Linux Audio

Check our new training course

Loading...
v4.6
  1/*
  2 * PowerPC atomic bit operations.
  3 *
  4 * Merged version by David Gibson <david@gibson.dropbear.id.au>.
  5 * Based on ppc64 versions by: Dave Engebretsen, Todd Inglett, Don
  6 * Reed, Pat McCarthy, Peter Bergner, Anton Blanchard.  They
  7 * originally took it from the ppc32 code.
  8 *
  9 * Within a word, bits are numbered LSB first.  Lot's of places make
 10 * this assumption by directly testing bits with (val & (1<<nr)).
 11 * This can cause confusion for large (> 1 word) bitmaps on a
 12 * big-endian system because, unlike little endian, the number of each
 13 * bit depends on the word size.
 14 *
 15 * The bitop functions are defined to work on unsigned longs, so for a
 16 * ppc64 system the bits end up numbered:
 17 *   |63..............0|127............64|191...........128|255...........192|
 18 * and on ppc32:
 19 *   |31.....0|63....32|95....64|127...96|159..128|191..160|223..192|255..224|
 20 *
 21 * There are a few little-endian macros used mostly for filesystem
 22 * bitmaps, these work on similar bit arrays layouts, but
 23 * byte-oriented:
 24 *   |7...0|15...8|23...16|31...24|39...32|47...40|55...48|63...56|
 25 *
 26 * The main difference is that bit 3-5 (64b) or 3-4 (32b) in the bit
 27 * number field needs to be reversed compared to the big-endian bit
 28 * fields. This can be achieved by XOR with 0x38 (64b) or 0x18 (32b).
 29 *
 30 * This program is free software; you can redistribute it and/or
 31 * modify it under the terms of the GNU General Public License
 32 * as published by the Free Software Foundation; either version
 33 * 2 of the License, or (at your option) any later version.
 34 */
 35
 36#ifndef _ASM_POWERPC_BITOPS_H
 37#define _ASM_POWERPC_BITOPS_H
 38
 39#ifdef __KERNEL__
 40
 41#ifndef _LINUX_BITOPS_H
 42#error only <linux/bitops.h> can be included directly
 43#endif
 44
 45#include <linux/compiler.h>
 46#include <asm/asm-compat.h>
 47#include <asm/synch.h>
 48
 49/* PPC bit number conversion */
 50#define PPC_BITLSHIFT(be)	(BITS_PER_LONG - 1 - (be))
 51#define PPC_BIT(bit)		(1UL << PPC_BITLSHIFT(bit))
 52#define PPC_BITMASK(bs, be)	((PPC_BIT(bs) - PPC_BIT(be)) | PPC_BIT(bs))
 53
 
 
 
 
 
 
 
 
 
 
 
 
 54#include <asm/barrier.h>
 55
 56/* Macro for generating the ***_bits() functions */
 57#define DEFINE_BITOP(fn, op, prefix)		\
 58static __inline__ void fn(unsigned long mask,	\
 59		volatile unsigned long *_p)	\
 60{						\
 61	unsigned long old;			\
 62	unsigned long *p = (unsigned long *)_p;	\
 63	__asm__ __volatile__ (			\
 64	prefix					\
 65"1:"	PPC_LLARX(%0,0,%3,0) "\n"		\
 66	stringify_in_c(op) "%0,%0,%2\n"		\
 67	PPC405_ERR77(0,%3)			\
 68	PPC_STLCX "%0,0,%3\n"			\
 69	"bne- 1b\n"				\
 70	: "=&r" (old), "+m" (*p)		\
 71	: "r" (mask), "r" (p)			\
 72	: "cc", "memory");			\
 73}
 74
 75DEFINE_BITOP(set_bits, or, "")
 76DEFINE_BITOP(clear_bits, andc, "")
 77DEFINE_BITOP(clear_bits_unlock, andc, PPC_RELEASE_BARRIER)
 78DEFINE_BITOP(change_bits, xor, "")
 79
 80static __inline__ void set_bit(int nr, volatile unsigned long *addr)
 81{
 82	set_bits(BIT_MASK(nr), addr + BIT_WORD(nr));
 83}
 84
 85static __inline__ void clear_bit(int nr, volatile unsigned long *addr)
 86{
 87	clear_bits(BIT_MASK(nr), addr + BIT_WORD(nr));
 88}
 89
 90static __inline__ void clear_bit_unlock(int nr, volatile unsigned long *addr)
 91{
 92	clear_bits_unlock(BIT_MASK(nr), addr + BIT_WORD(nr));
 93}
 94
 95static __inline__ void change_bit(int nr, volatile unsigned long *addr)
 96{
 97	change_bits(BIT_MASK(nr), addr + BIT_WORD(nr));
 98}
 99
100/* Like DEFINE_BITOP(), with changes to the arguments to 'op' and the output
101 * operands. */
102#define DEFINE_TESTOP(fn, op, prefix, postfix, eh)	\
103static __inline__ unsigned long fn(			\
104		unsigned long mask,			\
105		volatile unsigned long *_p)		\
106{							\
107	unsigned long old, t;				\
108	unsigned long *p = (unsigned long *)_p;		\
109	__asm__ __volatile__ (				\
110	prefix						\
111"1:"	PPC_LLARX(%0,0,%3,eh) "\n"			\
112	stringify_in_c(op) "%1,%0,%2\n"			\
113	PPC405_ERR77(0,%3)				\
114	PPC_STLCX "%1,0,%3\n"				\
115	"bne- 1b\n"					\
116	postfix						\
117	: "=&r" (old), "=&r" (t)			\
118	: "r" (mask), "r" (p)				\
119	: "cc", "memory");				\
120	return (old & mask);				\
121}
122
123DEFINE_TESTOP(test_and_set_bits, or, PPC_ATOMIC_ENTRY_BARRIER,
124	      PPC_ATOMIC_EXIT_BARRIER, 0)
125DEFINE_TESTOP(test_and_set_bits_lock, or, "",
126	      PPC_ACQUIRE_BARRIER, 1)
127DEFINE_TESTOP(test_and_clear_bits, andc, PPC_ATOMIC_ENTRY_BARRIER,
128	      PPC_ATOMIC_EXIT_BARRIER, 0)
129DEFINE_TESTOP(test_and_change_bits, xor, PPC_ATOMIC_ENTRY_BARRIER,
130	      PPC_ATOMIC_EXIT_BARRIER, 0)
131
132static __inline__ int test_and_set_bit(unsigned long nr,
133				       volatile unsigned long *addr)
134{
135	return test_and_set_bits(BIT_MASK(nr), addr + BIT_WORD(nr)) != 0;
136}
137
138static __inline__ int test_and_set_bit_lock(unsigned long nr,
139				       volatile unsigned long *addr)
140{
141	return test_and_set_bits_lock(BIT_MASK(nr),
142				addr + BIT_WORD(nr)) != 0;
143}
144
145static __inline__ int test_and_clear_bit(unsigned long nr,
146					 volatile unsigned long *addr)
147{
148	return test_and_clear_bits(BIT_MASK(nr), addr + BIT_WORD(nr)) != 0;
149}
150
151static __inline__ int test_and_change_bit(unsigned long nr,
152					  volatile unsigned long *addr)
153{
154	return test_and_change_bits(BIT_MASK(nr), addr + BIT_WORD(nr)) != 0;
155}
156
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
157#include <asm-generic/bitops/non-atomic.h>
158
159static __inline__ void __clear_bit_unlock(int nr, volatile unsigned long *addr)
160{
161	__asm__ __volatile__(PPC_RELEASE_BARRIER "" ::: "memory");
162	__clear_bit(nr, addr);
163}
164
165/*
166 * Return the zero-based bit position (LE, not IBM bit numbering) of
167 * the most significant 1-bit in a double word.
168 */
169static __inline__ __attribute__((const))
170int __ilog2(unsigned long x)
171{
172	int lz;
173
174	asm (PPC_CNTLZL "%0,%1" : "=r" (lz) : "r" (x));
175	return BITS_PER_LONG - 1 - lz;
176}
177
178static inline __attribute__((const))
179int __ilog2_u32(u32 n)
180{
181	int bit;
182	asm ("cntlzw %0,%1" : "=r" (bit) : "r" (n));
183	return 31 - bit;
184}
185
186#ifdef __powerpc64__
187static inline __attribute__((const))
188int __ilog2_u64(u64 n)
189{
190	int bit;
191	asm ("cntlzd %0,%1" : "=r" (bit) : "r" (n));
192	return 63 - bit;
193}
194#endif
195
196/*
197 * Determines the bit position of the least significant 0 bit in the
198 * specified double word. The returned bit position will be
199 * zero-based, starting from the right side (63/31 - 0).
200 */
201static __inline__ unsigned long ffz(unsigned long x)
202{
203	/* no zero exists anywhere in the 8 byte area. */
204	if ((x = ~x) == 0)
205		return BITS_PER_LONG;
206
207	/*
208	 * Calculate the bit position of the least significant '1' bit in x
209	 * (since x has been changed this will actually be the least significant
210	 * '0' bit in * the original x).  Note: (x & -x) gives us a mask that
211	 * is the least significant * (RIGHT-most) 1-bit of the value in x.
212	 */
213	return __ilog2(x & -x);
214}
215
216static __inline__ unsigned long __ffs(unsigned long x)
217{
218	return __ilog2(x & -x);
219}
220
221/*
222 * ffs: find first bit set. This is defined the same way as
223 * the libc and compiler builtin ffs routines, therefore
224 * differs in spirit from the above ffz (man ffs).
225 */
226static __inline__ int ffs(int x)
227{
228	unsigned long i = (unsigned long)x;
229	return __ilog2(i & -i) + 1;
230}
231
232/*
233 * fls: find last (most-significant) bit set.
234 * Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32.
235 */
236static __inline__ int fls(unsigned int x)
237{
238	int lz;
239
240	asm ("cntlzw %0,%1" : "=r" (lz) : "r" (x));
241	return 32 - lz;
242}
243
244static __inline__ unsigned long __fls(unsigned long x)
245{
246	return __ilog2(x);
247}
248
249/*
250 * 64-bit can do this using one cntlzd (count leading zeroes doubleword)
251 * instruction; for 32-bit we use the generic version, which does two
252 * 32-bit fls calls.
253 */
254#ifdef __powerpc64__
255static __inline__ int fls64(__u64 x)
256{
257	int lz;
258
259	asm ("cntlzd %0,%1" : "=r" (lz) : "r" (x));
260	return 64 - lz;
261}
262#else
263#include <asm-generic/bitops/fls64.h>
264#endif /* __powerpc64__ */
265
266#ifdef CONFIG_PPC64
267unsigned int __arch_hweight8(unsigned int w);
268unsigned int __arch_hweight16(unsigned int w);
269unsigned int __arch_hweight32(unsigned int w);
270unsigned long __arch_hweight64(__u64 w);
271#include <asm-generic/bitops/const_hweight.h>
272#else
273#include <asm-generic/bitops/hweight.h>
274#endif
275
276#include <asm-generic/bitops/find.h>
277
278/* Little-endian versions */
279#include <asm-generic/bitops/le.h>
280
281/* Bitmap functions for the ext2 filesystem */
282
283#include <asm-generic/bitops/ext2-atomic-setbit.h>
284
285#include <asm-generic/bitops/sched.h>
286
287#endif /* __KERNEL__ */
288
289#endif /* _ASM_POWERPC_BITOPS_H */
v4.17
  1/*
  2 * PowerPC atomic bit operations.
  3 *
  4 * Merged version by David Gibson <david@gibson.dropbear.id.au>.
  5 * Based on ppc64 versions by: Dave Engebretsen, Todd Inglett, Don
  6 * Reed, Pat McCarthy, Peter Bergner, Anton Blanchard.  They
  7 * originally took it from the ppc32 code.
  8 *
  9 * Within a word, bits are numbered LSB first.  Lot's of places make
 10 * this assumption by directly testing bits with (val & (1<<nr)).
 11 * This can cause confusion for large (> 1 word) bitmaps on a
 12 * big-endian system because, unlike little endian, the number of each
 13 * bit depends on the word size.
 14 *
 15 * The bitop functions are defined to work on unsigned longs, so for a
 16 * ppc64 system the bits end up numbered:
 17 *   |63..............0|127............64|191...........128|255...........192|
 18 * and on ppc32:
 19 *   |31.....0|63....32|95....64|127...96|159..128|191..160|223..192|255..224|
 20 *
 21 * There are a few little-endian macros used mostly for filesystem
 22 * bitmaps, these work on similar bit arrays layouts, but
 23 * byte-oriented:
 24 *   |7...0|15...8|23...16|31...24|39...32|47...40|55...48|63...56|
 25 *
 26 * The main difference is that bit 3-5 (64b) or 3-4 (32b) in the bit
 27 * number field needs to be reversed compared to the big-endian bit
 28 * fields. This can be achieved by XOR with 0x38 (64b) or 0x18 (32b).
 29 *
 30 * This program is free software; you can redistribute it and/or
 31 * modify it under the terms of the GNU General Public License
 32 * as published by the Free Software Foundation; either version
 33 * 2 of the License, or (at your option) any later version.
 34 */
 35
 36#ifndef _ASM_POWERPC_BITOPS_H
 37#define _ASM_POWERPC_BITOPS_H
 38
 39#ifdef __KERNEL__
 40
 41#ifndef _LINUX_BITOPS_H
 42#error only <linux/bitops.h> can be included directly
 43#endif
 44
 45#include <linux/compiler.h>
 46#include <asm/asm-compat.h>
 47#include <asm/synch.h>
 48
 49/* PPC bit number conversion */
 50#define PPC_BITLSHIFT(be)	(BITS_PER_LONG - 1 - (be))
 51#define PPC_BIT(bit)		(1UL << PPC_BITLSHIFT(bit))
 52#define PPC_BITMASK(bs, be)	((PPC_BIT(bs) - PPC_BIT(be)) | PPC_BIT(bs))
 53
 54/* Put a PPC bit into a "normal" bit position */
 55#define PPC_BITEXTRACT(bits, ppc_bit, dst_bit)			\
 56	((((bits) >> PPC_BITLSHIFT(ppc_bit)) & 1) << (dst_bit))
 57
 58#define PPC_BITLSHIFT32(be)	(32 - 1 - (be))
 59#define PPC_BIT32(bit)		(1UL << PPC_BITLSHIFT32(bit))
 60#define PPC_BITMASK32(bs, be)	((PPC_BIT32(bs) - PPC_BIT32(be))|PPC_BIT32(bs))
 61
 62#define PPC_BITLSHIFT8(be)	(8 - 1 - (be))
 63#define PPC_BIT8(bit)		(1UL << PPC_BITLSHIFT8(bit))
 64#define PPC_BITMASK8(bs, be)	((PPC_BIT8(bs) - PPC_BIT8(be))|PPC_BIT8(bs))
 65
 66#include <asm/barrier.h>
 67
 68/* Macro for generating the ***_bits() functions */
 69#define DEFINE_BITOP(fn, op, prefix)		\
 70static __inline__ void fn(unsigned long mask,	\
 71		volatile unsigned long *_p)	\
 72{						\
 73	unsigned long old;			\
 74	unsigned long *p = (unsigned long *)_p;	\
 75	__asm__ __volatile__ (			\
 76	prefix					\
 77"1:"	PPC_LLARX(%0,0,%3,0) "\n"		\
 78	stringify_in_c(op) "%0,%0,%2\n"		\
 79	PPC405_ERR77(0,%3)			\
 80	PPC_STLCX "%0,0,%3\n"			\
 81	"bne- 1b\n"				\
 82	: "=&r" (old), "+m" (*p)		\
 83	: "r" (mask), "r" (p)			\
 84	: "cc", "memory");			\
 85}
 86
 87DEFINE_BITOP(set_bits, or, "")
 88DEFINE_BITOP(clear_bits, andc, "")
 89DEFINE_BITOP(clear_bits_unlock, andc, PPC_RELEASE_BARRIER)
 90DEFINE_BITOP(change_bits, xor, "")
 91
 92static __inline__ void set_bit(int nr, volatile unsigned long *addr)
 93{
 94	set_bits(BIT_MASK(nr), addr + BIT_WORD(nr));
 95}
 96
 97static __inline__ void clear_bit(int nr, volatile unsigned long *addr)
 98{
 99	clear_bits(BIT_MASK(nr), addr + BIT_WORD(nr));
100}
101
102static __inline__ void clear_bit_unlock(int nr, volatile unsigned long *addr)
103{
104	clear_bits_unlock(BIT_MASK(nr), addr + BIT_WORD(nr));
105}
106
107static __inline__ void change_bit(int nr, volatile unsigned long *addr)
108{
109	change_bits(BIT_MASK(nr), addr + BIT_WORD(nr));
110}
111
112/* Like DEFINE_BITOP(), with changes to the arguments to 'op' and the output
113 * operands. */
114#define DEFINE_TESTOP(fn, op, prefix, postfix, eh)	\
115static __inline__ unsigned long fn(			\
116		unsigned long mask,			\
117		volatile unsigned long *_p)		\
118{							\
119	unsigned long old, t;				\
120	unsigned long *p = (unsigned long *)_p;		\
121	__asm__ __volatile__ (				\
122	prefix						\
123"1:"	PPC_LLARX(%0,0,%3,eh) "\n"			\
124	stringify_in_c(op) "%1,%0,%2\n"			\
125	PPC405_ERR77(0,%3)				\
126	PPC_STLCX "%1,0,%3\n"				\
127	"bne- 1b\n"					\
128	postfix						\
129	: "=&r" (old), "=&r" (t)			\
130	: "r" (mask), "r" (p)				\
131	: "cc", "memory");				\
132	return (old & mask);				\
133}
134
135DEFINE_TESTOP(test_and_set_bits, or, PPC_ATOMIC_ENTRY_BARRIER,
136	      PPC_ATOMIC_EXIT_BARRIER, 0)
137DEFINE_TESTOP(test_and_set_bits_lock, or, "",
138	      PPC_ACQUIRE_BARRIER, 1)
139DEFINE_TESTOP(test_and_clear_bits, andc, PPC_ATOMIC_ENTRY_BARRIER,
140	      PPC_ATOMIC_EXIT_BARRIER, 0)
141DEFINE_TESTOP(test_and_change_bits, xor, PPC_ATOMIC_ENTRY_BARRIER,
142	      PPC_ATOMIC_EXIT_BARRIER, 0)
143
144static __inline__ int test_and_set_bit(unsigned long nr,
145				       volatile unsigned long *addr)
146{
147	return test_and_set_bits(BIT_MASK(nr), addr + BIT_WORD(nr)) != 0;
148}
149
150static __inline__ int test_and_set_bit_lock(unsigned long nr,
151				       volatile unsigned long *addr)
152{
153	return test_and_set_bits_lock(BIT_MASK(nr),
154				addr + BIT_WORD(nr)) != 0;
155}
156
157static __inline__ int test_and_clear_bit(unsigned long nr,
158					 volatile unsigned long *addr)
159{
160	return test_and_clear_bits(BIT_MASK(nr), addr + BIT_WORD(nr)) != 0;
161}
162
163static __inline__ int test_and_change_bit(unsigned long nr,
164					  volatile unsigned long *addr)
165{
166	return test_and_change_bits(BIT_MASK(nr), addr + BIT_WORD(nr)) != 0;
167}
168
169#ifdef CONFIG_PPC64
170static __inline__ unsigned long clear_bit_unlock_return_word(int nr,
171						volatile unsigned long *addr)
172{
173	unsigned long old, t;
174	unsigned long *p = (unsigned long *)addr + BIT_WORD(nr);
175	unsigned long mask = BIT_MASK(nr);
176
177	__asm__ __volatile__ (
178	PPC_RELEASE_BARRIER
179"1:"	PPC_LLARX(%0,0,%3,0) "\n"
180	"andc %1,%0,%2\n"
181	PPC405_ERR77(0,%3)
182	PPC_STLCX "%1,0,%3\n"
183	"bne- 1b\n"
184	: "=&r" (old), "=&r" (t)
185	: "r" (mask), "r" (p)
186	: "cc", "memory");
187
188	return old;
189}
190
191/* This is a special function for mm/filemap.c */
192#define clear_bit_unlock_is_negative_byte(nr, addr)			\
193	(clear_bit_unlock_return_word(nr, addr) & BIT_MASK(PG_waiters))
194
195#endif /* CONFIG_PPC64 */
196
197#include <asm-generic/bitops/non-atomic.h>
198
199static __inline__ void __clear_bit_unlock(int nr, volatile unsigned long *addr)
200{
201	__asm__ __volatile__(PPC_RELEASE_BARRIER "" ::: "memory");
202	__clear_bit(nr, addr);
203}
204
205/*
206 * Return the zero-based bit position (LE, not IBM bit numbering) of
207 * the most significant 1-bit in a double word.
208 */
209#define __ilog2(x)	ilog2(x)
 
 
 
210
211#include <asm-generic/bitops/ffz.h>
 
 
212
213#include <asm-generic/bitops/builtin-__ffs.h>
 
 
 
 
 
 
214
215#include <asm-generic/bitops/builtin-ffs.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
216
217/*
218 * fls: find last (most-significant) bit set.
219 * Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32.
220 */
221static __inline__ int fls(unsigned int x)
222{
223	return 32 - __builtin_clz(x);
 
 
 
224}
225
226#include <asm-generic/bitops/builtin-__fls.h>
 
 
 
227
 
 
 
 
 
 
228static __inline__ int fls64(__u64 x)
229{
230	return 64 - __builtin_clzll(x);
 
 
 
231}
 
 
 
232
233#ifdef CONFIG_PPC64
234unsigned int __arch_hweight8(unsigned int w);
235unsigned int __arch_hweight16(unsigned int w);
236unsigned int __arch_hweight32(unsigned int w);
237unsigned long __arch_hweight64(__u64 w);
238#include <asm-generic/bitops/const_hweight.h>
239#else
240#include <asm-generic/bitops/hweight.h>
241#endif
242
243#include <asm-generic/bitops/find.h>
244
245/* Little-endian versions */
246#include <asm-generic/bitops/le.h>
247
248/* Bitmap functions for the ext2 filesystem */
249
250#include <asm-generic/bitops/ext2-atomic-setbit.h>
251
252#include <asm-generic/bitops/sched.h>
253
254#endif /* __KERNEL__ */
255
256#endif /* _ASM_POWERPC_BITOPS_H */