Loading...
1/*
2 * PowerPC atomic bit operations.
3 *
4 * Merged version by David Gibson <david@gibson.dropbear.id.au>.
5 * Based on ppc64 versions by: Dave Engebretsen, Todd Inglett, Don
6 * Reed, Pat McCarthy, Peter Bergner, Anton Blanchard. They
7 * originally took it from the ppc32 code.
8 *
9 * Within a word, bits are numbered LSB first. Lot's of places make
10 * this assumption by directly testing bits with (val & (1<<nr)).
11 * This can cause confusion for large (> 1 word) bitmaps on a
12 * big-endian system because, unlike little endian, the number of each
13 * bit depends on the word size.
14 *
15 * The bitop functions are defined to work on unsigned longs, so for a
16 * ppc64 system the bits end up numbered:
17 * |63..............0|127............64|191...........128|255...........192|
18 * and on ppc32:
19 * |31.....0|63....32|95....64|127...96|159..128|191..160|223..192|255..224|
20 *
21 * There are a few little-endian macros used mostly for filesystem
22 * bitmaps, these work on similar bit arrays layouts, but
23 * byte-oriented:
24 * |7...0|15...8|23...16|31...24|39...32|47...40|55...48|63...56|
25 *
26 * The main difference is that bit 3-5 (64b) or 3-4 (32b) in the bit
27 * number field needs to be reversed compared to the big-endian bit
28 * fields. This can be achieved by XOR with 0x38 (64b) or 0x18 (32b).
29 *
30 * This program is free software; you can redistribute it and/or
31 * modify it under the terms of the GNU General Public License
32 * as published by the Free Software Foundation; either version
33 * 2 of the License, or (at your option) any later version.
34 */
35
36#ifndef _ASM_POWERPC_BITOPS_H
37#define _ASM_POWERPC_BITOPS_H
38
39#ifdef __KERNEL__
40
41#ifndef _LINUX_BITOPS_H
42#error only <linux/bitops.h> can be included directly
43#endif
44
45#include <linux/compiler.h>
46#include <asm/asm-compat.h>
47#include <asm/synch.h>
48
49/* PPC bit number conversion */
50#define PPC_BITLSHIFT(be) (BITS_PER_LONG - 1 - (be))
51#define PPC_BIT(bit) (1UL << PPC_BITLSHIFT(bit))
52#define PPC_BITMASK(bs, be) ((PPC_BIT(bs) - PPC_BIT(be)) | PPC_BIT(bs))
53
54#include <asm/barrier.h>
55
56/* Macro for generating the ***_bits() functions */
57#define DEFINE_BITOP(fn, op, prefix) \
58static __inline__ void fn(unsigned long mask, \
59 volatile unsigned long *_p) \
60{ \
61 unsigned long old; \
62 unsigned long *p = (unsigned long *)_p; \
63 __asm__ __volatile__ ( \
64 prefix \
65"1:" PPC_LLARX(%0,0,%3,0) "\n" \
66 stringify_in_c(op) "%0,%0,%2\n" \
67 PPC405_ERR77(0,%3) \
68 PPC_STLCX "%0,0,%3\n" \
69 "bne- 1b\n" \
70 : "=&r" (old), "+m" (*p) \
71 : "r" (mask), "r" (p) \
72 : "cc", "memory"); \
73}
74
75DEFINE_BITOP(set_bits, or, "")
76DEFINE_BITOP(clear_bits, andc, "")
77DEFINE_BITOP(clear_bits_unlock, andc, PPC_RELEASE_BARRIER)
78DEFINE_BITOP(change_bits, xor, "")
79
80static __inline__ void set_bit(int nr, volatile unsigned long *addr)
81{
82 set_bits(BIT_MASK(nr), addr + BIT_WORD(nr));
83}
84
85static __inline__ void clear_bit(int nr, volatile unsigned long *addr)
86{
87 clear_bits(BIT_MASK(nr), addr + BIT_WORD(nr));
88}
89
90static __inline__ void clear_bit_unlock(int nr, volatile unsigned long *addr)
91{
92 clear_bits_unlock(BIT_MASK(nr), addr + BIT_WORD(nr));
93}
94
95static __inline__ void change_bit(int nr, volatile unsigned long *addr)
96{
97 change_bits(BIT_MASK(nr), addr + BIT_WORD(nr));
98}
99
100/* Like DEFINE_BITOP(), with changes to the arguments to 'op' and the output
101 * operands. */
102#define DEFINE_TESTOP(fn, op, prefix, postfix, eh) \
103static __inline__ unsigned long fn( \
104 unsigned long mask, \
105 volatile unsigned long *_p) \
106{ \
107 unsigned long old, t; \
108 unsigned long *p = (unsigned long *)_p; \
109 __asm__ __volatile__ ( \
110 prefix \
111"1:" PPC_LLARX(%0,0,%3,eh) "\n" \
112 stringify_in_c(op) "%1,%0,%2\n" \
113 PPC405_ERR77(0,%3) \
114 PPC_STLCX "%1,0,%3\n" \
115 "bne- 1b\n" \
116 postfix \
117 : "=&r" (old), "=&r" (t) \
118 : "r" (mask), "r" (p) \
119 : "cc", "memory"); \
120 return (old & mask); \
121}
122
123DEFINE_TESTOP(test_and_set_bits, or, PPC_ATOMIC_ENTRY_BARRIER,
124 PPC_ATOMIC_EXIT_BARRIER, 0)
125DEFINE_TESTOP(test_and_set_bits_lock, or, "",
126 PPC_ACQUIRE_BARRIER, 1)
127DEFINE_TESTOP(test_and_clear_bits, andc, PPC_ATOMIC_ENTRY_BARRIER,
128 PPC_ATOMIC_EXIT_BARRIER, 0)
129DEFINE_TESTOP(test_and_change_bits, xor, PPC_ATOMIC_ENTRY_BARRIER,
130 PPC_ATOMIC_EXIT_BARRIER, 0)
131
132static __inline__ int test_and_set_bit(unsigned long nr,
133 volatile unsigned long *addr)
134{
135 return test_and_set_bits(BIT_MASK(nr), addr + BIT_WORD(nr)) != 0;
136}
137
138static __inline__ int test_and_set_bit_lock(unsigned long nr,
139 volatile unsigned long *addr)
140{
141 return test_and_set_bits_lock(BIT_MASK(nr),
142 addr + BIT_WORD(nr)) != 0;
143}
144
145static __inline__ int test_and_clear_bit(unsigned long nr,
146 volatile unsigned long *addr)
147{
148 return test_and_clear_bits(BIT_MASK(nr), addr + BIT_WORD(nr)) != 0;
149}
150
151static __inline__ int test_and_change_bit(unsigned long nr,
152 volatile unsigned long *addr)
153{
154 return test_and_change_bits(BIT_MASK(nr), addr + BIT_WORD(nr)) != 0;
155}
156
157#include <asm-generic/bitops/non-atomic.h>
158
159static __inline__ void __clear_bit_unlock(int nr, volatile unsigned long *addr)
160{
161 __asm__ __volatile__(PPC_RELEASE_BARRIER "" ::: "memory");
162 __clear_bit(nr, addr);
163}
164
165/*
166 * Return the zero-based bit position (LE, not IBM bit numbering) of
167 * the most significant 1-bit in a double word.
168 */
169static __inline__ __attribute__((const))
170int __ilog2(unsigned long x)
171{
172 int lz;
173
174 asm (PPC_CNTLZL "%0,%1" : "=r" (lz) : "r" (x));
175 return BITS_PER_LONG - 1 - lz;
176}
177
178static inline __attribute__((const))
179int __ilog2_u32(u32 n)
180{
181 int bit;
182 asm ("cntlzw %0,%1" : "=r" (bit) : "r" (n));
183 return 31 - bit;
184}
185
186#ifdef __powerpc64__
187static inline __attribute__((const))
188int __ilog2_u64(u64 n)
189{
190 int bit;
191 asm ("cntlzd %0,%1" : "=r" (bit) : "r" (n));
192 return 63 - bit;
193}
194#endif
195
196/*
197 * Determines the bit position of the least significant 0 bit in the
198 * specified double word. The returned bit position will be
199 * zero-based, starting from the right side (63/31 - 0).
200 */
201static __inline__ unsigned long ffz(unsigned long x)
202{
203 /* no zero exists anywhere in the 8 byte area. */
204 if ((x = ~x) == 0)
205 return BITS_PER_LONG;
206
207 /*
208 * Calculate the bit position of the least significant '1' bit in x
209 * (since x has been changed this will actually be the least significant
210 * '0' bit in * the original x). Note: (x & -x) gives us a mask that
211 * is the least significant * (RIGHT-most) 1-bit of the value in x.
212 */
213 return __ilog2(x & -x);
214}
215
216static __inline__ unsigned long __ffs(unsigned long x)
217{
218 return __ilog2(x & -x);
219}
220
221/*
222 * ffs: find first bit set. This is defined the same way as
223 * the libc and compiler builtin ffs routines, therefore
224 * differs in spirit from the above ffz (man ffs).
225 */
226static __inline__ int ffs(int x)
227{
228 unsigned long i = (unsigned long)x;
229 return __ilog2(i & -i) + 1;
230}
231
232/*
233 * fls: find last (most-significant) bit set.
234 * Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32.
235 */
236static __inline__ int fls(unsigned int x)
237{
238 int lz;
239
240 asm ("cntlzw %0,%1" : "=r" (lz) : "r" (x));
241 return 32 - lz;
242}
243
244static __inline__ unsigned long __fls(unsigned long x)
245{
246 return __ilog2(x);
247}
248
249/*
250 * 64-bit can do this using one cntlzd (count leading zeroes doubleword)
251 * instruction; for 32-bit we use the generic version, which does two
252 * 32-bit fls calls.
253 */
254#ifdef __powerpc64__
255static __inline__ int fls64(__u64 x)
256{
257 int lz;
258
259 asm ("cntlzd %0,%1" : "=r" (lz) : "r" (x));
260 return 64 - lz;
261}
262#else
263#include <asm-generic/bitops/fls64.h>
264#endif /* __powerpc64__ */
265
266#ifdef CONFIG_PPC64
267unsigned int __arch_hweight8(unsigned int w);
268unsigned int __arch_hweight16(unsigned int w);
269unsigned int __arch_hweight32(unsigned int w);
270unsigned long __arch_hweight64(__u64 w);
271#include <asm-generic/bitops/const_hweight.h>
272#else
273#include <asm-generic/bitops/hweight.h>
274#endif
275
276#include <asm-generic/bitops/find.h>
277
278/* Little-endian versions */
279#include <asm-generic/bitops/le.h>
280
281/* Bitmap functions for the ext2 filesystem */
282
283#include <asm-generic/bitops/ext2-atomic-setbit.h>
284
285#include <asm-generic/bitops/sched.h>
286
287#endif /* __KERNEL__ */
288
289#endif /* _ASM_POWERPC_BITOPS_H */
1/*
2 * PowerPC atomic bit operations.
3 *
4 * Merged version by David Gibson <david@gibson.dropbear.id.au>.
5 * Based on ppc64 versions by: Dave Engebretsen, Todd Inglett, Don
6 * Reed, Pat McCarthy, Peter Bergner, Anton Blanchard. They
7 * originally took it from the ppc32 code.
8 *
9 * Within a word, bits are numbered LSB first. Lot's of places make
10 * this assumption by directly testing bits with (val & (1<<nr)).
11 * This can cause confusion for large (> 1 word) bitmaps on a
12 * big-endian system because, unlike little endian, the number of each
13 * bit depends on the word size.
14 *
15 * The bitop functions are defined to work on unsigned longs, so for a
16 * ppc64 system the bits end up numbered:
17 * |63..............0|127............64|191...........128|255...........196|
18 * and on ppc32:
19 * |31.....0|63....31|95....64|127...96|159..128|191..160|223..192|255..224|
20 *
21 * There are a few little-endian macros used mostly for filesystem
22 * bitmaps, these work on similar bit arrays layouts, but
23 * byte-oriented:
24 * |7...0|15...8|23...16|31...24|39...32|47...40|55...48|63...56|
25 *
26 * The main difference is that bit 3-5 (64b) or 3-4 (32b) in the bit
27 * number field needs to be reversed compared to the big-endian bit
28 * fields. This can be achieved by XOR with 0x38 (64b) or 0x18 (32b).
29 *
30 * This program is free software; you can redistribute it and/or
31 * modify it under the terms of the GNU General Public License
32 * as published by the Free Software Foundation; either version
33 * 2 of the License, or (at your option) any later version.
34 */
35
36#ifndef _ASM_POWERPC_BITOPS_H
37#define _ASM_POWERPC_BITOPS_H
38
39#ifdef __KERNEL__
40
41#ifndef _LINUX_BITOPS_H
42#error only <linux/bitops.h> can be included directly
43#endif
44
45#include <linux/compiler.h>
46#include <asm/asm-compat.h>
47#include <asm/synch.h>
48
49/*
50 * clear_bit doesn't imply a memory barrier
51 */
52#define smp_mb__before_clear_bit() smp_mb()
53#define smp_mb__after_clear_bit() smp_mb()
54
55#define BITOP_MASK(nr) (1UL << ((nr) % BITS_PER_LONG))
56#define BITOP_WORD(nr) ((nr) / BITS_PER_LONG)
57#define BITOP_LE_SWIZZLE ((BITS_PER_LONG-1) & ~0x7)
58
59/* Macro for generating the ***_bits() functions */
60#define DEFINE_BITOP(fn, op, prefix, postfix) \
61static __inline__ void fn(unsigned long mask, \
62 volatile unsigned long *_p) \
63{ \
64 unsigned long old; \
65 unsigned long *p = (unsigned long *)_p; \
66 __asm__ __volatile__ ( \
67 prefix \
68"1:" PPC_LLARX(%0,0,%3,0) "\n" \
69 stringify_in_c(op) "%0,%0,%2\n" \
70 PPC405_ERR77(0,%3) \
71 PPC_STLCX "%0,0,%3\n" \
72 "bne- 1b\n" \
73 postfix \
74 : "=&r" (old), "+m" (*p) \
75 : "r" (mask), "r" (p) \
76 : "cc", "memory"); \
77}
78
79DEFINE_BITOP(set_bits, or, "", "")
80DEFINE_BITOP(clear_bits, andc, "", "")
81DEFINE_BITOP(clear_bits_unlock, andc, PPC_RELEASE_BARRIER, "")
82DEFINE_BITOP(change_bits, xor, "", "")
83
84static __inline__ void set_bit(int nr, volatile unsigned long *addr)
85{
86 set_bits(BITOP_MASK(nr), addr + BITOP_WORD(nr));
87}
88
89static __inline__ void clear_bit(int nr, volatile unsigned long *addr)
90{
91 clear_bits(BITOP_MASK(nr), addr + BITOP_WORD(nr));
92}
93
94static __inline__ void clear_bit_unlock(int nr, volatile unsigned long *addr)
95{
96 clear_bits_unlock(BITOP_MASK(nr), addr + BITOP_WORD(nr));
97}
98
99static __inline__ void change_bit(int nr, volatile unsigned long *addr)
100{
101 change_bits(BITOP_MASK(nr), addr + BITOP_WORD(nr));
102}
103
104/* Like DEFINE_BITOP(), with changes to the arguments to 'op' and the output
105 * operands. */
106#define DEFINE_TESTOP(fn, op, prefix, postfix, eh) \
107static __inline__ unsigned long fn( \
108 unsigned long mask, \
109 volatile unsigned long *_p) \
110{ \
111 unsigned long old, t; \
112 unsigned long *p = (unsigned long *)_p; \
113 __asm__ __volatile__ ( \
114 prefix \
115"1:" PPC_LLARX(%0,0,%3,eh) "\n" \
116 stringify_in_c(op) "%1,%0,%2\n" \
117 PPC405_ERR77(0,%3) \
118 PPC_STLCX "%1,0,%3\n" \
119 "bne- 1b\n" \
120 postfix \
121 : "=&r" (old), "=&r" (t) \
122 : "r" (mask), "r" (p) \
123 : "cc", "memory"); \
124 return (old & mask); \
125}
126
127DEFINE_TESTOP(test_and_set_bits, or, PPC_RELEASE_BARRIER,
128 PPC_ACQUIRE_BARRIER, 0)
129DEFINE_TESTOP(test_and_set_bits_lock, or, "",
130 PPC_ACQUIRE_BARRIER, 1)
131DEFINE_TESTOP(test_and_clear_bits, andc, PPC_RELEASE_BARRIER,
132 PPC_ACQUIRE_BARRIER, 0)
133DEFINE_TESTOP(test_and_change_bits, xor, PPC_RELEASE_BARRIER,
134 PPC_ACQUIRE_BARRIER, 0)
135
136static __inline__ int test_and_set_bit(unsigned long nr,
137 volatile unsigned long *addr)
138{
139 return test_and_set_bits(BITOP_MASK(nr), addr + BITOP_WORD(nr)) != 0;
140}
141
142static __inline__ int test_and_set_bit_lock(unsigned long nr,
143 volatile unsigned long *addr)
144{
145 return test_and_set_bits_lock(BITOP_MASK(nr),
146 addr + BITOP_WORD(nr)) != 0;
147}
148
149static __inline__ int test_and_clear_bit(unsigned long nr,
150 volatile unsigned long *addr)
151{
152 return test_and_clear_bits(BITOP_MASK(nr), addr + BITOP_WORD(nr)) != 0;
153}
154
155static __inline__ int test_and_change_bit(unsigned long nr,
156 volatile unsigned long *addr)
157{
158 return test_and_change_bits(BITOP_MASK(nr), addr + BITOP_WORD(nr)) != 0;
159}
160
161#include <asm-generic/bitops/non-atomic.h>
162
163static __inline__ void __clear_bit_unlock(int nr, volatile unsigned long *addr)
164{
165 __asm__ __volatile__(PPC_RELEASE_BARRIER "" ::: "memory");
166 __clear_bit(nr, addr);
167}
168
169/*
170 * Return the zero-based bit position (LE, not IBM bit numbering) of
171 * the most significant 1-bit in a double word.
172 */
173static __inline__ __attribute__((const))
174int __ilog2(unsigned long x)
175{
176 int lz;
177
178 asm (PPC_CNTLZL "%0,%1" : "=r" (lz) : "r" (x));
179 return BITS_PER_LONG - 1 - lz;
180}
181
182static inline __attribute__((const))
183int __ilog2_u32(u32 n)
184{
185 int bit;
186 asm ("cntlzw %0,%1" : "=r" (bit) : "r" (n));
187 return 31 - bit;
188}
189
190#ifdef __powerpc64__
191static inline __attribute__((const))
192int __ilog2_u64(u64 n)
193{
194 int bit;
195 asm ("cntlzd %0,%1" : "=r" (bit) : "r" (n));
196 return 63 - bit;
197}
198#endif
199
200/*
201 * Determines the bit position of the least significant 0 bit in the
202 * specified double word. The returned bit position will be
203 * zero-based, starting from the right side (63/31 - 0).
204 */
205static __inline__ unsigned long ffz(unsigned long x)
206{
207 /* no zero exists anywhere in the 8 byte area. */
208 if ((x = ~x) == 0)
209 return BITS_PER_LONG;
210
211 /*
212 * Calculate the bit position of the least significant '1' bit in x
213 * (since x has been changed this will actually be the least significant
214 * '0' bit in * the original x). Note: (x & -x) gives us a mask that
215 * is the least significant * (RIGHT-most) 1-bit of the value in x.
216 */
217 return __ilog2(x & -x);
218}
219
220static __inline__ int __ffs(unsigned long x)
221{
222 return __ilog2(x & -x);
223}
224
225/*
226 * ffs: find first bit set. This is defined the same way as
227 * the libc and compiler builtin ffs routines, therefore
228 * differs in spirit from the above ffz (man ffs).
229 */
230static __inline__ int ffs(int x)
231{
232 unsigned long i = (unsigned long)x;
233 return __ilog2(i & -i) + 1;
234}
235
236/*
237 * fls: find last (most-significant) bit set.
238 * Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32.
239 */
240static __inline__ int fls(unsigned int x)
241{
242 int lz;
243
244 asm ("cntlzw %0,%1" : "=r" (lz) : "r" (x));
245 return 32 - lz;
246}
247
248static __inline__ unsigned long __fls(unsigned long x)
249{
250 return __ilog2(x);
251}
252
253/*
254 * 64-bit can do this using one cntlzd (count leading zeroes doubleword)
255 * instruction; for 32-bit we use the generic version, which does two
256 * 32-bit fls calls.
257 */
258#ifdef __powerpc64__
259static __inline__ int fls64(__u64 x)
260{
261 int lz;
262
263 asm ("cntlzd %0,%1" : "=r" (lz) : "r" (x));
264 return 64 - lz;
265}
266#else
267#include <asm-generic/bitops/fls64.h>
268#endif /* __powerpc64__ */
269
270#ifdef CONFIG_PPC64
271unsigned int __arch_hweight8(unsigned int w);
272unsigned int __arch_hweight16(unsigned int w);
273unsigned int __arch_hweight32(unsigned int w);
274unsigned long __arch_hweight64(__u64 w);
275#include <asm-generic/bitops/const_hweight.h>
276#else
277#include <asm-generic/bitops/hweight.h>
278#endif
279
280#include <asm-generic/bitops/find.h>
281
282/* Little-endian versions */
283
284static __inline__ int test_bit_le(unsigned long nr,
285 __const__ void *addr)
286{
287 __const__ unsigned char *tmp = (__const__ unsigned char *) addr;
288 return (tmp[nr >> 3] >> (nr & 7)) & 1;
289}
290
291static inline void __set_bit_le(int nr, void *addr)
292{
293 __set_bit(nr ^ BITOP_LE_SWIZZLE, addr);
294}
295
296static inline void __clear_bit_le(int nr, void *addr)
297{
298 __clear_bit(nr ^ BITOP_LE_SWIZZLE, addr);
299}
300
301static inline int test_and_set_bit_le(int nr, void *addr)
302{
303 return test_and_set_bit(nr ^ BITOP_LE_SWIZZLE, addr);
304}
305
306static inline int test_and_clear_bit_le(int nr, void *addr)
307{
308 return test_and_clear_bit(nr ^ BITOP_LE_SWIZZLE, addr);
309}
310
311static inline int __test_and_set_bit_le(int nr, void *addr)
312{
313 return __test_and_set_bit(nr ^ BITOP_LE_SWIZZLE, addr);
314}
315
316static inline int __test_and_clear_bit_le(int nr, void *addr)
317{
318 return __test_and_clear_bit(nr ^ BITOP_LE_SWIZZLE, addr);
319}
320
321#define find_first_zero_bit_le(addr, size) \
322 find_next_zero_bit_le((addr), (size), 0)
323unsigned long find_next_zero_bit_le(const void *addr,
324 unsigned long size, unsigned long offset);
325
326unsigned long find_next_bit_le(const void *addr,
327 unsigned long size, unsigned long offset);
328/* Bitmap functions for the ext2 filesystem */
329
330#include <asm-generic/bitops/ext2-atomic-setbit.h>
331
332#include <asm-generic/bitops/sched.h>
333
334#endif /* __KERNEL__ */
335
336#endif /* _ASM_POWERPC_BITOPS_H */