Linux Audio

Check our new training course

Loading...
v4.6
 
  1/* Common code for 32 and 64-bit NUMA */
 
  2#include <linux/kernel.h>
  3#include <linux/mm.h>
 
  4#include <linux/string.h>
  5#include <linux/init.h>
  6#include <linux/bootmem.h>
  7#include <linux/memblock.h>
  8#include <linux/mmzone.h>
  9#include <linux/ctype.h>
 10#include <linux/module.h>
 11#include <linux/nodemask.h>
 12#include <linux/sched.h>
 13#include <linux/topology.h>
 
 14
 15#include <asm/e820.h>
 16#include <asm/proto.h>
 17#include <asm/dma.h>
 18#include <asm/acpi.h>
 19#include <asm/amd_nb.h>
 20
 21#include "numa_internal.h"
 22
 23int __initdata numa_off;
 24nodemask_t numa_nodes_parsed __initdata;
 25
 26struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
 27EXPORT_SYMBOL(node_data);
 28
 29static struct numa_meminfo numa_meminfo
 30#ifndef CONFIG_MEMORY_HOTPLUG
 31__initdata
 32#endif
 33;
 34
 35static int numa_distance_cnt;
 36static u8 *numa_distance;
 37
 38static __init int numa_setup(char *opt)
 39{
 40	if (!opt)
 41		return -EINVAL;
 42	if (!strncmp(opt, "off", 3))
 43		numa_off = 1;
 44#ifdef CONFIG_NUMA_EMU
 45	if (!strncmp(opt, "fake=", 5))
 46		numa_emu_cmdline(opt + 5);
 47#endif
 48#ifdef CONFIG_ACPI_NUMA
 49	if (!strncmp(opt, "noacpi", 6))
 50		acpi_numa = -1;
 51#endif
 
 52	return 0;
 53}
 54early_param("numa", numa_setup);
 55
 56/*
 57 * apicid, cpu, node mappings
 58 */
 59s16 __apicid_to_node[MAX_LOCAL_APIC] = {
 60	[0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE
 61};
 62
 63int numa_cpu_node(int cpu)
 64{
 65	int apicid = early_per_cpu(x86_cpu_to_apicid, cpu);
 66
 67	if (apicid != BAD_APICID)
 68		return __apicid_to_node[apicid];
 69	return NUMA_NO_NODE;
 70}
 71
 72cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
 73EXPORT_SYMBOL(node_to_cpumask_map);
 74
 75/*
 76 * Map cpu index to node index
 77 */
 78DEFINE_EARLY_PER_CPU(int, x86_cpu_to_node_map, NUMA_NO_NODE);
 79EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_node_map);
 80
 81void numa_set_node(int cpu, int node)
 82{
 83	int *cpu_to_node_map = early_per_cpu_ptr(x86_cpu_to_node_map);
 84
 85	/* early setting, no percpu area yet */
 86	if (cpu_to_node_map) {
 87		cpu_to_node_map[cpu] = node;
 88		return;
 89	}
 90
 91#ifdef CONFIG_DEBUG_PER_CPU_MAPS
 92	if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) {
 93		printk(KERN_ERR "numa_set_node: invalid cpu# (%d)\n", cpu);
 94		dump_stack();
 95		return;
 96	}
 97#endif
 98	per_cpu(x86_cpu_to_node_map, cpu) = node;
 99
100	set_cpu_numa_node(cpu, node);
101}
102
103void numa_clear_node(int cpu)
104{
105	numa_set_node(cpu, NUMA_NO_NODE);
106}
107
108/*
109 * Allocate node_to_cpumask_map based on number of available nodes
110 * Requires node_possible_map to be valid.
111 *
112 * Note: cpumask_of_node() is not valid until after this is done.
113 * (Use CONFIG_DEBUG_PER_CPU_MAPS to check this.)
114 */
115void __init setup_node_to_cpumask_map(void)
116{
117	unsigned int node;
118
119	/* setup nr_node_ids if not done yet */
120	if (nr_node_ids == MAX_NUMNODES)
121		setup_nr_node_ids();
122
123	/* allocate the map */
124	for (node = 0; node < nr_node_ids; node++)
125		alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
126
127	/* cpumask_of_node() will now work */
128	pr_debug("Node to cpumask map for %d nodes\n", nr_node_ids);
129}
130
131static int __init numa_add_memblk_to(int nid, u64 start, u64 end,
132				     struct numa_meminfo *mi)
133{
134	/* ignore zero length blks */
135	if (start == end)
136		return 0;
137
138	/* whine about and ignore invalid blks */
139	if (start > end || nid < 0 || nid >= MAX_NUMNODES) {
140		pr_warning("NUMA: Warning: invalid memblk node %d [mem %#010Lx-%#010Lx]\n",
141			   nid, start, end - 1);
142		return 0;
143	}
144
145	if (mi->nr_blks >= NR_NODE_MEMBLKS) {
146		pr_err("NUMA: too many memblk ranges\n");
147		return -EINVAL;
148	}
149
150	mi->blk[mi->nr_blks].start = start;
151	mi->blk[mi->nr_blks].end = end;
152	mi->blk[mi->nr_blks].nid = nid;
153	mi->nr_blks++;
154	return 0;
155}
156
157/**
158 * numa_remove_memblk_from - Remove one numa_memblk from a numa_meminfo
159 * @idx: Index of memblk to remove
160 * @mi: numa_meminfo to remove memblk from
161 *
162 * Remove @idx'th numa_memblk from @mi by shifting @mi->blk[] and
163 * decrementing @mi->nr_blks.
164 */
165void __init numa_remove_memblk_from(int idx, struct numa_meminfo *mi)
166{
167	mi->nr_blks--;
168	memmove(&mi->blk[idx], &mi->blk[idx + 1],
169		(mi->nr_blks - idx) * sizeof(mi->blk[0]));
170}
171
172/**
 
 
 
 
 
 
 
 
 
 
 
 
 
173 * numa_add_memblk - Add one numa_memblk to numa_meminfo
174 * @nid: NUMA node ID of the new memblk
175 * @start: Start address of the new memblk
176 * @end: End address of the new memblk
177 *
178 * Add a new memblk to the default numa_meminfo.
179 *
180 * RETURNS:
181 * 0 on success, -errno on failure.
182 */
183int __init numa_add_memblk(int nid, u64 start, u64 end)
184{
185	return numa_add_memblk_to(nid, start, end, &numa_meminfo);
186}
187
188/* Allocate NODE_DATA for a node on the local memory */
189static void __init alloc_node_data(int nid)
190{
191	const size_t nd_size = roundup(sizeof(pg_data_t), PAGE_SIZE);
192	u64 nd_pa;
193	void *nd;
194	int tnid;
195
196	/*
197	 * Allocate node data.  Try node-local memory and then any node.
198	 * Never allocate in DMA zone.
199	 */
200	nd_pa = memblock_alloc_nid(nd_size, SMP_CACHE_BYTES, nid);
201	if (!nd_pa) {
202		nd_pa = __memblock_alloc_base(nd_size, SMP_CACHE_BYTES,
203					      MEMBLOCK_ALLOC_ACCESSIBLE);
204		if (!nd_pa) {
205			pr_err("Cannot find %zu bytes in node %d\n",
206			       nd_size, nid);
207			return;
208		}
209	}
210	nd = __va(nd_pa);
211
212	/* report and initialize */
213	printk(KERN_INFO "NODE_DATA(%d) allocated [mem %#010Lx-%#010Lx]\n", nid,
214	       nd_pa, nd_pa + nd_size - 1);
215	tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
216	if (tnid != nid)
217		printk(KERN_INFO "    NODE_DATA(%d) on node %d\n", nid, tnid);
218
219	node_data[nid] = nd;
220	memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
221
222	node_set_online(nid);
223}
224
225/**
226 * numa_cleanup_meminfo - Cleanup a numa_meminfo
227 * @mi: numa_meminfo to clean up
228 *
229 * Sanitize @mi by merging and removing unncessary memblks.  Also check for
230 * conflicts and clear unused memblks.
231 *
232 * RETURNS:
233 * 0 on success, -errno on failure.
234 */
235int __init numa_cleanup_meminfo(struct numa_meminfo *mi)
236{
237	const u64 low = 0;
238	const u64 high = PFN_PHYS(max_pfn);
239	int i, j, k;
240
241	/* first, trim all entries */
242	for (i = 0; i < mi->nr_blks; i++) {
243		struct numa_memblk *bi = &mi->blk[i];
244
245		/* make sure all blocks are inside the limits */
 
 
 
 
 
 
 
246		bi->start = max(bi->start, low);
247		bi->end = min(bi->end, high);
248
249		/* and there's no empty or non-exist block */
250		if (bi->start >= bi->end ||
251		    !memblock_overlaps_region(&memblock.memory,
252			bi->start, bi->end - bi->start))
 
 
 
 
 
253			numa_remove_memblk_from(i--, mi);
254	}
255
256	/* merge neighboring / overlapping entries */
257	for (i = 0; i < mi->nr_blks; i++) {
258		struct numa_memblk *bi = &mi->blk[i];
259
260		for (j = i + 1; j < mi->nr_blks; j++) {
261			struct numa_memblk *bj = &mi->blk[j];
262			u64 start, end;
263
264			/*
265			 * See whether there are overlapping blocks.  Whine
266			 * about but allow overlaps of the same nid.  They
267			 * will be merged below.
268			 */
269			if (bi->end > bj->start && bi->start < bj->end) {
270				if (bi->nid != bj->nid) {
271					pr_err("NUMA: node %d [mem %#010Lx-%#010Lx] overlaps with node %d [mem %#010Lx-%#010Lx]\n",
272					       bi->nid, bi->start, bi->end - 1,
273					       bj->nid, bj->start, bj->end - 1);
274					return -EINVAL;
275				}
276				pr_warning("NUMA: Warning: node %d [mem %#010Lx-%#010Lx] overlaps with itself [mem %#010Lx-%#010Lx]\n",
277					   bi->nid, bi->start, bi->end - 1,
278					   bj->start, bj->end - 1);
279			}
280
281			/*
282			 * Join together blocks on the same node, holes
283			 * between which don't overlap with memory on other
284			 * nodes.
285			 */
286			if (bi->nid != bj->nid)
287				continue;
288			start = min(bi->start, bj->start);
289			end = max(bi->end, bj->end);
290			for (k = 0; k < mi->nr_blks; k++) {
291				struct numa_memblk *bk = &mi->blk[k];
292
293				if (bi->nid == bk->nid)
294					continue;
295				if (start < bk->end && end > bk->start)
296					break;
297			}
298			if (k < mi->nr_blks)
299				continue;
300			printk(KERN_INFO "NUMA: Node %d [mem %#010Lx-%#010Lx] + [mem %#010Lx-%#010Lx] -> [mem %#010Lx-%#010Lx]\n",
301			       bi->nid, bi->start, bi->end - 1, bj->start,
302			       bj->end - 1, start, end - 1);
303			bi->start = start;
304			bi->end = end;
305			numa_remove_memblk_from(j--, mi);
306		}
307	}
308
309	/* clear unused ones */
310	for (i = mi->nr_blks; i < ARRAY_SIZE(mi->blk); i++) {
311		mi->blk[i].start = mi->blk[i].end = 0;
312		mi->blk[i].nid = NUMA_NO_NODE;
313	}
314
315	return 0;
316}
317
318/*
319 * Set nodes, which have memory in @mi, in *@nodemask.
320 */
321static void __init numa_nodemask_from_meminfo(nodemask_t *nodemask,
322					      const struct numa_meminfo *mi)
323{
324	int i;
325
326	for (i = 0; i < ARRAY_SIZE(mi->blk); i++)
327		if (mi->blk[i].start != mi->blk[i].end &&
328		    mi->blk[i].nid != NUMA_NO_NODE)
329			node_set(mi->blk[i].nid, *nodemask);
330}
331
332/**
333 * numa_reset_distance - Reset NUMA distance table
334 *
335 * The current table is freed.  The next numa_set_distance() call will
336 * create a new one.
337 */
338void __init numa_reset_distance(void)
339{
340	size_t size = numa_distance_cnt * numa_distance_cnt * sizeof(numa_distance[0]);
341
342	/* numa_distance could be 1LU marking allocation failure, test cnt */
343	if (numa_distance_cnt)
344		memblock_free(__pa(numa_distance), size);
345	numa_distance_cnt = 0;
346	numa_distance = NULL;	/* enable table creation */
347}
348
349static int __init numa_alloc_distance(void)
350{
351	nodemask_t nodes_parsed;
352	size_t size;
353	int i, j, cnt = 0;
354	u64 phys;
355
356	/* size the new table and allocate it */
357	nodes_parsed = numa_nodes_parsed;
358	numa_nodemask_from_meminfo(&nodes_parsed, &numa_meminfo);
359
360	for_each_node_mask(i, nodes_parsed)
361		cnt = i;
362	cnt++;
363	size = cnt * cnt * sizeof(numa_distance[0]);
364
365	phys = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped),
366				      size, PAGE_SIZE);
367	if (!phys) {
368		pr_warning("NUMA: Warning: can't allocate distance table!\n");
369		/* don't retry until explicitly reset */
370		numa_distance = (void *)1LU;
371		return -ENOMEM;
372	}
373	memblock_reserve(phys, size);
374
375	numa_distance = __va(phys);
376	numa_distance_cnt = cnt;
377
378	/* fill with the default distances */
379	for (i = 0; i < cnt; i++)
380		for (j = 0; j < cnt; j++)
381			numa_distance[i * cnt + j] = i == j ?
382				LOCAL_DISTANCE : REMOTE_DISTANCE;
383	printk(KERN_DEBUG "NUMA: Initialized distance table, cnt=%d\n", cnt);
384
385	return 0;
386}
387
388/**
389 * numa_set_distance - Set NUMA distance from one NUMA to another
390 * @from: the 'from' node to set distance
391 * @to: the 'to'  node to set distance
392 * @distance: NUMA distance
393 *
394 * Set the distance from node @from to @to to @distance.  If distance table
395 * doesn't exist, one which is large enough to accommodate all the currently
396 * known nodes will be created.
397 *
398 * If such table cannot be allocated, a warning is printed and further
399 * calls are ignored until the distance table is reset with
400 * numa_reset_distance().
401 *
402 * If @from or @to is higher than the highest known node or lower than zero
403 * at the time of table creation or @distance doesn't make sense, the call
404 * is ignored.
405 * This is to allow simplification of specific NUMA config implementations.
406 */
407void __init numa_set_distance(int from, int to, int distance)
408{
409	if (!numa_distance && numa_alloc_distance() < 0)
410		return;
411
412	if (from >= numa_distance_cnt || to >= numa_distance_cnt ||
413			from < 0 || to < 0) {
414		pr_warn_once("NUMA: Warning: node ids are out of bound, from=%d to=%d distance=%d\n",
415			    from, to, distance);
416		return;
417	}
418
419	if ((u8)distance != distance ||
420	    (from == to && distance != LOCAL_DISTANCE)) {
421		pr_warn_once("NUMA: Warning: invalid distance parameter, from=%d to=%d distance=%d\n",
422			     from, to, distance);
423		return;
424	}
425
426	numa_distance[from * numa_distance_cnt + to] = distance;
427}
428
429int __node_distance(int from, int to)
430{
431	if (from >= numa_distance_cnt || to >= numa_distance_cnt)
432		return from == to ? LOCAL_DISTANCE : REMOTE_DISTANCE;
433	return numa_distance[from * numa_distance_cnt + to];
434}
435EXPORT_SYMBOL(__node_distance);
436
437/*
438 * Sanity check to catch more bad NUMA configurations (they are amazingly
439 * common).  Make sure the nodes cover all memory.
440 */
441static bool __init numa_meminfo_cover_memory(const struct numa_meminfo *mi)
442{
443	u64 numaram, e820ram;
444	int i;
445
446	numaram = 0;
447	for (i = 0; i < mi->nr_blks; i++) {
448		u64 s = mi->blk[i].start >> PAGE_SHIFT;
449		u64 e = mi->blk[i].end >> PAGE_SHIFT;
450		numaram += e - s;
451		numaram -= __absent_pages_in_range(mi->blk[i].nid, s, e);
452		if ((s64)numaram < 0)
453			numaram = 0;
454	}
455
456	e820ram = max_pfn - absent_pages_in_range(0, max_pfn);
457
458	/* We seem to lose 3 pages somewhere. Allow 1M of slack. */
459	if ((s64)(e820ram - numaram) >= (1 << (20 - PAGE_SHIFT))) {
460		printk(KERN_ERR "NUMA: nodes only cover %LuMB of your %LuMB e820 RAM. Not used.\n",
461		       (numaram << PAGE_SHIFT) >> 20,
462		       (e820ram << PAGE_SHIFT) >> 20);
463		return false;
464	}
465	return true;
466}
467
468/*
469 * Mark all currently memblock-reserved physical memory (which covers the
470 * kernel's own memory ranges) as hot-unswappable.
471 */
472static void __init numa_clear_kernel_node_hotplug(void)
473{
474	nodemask_t reserved_nodemask = NODE_MASK_NONE;
475	struct memblock_region *mb_region;
476	int i;
477
478	/*
479	 * We have to do some preprocessing of memblock regions, to
480	 * make them suitable for reservation.
481	 *
482	 * At this time, all memory regions reserved by memblock are
483	 * used by the kernel, but those regions are not split up
484	 * along node boundaries yet, and don't necessarily have their
485	 * node ID set yet either.
486	 *
487	 * So iterate over all memory known to the x86 architecture,
488	 * and use those ranges to set the nid in memblock.reserved.
489	 * This will split up the memblock regions along node
490	 * boundaries and will set the node IDs as well.
491	 */
492	for (i = 0; i < numa_meminfo.nr_blks; i++) {
493		struct numa_memblk *mb = numa_meminfo.blk + i;
494		int ret;
495
496		ret = memblock_set_node(mb->start, mb->end - mb->start, &memblock.reserved, mb->nid);
497		WARN_ON_ONCE(ret);
498	}
499
500	/*
501	 * Now go over all reserved memblock regions, to construct a
502	 * node mask of all kernel reserved memory areas.
503	 *
504	 * [ Note, when booting with mem=nn[kMG] or in a kdump kernel,
505	 *   numa_meminfo might not include all memblock.reserved
506	 *   memory ranges, because quirks such as trim_snb_memory()
507	 *   reserve specific pages for Sandy Bridge graphics. ]
508	 */
509	for_each_memblock(reserved, mb_region) {
510		if (mb_region->nid != MAX_NUMNODES)
511			node_set(mb_region->nid, reserved_nodemask);
 
 
512	}
513
514	/*
515	 * Finally, clear the MEMBLOCK_HOTPLUG flag for all memory
516	 * belonging to the reserved node mask.
517	 *
518	 * Note that this will include memory regions that reside
519	 * on nodes that contain kernel memory - entire nodes
520	 * become hot-unpluggable:
521	 */
522	for (i = 0; i < numa_meminfo.nr_blks; i++) {
523		struct numa_memblk *mb = numa_meminfo.blk + i;
524
525		if (!node_isset(mb->nid, reserved_nodemask))
526			continue;
527
528		memblock_clear_hotplug(mb->start, mb->end - mb->start);
529	}
530}
531
532static int __init numa_register_memblks(struct numa_meminfo *mi)
533{
534	unsigned long uninitialized_var(pfn_align);
535	int i, nid;
536
537	/* Account for nodes with cpus and no memory */
538	node_possible_map = numa_nodes_parsed;
539	numa_nodemask_from_meminfo(&node_possible_map, mi);
540	if (WARN_ON(nodes_empty(node_possible_map)))
541		return -EINVAL;
542
543	for (i = 0; i < mi->nr_blks; i++) {
544		struct numa_memblk *mb = &mi->blk[i];
545		memblock_set_node(mb->start, mb->end - mb->start,
546				  &memblock.memory, mb->nid);
547	}
548
549	/*
550	 * At very early time, the kernel have to use some memory such as
551	 * loading the kernel image. We cannot prevent this anyway. So any
552	 * node the kernel resides in should be un-hotpluggable.
553	 *
554	 * And when we come here, alloc node data won't fail.
555	 */
556	numa_clear_kernel_node_hotplug();
557
558	/*
559	 * If sections array is gonna be used for pfn -> nid mapping, check
560	 * whether its granularity is fine enough.
561	 */
562#ifdef NODE_NOT_IN_PAGE_FLAGS
563	pfn_align = node_map_pfn_alignment();
564	if (pfn_align && pfn_align < PAGES_PER_SECTION) {
565		printk(KERN_WARNING "Node alignment %LuMB < min %LuMB, rejecting NUMA config\n",
566		       PFN_PHYS(pfn_align) >> 20,
567		       PFN_PHYS(PAGES_PER_SECTION) >> 20);
568		return -EINVAL;
 
 
569	}
570#endif
571	if (!numa_meminfo_cover_memory(mi))
572		return -EINVAL;
573
574	/* Finally register nodes. */
575	for_each_node_mask(nid, node_possible_map) {
576		u64 start = PFN_PHYS(max_pfn);
577		u64 end = 0;
578
579		for (i = 0; i < mi->nr_blks; i++) {
580			if (nid != mi->blk[i].nid)
581				continue;
582			start = min(mi->blk[i].start, start);
583			end = max(mi->blk[i].end, end);
584		}
585
586		if (start >= end)
587			continue;
588
589		/*
590		 * Don't confuse VM with a node that doesn't have the
591		 * minimum amount of memory:
592		 */
593		if (end && (end - start) < NODE_MIN_SIZE)
594			continue;
595
596		alloc_node_data(nid);
597	}
598
599	/* Dump memblock with node info and return. */
600	memblock_dump_all();
601	return 0;
602}
603
604/*
605 * There are unfortunately some poorly designed mainboards around that
606 * only connect memory to a single CPU. This breaks the 1:1 cpu->node
607 * mapping. To avoid this fill in the mapping for all possible CPUs,
608 * as the number of CPUs is not known yet. We round robin the existing
609 * nodes.
610 */
611static void __init numa_init_array(void)
612{
613	int rr, i;
614
615	rr = first_node(node_online_map);
616	for (i = 0; i < nr_cpu_ids; i++) {
617		if (early_cpu_to_node(i) != NUMA_NO_NODE)
618			continue;
619		numa_set_node(i, rr);
620		rr = next_node(rr, node_online_map);
621		if (rr == MAX_NUMNODES)
622			rr = first_node(node_online_map);
623	}
624}
625
626static int __init numa_init(int (*init_func)(void))
627{
628	int i;
629	int ret;
630
631	for (i = 0; i < MAX_LOCAL_APIC; i++)
632		set_apicid_to_node(i, NUMA_NO_NODE);
633
634	nodes_clear(numa_nodes_parsed);
635	nodes_clear(node_possible_map);
636	nodes_clear(node_online_map);
637	memset(&numa_meminfo, 0, sizeof(numa_meminfo));
638	WARN_ON(memblock_set_node(0, ULLONG_MAX, &memblock.memory,
639				  MAX_NUMNODES));
640	WARN_ON(memblock_set_node(0, ULLONG_MAX, &memblock.reserved,
641				  MAX_NUMNODES));
642	/* In case that parsing SRAT failed. */
643	WARN_ON(memblock_clear_hotplug(0, ULLONG_MAX));
644	numa_reset_distance();
645
646	ret = init_func();
647	if (ret < 0)
648		return ret;
649
650	/*
651	 * We reset memblock back to the top-down direction
652	 * here because if we configured ACPI_NUMA, we have
653	 * parsed SRAT in init_func(). It is ok to have the
654	 * reset here even if we did't configure ACPI_NUMA
655	 * or acpi numa init fails and fallbacks to dummy
656	 * numa init.
657	 */
658	memblock_set_bottom_up(false);
659
660	ret = numa_cleanup_meminfo(&numa_meminfo);
661	if (ret < 0)
662		return ret;
663
664	numa_emulation(&numa_meminfo, numa_distance_cnt);
665
666	ret = numa_register_memblks(&numa_meminfo);
667	if (ret < 0)
668		return ret;
669
670	for (i = 0; i < nr_cpu_ids; i++) {
671		int nid = early_cpu_to_node(i);
672
673		if (nid == NUMA_NO_NODE)
674			continue;
675		if (!node_online(nid))
676			numa_clear_node(i);
677	}
678	numa_init_array();
679
680	return 0;
681}
682
683/**
684 * dummy_numa_init - Fallback dummy NUMA init
685 *
686 * Used if there's no underlying NUMA architecture, NUMA initialization
687 * fails, or NUMA is disabled on the command line.
688 *
689 * Must online at least one node and add memory blocks that cover all
690 * allowed memory.  This function must not fail.
691 */
692static int __init dummy_numa_init(void)
693{
694	printk(KERN_INFO "%s\n",
695	       numa_off ? "NUMA turned off" : "No NUMA configuration found");
696	printk(KERN_INFO "Faking a node at [mem %#018Lx-%#018Lx]\n",
697	       0LLU, PFN_PHYS(max_pfn) - 1);
698
699	node_set(0, numa_nodes_parsed);
700	numa_add_memblk(0, 0, PFN_PHYS(max_pfn));
701
702	return 0;
703}
704
705/**
706 * x86_numa_init - Initialize NUMA
707 *
708 * Try each configured NUMA initialization method until one succeeds.  The
709 * last fallback is dummy single node config encomapssing whole memory and
710 * never fails.
711 */
712void __init x86_numa_init(void)
713{
714	if (!numa_off) {
715#ifdef CONFIG_ACPI_NUMA
716		if (!numa_init(x86_acpi_numa_init))
717			return;
718#endif
719#ifdef CONFIG_AMD_NUMA
720		if (!numa_init(amd_numa_init))
721			return;
722#endif
 
 
723	}
724
725	numa_init(dummy_numa_init);
726}
727
728static __init int find_near_online_node(int node)
 
 
 
 
 
 
 
 
 
 
 
 
 
729{
730	int n, val;
731	int min_val = INT_MAX;
732	int best_node = -1;
733
734	for_each_online_node(n) {
735		val = node_distance(node, n);
736
737		if (val < min_val) {
738			min_val = val;
739			best_node = n;
740		}
741	}
742
743	return best_node;
 
 
 
 
 
 
 
 
 
 
 
744}
745
746/*
747 * Setup early cpu_to_node.
748 *
749 * Populate cpu_to_node[] only if x86_cpu_to_apicid[],
750 * and apicid_to_node[] tables have valid entries for a CPU.
751 * This means we skip cpu_to_node[] initialisation for NUMA
752 * emulation and faking node case (when running a kernel compiled
753 * for NUMA on a non NUMA box), which is OK as cpu_to_node[]
754 * is already initialized in a round robin manner at numa_init_array,
755 * prior to this call, and this initialization is good enough
756 * for the fake NUMA cases.
757 *
758 * Called before the per_cpu areas are setup.
759 */
760void __init init_cpu_to_node(void)
761{
762	int cpu;
763	u16 *cpu_to_apicid = early_per_cpu_ptr(x86_cpu_to_apicid);
764
765	BUG_ON(cpu_to_apicid == NULL);
766
767	for_each_possible_cpu(cpu) {
768		int node = numa_cpu_node(cpu);
769
770		if (node == NUMA_NO_NODE)
771			continue;
 
 
 
 
 
 
 
 
 
 
772		if (!node_online(node))
773			node = find_near_online_node(node);
 
774		numa_set_node(cpu, node);
775	}
776}
777
778#ifndef CONFIG_DEBUG_PER_CPU_MAPS
779
780# ifndef CONFIG_NUMA_EMU
781void numa_add_cpu(int cpu)
782{
783	cpumask_set_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
784}
785
786void numa_remove_cpu(int cpu)
787{
788	cpumask_clear_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
789}
790# endif	/* !CONFIG_NUMA_EMU */
791
792#else	/* !CONFIG_DEBUG_PER_CPU_MAPS */
793
794int __cpu_to_node(int cpu)
795{
796	if (early_per_cpu_ptr(x86_cpu_to_node_map)) {
797		printk(KERN_WARNING
798			"cpu_to_node(%d): usage too early!\n", cpu);
799		dump_stack();
800		return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
801	}
802	return per_cpu(x86_cpu_to_node_map, cpu);
803}
804EXPORT_SYMBOL(__cpu_to_node);
805
806/*
807 * Same function as cpu_to_node() but used if called before the
808 * per_cpu areas are setup.
809 */
810int early_cpu_to_node(int cpu)
811{
812	if (early_per_cpu_ptr(x86_cpu_to_node_map))
813		return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
814
815	if (!cpu_possible(cpu)) {
816		printk(KERN_WARNING
817			"early_cpu_to_node(%d): no per_cpu area!\n", cpu);
818		dump_stack();
819		return NUMA_NO_NODE;
820	}
821	return per_cpu(x86_cpu_to_node_map, cpu);
822}
823
824void debug_cpumask_set_cpu(int cpu, int node, bool enable)
825{
826	struct cpumask *mask;
827
828	if (node == NUMA_NO_NODE) {
829		/* early_cpu_to_node() already emits a warning and trace */
830		return;
831	}
832	mask = node_to_cpumask_map[node];
833	if (!mask) {
834		pr_err("node_to_cpumask_map[%i] NULL\n", node);
835		dump_stack();
836		return;
837	}
838
839	if (enable)
840		cpumask_set_cpu(cpu, mask);
841	else
842		cpumask_clear_cpu(cpu, mask);
843
844	printk(KERN_DEBUG "%s cpu %d node %d: mask now %*pbl\n",
845		enable ? "numa_add_cpu" : "numa_remove_cpu",
846		cpu, node, cpumask_pr_args(mask));
847	return;
848}
849
850# ifndef CONFIG_NUMA_EMU
851static void numa_set_cpumask(int cpu, bool enable)
852{
853	debug_cpumask_set_cpu(cpu, early_cpu_to_node(cpu), enable);
854}
855
856void numa_add_cpu(int cpu)
857{
858	numa_set_cpumask(cpu, true);
859}
860
861void numa_remove_cpu(int cpu)
862{
863	numa_set_cpumask(cpu, false);
864}
865# endif	/* !CONFIG_NUMA_EMU */
866
867/*
868 * Returns a pointer to the bitmask of CPUs on Node 'node'.
869 */
870const struct cpumask *cpumask_of_node(int node)
871{
872	if (node >= nr_node_ids) {
873		printk(KERN_WARNING
874			"cpumask_of_node(%d): node > nr_node_ids(%d)\n",
875			node, nr_node_ids);
876		dump_stack();
877		return cpu_none_mask;
878	}
879	if (node_to_cpumask_map[node] == NULL) {
880		printk(KERN_WARNING
881			"cpumask_of_node(%d): no node_to_cpumask_map!\n",
882			node);
883		dump_stack();
884		return cpu_online_mask;
885	}
886	return node_to_cpumask_map[node];
887}
888EXPORT_SYMBOL(cpumask_of_node);
889
890#endif	/* !CONFIG_DEBUG_PER_CPU_MAPS */
891
892#ifdef CONFIG_MEMORY_HOTPLUG
893int memory_add_physaddr_to_nid(u64 start)
894{
895	struct numa_meminfo *mi = &numa_meminfo;
896	int nid = mi->blk[0].nid;
897	int i;
898
899	for (i = 0; i < mi->nr_blks; i++)
900		if (mi->blk[i].start <= start && mi->blk[i].end > start)
901			nid = mi->blk[i].nid;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
902	return nid;
903}
904EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
 
905#endif
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* Common code for 32 and 64-bit NUMA */
   3#include <linux/acpi.h>
   4#include <linux/kernel.h>
   5#include <linux/mm.h>
   6#include <linux/of.h>
   7#include <linux/string.h>
   8#include <linux/init.h>
 
   9#include <linux/memblock.h>
  10#include <linux/mmzone.h>
  11#include <linux/ctype.h>
 
  12#include <linux/nodemask.h>
  13#include <linux/sched.h>
  14#include <linux/topology.h>
  15#include <linux/sort.h>
  16
  17#include <asm/e820/api.h>
  18#include <asm/proto.h>
  19#include <asm/dma.h>
 
  20#include <asm/amd_nb.h>
  21
  22#include "numa_internal.h"
  23
  24int numa_off;
  25nodemask_t numa_nodes_parsed __initdata;
  26
  27struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
  28EXPORT_SYMBOL(node_data);
  29
  30static struct numa_meminfo numa_meminfo __initdata_or_meminfo;
  31static struct numa_meminfo numa_reserved_meminfo __initdata_or_meminfo;
 
 
 
  32
  33static int numa_distance_cnt;
  34static u8 *numa_distance;
  35
  36static __init int numa_setup(char *opt)
  37{
  38	if (!opt)
  39		return -EINVAL;
  40	if (!strncmp(opt, "off", 3))
  41		numa_off = 1;
 
  42	if (!strncmp(opt, "fake=", 5))
  43		return numa_emu_cmdline(opt + 5);
 
 
  44	if (!strncmp(opt, "noacpi", 6))
  45		disable_srat();
  46	if (!strncmp(opt, "nohmat", 6))
  47		disable_hmat();
  48	return 0;
  49}
  50early_param("numa", numa_setup);
  51
  52/*
  53 * apicid, cpu, node mappings
  54 */
  55s16 __apicid_to_node[MAX_LOCAL_APIC] = {
  56	[0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE
  57};
  58
  59int numa_cpu_node(int cpu)
  60{
  61	u32 apicid = early_per_cpu(x86_cpu_to_apicid, cpu);
  62
  63	if (apicid != BAD_APICID)
  64		return __apicid_to_node[apicid];
  65	return NUMA_NO_NODE;
  66}
  67
  68cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
  69EXPORT_SYMBOL(node_to_cpumask_map);
  70
  71/*
  72 * Map cpu index to node index
  73 */
  74DEFINE_EARLY_PER_CPU(int, x86_cpu_to_node_map, NUMA_NO_NODE);
  75EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_node_map);
  76
  77void numa_set_node(int cpu, int node)
  78{
  79	int *cpu_to_node_map = early_per_cpu_ptr(x86_cpu_to_node_map);
  80
  81	/* early setting, no percpu area yet */
  82	if (cpu_to_node_map) {
  83		cpu_to_node_map[cpu] = node;
  84		return;
  85	}
  86
  87#ifdef CONFIG_DEBUG_PER_CPU_MAPS
  88	if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) {
  89		printk(KERN_ERR "numa_set_node: invalid cpu# (%d)\n", cpu);
  90		dump_stack();
  91		return;
  92	}
  93#endif
  94	per_cpu(x86_cpu_to_node_map, cpu) = node;
  95
  96	set_cpu_numa_node(cpu, node);
  97}
  98
  99void numa_clear_node(int cpu)
 100{
 101	numa_set_node(cpu, NUMA_NO_NODE);
 102}
 103
 104/*
 105 * Allocate node_to_cpumask_map based on number of available nodes
 106 * Requires node_possible_map to be valid.
 107 *
 108 * Note: cpumask_of_node() is not valid until after this is done.
 109 * (Use CONFIG_DEBUG_PER_CPU_MAPS to check this.)
 110 */
 111void __init setup_node_to_cpumask_map(void)
 112{
 113	unsigned int node;
 114
 115	/* setup nr_node_ids if not done yet */
 116	if (nr_node_ids == MAX_NUMNODES)
 117		setup_nr_node_ids();
 118
 119	/* allocate the map */
 120	for (node = 0; node < nr_node_ids; node++)
 121		alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
 122
 123	/* cpumask_of_node() will now work */
 124	pr_debug("Node to cpumask map for %u nodes\n", nr_node_ids);
 125}
 126
 127static int __init numa_add_memblk_to(int nid, u64 start, u64 end,
 128				     struct numa_meminfo *mi)
 129{
 130	/* ignore zero length blks */
 131	if (start == end)
 132		return 0;
 133
 134	/* whine about and ignore invalid blks */
 135	if (start > end || nid < 0 || nid >= MAX_NUMNODES) {
 136		pr_warn("Warning: invalid memblk node %d [mem %#010Lx-%#010Lx]\n",
 137			nid, start, end - 1);
 138		return 0;
 139	}
 140
 141	if (mi->nr_blks >= NR_NODE_MEMBLKS) {
 142		pr_err("too many memblk ranges\n");
 143		return -EINVAL;
 144	}
 145
 146	mi->blk[mi->nr_blks].start = start;
 147	mi->blk[mi->nr_blks].end = end;
 148	mi->blk[mi->nr_blks].nid = nid;
 149	mi->nr_blks++;
 150	return 0;
 151}
 152
 153/**
 154 * numa_remove_memblk_from - Remove one numa_memblk from a numa_meminfo
 155 * @idx: Index of memblk to remove
 156 * @mi: numa_meminfo to remove memblk from
 157 *
 158 * Remove @idx'th numa_memblk from @mi by shifting @mi->blk[] and
 159 * decrementing @mi->nr_blks.
 160 */
 161void __init numa_remove_memblk_from(int idx, struct numa_meminfo *mi)
 162{
 163	mi->nr_blks--;
 164	memmove(&mi->blk[idx], &mi->blk[idx + 1],
 165		(mi->nr_blks - idx) * sizeof(mi->blk[0]));
 166}
 167
 168/**
 169 * numa_move_tail_memblk - Move a numa_memblk from one numa_meminfo to another
 170 * @dst: numa_meminfo to append block to
 171 * @idx: Index of memblk to remove
 172 * @src: numa_meminfo to remove memblk from
 173 */
 174static void __init numa_move_tail_memblk(struct numa_meminfo *dst, int idx,
 175					 struct numa_meminfo *src)
 176{
 177	dst->blk[dst->nr_blks++] = src->blk[idx];
 178	numa_remove_memblk_from(idx, src);
 179}
 180
 181/**
 182 * numa_add_memblk - Add one numa_memblk to numa_meminfo
 183 * @nid: NUMA node ID of the new memblk
 184 * @start: Start address of the new memblk
 185 * @end: End address of the new memblk
 186 *
 187 * Add a new memblk to the default numa_meminfo.
 188 *
 189 * RETURNS:
 190 * 0 on success, -errno on failure.
 191 */
 192int __init numa_add_memblk(int nid, u64 start, u64 end)
 193{
 194	return numa_add_memblk_to(nid, start, end, &numa_meminfo);
 195}
 196
 197/* Allocate NODE_DATA for a node on the local memory */
 198static void __init alloc_node_data(int nid)
 199{
 200	const size_t nd_size = roundup(sizeof(pg_data_t), PAGE_SIZE);
 201	u64 nd_pa;
 202	void *nd;
 203	int tnid;
 204
 205	/*
 206	 * Allocate node data.  Try node-local memory and then any node.
 207	 * Never allocate in DMA zone.
 208	 */
 209	nd_pa = memblock_phys_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid);
 210	if (!nd_pa) {
 211		pr_err("Cannot find %zu bytes in any node (initial node: %d)\n",
 212		       nd_size, nid);
 213		return;
 
 
 
 
 214	}
 215	nd = __va(nd_pa);
 216
 217	/* report and initialize */
 218	printk(KERN_INFO "NODE_DATA(%d) allocated [mem %#010Lx-%#010Lx]\n", nid,
 219	       nd_pa, nd_pa + nd_size - 1);
 220	tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
 221	if (tnid != nid)
 222		printk(KERN_INFO "    NODE_DATA(%d) on node %d\n", nid, tnid);
 223
 224	node_data[nid] = nd;
 225	memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
 226
 227	node_set_online(nid);
 228}
 229
 230/**
 231 * numa_cleanup_meminfo - Cleanup a numa_meminfo
 232 * @mi: numa_meminfo to clean up
 233 *
 234 * Sanitize @mi by merging and removing unnecessary memblks.  Also check for
 235 * conflicts and clear unused memblks.
 236 *
 237 * RETURNS:
 238 * 0 on success, -errno on failure.
 239 */
 240int __init numa_cleanup_meminfo(struct numa_meminfo *mi)
 241{
 242	const u64 low = 0;
 243	const u64 high = PFN_PHYS(max_pfn);
 244	int i, j, k;
 245
 246	/* first, trim all entries */
 247	for (i = 0; i < mi->nr_blks; i++) {
 248		struct numa_memblk *bi = &mi->blk[i];
 249
 250		/* move / save reserved memory ranges */
 251		if (!memblock_overlaps_region(&memblock.memory,
 252					bi->start, bi->end - bi->start)) {
 253			numa_move_tail_memblk(&numa_reserved_meminfo, i--, mi);
 254			continue;
 255		}
 256
 257		/* make sure all non-reserved blocks are inside the limits */
 258		bi->start = max(bi->start, low);
 
 259
 260		/* preserve info for non-RAM areas above 'max_pfn': */
 261		if (bi->end > high) {
 262			numa_add_memblk_to(bi->nid, high, bi->end,
 263					   &numa_reserved_meminfo);
 264			bi->end = high;
 265		}
 266
 267		/* and there's no empty block */
 268		if (bi->start >= bi->end)
 269			numa_remove_memblk_from(i--, mi);
 270	}
 271
 272	/* merge neighboring / overlapping entries */
 273	for (i = 0; i < mi->nr_blks; i++) {
 274		struct numa_memblk *bi = &mi->blk[i];
 275
 276		for (j = i + 1; j < mi->nr_blks; j++) {
 277			struct numa_memblk *bj = &mi->blk[j];
 278			u64 start, end;
 279
 280			/*
 281			 * See whether there are overlapping blocks.  Whine
 282			 * about but allow overlaps of the same nid.  They
 283			 * will be merged below.
 284			 */
 285			if (bi->end > bj->start && bi->start < bj->end) {
 286				if (bi->nid != bj->nid) {
 287					pr_err("node %d [mem %#010Lx-%#010Lx] overlaps with node %d [mem %#010Lx-%#010Lx]\n",
 288					       bi->nid, bi->start, bi->end - 1,
 289					       bj->nid, bj->start, bj->end - 1);
 290					return -EINVAL;
 291				}
 292				pr_warn("Warning: node %d [mem %#010Lx-%#010Lx] overlaps with itself [mem %#010Lx-%#010Lx]\n",
 293					bi->nid, bi->start, bi->end - 1,
 294					bj->start, bj->end - 1);
 295			}
 296
 297			/*
 298			 * Join together blocks on the same node, holes
 299			 * between which don't overlap with memory on other
 300			 * nodes.
 301			 */
 302			if (bi->nid != bj->nid)
 303				continue;
 304			start = min(bi->start, bj->start);
 305			end = max(bi->end, bj->end);
 306			for (k = 0; k < mi->nr_blks; k++) {
 307				struct numa_memblk *bk = &mi->blk[k];
 308
 309				if (bi->nid == bk->nid)
 310					continue;
 311				if (start < bk->end && end > bk->start)
 312					break;
 313			}
 314			if (k < mi->nr_blks)
 315				continue;
 316			printk(KERN_INFO "NUMA: Node %d [mem %#010Lx-%#010Lx] + [mem %#010Lx-%#010Lx] -> [mem %#010Lx-%#010Lx]\n",
 317			       bi->nid, bi->start, bi->end - 1, bj->start,
 318			       bj->end - 1, start, end - 1);
 319			bi->start = start;
 320			bi->end = end;
 321			numa_remove_memblk_from(j--, mi);
 322		}
 323	}
 324
 325	/* clear unused ones */
 326	for (i = mi->nr_blks; i < ARRAY_SIZE(mi->blk); i++) {
 327		mi->blk[i].start = mi->blk[i].end = 0;
 328		mi->blk[i].nid = NUMA_NO_NODE;
 329	}
 330
 331	return 0;
 332}
 333
 334/*
 335 * Set nodes, which have memory in @mi, in *@nodemask.
 336 */
 337static void __init numa_nodemask_from_meminfo(nodemask_t *nodemask,
 338					      const struct numa_meminfo *mi)
 339{
 340	int i;
 341
 342	for (i = 0; i < ARRAY_SIZE(mi->blk); i++)
 343		if (mi->blk[i].start != mi->blk[i].end &&
 344		    mi->blk[i].nid != NUMA_NO_NODE)
 345			node_set(mi->blk[i].nid, *nodemask);
 346}
 347
 348/**
 349 * numa_reset_distance - Reset NUMA distance table
 350 *
 351 * The current table is freed.  The next numa_set_distance() call will
 352 * create a new one.
 353 */
 354void __init numa_reset_distance(void)
 355{
 356	size_t size = numa_distance_cnt * numa_distance_cnt * sizeof(numa_distance[0]);
 357
 358	/* numa_distance could be 1LU marking allocation failure, test cnt */
 359	if (numa_distance_cnt)
 360		memblock_free(numa_distance, size);
 361	numa_distance_cnt = 0;
 362	numa_distance = NULL;	/* enable table creation */
 363}
 364
 365static int __init numa_alloc_distance(void)
 366{
 367	nodemask_t nodes_parsed;
 368	size_t size;
 369	int i, j, cnt = 0;
 370	u64 phys;
 371
 372	/* size the new table and allocate it */
 373	nodes_parsed = numa_nodes_parsed;
 374	numa_nodemask_from_meminfo(&nodes_parsed, &numa_meminfo);
 375
 376	for_each_node_mask(i, nodes_parsed)
 377		cnt = i;
 378	cnt++;
 379	size = cnt * cnt * sizeof(numa_distance[0]);
 380
 381	phys = memblock_phys_alloc_range(size, PAGE_SIZE, 0,
 382					 PFN_PHYS(max_pfn_mapped));
 383	if (!phys) {
 384		pr_warn("Warning: can't allocate distance table!\n");
 385		/* don't retry until explicitly reset */
 386		numa_distance = (void *)1LU;
 387		return -ENOMEM;
 388	}
 
 389
 390	numa_distance = __va(phys);
 391	numa_distance_cnt = cnt;
 392
 393	/* fill with the default distances */
 394	for (i = 0; i < cnt; i++)
 395		for (j = 0; j < cnt; j++)
 396			numa_distance[i * cnt + j] = i == j ?
 397				LOCAL_DISTANCE : REMOTE_DISTANCE;
 398	printk(KERN_DEBUG "NUMA: Initialized distance table, cnt=%d\n", cnt);
 399
 400	return 0;
 401}
 402
 403/**
 404 * numa_set_distance - Set NUMA distance from one NUMA to another
 405 * @from: the 'from' node to set distance
 406 * @to: the 'to'  node to set distance
 407 * @distance: NUMA distance
 408 *
 409 * Set the distance from node @from to @to to @distance.  If distance table
 410 * doesn't exist, one which is large enough to accommodate all the currently
 411 * known nodes will be created.
 412 *
 413 * If such table cannot be allocated, a warning is printed and further
 414 * calls are ignored until the distance table is reset with
 415 * numa_reset_distance().
 416 *
 417 * If @from or @to is higher than the highest known node or lower than zero
 418 * at the time of table creation or @distance doesn't make sense, the call
 419 * is ignored.
 420 * This is to allow simplification of specific NUMA config implementations.
 421 */
 422void __init numa_set_distance(int from, int to, int distance)
 423{
 424	if (!numa_distance && numa_alloc_distance() < 0)
 425		return;
 426
 427	if (from >= numa_distance_cnt || to >= numa_distance_cnt ||
 428			from < 0 || to < 0) {
 429		pr_warn_once("Warning: node ids are out of bound, from=%d to=%d distance=%d\n",
 430			     from, to, distance);
 431		return;
 432	}
 433
 434	if ((u8)distance != distance ||
 435	    (from == to && distance != LOCAL_DISTANCE)) {
 436		pr_warn_once("Warning: invalid distance parameter, from=%d to=%d distance=%d\n",
 437			     from, to, distance);
 438		return;
 439	}
 440
 441	numa_distance[from * numa_distance_cnt + to] = distance;
 442}
 443
 444int __node_distance(int from, int to)
 445{
 446	if (from >= numa_distance_cnt || to >= numa_distance_cnt)
 447		return from == to ? LOCAL_DISTANCE : REMOTE_DISTANCE;
 448	return numa_distance[from * numa_distance_cnt + to];
 449}
 450EXPORT_SYMBOL(__node_distance);
 451
 452/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 453 * Mark all currently memblock-reserved physical memory (which covers the
 454 * kernel's own memory ranges) as hot-unswappable.
 455 */
 456static void __init numa_clear_kernel_node_hotplug(void)
 457{
 458	nodemask_t reserved_nodemask = NODE_MASK_NONE;
 459	struct memblock_region *mb_region;
 460	int i;
 461
 462	/*
 463	 * We have to do some preprocessing of memblock regions, to
 464	 * make them suitable for reservation.
 465	 *
 466	 * At this time, all memory regions reserved by memblock are
 467	 * used by the kernel, but those regions are not split up
 468	 * along node boundaries yet, and don't necessarily have their
 469	 * node ID set yet either.
 470	 *
 471	 * So iterate over all memory known to the x86 architecture,
 472	 * and use those ranges to set the nid in memblock.reserved.
 473	 * This will split up the memblock regions along node
 474	 * boundaries and will set the node IDs as well.
 475	 */
 476	for (i = 0; i < numa_meminfo.nr_blks; i++) {
 477		struct numa_memblk *mb = numa_meminfo.blk + i;
 478		int ret;
 479
 480		ret = memblock_set_node(mb->start, mb->end - mb->start, &memblock.reserved, mb->nid);
 481		WARN_ON_ONCE(ret);
 482	}
 483
 484	/*
 485	 * Now go over all reserved memblock regions, to construct a
 486	 * node mask of all kernel reserved memory areas.
 487	 *
 488	 * [ Note, when booting with mem=nn[kMG] or in a kdump kernel,
 489	 *   numa_meminfo might not include all memblock.reserved
 490	 *   memory ranges, because quirks such as trim_snb_memory()
 491	 *   reserve specific pages for Sandy Bridge graphics. ]
 492	 */
 493	for_each_reserved_mem_region(mb_region) {
 494		int nid = memblock_get_region_node(mb_region);
 495
 496		if (nid != MAX_NUMNODES)
 497			node_set(nid, reserved_nodemask);
 498	}
 499
 500	/*
 501	 * Finally, clear the MEMBLOCK_HOTPLUG flag for all memory
 502	 * belonging to the reserved node mask.
 503	 *
 504	 * Note that this will include memory regions that reside
 505	 * on nodes that contain kernel memory - entire nodes
 506	 * become hot-unpluggable:
 507	 */
 508	for (i = 0; i < numa_meminfo.nr_blks; i++) {
 509		struct numa_memblk *mb = numa_meminfo.blk + i;
 510
 511		if (!node_isset(mb->nid, reserved_nodemask))
 512			continue;
 513
 514		memblock_clear_hotplug(mb->start, mb->end - mb->start);
 515	}
 516}
 517
 518static int __init numa_register_memblks(struct numa_meminfo *mi)
 519{
 
 520	int i, nid;
 521
 522	/* Account for nodes with cpus and no memory */
 523	node_possible_map = numa_nodes_parsed;
 524	numa_nodemask_from_meminfo(&node_possible_map, mi);
 525	if (WARN_ON(nodes_empty(node_possible_map)))
 526		return -EINVAL;
 527
 528	for (i = 0; i < mi->nr_blks; i++) {
 529		struct numa_memblk *mb = &mi->blk[i];
 530		memblock_set_node(mb->start, mb->end - mb->start,
 531				  &memblock.memory, mb->nid);
 532	}
 533
 534	/*
 535	 * At very early time, the kernel have to use some memory such as
 536	 * loading the kernel image. We cannot prevent this anyway. So any
 537	 * node the kernel resides in should be un-hotpluggable.
 538	 *
 539	 * And when we come here, alloc node data won't fail.
 540	 */
 541	numa_clear_kernel_node_hotplug();
 542
 543	/*
 544	 * If sections array is gonna be used for pfn -> nid mapping, check
 545	 * whether its granularity is fine enough.
 546	 */
 547	if (IS_ENABLED(NODE_NOT_IN_PAGE_FLAGS)) {
 548		unsigned long pfn_align = node_map_pfn_alignment();
 549
 550		if (pfn_align && pfn_align < PAGES_PER_SECTION) {
 551			pr_warn("Node alignment %LuMB < min %LuMB, rejecting NUMA config\n",
 552				PFN_PHYS(pfn_align) >> 20,
 553				PFN_PHYS(PAGES_PER_SECTION) >> 20);
 554			return -EINVAL;
 555		}
 556	}
 557
 558	if (!memblock_validate_numa_coverage(SZ_1M))
 559		return -EINVAL;
 560
 561	/* Finally register nodes. */
 562	for_each_node_mask(nid, node_possible_map) {
 563		u64 start = PFN_PHYS(max_pfn);
 564		u64 end = 0;
 565
 566		for (i = 0; i < mi->nr_blks; i++) {
 567			if (nid != mi->blk[i].nid)
 568				continue;
 569			start = min(mi->blk[i].start, start);
 570			end = max(mi->blk[i].end, end);
 571		}
 572
 573		if (start >= end)
 574			continue;
 575
 
 
 
 
 
 
 
 576		alloc_node_data(nid);
 577	}
 578
 579	/* Dump memblock with node info and return. */
 580	memblock_dump_all();
 581	return 0;
 582}
 583
 584/*
 585 * There are unfortunately some poorly designed mainboards around that
 586 * only connect memory to a single CPU. This breaks the 1:1 cpu->node
 587 * mapping. To avoid this fill in the mapping for all possible CPUs,
 588 * as the number of CPUs is not known yet. We round robin the existing
 589 * nodes.
 590 */
 591static void __init numa_init_array(void)
 592{
 593	int rr, i;
 594
 595	rr = first_node(node_online_map);
 596	for (i = 0; i < nr_cpu_ids; i++) {
 597		if (early_cpu_to_node(i) != NUMA_NO_NODE)
 598			continue;
 599		numa_set_node(i, rr);
 600		rr = next_node_in(rr, node_online_map);
 
 
 601	}
 602}
 603
 604static int __init numa_init(int (*init_func)(void))
 605{
 606	int i;
 607	int ret;
 608
 609	for (i = 0; i < MAX_LOCAL_APIC; i++)
 610		set_apicid_to_node(i, NUMA_NO_NODE);
 611
 612	nodes_clear(numa_nodes_parsed);
 613	nodes_clear(node_possible_map);
 614	nodes_clear(node_online_map);
 615	memset(&numa_meminfo, 0, sizeof(numa_meminfo));
 616	WARN_ON(memblock_set_node(0, ULLONG_MAX, &memblock.memory,
 617				  MAX_NUMNODES));
 618	WARN_ON(memblock_set_node(0, ULLONG_MAX, &memblock.reserved,
 619				  MAX_NUMNODES));
 620	/* In case that parsing SRAT failed. */
 621	WARN_ON(memblock_clear_hotplug(0, ULLONG_MAX));
 622	numa_reset_distance();
 623
 624	ret = init_func();
 625	if (ret < 0)
 626		return ret;
 627
 628	/*
 629	 * We reset memblock back to the top-down direction
 630	 * here because if we configured ACPI_NUMA, we have
 631	 * parsed SRAT in init_func(). It is ok to have the
 632	 * reset here even if we did't configure ACPI_NUMA
 633	 * or acpi numa init fails and fallbacks to dummy
 634	 * numa init.
 635	 */
 636	memblock_set_bottom_up(false);
 637
 638	ret = numa_cleanup_meminfo(&numa_meminfo);
 639	if (ret < 0)
 640		return ret;
 641
 642	numa_emulation(&numa_meminfo, numa_distance_cnt);
 643
 644	ret = numa_register_memblks(&numa_meminfo);
 645	if (ret < 0)
 646		return ret;
 647
 648	for (i = 0; i < nr_cpu_ids; i++) {
 649		int nid = early_cpu_to_node(i);
 650
 651		if (nid == NUMA_NO_NODE)
 652			continue;
 653		if (!node_online(nid))
 654			numa_clear_node(i);
 655	}
 656	numa_init_array();
 657
 658	return 0;
 659}
 660
 661/**
 662 * dummy_numa_init - Fallback dummy NUMA init
 663 *
 664 * Used if there's no underlying NUMA architecture, NUMA initialization
 665 * fails, or NUMA is disabled on the command line.
 666 *
 667 * Must online at least one node and add memory blocks that cover all
 668 * allowed memory.  This function must not fail.
 669 */
 670static int __init dummy_numa_init(void)
 671{
 672	printk(KERN_INFO "%s\n",
 673	       numa_off ? "NUMA turned off" : "No NUMA configuration found");
 674	printk(KERN_INFO "Faking a node at [mem %#018Lx-%#018Lx]\n",
 675	       0LLU, PFN_PHYS(max_pfn) - 1);
 676
 677	node_set(0, numa_nodes_parsed);
 678	numa_add_memblk(0, 0, PFN_PHYS(max_pfn));
 679
 680	return 0;
 681}
 682
 683/**
 684 * x86_numa_init - Initialize NUMA
 685 *
 686 * Try each configured NUMA initialization method until one succeeds.  The
 687 * last fallback is dummy single node config encompassing whole memory and
 688 * never fails.
 689 */
 690void __init x86_numa_init(void)
 691{
 692	if (!numa_off) {
 693#ifdef CONFIG_ACPI_NUMA
 694		if (!numa_init(x86_acpi_numa_init))
 695			return;
 696#endif
 697#ifdef CONFIG_AMD_NUMA
 698		if (!numa_init(amd_numa_init))
 699			return;
 700#endif
 701		if (acpi_disabled && !numa_init(of_numa_init))
 702			return;
 703	}
 704
 705	numa_init(dummy_numa_init);
 706}
 707
 708
 709/*
 710 * A node may exist which has one or more Generic Initiators but no CPUs and no
 711 * memory.
 712 *
 713 * This function must be called after init_cpu_to_node(), to ensure that any
 714 * memoryless CPU nodes have already been brought online, and before the
 715 * node_data[nid] is needed for zone list setup in build_all_zonelists().
 716 *
 717 * When this function is called, any nodes containing either memory and/or CPUs
 718 * will already be online and there is no need to do anything extra, even if
 719 * they also contain one or more Generic Initiators.
 720 */
 721void __init init_gi_nodes(void)
 722{
 723	int nid;
 
 
 
 
 
 
 
 
 
 
 
 724
 725	/*
 726	 * Exclude this node from
 727	 * bringup_nonboot_cpus
 728	 *  cpu_up
 729	 *   __try_online_node
 730	 *    register_one_node
 731	 * because node_subsys is not initialized yet.
 732	 * TODO remove dependency on node_online
 733	 */
 734	for_each_node_state(nid, N_GENERIC_INITIATOR)
 735		if (!node_online(nid))
 736			node_set_online(nid);
 737}
 738
 739/*
 740 * Setup early cpu_to_node.
 741 *
 742 * Populate cpu_to_node[] only if x86_cpu_to_apicid[],
 743 * and apicid_to_node[] tables have valid entries for a CPU.
 744 * This means we skip cpu_to_node[] initialisation for NUMA
 745 * emulation and faking node case (when running a kernel compiled
 746 * for NUMA on a non NUMA box), which is OK as cpu_to_node[]
 747 * is already initialized in a round robin manner at numa_init_array,
 748 * prior to this call, and this initialization is good enough
 749 * for the fake NUMA cases.
 750 *
 751 * Called before the per_cpu areas are setup.
 752 */
 753void __init init_cpu_to_node(void)
 754{
 755	int cpu;
 756	u32 *cpu_to_apicid = early_per_cpu_ptr(x86_cpu_to_apicid);
 757
 758	BUG_ON(cpu_to_apicid == NULL);
 759
 760	for_each_possible_cpu(cpu) {
 761		int node = numa_cpu_node(cpu);
 762
 763		if (node == NUMA_NO_NODE)
 764			continue;
 765
 766		/*
 767		 * Exclude this node from
 768		 * bringup_nonboot_cpus
 769		 *  cpu_up
 770		 *   __try_online_node
 771		 *    register_one_node
 772		 * because node_subsys is not initialized yet.
 773		 * TODO remove dependency on node_online
 774		 */
 775		if (!node_online(node))
 776			node_set_online(node);
 777
 778		numa_set_node(cpu, node);
 779	}
 780}
 781
 782#ifndef CONFIG_DEBUG_PER_CPU_MAPS
 783
 784# ifndef CONFIG_NUMA_EMU
 785void numa_add_cpu(int cpu)
 786{
 787	cpumask_set_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
 788}
 789
 790void numa_remove_cpu(int cpu)
 791{
 792	cpumask_clear_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
 793}
 794# endif	/* !CONFIG_NUMA_EMU */
 795
 796#else	/* !CONFIG_DEBUG_PER_CPU_MAPS */
 797
 798int __cpu_to_node(int cpu)
 799{
 800	if (early_per_cpu_ptr(x86_cpu_to_node_map)) {
 801		printk(KERN_WARNING
 802			"cpu_to_node(%d): usage too early!\n", cpu);
 803		dump_stack();
 804		return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
 805	}
 806	return per_cpu(x86_cpu_to_node_map, cpu);
 807}
 808EXPORT_SYMBOL(__cpu_to_node);
 809
 810/*
 811 * Same function as cpu_to_node() but used if called before the
 812 * per_cpu areas are setup.
 813 */
 814int early_cpu_to_node(int cpu)
 815{
 816	if (early_per_cpu_ptr(x86_cpu_to_node_map))
 817		return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
 818
 819	if (!cpu_possible(cpu)) {
 820		printk(KERN_WARNING
 821			"early_cpu_to_node(%d): no per_cpu area!\n", cpu);
 822		dump_stack();
 823		return NUMA_NO_NODE;
 824	}
 825	return per_cpu(x86_cpu_to_node_map, cpu);
 826}
 827
 828void debug_cpumask_set_cpu(int cpu, int node, bool enable)
 829{
 830	struct cpumask *mask;
 831
 832	if (node == NUMA_NO_NODE) {
 833		/* early_cpu_to_node() already emits a warning and trace */
 834		return;
 835	}
 836	mask = node_to_cpumask_map[node];
 837	if (!cpumask_available(mask)) {
 838		pr_err("node_to_cpumask_map[%i] NULL\n", node);
 839		dump_stack();
 840		return;
 841	}
 842
 843	if (enable)
 844		cpumask_set_cpu(cpu, mask);
 845	else
 846		cpumask_clear_cpu(cpu, mask);
 847
 848	printk(KERN_DEBUG "%s cpu %d node %d: mask now %*pbl\n",
 849		enable ? "numa_add_cpu" : "numa_remove_cpu",
 850		cpu, node, cpumask_pr_args(mask));
 851	return;
 852}
 853
 854# ifndef CONFIG_NUMA_EMU
 855static void numa_set_cpumask(int cpu, bool enable)
 856{
 857	debug_cpumask_set_cpu(cpu, early_cpu_to_node(cpu), enable);
 858}
 859
 860void numa_add_cpu(int cpu)
 861{
 862	numa_set_cpumask(cpu, true);
 863}
 864
 865void numa_remove_cpu(int cpu)
 866{
 867	numa_set_cpumask(cpu, false);
 868}
 869# endif	/* !CONFIG_NUMA_EMU */
 870
 871/*
 872 * Returns a pointer to the bitmask of CPUs on Node 'node'.
 873 */
 874const struct cpumask *cpumask_of_node(int node)
 875{
 876	if ((unsigned)node >= nr_node_ids) {
 877		printk(KERN_WARNING
 878			"cpumask_of_node(%d): (unsigned)node >= nr_node_ids(%u)\n",
 879			node, nr_node_ids);
 880		dump_stack();
 881		return cpu_none_mask;
 882	}
 883	if (!cpumask_available(node_to_cpumask_map[node])) {
 884		printk(KERN_WARNING
 885			"cpumask_of_node(%d): no node_to_cpumask_map!\n",
 886			node);
 887		dump_stack();
 888		return cpu_online_mask;
 889	}
 890	return node_to_cpumask_map[node];
 891}
 892EXPORT_SYMBOL(cpumask_of_node);
 893
 894#endif	/* !CONFIG_DEBUG_PER_CPU_MAPS */
 895
 896#ifdef CONFIG_NUMA_KEEP_MEMINFO
 897static int meminfo_to_nid(struct numa_meminfo *mi, u64 start)
 898{
 
 
 899	int i;
 900
 901	for (i = 0; i < mi->nr_blks; i++)
 902		if (mi->blk[i].start <= start && mi->blk[i].end > start)
 903			return mi->blk[i].nid;
 904	return NUMA_NO_NODE;
 905}
 906
 907int phys_to_target_node(phys_addr_t start)
 908{
 909	int nid = meminfo_to_nid(&numa_meminfo, start);
 910
 911	/*
 912	 * Prefer online nodes, but if reserved memory might be
 913	 * hot-added continue the search with reserved ranges.
 914	 */
 915	if (nid != NUMA_NO_NODE)
 916		return nid;
 917
 918	return meminfo_to_nid(&numa_reserved_meminfo, start);
 919}
 920EXPORT_SYMBOL_GPL(phys_to_target_node);
 921
 922int memory_add_physaddr_to_nid(u64 start)
 923{
 924	int nid = meminfo_to_nid(&numa_meminfo, start);
 925
 926	if (nid == NUMA_NO_NODE)
 927		nid = numa_meminfo.blk[0].nid;
 928	return nid;
 929}
 930EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
 931
 932#endif
 933
 934static int __init cmp_memblk(const void *a, const void *b)
 935{
 936	const struct numa_memblk *ma = *(const struct numa_memblk **)a;
 937	const struct numa_memblk *mb = *(const struct numa_memblk **)b;
 938
 939	return (ma->start > mb->start) - (ma->start < mb->start);
 940}
 941
 942static struct numa_memblk *numa_memblk_list[NR_NODE_MEMBLKS] __initdata;
 943
 944/**
 945 * numa_fill_memblks - Fill gaps in numa_meminfo memblks
 946 * @start: address to begin fill
 947 * @end: address to end fill
 948 *
 949 * Find and extend numa_meminfo memblks to cover the physical
 950 * address range @start-@end
 951 *
 952 * RETURNS:
 953 * 0		  : Success
 954 * NUMA_NO_MEMBLK : No memblks exist in address range @start-@end
 955 */
 956
 957int __init numa_fill_memblks(u64 start, u64 end)
 958{
 959	struct numa_memblk **blk = &numa_memblk_list[0];
 960	struct numa_meminfo *mi = &numa_meminfo;
 961	int count = 0;
 962	u64 prev_end;
 963
 964	/*
 965	 * Create a list of pointers to numa_meminfo memblks that
 966	 * overlap start, end. The list is used to make in-place
 967	 * changes that fill out the numa_meminfo memblks.
 968	 */
 969	for (int i = 0; i < mi->nr_blks; i++) {
 970		struct numa_memblk *bi = &mi->blk[i];
 971
 972		if (memblock_addrs_overlap(start, end - start, bi->start,
 973					   bi->end - bi->start)) {
 974			blk[count] = &mi->blk[i];
 975			count++;
 976		}
 977	}
 978	if (!count)
 979		return NUMA_NO_MEMBLK;
 980
 981	/* Sort the list of pointers in memblk->start order */
 982	sort(&blk[0], count, sizeof(blk[0]), cmp_memblk, NULL);
 983
 984	/* Make sure the first/last memblks include start/end */
 985	blk[0]->start = min(blk[0]->start, start);
 986	blk[count - 1]->end = max(blk[count - 1]->end, end);
 987
 988	/*
 989	 * Fill any gaps by tracking the previous memblks
 990	 * end address and backfilling to it if needed.
 991	 */
 992	prev_end = blk[0]->end;
 993	for (int i = 1; i < count; i++) {
 994		struct numa_memblk *curr = blk[i];
 995
 996		if (prev_end >= curr->start) {
 997			if (prev_end < curr->end)
 998				prev_end = curr->end;
 999		} else {
1000			curr->start = prev_end;
1001			prev_end = curr->end;
1002		}
1003	}
1004	return 0;
1005}