void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem)
 782{
 783	struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type];
 784
 785	if (mem->mm_node)
 786		(*man->func->put_node)(man, mem);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 787}
 788EXPORT_SYMBOL(ttm_bo_mem_put);
 789
 790/**
 791 * Repeatedly evict memory from the LRU for @mem_type until we create enough
 792 * space, or we've evicted everything and there isn't enough space.
 
 
 
 793 */
 794static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
 795					uint32_t mem_type,
 796					const struct ttm_place *place,
 797					struct ttm_mem_reg *mem,
 798					bool interruptible,
 799					bool no_wait_gpu)
 800{
 801	struct ttm_bo_device *bdev = bo->bdev;
 802	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
 803	int ret;
 804
 805	do {
 806		ret = (*man->func->get_node)(man, bo, place, mem);
 807		if (unlikely(ret != 0))
 808			return ret;
 809		if (mem->mm_node)
 810			break;
 811		ret = ttm_mem_evict_first(bdev, mem_type, place,
 812					  interruptible, no_wait_gpu);
 813		if (unlikely(ret != 0))
 814			return ret;
 815	} while (1);
 816	if (mem->mm_node == NULL)
 817		return -ENOMEM;
 818	mem->mem_type = mem_type;
 819	return 0;
 820}
 
 821
 822static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
 823				      uint32_t cur_placement,
 824				      uint32_t proposed_placement)
 
 
 
 
 825{
 826	uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
 827	uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
 
 
 828
 829	/**
 830	 * Keep current caching if possible.
 831	 */
 832
 833	if ((cur_placement & caching) != 0)
 834		result |= (cur_placement & caching);
 835	else if ((man->default_caching & caching) != 0)
 836		result |= man->default_caching;
 837	else if ((TTM_PL_FLAG_CACHED & caching) != 0)
 838		result |= TTM_PL_FLAG_CACHED;
 839	else if ((TTM_PL_FLAG_WC & caching) != 0)
 840		result |= TTM_PL_FLAG_WC;
 841	else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
 842		result |= TTM_PL_FLAG_UNCACHED;
 843
 844	return result;
 845}
 
 846
 847static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
 848				 uint32_t mem_type,
 849				 const struct ttm_place *place,
 850				 uint32_t *masked_placement)
 
 
 
 851{
 852	uint32_t cur_flags = ttm_bo_type_flags(mem_type);
 
 853
 854	if ((cur_flags & place->flags & TTM_PL_MASK_MEM) == 0)
 855		return false;
 
 856
 857	if ((place->flags & man->available_caching) == 0)
 858		return false;
 859
 860	cur_flags |= (place->flags & man->available_caching);
 
 
 
 
 861
 862	*masked_placement = cur_flags;
 863	return true;
 
 
 
 864}
 865
 866/**
 867 * Creates space for memory region @mem according to its type.
 
 
 
 
 
 
 868 *
 869 * This function first searches for free space in compatible memory types in
 870 * the priority order defined by the driver.  If free space isn't found, then
 871 * ttm_bo_mem_force_space is attempted in priority order to evict and find
 872 * space.
 
 
 
 
 
 873 */
 874int ttm_bo_mem_space(struct ttm_buffer_object *bo,
 875			struct ttm_placement *placement,
 876			struct ttm_mem_reg *mem,
 877			bool interruptible,
 878			bool no_wait_gpu)
 879{
 880	struct ttm_bo_device *bdev = bo->bdev;
 881	struct ttm_mem_type_manager *man;
 882	uint32_t mem_type = TTM_PL_SYSTEM;
 883	uint32_t cur_flags = 0;
 884	bool type_found = false;
 885	bool type_ok = false;
 886	bool has_erestartsys = false;
 887	int i, ret;
 888
 889	mem->mm_node = NULL;
 
 
 
 
 890	for (i = 0; i < placement->num_placement; ++i) {
 891		const struct ttm_place *place = &placement->placement[i];
 
 
 892
 893		ret = ttm_mem_type_from_place(place, &mem_type);
 894		if (ret)
 895			return ret;
 896		man = &bdev->man[mem_type];
 897		if (!man->has_type || !man->use_type)
 898			continue;
 899
 900		type_ok = ttm_bo_mt_compatible(man, mem_type, place,
 901						&cur_flags);
 902
 903		if (!type_ok)
 904			continue;
 905
 906		type_found = true;
 907		cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
 908						  cur_flags);
 909		/*
 910		 * Use the access and other non-mapping-related flag bits from
 911		 * the memory placement flags to the current flags
 912		 */
 913		ttm_flag_masked(&cur_flags, place->flags,
 914				~TTM_PL_MASK_MEMTYPE);
 915
 916		if (mem_type == TTM_PL_SYSTEM)
 917			break;
 
 
 
 
 
 918
 919		ret = (*man->func->get_node)(man, bo, place, mem);
 920		if (unlikely(ret))
 921			return ret;
 922		
 923		if (mem->mm_node)
 924			break;
 925	}
 926
 927	if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || mem->mm_node) {
 928		mem->mem_type = mem_type;
 929		mem->placement = cur_flags;
 930		return 0;
 931	}
 932
 933	for (i = 0; i < placement->num_busy_placement; ++i) {
 934		const struct ttm_place *place = &placement->busy_placement[i];
 935
 936		ret = ttm_mem_type_from_place(place, &mem_type);
 937		if (ret)
 938			return ret;
 939		man = &bdev->man[mem_type];
 940		if (!man->has_type || !man->use_type)
 941			continue;
 942		if (!ttm_bo_mt_compatible(man, mem_type, place, &cur_flags))
 943			continue;
 944
 945		type_found = true;
 946		cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
 947						  cur_flags);
 948		/*
 949		 * Use the access and other non-mapping-related flag bits from
 950		 * the memory placement flags to the current flags
 951		 */
 952		ttm_flag_masked(&cur_flags, place->flags,
 953				~TTM_PL_MASK_MEMTYPE);
 954
 955		if (mem_type == TTM_PL_SYSTEM) {
 956			mem->mem_type = mem_type;
 957			mem->placement = cur_flags;
 958			mem->mm_node = NULL;
 959			return 0;
 960		}
 961
 962		ret = ttm_bo_mem_force_space(bo, mem_type, place, mem,
 963						interruptible, no_wait_gpu);
 964		if (ret == 0 && mem->mm_node) {
 965			mem->placement = cur_flags;
 966			return 0;
 967		}
 968		if (ret == -ERESTARTSYS)
 969			has_erestartsys = true;
 970	}
 
 
 
 
 
 
 
 
 
 971
 972	if (!type_found) {
 973		printk(KERN_ERR TTM_PFX "No compatible memory type found.\n");
 974		return -EINVAL;
 975	}
 
 976
 977	return (has_erestartsys) ? -ERESTARTSYS : -ENOMEM;
 978}
 979EXPORT_SYMBOL(ttm_bo_mem_space);
 980
 981static int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
 982			struct ttm_placement *placement,
 983			bool interruptible,
 984			bool no_wait_gpu)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 985{
 986	int ret = 0;
 987	struct ttm_mem_reg mem;
 
 
 988
 989	lockdep_assert_held(&bo->resv->lock.base);
 990
 991	/*
 992	 * FIXME: It's possible to pipeline buffer moves.
 993	 * Have the driver move function wait for idle when necessary,
 994	 * instead of doing it here.
 995	 */
 996	ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
 997	if (ret)
 998		return ret;
 999	mem.num_pages = bo->num_pages;
1000	mem.size = mem.num_pages << PAGE_SHIFT;
1001	mem.page_alignment = bo->mem.page_alignment;
1002	mem.bus.io_reserved_vm = false;
1003	mem.bus.io_reserved_count = 0;
1004	/*
1005	 * Determine where to move the buffer.
1006	 */
1007	ret = ttm_bo_mem_space(bo, placement, &mem,
1008			       interruptible, no_wait_gpu);
1009	if (ret)
1010		goto out_unlock;
1011	ret = ttm_bo_handle_move_mem(bo, &mem, false,
1012				     interruptible, no_wait_gpu);
1013out_unlock:
1014	if (ret && mem.mm_node)
1015		ttm_bo_mem_put(bo, &mem);
1016	return ret;
1017}
1018
1019static bool ttm_bo_mem_compat(struct ttm_placement *placement,
1020			      struct ttm_mem_reg *mem,
1021			      uint32_t *new_flags)
1022{
1023	int i;
1024
1025	for (i = 0; i < placement->num_placement; i++) {
1026		const struct ttm_place *heap = &placement->placement[i];
1027		if (mem->mm_node &&
1028		    (mem->start < heap->fpfn ||
1029		     (heap->lpfn != 0 && (mem->start + mem->num_pages) > heap->lpfn)))
1030			continue;
 
1031
1032		*new_flags = heap->flags;
1033		if ((*new_flags & mem->placement & TTM_PL_MASK_CACHING) &&
1034		    (*new_flags & mem->placement & TTM_PL_MASK_MEM))
1035			return true;
1036	}
1037
1038	for (i = 0; i < placement->num_busy_placement; i++) {
1039		const struct ttm_place *heap = &placement->busy_placement[i];
1040		if (mem->mm_node &&
1041		    (mem->start < heap->fpfn ||
1042		     (heap->lpfn != 0 && (mem->start + mem->num_pages) > heap->lpfn)))
 
 
 
 
 
 
 
 
1043			continue;
 
 
1044
1045		*new_flags = heap->flags;
1046		if ((*new_flags & mem->placement & TTM_PL_MASK_CACHING) &&
1047		    (*new_flags & mem->placement & TTM_PL_MASK_MEM))
1048			return true;
1049	}
 
 
 
 
 
 
 
1050
1051	return false;
1052}
1053
1054int ttm_bo_validate(struct ttm_buffer_object *bo,
1055			struct ttm_placement *placement,
1056			bool interruptible,
1057			bool no_wait_gpu)
1058{
1059	int ret;
1060	uint32_t new_flags;
1061
1062	lockdep_assert_held(&bo->resv->lock.base);
1063	/*
1064	 * Check whether we need to move buffer.
1065	 */
1066	if (!ttm_bo_mem_compat(placement, &bo->mem, &new_flags)) {
1067		ret = ttm_bo_move_buffer(bo, placement, interruptible,
1068					 no_wait_gpu);
1069		if (ret)
1070			return ret;
1071	} else {
1072		/*
1073		 * Use the access and other non-mapping-related flag bits from
1074		 * the compatible memory placement flags to the active flags
1075		 */
1076		ttm_flag_masked(&bo->mem.placement, new_flags,
1077				~TTM_PL_MASK_MEMTYPE);
1078	}
1079	/*
1080	 * We might need to add a TTM.
1081	 */
1082	if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
1083		ret = ttm_bo_add_ttm(bo, true);
1084		if (ret)
1085			return ret;
1086	}
1087	return 0;
1088}
1089EXPORT_SYMBOL(ttm_bo_validate);
1090
1091int ttm_bo_init(struct ttm_bo_device *bdev,
1092		struct ttm_buffer_object *bo,
1093		unsigned long size,
1094		enum ttm_bo_type type,
1095		struct ttm_placement *placement,
1096		uint32_t page_alignment,
1097		bool interruptible,
1098		struct file *persistent_swap_storage,
1099		size_t acc_size,
1100		struct sg_table *sg,
1101		struct reservation_object *resv,
1102		void (*destroy) (struct ttm_buffer_object *))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1103{
1104	int ret = 0;
1105	unsigned long num_pages;
1106	struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
1107	bool locked;
1108
1109	ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false);
1110	if (ret) {
1111		pr_err("Out of kernel memory\n");
1112		if (destroy)
1113			(*destroy)(bo);
1114		else
1115			kfree(bo);
1116		return -ENOMEM;
1117	}
1118
1119	num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1120	if (num_pages == 0) {
1121		pr_err("Illegal buffer object size\n");
1122		if (destroy)
1123			(*destroy)(bo);
1124		else
1125			kfree(bo);
1126		ttm_mem_global_free(mem_glob, acc_size);
1127		return -EINVAL;
1128	}
1129	bo->destroy = destroy;
1130
1131	kref_init(&bo->kref);
1132	kref_init(&bo->list_kref);
1133	atomic_set(&bo->cpu_writers, 0);
1134	INIT_LIST_HEAD(&bo->lru);
1135	INIT_LIST_HEAD(&bo->ddestroy);
1136	INIT_LIST_HEAD(&bo->swap);
1137	INIT_LIST_HEAD(&bo->io_reserve_lru);
1138	mutex_init(&bo->wu_mutex);
1139	bo->bdev = bdev;
1140	bo->glob = bdev->glob;
1141	bo->type = type;
1142	bo->num_pages = num_pages;
1143	bo->mem.size = num_pages << PAGE_SHIFT;
1144	bo->mem.mem_type = TTM_PL_SYSTEM;
1145	bo->mem.num_pages = bo->num_pages;
1146	bo->mem.mm_node = NULL;
1147	bo->mem.page_alignment = page_alignment;
1148	bo->mem.bus.io_reserved_vm = false;
1149	bo->mem.bus.io_reserved_count = 0;
1150	bo->priv_flags = 0;
1151	bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
1152	bo->persistent_swap_storage = persistent_swap_storage;
1153	bo->acc_size = acc_size;
1154	bo->sg = sg;
1155	if (resv) {
1156		bo->resv = resv;
1157		lockdep_assert_held(&bo->resv->lock.base);
1158	} else {
1159		bo->resv = &bo->ttm_resv;
1160		reservation_object_init(&bo->ttm_resv);
1161	}
1162	atomic_inc(&bo->glob->bo_count);
1163	drm_vma_node_reset(&bo->vma_node);
1164
1165	/*
1166	 * For ttm_bo_type_device buffers, allocate
1167	 * address space from the device.
1168	 */
1169	if (bo->type == ttm_bo_type_device ||
1170	    bo->type == ttm_bo_type_sg)
1171		ret = drm_vma_offset_add(&bdev->vma_manager, &bo->vma_node,
1172					 bo->mem.num_pages);
 
 
1173
1174	/* passed reservation objects should already be locked,
1175	 * since otherwise lockdep will be angered in radeon.
1176	 */
1177	if (!resv) {
1178		locked = ww_mutex_trylock(&bo->resv->lock);
1179		WARN_ON(!locked);
1180	}
1181
1182	if (likely(!ret))
1183		ret = ttm_bo_validate(bo, placement, interruptible, false);
1184
1185	if (!resv) {
1186		ttm_bo_unreserve(bo);
1187
1188	} else if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
1189		spin_lock(&bo->glob->lru_lock);
1190		ttm_bo_add_to_lru(bo);
1191		spin_unlock(&bo->glob->lru_lock);
1192	}
1193
 
1194	if (unlikely(ret))
1195		ttm_bo_unref(&bo);
1196
1197	return ret;
1198}
1199EXPORT_SYMBOL(ttm_bo_init);
1200
1201size_t ttm_bo_acc_size(struct ttm_bo_device *bdev,
1202		       unsigned long bo_size,
1203		       unsigned struct_size)
1204{
1205	unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1206	size_t size = 0;
1207
1208	size += ttm_round_pot(struct_size);
1209	size += PAGE_ALIGN(npages * sizeof(void *));
1210	size += ttm_round_pot(sizeof(struct ttm_tt));
1211	return size;
1212}
1213EXPORT_SYMBOL(ttm_bo_acc_size);
1214
1215size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev,
1216			   unsigned long bo_size,
1217			   unsigned struct_size)
1218{
1219	unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1220	size_t size = 0;
1221
1222	size += ttm_round_pot(struct_size);
1223	size += PAGE_ALIGN(npages * sizeof(void *));
1224	size += PAGE_ALIGN(npages * sizeof(dma_addr_t));
1225	size += ttm_round_pot(sizeof(struct ttm_dma_tt));
1226	return size;
1227}
1228EXPORT_SYMBOL(ttm_bo_dma_acc_size);
1229
1230int ttm_bo_create(struct ttm_bo_device *bdev,
1231			unsigned long size,
1232			enum ttm_bo_type type,
1233			struct ttm_placement *placement,
1234			uint32_t page_alignment,
1235			bool interruptible,
1236			struct file *persistent_swap_storage,
1237			struct ttm_buffer_object **p_bo)
1238{
1239	struct ttm_buffer_object *bo;
1240	size_t acc_size;
1241	int ret;
1242
1243	bo = kzalloc(sizeof(*bo), GFP_KERNEL);
1244	if (unlikely(bo == NULL))
1245		return -ENOMEM;
1246
1247	acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object));
1248	ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment,
1249			  interruptible, persistent_swap_storage, acc_size,
1250			  NULL, NULL, NULL);
1251	if (likely(ret == 0))
1252		*p_bo = bo;
1253
1254	return ret;
1255}
1256EXPORT_SYMBOL(ttm_bo_create);
1257
1258static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
1259					unsigned mem_type, bool allow_errors)
1260{
1261	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1262	struct ttm_bo_global *glob = bdev->glob;
1263	int ret;
1264
1265	/*
1266	 * Can't use standard list traversal since we're unlocking.
1267	 */
1268
1269	spin_lock(&glob->lru_lock);
1270	while (!list_empty(&man->lru)) {
1271		spin_unlock(&glob->lru_lock);
1272		ret = ttm_mem_evict_first(bdev, mem_type, NULL, false, false);
1273		if (ret) {
1274			if (allow_errors) {
1275				return ret;
1276			} else {
1277				pr_err("Cleanup eviction failed\n");
1278			}
1279		}
1280		spin_lock(&glob->lru_lock);
1281	}
1282	spin_unlock(&glob->lru_lock);
1283	return 0;
1284}
1285
1286int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1287{
1288	struct ttm_mem_type_manager *man;
1289	int ret = -EINVAL;
1290
1291	if (mem_type >= TTM_NUM_MEM_TYPES) {
1292		pr_err("Illegal memory type %d\n", mem_type);
1293		return ret;
1294	}
1295	man = &bdev->man[mem_type];
1296
1297	if (!man->has_type) {
1298		pr_err("Trying to take down uninitialized memory manager type %u\n",
1299		       mem_type);
1300		return ret;
1301	}
1302
1303	man->use_type = false;
1304	man->has_type = false;
1305
1306	ret = 0;
1307	if (mem_type > 0) {
1308		ttm_bo_force_list_clean(bdev, mem_type, false);
1309
1310		ret = (*man->func->takedown)(man);
1311	}
1312
 
 
1313	return ret;
1314}
1315EXPORT_SYMBOL(ttm_bo_clean_mm);
1316
1317int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1318{
1319	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1320
1321	if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
1322		pr_err("Illegal memory manager memory type %u\n", mem_type);
1323		return -EINVAL;
1324	}
1325
1326	if (!man->has_type) {
1327		pr_err("Memory type %u has not been initialized\n", mem_type);
1328		return 0;
1329	}
1330
1331	return ttm_bo_force_list_clean(bdev, mem_type, true);
1332}
1333EXPORT_SYMBOL(ttm_bo_evict_mm);
1334
1335int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
1336			unsigned long p_size)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1337{
1338	int ret = -EINVAL;
1339	struct ttm_mem_type_manager *man;
1340
1341	BUG_ON(type >= TTM_NUM_MEM_TYPES);
1342	man = &bdev->man[type];
1343	BUG_ON(man->has_type);
1344	man->io_reserve_fastpath = true;
1345	man->use_io_reserve_lru = false;
1346	mutex_init(&man->io_reserve_mutex);
1347	INIT_LIST_HEAD(&man->io_reserve_lru);
1348
1349	ret = bdev->driver->init_mem_type(bdev, type, man);
 
1350	if (ret)
1351		return ret;
1352	man->bdev = bdev;
1353
1354	ret = 0;
1355	if (type != TTM_PL_SYSTEM) {
1356		ret = (*man->func->init)(man, p_size);
1357		if (ret)
1358			return ret;
1359	}
1360	man->has_type = true;
1361	man->use_type = true;
1362	man->size = p_size;
1363
1364	INIT_LIST_HEAD(&man->lru);
1365
1366	return 0;
1367}
1368EXPORT_SYMBOL(ttm_bo_init_mm);
1369
1370static void ttm_bo_global_kobj_release(struct kobject *kobj)
1371{
1372	struct ttm_bo_global *glob =
1373		container_of(kobj, struct ttm_bo_global, kobj);
1374
1375	ttm_mem_unregister_shrink(glob->mem_glob, &glob->shrink);
1376	__free_page(glob->dummy_read_page);
1377	kfree(glob);
1378}
1379
1380void ttm_bo_global_release(struct drm_global_reference *ref)
1381{
1382	struct ttm_bo_global *glob = ref->object;
1383
1384	kobject_del(&glob->kobj);
1385	kobject_put(&glob->kobj);
1386}
1387EXPORT_SYMBOL(ttm_bo_global_release);
1388
1389int ttm_bo_global_init(struct drm_global_reference *ref)
1390{
1391	struct ttm_bo_global_ref *bo_ref =
1392		container_of(ref, struct ttm_bo_global_ref, ref);
1393	struct ttm_bo_global *glob = ref->object;
1394	int ret;
1395
1396	mutex_init(&glob->device_list_mutex);
1397	spin_lock_init(&glob->lru_lock);
1398	glob->mem_glob = bo_ref->mem_glob;
1399	glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32);
1400
1401	if (unlikely(glob->dummy_read_page == NULL)) {
1402		ret = -ENOMEM;
1403		goto out_no_drp;
1404	}
1405
1406	INIT_LIST_HEAD(&glob->swap_lru);
1407	INIT_LIST_HEAD(&glob->device_list);
1408
1409	ttm_mem_init_shrink(&glob->shrink, ttm_bo_swapout);
1410	ret = ttm_mem_register_shrink(glob->mem_glob, &glob->shrink);
1411	if (unlikely(ret != 0)) {
1412		pr_err("Could not register buffer object swapout\n");
1413		goto out_no_shrink;
1414	}
1415
1416	atomic_set(&glob->bo_count, 0);
1417
1418	ret = kobject_init_and_add(
1419		&glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects");
1420	if (unlikely(ret != 0))
1421		kobject_put(&glob->kobj);
1422	return ret;
1423out_no_shrink:
1424	__free_page(glob->dummy_read_page);
1425out_no_drp:
1426	kfree(glob);
1427	return ret;
1428}
1429EXPORT_SYMBOL(ttm_bo_global_init);
1430
1431
1432int ttm_bo_device_release(struct ttm_bo_device *bdev)
1433{
1434	int ret = 0;
1435	unsigned i = TTM_NUM_MEM_TYPES;
1436	struct ttm_mem_type_manager *man;
1437	struct ttm_bo_global *glob = bdev->glob;
1438
1439	while (i--) {
1440		man = &bdev->man[i];
1441		if (man->has_type) {
1442			man->use_type = false;
1443			if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
1444				ret = -EBUSY;
1445				pr_err("DRM memory manager type %d is not clean\n",
1446				       i);
1447			}
1448			man->has_type = false;
1449		}
1450	}
1451
1452	mutex_lock(&glob->device_list_mutex);
1453	list_del(&bdev->device_list);
1454	mutex_unlock(&glob->device_list_mutex);
1455
1456	cancel_delayed_work_sync(&bdev->wq);
1457
1458	while (ttm_bo_delayed_delete(bdev, true))
1459		;
1460
1461	spin_lock(&glob->lru_lock);
1462	if (list_empty(&bdev->ddestroy))
1463		TTM_DEBUG("Delayed destroy list was clean\n");
1464
1465	if (list_empty(&bdev->man[0].lru))
1466		TTM_DEBUG("Swap list was clean\n");
1467	spin_unlock(&glob->lru_lock);
1468
1469	drm_vma_offset_manager_destroy(&bdev->vma_manager);
1470
1471	return ret;
1472}
1473EXPORT_SYMBOL(ttm_bo_device_release);
1474
1475int ttm_bo_device_init(struct ttm_bo_device *bdev,
1476		       struct ttm_bo_global *glob,
1477		       struct ttm_bo_driver *driver,
1478		       struct address_space *mapping,
1479		       uint64_t file_page_offset,
1480		       bool need_dma32)
1481{
1482	int ret = -EINVAL;
1483
1484	bdev->driver = driver;
1485
1486	memset(bdev->man, 0, sizeof(bdev->man));
1487
1488	/*
1489	 * Initialize the system memory buffer type.
1490	 * Other types need to be driver / IOCTL initialized.
1491	 */
1492	ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0);
1493	if (unlikely(ret != 0))
1494		goto out_no_sys;
1495
1496	drm_vma_offset_manager_init(&bdev->vma_manager, file_page_offset,
1497				    0x10000000);
1498	INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue);
1499	INIT_LIST_HEAD(&bdev->ddestroy);
1500	bdev->dev_mapping = mapping;
1501	bdev->glob = glob;
1502	bdev->need_dma32 = need_dma32;
1503	bdev->val_seq = 0;
1504	mutex_lock(&glob->device_list_mutex);
1505	list_add_tail(&bdev->device_list, &glob->device_list);
1506	mutex_unlock(&glob->device_list_mutex);
1507
1508	return 0;
1509out_no_sys:
1510	return ret;
1511}
1512EXPORT_SYMBOL(ttm_bo_device_init);
1513
1514/*
1515 * buffer object vm functions.
1516 */
1517
1518bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
1519{
1520	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
1521
1522	if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
1523		if (mem->mem_type == TTM_PL_SYSTEM)
1524			return false;
1525
1526		if (man->flags & TTM_MEMTYPE_FLAG_CMA)
1527			return false;
1528
1529		if (mem->placement & TTM_PL_FLAG_CACHED)
1530			return false;
1531	}
1532	return true;
1533}
1534
1535void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo)
1536{
1537	struct ttm_bo_device *bdev = bo->bdev;
1538
1539	drm_vma_node_unmap(&bo->vma_node, bdev->dev_mapping);
1540	ttm_mem_io_free_vm(bo);
1541}
1542
1543void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1544{
1545	struct ttm_bo_device *bdev = bo->bdev;
1546	struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
1547
1548	ttm_mem_io_lock(man, false);
1549	ttm_bo_unmap_virtual_locked(bo);
1550	ttm_mem_io_unlock(man);
1551}
1552
1553
1554EXPORT_SYMBOL(ttm_bo_unmap_virtual);
1555
1556int ttm_bo_wait(struct ttm_buffer_object *bo,
1557		bool lazy, bool interruptible, bool no_wait)
 
 
 
 
 
 
 
 
 
1558{
1559	struct reservation_object_list *fobj;
1560	struct reservation_object *resv;
1561	struct fence *excl;
1562	long timeout = 15 * HZ;
1563	int i;
1564
1565	resv = bo->resv;
1566	fobj = reservation_object_get_list(resv);
1567	excl = reservation_object_get_excl(resv);
1568	if (excl) {
1569		if (!fence_is_signaled(excl)) {
1570			if (no_wait)
1571				return -EBUSY;
1572
1573			timeout = fence_wait_timeout(excl,
1574						     interruptible, timeout);
1575		}
1576	}
1577
1578	for (i = 0; fobj && timeout > 0 && i < fobj->shared_count; ++i) {
1579		struct fence *fence;
1580		fence = rcu_dereference_protected(fobj->shared[i],
1581						reservation_object_held(resv));
1582
1583		if (!fence_is_signaled(fence)) {
1584			if (no_wait)
1585				return -EBUSY;
1586
1587			timeout = fence_wait_timeout(fence,
1588						     interruptible, timeout);
1589		}
 
 
 
1590	}
1591
1592	if (timeout < 0)
1593		return timeout;
1594
1595	if (timeout == 0)
 
1596		return -EBUSY;
1597
1598	reservation_object_add_excl_fence(resv, NULL);
1599	clear_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags);
1600	return 0;
1601}
1602EXPORT_SYMBOL(ttm_bo_wait);
1603
1604int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait)
1605{
1606	int ret = 0;
1607
1608	/*
1609	 * Using ttm_bo_reserve makes sure the lru lists are updated.
1610	 */
1611
1612	ret = ttm_bo_reserve(bo, true, no_wait, false, NULL);
1613	if (unlikely(ret != 0))
1614		return ret;
1615	ret = ttm_bo_wait(bo, false, true, no_wait);
1616	if (likely(ret == 0))
1617		atomic_inc(&bo->cpu_writers);
1618	ttm_bo_unreserve(bo);
1619	return ret;
1620}
1621EXPORT_SYMBOL(ttm_bo_synccpu_write_grab);
1622
1623void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo)
1624{
1625	atomic_dec(&bo->cpu_writers);
1626}
1627EXPORT_SYMBOL(ttm_bo_synccpu_write_release);
1628
1629/**
1630 * A buffer object shrink method that tries to swap out the first
1631 * buffer object on the bo_global::swap_lru list.
1632 */
 
 
 
 
 
 
1633
1634static int ttm_bo_swapout(struct ttm_mem_shrink *shrink)
 
1635{
1636	struct ttm_bo_global *glob =
1637	    container_of(shrink, struct ttm_bo_global, shrink);
1638	struct ttm_buffer_object *bo;
1639	int ret = -EBUSY;
1640	int put_count;
1641	uint32_t swap_placement = (TTM_PL_FLAG_CACHED | TTM_PL_FLAG_SYSTEM);
1642
1643	spin_lock(&glob->lru_lock);
1644	list_for_each_entry(bo, &glob->swap_lru, swap) {
1645		ret = __ttm_bo_reserve(bo, false, true, false, NULL);
1646		if (!ret)
1647			break;
1648	}
1649
1650	if (ret) {
1651		spin_unlock(&glob->lru_lock);
1652		return ret;
 
 
 
 
 
 
1653	}
1654
1655	kref_get(&bo->list_kref);
1656
1657	if (!list_empty(&bo->ddestroy)) {
1658		ret = ttm_bo_cleanup_refs_and_unlock(bo, false, false);
1659		kref_put(&bo->list_kref, ttm_bo_release_list);
1660		return ret;
1661	}
1662
1663	put_count = ttm_bo_del_from_lru(bo);
1664	spin_unlock(&glob->lru_lock);
1665
1666	ttm_bo_list_ref_sub(bo, put_count, true);
1667
1668	/**
1669	 * Wait for GPU, then move to system cached.
1670	 */
1671
1672	ret = ttm_bo_wait(bo, false, false, false);
 
 
1673
1674	if (unlikely(ret != 0))
 
1675		goto out;
 
1676
1677	if ((bo->mem.placement & swap_placement) != swap_placement) {
1678		struct ttm_mem_reg evict_mem;
 
 
 
 
 
 
 
 
 
 
1679
1680		evict_mem = bo->mem;
1681		evict_mem.mm_node = NULL;
1682		evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
1683		evict_mem.mem_type = TTM_PL_SYSTEM;
1684
1685		ret = ttm_bo_handle_move_mem(bo, &evict_mem, true,
1686					     false, false);
1687		if (unlikely(ret != 0))
1688			goto out;
 
1689	}
1690
 
 
 
 
 
 
 
1691	ttm_bo_unmap_virtual(bo);
 
 
1692
1693	/**
1694	 * Swap out. Buffer will be swapped in again as soon as
1695	 * anyone tries to access a ttm page.
1696	 */
1697
1698	if (bo->bdev->driver->swap_notify)
1699		bo->bdev->driver->swap_notify(bo);
1700
1701	ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage);
1702out:
 
 
 
 
1703
1704	/**
1705	 *
1706	 * Unreserve without putting on LRU to avoid swapping out an
1707	 * already swapped buffer.
1708	 */
1709
1710	__ttm_bo_unreserve(bo);
1711	kref_put(&bo->list_kref, ttm_bo_release_list);
1712	return ret;
1713}
1714
1715void ttm_bo_swapout_all(struct ttm_bo_device *bdev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1716{
1717	while (ttm_bo_swapout(&bdev->glob->shrink) == 0)
1718		;
 
 
 
 
1719}
1720EXPORT_SYMBOL(ttm_bo_swapout_all);
1721
1722/**
1723 * ttm_bo_wait_unreserved - interruptible wait for a buffer object to become
1724 * unreserved
 
 
 
 
 
 
 
1725 *
1726 * @bo: Pointer to buffer
 
 
1727 */
1728int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo)
 
1729{
 
 
1730	int ret;
1731
1732	/*
1733	 * In the absense of a wait_unlocked API,
1734	 * Use the bo::wu_mutex to avoid triggering livelocks due to
1735	 * concurrent use of this function. Note that this use of
1736	 * bo::wu_mutex can go away if we change locking order to
1737	 * mmap_sem -> bo::reserve.
1738	 */
1739	ret = mutex_lock_interruptible(&bo->wu_mutex);
1740	if (unlikely(ret != 0))
1741		return -ERESTARTSYS;
1742	if (!ww_mutex_is_locked(&bo->resv->lock))
1743		goto out_unlock;
1744	ret = __ttm_bo_reserve(bo, true, false, false, NULL);
1745	if (unlikely(ret != 0))
1746		goto out_unlock;
1747	__ttm_bo_unreserve(bo);
1748
1749out_unlock:
1750	mutex_unlock(&bo->wu_mutex);
1751	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1752}
v6.13.7
   1/* SPDX-License-Identifier: GPL-2.0 OR MIT */
   2/**************************************************************************
   3 *
   4 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
   5 * All Rights Reserved.
   6 *
   7 * Permission is hereby granted, free of charge, to any person obtaining a
   8 * copy of this software and associated documentation files (the
   9 * "Software"), to deal in the Software without restriction, including
  10 * without limitation the rights to use, copy, modify, merge, publish,
  11 * distribute, sub license, and/or sell copies of the Software, and to
  12 * permit persons to whom the Software is furnished to do so, subject to
  13 * the following conditions:
  14 *
  15 * The above copyright notice and this permission notice (including the
  16 * next paragraph) shall be included in all copies or substantial portions
  17 * of the Software.
  18 *
  19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
  23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
  24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
  25 * USE OR OTHER DEALINGS IN THE SOFTWARE.
  26 *
  27 **************************************************************************/
  28/*
  29 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
  30 */
  31
  32#define pr_fmt(fmt) "[TTM] " fmt
  33
  34#include <drm/ttm/ttm_bo.h>
 
  35#include <drm/ttm/ttm_placement.h>
  36#include <drm/ttm/ttm_tt.h>
  37
  38#include <linux/jiffies.h>
  39#include <linux/slab.h>
  40#include <linux/sched.h>
  41#include <linux/mm.h>
  42#include <linux/file.h>
  43#include <linux/module.h>
  44#include <linux/atomic.h>
  45#include <linux/dma-resv.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  46
  47#include "ttm_module.h"
 
 
 
 
 
 
 
 
 
  48
  49static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
  50					struct ttm_placement *placement)
  51{
  52	struct drm_printer p = drm_dbg_printer(NULL, DRM_UT_CORE, TTM_PFX);
  53	struct ttm_resource_manager *man;
  54	int i, mem_type;
  55
 
 
 
  56	for (i = 0; i < placement->num_placement; i++) {
  57		mem_type = placement->placement[i].mem_type;
  58		drm_printf(&p, "  placement[%d]=0x%08X (%d)\n",
  59			   i, placement->placement[i].flags, mem_type);
  60		man = ttm_manager_type(bo->bdev, mem_type);
  61		ttm_resource_manager_debug(man, &p);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  62	}
 
  63}
  64
  65/**
  66 * ttm_bo_move_to_lru_tail
  67 *
  68 * @bo: The buffer object.
  69 *
  70 * Move this BO to the tail of all lru lists used to lookup and reserve an
  71 * object. This function must be called with struct ttm_global::lru_lock
  72 * held, and is used to make a BO less likely to be considered for eviction.
  73 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  74void ttm_bo_move_to_lru_tail(struct ttm_buffer_object *bo)
  75{
  76	dma_resv_assert_held(bo->base.resv);
 
 
  77
  78	if (bo->resource)
  79		ttm_resource_move_to_lru_tail(bo->resource);
 
  80}
  81EXPORT_SYMBOL(ttm_bo_move_to_lru_tail);
  82
  83/**
  84 * ttm_bo_set_bulk_move - update BOs bulk move object
  85 *
  86 * @bo: The buffer object.
  87 * @bulk: bulk move structure
  88 *
  89 * Update the BOs bulk move object, making sure that resources are added/removed
  90 * as well. A bulk move allows to move many resource on the LRU at once,
  91 * resulting in much less overhead of maintaining the LRU.
  92 * The only requirement is that the resources stay together on the LRU and are
  93 * never separated. This is enforces by setting the bulk_move structure on a BO.
  94 * ttm_lru_bulk_move_tail() should be used to move all resources to the tail of
  95 * their LRU list.
  96 */
  97void ttm_bo_set_bulk_move(struct ttm_buffer_object *bo,
  98			  struct ttm_lru_bulk_move *bulk)
  99{
 100	dma_resv_assert_held(bo->base.resv);
 
 
 
 101
 102	if (bo->bulk_move == bulk)
 103		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 104
 105	spin_lock(&bo->bdev->lru_lock);
 106	if (bo->resource)
 107		ttm_resource_del_bulk_move(bo->resource, bo);
 108	bo->bulk_move = bulk;
 109	if (bo->resource)
 110		ttm_resource_add_bulk_move(bo->resource, bo);
 111	spin_unlock(&bo->bdev->lru_lock);
 112}
 113EXPORT_SYMBOL(ttm_bo_set_bulk_move);
 114
 115static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
 116				  struct ttm_resource *mem, bool evict,
 117				  struct ttm_operation_ctx *ctx,
 118				  struct ttm_place *hop)
 119{
 120	struct ttm_device *bdev = bo->bdev;
 121	bool old_use_tt, new_use_tt;
 122	int ret;
 
 
 
 123
 124	old_use_tt = !bo->resource || ttm_manager_type(bdev, bo->resource->mem_type)->use_tt;
 125	new_use_tt = ttm_manager_type(bdev, mem->mem_type)->use_tt;
 126
 127	ttm_bo_unmap_virtual(bo);
 
 
 
 
 128
 129	/*
 130	 * Create and bind a ttm if required.
 131	 */
 132
 133	if (new_use_tt) {
 134		/* Zero init the new TTM structure if the old location should
 135		 * have used one as well.
 136		 */
 137		ret = ttm_tt_create(bo, old_use_tt);
 
 
 
 
 138		if (ret)
 139			goto out_err;
 140
 141		if (mem->mem_type != TTM_PL_SYSTEM) {
 142			ret = ttm_bo_populate(bo, ctx);
 143			if (ret)
 144				goto out_err;
 145		}
 
 
 
 
 
 
 
 
 146	}
 147
 148	ret = dma_resv_reserve_fences(bo->base.resv, 1);
 149	if (ret)
 150		goto out_err;
 
 
 
 
 
 
 
 
 151
 152	ret = bdev->funcs->move(bo, evict, ctx, mem, hop);
 153	if (ret) {
 154		if (ret == -EMULTIHOP)
 155			return ret;
 
 
 
 
 
 
 
 156		goto out_err;
 157	}
 158
 159	ctx->bytes_moved += bo->base.size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 160	return 0;
 161
 162out_err:
 163	if (!old_use_tt)
 164		ttm_bo_tt_destroy(bo);
 
 
 
 
 165
 166	return ret;
 167}
 168
 169/*
 170 * Call bo::reserved.
 171 * Will release GPU memory type usage on destruction.
 172 * This is the place to put in driver specific hooks to release
 173 * driver private resources.
 174 * Will release the bo::reserved lock.
 175 */
 176
 177static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
 178{
 179	if (bo->bdev->funcs->delete_mem_notify)
 180		bo->bdev->funcs->delete_mem_notify(bo);
 181
 182	ttm_bo_tt_destroy(bo);
 183	ttm_resource_free(bo, &bo->resource);
 
 
 
 
 
 
 184}
 185
 186static int ttm_bo_individualize_resv(struct ttm_buffer_object *bo)
 187{
 188	int r;
 
 
 
 
 
 
 
 
 
 
 
 189
 190	if (bo->base.resv == &bo->base._resv)
 191		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 192
 193	BUG_ON(!dma_resv_trylock(&bo->base._resv));
 194
 195	r = dma_resv_copy_fences(&bo->base._resv, bo->base.resv);
 196	dma_resv_unlock(&bo->base._resv);
 197	if (r)
 198		return r;
 199
 200	if (bo->type != ttm_bo_type_sg) {
 201		/* This works because the BO is about to be destroyed and nobody
 202		 * reference it any more. The only tricky case is the trylock on
 203		 * the resv object while holding the lru_lock.
 204		 */
 205		spin_lock(&bo->bdev->lru_lock);
 206		bo->base.resv = &bo->base._resv;
 207		spin_unlock(&bo->bdev->lru_lock);
 
 
 
 208	}
 209
 210	return r;
 
 
 
 
 
 211}
 212
 213static void ttm_bo_flush_all_fences(struct ttm_buffer_object *bo)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 214{
 215	struct dma_resv *resv = &bo->base._resv;
 216	struct dma_resv_iter cursor;
 217	struct dma_fence *fence;
 218
 219	dma_resv_iter_begin(&cursor, resv, DMA_RESV_USAGE_BOOKKEEP);
 220	dma_resv_for_each_fence_unlocked(&cursor, fence) {
 221		if (!fence->ops->signaled)
 222			dma_fence_enable_sw_signaling(fence);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 223	}
 224	dma_resv_iter_end(&cursor);
 225}
 226
 227/*
 228 * Block for the dma_resv object to become idle, lock the buffer and clean up
 229 * the resource and tt object.
 230 */
 231static void ttm_bo_delayed_delete(struct work_struct *work)
 232{
 233	struct ttm_buffer_object *bo;
 234
 235	bo = container_of(work, typeof(*bo), delayed_delete);
 
 
 236
 237	dma_resv_wait_timeout(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP, false,
 238			      MAX_SCHEDULE_TIMEOUT);
 239	dma_resv_lock(bo->base.resv, NULL);
 240	ttm_bo_cleanup_memtype_use(bo);
 241	dma_resv_unlock(bo->base.resv);
 242	ttm_bo_put(bo);
 
 
 243}
 244
 245static void ttm_bo_release(struct kref *kref)
 
 
 
 
 
 246{
 247	struct ttm_buffer_object *bo =
 248	    container_of(kref, struct ttm_buffer_object, kref);
 249	struct ttm_device *bdev = bo->bdev;
 250	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 251
 252	WARN_ON_ONCE(bo->pin_count);
 253	WARN_ON_ONCE(bo->bulk_move);
 
 
 
 
 
 254
 255	if (!bo->deleted) {
 256		ret = ttm_bo_individualize_resv(bo);
 257		if (ret) {
 258			/* Last resort, if we fail to allocate memory for the
 259			 * fences block for the BO to become idle
 260			 */
 261			dma_resv_wait_timeout(bo->base.resv,
 262					      DMA_RESV_USAGE_BOOKKEEP, false,
 263					      30 * HZ);
 264		}
 265
 266		if (bo->bdev->funcs->release_notify)
 267			bo->bdev->funcs->release_notify(bo);
 268
 269		drm_vma_offset_remove(bdev->vma_manager, &bo->base.vma_node);
 270		ttm_mem_io_free(bdev, bo->resource);
 271
 272		if (!dma_resv_test_signaled(bo->base.resv,
 273					    DMA_RESV_USAGE_BOOKKEEP) ||
 274		    (want_init_on_free() && (bo->ttm != NULL)) ||
 275		    bo->type == ttm_bo_type_sg ||
 276		    !dma_resv_trylock(bo->base.resv)) {
 277			/* The BO is not idle, resurrect it for delayed destroy */
 278			ttm_bo_flush_all_fences(bo);
 279			bo->deleted = true;
 280
 281			spin_lock(&bo->bdev->lru_lock);
 
 282
 283			/*
 284			 * Make pinned bos immediately available to
 285			 * shrinkers, now that they are queued for
 286			 * destruction.
 287			 *
 288			 * FIXME: QXL is triggering this. Can be removed when the
 289			 * driver is fixed.
 290			 */
 291			if (bo->pin_count) {
 292				bo->pin_count = 0;
 293				ttm_resource_move_to_lru_tail(bo->resource);
 294			}
 295
 296			kref_init(&bo->kref);
 297			spin_unlock(&bo->bdev->lru_lock);
 
 
 298
 299			INIT_WORK(&bo->delayed_delete, ttm_bo_delayed_delete);
 
 
 
 
 
 
 300
 301			/* Schedule the worker on the closest NUMA node. This
 302			 * improves performance since system memory might be
 303			 * cleared on free and that is best done on a CPU core
 304			 * close to it.
 305			 */
 306			queue_work_node(bdev->pool.nid, bdev->wq, &bo->delayed_delete);
 307			return;
 308		}
 309
 310		ttm_bo_cleanup_memtype_use(bo);
 311		dma_resv_unlock(bo->base.resv);
 
 312	}
 
 
 
 
 
 
 
 
 313
 314	atomic_dec(&ttm_glob.bo_count);
 315	bo->destroy(bo);
 
 
 
 
 316}
 317
 318/**
 319 * ttm_bo_put
 320 *
 321 * @bo: The buffer object.
 322 *
 323 * Unreference a buffer object.
 324 */
 325void ttm_bo_put(struct ttm_buffer_object *bo)
 326{
 
 
 
 327	kref_put(&bo->kref, ttm_bo_release);
 328}
 329EXPORT_SYMBOL(ttm_bo_put);
 330
 331static int ttm_bo_bounce_temp_buffer(struct ttm_buffer_object *bo,
 332				     struct ttm_operation_ctx *ctx,
 333				     struct ttm_place *hop)
 334{
 335	struct ttm_placement hop_placement;
 336	struct ttm_resource *hop_mem;
 337	int ret;
 338
 339	hop_placement.num_placement = 1;
 340	hop_placement.placement = hop;
 341
 342	/* find space in the bounce domain */
 343	ret = ttm_bo_mem_space(bo, &hop_placement, &hop_mem, ctx);
 344	if (ret)
 345		return ret;
 346	/* move to the bounce domain */
 347	ret = ttm_bo_handle_move_mem(bo, hop_mem, false, ctx, NULL);
 348	if (ret) {
 349		ttm_resource_free(bo, &hop_mem);
 350		return ret;
 351	}
 352	return 0;
 353}
 
 354
 355static int ttm_bo_evict(struct ttm_buffer_object *bo,
 356			struct ttm_operation_ctx *ctx)
 357{
 358	struct ttm_device *bdev = bo->bdev;
 359	struct ttm_resource *evict_mem;
 360	struct ttm_placement placement;
 361	struct ttm_place hop;
 362	int ret = 0;
 363
 364	memset(&hop, 0, sizeof(hop));
 365
 366	dma_resv_assert_held(bo->base.resv);
 
 
 
 
 
 367
 368	placement.num_placement = 0;
 369	bdev->funcs->evict_flags(bo, &placement);
 370
 371	if (!placement.num_placement) {
 372		ret = ttm_bo_wait_ctx(bo, ctx);
 373		if (ret)
 374			return ret;
 375
 376		/*
 377		 * Since we've already synced, this frees backing store
 378		 * immediately.
 379		 */
 380		return ttm_bo_pipeline_gutting(bo);
 381	}
 382
 383	ret = ttm_bo_mem_space(bo, &placement, &evict_mem, ctx);
 384	if (ret) {
 385		if (ret != -ERESTARTSYS) {
 386			pr_err("Failed to find memory space for buffer 0x%p eviction\n",
 387			       bo);
 388			ttm_bo_mem_space_debug(bo, &placement);
 389		}
 390		goto out;
 391	}
 392
 393	do {
 394		ret = ttm_bo_handle_move_mem(bo, evict_mem, true, ctx, &hop);
 395		if (ret != -EMULTIHOP)
 396			break;
 397
 398		ret = ttm_bo_bounce_temp_buffer(bo, ctx, &hop);
 399	} while (!ret);
 400
 401	if (ret) {
 402		ttm_resource_free(bo, &evict_mem);
 403		if (ret != -ERESTARTSYS && ret != -EINTR)
 404			pr_err("Buffer eviction failed\n");
 
 
 405	}
 
 406out:
 407	return ret;
 408}
 409
 410/**
 411 * ttm_bo_eviction_valuable
 412 *
 413 * @bo: The buffer object to evict
 414 * @place: the placement we need to make room for
 415 *
 416 * Check if it is valuable to evict the BO to make room for the given placement.
 417 */
 418bool ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
 419			      const struct ttm_place *place)
 420{
 421	struct ttm_resource *res = bo->resource;
 422	struct ttm_device *bdev = bo->bdev;
 423
 424	dma_resv_assert_held(bo->base.resv);
 425	if (bo->resource->mem_type == TTM_PL_SYSTEM)
 426		return true;
 427
 428	/* Don't evict this BO if it's outside of the
 429	 * requested placement range
 430	 */
 431	return ttm_resource_intersects(bdev, res, place, bo->base.size);
 432}
 433EXPORT_SYMBOL(ttm_bo_eviction_valuable);
 434
 435/**
 436 * ttm_bo_evict_first() - Evict the first bo on the manager's LRU list.
 437 * @bdev: The ttm device.
 438 * @man: The manager whose bo to evict.
 439 * @ctx: The TTM operation ctx governing the eviction.
 440 *
 441 * Return: 0 if successful or the resource disappeared. Negative error code on error.
 442 */
 443int ttm_bo_evict_first(struct ttm_device *bdev, struct ttm_resource_manager *man,
 444		       struct ttm_operation_ctx *ctx)
 445{
 446	struct ttm_resource_cursor cursor;
 
 447	struct ttm_buffer_object *bo;
 448	struct ttm_resource *res;
 449	unsigned int mem_type;
 450	int ret = 0;
 451
 452	spin_lock(&bdev->lru_lock);
 453	res = ttm_resource_manager_first(man, &cursor);
 454	ttm_resource_cursor_fini(&cursor);
 455	if (!res) {
 456		ret = -ENOENT;
 457		goto out_no_ref;
 458	}
 459	bo = res->bo;
 460	if (!ttm_bo_get_unless_zero(bo))
 461		goto out_no_ref;
 462	mem_type = res->mem_type;
 463	spin_unlock(&bdev->lru_lock);
 464	ret = ttm_bo_reserve(bo, ctx->interruptible, ctx->no_wait_gpu, NULL);
 465	if (ret)
 466		goto out_no_lock;
 467	if (!bo->resource || bo->resource->mem_type != mem_type)
 468		goto out_bo_moved;
 469
 470	if (bo->deleted) {
 471		ret = ttm_bo_wait_ctx(bo, ctx);
 472		if (!ret)
 473			ttm_bo_cleanup_memtype_use(bo);
 474	} else {
 475		ret = ttm_bo_evict(bo, ctx);
 476	}
 477out_bo_moved:
 478	dma_resv_unlock(bo->base.resv);
 479out_no_lock:
 480	ttm_bo_put(bo);
 481	return ret;
 482
 483out_no_ref:
 484	spin_unlock(&bdev->lru_lock);
 485	return ret;
 486}
 487
 488/**
 489 * struct ttm_bo_evict_walk - Parameters for the evict walk.
 490 */
 491struct ttm_bo_evict_walk {
 492	/** @walk: The walk base parameters. */
 493	struct ttm_lru_walk walk;
 494	/** @place: The place passed to the resource allocation. */
 495	const struct ttm_place *place;
 496	/** @evictor: The buffer object we're trying to make room for. */
 497	struct ttm_buffer_object *evictor;
 498	/** @res: The allocated resource if any. */
 499	struct ttm_resource **res;
 500	/** @evicted: Number of successful evictions. */
 501	unsigned long evicted;
 502};
 503
 504static s64 ttm_bo_evict_cb(struct ttm_lru_walk *walk, struct ttm_buffer_object *bo)
 505{
 506	struct ttm_bo_evict_walk *evict_walk =
 507		container_of(walk, typeof(*evict_walk), walk);
 508	s64 lret;
 
 509
 510	if (bo->pin_count || !bo->bdev->funcs->eviction_valuable(bo, evict_walk->place))
 511		return 0;
 512
 513	if (bo->deleted) {
 514		lret = ttm_bo_wait_ctx(bo, walk->ctx);
 515		if (!lret)
 516			ttm_bo_cleanup_memtype_use(bo);
 517	} else {
 518		lret = ttm_bo_evict(bo, walk->ctx);
 519	}
 520
 521	if (lret)
 522		goto out;
 523
 524	evict_walk->evicted++;
 525	if (evict_walk->res)
 526		lret = ttm_resource_alloc(evict_walk->evictor, evict_walk->place,
 527					  evict_walk->res);
 528	if (lret == 0)
 529		return 1;
 530out:
 531	/* Errors that should terminate the walk. */
 532	if (lret == -ENOSPC)
 533		return -EBUSY;
 534
 535	return lret;
 
 536}
 537
 538static const struct ttm_lru_walk_ops ttm_evict_walk_ops = {
 539	.process_bo = ttm_bo_evict_cb,
 540};
 541
 542static int ttm_bo_evict_alloc(struct ttm_device *bdev,
 543			      struct ttm_resource_manager *man,
 544			      const struct ttm_place *place,
 545			      struct ttm_buffer_object *evictor,
 546			      struct ttm_operation_ctx *ctx,
 547			      struct ww_acquire_ctx *ticket,
 548			      struct ttm_resource **res)
 549{
 550	struct ttm_bo_evict_walk evict_walk = {
 551		.walk = {
 552			.ops = &ttm_evict_walk_ops,
 553			.ctx = ctx,
 554			.ticket = ticket,
 555		},
 556		.place = place,
 557		.evictor = evictor,
 558		.res = res,
 559	};
 560	s64 lret;
 561
 562	evict_walk.walk.trylock_only = true;
 563	lret = ttm_lru_walk_for_evict(&evict_walk.walk, bdev, man, 1);
 564	if (lret || !ticket)
 565		goto out;
 566
 567	/* If ticket-locking, repeat while making progress. */
 568	evict_walk.walk.trylock_only = false;
 569	do {
 570		/* The walk may clear the evict_walk.walk.ticket field */
 571		evict_walk.walk.ticket = ticket;
 572		evict_walk.evicted = 0;
 573		lret = ttm_lru_walk_for_evict(&evict_walk.walk, bdev, man, 1);
 574	} while (!lret && evict_walk.evicted);
 575out:
 576	if (lret < 0)
 577		return lret;
 578	if (lret == 0)
 579		return -EBUSY;
 580	return 0;
 581}
 
 582
 583/**
 584 * ttm_bo_pin - Pin the buffer object.
 585 * @bo: The buffer object to pin
 586 *
 587 * Make sure the buffer is not evicted any more during memory pressure.
 588 * @bo must be unpinned again by calling ttm_bo_unpin().
 589 */
 590void ttm_bo_pin(struct ttm_buffer_object *bo)
 
 
 
 
 
 591{
 592	dma_resv_assert_held(bo->base.resv);
 593	WARN_ON_ONCE(!kref_read(&bo->kref));
 594	spin_lock(&bo->bdev->lru_lock);
 595	if (bo->resource)
 596		ttm_resource_del_bulk_move(bo->resource, bo);
 597	if (!bo->pin_count++ && bo->resource)
 598		ttm_resource_move_to_lru_tail(bo->resource);
 599	spin_unlock(&bo->bdev->lru_lock);
 
 
 
 
 
 
 
 
 
 
 
 600}
 601EXPORT_SYMBOL(ttm_bo_pin);
 602
 603/**
 604 * ttm_bo_unpin - Unpin the buffer object.
 605 * @bo: The buffer object to unpin
 606 *
 607 * Allows the buffer object to be evicted again during memory pressure.
 608 */
 609void ttm_bo_unpin(struct ttm_buffer_object *bo)
 610{
 611	dma_resv_assert_held(bo->base.resv);
 612	WARN_ON_ONCE(!kref_read(&bo->kref));
 613	if (WARN_ON_ONCE(!bo->pin_count))
 614		return;
 615
 616	spin_lock(&bo->bdev->lru_lock);
 617	if (!--bo->pin_count && bo->resource) {
 618		ttm_resource_add_bulk_move(bo->resource, bo);
 619		ttm_resource_move_to_lru_tail(bo->resource);
 620	}
 621	spin_unlock(&bo->bdev->lru_lock);
 
 
 
 
 
 
 
 
 
 
 622}
 623EXPORT_SYMBOL(ttm_bo_unpin);
 624
 625/*
 626 * Add the last move fence to the BO as kernel dependency and reserve a new
 627 * fence slot.
 628 */
 629static int ttm_bo_add_move_fence(struct ttm_buffer_object *bo,
 630				 struct ttm_resource_manager *man,
 631				 bool no_wait_gpu)
 632{
 633	struct dma_fence *fence;
 634	int ret;
 635
 636	spin_lock(&man->move_lock);
 637	fence = dma_fence_get(man->move);
 638	spin_unlock(&man->move_lock);
 639
 640	if (!fence)
 641		return 0;
 642
 643	if (no_wait_gpu) {
 644		ret = dma_fence_is_signaled(fence) ? 0 : -EBUSY;
 645		dma_fence_put(fence);
 646		return ret;
 647	}
 648
 649	dma_resv_add_fence(bo->base.resv, fence, DMA_RESV_USAGE_KERNEL);
 650
 651	ret = dma_resv_reserve_fences(bo->base.resv, 1);
 652	dma_fence_put(fence);
 653	return ret;
 654}
 655
 656/**
 657 * ttm_bo_alloc_resource - Allocate backing store for a BO
 658 *
 659 * @bo: Pointer to a struct ttm_buffer_object of which we want a resource for
 660 * @placement: Proposed new placement for the buffer object
 661 * @ctx: if and how to sleep, lock buffers and alloc memory
 662 * @force_space: If we should evict buffers to force space
 663 * @res: The resulting struct ttm_resource.
 664 *
 665 * Allocates a resource for the buffer object pointed to by @bo, using the
 666 * placement flags in @placement, potentially evicting other buffer objects when
 667 * @force_space is true.
 668 * This function may sleep while waiting for resources to become available.
 669 * Returns:
 670 * -EBUSY: No space available (only if no_wait == true).
 671 * -ENOSPC: Could not allocate space for the buffer object, either due to
 672 * fragmentation or concurrent allocators.
 673 * -ERESTARTSYS: An interruptible sleep was interrupted by a signal.
 674 */
 675static int ttm_bo_alloc_resource(struct ttm_buffer_object *bo,
 676				 struct ttm_placement *placement,
 677				 struct ttm_operation_ctx *ctx,
 678				 bool force_space,
 679				 struct ttm_resource **res)
 680{
 681	struct ttm_device *bdev = bo->bdev;
 682	struct ww_acquire_ctx *ticket;
 
 
 
 
 
 683	int i, ret;
 684
 685	ticket = dma_resv_locking_ctx(bo->base.resv);
 686	ret = dma_resv_reserve_fences(bo->base.resv, 1);
 687	if (unlikely(ret))
 688		return ret;
 689
 690	for (i = 0; i < placement->num_placement; ++i) {
 691		const struct ttm_place *place = &placement->placement[i];
 692		struct ttm_resource_manager *man;
 693		bool may_evict;
 694
 695		man = ttm_manager_type(bdev, place->mem_type);
 696		if (!man || !ttm_resource_manager_used(man))
 
 
 
 697			continue;
 698
 699		if (place->flags & (force_space ? TTM_PL_FLAG_DESIRED :
 700				    TTM_PL_FLAG_FALLBACK))
 
 
 701			continue;
 702
 703		may_evict = (force_space && place->mem_type != TTM_PL_SYSTEM);
 704		ret = ttm_resource_alloc(bo, place, res);
 705		if (ret) {
 706			if (ret != -ENOSPC)
 707				return ret;
 708			if (!may_evict)
 709				continue;
 
 
 710
 711			ret = ttm_bo_evict_alloc(bdev, man, place, bo, ctx,
 712						 ticket, res);
 713			if (ret == -EBUSY)
 714				continue;
 715			if (ret)
 716				return ret;
 717		}
 718
 719		ret = ttm_bo_add_move_fence(bo, man, ctx->no_wait_gpu);
 720		if (unlikely(ret)) {
 721			ttm_resource_free(bo, res);
 722			if (ret == -EBUSY)
 723				continue;
 
 
 724
 725			return ret;
 726		}
 
 727		return 0;
 728	}
 729
 730	return -ENOSPC;
 731}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 732
 733/*
 734 * ttm_bo_mem_space - Wrapper around ttm_bo_alloc_resource
 735 *
 736 * @bo: Pointer to a struct ttm_buffer_object of which we want a resource for
 737 * @placement: Proposed new placement for the buffer object
 738 * @res: The resulting struct ttm_resource.
 739 * @ctx: if and how to sleep, lock buffers and alloc memory
 740 *
 741 * Tries both idle allocation and forcefully eviction of buffers. See
 742 * ttm_bo_alloc_resource for details.
 743 */
 744int ttm_bo_mem_space(struct ttm_buffer_object *bo,
 745		     struct ttm_placement *placement,
 746		     struct ttm_resource **res,
 747		     struct ttm_operation_ctx *ctx)
 748{
 749	bool force_space = false;
 750	int ret;
 751
 752	do {
 753		ret = ttm_bo_alloc_resource(bo, placement, ctx,
 754					    force_space, res);
 755		force_space = !force_space;
 756	} while (ret == -ENOSPC && force_space);
 757
 758	return ret;
 759}
 760EXPORT_SYMBOL(ttm_bo_mem_space);
 761
 762/**
 763 * ttm_bo_validate
 764 *
 765 * @bo: The buffer object.
 766 * @placement: Proposed placement for the buffer object.
 767 * @ctx: validation parameters.
 768 *
 769 * Changes placement and caching policy of the buffer object
 770 * according proposed placement.
 771 * Returns
 772 * -EINVAL on invalid proposed placement.
 773 * -ENOMEM on out-of-memory condition.
 774 * -EBUSY if no_wait is true and buffer busy.
 775 * -ERESTARTSYS if interrupted by a signal.
 776 */
 777int ttm_bo_validate(struct ttm_buffer_object *bo,
 778		    struct ttm_placement *placement,
 779		    struct ttm_operation_ctx *ctx)
 780{
 781	struct ttm_resource *res;
 782	struct ttm_place hop;
 783	bool force_space;
 784	int ret;
 785
 786	dma_resv_assert_held(bo->base.resv);
 787
 788	/*
 789	 * Remove the backing store if no placement is given.
 
 
 790	 */
 791	if (!placement->num_placement)
 792		return ttm_bo_pipeline_gutting(bo);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 793
 794	force_space = false;
 795	do {
 796		/* Check whether we need to move buffer. */
 797		if (bo->resource &&
 798		    ttm_resource_compatible(bo->resource, placement,
 799					    force_space))
 800			return 0;
 801
 802		/* Moving of pinned BOs is forbidden */
 803		if (bo->pin_count)
 804			return -EINVAL;
 
 
 805
 806		/*
 807		 * Determine where to move the buffer.
 808		 *
 809		 * If driver determines move is going to need
 810		 * an extra step then it will return -EMULTIHOP
 811		 * and the buffer will be moved to the temporary
 812		 * stop and the driver will be called to make
 813		 * the second hop.
 814		 */
 815		ret = ttm_bo_alloc_resource(bo, placement, ctx, force_space,
 816					    &res);
 817		force_space = !force_space;
 818		if (ret == -ENOSPC)
 819			continue;
 820		if (ret)
 821			return ret;
 822
 823bounce:
 824		ret = ttm_bo_handle_move_mem(bo, res, false, ctx, &hop);
 825		if (ret == -EMULTIHOP) {
 826			ret = ttm_bo_bounce_temp_buffer(bo, ctx, &hop);
 827			/* try and move to final place now. */
 828			if (!ret)
 829				goto bounce;
 830		}
 831		if (ret) {
 832			ttm_resource_free(bo, &res);
 833			return ret;
 834		}
 835
 836	} while (ret && force_space);
 
 837
 838	/* For backward compatibility with userspace */
 839	if (ret == -ENOSPC)
 840		return -ENOMEM;
 
 
 
 
 841
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 842	/*
 843	 * We might need to add a TTM.
 844	 */
 845	if (!bo->resource || bo->resource->mem_type == TTM_PL_SYSTEM) {
 846		ret = ttm_tt_create(bo, true);
 847		if (ret)
 848			return ret;
 849	}
 850	return 0;
 851}
 852EXPORT_SYMBOL(ttm_bo_validate);
 853
 854/**
 855 * ttm_bo_init_reserved
 856 *
 857 * @bdev: Pointer to a ttm_device struct.
 858 * @bo: Pointer to a ttm_buffer_object to be initialized.
 859 * @type: Requested type of buffer object.
 860 * @placement: Initial placement for buffer object.
 861 * @alignment: Data alignment in pages.
 862 * @ctx: TTM operation context for memory allocation.
 863 * @sg: Scatter-gather table.
 864 * @resv: Pointer to a dma_resv, or NULL to let ttm allocate one.
 865 * @destroy: Destroy function. Use NULL for kfree().
 866 *
 867 * This function initializes a pre-allocated struct ttm_buffer_object.
 868 * As this object may be part of a larger structure, this function,
 869 * together with the @destroy function, enables driver-specific objects
 870 * derived from a ttm_buffer_object.
 871 *
 872 * On successful return, the caller owns an object kref to @bo. The kref and
 873 * list_kref are usually set to 1, but note that in some situations, other
 874 * tasks may already be holding references to @bo as well.
 875 * Furthermore, if resv == NULL, the buffer's reservation lock will be held,
 876 * and it is the caller's responsibility to call ttm_bo_unreserve.
 877 *
 878 * If a failure occurs, the function will call the @destroy function. Thus,
 879 * after a failure, dereferencing @bo is illegal and will likely cause memory
 880 * corruption.
 881 *
 882 * Returns
 883 * -ENOMEM: Out of memory.
 884 * -EINVAL: Invalid placement flags.
 885 * -ERESTARTSYS: Interrupted by signal while sleeping waiting for resources.
 886 */
 887int ttm_bo_init_reserved(struct ttm_device *bdev, struct ttm_buffer_object *bo,
 888			 enum ttm_bo_type type, struct ttm_placement *placement,
 889			 uint32_t alignment, struct ttm_operation_ctx *ctx,
 890			 struct sg_table *sg, struct dma_resv *resv,
 891			 void (*destroy) (struct ttm_buffer_object *))
 892{
 893	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 894
 895	kref_init(&bo->kref);
 
 
 
 
 
 
 
 896	bo->bdev = bdev;
 
 897	bo->type = type;
 898	bo->page_alignment = alignment;
 899	bo->destroy = destroy;
 900	bo->pin_count = 0;
 
 
 
 
 
 
 
 
 
 901	bo->sg = sg;
 902	bo->bulk_move = NULL;
 903	if (resv)
 904		bo->base.resv = resv;
 905	else
 906		bo->base.resv = &bo->base._resv;
 907	atomic_inc(&ttm_glob.bo_count);
 
 
 
 908
 909	/*
 910	 * For ttm_bo_type_device buffers, allocate
 911	 * address space from the device.
 912	 */
 913	if (bo->type == ttm_bo_type_device || bo->type == ttm_bo_type_sg) {
 914		ret = drm_vma_offset_add(bdev->vma_manager, &bo->base.vma_node,
 915					 PFN_UP(bo->base.size));
 916		if (ret)
 917			goto err_put;
 918	}
 919
 920	/* passed reservation objects should already be locked,
 921	 * since otherwise lockdep will be angered in radeon.
 922	 */
 923	if (!resv)
 924		WARN_ON(!dma_resv_trylock(bo->base.resv));
 925	else
 926		dma_resv_assert_held(resv);
 
 
 
 
 
 
 
 
 
 
 
 
 927
 928	ret = ttm_bo_validate(bo, placement, ctx);
 929	if (unlikely(ret))
 930		goto err_unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 931
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 932	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 933
 934err_unlock:
 935	if (!resv)
 936		dma_resv_unlock(bo->base.resv);
 
 
 
 937
 938err_put:
 939	ttm_bo_put(bo);
 940	return ret;
 941}
 942EXPORT_SYMBOL(ttm_bo_init_reserved);
 
 
 
 
 
 
 
 
 
 943
 944/**
 945 * ttm_bo_init_validate
 946 *
 947 * @bdev: Pointer to a ttm_device struct.
 948 * @bo: Pointer to a ttm_buffer_object to be initialized.
 949 * @type: Requested type of buffer object.
 950 * @placement: Initial placement for buffer object.
 951 * @alignment: Data alignment in pages.
 952 * @interruptible: If needing to sleep to wait for GPU resources,
 953 * sleep interruptible.
 954 * pinned in physical memory. If this behaviour is not desired, this member
 955 * holds a pointer to a persistent shmem object. Typically, this would
 956 * point to the shmem object backing a GEM object if TTM is used to back a
 957 * GEM user interface.
 958 * @sg: Scatter-gather table.
 959 * @resv: Pointer to a dma_resv, or NULL to let ttm allocate one.
 960 * @destroy: Destroy function. Use NULL for kfree().
 961 *
 962 * This function initializes a pre-allocated struct ttm_buffer_object.
 963 * As this object may be part of a larger structure, this function,
 964 * together with the @destroy function,
 965 * enables driver-specific objects derived from a ttm_buffer_object.
 966 *
 967 * On successful return, the caller owns an object kref to @bo. The kref and
 968 * list_kref are usually set to 1, but note that in some situations, other
 969 * tasks may already be holding references to @bo as well.
 970 *
 971 * If a failure occurs, the function will call the @destroy function, Thus,
 972 * after a failure, dereferencing @bo is illegal and will likely cause memory
 973 * corruption.
 974 *
 975 * Returns
 976 * -ENOMEM: Out of memory.
 977 * -EINVAL: Invalid placement flags.
 978 * -ERESTARTSYS: Interrupted by signal while sleeping waiting for resources.
 979 */
 980int ttm_bo_init_validate(struct ttm_device *bdev, struct ttm_buffer_object *bo,
 981			 enum ttm_bo_type type, struct ttm_placement *placement,
 982			 uint32_t alignment, bool interruptible,
 983			 struct sg_table *sg, struct dma_resv *resv,
 984			 void (*destroy) (struct ttm_buffer_object *))
 985{
 986	struct ttm_operation_ctx ctx = { interruptible, false };
 987	int ret;
 
 
 
 
 
 
 
 
 988
 989	ret = ttm_bo_init_reserved(bdev, bo, type, placement, alignment, &ctx,
 990				   sg, resv, destroy);
 991	if (ret)
 992		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 993
 994	if (!resv)
 995		ttm_bo_unreserve(bo);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 996
 997	return 0;
 
 
 998}
 999EXPORT_SYMBOL(ttm_bo_init_validate);
1000
1001/*
1002 * buffer object vm functions.
1003 */
1004
1005/**
1006 * ttm_bo_unmap_virtual
1007 *
1008 * @bo: tear down the virtual mappings for this BO
1009 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1010void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1011{
1012	struct ttm_device *bdev = bo->bdev;
 
1013
1014	drm_vma_node_unmap(&bo->base.vma_node, bdev->dev_mapping);
1015	ttm_mem_io_free(bdev, bo->resource);
 
1016}
 
 
1017EXPORT_SYMBOL(ttm_bo_unmap_virtual);
1018
1019/**
1020 * ttm_bo_wait_ctx - wait for buffer idle.
1021 *
1022 * @bo:  The buffer object.
1023 * @ctx: defines how to wait
1024 *
1025 * Waits for the buffer to be idle. Used timeout depends on the context.
1026 * Returns -EBUSY if wait timed outt, -ERESTARTSYS if interrupted by a signal or
1027 * zero on success.
1028 */
1029int ttm_bo_wait_ctx(struct ttm_buffer_object *bo, struct ttm_operation_ctx *ctx)
1030{
1031	long ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1032
1033	if (ctx->no_wait_gpu) {
1034		if (dma_resv_test_signaled(bo->base.resv,
1035					   DMA_RESV_USAGE_BOOKKEEP))
1036			return 0;
1037		else
1038			return -EBUSY;
1039	}
1040
1041	ret = dma_resv_wait_timeout(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP,
1042				    ctx->interruptible, 15 * HZ);
1043	if (unlikely(ret < 0))
1044		return ret;
1045	if (unlikely(ret == 0))
1046		return -EBUSY;
 
 
 
1047	return 0;
1048}
1049EXPORT_SYMBOL(ttm_bo_wait_ctx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1050
1051/**
1052 * struct ttm_bo_swapout_walk - Parameters for the swapout walk
 
1053 */
1054struct ttm_bo_swapout_walk {
1055	/** @walk: The walk base parameters. */
1056	struct ttm_lru_walk walk;
1057	/** @gfp_flags: The gfp flags to use for ttm_tt_swapout() */
1058	gfp_t gfp_flags;
1059};
1060
1061static s64
1062ttm_bo_swapout_cb(struct ttm_lru_walk *walk, struct ttm_buffer_object *bo)
1063{
1064	struct ttm_place place = {.mem_type = bo->resource->mem_type};
1065	struct ttm_bo_swapout_walk *swapout_walk =
1066		container_of(walk, typeof(*swapout_walk), walk);
1067	struct ttm_operation_ctx *ctx = walk->ctx;
1068	s64 ret;
 
 
 
 
 
 
 
 
1069
1070	/*
1071	 * While the bo may already reside in SYSTEM placement, set
1072	 * SYSTEM as new placement to cover also the move further below.
1073	 * The driver may use the fact that we're moving from SYSTEM
1074	 * as an indication that we're about to swap out.
1075	 */
1076	if (bo->pin_count || !bo->bdev->funcs->eviction_valuable(bo, &place)) {
1077		ret = -EBUSY;
1078		goto out;
1079	}
1080
1081	if (!bo->ttm || !ttm_tt_is_populated(bo->ttm) ||
1082	    bo->ttm->page_flags & TTM_TT_FLAG_EXTERNAL ||
1083	    bo->ttm->page_flags & TTM_TT_FLAG_SWAPPED) {
1084		ret = -EBUSY;
1085		goto out;
 
1086	}
1087
1088	if (bo->deleted) {
1089		pgoff_t num_pages = bo->ttm->num_pages;
 
 
 
 
 
 
1090
1091		ret = ttm_bo_wait_ctx(bo, ctx);
1092		if (ret)
1093			goto out;
1094
1095		ttm_bo_cleanup_memtype_use(bo);
1096		ret = num_pages;
1097		goto out;
1098	}
1099
1100	/*
1101	 * Move to system cached
1102	 */
1103	if (bo->resource->mem_type != TTM_PL_SYSTEM) {
1104		struct ttm_resource *evict_mem;
1105		struct ttm_place hop;
1106
1107		memset(&hop, 0, sizeof(hop));
1108		place.mem_type = TTM_PL_SYSTEM;
1109		ret = ttm_resource_alloc(bo, &place, &evict_mem);
1110		if (ret)
1111			goto out;
1112
1113		ret = ttm_bo_handle_move_mem(bo, evict_mem, true, ctx, &hop);
1114		if (ret) {
1115			WARN(ret == -EMULTIHOP,
1116			     "Unexpected multihop in swapout - likely driver bug.\n");
1117			ttm_resource_free(bo, &evict_mem);
 
 
 
1118			goto out;
1119		}
1120	}
1121
1122	/*
1123	 * Make sure BO is idle.
1124	 */
1125	ret = ttm_bo_wait_ctx(bo, ctx);
1126	if (ret)
1127		goto out;
1128
1129	ttm_bo_unmap_virtual(bo);
1130	if (bo->bdev->funcs->swap_notify)
1131		bo->bdev->funcs->swap_notify(bo);
1132
1133	if (ttm_tt_is_populated(bo->ttm)) {
1134		spin_lock(&bo->bdev->lru_lock);
1135		ttm_resource_del_bulk_move(bo->resource, bo);
1136		spin_unlock(&bo->bdev->lru_lock);
1137
1138		ret = ttm_tt_swapout(bo->bdev, bo->ttm, swapout_walk->gfp_flags);
 
1139
1140		spin_lock(&bo->bdev->lru_lock);
1141		if (ret)
1142			ttm_resource_add_bulk_move(bo->resource, bo);
1143		ttm_resource_move_to_lru_tail(bo->resource);
1144		spin_unlock(&bo->bdev->lru_lock);
1145	}
1146
1147out:
1148	/* Consider -ENOMEM and -ENOSPC non-fatal. */
1149	if (ret == -ENOMEM || ret == -ENOSPC)
1150		ret = -EBUSY;
 
1151
 
 
1152	return ret;
1153}
1154
1155const struct ttm_lru_walk_ops ttm_swap_ops = {
1156	.process_bo = ttm_bo_swapout_cb,
1157};
1158
1159/**
1160 * ttm_bo_swapout() - Swap out buffer objects on the LRU list to shmem.
1161 * @bdev: The ttm device.
1162 * @ctx: The ttm_operation_ctx governing the swapout operation.
1163 * @man: The resource manager whose resources / buffer objects are
1164 * goint to be swapped out.
1165 * @gfp_flags: The gfp flags used for shmem page allocations.
1166 * @target: The desired number of bytes to swap out.
1167 *
1168 * Return: The number of bytes actually swapped out, or negative error code
1169 * on error.
1170 */
1171s64 ttm_bo_swapout(struct ttm_device *bdev, struct ttm_operation_ctx *ctx,
1172		   struct ttm_resource_manager *man, gfp_t gfp_flags,
1173		   s64 target)
1174{
1175	struct ttm_bo_swapout_walk swapout_walk = {
1176		.walk = {
1177			.ops = &ttm_swap_ops,
1178			.ctx = ctx,
1179			.trylock_only = true,
1180		},
1181		.gfp_flags = gfp_flags,
1182	};
1183
1184	return ttm_lru_walk_for_evict(&swapout_walk.walk, bdev, man, target);
1185}
1186
1187void ttm_bo_tt_destroy(struct ttm_buffer_object *bo)
1188{
1189	if (bo->ttm == NULL)
1190		return;
1191
1192	ttm_tt_unpopulate(bo->bdev, bo->ttm);
1193	ttm_tt_destroy(bo->bdev, bo->ttm);
1194	bo->ttm = NULL;
1195}
 
1196
1197/**
1198 * ttm_bo_populate() - Ensure that a buffer object has backing pages
1199 * @bo: The buffer object
1200 * @ctx: The ttm_operation_ctx governing the operation.
1201 *
1202 * For buffer objects in a memory type whose manager uses
1203 * struct ttm_tt for backing pages, ensure those backing pages
1204 * are present and with valid content. The bo's resource is also
1205 * placed on the correct LRU list if it was previously swapped
1206 * out.
1207 *
1208 * Return: 0 if successful, negative error code on failure.
1209 * Note: May return -EINTR or -ERESTARTSYS if @ctx::interruptible
1210 * is set to true.
1211 */
1212int ttm_bo_populate(struct ttm_buffer_object *bo,
1213		    struct ttm_operation_ctx *ctx)
1214{
1215	struct ttm_tt *tt = bo->ttm;
1216	bool swapped;
1217	int ret;
1218
1219	dma_resv_assert_held(bo->base.resv);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1220
1221	if (!tt)
1222		return 0;
1223
1224	swapped = ttm_tt_is_swapped(tt);
1225	ret = ttm_tt_populate(bo->bdev, tt, ctx);
1226	if (ret)
1227		return ret;
1228
1229	if (swapped && !ttm_tt_is_swapped(tt) && !bo->pin_count &&
1230	    bo->resource) {
1231		spin_lock(&bo->bdev->lru_lock);
1232		ttm_resource_add_bulk_move(bo->resource, bo);
1233		ttm_resource_move_to_lru_tail(bo->resource);
1234		spin_unlock(&bo->bdev->lru_lock);
1235	}
1236
1237	return 0;
1238}
1239EXPORT_SYMBOL(ttm_bo_populate);