Loading...
1/* Common code for 32 and 64-bit NUMA */
2#include <linux/kernel.h>
3#include <linux/mm.h>
4#include <linux/string.h>
5#include <linux/init.h>
6#include <linux/bootmem.h>
7#include <linux/memblock.h>
8#include <linux/mmzone.h>
9#include <linux/ctype.h>
10#include <linux/module.h>
11#include <linux/nodemask.h>
12#include <linux/sched.h>
13#include <linux/topology.h>
14
15#include <asm/e820.h>
16#include <asm/proto.h>
17#include <asm/dma.h>
18#include <asm/acpi.h>
19#include <asm/amd_nb.h>
20
21#include "numa_internal.h"
22
23int __initdata numa_off;
24nodemask_t numa_nodes_parsed __initdata;
25
26struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
27EXPORT_SYMBOL(node_data);
28
29static struct numa_meminfo numa_meminfo
30#ifndef CONFIG_MEMORY_HOTPLUG
31__initdata
32#endif
33;
34
35static int numa_distance_cnt;
36static u8 *numa_distance;
37
38static __init int numa_setup(char *opt)
39{
40 if (!opt)
41 return -EINVAL;
42 if (!strncmp(opt, "off", 3))
43 numa_off = 1;
44#ifdef CONFIG_NUMA_EMU
45 if (!strncmp(opt, "fake=", 5))
46 numa_emu_cmdline(opt + 5);
47#endif
48#ifdef CONFIG_ACPI_NUMA
49 if (!strncmp(opt, "noacpi", 6))
50 acpi_numa = -1;
51#endif
52 return 0;
53}
54early_param("numa", numa_setup);
55
56/*
57 * apicid, cpu, node mappings
58 */
59s16 __apicid_to_node[MAX_LOCAL_APIC] = {
60 [0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE
61};
62
63int numa_cpu_node(int cpu)
64{
65 int apicid = early_per_cpu(x86_cpu_to_apicid, cpu);
66
67 if (apicid != BAD_APICID)
68 return __apicid_to_node[apicid];
69 return NUMA_NO_NODE;
70}
71
72cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
73EXPORT_SYMBOL(node_to_cpumask_map);
74
75/*
76 * Map cpu index to node index
77 */
78DEFINE_EARLY_PER_CPU(int, x86_cpu_to_node_map, NUMA_NO_NODE);
79EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_node_map);
80
81void numa_set_node(int cpu, int node)
82{
83 int *cpu_to_node_map = early_per_cpu_ptr(x86_cpu_to_node_map);
84
85 /* early setting, no percpu area yet */
86 if (cpu_to_node_map) {
87 cpu_to_node_map[cpu] = node;
88 return;
89 }
90
91#ifdef CONFIG_DEBUG_PER_CPU_MAPS
92 if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) {
93 printk(KERN_ERR "numa_set_node: invalid cpu# (%d)\n", cpu);
94 dump_stack();
95 return;
96 }
97#endif
98 per_cpu(x86_cpu_to_node_map, cpu) = node;
99
100 set_cpu_numa_node(cpu, node);
101}
102
103void numa_clear_node(int cpu)
104{
105 numa_set_node(cpu, NUMA_NO_NODE);
106}
107
108/*
109 * Allocate node_to_cpumask_map based on number of available nodes
110 * Requires node_possible_map to be valid.
111 *
112 * Note: cpumask_of_node() is not valid until after this is done.
113 * (Use CONFIG_DEBUG_PER_CPU_MAPS to check this.)
114 */
115void __init setup_node_to_cpumask_map(void)
116{
117 unsigned int node;
118
119 /* setup nr_node_ids if not done yet */
120 if (nr_node_ids == MAX_NUMNODES)
121 setup_nr_node_ids();
122
123 /* allocate the map */
124 for (node = 0; node < nr_node_ids; node++)
125 alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
126
127 /* cpumask_of_node() will now work */
128 pr_debug("Node to cpumask map for %d nodes\n", nr_node_ids);
129}
130
131static int __init numa_add_memblk_to(int nid, u64 start, u64 end,
132 struct numa_meminfo *mi)
133{
134 /* ignore zero length blks */
135 if (start == end)
136 return 0;
137
138 /* whine about and ignore invalid blks */
139 if (start > end || nid < 0 || nid >= MAX_NUMNODES) {
140 pr_warning("NUMA: Warning: invalid memblk node %d [mem %#010Lx-%#010Lx]\n",
141 nid, start, end - 1);
142 return 0;
143 }
144
145 if (mi->nr_blks >= NR_NODE_MEMBLKS) {
146 pr_err("NUMA: too many memblk ranges\n");
147 return -EINVAL;
148 }
149
150 mi->blk[mi->nr_blks].start = start;
151 mi->blk[mi->nr_blks].end = end;
152 mi->blk[mi->nr_blks].nid = nid;
153 mi->nr_blks++;
154 return 0;
155}
156
157/**
158 * numa_remove_memblk_from - Remove one numa_memblk from a numa_meminfo
159 * @idx: Index of memblk to remove
160 * @mi: numa_meminfo to remove memblk from
161 *
162 * Remove @idx'th numa_memblk from @mi by shifting @mi->blk[] and
163 * decrementing @mi->nr_blks.
164 */
165void __init numa_remove_memblk_from(int idx, struct numa_meminfo *mi)
166{
167 mi->nr_blks--;
168 memmove(&mi->blk[idx], &mi->blk[idx + 1],
169 (mi->nr_blks - idx) * sizeof(mi->blk[0]));
170}
171
172/**
173 * numa_add_memblk - Add one numa_memblk to numa_meminfo
174 * @nid: NUMA node ID of the new memblk
175 * @start: Start address of the new memblk
176 * @end: End address of the new memblk
177 *
178 * Add a new memblk to the default numa_meminfo.
179 *
180 * RETURNS:
181 * 0 on success, -errno on failure.
182 */
183int __init numa_add_memblk(int nid, u64 start, u64 end)
184{
185 return numa_add_memblk_to(nid, start, end, &numa_meminfo);
186}
187
188/* Allocate NODE_DATA for a node on the local memory */
189static void __init alloc_node_data(int nid)
190{
191 const size_t nd_size = roundup(sizeof(pg_data_t), PAGE_SIZE);
192 u64 nd_pa;
193 void *nd;
194 int tnid;
195
196 /*
197 * Allocate node data. Try node-local memory and then any node.
198 * Never allocate in DMA zone.
199 */
200 nd_pa = memblock_alloc_nid(nd_size, SMP_CACHE_BYTES, nid);
201 if (!nd_pa) {
202 nd_pa = __memblock_alloc_base(nd_size, SMP_CACHE_BYTES,
203 MEMBLOCK_ALLOC_ACCESSIBLE);
204 if (!nd_pa) {
205 pr_err("Cannot find %zu bytes in node %d\n",
206 nd_size, nid);
207 return;
208 }
209 }
210 nd = __va(nd_pa);
211
212 /* report and initialize */
213 printk(KERN_INFO "NODE_DATA(%d) allocated [mem %#010Lx-%#010Lx]\n", nid,
214 nd_pa, nd_pa + nd_size - 1);
215 tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
216 if (tnid != nid)
217 printk(KERN_INFO " NODE_DATA(%d) on node %d\n", nid, tnid);
218
219 node_data[nid] = nd;
220 memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
221
222 node_set_online(nid);
223}
224
225/**
226 * numa_cleanup_meminfo - Cleanup a numa_meminfo
227 * @mi: numa_meminfo to clean up
228 *
229 * Sanitize @mi by merging and removing unncessary memblks. Also check for
230 * conflicts and clear unused memblks.
231 *
232 * RETURNS:
233 * 0 on success, -errno on failure.
234 */
235int __init numa_cleanup_meminfo(struct numa_meminfo *mi)
236{
237 const u64 low = 0;
238 const u64 high = PFN_PHYS(max_pfn);
239 int i, j, k;
240
241 /* first, trim all entries */
242 for (i = 0; i < mi->nr_blks; i++) {
243 struct numa_memblk *bi = &mi->blk[i];
244
245 /* make sure all blocks are inside the limits */
246 bi->start = max(bi->start, low);
247 bi->end = min(bi->end, high);
248
249 /* and there's no empty or non-exist block */
250 if (bi->start >= bi->end ||
251 !memblock_overlaps_region(&memblock.memory,
252 bi->start, bi->end - bi->start))
253 numa_remove_memblk_from(i--, mi);
254 }
255
256 /* merge neighboring / overlapping entries */
257 for (i = 0; i < mi->nr_blks; i++) {
258 struct numa_memblk *bi = &mi->blk[i];
259
260 for (j = i + 1; j < mi->nr_blks; j++) {
261 struct numa_memblk *bj = &mi->blk[j];
262 u64 start, end;
263
264 /*
265 * See whether there are overlapping blocks. Whine
266 * about but allow overlaps of the same nid. They
267 * will be merged below.
268 */
269 if (bi->end > bj->start && bi->start < bj->end) {
270 if (bi->nid != bj->nid) {
271 pr_err("NUMA: node %d [mem %#010Lx-%#010Lx] overlaps with node %d [mem %#010Lx-%#010Lx]\n",
272 bi->nid, bi->start, bi->end - 1,
273 bj->nid, bj->start, bj->end - 1);
274 return -EINVAL;
275 }
276 pr_warning("NUMA: Warning: node %d [mem %#010Lx-%#010Lx] overlaps with itself [mem %#010Lx-%#010Lx]\n",
277 bi->nid, bi->start, bi->end - 1,
278 bj->start, bj->end - 1);
279 }
280
281 /*
282 * Join together blocks on the same node, holes
283 * between which don't overlap with memory on other
284 * nodes.
285 */
286 if (bi->nid != bj->nid)
287 continue;
288 start = min(bi->start, bj->start);
289 end = max(bi->end, bj->end);
290 for (k = 0; k < mi->nr_blks; k++) {
291 struct numa_memblk *bk = &mi->blk[k];
292
293 if (bi->nid == bk->nid)
294 continue;
295 if (start < bk->end && end > bk->start)
296 break;
297 }
298 if (k < mi->nr_blks)
299 continue;
300 printk(KERN_INFO "NUMA: Node %d [mem %#010Lx-%#010Lx] + [mem %#010Lx-%#010Lx] -> [mem %#010Lx-%#010Lx]\n",
301 bi->nid, bi->start, bi->end - 1, bj->start,
302 bj->end - 1, start, end - 1);
303 bi->start = start;
304 bi->end = end;
305 numa_remove_memblk_from(j--, mi);
306 }
307 }
308
309 /* clear unused ones */
310 for (i = mi->nr_blks; i < ARRAY_SIZE(mi->blk); i++) {
311 mi->blk[i].start = mi->blk[i].end = 0;
312 mi->blk[i].nid = NUMA_NO_NODE;
313 }
314
315 return 0;
316}
317
318/*
319 * Set nodes, which have memory in @mi, in *@nodemask.
320 */
321static void __init numa_nodemask_from_meminfo(nodemask_t *nodemask,
322 const struct numa_meminfo *mi)
323{
324 int i;
325
326 for (i = 0; i < ARRAY_SIZE(mi->blk); i++)
327 if (mi->blk[i].start != mi->blk[i].end &&
328 mi->blk[i].nid != NUMA_NO_NODE)
329 node_set(mi->blk[i].nid, *nodemask);
330}
331
332/**
333 * numa_reset_distance - Reset NUMA distance table
334 *
335 * The current table is freed. The next numa_set_distance() call will
336 * create a new one.
337 */
338void __init numa_reset_distance(void)
339{
340 size_t size = numa_distance_cnt * numa_distance_cnt * sizeof(numa_distance[0]);
341
342 /* numa_distance could be 1LU marking allocation failure, test cnt */
343 if (numa_distance_cnt)
344 memblock_free(__pa(numa_distance), size);
345 numa_distance_cnt = 0;
346 numa_distance = NULL; /* enable table creation */
347}
348
349static int __init numa_alloc_distance(void)
350{
351 nodemask_t nodes_parsed;
352 size_t size;
353 int i, j, cnt = 0;
354 u64 phys;
355
356 /* size the new table and allocate it */
357 nodes_parsed = numa_nodes_parsed;
358 numa_nodemask_from_meminfo(&nodes_parsed, &numa_meminfo);
359
360 for_each_node_mask(i, nodes_parsed)
361 cnt = i;
362 cnt++;
363 size = cnt * cnt * sizeof(numa_distance[0]);
364
365 phys = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped),
366 size, PAGE_SIZE);
367 if (!phys) {
368 pr_warning("NUMA: Warning: can't allocate distance table!\n");
369 /* don't retry until explicitly reset */
370 numa_distance = (void *)1LU;
371 return -ENOMEM;
372 }
373 memblock_reserve(phys, size);
374
375 numa_distance = __va(phys);
376 numa_distance_cnt = cnt;
377
378 /* fill with the default distances */
379 for (i = 0; i < cnt; i++)
380 for (j = 0; j < cnt; j++)
381 numa_distance[i * cnt + j] = i == j ?
382 LOCAL_DISTANCE : REMOTE_DISTANCE;
383 printk(KERN_DEBUG "NUMA: Initialized distance table, cnt=%d\n", cnt);
384
385 return 0;
386}
387
388/**
389 * numa_set_distance - Set NUMA distance from one NUMA to another
390 * @from: the 'from' node to set distance
391 * @to: the 'to' node to set distance
392 * @distance: NUMA distance
393 *
394 * Set the distance from node @from to @to to @distance. If distance table
395 * doesn't exist, one which is large enough to accommodate all the currently
396 * known nodes will be created.
397 *
398 * If such table cannot be allocated, a warning is printed and further
399 * calls are ignored until the distance table is reset with
400 * numa_reset_distance().
401 *
402 * If @from or @to is higher than the highest known node or lower than zero
403 * at the time of table creation or @distance doesn't make sense, the call
404 * is ignored.
405 * This is to allow simplification of specific NUMA config implementations.
406 */
407void __init numa_set_distance(int from, int to, int distance)
408{
409 if (!numa_distance && numa_alloc_distance() < 0)
410 return;
411
412 if (from >= numa_distance_cnt || to >= numa_distance_cnt ||
413 from < 0 || to < 0) {
414 pr_warn_once("NUMA: Warning: node ids are out of bound, from=%d to=%d distance=%d\n",
415 from, to, distance);
416 return;
417 }
418
419 if ((u8)distance != distance ||
420 (from == to && distance != LOCAL_DISTANCE)) {
421 pr_warn_once("NUMA: Warning: invalid distance parameter, from=%d to=%d distance=%d\n",
422 from, to, distance);
423 return;
424 }
425
426 numa_distance[from * numa_distance_cnt + to] = distance;
427}
428
429int __node_distance(int from, int to)
430{
431 if (from >= numa_distance_cnt || to >= numa_distance_cnt)
432 return from == to ? LOCAL_DISTANCE : REMOTE_DISTANCE;
433 return numa_distance[from * numa_distance_cnt + to];
434}
435EXPORT_SYMBOL(__node_distance);
436
437/*
438 * Sanity check to catch more bad NUMA configurations (they are amazingly
439 * common). Make sure the nodes cover all memory.
440 */
441static bool __init numa_meminfo_cover_memory(const struct numa_meminfo *mi)
442{
443 u64 numaram, e820ram;
444 int i;
445
446 numaram = 0;
447 for (i = 0; i < mi->nr_blks; i++) {
448 u64 s = mi->blk[i].start >> PAGE_SHIFT;
449 u64 e = mi->blk[i].end >> PAGE_SHIFT;
450 numaram += e - s;
451 numaram -= __absent_pages_in_range(mi->blk[i].nid, s, e);
452 if ((s64)numaram < 0)
453 numaram = 0;
454 }
455
456 e820ram = max_pfn - absent_pages_in_range(0, max_pfn);
457
458 /* We seem to lose 3 pages somewhere. Allow 1M of slack. */
459 if ((s64)(e820ram - numaram) >= (1 << (20 - PAGE_SHIFT))) {
460 printk(KERN_ERR "NUMA: nodes only cover %LuMB of your %LuMB e820 RAM. Not used.\n",
461 (numaram << PAGE_SHIFT) >> 20,
462 (e820ram << PAGE_SHIFT) >> 20);
463 return false;
464 }
465 return true;
466}
467
468/*
469 * Mark all currently memblock-reserved physical memory (which covers the
470 * kernel's own memory ranges) as hot-unswappable.
471 */
472static void __init numa_clear_kernel_node_hotplug(void)
473{
474 nodemask_t reserved_nodemask = NODE_MASK_NONE;
475 struct memblock_region *mb_region;
476 int i;
477
478 /*
479 * We have to do some preprocessing of memblock regions, to
480 * make them suitable for reservation.
481 *
482 * At this time, all memory regions reserved by memblock are
483 * used by the kernel, but those regions are not split up
484 * along node boundaries yet, and don't necessarily have their
485 * node ID set yet either.
486 *
487 * So iterate over all memory known to the x86 architecture,
488 * and use those ranges to set the nid in memblock.reserved.
489 * This will split up the memblock regions along node
490 * boundaries and will set the node IDs as well.
491 */
492 for (i = 0; i < numa_meminfo.nr_blks; i++) {
493 struct numa_memblk *mb = numa_meminfo.blk + i;
494 int ret;
495
496 ret = memblock_set_node(mb->start, mb->end - mb->start, &memblock.reserved, mb->nid);
497 WARN_ON_ONCE(ret);
498 }
499
500 /*
501 * Now go over all reserved memblock regions, to construct a
502 * node mask of all kernel reserved memory areas.
503 *
504 * [ Note, when booting with mem=nn[kMG] or in a kdump kernel,
505 * numa_meminfo might not include all memblock.reserved
506 * memory ranges, because quirks such as trim_snb_memory()
507 * reserve specific pages for Sandy Bridge graphics. ]
508 */
509 for_each_memblock(reserved, mb_region) {
510 if (mb_region->nid != MAX_NUMNODES)
511 node_set(mb_region->nid, reserved_nodemask);
512 }
513
514 /*
515 * Finally, clear the MEMBLOCK_HOTPLUG flag for all memory
516 * belonging to the reserved node mask.
517 *
518 * Note that this will include memory regions that reside
519 * on nodes that contain kernel memory - entire nodes
520 * become hot-unpluggable:
521 */
522 for (i = 0; i < numa_meminfo.nr_blks; i++) {
523 struct numa_memblk *mb = numa_meminfo.blk + i;
524
525 if (!node_isset(mb->nid, reserved_nodemask))
526 continue;
527
528 memblock_clear_hotplug(mb->start, mb->end - mb->start);
529 }
530}
531
532static int __init numa_register_memblks(struct numa_meminfo *mi)
533{
534 unsigned long uninitialized_var(pfn_align);
535 int i, nid;
536
537 /* Account for nodes with cpus and no memory */
538 node_possible_map = numa_nodes_parsed;
539 numa_nodemask_from_meminfo(&node_possible_map, mi);
540 if (WARN_ON(nodes_empty(node_possible_map)))
541 return -EINVAL;
542
543 for (i = 0; i < mi->nr_blks; i++) {
544 struct numa_memblk *mb = &mi->blk[i];
545 memblock_set_node(mb->start, mb->end - mb->start,
546 &memblock.memory, mb->nid);
547 }
548
549 /*
550 * At very early time, the kernel have to use some memory such as
551 * loading the kernel image. We cannot prevent this anyway. So any
552 * node the kernel resides in should be un-hotpluggable.
553 *
554 * And when we come here, alloc node data won't fail.
555 */
556 numa_clear_kernel_node_hotplug();
557
558 /*
559 * If sections array is gonna be used for pfn -> nid mapping, check
560 * whether its granularity is fine enough.
561 */
562#ifdef NODE_NOT_IN_PAGE_FLAGS
563 pfn_align = node_map_pfn_alignment();
564 if (pfn_align && pfn_align < PAGES_PER_SECTION) {
565 printk(KERN_WARNING "Node alignment %LuMB < min %LuMB, rejecting NUMA config\n",
566 PFN_PHYS(pfn_align) >> 20,
567 PFN_PHYS(PAGES_PER_SECTION) >> 20);
568 return -EINVAL;
569 }
570#endif
571 if (!numa_meminfo_cover_memory(mi))
572 return -EINVAL;
573
574 /* Finally register nodes. */
575 for_each_node_mask(nid, node_possible_map) {
576 u64 start = PFN_PHYS(max_pfn);
577 u64 end = 0;
578
579 for (i = 0; i < mi->nr_blks; i++) {
580 if (nid != mi->blk[i].nid)
581 continue;
582 start = min(mi->blk[i].start, start);
583 end = max(mi->blk[i].end, end);
584 }
585
586 if (start >= end)
587 continue;
588
589 /*
590 * Don't confuse VM with a node that doesn't have the
591 * minimum amount of memory:
592 */
593 if (end && (end - start) < NODE_MIN_SIZE)
594 continue;
595
596 alloc_node_data(nid);
597 }
598
599 /* Dump memblock with node info and return. */
600 memblock_dump_all();
601 return 0;
602}
603
604/*
605 * There are unfortunately some poorly designed mainboards around that
606 * only connect memory to a single CPU. This breaks the 1:1 cpu->node
607 * mapping. To avoid this fill in the mapping for all possible CPUs,
608 * as the number of CPUs is not known yet. We round robin the existing
609 * nodes.
610 */
611static void __init numa_init_array(void)
612{
613 int rr, i;
614
615 rr = first_node(node_online_map);
616 for (i = 0; i < nr_cpu_ids; i++) {
617 if (early_cpu_to_node(i) != NUMA_NO_NODE)
618 continue;
619 numa_set_node(i, rr);
620 rr = next_node(rr, node_online_map);
621 if (rr == MAX_NUMNODES)
622 rr = first_node(node_online_map);
623 }
624}
625
626static int __init numa_init(int (*init_func)(void))
627{
628 int i;
629 int ret;
630
631 for (i = 0; i < MAX_LOCAL_APIC; i++)
632 set_apicid_to_node(i, NUMA_NO_NODE);
633
634 nodes_clear(numa_nodes_parsed);
635 nodes_clear(node_possible_map);
636 nodes_clear(node_online_map);
637 memset(&numa_meminfo, 0, sizeof(numa_meminfo));
638 WARN_ON(memblock_set_node(0, ULLONG_MAX, &memblock.memory,
639 MAX_NUMNODES));
640 WARN_ON(memblock_set_node(0, ULLONG_MAX, &memblock.reserved,
641 MAX_NUMNODES));
642 /* In case that parsing SRAT failed. */
643 WARN_ON(memblock_clear_hotplug(0, ULLONG_MAX));
644 numa_reset_distance();
645
646 ret = init_func();
647 if (ret < 0)
648 return ret;
649
650 /*
651 * We reset memblock back to the top-down direction
652 * here because if we configured ACPI_NUMA, we have
653 * parsed SRAT in init_func(). It is ok to have the
654 * reset here even if we did't configure ACPI_NUMA
655 * or acpi numa init fails and fallbacks to dummy
656 * numa init.
657 */
658 memblock_set_bottom_up(false);
659
660 ret = numa_cleanup_meminfo(&numa_meminfo);
661 if (ret < 0)
662 return ret;
663
664 numa_emulation(&numa_meminfo, numa_distance_cnt);
665
666 ret = numa_register_memblks(&numa_meminfo);
667 if (ret < 0)
668 return ret;
669
670 for (i = 0; i < nr_cpu_ids; i++) {
671 int nid = early_cpu_to_node(i);
672
673 if (nid == NUMA_NO_NODE)
674 continue;
675 if (!node_online(nid))
676 numa_clear_node(i);
677 }
678 numa_init_array();
679
680 return 0;
681}
682
683/**
684 * dummy_numa_init - Fallback dummy NUMA init
685 *
686 * Used if there's no underlying NUMA architecture, NUMA initialization
687 * fails, or NUMA is disabled on the command line.
688 *
689 * Must online at least one node and add memory blocks that cover all
690 * allowed memory. This function must not fail.
691 */
692static int __init dummy_numa_init(void)
693{
694 printk(KERN_INFO "%s\n",
695 numa_off ? "NUMA turned off" : "No NUMA configuration found");
696 printk(KERN_INFO "Faking a node at [mem %#018Lx-%#018Lx]\n",
697 0LLU, PFN_PHYS(max_pfn) - 1);
698
699 node_set(0, numa_nodes_parsed);
700 numa_add_memblk(0, 0, PFN_PHYS(max_pfn));
701
702 return 0;
703}
704
705/**
706 * x86_numa_init - Initialize NUMA
707 *
708 * Try each configured NUMA initialization method until one succeeds. The
709 * last fallback is dummy single node config encomapssing whole memory and
710 * never fails.
711 */
712void __init x86_numa_init(void)
713{
714 if (!numa_off) {
715#ifdef CONFIG_ACPI_NUMA
716 if (!numa_init(x86_acpi_numa_init))
717 return;
718#endif
719#ifdef CONFIG_AMD_NUMA
720 if (!numa_init(amd_numa_init))
721 return;
722#endif
723 }
724
725 numa_init(dummy_numa_init);
726}
727
728static __init int find_near_online_node(int node)
729{
730 int n, val;
731 int min_val = INT_MAX;
732 int best_node = -1;
733
734 for_each_online_node(n) {
735 val = node_distance(node, n);
736
737 if (val < min_val) {
738 min_val = val;
739 best_node = n;
740 }
741 }
742
743 return best_node;
744}
745
746/*
747 * Setup early cpu_to_node.
748 *
749 * Populate cpu_to_node[] only if x86_cpu_to_apicid[],
750 * and apicid_to_node[] tables have valid entries for a CPU.
751 * This means we skip cpu_to_node[] initialisation for NUMA
752 * emulation and faking node case (when running a kernel compiled
753 * for NUMA on a non NUMA box), which is OK as cpu_to_node[]
754 * is already initialized in a round robin manner at numa_init_array,
755 * prior to this call, and this initialization is good enough
756 * for the fake NUMA cases.
757 *
758 * Called before the per_cpu areas are setup.
759 */
760void __init init_cpu_to_node(void)
761{
762 int cpu;
763 u16 *cpu_to_apicid = early_per_cpu_ptr(x86_cpu_to_apicid);
764
765 BUG_ON(cpu_to_apicid == NULL);
766
767 for_each_possible_cpu(cpu) {
768 int node = numa_cpu_node(cpu);
769
770 if (node == NUMA_NO_NODE)
771 continue;
772 if (!node_online(node))
773 node = find_near_online_node(node);
774 numa_set_node(cpu, node);
775 }
776}
777
778#ifndef CONFIG_DEBUG_PER_CPU_MAPS
779
780# ifndef CONFIG_NUMA_EMU
781void numa_add_cpu(int cpu)
782{
783 cpumask_set_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
784}
785
786void numa_remove_cpu(int cpu)
787{
788 cpumask_clear_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
789}
790# endif /* !CONFIG_NUMA_EMU */
791
792#else /* !CONFIG_DEBUG_PER_CPU_MAPS */
793
794int __cpu_to_node(int cpu)
795{
796 if (early_per_cpu_ptr(x86_cpu_to_node_map)) {
797 printk(KERN_WARNING
798 "cpu_to_node(%d): usage too early!\n", cpu);
799 dump_stack();
800 return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
801 }
802 return per_cpu(x86_cpu_to_node_map, cpu);
803}
804EXPORT_SYMBOL(__cpu_to_node);
805
806/*
807 * Same function as cpu_to_node() but used if called before the
808 * per_cpu areas are setup.
809 */
810int early_cpu_to_node(int cpu)
811{
812 if (early_per_cpu_ptr(x86_cpu_to_node_map))
813 return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
814
815 if (!cpu_possible(cpu)) {
816 printk(KERN_WARNING
817 "early_cpu_to_node(%d): no per_cpu area!\n", cpu);
818 dump_stack();
819 return NUMA_NO_NODE;
820 }
821 return per_cpu(x86_cpu_to_node_map, cpu);
822}
823
824void debug_cpumask_set_cpu(int cpu, int node, bool enable)
825{
826 struct cpumask *mask;
827
828 if (node == NUMA_NO_NODE) {
829 /* early_cpu_to_node() already emits a warning and trace */
830 return;
831 }
832 mask = node_to_cpumask_map[node];
833 if (!mask) {
834 pr_err("node_to_cpumask_map[%i] NULL\n", node);
835 dump_stack();
836 return;
837 }
838
839 if (enable)
840 cpumask_set_cpu(cpu, mask);
841 else
842 cpumask_clear_cpu(cpu, mask);
843
844 printk(KERN_DEBUG "%s cpu %d node %d: mask now %*pbl\n",
845 enable ? "numa_add_cpu" : "numa_remove_cpu",
846 cpu, node, cpumask_pr_args(mask));
847 return;
848}
849
850# ifndef CONFIG_NUMA_EMU
851static void numa_set_cpumask(int cpu, bool enable)
852{
853 debug_cpumask_set_cpu(cpu, early_cpu_to_node(cpu), enable);
854}
855
856void numa_add_cpu(int cpu)
857{
858 numa_set_cpumask(cpu, true);
859}
860
861void numa_remove_cpu(int cpu)
862{
863 numa_set_cpumask(cpu, false);
864}
865# endif /* !CONFIG_NUMA_EMU */
866
867/*
868 * Returns a pointer to the bitmask of CPUs on Node 'node'.
869 */
870const struct cpumask *cpumask_of_node(int node)
871{
872 if (node >= nr_node_ids) {
873 printk(KERN_WARNING
874 "cpumask_of_node(%d): node > nr_node_ids(%d)\n",
875 node, nr_node_ids);
876 dump_stack();
877 return cpu_none_mask;
878 }
879 if (node_to_cpumask_map[node] == NULL) {
880 printk(KERN_WARNING
881 "cpumask_of_node(%d): no node_to_cpumask_map!\n",
882 node);
883 dump_stack();
884 return cpu_online_mask;
885 }
886 return node_to_cpumask_map[node];
887}
888EXPORT_SYMBOL(cpumask_of_node);
889
890#endif /* !CONFIG_DEBUG_PER_CPU_MAPS */
891
892#ifdef CONFIG_MEMORY_HOTPLUG
893int memory_add_physaddr_to_nid(u64 start)
894{
895 struct numa_meminfo *mi = &numa_meminfo;
896 int nid = mi->blk[0].nid;
897 int i;
898
899 for (i = 0; i < mi->nr_blks; i++)
900 if (mi->blk[i].start <= start && mi->blk[i].end > start)
901 nid = mi->blk[i].nid;
902 return nid;
903}
904EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
905#endif
1/* Common code for 32 and 64-bit NUMA */
2#include <linux/kernel.h>
3#include <linux/mm.h>
4#include <linux/string.h>
5#include <linux/init.h>
6#include <linux/bootmem.h>
7#include <linux/memblock.h>
8#include <linux/mmzone.h>
9#include <linux/ctype.h>
10#include <linux/module.h>
11#include <linux/nodemask.h>
12#include <linux/sched.h>
13#include <linux/topology.h>
14
15#include <asm/e820.h>
16#include <asm/proto.h>
17#include <asm/dma.h>
18#include <asm/acpi.h>
19#include <asm/amd_nb.h>
20
21#include "numa_internal.h"
22
23int __initdata numa_off;
24nodemask_t numa_nodes_parsed __initdata;
25
26struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
27EXPORT_SYMBOL(node_data);
28
29static struct numa_meminfo numa_meminfo
30#ifndef CONFIG_MEMORY_HOTPLUG
31__initdata
32#endif
33;
34
35static int numa_distance_cnt;
36static u8 *numa_distance;
37
38static __init int numa_setup(char *opt)
39{
40 if (!opt)
41 return -EINVAL;
42 if (!strncmp(opt, "off", 3))
43 numa_off = 1;
44#ifdef CONFIG_NUMA_EMU
45 if (!strncmp(opt, "fake=", 5))
46 numa_emu_cmdline(opt + 5);
47#endif
48#ifdef CONFIG_ACPI_NUMA
49 if (!strncmp(opt, "noacpi", 6))
50 acpi_numa = -1;
51#endif
52 return 0;
53}
54early_param("numa", numa_setup);
55
56/*
57 * apicid, cpu, node mappings
58 */
59s16 __apicid_to_node[MAX_LOCAL_APIC] __cpuinitdata = {
60 [0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE
61};
62
63int __cpuinit numa_cpu_node(int cpu)
64{
65 int apicid = early_per_cpu(x86_cpu_to_apicid, cpu);
66
67 if (apicid != BAD_APICID)
68 return __apicid_to_node[apicid];
69 return NUMA_NO_NODE;
70}
71
72cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
73EXPORT_SYMBOL(node_to_cpumask_map);
74
75/*
76 * Map cpu index to node index
77 */
78DEFINE_EARLY_PER_CPU(int, x86_cpu_to_node_map, NUMA_NO_NODE);
79EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_node_map);
80
81void __cpuinit numa_set_node(int cpu, int node)
82{
83 int *cpu_to_node_map = early_per_cpu_ptr(x86_cpu_to_node_map);
84
85 /* early setting, no percpu area yet */
86 if (cpu_to_node_map) {
87 cpu_to_node_map[cpu] = node;
88 return;
89 }
90
91#ifdef CONFIG_DEBUG_PER_CPU_MAPS
92 if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) {
93 printk(KERN_ERR "numa_set_node: invalid cpu# (%d)\n", cpu);
94 dump_stack();
95 return;
96 }
97#endif
98 per_cpu(x86_cpu_to_node_map, cpu) = node;
99
100 if (node != NUMA_NO_NODE)
101 set_cpu_numa_node(cpu, node);
102}
103
104void __cpuinit numa_clear_node(int cpu)
105{
106 numa_set_node(cpu, NUMA_NO_NODE);
107}
108
109/*
110 * Allocate node_to_cpumask_map based on number of available nodes
111 * Requires node_possible_map to be valid.
112 *
113 * Note: node_to_cpumask() is not valid until after this is done.
114 * (Use CONFIG_DEBUG_PER_CPU_MAPS to check this.)
115 */
116void __init setup_node_to_cpumask_map(void)
117{
118 unsigned int node, num = 0;
119
120 /* setup nr_node_ids if not done yet */
121 if (nr_node_ids == MAX_NUMNODES) {
122 for_each_node_mask(node, node_possible_map)
123 num = node;
124 nr_node_ids = num + 1;
125 }
126
127 /* allocate the map */
128 for (node = 0; node < nr_node_ids; node++)
129 alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
130
131 /* cpumask_of_node() will now work */
132 pr_debug("Node to cpumask map for %d nodes\n", nr_node_ids);
133}
134
135static int __init numa_add_memblk_to(int nid, u64 start, u64 end,
136 struct numa_meminfo *mi)
137{
138 /* ignore zero length blks */
139 if (start == end)
140 return 0;
141
142 /* whine about and ignore invalid blks */
143 if (start > end || nid < 0 || nid >= MAX_NUMNODES) {
144 pr_warning("NUMA: Warning: invalid memblk node %d (%Lx-%Lx)\n",
145 nid, start, end);
146 return 0;
147 }
148
149 if (mi->nr_blks >= NR_NODE_MEMBLKS) {
150 pr_err("NUMA: too many memblk ranges\n");
151 return -EINVAL;
152 }
153
154 mi->blk[mi->nr_blks].start = start;
155 mi->blk[mi->nr_blks].end = end;
156 mi->blk[mi->nr_blks].nid = nid;
157 mi->nr_blks++;
158 return 0;
159}
160
161/**
162 * numa_remove_memblk_from - Remove one numa_memblk from a numa_meminfo
163 * @idx: Index of memblk to remove
164 * @mi: numa_meminfo to remove memblk from
165 *
166 * Remove @idx'th numa_memblk from @mi by shifting @mi->blk[] and
167 * decrementing @mi->nr_blks.
168 */
169void __init numa_remove_memblk_from(int idx, struct numa_meminfo *mi)
170{
171 mi->nr_blks--;
172 memmove(&mi->blk[idx], &mi->blk[idx + 1],
173 (mi->nr_blks - idx) * sizeof(mi->blk[0]));
174}
175
176/**
177 * numa_add_memblk - Add one numa_memblk to numa_meminfo
178 * @nid: NUMA node ID of the new memblk
179 * @start: Start address of the new memblk
180 * @end: End address of the new memblk
181 *
182 * Add a new memblk to the default numa_meminfo.
183 *
184 * RETURNS:
185 * 0 on success, -errno on failure.
186 */
187int __init numa_add_memblk(int nid, u64 start, u64 end)
188{
189 return numa_add_memblk_to(nid, start, end, &numa_meminfo);
190}
191
192/* Initialize NODE_DATA for a node on the local memory */
193static void __init setup_node_data(int nid, u64 start, u64 end)
194{
195 const u64 nd_low = PFN_PHYS(MAX_DMA_PFN);
196 const u64 nd_high = PFN_PHYS(max_pfn_mapped);
197 const size_t nd_size = roundup(sizeof(pg_data_t), PAGE_SIZE);
198 bool remapped = false;
199 u64 nd_pa;
200 void *nd;
201 int tnid;
202
203 /*
204 * Don't confuse VM with a node that doesn't have the
205 * minimum amount of memory:
206 */
207 if (end && (end - start) < NODE_MIN_SIZE)
208 return;
209
210 /* initialize remap allocator before aligning to ZONE_ALIGN */
211 init_alloc_remap(nid, start, end);
212
213 start = roundup(start, ZONE_ALIGN);
214
215 printk(KERN_INFO "Initmem setup node %d %016Lx-%016Lx\n",
216 nid, start, end);
217
218 /*
219 * Allocate node data. Try remap allocator first, node-local
220 * memory and then any node. Never allocate in DMA zone.
221 */
222 nd = alloc_remap(nid, nd_size);
223 if (nd) {
224 nd_pa = __pa(nd);
225 remapped = true;
226 } else {
227 nd_pa = memblock_x86_find_in_range_node(nid, nd_low, nd_high,
228 nd_size, SMP_CACHE_BYTES);
229 if (nd_pa == MEMBLOCK_ERROR)
230 nd_pa = memblock_find_in_range(nd_low, nd_high,
231 nd_size, SMP_CACHE_BYTES);
232 if (nd_pa == MEMBLOCK_ERROR) {
233 pr_err("Cannot find %zu bytes in node %d\n",
234 nd_size, nid);
235 return;
236 }
237 memblock_x86_reserve_range(nd_pa, nd_pa + nd_size, "NODE_DATA");
238 nd = __va(nd_pa);
239 }
240
241 /* report and initialize */
242 printk(KERN_INFO " NODE_DATA [%016Lx - %016Lx]%s\n",
243 nd_pa, nd_pa + nd_size - 1, remapped ? " (remapped)" : "");
244 tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
245 if (!remapped && tnid != nid)
246 printk(KERN_INFO " NODE_DATA(%d) on node %d\n", nid, tnid);
247
248 node_data[nid] = nd;
249 memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
250 NODE_DATA(nid)->node_id = nid;
251 NODE_DATA(nid)->node_start_pfn = start >> PAGE_SHIFT;
252 NODE_DATA(nid)->node_spanned_pages = (end - start) >> PAGE_SHIFT;
253
254 node_set_online(nid);
255}
256
257/**
258 * numa_cleanup_meminfo - Cleanup a numa_meminfo
259 * @mi: numa_meminfo to clean up
260 *
261 * Sanitize @mi by merging and removing unncessary memblks. Also check for
262 * conflicts and clear unused memblks.
263 *
264 * RETURNS:
265 * 0 on success, -errno on failure.
266 */
267int __init numa_cleanup_meminfo(struct numa_meminfo *mi)
268{
269 const u64 low = 0;
270 const u64 high = PFN_PHYS(max_pfn);
271 int i, j, k;
272
273 /* first, trim all entries */
274 for (i = 0; i < mi->nr_blks; i++) {
275 struct numa_memblk *bi = &mi->blk[i];
276
277 /* make sure all blocks are inside the limits */
278 bi->start = max(bi->start, low);
279 bi->end = min(bi->end, high);
280
281 /* and there's no empty block */
282 if (bi->start >= bi->end)
283 numa_remove_memblk_from(i--, mi);
284 }
285
286 /* merge neighboring / overlapping entries */
287 for (i = 0; i < mi->nr_blks; i++) {
288 struct numa_memblk *bi = &mi->blk[i];
289
290 for (j = i + 1; j < mi->nr_blks; j++) {
291 struct numa_memblk *bj = &mi->blk[j];
292 u64 start, end;
293
294 /*
295 * See whether there are overlapping blocks. Whine
296 * about but allow overlaps of the same nid. They
297 * will be merged below.
298 */
299 if (bi->end > bj->start && bi->start < bj->end) {
300 if (bi->nid != bj->nid) {
301 pr_err("NUMA: node %d (%Lx-%Lx) overlaps with node %d (%Lx-%Lx)\n",
302 bi->nid, bi->start, bi->end,
303 bj->nid, bj->start, bj->end);
304 return -EINVAL;
305 }
306 pr_warning("NUMA: Warning: node %d (%Lx-%Lx) overlaps with itself (%Lx-%Lx)\n",
307 bi->nid, bi->start, bi->end,
308 bj->start, bj->end);
309 }
310
311 /*
312 * Join together blocks on the same node, holes
313 * between which don't overlap with memory on other
314 * nodes.
315 */
316 if (bi->nid != bj->nid)
317 continue;
318 start = min(bi->start, bj->start);
319 end = max(bi->end, bj->end);
320 for (k = 0; k < mi->nr_blks; k++) {
321 struct numa_memblk *bk = &mi->blk[k];
322
323 if (bi->nid == bk->nid)
324 continue;
325 if (start < bk->end && end > bk->start)
326 break;
327 }
328 if (k < mi->nr_blks)
329 continue;
330 printk(KERN_INFO "NUMA: Node %d [%Lx,%Lx) + [%Lx,%Lx) -> [%Lx,%Lx)\n",
331 bi->nid, bi->start, bi->end, bj->start, bj->end,
332 start, end);
333 bi->start = start;
334 bi->end = end;
335 numa_remove_memblk_from(j--, mi);
336 }
337 }
338
339 /* clear unused ones */
340 for (i = mi->nr_blks; i < ARRAY_SIZE(mi->blk); i++) {
341 mi->blk[i].start = mi->blk[i].end = 0;
342 mi->blk[i].nid = NUMA_NO_NODE;
343 }
344
345 return 0;
346}
347
348/*
349 * Set nodes, which have memory in @mi, in *@nodemask.
350 */
351static void __init numa_nodemask_from_meminfo(nodemask_t *nodemask,
352 const struct numa_meminfo *mi)
353{
354 int i;
355
356 for (i = 0; i < ARRAY_SIZE(mi->blk); i++)
357 if (mi->blk[i].start != mi->blk[i].end &&
358 mi->blk[i].nid != NUMA_NO_NODE)
359 node_set(mi->blk[i].nid, *nodemask);
360}
361
362/**
363 * numa_reset_distance - Reset NUMA distance table
364 *
365 * The current table is freed. The next numa_set_distance() call will
366 * create a new one.
367 */
368void __init numa_reset_distance(void)
369{
370 size_t size = numa_distance_cnt * numa_distance_cnt * sizeof(numa_distance[0]);
371
372 /* numa_distance could be 1LU marking allocation failure, test cnt */
373 if (numa_distance_cnt)
374 memblock_x86_free_range(__pa(numa_distance),
375 __pa(numa_distance) + size);
376 numa_distance_cnt = 0;
377 numa_distance = NULL; /* enable table creation */
378}
379
380static int __init numa_alloc_distance(void)
381{
382 nodemask_t nodes_parsed;
383 size_t size;
384 int i, j, cnt = 0;
385 u64 phys;
386
387 /* size the new table and allocate it */
388 nodes_parsed = numa_nodes_parsed;
389 numa_nodemask_from_meminfo(&nodes_parsed, &numa_meminfo);
390
391 for_each_node_mask(i, nodes_parsed)
392 cnt = i;
393 cnt++;
394 size = cnt * cnt * sizeof(numa_distance[0]);
395
396 phys = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped),
397 size, PAGE_SIZE);
398 if (phys == MEMBLOCK_ERROR) {
399 pr_warning("NUMA: Warning: can't allocate distance table!\n");
400 /* don't retry until explicitly reset */
401 numa_distance = (void *)1LU;
402 return -ENOMEM;
403 }
404 memblock_x86_reserve_range(phys, phys + size, "NUMA DIST");
405
406 numa_distance = __va(phys);
407 numa_distance_cnt = cnt;
408
409 /* fill with the default distances */
410 for (i = 0; i < cnt; i++)
411 for (j = 0; j < cnt; j++)
412 numa_distance[i * cnt + j] = i == j ?
413 LOCAL_DISTANCE : REMOTE_DISTANCE;
414 printk(KERN_DEBUG "NUMA: Initialized distance table, cnt=%d\n", cnt);
415
416 return 0;
417}
418
419/**
420 * numa_set_distance - Set NUMA distance from one NUMA to another
421 * @from: the 'from' node to set distance
422 * @to: the 'to' node to set distance
423 * @distance: NUMA distance
424 *
425 * Set the distance from node @from to @to to @distance. If distance table
426 * doesn't exist, one which is large enough to accommodate all the currently
427 * known nodes will be created.
428 *
429 * If such table cannot be allocated, a warning is printed and further
430 * calls are ignored until the distance table is reset with
431 * numa_reset_distance().
432 *
433 * If @from or @to is higher than the highest known node at the time of
434 * table creation or @distance doesn't make sense, the call is ignored.
435 * This is to allow simplification of specific NUMA config implementations.
436 */
437void __init numa_set_distance(int from, int to, int distance)
438{
439 if (!numa_distance && numa_alloc_distance() < 0)
440 return;
441
442 if (from >= numa_distance_cnt || to >= numa_distance_cnt) {
443 printk_once(KERN_DEBUG "NUMA: Debug: distance out of bound, from=%d to=%d distance=%d\n",
444 from, to, distance);
445 return;
446 }
447
448 if ((u8)distance != distance ||
449 (from == to && distance != LOCAL_DISTANCE)) {
450 pr_warn_once("NUMA: Warning: invalid distance parameter, from=%d to=%d distance=%d\n",
451 from, to, distance);
452 return;
453 }
454
455 numa_distance[from * numa_distance_cnt + to] = distance;
456}
457
458int __node_distance(int from, int to)
459{
460 if (from >= numa_distance_cnt || to >= numa_distance_cnt)
461 return from == to ? LOCAL_DISTANCE : REMOTE_DISTANCE;
462 return numa_distance[from * numa_distance_cnt + to];
463}
464EXPORT_SYMBOL(__node_distance);
465
466/*
467 * Sanity check to catch more bad NUMA configurations (they are amazingly
468 * common). Make sure the nodes cover all memory.
469 */
470static bool __init numa_meminfo_cover_memory(const struct numa_meminfo *mi)
471{
472 u64 numaram, e820ram;
473 int i;
474
475 numaram = 0;
476 for (i = 0; i < mi->nr_blks; i++) {
477 u64 s = mi->blk[i].start >> PAGE_SHIFT;
478 u64 e = mi->blk[i].end >> PAGE_SHIFT;
479 numaram += e - s;
480 numaram -= __absent_pages_in_range(mi->blk[i].nid, s, e);
481 if ((s64)numaram < 0)
482 numaram = 0;
483 }
484
485 e820ram = max_pfn - (memblock_x86_hole_size(0,
486 PFN_PHYS(max_pfn)) >> PAGE_SHIFT);
487 /* We seem to lose 3 pages somewhere. Allow 1M of slack. */
488 if ((s64)(e820ram - numaram) >= (1 << (20 - PAGE_SHIFT))) {
489 printk(KERN_ERR "NUMA: nodes only cover %LuMB of your %LuMB e820 RAM. Not used.\n",
490 (numaram << PAGE_SHIFT) >> 20,
491 (e820ram << PAGE_SHIFT) >> 20);
492 return false;
493 }
494 return true;
495}
496
497static int __init numa_register_memblks(struct numa_meminfo *mi)
498{
499 unsigned long uninitialized_var(pfn_align);
500 int i, nid;
501
502 /* Account for nodes with cpus and no memory */
503 node_possible_map = numa_nodes_parsed;
504 numa_nodemask_from_meminfo(&node_possible_map, mi);
505 if (WARN_ON(nodes_empty(node_possible_map)))
506 return -EINVAL;
507
508 for (i = 0; i < mi->nr_blks; i++)
509 memblock_x86_register_active_regions(mi->blk[i].nid,
510 mi->blk[i].start >> PAGE_SHIFT,
511 mi->blk[i].end >> PAGE_SHIFT);
512
513 /* for out of order entries */
514 sort_node_map();
515
516 /*
517 * If sections array is gonna be used for pfn -> nid mapping, check
518 * whether its granularity is fine enough.
519 */
520#ifdef NODE_NOT_IN_PAGE_FLAGS
521 pfn_align = node_map_pfn_alignment();
522 if (pfn_align && pfn_align < PAGES_PER_SECTION) {
523 printk(KERN_WARNING "Node alignment %LuMB < min %LuMB, rejecting NUMA config\n",
524 PFN_PHYS(pfn_align) >> 20,
525 PFN_PHYS(PAGES_PER_SECTION) >> 20);
526 return -EINVAL;
527 }
528#endif
529 if (!numa_meminfo_cover_memory(mi))
530 return -EINVAL;
531
532 /* Finally register nodes. */
533 for_each_node_mask(nid, node_possible_map) {
534 u64 start = PFN_PHYS(max_pfn);
535 u64 end = 0;
536
537 for (i = 0; i < mi->nr_blks; i++) {
538 if (nid != mi->blk[i].nid)
539 continue;
540 start = min(mi->blk[i].start, start);
541 end = max(mi->blk[i].end, end);
542 }
543
544 if (start < end)
545 setup_node_data(nid, start, end);
546 }
547
548 return 0;
549}
550
551/*
552 * There are unfortunately some poorly designed mainboards around that
553 * only connect memory to a single CPU. This breaks the 1:1 cpu->node
554 * mapping. To avoid this fill in the mapping for all possible CPUs,
555 * as the number of CPUs is not known yet. We round robin the existing
556 * nodes.
557 */
558static void __init numa_init_array(void)
559{
560 int rr, i;
561
562 rr = first_node(node_online_map);
563 for (i = 0; i < nr_cpu_ids; i++) {
564 if (early_cpu_to_node(i) != NUMA_NO_NODE)
565 continue;
566 numa_set_node(i, rr);
567 rr = next_node(rr, node_online_map);
568 if (rr == MAX_NUMNODES)
569 rr = first_node(node_online_map);
570 }
571}
572
573static int __init numa_init(int (*init_func)(void))
574{
575 int i;
576 int ret;
577
578 for (i = 0; i < MAX_LOCAL_APIC; i++)
579 set_apicid_to_node(i, NUMA_NO_NODE);
580
581 nodes_clear(numa_nodes_parsed);
582 nodes_clear(node_possible_map);
583 nodes_clear(node_online_map);
584 memset(&numa_meminfo, 0, sizeof(numa_meminfo));
585 remove_all_active_ranges();
586 numa_reset_distance();
587
588 ret = init_func();
589 if (ret < 0)
590 return ret;
591 ret = numa_cleanup_meminfo(&numa_meminfo);
592 if (ret < 0)
593 return ret;
594
595 numa_emulation(&numa_meminfo, numa_distance_cnt);
596
597 ret = numa_register_memblks(&numa_meminfo);
598 if (ret < 0)
599 return ret;
600
601 for (i = 0; i < nr_cpu_ids; i++) {
602 int nid = early_cpu_to_node(i);
603
604 if (nid == NUMA_NO_NODE)
605 continue;
606 if (!node_online(nid))
607 numa_clear_node(i);
608 }
609 numa_init_array();
610 return 0;
611}
612
613/**
614 * dummy_numa_init - Fallback dummy NUMA init
615 *
616 * Used if there's no underlying NUMA architecture, NUMA initialization
617 * fails, or NUMA is disabled on the command line.
618 *
619 * Must online at least one node and add memory blocks that cover all
620 * allowed memory. This function must not fail.
621 */
622static int __init dummy_numa_init(void)
623{
624 printk(KERN_INFO "%s\n",
625 numa_off ? "NUMA turned off" : "No NUMA configuration found");
626 printk(KERN_INFO "Faking a node at %016Lx-%016Lx\n",
627 0LLU, PFN_PHYS(max_pfn));
628
629 node_set(0, numa_nodes_parsed);
630 numa_add_memblk(0, 0, PFN_PHYS(max_pfn));
631
632 return 0;
633}
634
635/**
636 * x86_numa_init - Initialize NUMA
637 *
638 * Try each configured NUMA initialization method until one succeeds. The
639 * last fallback is dummy single node config encomapssing whole memory and
640 * never fails.
641 */
642void __init x86_numa_init(void)
643{
644 if (!numa_off) {
645#ifdef CONFIG_X86_NUMAQ
646 if (!numa_init(numaq_numa_init))
647 return;
648#endif
649#ifdef CONFIG_ACPI_NUMA
650 if (!numa_init(x86_acpi_numa_init))
651 return;
652#endif
653#ifdef CONFIG_AMD_NUMA
654 if (!numa_init(amd_numa_init))
655 return;
656#endif
657 }
658
659 numa_init(dummy_numa_init);
660}
661
662static __init int find_near_online_node(int node)
663{
664 int n, val;
665 int min_val = INT_MAX;
666 int best_node = -1;
667
668 for_each_online_node(n) {
669 val = node_distance(node, n);
670
671 if (val < min_val) {
672 min_val = val;
673 best_node = n;
674 }
675 }
676
677 return best_node;
678}
679
680/*
681 * Setup early cpu_to_node.
682 *
683 * Populate cpu_to_node[] only if x86_cpu_to_apicid[],
684 * and apicid_to_node[] tables have valid entries for a CPU.
685 * This means we skip cpu_to_node[] initialisation for NUMA
686 * emulation and faking node case (when running a kernel compiled
687 * for NUMA on a non NUMA box), which is OK as cpu_to_node[]
688 * is already initialized in a round robin manner at numa_init_array,
689 * prior to this call, and this initialization is good enough
690 * for the fake NUMA cases.
691 *
692 * Called before the per_cpu areas are setup.
693 */
694void __init init_cpu_to_node(void)
695{
696 int cpu;
697 u16 *cpu_to_apicid = early_per_cpu_ptr(x86_cpu_to_apicid);
698
699 BUG_ON(cpu_to_apicid == NULL);
700
701 for_each_possible_cpu(cpu) {
702 int node = numa_cpu_node(cpu);
703
704 if (node == NUMA_NO_NODE)
705 continue;
706 if (!node_online(node))
707 node = find_near_online_node(node);
708 numa_set_node(cpu, node);
709 }
710}
711
712#ifndef CONFIG_DEBUG_PER_CPU_MAPS
713
714# ifndef CONFIG_NUMA_EMU
715void __cpuinit numa_add_cpu(int cpu)
716{
717 cpumask_set_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
718}
719
720void __cpuinit numa_remove_cpu(int cpu)
721{
722 cpumask_clear_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
723}
724# endif /* !CONFIG_NUMA_EMU */
725
726#else /* !CONFIG_DEBUG_PER_CPU_MAPS */
727
728int __cpu_to_node(int cpu)
729{
730 if (early_per_cpu_ptr(x86_cpu_to_node_map)) {
731 printk(KERN_WARNING
732 "cpu_to_node(%d): usage too early!\n", cpu);
733 dump_stack();
734 return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
735 }
736 return per_cpu(x86_cpu_to_node_map, cpu);
737}
738EXPORT_SYMBOL(__cpu_to_node);
739
740/*
741 * Same function as cpu_to_node() but used if called before the
742 * per_cpu areas are setup.
743 */
744int early_cpu_to_node(int cpu)
745{
746 if (early_per_cpu_ptr(x86_cpu_to_node_map))
747 return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
748
749 if (!cpu_possible(cpu)) {
750 printk(KERN_WARNING
751 "early_cpu_to_node(%d): no per_cpu area!\n", cpu);
752 dump_stack();
753 return NUMA_NO_NODE;
754 }
755 return per_cpu(x86_cpu_to_node_map, cpu);
756}
757
758void debug_cpumask_set_cpu(int cpu, int node, bool enable)
759{
760 struct cpumask *mask;
761 char buf[64];
762
763 if (node == NUMA_NO_NODE) {
764 /* early_cpu_to_node() already emits a warning and trace */
765 return;
766 }
767 mask = node_to_cpumask_map[node];
768 if (!mask) {
769 pr_err("node_to_cpumask_map[%i] NULL\n", node);
770 dump_stack();
771 return;
772 }
773
774 if (enable)
775 cpumask_set_cpu(cpu, mask);
776 else
777 cpumask_clear_cpu(cpu, mask);
778
779 cpulist_scnprintf(buf, sizeof(buf), mask);
780 printk(KERN_DEBUG "%s cpu %d node %d: mask now %s\n",
781 enable ? "numa_add_cpu" : "numa_remove_cpu",
782 cpu, node, buf);
783 return;
784}
785
786# ifndef CONFIG_NUMA_EMU
787static void __cpuinit numa_set_cpumask(int cpu, bool enable)
788{
789 debug_cpumask_set_cpu(cpu, early_cpu_to_node(cpu), enable);
790}
791
792void __cpuinit numa_add_cpu(int cpu)
793{
794 numa_set_cpumask(cpu, true);
795}
796
797void __cpuinit numa_remove_cpu(int cpu)
798{
799 numa_set_cpumask(cpu, false);
800}
801# endif /* !CONFIG_NUMA_EMU */
802
803/*
804 * Returns a pointer to the bitmask of CPUs on Node 'node'.
805 */
806const struct cpumask *cpumask_of_node(int node)
807{
808 if (node >= nr_node_ids) {
809 printk(KERN_WARNING
810 "cpumask_of_node(%d): node > nr_node_ids(%d)\n",
811 node, nr_node_ids);
812 dump_stack();
813 return cpu_none_mask;
814 }
815 if (node_to_cpumask_map[node] == NULL) {
816 printk(KERN_WARNING
817 "cpumask_of_node(%d): no node_to_cpumask_map!\n",
818 node);
819 dump_stack();
820 return cpu_online_mask;
821 }
822 return node_to_cpumask_map[node];
823}
824EXPORT_SYMBOL(cpumask_of_node);
825
826#endif /* !CONFIG_DEBUG_PER_CPU_MAPS */
827
828#ifdef CONFIG_MEMORY_HOTPLUG
829int memory_add_physaddr_to_nid(u64 start)
830{
831 struct numa_meminfo *mi = &numa_meminfo;
832 int nid = mi->blk[0].nid;
833 int i;
834
835 for (i = 0; i < mi->nr_blks; i++)
836 if (mi->blk[i].start <= start && mi->blk[i].end > start)
837 nid = mi->blk[i].nid;
838 return nid;
839}
840EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
841#endif