Loading...
1#include "audit.h"
2#include <linux/fsnotify_backend.h>
3#include <linux/namei.h>
4#include <linux/mount.h>
5#include <linux/kthread.h>
6#include <linux/slab.h>
7
8struct audit_tree;
9struct audit_chunk;
10
11struct audit_tree {
12 atomic_t count;
13 int goner;
14 struct audit_chunk *root;
15 struct list_head chunks;
16 struct list_head rules;
17 struct list_head list;
18 struct list_head same_root;
19 struct rcu_head head;
20 char pathname[];
21};
22
23struct audit_chunk {
24 struct list_head hash;
25 struct fsnotify_mark mark;
26 struct list_head trees; /* with root here */
27 int dead;
28 int count;
29 atomic_long_t refs;
30 struct rcu_head head;
31 struct node {
32 struct list_head list;
33 struct audit_tree *owner;
34 unsigned index; /* index; upper bit indicates 'will prune' */
35 } owners[];
36};
37
38static LIST_HEAD(tree_list);
39static LIST_HEAD(prune_list);
40static struct task_struct *prune_thread;
41
42/*
43 * One struct chunk is attached to each inode of interest.
44 * We replace struct chunk on tagging/untagging.
45 * Rules have pointer to struct audit_tree.
46 * Rules have struct list_head rlist forming a list of rules over
47 * the same tree.
48 * References to struct chunk are collected at audit_inode{,_child}()
49 * time and used in AUDIT_TREE rule matching.
50 * These references are dropped at the same time we are calling
51 * audit_free_names(), etc.
52 *
53 * Cyclic lists galore:
54 * tree.chunks anchors chunk.owners[].list hash_lock
55 * tree.rules anchors rule.rlist audit_filter_mutex
56 * chunk.trees anchors tree.same_root hash_lock
57 * chunk.hash is a hash with middle bits of watch.inode as
58 * a hash function. RCU, hash_lock
59 *
60 * tree is refcounted; one reference for "some rules on rules_list refer to
61 * it", one for each chunk with pointer to it.
62 *
63 * chunk is refcounted by embedded fsnotify_mark + .refs (non-zero refcount
64 * of watch contributes 1 to .refs).
65 *
66 * node.index allows to get from node.list to containing chunk.
67 * MSB of that sucker is stolen to mark taggings that we might have to
68 * revert - several operations have very unpleasant cleanup logics and
69 * that makes a difference. Some.
70 */
71
72static struct fsnotify_group *audit_tree_group;
73
74static struct audit_tree *alloc_tree(const char *s)
75{
76 struct audit_tree *tree;
77
78 tree = kmalloc(sizeof(struct audit_tree) + strlen(s) + 1, GFP_KERNEL);
79 if (tree) {
80 atomic_set(&tree->count, 1);
81 tree->goner = 0;
82 INIT_LIST_HEAD(&tree->chunks);
83 INIT_LIST_HEAD(&tree->rules);
84 INIT_LIST_HEAD(&tree->list);
85 INIT_LIST_HEAD(&tree->same_root);
86 tree->root = NULL;
87 strcpy(tree->pathname, s);
88 }
89 return tree;
90}
91
92static inline void get_tree(struct audit_tree *tree)
93{
94 atomic_inc(&tree->count);
95}
96
97static inline void put_tree(struct audit_tree *tree)
98{
99 if (atomic_dec_and_test(&tree->count))
100 kfree_rcu(tree, head);
101}
102
103/* to avoid bringing the entire thing in audit.h */
104const char *audit_tree_path(struct audit_tree *tree)
105{
106 return tree->pathname;
107}
108
109static void free_chunk(struct audit_chunk *chunk)
110{
111 int i;
112
113 for (i = 0; i < chunk->count; i++) {
114 if (chunk->owners[i].owner)
115 put_tree(chunk->owners[i].owner);
116 }
117 kfree(chunk);
118}
119
120void audit_put_chunk(struct audit_chunk *chunk)
121{
122 if (atomic_long_dec_and_test(&chunk->refs))
123 free_chunk(chunk);
124}
125
126static void __put_chunk(struct rcu_head *rcu)
127{
128 struct audit_chunk *chunk = container_of(rcu, struct audit_chunk, head);
129 audit_put_chunk(chunk);
130}
131
132static void audit_tree_destroy_watch(struct fsnotify_mark *entry)
133{
134 struct audit_chunk *chunk = container_of(entry, struct audit_chunk, mark);
135 call_rcu(&chunk->head, __put_chunk);
136}
137
138static struct audit_chunk *alloc_chunk(int count)
139{
140 struct audit_chunk *chunk;
141 size_t size;
142 int i;
143
144 size = offsetof(struct audit_chunk, owners) + count * sizeof(struct node);
145 chunk = kzalloc(size, GFP_KERNEL);
146 if (!chunk)
147 return NULL;
148
149 INIT_LIST_HEAD(&chunk->hash);
150 INIT_LIST_HEAD(&chunk->trees);
151 chunk->count = count;
152 atomic_long_set(&chunk->refs, 1);
153 for (i = 0; i < count; i++) {
154 INIT_LIST_HEAD(&chunk->owners[i].list);
155 chunk->owners[i].index = i;
156 }
157 fsnotify_init_mark(&chunk->mark, audit_tree_destroy_watch);
158 chunk->mark.mask = FS_IN_IGNORED;
159 return chunk;
160}
161
162enum {HASH_SIZE = 128};
163static struct list_head chunk_hash_heads[HASH_SIZE];
164static __cacheline_aligned_in_smp DEFINE_SPINLOCK(hash_lock);
165
166static inline struct list_head *chunk_hash(const struct inode *inode)
167{
168 unsigned long n = (unsigned long)inode / L1_CACHE_BYTES;
169 return chunk_hash_heads + n % HASH_SIZE;
170}
171
172/* hash_lock & entry->lock is held by caller */
173static void insert_hash(struct audit_chunk *chunk)
174{
175 struct fsnotify_mark *entry = &chunk->mark;
176 struct list_head *list;
177
178 if (!entry->inode)
179 return;
180 list = chunk_hash(entry->inode);
181 list_add_rcu(&chunk->hash, list);
182}
183
184/* called under rcu_read_lock */
185struct audit_chunk *audit_tree_lookup(const struct inode *inode)
186{
187 struct list_head *list = chunk_hash(inode);
188 struct audit_chunk *p;
189
190 list_for_each_entry_rcu(p, list, hash) {
191 /* mark.inode may have gone NULL, but who cares? */
192 if (p->mark.inode == inode) {
193 atomic_long_inc(&p->refs);
194 return p;
195 }
196 }
197 return NULL;
198}
199
200bool audit_tree_match(struct audit_chunk *chunk, struct audit_tree *tree)
201{
202 int n;
203 for (n = 0; n < chunk->count; n++)
204 if (chunk->owners[n].owner == tree)
205 return true;
206 return false;
207}
208
209/* tagging and untagging inodes with trees */
210
211static struct audit_chunk *find_chunk(struct node *p)
212{
213 int index = p->index & ~(1U<<31);
214 p -= index;
215 return container_of(p, struct audit_chunk, owners[0]);
216}
217
218static void untag_chunk(struct node *p)
219{
220 struct audit_chunk *chunk = find_chunk(p);
221 struct fsnotify_mark *entry = &chunk->mark;
222 struct audit_chunk *new = NULL;
223 struct audit_tree *owner;
224 int size = chunk->count - 1;
225 int i, j;
226
227 fsnotify_get_mark(entry);
228
229 spin_unlock(&hash_lock);
230
231 if (size)
232 new = alloc_chunk(size);
233
234 spin_lock(&entry->lock);
235 if (chunk->dead || !entry->inode) {
236 spin_unlock(&entry->lock);
237 if (new)
238 free_chunk(new);
239 goto out;
240 }
241
242 owner = p->owner;
243
244 if (!size) {
245 chunk->dead = 1;
246 spin_lock(&hash_lock);
247 list_del_init(&chunk->trees);
248 if (owner->root == chunk)
249 owner->root = NULL;
250 list_del_init(&p->list);
251 list_del_rcu(&chunk->hash);
252 spin_unlock(&hash_lock);
253 spin_unlock(&entry->lock);
254 fsnotify_destroy_mark(entry, audit_tree_group);
255 goto out;
256 }
257
258 if (!new)
259 goto Fallback;
260
261 fsnotify_duplicate_mark(&new->mark, entry);
262 if (fsnotify_add_mark(&new->mark, new->mark.group, new->mark.inode, NULL, 1)) {
263 fsnotify_put_mark(&new->mark);
264 goto Fallback;
265 }
266
267 chunk->dead = 1;
268 spin_lock(&hash_lock);
269 list_replace_init(&chunk->trees, &new->trees);
270 if (owner->root == chunk) {
271 list_del_init(&owner->same_root);
272 owner->root = NULL;
273 }
274
275 for (i = j = 0; j <= size; i++, j++) {
276 struct audit_tree *s;
277 if (&chunk->owners[j] == p) {
278 list_del_init(&p->list);
279 i--;
280 continue;
281 }
282 s = chunk->owners[j].owner;
283 new->owners[i].owner = s;
284 new->owners[i].index = chunk->owners[j].index - j + i;
285 if (!s) /* result of earlier fallback */
286 continue;
287 get_tree(s);
288 list_replace_init(&chunk->owners[j].list, &new->owners[i].list);
289 }
290
291 list_replace_rcu(&chunk->hash, &new->hash);
292 list_for_each_entry(owner, &new->trees, same_root)
293 owner->root = new;
294 spin_unlock(&hash_lock);
295 spin_unlock(&entry->lock);
296 fsnotify_destroy_mark(entry, audit_tree_group);
297 fsnotify_put_mark(&new->mark); /* drop initial reference */
298 goto out;
299
300Fallback:
301 // do the best we can
302 spin_lock(&hash_lock);
303 if (owner->root == chunk) {
304 list_del_init(&owner->same_root);
305 owner->root = NULL;
306 }
307 list_del_init(&p->list);
308 p->owner = NULL;
309 put_tree(owner);
310 spin_unlock(&hash_lock);
311 spin_unlock(&entry->lock);
312out:
313 fsnotify_put_mark(entry);
314 spin_lock(&hash_lock);
315}
316
317static int create_chunk(struct inode *inode, struct audit_tree *tree)
318{
319 struct fsnotify_mark *entry;
320 struct audit_chunk *chunk = alloc_chunk(1);
321 if (!chunk)
322 return -ENOMEM;
323
324 entry = &chunk->mark;
325 if (fsnotify_add_mark(entry, audit_tree_group, inode, NULL, 0)) {
326 fsnotify_put_mark(entry);
327 return -ENOSPC;
328 }
329
330 spin_lock(&entry->lock);
331 spin_lock(&hash_lock);
332 if (tree->goner) {
333 spin_unlock(&hash_lock);
334 chunk->dead = 1;
335 spin_unlock(&entry->lock);
336 fsnotify_destroy_mark(entry, audit_tree_group);
337 fsnotify_put_mark(entry);
338 return 0;
339 }
340 chunk->owners[0].index = (1U << 31);
341 chunk->owners[0].owner = tree;
342 get_tree(tree);
343 list_add(&chunk->owners[0].list, &tree->chunks);
344 if (!tree->root) {
345 tree->root = chunk;
346 list_add(&tree->same_root, &chunk->trees);
347 }
348 insert_hash(chunk);
349 spin_unlock(&hash_lock);
350 spin_unlock(&entry->lock);
351 fsnotify_put_mark(entry); /* drop initial reference */
352 return 0;
353}
354
355/* the first tagged inode becomes root of tree */
356static int tag_chunk(struct inode *inode, struct audit_tree *tree)
357{
358 struct fsnotify_mark *old_entry, *chunk_entry;
359 struct audit_tree *owner;
360 struct audit_chunk *chunk, *old;
361 struct node *p;
362 int n;
363
364 old_entry = fsnotify_find_inode_mark(audit_tree_group, inode);
365 if (!old_entry)
366 return create_chunk(inode, tree);
367
368 old = container_of(old_entry, struct audit_chunk, mark);
369
370 /* are we already there? */
371 spin_lock(&hash_lock);
372 for (n = 0; n < old->count; n++) {
373 if (old->owners[n].owner == tree) {
374 spin_unlock(&hash_lock);
375 fsnotify_put_mark(old_entry);
376 return 0;
377 }
378 }
379 spin_unlock(&hash_lock);
380
381 chunk = alloc_chunk(old->count + 1);
382 if (!chunk) {
383 fsnotify_put_mark(old_entry);
384 return -ENOMEM;
385 }
386
387 chunk_entry = &chunk->mark;
388
389 spin_lock(&old_entry->lock);
390 if (!old_entry->inode) {
391 /* old_entry is being shot, lets just lie */
392 spin_unlock(&old_entry->lock);
393 fsnotify_put_mark(old_entry);
394 free_chunk(chunk);
395 return -ENOENT;
396 }
397
398 fsnotify_duplicate_mark(chunk_entry, old_entry);
399 if (fsnotify_add_mark(chunk_entry, chunk_entry->group, chunk_entry->inode, NULL, 1)) {
400 spin_unlock(&old_entry->lock);
401 fsnotify_put_mark(chunk_entry);
402 fsnotify_put_mark(old_entry);
403 return -ENOSPC;
404 }
405
406 /* even though we hold old_entry->lock, this is safe since chunk_entry->lock could NEVER have been grabbed before */
407 spin_lock(&chunk_entry->lock);
408 spin_lock(&hash_lock);
409
410 /* we now hold old_entry->lock, chunk_entry->lock, and hash_lock */
411 if (tree->goner) {
412 spin_unlock(&hash_lock);
413 chunk->dead = 1;
414 spin_unlock(&chunk_entry->lock);
415 spin_unlock(&old_entry->lock);
416
417 fsnotify_destroy_mark(chunk_entry, audit_tree_group);
418
419 fsnotify_put_mark(chunk_entry);
420 fsnotify_put_mark(old_entry);
421 return 0;
422 }
423 list_replace_init(&old->trees, &chunk->trees);
424 for (n = 0, p = chunk->owners; n < old->count; n++, p++) {
425 struct audit_tree *s = old->owners[n].owner;
426 p->owner = s;
427 p->index = old->owners[n].index;
428 if (!s) /* result of fallback in untag */
429 continue;
430 get_tree(s);
431 list_replace_init(&old->owners[n].list, &p->list);
432 }
433 p->index = (chunk->count - 1) | (1U<<31);
434 p->owner = tree;
435 get_tree(tree);
436 list_add(&p->list, &tree->chunks);
437 list_replace_rcu(&old->hash, &chunk->hash);
438 list_for_each_entry(owner, &chunk->trees, same_root)
439 owner->root = chunk;
440 old->dead = 1;
441 if (!tree->root) {
442 tree->root = chunk;
443 list_add(&tree->same_root, &chunk->trees);
444 }
445 spin_unlock(&hash_lock);
446 spin_unlock(&chunk_entry->lock);
447 spin_unlock(&old_entry->lock);
448 fsnotify_destroy_mark(old_entry, audit_tree_group);
449 fsnotify_put_mark(chunk_entry); /* drop initial reference */
450 fsnotify_put_mark(old_entry); /* pair to fsnotify_find mark_entry */
451 return 0;
452}
453
454static void audit_tree_log_remove_rule(struct audit_krule *rule)
455{
456 struct audit_buffer *ab;
457
458 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
459 if (unlikely(!ab))
460 return;
461 audit_log_format(ab, "op=");
462 audit_log_string(ab, "remove_rule");
463 audit_log_format(ab, " dir=");
464 audit_log_untrustedstring(ab, rule->tree->pathname);
465 audit_log_key(ab, rule->filterkey);
466 audit_log_format(ab, " list=%d res=1", rule->listnr);
467 audit_log_end(ab);
468}
469
470static void kill_rules(struct audit_tree *tree)
471{
472 struct audit_krule *rule, *next;
473 struct audit_entry *entry;
474
475 list_for_each_entry_safe(rule, next, &tree->rules, rlist) {
476 entry = container_of(rule, struct audit_entry, rule);
477
478 list_del_init(&rule->rlist);
479 if (rule->tree) {
480 /* not a half-baked one */
481 audit_tree_log_remove_rule(rule);
482 if (entry->rule.exe)
483 audit_remove_mark(entry->rule.exe);
484 rule->tree = NULL;
485 list_del_rcu(&entry->list);
486 list_del(&entry->rule.list);
487 call_rcu(&entry->rcu, audit_free_rule_rcu);
488 }
489 }
490}
491
492/*
493 * finish killing struct audit_tree
494 */
495static void prune_one(struct audit_tree *victim)
496{
497 spin_lock(&hash_lock);
498 while (!list_empty(&victim->chunks)) {
499 struct node *p;
500
501 p = list_entry(victim->chunks.next, struct node, list);
502
503 untag_chunk(p);
504 }
505 spin_unlock(&hash_lock);
506 put_tree(victim);
507}
508
509/* trim the uncommitted chunks from tree */
510
511static void trim_marked(struct audit_tree *tree)
512{
513 struct list_head *p, *q;
514 spin_lock(&hash_lock);
515 if (tree->goner) {
516 spin_unlock(&hash_lock);
517 return;
518 }
519 /* reorder */
520 for (p = tree->chunks.next; p != &tree->chunks; p = q) {
521 struct node *node = list_entry(p, struct node, list);
522 q = p->next;
523 if (node->index & (1U<<31)) {
524 list_del_init(p);
525 list_add(p, &tree->chunks);
526 }
527 }
528
529 while (!list_empty(&tree->chunks)) {
530 struct node *node;
531
532 node = list_entry(tree->chunks.next, struct node, list);
533
534 /* have we run out of marked? */
535 if (!(node->index & (1U<<31)))
536 break;
537
538 untag_chunk(node);
539 }
540 if (!tree->root && !tree->goner) {
541 tree->goner = 1;
542 spin_unlock(&hash_lock);
543 mutex_lock(&audit_filter_mutex);
544 kill_rules(tree);
545 list_del_init(&tree->list);
546 mutex_unlock(&audit_filter_mutex);
547 prune_one(tree);
548 } else {
549 spin_unlock(&hash_lock);
550 }
551}
552
553static void audit_schedule_prune(void);
554
555/* called with audit_filter_mutex */
556int audit_remove_tree_rule(struct audit_krule *rule)
557{
558 struct audit_tree *tree;
559 tree = rule->tree;
560 if (tree) {
561 spin_lock(&hash_lock);
562 list_del_init(&rule->rlist);
563 if (list_empty(&tree->rules) && !tree->goner) {
564 tree->root = NULL;
565 list_del_init(&tree->same_root);
566 tree->goner = 1;
567 list_move(&tree->list, &prune_list);
568 rule->tree = NULL;
569 spin_unlock(&hash_lock);
570 audit_schedule_prune();
571 return 1;
572 }
573 rule->tree = NULL;
574 spin_unlock(&hash_lock);
575 return 1;
576 }
577 return 0;
578}
579
580static int compare_root(struct vfsmount *mnt, void *arg)
581{
582 return d_backing_inode(mnt->mnt_root) == arg;
583}
584
585void audit_trim_trees(void)
586{
587 struct list_head cursor;
588
589 mutex_lock(&audit_filter_mutex);
590 list_add(&cursor, &tree_list);
591 while (cursor.next != &tree_list) {
592 struct audit_tree *tree;
593 struct path path;
594 struct vfsmount *root_mnt;
595 struct node *node;
596 int err;
597
598 tree = container_of(cursor.next, struct audit_tree, list);
599 get_tree(tree);
600 list_del(&cursor);
601 list_add(&cursor, &tree->list);
602 mutex_unlock(&audit_filter_mutex);
603
604 err = kern_path(tree->pathname, 0, &path);
605 if (err)
606 goto skip_it;
607
608 root_mnt = collect_mounts(&path);
609 path_put(&path);
610 if (IS_ERR(root_mnt))
611 goto skip_it;
612
613 spin_lock(&hash_lock);
614 list_for_each_entry(node, &tree->chunks, list) {
615 struct audit_chunk *chunk = find_chunk(node);
616 /* this could be NULL if the watch is dying else where... */
617 struct inode *inode = chunk->mark.inode;
618 node->index |= 1U<<31;
619 if (iterate_mounts(compare_root, inode, root_mnt))
620 node->index &= ~(1U<<31);
621 }
622 spin_unlock(&hash_lock);
623 trim_marked(tree);
624 drop_collected_mounts(root_mnt);
625skip_it:
626 put_tree(tree);
627 mutex_lock(&audit_filter_mutex);
628 }
629 list_del(&cursor);
630 mutex_unlock(&audit_filter_mutex);
631}
632
633int audit_make_tree(struct audit_krule *rule, char *pathname, u32 op)
634{
635
636 if (pathname[0] != '/' ||
637 rule->listnr != AUDIT_FILTER_EXIT ||
638 op != Audit_equal ||
639 rule->inode_f || rule->watch || rule->tree)
640 return -EINVAL;
641 rule->tree = alloc_tree(pathname);
642 if (!rule->tree)
643 return -ENOMEM;
644 return 0;
645}
646
647void audit_put_tree(struct audit_tree *tree)
648{
649 put_tree(tree);
650}
651
652static int tag_mount(struct vfsmount *mnt, void *arg)
653{
654 return tag_chunk(d_backing_inode(mnt->mnt_root), arg);
655}
656
657/*
658 * That gets run when evict_chunk() ends up needing to kill audit_tree.
659 * Runs from a separate thread.
660 */
661static int prune_tree_thread(void *unused)
662{
663 for (;;) {
664 set_current_state(TASK_INTERRUPTIBLE);
665 if (list_empty(&prune_list))
666 schedule();
667 __set_current_state(TASK_RUNNING);
668
669 mutex_lock(&audit_cmd_mutex);
670 mutex_lock(&audit_filter_mutex);
671
672 while (!list_empty(&prune_list)) {
673 struct audit_tree *victim;
674
675 victim = list_entry(prune_list.next,
676 struct audit_tree, list);
677 list_del_init(&victim->list);
678
679 mutex_unlock(&audit_filter_mutex);
680
681 prune_one(victim);
682
683 mutex_lock(&audit_filter_mutex);
684 }
685
686 mutex_unlock(&audit_filter_mutex);
687 mutex_unlock(&audit_cmd_mutex);
688 }
689 return 0;
690}
691
692static int audit_launch_prune(void)
693{
694 if (prune_thread)
695 return 0;
696 prune_thread = kthread_create(prune_tree_thread, NULL,
697 "audit_prune_tree");
698 if (IS_ERR(prune_thread)) {
699 pr_err("cannot start thread audit_prune_tree");
700 prune_thread = NULL;
701 return -ENOMEM;
702 } else {
703 wake_up_process(prune_thread);
704 return 0;
705 }
706}
707
708/* called with audit_filter_mutex */
709int audit_add_tree_rule(struct audit_krule *rule)
710{
711 struct audit_tree *seed = rule->tree, *tree;
712 struct path path;
713 struct vfsmount *mnt;
714 int err;
715
716 rule->tree = NULL;
717 list_for_each_entry(tree, &tree_list, list) {
718 if (!strcmp(seed->pathname, tree->pathname)) {
719 put_tree(seed);
720 rule->tree = tree;
721 list_add(&rule->rlist, &tree->rules);
722 return 0;
723 }
724 }
725 tree = seed;
726 list_add(&tree->list, &tree_list);
727 list_add(&rule->rlist, &tree->rules);
728 /* do not set rule->tree yet */
729 mutex_unlock(&audit_filter_mutex);
730
731 if (unlikely(!prune_thread)) {
732 err = audit_launch_prune();
733 if (err)
734 goto Err;
735 }
736
737 err = kern_path(tree->pathname, 0, &path);
738 if (err)
739 goto Err;
740 mnt = collect_mounts(&path);
741 path_put(&path);
742 if (IS_ERR(mnt)) {
743 err = PTR_ERR(mnt);
744 goto Err;
745 }
746
747 get_tree(tree);
748 err = iterate_mounts(tag_mount, tree, mnt);
749 drop_collected_mounts(mnt);
750
751 if (!err) {
752 struct node *node;
753 spin_lock(&hash_lock);
754 list_for_each_entry(node, &tree->chunks, list)
755 node->index &= ~(1U<<31);
756 spin_unlock(&hash_lock);
757 } else {
758 trim_marked(tree);
759 goto Err;
760 }
761
762 mutex_lock(&audit_filter_mutex);
763 if (list_empty(&rule->rlist)) {
764 put_tree(tree);
765 return -ENOENT;
766 }
767 rule->tree = tree;
768 put_tree(tree);
769
770 return 0;
771Err:
772 mutex_lock(&audit_filter_mutex);
773 list_del_init(&tree->list);
774 list_del_init(&tree->rules);
775 put_tree(tree);
776 return err;
777}
778
779int audit_tag_tree(char *old, char *new)
780{
781 struct list_head cursor, barrier;
782 int failed = 0;
783 struct path path1, path2;
784 struct vfsmount *tagged;
785 int err;
786
787 err = kern_path(new, 0, &path2);
788 if (err)
789 return err;
790 tagged = collect_mounts(&path2);
791 path_put(&path2);
792 if (IS_ERR(tagged))
793 return PTR_ERR(tagged);
794
795 err = kern_path(old, 0, &path1);
796 if (err) {
797 drop_collected_mounts(tagged);
798 return err;
799 }
800
801 mutex_lock(&audit_filter_mutex);
802 list_add(&barrier, &tree_list);
803 list_add(&cursor, &barrier);
804
805 while (cursor.next != &tree_list) {
806 struct audit_tree *tree;
807 int good_one = 0;
808
809 tree = container_of(cursor.next, struct audit_tree, list);
810 get_tree(tree);
811 list_del(&cursor);
812 list_add(&cursor, &tree->list);
813 mutex_unlock(&audit_filter_mutex);
814
815 err = kern_path(tree->pathname, 0, &path2);
816 if (!err) {
817 good_one = path_is_under(&path1, &path2);
818 path_put(&path2);
819 }
820
821 if (!good_one) {
822 put_tree(tree);
823 mutex_lock(&audit_filter_mutex);
824 continue;
825 }
826
827 failed = iterate_mounts(tag_mount, tree, tagged);
828 if (failed) {
829 put_tree(tree);
830 mutex_lock(&audit_filter_mutex);
831 break;
832 }
833
834 mutex_lock(&audit_filter_mutex);
835 spin_lock(&hash_lock);
836 if (!tree->goner) {
837 list_del(&tree->list);
838 list_add(&tree->list, &tree_list);
839 }
840 spin_unlock(&hash_lock);
841 put_tree(tree);
842 }
843
844 while (barrier.prev != &tree_list) {
845 struct audit_tree *tree;
846
847 tree = container_of(barrier.prev, struct audit_tree, list);
848 get_tree(tree);
849 list_del(&tree->list);
850 list_add(&tree->list, &barrier);
851 mutex_unlock(&audit_filter_mutex);
852
853 if (!failed) {
854 struct node *node;
855 spin_lock(&hash_lock);
856 list_for_each_entry(node, &tree->chunks, list)
857 node->index &= ~(1U<<31);
858 spin_unlock(&hash_lock);
859 } else {
860 trim_marked(tree);
861 }
862
863 put_tree(tree);
864 mutex_lock(&audit_filter_mutex);
865 }
866 list_del(&barrier);
867 list_del(&cursor);
868 mutex_unlock(&audit_filter_mutex);
869 path_put(&path1);
870 drop_collected_mounts(tagged);
871 return failed;
872}
873
874
875static void audit_schedule_prune(void)
876{
877 wake_up_process(prune_thread);
878}
879
880/*
881 * ... and that one is done if evict_chunk() decides to delay until the end
882 * of syscall. Runs synchronously.
883 */
884void audit_kill_trees(struct list_head *list)
885{
886 mutex_lock(&audit_cmd_mutex);
887 mutex_lock(&audit_filter_mutex);
888
889 while (!list_empty(list)) {
890 struct audit_tree *victim;
891
892 victim = list_entry(list->next, struct audit_tree, list);
893 kill_rules(victim);
894 list_del_init(&victim->list);
895
896 mutex_unlock(&audit_filter_mutex);
897
898 prune_one(victim);
899
900 mutex_lock(&audit_filter_mutex);
901 }
902
903 mutex_unlock(&audit_filter_mutex);
904 mutex_unlock(&audit_cmd_mutex);
905}
906
907/*
908 * Here comes the stuff asynchronous to auditctl operations
909 */
910
911static void evict_chunk(struct audit_chunk *chunk)
912{
913 struct audit_tree *owner;
914 struct list_head *postponed = audit_killed_trees();
915 int need_prune = 0;
916 int n;
917
918 if (chunk->dead)
919 return;
920
921 chunk->dead = 1;
922 mutex_lock(&audit_filter_mutex);
923 spin_lock(&hash_lock);
924 while (!list_empty(&chunk->trees)) {
925 owner = list_entry(chunk->trees.next,
926 struct audit_tree, same_root);
927 owner->goner = 1;
928 owner->root = NULL;
929 list_del_init(&owner->same_root);
930 spin_unlock(&hash_lock);
931 if (!postponed) {
932 kill_rules(owner);
933 list_move(&owner->list, &prune_list);
934 need_prune = 1;
935 } else {
936 list_move(&owner->list, postponed);
937 }
938 spin_lock(&hash_lock);
939 }
940 list_del_rcu(&chunk->hash);
941 for (n = 0; n < chunk->count; n++)
942 list_del_init(&chunk->owners[n].list);
943 spin_unlock(&hash_lock);
944 mutex_unlock(&audit_filter_mutex);
945 if (need_prune)
946 audit_schedule_prune();
947}
948
949static int audit_tree_handle_event(struct fsnotify_group *group,
950 struct inode *to_tell,
951 struct fsnotify_mark *inode_mark,
952 struct fsnotify_mark *vfsmount_mark,
953 u32 mask, void *data, int data_type,
954 const unsigned char *file_name, u32 cookie)
955{
956 return 0;
957}
958
959static void audit_tree_freeing_mark(struct fsnotify_mark *entry, struct fsnotify_group *group)
960{
961 struct audit_chunk *chunk = container_of(entry, struct audit_chunk, mark);
962
963 evict_chunk(chunk);
964
965 /*
966 * We are guaranteed to have at least one reference to the mark from
967 * either the inode or the caller of fsnotify_destroy_mark().
968 */
969 BUG_ON(atomic_read(&entry->refcnt) < 1);
970}
971
972static const struct fsnotify_ops audit_tree_ops = {
973 .handle_event = audit_tree_handle_event,
974 .freeing_mark = audit_tree_freeing_mark,
975};
976
977static int __init audit_tree_init(void)
978{
979 int i;
980
981 audit_tree_group = fsnotify_alloc_group(&audit_tree_ops);
982 if (IS_ERR(audit_tree_group))
983 audit_panic("cannot initialize fsnotify group for rectree watches");
984
985 for (i = 0; i < HASH_SIZE; i++)
986 INIT_LIST_HEAD(&chunk_hash_heads[i]);
987
988 return 0;
989}
990__initcall(audit_tree_init);
1#include "audit.h"
2#include <linux/fsnotify_backend.h>
3#include <linux/namei.h>
4#include <linux/mount.h>
5#include <linux/kthread.h>
6#include <linux/slab.h>
7
8struct audit_tree;
9struct audit_chunk;
10
11struct audit_tree {
12 atomic_t count;
13 int goner;
14 struct audit_chunk *root;
15 struct list_head chunks;
16 struct list_head rules;
17 struct list_head list;
18 struct list_head same_root;
19 struct rcu_head head;
20 char pathname[];
21};
22
23struct audit_chunk {
24 struct list_head hash;
25 struct fsnotify_mark mark;
26 struct list_head trees; /* with root here */
27 int dead;
28 int count;
29 atomic_long_t refs;
30 struct rcu_head head;
31 struct node {
32 struct list_head list;
33 struct audit_tree *owner;
34 unsigned index; /* index; upper bit indicates 'will prune' */
35 } owners[];
36};
37
38static LIST_HEAD(tree_list);
39static LIST_HEAD(prune_list);
40
41/*
42 * One struct chunk is attached to each inode of interest.
43 * We replace struct chunk on tagging/untagging.
44 * Rules have pointer to struct audit_tree.
45 * Rules have struct list_head rlist forming a list of rules over
46 * the same tree.
47 * References to struct chunk are collected at audit_inode{,_child}()
48 * time and used in AUDIT_TREE rule matching.
49 * These references are dropped at the same time we are calling
50 * audit_free_names(), etc.
51 *
52 * Cyclic lists galore:
53 * tree.chunks anchors chunk.owners[].list hash_lock
54 * tree.rules anchors rule.rlist audit_filter_mutex
55 * chunk.trees anchors tree.same_root hash_lock
56 * chunk.hash is a hash with middle bits of watch.inode as
57 * a hash function. RCU, hash_lock
58 *
59 * tree is refcounted; one reference for "some rules on rules_list refer to
60 * it", one for each chunk with pointer to it.
61 *
62 * chunk is refcounted by embedded fsnotify_mark + .refs (non-zero refcount
63 * of watch contributes 1 to .refs).
64 *
65 * node.index allows to get from node.list to containing chunk.
66 * MSB of that sucker is stolen to mark taggings that we might have to
67 * revert - several operations have very unpleasant cleanup logics and
68 * that makes a difference. Some.
69 */
70
71static struct fsnotify_group *audit_tree_group;
72
73static struct audit_tree *alloc_tree(const char *s)
74{
75 struct audit_tree *tree;
76
77 tree = kmalloc(sizeof(struct audit_tree) + strlen(s) + 1, GFP_KERNEL);
78 if (tree) {
79 atomic_set(&tree->count, 1);
80 tree->goner = 0;
81 INIT_LIST_HEAD(&tree->chunks);
82 INIT_LIST_HEAD(&tree->rules);
83 INIT_LIST_HEAD(&tree->list);
84 INIT_LIST_HEAD(&tree->same_root);
85 tree->root = NULL;
86 strcpy(tree->pathname, s);
87 }
88 return tree;
89}
90
91static inline void get_tree(struct audit_tree *tree)
92{
93 atomic_inc(&tree->count);
94}
95
96static inline void put_tree(struct audit_tree *tree)
97{
98 if (atomic_dec_and_test(&tree->count))
99 kfree_rcu(tree, head);
100}
101
102/* to avoid bringing the entire thing in audit.h */
103const char *audit_tree_path(struct audit_tree *tree)
104{
105 return tree->pathname;
106}
107
108static void free_chunk(struct audit_chunk *chunk)
109{
110 int i;
111
112 for (i = 0; i < chunk->count; i++) {
113 if (chunk->owners[i].owner)
114 put_tree(chunk->owners[i].owner);
115 }
116 kfree(chunk);
117}
118
119void audit_put_chunk(struct audit_chunk *chunk)
120{
121 if (atomic_long_dec_and_test(&chunk->refs))
122 free_chunk(chunk);
123}
124
125static void __put_chunk(struct rcu_head *rcu)
126{
127 struct audit_chunk *chunk = container_of(rcu, struct audit_chunk, head);
128 audit_put_chunk(chunk);
129}
130
131static void audit_tree_destroy_watch(struct fsnotify_mark *entry)
132{
133 struct audit_chunk *chunk = container_of(entry, struct audit_chunk, mark);
134 call_rcu(&chunk->head, __put_chunk);
135}
136
137static struct audit_chunk *alloc_chunk(int count)
138{
139 struct audit_chunk *chunk;
140 size_t size;
141 int i;
142
143 size = offsetof(struct audit_chunk, owners) + count * sizeof(struct node);
144 chunk = kzalloc(size, GFP_KERNEL);
145 if (!chunk)
146 return NULL;
147
148 INIT_LIST_HEAD(&chunk->hash);
149 INIT_LIST_HEAD(&chunk->trees);
150 chunk->count = count;
151 atomic_long_set(&chunk->refs, 1);
152 for (i = 0; i < count; i++) {
153 INIT_LIST_HEAD(&chunk->owners[i].list);
154 chunk->owners[i].index = i;
155 }
156 fsnotify_init_mark(&chunk->mark, audit_tree_destroy_watch);
157 return chunk;
158}
159
160enum {HASH_SIZE = 128};
161static struct list_head chunk_hash_heads[HASH_SIZE];
162static __cacheline_aligned_in_smp DEFINE_SPINLOCK(hash_lock);
163
164static inline struct list_head *chunk_hash(const struct inode *inode)
165{
166 unsigned long n = (unsigned long)inode / L1_CACHE_BYTES;
167 return chunk_hash_heads + n % HASH_SIZE;
168}
169
170/* hash_lock & entry->lock is held by caller */
171static void insert_hash(struct audit_chunk *chunk)
172{
173 struct fsnotify_mark *entry = &chunk->mark;
174 struct list_head *list;
175
176 if (!entry->i.inode)
177 return;
178 list = chunk_hash(entry->i.inode);
179 list_add_rcu(&chunk->hash, list);
180}
181
182/* called under rcu_read_lock */
183struct audit_chunk *audit_tree_lookup(const struct inode *inode)
184{
185 struct list_head *list = chunk_hash(inode);
186 struct audit_chunk *p;
187
188 list_for_each_entry_rcu(p, list, hash) {
189 /* mark.inode may have gone NULL, but who cares? */
190 if (p->mark.i.inode == inode) {
191 atomic_long_inc(&p->refs);
192 return p;
193 }
194 }
195 return NULL;
196}
197
198int audit_tree_match(struct audit_chunk *chunk, struct audit_tree *tree)
199{
200 int n;
201 for (n = 0; n < chunk->count; n++)
202 if (chunk->owners[n].owner == tree)
203 return 1;
204 return 0;
205}
206
207/* tagging and untagging inodes with trees */
208
209static struct audit_chunk *find_chunk(struct node *p)
210{
211 int index = p->index & ~(1U<<31);
212 p -= index;
213 return container_of(p, struct audit_chunk, owners[0]);
214}
215
216static void untag_chunk(struct node *p)
217{
218 struct audit_chunk *chunk = find_chunk(p);
219 struct fsnotify_mark *entry = &chunk->mark;
220 struct audit_chunk *new = NULL;
221 struct audit_tree *owner;
222 int size = chunk->count - 1;
223 int i, j;
224
225 fsnotify_get_mark(entry);
226
227 spin_unlock(&hash_lock);
228
229 if (size)
230 new = alloc_chunk(size);
231
232 spin_lock(&entry->lock);
233 if (chunk->dead || !entry->i.inode) {
234 spin_unlock(&entry->lock);
235 if (new)
236 free_chunk(new);
237 goto out;
238 }
239
240 owner = p->owner;
241
242 if (!size) {
243 chunk->dead = 1;
244 spin_lock(&hash_lock);
245 list_del_init(&chunk->trees);
246 if (owner->root == chunk)
247 owner->root = NULL;
248 list_del_init(&p->list);
249 list_del_rcu(&chunk->hash);
250 spin_unlock(&hash_lock);
251 spin_unlock(&entry->lock);
252 fsnotify_destroy_mark(entry);
253 fsnotify_put_mark(entry);
254 goto out;
255 }
256
257 if (!new)
258 goto Fallback;
259
260 fsnotify_duplicate_mark(&new->mark, entry);
261 if (fsnotify_add_mark(&new->mark, new->mark.group, new->mark.i.inode, NULL, 1)) {
262 free_chunk(new);
263 goto Fallback;
264 }
265
266 chunk->dead = 1;
267 spin_lock(&hash_lock);
268 list_replace_init(&chunk->trees, &new->trees);
269 if (owner->root == chunk) {
270 list_del_init(&owner->same_root);
271 owner->root = NULL;
272 }
273
274 for (i = j = 0; j <= size; i++, j++) {
275 struct audit_tree *s;
276 if (&chunk->owners[j] == p) {
277 list_del_init(&p->list);
278 i--;
279 continue;
280 }
281 s = chunk->owners[j].owner;
282 new->owners[i].owner = s;
283 new->owners[i].index = chunk->owners[j].index - j + i;
284 if (!s) /* result of earlier fallback */
285 continue;
286 get_tree(s);
287 list_replace_init(&chunk->owners[j].list, &new->owners[i].list);
288 }
289
290 list_replace_rcu(&chunk->hash, &new->hash);
291 list_for_each_entry(owner, &new->trees, same_root)
292 owner->root = new;
293 spin_unlock(&hash_lock);
294 spin_unlock(&entry->lock);
295 fsnotify_destroy_mark(entry);
296 fsnotify_put_mark(entry);
297 goto out;
298
299Fallback:
300 // do the best we can
301 spin_lock(&hash_lock);
302 if (owner->root == chunk) {
303 list_del_init(&owner->same_root);
304 owner->root = NULL;
305 }
306 list_del_init(&p->list);
307 p->owner = NULL;
308 put_tree(owner);
309 spin_unlock(&hash_lock);
310 spin_unlock(&entry->lock);
311out:
312 fsnotify_put_mark(entry);
313 spin_lock(&hash_lock);
314}
315
316static int create_chunk(struct inode *inode, struct audit_tree *tree)
317{
318 struct fsnotify_mark *entry;
319 struct audit_chunk *chunk = alloc_chunk(1);
320 if (!chunk)
321 return -ENOMEM;
322
323 entry = &chunk->mark;
324 if (fsnotify_add_mark(entry, audit_tree_group, inode, NULL, 0)) {
325 free_chunk(chunk);
326 return -ENOSPC;
327 }
328
329 spin_lock(&entry->lock);
330 spin_lock(&hash_lock);
331 if (tree->goner) {
332 spin_unlock(&hash_lock);
333 chunk->dead = 1;
334 spin_unlock(&entry->lock);
335 fsnotify_destroy_mark(entry);
336 fsnotify_put_mark(entry);
337 return 0;
338 }
339 chunk->owners[0].index = (1U << 31);
340 chunk->owners[0].owner = tree;
341 get_tree(tree);
342 list_add(&chunk->owners[0].list, &tree->chunks);
343 if (!tree->root) {
344 tree->root = chunk;
345 list_add(&tree->same_root, &chunk->trees);
346 }
347 insert_hash(chunk);
348 spin_unlock(&hash_lock);
349 spin_unlock(&entry->lock);
350 return 0;
351}
352
353/* the first tagged inode becomes root of tree */
354static int tag_chunk(struct inode *inode, struct audit_tree *tree)
355{
356 struct fsnotify_mark *old_entry, *chunk_entry;
357 struct audit_tree *owner;
358 struct audit_chunk *chunk, *old;
359 struct node *p;
360 int n;
361
362 old_entry = fsnotify_find_inode_mark(audit_tree_group, inode);
363 if (!old_entry)
364 return create_chunk(inode, tree);
365
366 old = container_of(old_entry, struct audit_chunk, mark);
367
368 /* are we already there? */
369 spin_lock(&hash_lock);
370 for (n = 0; n < old->count; n++) {
371 if (old->owners[n].owner == tree) {
372 spin_unlock(&hash_lock);
373 fsnotify_put_mark(old_entry);
374 return 0;
375 }
376 }
377 spin_unlock(&hash_lock);
378
379 chunk = alloc_chunk(old->count + 1);
380 if (!chunk) {
381 fsnotify_put_mark(old_entry);
382 return -ENOMEM;
383 }
384
385 chunk_entry = &chunk->mark;
386
387 spin_lock(&old_entry->lock);
388 if (!old_entry->i.inode) {
389 /* old_entry is being shot, lets just lie */
390 spin_unlock(&old_entry->lock);
391 fsnotify_put_mark(old_entry);
392 free_chunk(chunk);
393 return -ENOENT;
394 }
395
396 fsnotify_duplicate_mark(chunk_entry, old_entry);
397 if (fsnotify_add_mark(chunk_entry, chunk_entry->group, chunk_entry->i.inode, NULL, 1)) {
398 spin_unlock(&old_entry->lock);
399 free_chunk(chunk);
400 fsnotify_put_mark(old_entry);
401 return -ENOSPC;
402 }
403
404 /* even though we hold old_entry->lock, this is safe since chunk_entry->lock could NEVER have been grabbed before */
405 spin_lock(&chunk_entry->lock);
406 spin_lock(&hash_lock);
407
408 /* we now hold old_entry->lock, chunk_entry->lock, and hash_lock */
409 if (tree->goner) {
410 spin_unlock(&hash_lock);
411 chunk->dead = 1;
412 spin_unlock(&chunk_entry->lock);
413 spin_unlock(&old_entry->lock);
414
415 fsnotify_destroy_mark(chunk_entry);
416
417 fsnotify_put_mark(chunk_entry);
418 fsnotify_put_mark(old_entry);
419 return 0;
420 }
421 list_replace_init(&old->trees, &chunk->trees);
422 for (n = 0, p = chunk->owners; n < old->count; n++, p++) {
423 struct audit_tree *s = old->owners[n].owner;
424 p->owner = s;
425 p->index = old->owners[n].index;
426 if (!s) /* result of fallback in untag */
427 continue;
428 get_tree(s);
429 list_replace_init(&old->owners[n].list, &p->list);
430 }
431 p->index = (chunk->count - 1) | (1U<<31);
432 p->owner = tree;
433 get_tree(tree);
434 list_add(&p->list, &tree->chunks);
435 list_replace_rcu(&old->hash, &chunk->hash);
436 list_for_each_entry(owner, &chunk->trees, same_root)
437 owner->root = chunk;
438 old->dead = 1;
439 if (!tree->root) {
440 tree->root = chunk;
441 list_add(&tree->same_root, &chunk->trees);
442 }
443 spin_unlock(&hash_lock);
444 spin_unlock(&chunk_entry->lock);
445 spin_unlock(&old_entry->lock);
446 fsnotify_destroy_mark(old_entry);
447 fsnotify_put_mark(old_entry); /* pair to fsnotify_find mark_entry */
448 fsnotify_put_mark(old_entry); /* and kill it */
449 return 0;
450}
451
452static void kill_rules(struct audit_tree *tree)
453{
454 struct audit_krule *rule, *next;
455 struct audit_entry *entry;
456 struct audit_buffer *ab;
457
458 list_for_each_entry_safe(rule, next, &tree->rules, rlist) {
459 entry = container_of(rule, struct audit_entry, rule);
460
461 list_del_init(&rule->rlist);
462 if (rule->tree) {
463 /* not a half-baked one */
464 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
465 audit_log_format(ab, "op=");
466 audit_log_string(ab, "remove rule");
467 audit_log_format(ab, " dir=");
468 audit_log_untrustedstring(ab, rule->tree->pathname);
469 audit_log_key(ab, rule->filterkey);
470 audit_log_format(ab, " list=%d res=1", rule->listnr);
471 audit_log_end(ab);
472 rule->tree = NULL;
473 list_del_rcu(&entry->list);
474 list_del(&entry->rule.list);
475 call_rcu(&entry->rcu, audit_free_rule_rcu);
476 }
477 }
478}
479
480/*
481 * finish killing struct audit_tree
482 */
483static void prune_one(struct audit_tree *victim)
484{
485 spin_lock(&hash_lock);
486 while (!list_empty(&victim->chunks)) {
487 struct node *p;
488
489 p = list_entry(victim->chunks.next, struct node, list);
490
491 untag_chunk(p);
492 }
493 spin_unlock(&hash_lock);
494 put_tree(victim);
495}
496
497/* trim the uncommitted chunks from tree */
498
499static void trim_marked(struct audit_tree *tree)
500{
501 struct list_head *p, *q;
502 spin_lock(&hash_lock);
503 if (tree->goner) {
504 spin_unlock(&hash_lock);
505 return;
506 }
507 /* reorder */
508 for (p = tree->chunks.next; p != &tree->chunks; p = q) {
509 struct node *node = list_entry(p, struct node, list);
510 q = p->next;
511 if (node->index & (1U<<31)) {
512 list_del_init(p);
513 list_add(p, &tree->chunks);
514 }
515 }
516
517 while (!list_empty(&tree->chunks)) {
518 struct node *node;
519
520 node = list_entry(tree->chunks.next, struct node, list);
521
522 /* have we run out of marked? */
523 if (!(node->index & (1U<<31)))
524 break;
525
526 untag_chunk(node);
527 }
528 if (!tree->root && !tree->goner) {
529 tree->goner = 1;
530 spin_unlock(&hash_lock);
531 mutex_lock(&audit_filter_mutex);
532 kill_rules(tree);
533 list_del_init(&tree->list);
534 mutex_unlock(&audit_filter_mutex);
535 prune_one(tree);
536 } else {
537 spin_unlock(&hash_lock);
538 }
539}
540
541static void audit_schedule_prune(void);
542
543/* called with audit_filter_mutex */
544int audit_remove_tree_rule(struct audit_krule *rule)
545{
546 struct audit_tree *tree;
547 tree = rule->tree;
548 if (tree) {
549 spin_lock(&hash_lock);
550 list_del_init(&rule->rlist);
551 if (list_empty(&tree->rules) && !tree->goner) {
552 tree->root = NULL;
553 list_del_init(&tree->same_root);
554 tree->goner = 1;
555 list_move(&tree->list, &prune_list);
556 rule->tree = NULL;
557 spin_unlock(&hash_lock);
558 audit_schedule_prune();
559 return 1;
560 }
561 rule->tree = NULL;
562 spin_unlock(&hash_lock);
563 return 1;
564 }
565 return 0;
566}
567
568static int compare_root(struct vfsmount *mnt, void *arg)
569{
570 return mnt->mnt_root->d_inode == arg;
571}
572
573void audit_trim_trees(void)
574{
575 struct list_head cursor;
576
577 mutex_lock(&audit_filter_mutex);
578 list_add(&cursor, &tree_list);
579 while (cursor.next != &tree_list) {
580 struct audit_tree *tree;
581 struct path path;
582 struct vfsmount *root_mnt;
583 struct node *node;
584 int err;
585
586 tree = container_of(cursor.next, struct audit_tree, list);
587 get_tree(tree);
588 list_del(&cursor);
589 list_add(&cursor, &tree->list);
590 mutex_unlock(&audit_filter_mutex);
591
592 err = kern_path(tree->pathname, 0, &path);
593 if (err)
594 goto skip_it;
595
596 root_mnt = collect_mounts(&path);
597 path_put(&path);
598 if (!root_mnt)
599 goto skip_it;
600
601 spin_lock(&hash_lock);
602 list_for_each_entry(node, &tree->chunks, list) {
603 struct audit_chunk *chunk = find_chunk(node);
604 /* this could be NULL if the watch is dying else where... */
605 struct inode *inode = chunk->mark.i.inode;
606 node->index |= 1U<<31;
607 if (iterate_mounts(compare_root, inode, root_mnt))
608 node->index &= ~(1U<<31);
609 }
610 spin_unlock(&hash_lock);
611 trim_marked(tree);
612 put_tree(tree);
613 drop_collected_mounts(root_mnt);
614skip_it:
615 mutex_lock(&audit_filter_mutex);
616 }
617 list_del(&cursor);
618 mutex_unlock(&audit_filter_mutex);
619}
620
621int audit_make_tree(struct audit_krule *rule, char *pathname, u32 op)
622{
623
624 if (pathname[0] != '/' ||
625 rule->listnr != AUDIT_FILTER_EXIT ||
626 op != Audit_equal ||
627 rule->inode_f || rule->watch || rule->tree)
628 return -EINVAL;
629 rule->tree = alloc_tree(pathname);
630 if (!rule->tree)
631 return -ENOMEM;
632 return 0;
633}
634
635void audit_put_tree(struct audit_tree *tree)
636{
637 put_tree(tree);
638}
639
640static int tag_mount(struct vfsmount *mnt, void *arg)
641{
642 return tag_chunk(mnt->mnt_root->d_inode, arg);
643}
644
645/* called with audit_filter_mutex */
646int audit_add_tree_rule(struct audit_krule *rule)
647{
648 struct audit_tree *seed = rule->tree, *tree;
649 struct path path;
650 struct vfsmount *mnt;
651 int err;
652
653 list_for_each_entry(tree, &tree_list, list) {
654 if (!strcmp(seed->pathname, tree->pathname)) {
655 put_tree(seed);
656 rule->tree = tree;
657 list_add(&rule->rlist, &tree->rules);
658 return 0;
659 }
660 }
661 tree = seed;
662 list_add(&tree->list, &tree_list);
663 list_add(&rule->rlist, &tree->rules);
664 /* do not set rule->tree yet */
665 mutex_unlock(&audit_filter_mutex);
666
667 err = kern_path(tree->pathname, 0, &path);
668 if (err)
669 goto Err;
670 mnt = collect_mounts(&path);
671 path_put(&path);
672 if (!mnt) {
673 err = -ENOMEM;
674 goto Err;
675 }
676
677 get_tree(tree);
678 err = iterate_mounts(tag_mount, tree, mnt);
679 drop_collected_mounts(mnt);
680
681 if (!err) {
682 struct node *node;
683 spin_lock(&hash_lock);
684 list_for_each_entry(node, &tree->chunks, list)
685 node->index &= ~(1U<<31);
686 spin_unlock(&hash_lock);
687 } else {
688 trim_marked(tree);
689 goto Err;
690 }
691
692 mutex_lock(&audit_filter_mutex);
693 if (list_empty(&rule->rlist)) {
694 put_tree(tree);
695 return -ENOENT;
696 }
697 rule->tree = tree;
698 put_tree(tree);
699
700 return 0;
701Err:
702 mutex_lock(&audit_filter_mutex);
703 list_del_init(&tree->list);
704 list_del_init(&tree->rules);
705 put_tree(tree);
706 return err;
707}
708
709int audit_tag_tree(char *old, char *new)
710{
711 struct list_head cursor, barrier;
712 int failed = 0;
713 struct path path1, path2;
714 struct vfsmount *tagged;
715 int err;
716
717 err = kern_path(new, 0, &path2);
718 if (err)
719 return err;
720 tagged = collect_mounts(&path2);
721 path_put(&path2);
722 if (!tagged)
723 return -ENOMEM;
724
725 err = kern_path(old, 0, &path1);
726 if (err) {
727 drop_collected_mounts(tagged);
728 return err;
729 }
730
731 mutex_lock(&audit_filter_mutex);
732 list_add(&barrier, &tree_list);
733 list_add(&cursor, &barrier);
734
735 while (cursor.next != &tree_list) {
736 struct audit_tree *tree;
737 int good_one = 0;
738
739 tree = container_of(cursor.next, struct audit_tree, list);
740 get_tree(tree);
741 list_del(&cursor);
742 list_add(&cursor, &tree->list);
743 mutex_unlock(&audit_filter_mutex);
744
745 err = kern_path(tree->pathname, 0, &path2);
746 if (!err) {
747 good_one = path_is_under(&path1, &path2);
748 path_put(&path2);
749 }
750
751 if (!good_one) {
752 put_tree(tree);
753 mutex_lock(&audit_filter_mutex);
754 continue;
755 }
756
757 failed = iterate_mounts(tag_mount, tree, tagged);
758 if (failed) {
759 put_tree(tree);
760 mutex_lock(&audit_filter_mutex);
761 break;
762 }
763
764 mutex_lock(&audit_filter_mutex);
765 spin_lock(&hash_lock);
766 if (!tree->goner) {
767 list_del(&tree->list);
768 list_add(&tree->list, &tree_list);
769 }
770 spin_unlock(&hash_lock);
771 put_tree(tree);
772 }
773
774 while (barrier.prev != &tree_list) {
775 struct audit_tree *tree;
776
777 tree = container_of(barrier.prev, struct audit_tree, list);
778 get_tree(tree);
779 list_del(&tree->list);
780 list_add(&tree->list, &barrier);
781 mutex_unlock(&audit_filter_mutex);
782
783 if (!failed) {
784 struct node *node;
785 spin_lock(&hash_lock);
786 list_for_each_entry(node, &tree->chunks, list)
787 node->index &= ~(1U<<31);
788 spin_unlock(&hash_lock);
789 } else {
790 trim_marked(tree);
791 }
792
793 put_tree(tree);
794 mutex_lock(&audit_filter_mutex);
795 }
796 list_del(&barrier);
797 list_del(&cursor);
798 mutex_unlock(&audit_filter_mutex);
799 path_put(&path1);
800 drop_collected_mounts(tagged);
801 return failed;
802}
803
804/*
805 * That gets run when evict_chunk() ends up needing to kill audit_tree.
806 * Runs from a separate thread.
807 */
808static int prune_tree_thread(void *unused)
809{
810 mutex_lock(&audit_cmd_mutex);
811 mutex_lock(&audit_filter_mutex);
812
813 while (!list_empty(&prune_list)) {
814 struct audit_tree *victim;
815
816 victim = list_entry(prune_list.next, struct audit_tree, list);
817 list_del_init(&victim->list);
818
819 mutex_unlock(&audit_filter_mutex);
820
821 prune_one(victim);
822
823 mutex_lock(&audit_filter_mutex);
824 }
825
826 mutex_unlock(&audit_filter_mutex);
827 mutex_unlock(&audit_cmd_mutex);
828 return 0;
829}
830
831static void audit_schedule_prune(void)
832{
833 kthread_run(prune_tree_thread, NULL, "audit_prune_tree");
834}
835
836/*
837 * ... and that one is done if evict_chunk() decides to delay until the end
838 * of syscall. Runs synchronously.
839 */
840void audit_kill_trees(struct list_head *list)
841{
842 mutex_lock(&audit_cmd_mutex);
843 mutex_lock(&audit_filter_mutex);
844
845 while (!list_empty(list)) {
846 struct audit_tree *victim;
847
848 victim = list_entry(list->next, struct audit_tree, list);
849 kill_rules(victim);
850 list_del_init(&victim->list);
851
852 mutex_unlock(&audit_filter_mutex);
853
854 prune_one(victim);
855
856 mutex_lock(&audit_filter_mutex);
857 }
858
859 mutex_unlock(&audit_filter_mutex);
860 mutex_unlock(&audit_cmd_mutex);
861}
862
863/*
864 * Here comes the stuff asynchronous to auditctl operations
865 */
866
867static void evict_chunk(struct audit_chunk *chunk)
868{
869 struct audit_tree *owner;
870 struct list_head *postponed = audit_killed_trees();
871 int need_prune = 0;
872 int n;
873
874 if (chunk->dead)
875 return;
876
877 chunk->dead = 1;
878 mutex_lock(&audit_filter_mutex);
879 spin_lock(&hash_lock);
880 while (!list_empty(&chunk->trees)) {
881 owner = list_entry(chunk->trees.next,
882 struct audit_tree, same_root);
883 owner->goner = 1;
884 owner->root = NULL;
885 list_del_init(&owner->same_root);
886 spin_unlock(&hash_lock);
887 if (!postponed) {
888 kill_rules(owner);
889 list_move(&owner->list, &prune_list);
890 need_prune = 1;
891 } else {
892 list_move(&owner->list, postponed);
893 }
894 spin_lock(&hash_lock);
895 }
896 list_del_rcu(&chunk->hash);
897 for (n = 0; n < chunk->count; n++)
898 list_del_init(&chunk->owners[n].list);
899 spin_unlock(&hash_lock);
900 if (need_prune)
901 audit_schedule_prune();
902 mutex_unlock(&audit_filter_mutex);
903}
904
905static int audit_tree_handle_event(struct fsnotify_group *group,
906 struct fsnotify_mark *inode_mark,
907 struct fsnotify_mark *vfsmonut_mark,
908 struct fsnotify_event *event)
909{
910 BUG();
911 return -EOPNOTSUPP;
912}
913
914static void audit_tree_freeing_mark(struct fsnotify_mark *entry, struct fsnotify_group *group)
915{
916 struct audit_chunk *chunk = container_of(entry, struct audit_chunk, mark);
917
918 evict_chunk(chunk);
919 fsnotify_put_mark(entry);
920}
921
922static bool audit_tree_send_event(struct fsnotify_group *group, struct inode *inode,
923 struct fsnotify_mark *inode_mark,
924 struct fsnotify_mark *vfsmount_mark,
925 __u32 mask, void *data, int data_type)
926{
927 return false;
928}
929
930static const struct fsnotify_ops audit_tree_ops = {
931 .handle_event = audit_tree_handle_event,
932 .should_send_event = audit_tree_send_event,
933 .free_group_priv = NULL,
934 .free_event_priv = NULL,
935 .freeing_mark = audit_tree_freeing_mark,
936};
937
938static int __init audit_tree_init(void)
939{
940 int i;
941
942 audit_tree_group = fsnotify_alloc_group(&audit_tree_ops);
943 if (IS_ERR(audit_tree_group))
944 audit_panic("cannot initialize fsnotify group for rectree watches");
945
946 for (i = 0; i < HASH_SIZE; i++)
947 INIT_LIST_HEAD(&chunk_hash_heads[i]);
948
949 return 0;
950}
951__initcall(audit_tree_init);