Linux Audio

Check our new training course

Yocto distribution development and maintenance

Need a Yocto distribution for your embedded project?
Loading...
v4.6
  1/*
  2 * rtc-ds1305.c -- driver for DS1305 and DS1306 SPI RTC chips
  3 *
  4 * Copyright (C) 2008 David Brownell
  5 *
  6 * This program is free software; you can redistribute it and/or modify
  7 * it under the terms of the GNU General Public License version 2 as
  8 * published by the Free Software Foundation.
  9 *
 10 */
 11#include <linux/kernel.h>
 12#include <linux/init.h>
 13#include <linux/bcd.h>
 14#include <linux/slab.h>
 15#include <linux/rtc.h>
 16#include <linux/workqueue.h>
 17
 18#include <linux/spi/spi.h>
 19#include <linux/spi/ds1305.h>
 20#include <linux/module.h>
 21
 22
 23/*
 24 * Registers ... mask DS1305_WRITE into register address to write,
 25 * otherwise you're reading it.  All non-bitmask values are BCD.
 26 */
 27#define DS1305_WRITE		0x80
 28
 29
 30/* RTC date/time ... the main special cases are that we:
 31 *  - Need fancy "hours" encoding in 12hour mode
 32 *  - Don't rely on the "day-of-week" field (or tm_wday)
 33 *  - Are a 21st-century clock (2000 <= year < 2100)
 34 */
 35#define DS1305_RTC_LEN		7		/* bytes for RTC regs */
 36
 37#define DS1305_SEC		0x00		/* register addresses */
 38#define DS1305_MIN		0x01
 39#define DS1305_HOUR		0x02
 40#	define DS1305_HR_12		0x40	/* set == 12 hr mode */
 41#	define DS1305_HR_PM		0x20	/* set == PM (12hr mode) */
 42#define DS1305_WDAY		0x03
 43#define DS1305_MDAY		0x04
 44#define DS1305_MON		0x05
 45#define DS1305_YEAR		0x06
 46
 47
 48/* The two alarms have only sec/min/hour/wday fields (ALM_LEN).
 49 * DS1305_ALM_DISABLE disables a match field (some combos are bad).
 50 *
 51 * NOTE that since we don't use WDAY, we limit ourselves to alarms
 52 * only one day into the future (vs potentially up to a week).
 53 *
 54 * NOTE ALSO that while we could generate once-a-second IRQs (UIE), we
 55 * don't currently support them.  We'd either need to do it only when
 56 * no alarm is pending (not the standard model), or to use the second
 57 * alarm (implying that this is a DS1305 not DS1306, *and* that either
 58 * it's wired up a second IRQ we know, or that INTCN is set)
 59 */
 60#define DS1305_ALM_LEN		4		/* bytes for ALM regs */
 61#define DS1305_ALM_DISABLE	0x80
 62
 63#define DS1305_ALM0(r)		(0x07 + (r))	/* register addresses */
 64#define DS1305_ALM1(r)		(0x0b + (r))
 65
 66
 67/* three control registers */
 68#define DS1305_CONTROL_LEN	3		/* bytes of control regs */
 69
 70#define DS1305_CONTROL		0x0f		/* register addresses */
 71#	define DS1305_nEOSC		0x80	/* low enables oscillator */
 72#	define DS1305_WP		0x40	/* write protect */
 73#	define DS1305_INTCN		0x04	/* clear == only int0 used */
 74#	define DS1306_1HZ		0x04	/* enable 1Hz output */
 75#	define DS1305_AEI1		0x02	/* enable ALM1 IRQ */
 76#	define DS1305_AEI0		0x01	/* enable ALM0 IRQ */
 77#define DS1305_STATUS		0x10
 78/* status has just AEIx bits, mirrored as IRQFx */
 79#define DS1305_TRICKLE		0x11
 80/* trickle bits are defined in <linux/spi/ds1305.h> */
 81
 82/* a bunch of NVRAM */
 83#define DS1305_NVRAM_LEN	96		/* bytes of NVRAM */
 84
 85#define DS1305_NVRAM		0x20		/* register addresses */
 86
 87
 88struct ds1305 {
 89	struct spi_device	*spi;
 90	struct rtc_device	*rtc;
 91
 92	struct work_struct	work;
 93
 94	unsigned long		flags;
 95#define FLAG_EXITING	0
 96
 97	bool			hr12;
 98	u8			ctrl[DS1305_CONTROL_LEN];
 99};
100
101
102/*----------------------------------------------------------------------*/
103
104/*
105 * Utilities ...  tolerate 12-hour AM/PM notation in case of non-Linux
106 * software (like a bootloader) which may require it.
107 */
108
109static unsigned bcd2hour(u8 bcd)
110{
111	if (bcd & DS1305_HR_12) {
112		unsigned	hour = 0;
113
114		bcd &= ~DS1305_HR_12;
115		if (bcd & DS1305_HR_PM) {
116			hour = 12;
117			bcd &= ~DS1305_HR_PM;
118		}
119		hour += bcd2bin(bcd);
120		return hour - 1;
121	}
122	return bcd2bin(bcd);
123}
124
125static u8 hour2bcd(bool hr12, int hour)
126{
127	if (hr12) {
128		hour++;
129		if (hour <= 12)
130			return DS1305_HR_12 | bin2bcd(hour);
131		hour -= 12;
132		return DS1305_HR_12 | DS1305_HR_PM | bin2bcd(hour);
133	}
134	return bin2bcd(hour);
135}
136
137/*----------------------------------------------------------------------*/
138
139/*
140 * Interface to RTC framework
141 */
142
143static int ds1305_alarm_irq_enable(struct device *dev, unsigned int enabled)
144{
145	struct ds1305	*ds1305 = dev_get_drvdata(dev);
146	u8		buf[2];
147	long		err = -EINVAL;
148
149	buf[0] = DS1305_WRITE | DS1305_CONTROL;
150	buf[1] = ds1305->ctrl[0];
151
152	if (enabled) {
153		if (ds1305->ctrl[0] & DS1305_AEI0)
154			goto done;
155		buf[1] |= DS1305_AEI0;
156	} else {
157		if (!(buf[1] & DS1305_AEI0))
158			goto done;
159		buf[1] &= ~DS1305_AEI0;
160	}
161	err = spi_write_then_read(ds1305->spi, buf, sizeof(buf), NULL, 0);
162	if (err >= 0)
163		ds1305->ctrl[0] = buf[1];
164done:
165	return err;
166
167}
168
169
170/*
171 * Get/set of date and time is pretty normal.
172 */
173
174static int ds1305_get_time(struct device *dev, struct rtc_time *time)
175{
176	struct ds1305	*ds1305 = dev_get_drvdata(dev);
177	u8		addr = DS1305_SEC;
178	u8		buf[DS1305_RTC_LEN];
179	int		status;
180
181	/* Use write-then-read to get all the date/time registers
182	 * since dma from stack is nonportable
183	 */
184	status = spi_write_then_read(ds1305->spi, &addr, sizeof(addr),
185			buf, sizeof(buf));
186	if (status < 0)
187		return status;
188
189	dev_vdbg(dev, "%s: %3ph, %4ph\n", "read", &buf[0], &buf[3]);
 
 
190
191	/* Decode the registers */
192	time->tm_sec = bcd2bin(buf[DS1305_SEC]);
193	time->tm_min = bcd2bin(buf[DS1305_MIN]);
194	time->tm_hour = bcd2hour(buf[DS1305_HOUR]);
195	time->tm_wday = buf[DS1305_WDAY] - 1;
196	time->tm_mday = bcd2bin(buf[DS1305_MDAY]);
197	time->tm_mon = bcd2bin(buf[DS1305_MON]) - 1;
198	time->tm_year = bcd2bin(buf[DS1305_YEAR]) + 100;
199
200	dev_vdbg(dev, "%s secs=%d, mins=%d, "
201		"hours=%d, mday=%d, mon=%d, year=%d, wday=%d\n",
202		"read", time->tm_sec, time->tm_min,
203		time->tm_hour, time->tm_mday,
204		time->tm_mon, time->tm_year, time->tm_wday);
205
206	/* Time may not be set */
207	return rtc_valid_tm(time);
208}
209
210static int ds1305_set_time(struct device *dev, struct rtc_time *time)
211{
212	struct ds1305	*ds1305 = dev_get_drvdata(dev);
213	u8		buf[1 + DS1305_RTC_LEN];
214	u8		*bp = buf;
215
216	dev_vdbg(dev, "%s secs=%d, mins=%d, "
217		"hours=%d, mday=%d, mon=%d, year=%d, wday=%d\n",
218		"write", time->tm_sec, time->tm_min,
219		time->tm_hour, time->tm_mday,
220		time->tm_mon, time->tm_year, time->tm_wday);
221
222	/* Write registers starting at the first time/date address. */
223	*bp++ = DS1305_WRITE | DS1305_SEC;
224
225	*bp++ = bin2bcd(time->tm_sec);
226	*bp++ = bin2bcd(time->tm_min);
227	*bp++ = hour2bcd(ds1305->hr12, time->tm_hour);
228	*bp++ = (time->tm_wday < 7) ? (time->tm_wday + 1) : 1;
229	*bp++ = bin2bcd(time->tm_mday);
230	*bp++ = bin2bcd(time->tm_mon + 1);
231	*bp++ = bin2bcd(time->tm_year - 100);
232
233	dev_dbg(dev, "%s: %3ph, %4ph\n", "write", &buf[1], &buf[4]);
 
 
234
235	/* use write-then-read since dma from stack is nonportable */
236	return spi_write_then_read(ds1305->spi, buf, sizeof(buf),
237			NULL, 0);
238}
239
240/*
241 * Get/set of alarm is a bit funky:
242 *
243 * - First there's the inherent raciness of getting the (partitioned)
244 *   status of an alarm that could trigger while we're reading parts
245 *   of that status.
246 *
247 * - Second there's its limited range (we could increase it a bit by
248 *   relying on WDAY), which means it will easily roll over.
249 *
250 * - Third there's the choice of two alarms and alarm signals.
251 *   Here we use ALM0 and expect that nINT0 (open drain) is used;
252 *   that's the only real option for DS1306 runtime alarms, and is
253 *   natural on DS1305.
254 *
255 * - Fourth, there's also ALM1, and a second interrupt signal:
256 *     + On DS1305 ALM1 uses nINT1 (when INTCN=1) else nINT0;
257 *     + On DS1306 ALM1 only uses INT1 (an active high pulse)
258 *       and it won't work when VCC1 is active.
259 *
260 *   So to be most general, we should probably set both alarms to the
261 *   same value, letting ALM1 be the wakeup event source on DS1306
262 *   and handling several wiring options on DS1305.
263 *
264 * - Fifth, we support the polled mode (as well as possible; why not?)
265 *   even when no interrupt line is wired to an IRQ.
266 */
267
268/*
269 * Context: caller holds rtc->ops_lock (to protect ds1305->ctrl)
270 */
271static int ds1305_get_alarm(struct device *dev, struct rtc_wkalrm *alm)
272{
273	struct ds1305	*ds1305 = dev_get_drvdata(dev);
274	struct spi_device *spi = ds1305->spi;
275	u8		addr;
276	int		status;
277	u8		buf[DS1305_ALM_LEN];
278
279	/* Refresh control register cache BEFORE reading ALM0 registers,
280	 * since reading alarm registers acks any pending IRQ.  That
281	 * makes returning "pending" status a bit of a lie, but that bit
282	 * of EFI status is at best fragile anyway (given IRQ handlers).
283	 */
284	addr = DS1305_CONTROL;
285	status = spi_write_then_read(spi, &addr, sizeof(addr),
286			ds1305->ctrl, sizeof(ds1305->ctrl));
287	if (status < 0)
288		return status;
289
290	alm->enabled = !!(ds1305->ctrl[0] & DS1305_AEI0);
291	alm->pending = !!(ds1305->ctrl[1] & DS1305_AEI0);
292
293	/* get and check ALM0 registers */
294	addr = DS1305_ALM0(DS1305_SEC);
295	status = spi_write_then_read(spi, &addr, sizeof(addr),
296			buf, sizeof(buf));
297	if (status < 0)
298		return status;
299
300	dev_vdbg(dev, "%s: %02x %02x %02x %02x\n",
301		"alm0 read", buf[DS1305_SEC], buf[DS1305_MIN],
302		buf[DS1305_HOUR], buf[DS1305_WDAY]);
303
304	if ((DS1305_ALM_DISABLE & buf[DS1305_SEC])
305			|| (DS1305_ALM_DISABLE & buf[DS1305_MIN])
306			|| (DS1305_ALM_DISABLE & buf[DS1305_HOUR]))
307		return -EIO;
308
309	/* Stuff these values into alm->time and let RTC framework code
310	 * fill in the rest ... and also handle rollover to tomorrow when
311	 * that's needed.
312	 */
313	alm->time.tm_sec = bcd2bin(buf[DS1305_SEC]);
314	alm->time.tm_min = bcd2bin(buf[DS1305_MIN]);
315	alm->time.tm_hour = bcd2hour(buf[DS1305_HOUR]);
316	alm->time.tm_mday = -1;
317	alm->time.tm_mon = -1;
318	alm->time.tm_year = -1;
319	/* next three fields are unused by Linux */
320	alm->time.tm_wday = -1;
321	alm->time.tm_mday = -1;
322	alm->time.tm_isdst = -1;
323
324	return 0;
325}
326
327/*
328 * Context: caller holds rtc->ops_lock (to protect ds1305->ctrl)
329 */
330static int ds1305_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
331{
332	struct ds1305	*ds1305 = dev_get_drvdata(dev);
333	struct spi_device *spi = ds1305->spi;
334	unsigned long	now, later;
335	struct rtc_time	tm;
336	int		status;
337	u8		buf[1 + DS1305_ALM_LEN];
338
339	/* convert desired alarm to time_t */
340	status = rtc_tm_to_time(&alm->time, &later);
341	if (status < 0)
342		return status;
343
344	/* Read current time as time_t */
345	status = ds1305_get_time(dev, &tm);
346	if (status < 0)
347		return status;
348	status = rtc_tm_to_time(&tm, &now);
349	if (status < 0)
350		return status;
351
352	/* make sure alarm fires within the next 24 hours */
353	if (later <= now)
354		return -EINVAL;
355	if ((later - now) > 24 * 60 * 60)
356		return -EDOM;
357
358	/* disable alarm if needed */
359	if (ds1305->ctrl[0] & DS1305_AEI0) {
360		ds1305->ctrl[0] &= ~DS1305_AEI0;
361
362		buf[0] = DS1305_WRITE | DS1305_CONTROL;
363		buf[1] = ds1305->ctrl[0];
364		status = spi_write_then_read(ds1305->spi, buf, 2, NULL, 0);
365		if (status < 0)
366			return status;
367	}
368
369	/* write alarm */
370	buf[0] = DS1305_WRITE | DS1305_ALM0(DS1305_SEC);
371	buf[1 + DS1305_SEC] = bin2bcd(alm->time.tm_sec);
372	buf[1 + DS1305_MIN] = bin2bcd(alm->time.tm_min);
373	buf[1 + DS1305_HOUR] = hour2bcd(ds1305->hr12, alm->time.tm_hour);
374	buf[1 + DS1305_WDAY] = DS1305_ALM_DISABLE;
375
376	dev_dbg(dev, "%s: %02x %02x %02x %02x\n",
377		"alm0 write", buf[1 + DS1305_SEC], buf[1 + DS1305_MIN],
378		buf[1 + DS1305_HOUR], buf[1 + DS1305_WDAY]);
379
380	status = spi_write_then_read(spi, buf, sizeof(buf), NULL, 0);
381	if (status < 0)
382		return status;
383
384	/* enable alarm if requested */
385	if (alm->enabled) {
386		ds1305->ctrl[0] |= DS1305_AEI0;
387
388		buf[0] = DS1305_WRITE | DS1305_CONTROL;
389		buf[1] = ds1305->ctrl[0];
390		status = spi_write_then_read(ds1305->spi, buf, 2, NULL, 0);
391	}
392
393	return status;
394}
395
396#ifdef CONFIG_PROC_FS
397
398static int ds1305_proc(struct device *dev, struct seq_file *seq)
399{
400	struct ds1305	*ds1305 = dev_get_drvdata(dev);
401	char		*diodes = "no";
402	char		*resistors = "";
403
404	/* ctrl[2] is treated as read-only; no locking needed */
405	if ((ds1305->ctrl[2] & 0xf0) == DS1305_TRICKLE_MAGIC) {
406		switch (ds1305->ctrl[2] & 0x0c) {
407		case DS1305_TRICKLE_DS2:
408			diodes = "2 diodes, ";
409			break;
410		case DS1305_TRICKLE_DS1:
411			diodes = "1 diode, ";
412			break;
413		default:
414			goto done;
415		}
416		switch (ds1305->ctrl[2] & 0x03) {
417		case DS1305_TRICKLE_2K:
418			resistors = "2k Ohm";
419			break;
420		case DS1305_TRICKLE_4K:
421			resistors = "4k Ohm";
422			break;
423		case DS1305_TRICKLE_8K:
424			resistors = "8k Ohm";
425			break;
426		default:
427			diodes = "no";
428			break;
429		}
430	}
431
432done:
433	seq_printf(seq, "trickle_charge\t: %s%s\n", diodes, resistors);
434
435	return 0;
436}
437
438#else
439#define ds1305_proc	NULL
440#endif
441
442static const struct rtc_class_ops ds1305_ops = {
443	.read_time	= ds1305_get_time,
444	.set_time	= ds1305_set_time,
445	.read_alarm	= ds1305_get_alarm,
446	.set_alarm	= ds1305_set_alarm,
447	.proc		= ds1305_proc,
448	.alarm_irq_enable = ds1305_alarm_irq_enable,
449};
450
451static void ds1305_work(struct work_struct *work)
452{
453	struct ds1305	*ds1305 = container_of(work, struct ds1305, work);
454	struct mutex	*lock = &ds1305->rtc->ops_lock;
455	struct spi_device *spi = ds1305->spi;
456	u8		buf[3];
457	int		status;
458
459	/* lock to protect ds1305->ctrl */
460	mutex_lock(lock);
461
462	/* Disable the IRQ, and clear its status ... for now, we "know"
463	 * that if more than one alarm is active, they're in sync.
464	 * Note that reading ALM data registers also clears IRQ status.
465	 */
466	ds1305->ctrl[0] &= ~(DS1305_AEI1 | DS1305_AEI0);
467	ds1305->ctrl[1] = 0;
468
469	buf[0] = DS1305_WRITE | DS1305_CONTROL;
470	buf[1] = ds1305->ctrl[0];
471	buf[2] = 0;
472
473	status = spi_write_then_read(spi, buf, sizeof(buf),
474			NULL, 0);
475	if (status < 0)
476		dev_dbg(&spi->dev, "clear irq --> %d\n", status);
477
478	mutex_unlock(lock);
479
480	if (!test_bit(FLAG_EXITING, &ds1305->flags))
481		enable_irq(spi->irq);
482
483	rtc_update_irq(ds1305->rtc, 1, RTC_AF | RTC_IRQF);
484}
485
486/*
487 * This "real" IRQ handler hands off to a workqueue mostly to allow
488 * mutex locking for ds1305->ctrl ... unlike I2C, we could issue async
489 * I/O requests in IRQ context (to clear the IRQ status).
490 */
491static irqreturn_t ds1305_irq(int irq, void *p)
492{
493	struct ds1305		*ds1305 = p;
494
495	disable_irq(irq);
496	schedule_work(&ds1305->work);
497	return IRQ_HANDLED;
498}
499
500/*----------------------------------------------------------------------*/
501
502/*
503 * Interface for NVRAM
504 */
505
506static void msg_init(struct spi_message *m, struct spi_transfer *x,
507		u8 *addr, size_t count, char *tx, char *rx)
508{
509	spi_message_init(m);
510	memset(x, 0, 2 * sizeof(*x));
511
512	x->tx_buf = addr;
513	x->len = 1;
514	spi_message_add_tail(x, m);
515
516	x++;
517
518	x->tx_buf = tx;
519	x->rx_buf = rx;
520	x->len = count;
521	spi_message_add_tail(x, m);
522}
523
524static ssize_t
525ds1305_nvram_read(struct file *filp, struct kobject *kobj,
526		struct bin_attribute *attr,
527		char *buf, loff_t off, size_t count)
528{
529	struct spi_device	*spi;
530	u8			addr;
531	struct spi_message	m;
532	struct spi_transfer	x[2];
533	int			status;
534
535	spi = to_spi_device(kobj_to_dev(kobj));
 
 
 
 
 
 
 
 
 
536
537	addr = DS1305_NVRAM + off;
538	msg_init(&m, x, &addr, count, NULL, buf);
539
540	status = spi_sync(spi, &m);
541	if (status < 0)
542		dev_err(&spi->dev, "nvram %s error %d\n", "read", status);
543	return (status < 0) ? status : count;
544}
545
546static ssize_t
547ds1305_nvram_write(struct file *filp, struct kobject *kobj,
548		struct bin_attribute *attr,
549		char *buf, loff_t off, size_t count)
550{
551	struct spi_device	*spi;
552	u8			addr;
553	struct spi_message	m;
554	struct spi_transfer	x[2];
555	int			status;
556
557	spi = to_spi_device(kobj_to_dev(kobj));
 
 
 
 
 
 
 
 
 
558
559	addr = (DS1305_WRITE | DS1305_NVRAM) + off;
560	msg_init(&m, x, &addr, count, buf, NULL);
561
562	status = spi_sync(spi, &m);
563	if (status < 0)
564		dev_err(&spi->dev, "nvram %s error %d\n", "write", status);
565	return (status < 0) ? status : count;
566}
567
568static struct bin_attribute nvram = {
569	.attr.name	= "nvram",
570	.attr.mode	= S_IRUGO | S_IWUSR,
571	.read		= ds1305_nvram_read,
572	.write		= ds1305_nvram_write,
573	.size		= DS1305_NVRAM_LEN,
574};
575
576/*----------------------------------------------------------------------*/
577
578/*
579 * Interface to SPI stack
580 */
581
582static int ds1305_probe(struct spi_device *spi)
583{
584	struct ds1305			*ds1305;
585	int				status;
586	u8				addr, value;
587	struct ds1305_platform_data	*pdata = dev_get_platdata(&spi->dev);
588	bool				write_ctrl = false;
589
590	/* Sanity check board setup data.  This may be hooked up
591	 * in 3wire mode, but we don't care.  Note that unless
592	 * there's an inverter in place, this needs SPI_CS_HIGH!
593	 */
594	if ((spi->bits_per_word && spi->bits_per_word != 8)
595			|| (spi->max_speed_hz > 2000000)
596			|| !(spi->mode & SPI_CPHA))
597		return -EINVAL;
598
599	/* set up driver data */
600	ds1305 = devm_kzalloc(&spi->dev, sizeof(*ds1305), GFP_KERNEL);
601	if (!ds1305)
602		return -ENOMEM;
603	ds1305->spi = spi;
604	spi_set_drvdata(spi, ds1305);
605
606	/* read and cache control registers */
607	addr = DS1305_CONTROL;
608	status = spi_write_then_read(spi, &addr, sizeof(addr),
609			ds1305->ctrl, sizeof(ds1305->ctrl));
610	if (status < 0) {
611		dev_dbg(&spi->dev, "can't %s, %d\n",
612				"read", status);
613		return status;
614	}
615
616	dev_dbg(&spi->dev, "ctrl %s: %3ph\n", "read", ds1305->ctrl);
 
 
617
618	/* Sanity check register values ... partially compensating for the
619	 * fact that SPI has no device handshake.  A pullup on MISO would
620	 * make these tests fail; but not all systems will have one.  If
621	 * some register is neither 0x00 nor 0xff, a chip is likely there.
622	 */
623	if ((ds1305->ctrl[0] & 0x38) != 0 || (ds1305->ctrl[1] & 0xfc) != 0) {
624		dev_dbg(&spi->dev, "RTC chip is not present\n");
625		return -ENODEV;
 
626	}
627	if (ds1305->ctrl[2] == 0)
628		dev_dbg(&spi->dev, "chip may not be present\n");
629
630	/* enable writes if needed ... if we were paranoid it would
631	 * make sense to enable them only when absolutely necessary.
632	 */
633	if (ds1305->ctrl[0] & DS1305_WP) {
634		u8		buf[2];
635
636		ds1305->ctrl[0] &= ~DS1305_WP;
637
638		buf[0] = DS1305_WRITE | DS1305_CONTROL;
639		buf[1] = ds1305->ctrl[0];
640		status = spi_write_then_read(spi, buf, sizeof(buf), NULL, 0);
641
642		dev_dbg(&spi->dev, "clear WP --> %d\n", status);
643		if (status < 0)
644			return status;
645	}
646
647	/* on DS1305, maybe start oscillator; like most low power
648	 * oscillators, it may take a second to stabilize
649	 */
650	if (ds1305->ctrl[0] & DS1305_nEOSC) {
651		ds1305->ctrl[0] &= ~DS1305_nEOSC;
652		write_ctrl = true;
653		dev_warn(&spi->dev, "SET TIME!\n");
654	}
655
656	/* ack any pending IRQs */
657	if (ds1305->ctrl[1]) {
658		ds1305->ctrl[1] = 0;
659		write_ctrl = true;
660	}
661
662	/* this may need one-time (re)init */
663	if (pdata) {
664		/* maybe enable trickle charge */
665		if (((ds1305->ctrl[2] & 0xf0) != DS1305_TRICKLE_MAGIC)) {
666			ds1305->ctrl[2] = DS1305_TRICKLE_MAGIC
667						| pdata->trickle;
668			write_ctrl = true;
669		}
670
671		/* on DS1306, configure 1 Hz signal */
672		if (pdata->is_ds1306) {
673			if (pdata->en_1hz) {
674				if (!(ds1305->ctrl[0] & DS1306_1HZ)) {
675					ds1305->ctrl[0] |= DS1306_1HZ;
676					write_ctrl = true;
677				}
678			} else {
679				if (ds1305->ctrl[0] & DS1306_1HZ) {
680					ds1305->ctrl[0] &= ~DS1306_1HZ;
681					write_ctrl = true;
682				}
683			}
684		}
685	}
686
687	if (write_ctrl) {
688		u8		buf[4];
689
690		buf[0] = DS1305_WRITE | DS1305_CONTROL;
691		buf[1] = ds1305->ctrl[0];
692		buf[2] = ds1305->ctrl[1];
693		buf[3] = ds1305->ctrl[2];
694		status = spi_write_then_read(spi, buf, sizeof(buf), NULL, 0);
695		if (status < 0) {
696			dev_dbg(&spi->dev, "can't %s, %d\n",
697					"write", status);
698			return status;
699		}
700
701		dev_dbg(&spi->dev, "ctrl %s: %3ph\n", "write", ds1305->ctrl);
 
 
702	}
703
704	/* see if non-Linux software set up AM/PM mode */
705	addr = DS1305_HOUR;
706	status = spi_write_then_read(spi, &addr, sizeof(addr),
707				&value, sizeof(value));
708	if (status < 0) {
709		dev_dbg(&spi->dev, "read HOUR --> %d\n", status);
710		return status;
711	}
712
713	ds1305->hr12 = (DS1305_HR_12 & value) != 0;
714	if (ds1305->hr12)
715		dev_dbg(&spi->dev, "AM/PM\n");
716
717	/* register RTC ... from here on, ds1305->ctrl needs locking */
718	ds1305->rtc = devm_rtc_device_register(&spi->dev, "ds1305",
719			&ds1305_ops, THIS_MODULE);
720	if (IS_ERR(ds1305->rtc)) {
721		status = PTR_ERR(ds1305->rtc);
722		dev_dbg(&spi->dev, "register rtc --> %d\n", status);
723		return status;
724	}
725
726	/* Maybe set up alarm IRQ; be ready to handle it triggering right
727	 * away.  NOTE that we don't share this.  The signal is active low,
728	 * and we can't ack it before a SPI message delay.  We temporarily
729	 * disable the IRQ until it's acked, which lets us work with more
730	 * IRQ trigger modes (not all IRQ controllers can do falling edge).
731	 */
732	if (spi->irq) {
733		INIT_WORK(&ds1305->work, ds1305_work);
734		status = devm_request_irq(&spi->dev, spi->irq, ds1305_irq,
735				0, dev_name(&ds1305->rtc->dev), ds1305);
736		if (status < 0) {
737			dev_err(&spi->dev, "request_irq %d --> %d\n",
738					spi->irq, status);
739		} else {
740			device_set_wakeup_capable(&spi->dev, 1);
741		}
 
 
742	}
743
744	/* export NVRAM */
745	status = sysfs_create_bin_file(&spi->dev.kobj, &nvram);
746	if (status < 0) {
747		dev_err(&spi->dev, "register nvram --> %d\n", status);
 
748	}
749
750	return 0;
 
 
 
 
 
 
 
 
751}
752
753static int ds1305_remove(struct spi_device *spi)
754{
755	struct ds1305 *ds1305 = spi_get_drvdata(spi);
756
757	sysfs_remove_bin_file(&spi->dev.kobj, &nvram);
758
759	/* carefully shut down irq and workqueue, if present */
760	if (spi->irq) {
761		set_bit(FLAG_EXITING, &ds1305->flags);
762		devm_free_irq(&spi->dev, spi->irq, ds1305);
763		cancel_work_sync(&ds1305->work);
764	}
765
 
 
 
766	return 0;
767}
768
769static struct spi_driver ds1305_driver = {
770	.driver.name	= "rtc-ds1305",
 
771	.probe		= ds1305_probe,
772	.remove		= ds1305_remove,
773	/* REVISIT add suspend/resume */
774};
775
776module_spi_driver(ds1305_driver);
 
 
 
 
 
 
 
 
 
 
777
778MODULE_DESCRIPTION("RTC driver for DS1305 and DS1306 chips");
779MODULE_LICENSE("GPL");
780MODULE_ALIAS("spi:rtc-ds1305");
v3.1
  1/*
  2 * rtc-ds1305.c -- driver for DS1305 and DS1306 SPI RTC chips
  3 *
  4 * Copyright (C) 2008 David Brownell
  5 *
  6 * This program is free software; you can redistribute it and/or modify
  7 * it under the terms of the GNU General Public License version 2 as
  8 * published by the Free Software Foundation.
  9 *
 10 */
 11#include <linux/kernel.h>
 12#include <linux/init.h>
 13#include <linux/bcd.h>
 14#include <linux/slab.h>
 15#include <linux/rtc.h>
 16#include <linux/workqueue.h>
 17
 18#include <linux/spi/spi.h>
 19#include <linux/spi/ds1305.h>
 
 20
 21
 22/*
 23 * Registers ... mask DS1305_WRITE into register address to write,
 24 * otherwise you're reading it.  All non-bitmask values are BCD.
 25 */
 26#define DS1305_WRITE		0x80
 27
 28
 29/* RTC date/time ... the main special cases are that we:
 30 *  - Need fancy "hours" encoding in 12hour mode
 31 *  - Don't rely on the "day-of-week" field (or tm_wday)
 32 *  - Are a 21st-century clock (2000 <= year < 2100)
 33 */
 34#define DS1305_RTC_LEN		7		/* bytes for RTC regs */
 35
 36#define DS1305_SEC		0x00		/* register addresses */
 37#define DS1305_MIN		0x01
 38#define DS1305_HOUR		0x02
 39#	define DS1305_HR_12		0x40	/* set == 12 hr mode */
 40#	define DS1305_HR_PM		0x20	/* set == PM (12hr mode) */
 41#define DS1305_WDAY		0x03
 42#define DS1305_MDAY		0x04
 43#define DS1305_MON		0x05
 44#define DS1305_YEAR		0x06
 45
 46
 47/* The two alarms have only sec/min/hour/wday fields (ALM_LEN).
 48 * DS1305_ALM_DISABLE disables a match field (some combos are bad).
 49 *
 50 * NOTE that since we don't use WDAY, we limit ourselves to alarms
 51 * only one day into the future (vs potentially up to a week).
 52 *
 53 * NOTE ALSO that while we could generate once-a-second IRQs (UIE), we
 54 * don't currently support them.  We'd either need to do it only when
 55 * no alarm is pending (not the standard model), or to use the second
 56 * alarm (implying that this is a DS1305 not DS1306, *and* that either
 57 * it's wired up a second IRQ we know, or that INTCN is set)
 58 */
 59#define DS1305_ALM_LEN		4		/* bytes for ALM regs */
 60#define DS1305_ALM_DISABLE	0x80
 61
 62#define DS1305_ALM0(r)		(0x07 + (r))	/* register addresses */
 63#define DS1305_ALM1(r)		(0x0b + (r))
 64
 65
 66/* three control registers */
 67#define DS1305_CONTROL_LEN	3		/* bytes of control regs */
 68
 69#define DS1305_CONTROL		0x0f		/* register addresses */
 70#	define DS1305_nEOSC		0x80	/* low enables oscillator */
 71#	define DS1305_WP		0x40	/* write protect */
 72#	define DS1305_INTCN		0x04	/* clear == only int0 used */
 73#	define DS1306_1HZ		0x04	/* enable 1Hz output */
 74#	define DS1305_AEI1		0x02	/* enable ALM1 IRQ */
 75#	define DS1305_AEI0		0x01	/* enable ALM0 IRQ */
 76#define DS1305_STATUS		0x10
 77/* status has just AEIx bits, mirrored as IRQFx */
 78#define DS1305_TRICKLE		0x11
 79/* trickle bits are defined in <linux/spi/ds1305.h> */
 80
 81/* a bunch of NVRAM */
 82#define DS1305_NVRAM_LEN	96		/* bytes of NVRAM */
 83
 84#define DS1305_NVRAM		0x20		/* register addresses */
 85
 86
 87struct ds1305 {
 88	struct spi_device	*spi;
 89	struct rtc_device	*rtc;
 90
 91	struct work_struct	work;
 92
 93	unsigned long		flags;
 94#define FLAG_EXITING	0
 95
 96	bool			hr12;
 97	u8			ctrl[DS1305_CONTROL_LEN];
 98};
 99
100
101/*----------------------------------------------------------------------*/
102
103/*
104 * Utilities ...  tolerate 12-hour AM/PM notation in case of non-Linux
105 * software (like a bootloader) which may require it.
106 */
107
108static unsigned bcd2hour(u8 bcd)
109{
110	if (bcd & DS1305_HR_12) {
111		unsigned	hour = 0;
112
113		bcd &= ~DS1305_HR_12;
114		if (bcd & DS1305_HR_PM) {
115			hour = 12;
116			bcd &= ~DS1305_HR_PM;
117		}
118		hour += bcd2bin(bcd);
119		return hour - 1;
120	}
121	return bcd2bin(bcd);
122}
123
124static u8 hour2bcd(bool hr12, int hour)
125{
126	if (hr12) {
127		hour++;
128		if (hour <= 12)
129			return DS1305_HR_12 | bin2bcd(hour);
130		hour -= 12;
131		return DS1305_HR_12 | DS1305_HR_PM | bin2bcd(hour);
132	}
133	return bin2bcd(hour);
134}
135
136/*----------------------------------------------------------------------*/
137
138/*
139 * Interface to RTC framework
140 */
141
142static int ds1305_alarm_irq_enable(struct device *dev, unsigned int enabled)
143{
144	struct ds1305	*ds1305 = dev_get_drvdata(dev);
145	u8		buf[2];
146	long		err = -EINVAL;
147
148	buf[0] = DS1305_WRITE | DS1305_CONTROL;
149	buf[1] = ds1305->ctrl[0];
150
151	if (enabled) {
152		if (ds1305->ctrl[0] & DS1305_AEI0)
153			goto done;
154		buf[1] |= DS1305_AEI0;
155	} else {
156		if (!(buf[1] & DS1305_AEI0))
157			goto done;
158		buf[1] &= ~DS1305_AEI0;
159	}
160	err = spi_write_then_read(ds1305->spi, buf, sizeof buf, NULL, 0);
161	if (err >= 0)
162		ds1305->ctrl[0] = buf[1];
163done:
164	return err;
165
166}
167
168
169/*
170 * Get/set of date and time is pretty normal.
171 */
172
173static int ds1305_get_time(struct device *dev, struct rtc_time *time)
174{
175	struct ds1305	*ds1305 = dev_get_drvdata(dev);
176	u8		addr = DS1305_SEC;
177	u8		buf[DS1305_RTC_LEN];
178	int		status;
179
180	/* Use write-then-read to get all the date/time registers
181	 * since dma from stack is nonportable
182	 */
183	status = spi_write_then_read(ds1305->spi, &addr, sizeof addr,
184			buf, sizeof buf);
185	if (status < 0)
186		return status;
187
188	dev_vdbg(dev, "%s: %02x %02x %02x, %02x %02x %02x %02x\n",
189		"read", buf[0], buf[1], buf[2], buf[3],
190		buf[4], buf[5], buf[6]);
191
192	/* Decode the registers */
193	time->tm_sec = bcd2bin(buf[DS1305_SEC]);
194	time->tm_min = bcd2bin(buf[DS1305_MIN]);
195	time->tm_hour = bcd2hour(buf[DS1305_HOUR]);
196	time->tm_wday = buf[DS1305_WDAY] - 1;
197	time->tm_mday = bcd2bin(buf[DS1305_MDAY]);
198	time->tm_mon = bcd2bin(buf[DS1305_MON]) - 1;
199	time->tm_year = bcd2bin(buf[DS1305_YEAR]) + 100;
200
201	dev_vdbg(dev, "%s secs=%d, mins=%d, "
202		"hours=%d, mday=%d, mon=%d, year=%d, wday=%d\n",
203		"read", time->tm_sec, time->tm_min,
204		time->tm_hour, time->tm_mday,
205		time->tm_mon, time->tm_year, time->tm_wday);
206
207	/* Time may not be set */
208	return rtc_valid_tm(time);
209}
210
211static int ds1305_set_time(struct device *dev, struct rtc_time *time)
212{
213	struct ds1305	*ds1305 = dev_get_drvdata(dev);
214	u8		buf[1 + DS1305_RTC_LEN];
215	u8		*bp = buf;
216
217	dev_vdbg(dev, "%s secs=%d, mins=%d, "
218		"hours=%d, mday=%d, mon=%d, year=%d, wday=%d\n",
219		"write", time->tm_sec, time->tm_min,
220		time->tm_hour, time->tm_mday,
221		time->tm_mon, time->tm_year, time->tm_wday);
222
223	/* Write registers starting at the first time/date address. */
224	*bp++ = DS1305_WRITE | DS1305_SEC;
225
226	*bp++ = bin2bcd(time->tm_sec);
227	*bp++ = bin2bcd(time->tm_min);
228	*bp++ = hour2bcd(ds1305->hr12, time->tm_hour);
229	*bp++ = (time->tm_wday < 7) ? (time->tm_wday + 1) : 1;
230	*bp++ = bin2bcd(time->tm_mday);
231	*bp++ = bin2bcd(time->tm_mon + 1);
232	*bp++ = bin2bcd(time->tm_year - 100);
233
234	dev_dbg(dev, "%s: %02x %02x %02x, %02x %02x %02x %02x\n",
235		"write", buf[1], buf[2], buf[3],
236		buf[4], buf[5], buf[6], buf[7]);
237
238	/* use write-then-read since dma from stack is nonportable */
239	return spi_write_then_read(ds1305->spi, buf, sizeof buf,
240			NULL, 0);
241}
242
243/*
244 * Get/set of alarm is a bit funky:
245 *
246 * - First there's the inherent raciness of getting the (partitioned)
247 *   status of an alarm that could trigger while we're reading parts
248 *   of that status.
249 *
250 * - Second there's its limited range (we could increase it a bit by
251 *   relying on WDAY), which means it will easily roll over.
252 *
253 * - Third there's the choice of two alarms and alarm signals.
254 *   Here we use ALM0 and expect that nINT0 (open drain) is used;
255 *   that's the only real option for DS1306 runtime alarms, and is
256 *   natural on DS1305.
257 *
258 * - Fourth, there's also ALM1, and a second interrupt signal:
259 *     + On DS1305 ALM1 uses nINT1 (when INTCN=1) else nINT0;
260 *     + On DS1306 ALM1 only uses INT1 (an active high pulse)
261 *       and it won't work when VCC1 is active.
262 *
263 *   So to be most general, we should probably set both alarms to the
264 *   same value, letting ALM1 be the wakeup event source on DS1306
265 *   and handling several wiring options on DS1305.
266 *
267 * - Fifth, we support the polled mode (as well as possible; why not?)
268 *   even when no interrupt line is wired to an IRQ.
269 */
270
271/*
272 * Context: caller holds rtc->ops_lock (to protect ds1305->ctrl)
273 */
274static int ds1305_get_alarm(struct device *dev, struct rtc_wkalrm *alm)
275{
276	struct ds1305	*ds1305 = dev_get_drvdata(dev);
277	struct spi_device *spi = ds1305->spi;
278	u8		addr;
279	int		status;
280	u8		buf[DS1305_ALM_LEN];
281
282	/* Refresh control register cache BEFORE reading ALM0 registers,
283	 * since reading alarm registers acks any pending IRQ.  That
284	 * makes returning "pending" status a bit of a lie, but that bit
285	 * of EFI status is at best fragile anyway (given IRQ handlers).
286	 */
287	addr = DS1305_CONTROL;
288	status = spi_write_then_read(spi, &addr, sizeof addr,
289			ds1305->ctrl, sizeof ds1305->ctrl);
290	if (status < 0)
291		return status;
292
293	alm->enabled = !!(ds1305->ctrl[0] & DS1305_AEI0);
294	alm->pending = !!(ds1305->ctrl[1] & DS1305_AEI0);
295
296	/* get and check ALM0 registers */
297	addr = DS1305_ALM0(DS1305_SEC);
298	status = spi_write_then_read(spi, &addr, sizeof addr,
299			buf, sizeof buf);
300	if (status < 0)
301		return status;
302
303	dev_vdbg(dev, "%s: %02x %02x %02x %02x\n",
304		"alm0 read", buf[DS1305_SEC], buf[DS1305_MIN],
305		buf[DS1305_HOUR], buf[DS1305_WDAY]);
306
307	if ((DS1305_ALM_DISABLE & buf[DS1305_SEC])
308			|| (DS1305_ALM_DISABLE & buf[DS1305_MIN])
309			|| (DS1305_ALM_DISABLE & buf[DS1305_HOUR]))
310		return -EIO;
311
312	/* Stuff these values into alm->time and let RTC framework code
313	 * fill in the rest ... and also handle rollover to tomorrow when
314	 * that's needed.
315	 */
316	alm->time.tm_sec = bcd2bin(buf[DS1305_SEC]);
317	alm->time.tm_min = bcd2bin(buf[DS1305_MIN]);
318	alm->time.tm_hour = bcd2hour(buf[DS1305_HOUR]);
319	alm->time.tm_mday = -1;
320	alm->time.tm_mon = -1;
321	alm->time.tm_year = -1;
322	/* next three fields are unused by Linux */
323	alm->time.tm_wday = -1;
324	alm->time.tm_mday = -1;
325	alm->time.tm_isdst = -1;
326
327	return 0;
328}
329
330/*
331 * Context: caller holds rtc->ops_lock (to protect ds1305->ctrl)
332 */
333static int ds1305_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
334{
335	struct ds1305	*ds1305 = dev_get_drvdata(dev);
336	struct spi_device *spi = ds1305->spi;
337	unsigned long	now, later;
338	struct rtc_time	tm;
339	int		status;
340	u8		buf[1 + DS1305_ALM_LEN];
341
342	/* convert desired alarm to time_t */
343	status = rtc_tm_to_time(&alm->time, &later);
344	if (status < 0)
345		return status;
346
347	/* Read current time as time_t */
348	status = ds1305_get_time(dev, &tm);
349	if (status < 0)
350		return status;
351	status = rtc_tm_to_time(&tm, &now);
352	if (status < 0)
353		return status;
354
355	/* make sure alarm fires within the next 24 hours */
356	if (later <= now)
357		return -EINVAL;
358	if ((later - now) > 24 * 60 * 60)
359		return -EDOM;
360
361	/* disable alarm if needed */
362	if (ds1305->ctrl[0] & DS1305_AEI0) {
363		ds1305->ctrl[0] &= ~DS1305_AEI0;
364
365		buf[0] = DS1305_WRITE | DS1305_CONTROL;
366		buf[1] = ds1305->ctrl[0];
367		status = spi_write_then_read(ds1305->spi, buf, 2, NULL, 0);
368		if (status < 0)
369			return status;
370	}
371
372	/* write alarm */
373	buf[0] = DS1305_WRITE | DS1305_ALM0(DS1305_SEC);
374	buf[1 + DS1305_SEC] = bin2bcd(alm->time.tm_sec);
375	buf[1 + DS1305_MIN] = bin2bcd(alm->time.tm_min);
376	buf[1 + DS1305_HOUR] = hour2bcd(ds1305->hr12, alm->time.tm_hour);
377	buf[1 + DS1305_WDAY] = DS1305_ALM_DISABLE;
378
379	dev_dbg(dev, "%s: %02x %02x %02x %02x\n",
380		"alm0 write", buf[1 + DS1305_SEC], buf[1 + DS1305_MIN],
381		buf[1 + DS1305_HOUR], buf[1 + DS1305_WDAY]);
382
383	status = spi_write_then_read(spi, buf, sizeof buf, NULL, 0);
384	if (status < 0)
385		return status;
386
387	/* enable alarm if requested */
388	if (alm->enabled) {
389		ds1305->ctrl[0] |= DS1305_AEI0;
390
391		buf[0] = DS1305_WRITE | DS1305_CONTROL;
392		buf[1] = ds1305->ctrl[0];
393		status = spi_write_then_read(ds1305->spi, buf, 2, NULL, 0);
394	}
395
396	return status;
397}
398
399#ifdef CONFIG_PROC_FS
400
401static int ds1305_proc(struct device *dev, struct seq_file *seq)
402{
403	struct ds1305	*ds1305 = dev_get_drvdata(dev);
404	char		*diodes = "no";
405	char		*resistors = "";
406
407	/* ctrl[2] is treated as read-only; no locking needed */
408	if ((ds1305->ctrl[2] & 0xf0) == DS1305_TRICKLE_MAGIC) {
409		switch (ds1305->ctrl[2] & 0x0c) {
410		case DS1305_TRICKLE_DS2:
411			diodes = "2 diodes, ";
412			break;
413		case DS1305_TRICKLE_DS1:
414			diodes = "1 diode, ";
415			break;
416		default:
417			goto done;
418		}
419		switch (ds1305->ctrl[2] & 0x03) {
420		case DS1305_TRICKLE_2K:
421			resistors = "2k Ohm";
422			break;
423		case DS1305_TRICKLE_4K:
424			resistors = "4k Ohm";
425			break;
426		case DS1305_TRICKLE_8K:
427			resistors = "8k Ohm";
428			break;
429		default:
430			diodes = "no";
431			break;
432		}
433	}
434
435done:
436	return seq_printf(seq,
437			"trickle_charge\t: %s%s\n",
438			diodes, resistors);
439}
440
441#else
442#define ds1305_proc	NULL
443#endif
444
445static const struct rtc_class_ops ds1305_ops = {
446	.read_time	= ds1305_get_time,
447	.set_time	= ds1305_set_time,
448	.read_alarm	= ds1305_get_alarm,
449	.set_alarm	= ds1305_set_alarm,
450	.proc		= ds1305_proc,
451	.alarm_irq_enable = ds1305_alarm_irq_enable,
452};
453
454static void ds1305_work(struct work_struct *work)
455{
456	struct ds1305	*ds1305 = container_of(work, struct ds1305, work);
457	struct mutex	*lock = &ds1305->rtc->ops_lock;
458	struct spi_device *spi = ds1305->spi;
459	u8		buf[3];
460	int		status;
461
462	/* lock to protect ds1305->ctrl */
463	mutex_lock(lock);
464
465	/* Disable the IRQ, and clear its status ... for now, we "know"
466	 * that if more than one alarm is active, they're in sync.
467	 * Note that reading ALM data registers also clears IRQ status.
468	 */
469	ds1305->ctrl[0] &= ~(DS1305_AEI1 | DS1305_AEI0);
470	ds1305->ctrl[1] = 0;
471
472	buf[0] = DS1305_WRITE | DS1305_CONTROL;
473	buf[1] = ds1305->ctrl[0];
474	buf[2] = 0;
475
476	status = spi_write_then_read(spi, buf, sizeof buf,
477			NULL, 0);
478	if (status < 0)
479		dev_dbg(&spi->dev, "clear irq --> %d\n", status);
480
481	mutex_unlock(lock);
482
483	if (!test_bit(FLAG_EXITING, &ds1305->flags))
484		enable_irq(spi->irq);
485
486	rtc_update_irq(ds1305->rtc, 1, RTC_AF | RTC_IRQF);
487}
488
489/*
490 * This "real" IRQ handler hands off to a workqueue mostly to allow
491 * mutex locking for ds1305->ctrl ... unlike I2C, we could issue async
492 * I/O requests in IRQ context (to clear the IRQ status).
493 */
494static irqreturn_t ds1305_irq(int irq, void *p)
495{
496	struct ds1305		*ds1305 = p;
497
498	disable_irq(irq);
499	schedule_work(&ds1305->work);
500	return IRQ_HANDLED;
501}
502
503/*----------------------------------------------------------------------*/
504
505/*
506 * Interface for NVRAM
507 */
508
509static void msg_init(struct spi_message *m, struct spi_transfer *x,
510		u8 *addr, size_t count, char *tx, char *rx)
511{
512	spi_message_init(m);
513	memset(x, 0, 2 * sizeof(*x));
514
515	x->tx_buf = addr;
516	x->len = 1;
517	spi_message_add_tail(x, m);
518
519	x++;
520
521	x->tx_buf = tx;
522	x->rx_buf = rx;
523	x->len = count;
524	spi_message_add_tail(x, m);
525}
526
527static ssize_t
528ds1305_nvram_read(struct file *filp, struct kobject *kobj,
529		struct bin_attribute *attr,
530		char *buf, loff_t off, size_t count)
531{
532	struct spi_device	*spi;
533	u8			addr;
534	struct spi_message	m;
535	struct spi_transfer	x[2];
536	int			status;
537
538	spi = container_of(kobj, struct spi_device, dev.kobj);
539
540	if (unlikely(off >= DS1305_NVRAM_LEN))
541		return 0;
542	if (count >= DS1305_NVRAM_LEN)
543		count = DS1305_NVRAM_LEN;
544	if ((off + count) > DS1305_NVRAM_LEN)
545		count = DS1305_NVRAM_LEN - off;
546	if (unlikely(!count))
547		return count;
548
549	addr = DS1305_NVRAM + off;
550	msg_init(&m, x, &addr, count, NULL, buf);
551
552	status = spi_sync(spi, &m);
553	if (status < 0)
554		dev_err(&spi->dev, "nvram %s error %d\n", "read", status);
555	return (status < 0) ? status : count;
556}
557
558static ssize_t
559ds1305_nvram_write(struct file *filp, struct kobject *kobj,
560		struct bin_attribute *attr,
561		char *buf, loff_t off, size_t count)
562{
563	struct spi_device	*spi;
564	u8			addr;
565	struct spi_message	m;
566	struct spi_transfer	x[2];
567	int			status;
568
569	spi = container_of(kobj, struct spi_device, dev.kobj);
570
571	if (unlikely(off >= DS1305_NVRAM_LEN))
572		return -EFBIG;
573	if (count >= DS1305_NVRAM_LEN)
574		count = DS1305_NVRAM_LEN;
575	if ((off + count) > DS1305_NVRAM_LEN)
576		count = DS1305_NVRAM_LEN - off;
577	if (unlikely(!count))
578		return count;
579
580	addr = (DS1305_WRITE | DS1305_NVRAM) + off;
581	msg_init(&m, x, &addr, count, buf, NULL);
582
583	status = spi_sync(spi, &m);
584	if (status < 0)
585		dev_err(&spi->dev, "nvram %s error %d\n", "write", status);
586	return (status < 0) ? status : count;
587}
588
589static struct bin_attribute nvram = {
590	.attr.name	= "nvram",
591	.attr.mode	= S_IRUGO | S_IWUSR,
592	.read		= ds1305_nvram_read,
593	.write		= ds1305_nvram_write,
594	.size		= DS1305_NVRAM_LEN,
595};
596
597/*----------------------------------------------------------------------*/
598
599/*
600 * Interface to SPI stack
601 */
602
603static int __devinit ds1305_probe(struct spi_device *spi)
604{
605	struct ds1305			*ds1305;
606	int				status;
607	u8				addr, value;
608	struct ds1305_platform_data	*pdata = spi->dev.platform_data;
609	bool				write_ctrl = false;
610
611	/* Sanity check board setup data.  This may be hooked up
612	 * in 3wire mode, but we don't care.  Note that unless
613	 * there's an inverter in place, this needs SPI_CS_HIGH!
614	 */
615	if ((spi->bits_per_word && spi->bits_per_word != 8)
616			|| (spi->max_speed_hz > 2000000)
617			|| !(spi->mode & SPI_CPHA))
618		return -EINVAL;
619
620	/* set up driver data */
621	ds1305 = kzalloc(sizeof *ds1305, GFP_KERNEL);
622	if (!ds1305)
623		return -ENOMEM;
624	ds1305->spi = spi;
625	spi_set_drvdata(spi, ds1305);
626
627	/* read and cache control registers */
628	addr = DS1305_CONTROL;
629	status = spi_write_then_read(spi, &addr, sizeof addr,
630			ds1305->ctrl, sizeof ds1305->ctrl);
631	if (status < 0) {
632		dev_dbg(&spi->dev, "can't %s, %d\n",
633				"read", status);
634		goto fail0;
635	}
636
637	dev_dbg(&spi->dev, "ctrl %s: %02x %02x %02x\n",
638			"read", ds1305->ctrl[0],
639			ds1305->ctrl[1], ds1305->ctrl[2]);
640
641	/* Sanity check register values ... partially compensating for the
642	 * fact that SPI has no device handshake.  A pullup on MISO would
643	 * make these tests fail; but not all systems will have one.  If
644	 * some register is neither 0x00 nor 0xff, a chip is likely there.
645	 */
646	if ((ds1305->ctrl[0] & 0x38) != 0 || (ds1305->ctrl[1] & 0xfc) != 0) {
647		dev_dbg(&spi->dev, "RTC chip is not present\n");
648		status = -ENODEV;
649		goto fail0;
650	}
651	if (ds1305->ctrl[2] == 0)
652		dev_dbg(&spi->dev, "chip may not be present\n");
653
654	/* enable writes if needed ... if we were paranoid it would
655	 * make sense to enable them only when absolutely necessary.
656	 */
657	if (ds1305->ctrl[0] & DS1305_WP) {
658		u8		buf[2];
659
660		ds1305->ctrl[0] &= ~DS1305_WP;
661
662		buf[0] = DS1305_WRITE | DS1305_CONTROL;
663		buf[1] = ds1305->ctrl[0];
664		status = spi_write_then_read(spi, buf, sizeof buf, NULL, 0);
665
666		dev_dbg(&spi->dev, "clear WP --> %d\n", status);
667		if (status < 0)
668			goto fail0;
669	}
670
671	/* on DS1305, maybe start oscillator; like most low power
672	 * oscillators, it may take a second to stabilize
673	 */
674	if (ds1305->ctrl[0] & DS1305_nEOSC) {
675		ds1305->ctrl[0] &= ~DS1305_nEOSC;
676		write_ctrl = true;
677		dev_warn(&spi->dev, "SET TIME!\n");
678	}
679
680	/* ack any pending IRQs */
681	if (ds1305->ctrl[1]) {
682		ds1305->ctrl[1] = 0;
683		write_ctrl = true;
684	}
685
686	/* this may need one-time (re)init */
687	if (pdata) {
688		/* maybe enable trickle charge */
689		if (((ds1305->ctrl[2] & 0xf0) != DS1305_TRICKLE_MAGIC)) {
690			ds1305->ctrl[2] = DS1305_TRICKLE_MAGIC
691						| pdata->trickle;
692			write_ctrl = true;
693		}
694
695		/* on DS1306, configure 1 Hz signal */
696		if (pdata->is_ds1306) {
697			if (pdata->en_1hz) {
698				if (!(ds1305->ctrl[0] & DS1306_1HZ)) {
699					ds1305->ctrl[0] |= DS1306_1HZ;
700					write_ctrl = true;
701				}
702			} else {
703				if (ds1305->ctrl[0] & DS1306_1HZ) {
704					ds1305->ctrl[0] &= ~DS1306_1HZ;
705					write_ctrl = true;
706				}
707			}
708		}
709	}
710
711	if (write_ctrl) {
712		u8		buf[4];
713
714		buf[0] = DS1305_WRITE | DS1305_CONTROL;
715		buf[1] = ds1305->ctrl[0];
716		buf[2] = ds1305->ctrl[1];
717		buf[3] = ds1305->ctrl[2];
718		status = spi_write_then_read(spi, buf, sizeof buf, NULL, 0);
719		if (status < 0) {
720			dev_dbg(&spi->dev, "can't %s, %d\n",
721					"write", status);
722			goto fail0;
723		}
724
725		dev_dbg(&spi->dev, "ctrl %s: %02x %02x %02x\n",
726				"write", ds1305->ctrl[0],
727				ds1305->ctrl[1], ds1305->ctrl[2]);
728	}
729
730	/* see if non-Linux software set up AM/PM mode */
731	addr = DS1305_HOUR;
732	status = spi_write_then_read(spi, &addr, sizeof addr,
733				&value, sizeof value);
734	if (status < 0) {
735		dev_dbg(&spi->dev, "read HOUR --> %d\n", status);
736		goto fail0;
737	}
738
739	ds1305->hr12 = (DS1305_HR_12 & value) != 0;
740	if (ds1305->hr12)
741		dev_dbg(&spi->dev, "AM/PM\n");
742
743	/* register RTC ... from here on, ds1305->ctrl needs locking */
744	ds1305->rtc = rtc_device_register("ds1305", &spi->dev,
745			&ds1305_ops, THIS_MODULE);
746	if (IS_ERR(ds1305->rtc)) {
747		status = PTR_ERR(ds1305->rtc);
748		dev_dbg(&spi->dev, "register rtc --> %d\n", status);
749		goto fail0;
750	}
751
752	/* Maybe set up alarm IRQ; be ready to handle it triggering right
753	 * away.  NOTE that we don't share this.  The signal is active low,
754	 * and we can't ack it before a SPI message delay.  We temporarily
755	 * disable the IRQ until it's acked, which lets us work with more
756	 * IRQ trigger modes (not all IRQ controllers can do falling edge).
757	 */
758	if (spi->irq) {
759		INIT_WORK(&ds1305->work, ds1305_work);
760		status = request_irq(spi->irq, ds1305_irq,
761				0, dev_name(&ds1305->rtc->dev), ds1305);
762		if (status < 0) {
763			dev_dbg(&spi->dev, "request_irq %d --> %d\n",
764					spi->irq, status);
765			goto fail1;
 
766		}
767
768		device_set_wakeup_capable(&spi->dev, 1);
769	}
770
771	/* export NVRAM */
772	status = sysfs_create_bin_file(&spi->dev.kobj, &nvram);
773	if (status < 0) {
774		dev_dbg(&spi->dev, "register nvram --> %d\n", status);
775		goto fail2;
776	}
777
778	return 0;
779
780fail2:
781	free_irq(spi->irq, ds1305);
782fail1:
783	rtc_device_unregister(ds1305->rtc);
784fail0:
785	kfree(ds1305);
786	return status;
787}
788
789static int __devexit ds1305_remove(struct spi_device *spi)
790{
791	struct ds1305 *ds1305 = spi_get_drvdata(spi);
792
793	sysfs_remove_bin_file(&spi->dev.kobj, &nvram);
794
795	/* carefully shut down irq and workqueue, if present */
796	if (spi->irq) {
797		set_bit(FLAG_EXITING, &ds1305->flags);
798		free_irq(spi->irq, ds1305);
799		cancel_work_sync(&ds1305->work);
800	}
801
802	rtc_device_unregister(ds1305->rtc);
803	spi_set_drvdata(spi, NULL);
804	kfree(ds1305);
805	return 0;
806}
807
808static struct spi_driver ds1305_driver = {
809	.driver.name	= "rtc-ds1305",
810	.driver.owner	= THIS_MODULE,
811	.probe		= ds1305_probe,
812	.remove		= __devexit_p(ds1305_remove),
813	/* REVISIT add suspend/resume */
814};
815
816static int __init ds1305_init(void)
817{
818	return spi_register_driver(&ds1305_driver);
819}
820module_init(ds1305_init);
821
822static void __exit ds1305_exit(void)
823{
824	spi_unregister_driver(&ds1305_driver);
825}
826module_exit(ds1305_exit);
827
828MODULE_DESCRIPTION("RTC driver for DS1305 and DS1306 chips");
829MODULE_LICENSE("GPL");
830MODULE_ALIAS("spi:rtc-ds1305");