Linux Audio

Check our new training course

Loading...
v4.6
  1/*
  2 * PowerPC atomic bit operations.
  3 *
  4 * Merged version by David Gibson <david@gibson.dropbear.id.au>.
  5 * Based on ppc64 versions by: Dave Engebretsen, Todd Inglett, Don
  6 * Reed, Pat McCarthy, Peter Bergner, Anton Blanchard.  They
  7 * originally took it from the ppc32 code.
  8 *
  9 * Within a word, bits are numbered LSB first.  Lot's of places make
 10 * this assumption by directly testing bits with (val & (1<<nr)).
 11 * This can cause confusion for large (> 1 word) bitmaps on a
 12 * big-endian system because, unlike little endian, the number of each
 13 * bit depends on the word size.
 14 *
 15 * The bitop functions are defined to work on unsigned longs, so for a
 16 * ppc64 system the bits end up numbered:
 17 *   |63..............0|127............64|191...........128|255...........192|
 18 * and on ppc32:
 19 *   |31.....0|63....32|95....64|127...96|159..128|191..160|223..192|255..224|
 20 *
 21 * There are a few little-endian macros used mostly for filesystem
 22 * bitmaps, these work on similar bit arrays layouts, but
 23 * byte-oriented:
 24 *   |7...0|15...8|23...16|31...24|39...32|47...40|55...48|63...56|
 25 *
 26 * The main difference is that bit 3-5 (64b) or 3-4 (32b) in the bit
 27 * number field needs to be reversed compared to the big-endian bit
 28 * fields. This can be achieved by XOR with 0x38 (64b) or 0x18 (32b).
 29 *
 30 * This program is free software; you can redistribute it and/or
 31 * modify it under the terms of the GNU General Public License
 32 * as published by the Free Software Foundation; either version
 33 * 2 of the License, or (at your option) any later version.
 34 */
 35
 36#ifndef _ASM_POWERPC_BITOPS_H
 37#define _ASM_POWERPC_BITOPS_H
 38
 39#ifdef __KERNEL__
 40
 41#ifndef _LINUX_BITOPS_H
 42#error only <linux/bitops.h> can be included directly
 43#endif
 44
 45#include <linux/compiler.h>
 46#include <asm/asm-compat.h>
 47#include <asm/synch.h>
 48
 49/* PPC bit number conversion */
 50#define PPC_BITLSHIFT(be)	(BITS_PER_LONG - 1 - (be))
 51#define PPC_BIT(bit)		(1UL << PPC_BITLSHIFT(bit))
 52#define PPC_BITMASK(bs, be)	((PPC_BIT(bs) - PPC_BIT(be)) | PPC_BIT(bs))
 
 53
 54#include <asm/barrier.h>
 
 
 55
 56/* Macro for generating the ***_bits() functions */
 57#define DEFINE_BITOP(fn, op, prefix)		\
 58static __inline__ void fn(unsigned long mask,	\
 59		volatile unsigned long *_p)	\
 60{						\
 61	unsigned long old;			\
 62	unsigned long *p = (unsigned long *)_p;	\
 63	__asm__ __volatile__ (			\
 64	prefix					\
 65"1:"	PPC_LLARX(%0,0,%3,0) "\n"		\
 66	stringify_in_c(op) "%0,%0,%2\n"		\
 67	PPC405_ERR77(0,%3)			\
 68	PPC_STLCX "%0,0,%3\n"			\
 69	"bne- 1b\n"				\
 
 70	: "=&r" (old), "+m" (*p)		\
 71	: "r" (mask), "r" (p)			\
 72	: "cc", "memory");			\
 73}
 74
 75DEFINE_BITOP(set_bits, or, "")
 76DEFINE_BITOP(clear_bits, andc, "")
 77DEFINE_BITOP(clear_bits_unlock, andc, PPC_RELEASE_BARRIER)
 78DEFINE_BITOP(change_bits, xor, "")
 79
 80static __inline__ void set_bit(int nr, volatile unsigned long *addr)
 81{
 82	set_bits(BIT_MASK(nr), addr + BIT_WORD(nr));
 83}
 84
 85static __inline__ void clear_bit(int nr, volatile unsigned long *addr)
 86{
 87	clear_bits(BIT_MASK(nr), addr + BIT_WORD(nr));
 88}
 89
 90static __inline__ void clear_bit_unlock(int nr, volatile unsigned long *addr)
 91{
 92	clear_bits_unlock(BIT_MASK(nr), addr + BIT_WORD(nr));
 93}
 94
 95static __inline__ void change_bit(int nr, volatile unsigned long *addr)
 96{
 97	change_bits(BIT_MASK(nr), addr + BIT_WORD(nr));
 98}
 99
100/* Like DEFINE_BITOP(), with changes to the arguments to 'op' and the output
101 * operands. */
102#define DEFINE_TESTOP(fn, op, prefix, postfix, eh)	\
103static __inline__ unsigned long fn(			\
104		unsigned long mask,			\
105		volatile unsigned long *_p)		\
106{							\
107	unsigned long old, t;				\
108	unsigned long *p = (unsigned long *)_p;		\
109	__asm__ __volatile__ (				\
110	prefix						\
111"1:"	PPC_LLARX(%0,0,%3,eh) "\n"			\
112	stringify_in_c(op) "%1,%0,%2\n"			\
113	PPC405_ERR77(0,%3)				\
114	PPC_STLCX "%1,0,%3\n"				\
115	"bne- 1b\n"					\
116	postfix						\
117	: "=&r" (old), "=&r" (t)			\
118	: "r" (mask), "r" (p)				\
119	: "cc", "memory");				\
120	return (old & mask);				\
121}
122
123DEFINE_TESTOP(test_and_set_bits, or, PPC_ATOMIC_ENTRY_BARRIER,
124	      PPC_ATOMIC_EXIT_BARRIER, 0)
125DEFINE_TESTOP(test_and_set_bits_lock, or, "",
126	      PPC_ACQUIRE_BARRIER, 1)
127DEFINE_TESTOP(test_and_clear_bits, andc, PPC_ATOMIC_ENTRY_BARRIER,
128	      PPC_ATOMIC_EXIT_BARRIER, 0)
129DEFINE_TESTOP(test_and_change_bits, xor, PPC_ATOMIC_ENTRY_BARRIER,
130	      PPC_ATOMIC_EXIT_BARRIER, 0)
131
132static __inline__ int test_and_set_bit(unsigned long nr,
133				       volatile unsigned long *addr)
134{
135	return test_and_set_bits(BIT_MASK(nr), addr + BIT_WORD(nr)) != 0;
136}
137
138static __inline__ int test_and_set_bit_lock(unsigned long nr,
139				       volatile unsigned long *addr)
140{
141	return test_and_set_bits_lock(BIT_MASK(nr),
142				addr + BIT_WORD(nr)) != 0;
143}
144
145static __inline__ int test_and_clear_bit(unsigned long nr,
146					 volatile unsigned long *addr)
147{
148	return test_and_clear_bits(BIT_MASK(nr), addr + BIT_WORD(nr)) != 0;
149}
150
151static __inline__ int test_and_change_bit(unsigned long nr,
152					  volatile unsigned long *addr)
153{
154	return test_and_change_bits(BIT_MASK(nr), addr + BIT_WORD(nr)) != 0;
155}
156
157#include <asm-generic/bitops/non-atomic.h>
158
159static __inline__ void __clear_bit_unlock(int nr, volatile unsigned long *addr)
160{
161	__asm__ __volatile__(PPC_RELEASE_BARRIER "" ::: "memory");
162	__clear_bit(nr, addr);
163}
164
165/*
166 * Return the zero-based bit position (LE, not IBM bit numbering) of
167 * the most significant 1-bit in a double word.
168 */
169static __inline__ __attribute__((const))
170int __ilog2(unsigned long x)
171{
172	int lz;
173
174	asm (PPC_CNTLZL "%0,%1" : "=r" (lz) : "r" (x));
175	return BITS_PER_LONG - 1 - lz;
176}
177
178static inline __attribute__((const))
179int __ilog2_u32(u32 n)
180{
181	int bit;
182	asm ("cntlzw %0,%1" : "=r" (bit) : "r" (n));
183	return 31 - bit;
184}
185
186#ifdef __powerpc64__
187static inline __attribute__((const))
188int __ilog2_u64(u64 n)
189{
190	int bit;
191	asm ("cntlzd %0,%1" : "=r" (bit) : "r" (n));
192	return 63 - bit;
193}
194#endif
195
196/*
197 * Determines the bit position of the least significant 0 bit in the
198 * specified double word. The returned bit position will be
199 * zero-based, starting from the right side (63/31 - 0).
200 */
201static __inline__ unsigned long ffz(unsigned long x)
202{
203	/* no zero exists anywhere in the 8 byte area. */
204	if ((x = ~x) == 0)
205		return BITS_PER_LONG;
206
207	/*
208	 * Calculate the bit position of the least significant '1' bit in x
209	 * (since x has been changed this will actually be the least significant
210	 * '0' bit in * the original x).  Note: (x & -x) gives us a mask that
211	 * is the least significant * (RIGHT-most) 1-bit of the value in x.
212	 */
213	return __ilog2(x & -x);
214}
215
216static __inline__ unsigned long __ffs(unsigned long x)
217{
218	return __ilog2(x & -x);
219}
220
221/*
222 * ffs: find first bit set. This is defined the same way as
223 * the libc and compiler builtin ffs routines, therefore
224 * differs in spirit from the above ffz (man ffs).
225 */
226static __inline__ int ffs(int x)
227{
228	unsigned long i = (unsigned long)x;
229	return __ilog2(i & -i) + 1;
230}
231
232/*
233 * fls: find last (most-significant) bit set.
234 * Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32.
235 */
236static __inline__ int fls(unsigned int x)
237{
238	int lz;
239
240	asm ("cntlzw %0,%1" : "=r" (lz) : "r" (x));
241	return 32 - lz;
242}
243
244static __inline__ unsigned long __fls(unsigned long x)
245{
246	return __ilog2(x);
247}
248
249/*
250 * 64-bit can do this using one cntlzd (count leading zeroes doubleword)
251 * instruction; for 32-bit we use the generic version, which does two
252 * 32-bit fls calls.
253 */
254#ifdef __powerpc64__
255static __inline__ int fls64(__u64 x)
256{
257	int lz;
258
259	asm ("cntlzd %0,%1" : "=r" (lz) : "r" (x));
260	return 64 - lz;
261}
262#else
263#include <asm-generic/bitops/fls64.h>
264#endif /* __powerpc64__ */
265
266#ifdef CONFIG_PPC64
267unsigned int __arch_hweight8(unsigned int w);
268unsigned int __arch_hweight16(unsigned int w);
269unsigned int __arch_hweight32(unsigned int w);
270unsigned long __arch_hweight64(__u64 w);
271#include <asm-generic/bitops/const_hweight.h>
272#else
273#include <asm-generic/bitops/hweight.h>
274#endif
275
276#include <asm-generic/bitops/find.h>
277
278/* Little-endian versions */
279#include <asm-generic/bitops/le.h>
280
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
281/* Bitmap functions for the ext2 filesystem */
282
283#include <asm-generic/bitops/ext2-atomic-setbit.h>
284
285#include <asm-generic/bitops/sched.h>
286
287#endif /* __KERNEL__ */
288
289#endif /* _ASM_POWERPC_BITOPS_H */
v3.1
  1/*
  2 * PowerPC atomic bit operations.
  3 *
  4 * Merged version by David Gibson <david@gibson.dropbear.id.au>.
  5 * Based on ppc64 versions by: Dave Engebretsen, Todd Inglett, Don
  6 * Reed, Pat McCarthy, Peter Bergner, Anton Blanchard.  They
  7 * originally took it from the ppc32 code.
  8 *
  9 * Within a word, bits are numbered LSB first.  Lot's of places make
 10 * this assumption by directly testing bits with (val & (1<<nr)).
 11 * This can cause confusion for large (> 1 word) bitmaps on a
 12 * big-endian system because, unlike little endian, the number of each
 13 * bit depends on the word size.
 14 *
 15 * The bitop functions are defined to work on unsigned longs, so for a
 16 * ppc64 system the bits end up numbered:
 17 *   |63..............0|127............64|191...........128|255...........196|
 18 * and on ppc32:
 19 *   |31.....0|63....31|95....64|127...96|159..128|191..160|223..192|255..224|
 20 *
 21 * There are a few little-endian macros used mostly for filesystem
 22 * bitmaps, these work on similar bit arrays layouts, but
 23 * byte-oriented:
 24 *   |7...0|15...8|23...16|31...24|39...32|47...40|55...48|63...56|
 25 *
 26 * The main difference is that bit 3-5 (64b) or 3-4 (32b) in the bit
 27 * number field needs to be reversed compared to the big-endian bit
 28 * fields. This can be achieved by XOR with 0x38 (64b) or 0x18 (32b).
 29 *
 30 * This program is free software; you can redistribute it and/or
 31 * modify it under the terms of the GNU General Public License
 32 * as published by the Free Software Foundation; either version
 33 * 2 of the License, or (at your option) any later version.
 34 */
 35
 36#ifndef _ASM_POWERPC_BITOPS_H
 37#define _ASM_POWERPC_BITOPS_H
 38
 39#ifdef __KERNEL__
 40
 41#ifndef _LINUX_BITOPS_H
 42#error only <linux/bitops.h> can be included directly
 43#endif
 44
 45#include <linux/compiler.h>
 46#include <asm/asm-compat.h>
 47#include <asm/synch.h>
 48
 49/*
 50 * clear_bit doesn't imply a memory barrier
 51 */
 52#define smp_mb__before_clear_bit()	smp_mb()
 53#define smp_mb__after_clear_bit()	smp_mb()
 54
 55#define BITOP_MASK(nr)		(1UL << ((nr) % BITS_PER_LONG))
 56#define BITOP_WORD(nr)		((nr) / BITS_PER_LONG)
 57#define BITOP_LE_SWIZZLE	((BITS_PER_LONG-1) & ~0x7)
 58
 59/* Macro for generating the ***_bits() functions */
 60#define DEFINE_BITOP(fn, op, prefix, postfix)	\
 61static __inline__ void fn(unsigned long mask,	\
 62		volatile unsigned long *_p)	\
 63{						\
 64	unsigned long old;			\
 65	unsigned long *p = (unsigned long *)_p;	\
 66	__asm__ __volatile__ (			\
 67	prefix					\
 68"1:"	PPC_LLARX(%0,0,%3,0) "\n"		\
 69	stringify_in_c(op) "%0,%0,%2\n"		\
 70	PPC405_ERR77(0,%3)			\
 71	PPC_STLCX "%0,0,%3\n"			\
 72	"bne- 1b\n"				\
 73	postfix					\
 74	: "=&r" (old), "+m" (*p)		\
 75	: "r" (mask), "r" (p)			\
 76	: "cc", "memory");			\
 77}
 78
 79DEFINE_BITOP(set_bits, or, "", "")
 80DEFINE_BITOP(clear_bits, andc, "", "")
 81DEFINE_BITOP(clear_bits_unlock, andc, PPC_RELEASE_BARRIER, "")
 82DEFINE_BITOP(change_bits, xor, "", "")
 83
 84static __inline__ void set_bit(int nr, volatile unsigned long *addr)
 85{
 86	set_bits(BITOP_MASK(nr), addr + BITOP_WORD(nr));
 87}
 88
 89static __inline__ void clear_bit(int nr, volatile unsigned long *addr)
 90{
 91	clear_bits(BITOP_MASK(nr), addr + BITOP_WORD(nr));
 92}
 93
 94static __inline__ void clear_bit_unlock(int nr, volatile unsigned long *addr)
 95{
 96	clear_bits_unlock(BITOP_MASK(nr), addr + BITOP_WORD(nr));
 97}
 98
 99static __inline__ void change_bit(int nr, volatile unsigned long *addr)
100{
101	change_bits(BITOP_MASK(nr), addr + BITOP_WORD(nr));
102}
103
104/* Like DEFINE_BITOP(), with changes to the arguments to 'op' and the output
105 * operands. */
106#define DEFINE_TESTOP(fn, op, prefix, postfix, eh)	\
107static __inline__ unsigned long fn(			\
108		unsigned long mask,			\
109		volatile unsigned long *_p)		\
110{							\
111	unsigned long old, t;				\
112	unsigned long *p = (unsigned long *)_p;		\
113	__asm__ __volatile__ (				\
114	prefix						\
115"1:"	PPC_LLARX(%0,0,%3,eh) "\n"			\
116	stringify_in_c(op) "%1,%0,%2\n"			\
117	PPC405_ERR77(0,%3)				\
118	PPC_STLCX "%1,0,%3\n"				\
119	"bne- 1b\n"					\
120	postfix						\
121	: "=&r" (old), "=&r" (t)			\
122	: "r" (mask), "r" (p)				\
123	: "cc", "memory");				\
124	return (old & mask);				\
125}
126
127DEFINE_TESTOP(test_and_set_bits, or, PPC_RELEASE_BARRIER,
128	      PPC_ACQUIRE_BARRIER, 0)
129DEFINE_TESTOP(test_and_set_bits_lock, or, "",
130	      PPC_ACQUIRE_BARRIER, 1)
131DEFINE_TESTOP(test_and_clear_bits, andc, PPC_RELEASE_BARRIER,
132	      PPC_ACQUIRE_BARRIER, 0)
133DEFINE_TESTOP(test_and_change_bits, xor, PPC_RELEASE_BARRIER,
134	      PPC_ACQUIRE_BARRIER, 0)
135
136static __inline__ int test_and_set_bit(unsigned long nr,
137				       volatile unsigned long *addr)
138{
139	return test_and_set_bits(BITOP_MASK(nr), addr + BITOP_WORD(nr)) != 0;
140}
141
142static __inline__ int test_and_set_bit_lock(unsigned long nr,
143				       volatile unsigned long *addr)
144{
145	return test_and_set_bits_lock(BITOP_MASK(nr),
146				addr + BITOP_WORD(nr)) != 0;
147}
148
149static __inline__ int test_and_clear_bit(unsigned long nr,
150					 volatile unsigned long *addr)
151{
152	return test_and_clear_bits(BITOP_MASK(nr), addr + BITOP_WORD(nr)) != 0;
153}
154
155static __inline__ int test_and_change_bit(unsigned long nr,
156					  volatile unsigned long *addr)
157{
158	return test_and_change_bits(BITOP_MASK(nr), addr + BITOP_WORD(nr)) != 0;
159}
160
161#include <asm-generic/bitops/non-atomic.h>
162
163static __inline__ void __clear_bit_unlock(int nr, volatile unsigned long *addr)
164{
165	__asm__ __volatile__(PPC_RELEASE_BARRIER "" ::: "memory");
166	__clear_bit(nr, addr);
167}
168
169/*
170 * Return the zero-based bit position (LE, not IBM bit numbering) of
171 * the most significant 1-bit in a double word.
172 */
173static __inline__ __attribute__((const))
174int __ilog2(unsigned long x)
175{
176	int lz;
177
178	asm (PPC_CNTLZL "%0,%1" : "=r" (lz) : "r" (x));
179	return BITS_PER_LONG - 1 - lz;
180}
181
182static inline __attribute__((const))
183int __ilog2_u32(u32 n)
184{
185	int bit;
186	asm ("cntlzw %0,%1" : "=r" (bit) : "r" (n));
187	return 31 - bit;
188}
189
190#ifdef __powerpc64__
191static inline __attribute__((const))
192int __ilog2_u64(u64 n)
193{
194	int bit;
195	asm ("cntlzd %0,%1" : "=r" (bit) : "r" (n));
196	return 63 - bit;
197}
198#endif
199
200/*
201 * Determines the bit position of the least significant 0 bit in the
202 * specified double word. The returned bit position will be
203 * zero-based, starting from the right side (63/31 - 0).
204 */
205static __inline__ unsigned long ffz(unsigned long x)
206{
207	/* no zero exists anywhere in the 8 byte area. */
208	if ((x = ~x) == 0)
209		return BITS_PER_LONG;
210
211	/*
212	 * Calculate the bit position of the least significant '1' bit in x
213	 * (since x has been changed this will actually be the least significant
214	 * '0' bit in * the original x).  Note: (x & -x) gives us a mask that
215	 * is the least significant * (RIGHT-most) 1-bit of the value in x.
216	 */
217	return __ilog2(x & -x);
218}
219
220static __inline__ int __ffs(unsigned long x)
221{
222	return __ilog2(x & -x);
223}
224
225/*
226 * ffs: find first bit set. This is defined the same way as
227 * the libc and compiler builtin ffs routines, therefore
228 * differs in spirit from the above ffz (man ffs).
229 */
230static __inline__ int ffs(int x)
231{
232	unsigned long i = (unsigned long)x;
233	return __ilog2(i & -i) + 1;
234}
235
236/*
237 * fls: find last (most-significant) bit set.
238 * Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32.
239 */
240static __inline__ int fls(unsigned int x)
241{
242	int lz;
243
244	asm ("cntlzw %0,%1" : "=r" (lz) : "r" (x));
245	return 32 - lz;
246}
247
248static __inline__ unsigned long __fls(unsigned long x)
249{
250	return __ilog2(x);
251}
252
253/*
254 * 64-bit can do this using one cntlzd (count leading zeroes doubleword)
255 * instruction; for 32-bit we use the generic version, which does two
256 * 32-bit fls calls.
257 */
258#ifdef __powerpc64__
259static __inline__ int fls64(__u64 x)
260{
261	int lz;
262
263	asm ("cntlzd %0,%1" : "=r" (lz) : "r" (x));
264	return 64 - lz;
265}
266#else
267#include <asm-generic/bitops/fls64.h>
268#endif /* __powerpc64__ */
269
270#ifdef CONFIG_PPC64
271unsigned int __arch_hweight8(unsigned int w);
272unsigned int __arch_hweight16(unsigned int w);
273unsigned int __arch_hweight32(unsigned int w);
274unsigned long __arch_hweight64(__u64 w);
275#include <asm-generic/bitops/const_hweight.h>
276#else
277#include <asm-generic/bitops/hweight.h>
278#endif
279
280#include <asm-generic/bitops/find.h>
281
282/* Little-endian versions */
 
283
284static __inline__ int test_bit_le(unsigned long nr,
285				  __const__ void *addr)
286{
287	__const__ unsigned char	*tmp = (__const__ unsigned char *) addr;
288	return (tmp[nr >> 3] >> (nr & 7)) & 1;
289}
290
291static inline void __set_bit_le(int nr, void *addr)
292{
293	__set_bit(nr ^ BITOP_LE_SWIZZLE, addr);
294}
295
296static inline void __clear_bit_le(int nr, void *addr)
297{
298	__clear_bit(nr ^ BITOP_LE_SWIZZLE, addr);
299}
300
301static inline int test_and_set_bit_le(int nr, void *addr)
302{
303	return test_and_set_bit(nr ^ BITOP_LE_SWIZZLE, addr);
304}
305
306static inline int test_and_clear_bit_le(int nr, void *addr)
307{
308	return test_and_clear_bit(nr ^ BITOP_LE_SWIZZLE, addr);
309}
310
311static inline int __test_and_set_bit_le(int nr, void *addr)
312{
313	return __test_and_set_bit(nr ^ BITOP_LE_SWIZZLE, addr);
314}
315
316static inline int __test_and_clear_bit_le(int nr, void *addr)
317{
318	return __test_and_clear_bit(nr ^ BITOP_LE_SWIZZLE, addr);
319}
320
321#define find_first_zero_bit_le(addr, size) \
322	find_next_zero_bit_le((addr), (size), 0)
323unsigned long find_next_zero_bit_le(const void *addr,
324				    unsigned long size, unsigned long offset);
325
326unsigned long find_next_bit_le(const void *addr,
327				    unsigned long size, unsigned long offset);
328/* Bitmap functions for the ext2 filesystem */
329
330#include <asm-generic/bitops/ext2-atomic-setbit.h>
331
332#include <asm-generic/bitops/sched.h>
333
334#endif /* __KERNEL__ */
335
336#endif /* _ASM_POWERPC_BITOPS_H */