Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 *	Routines having to do with the 'struct sk_buff' memory handlers.
   3 *
   4 *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
   5 *			Florian La Roche <rzsfl@rz.uni-sb.de>
   6 *
   7 *	Fixes:
   8 *		Alan Cox	:	Fixed the worst of the load
   9 *					balancer bugs.
  10 *		Dave Platt	:	Interrupt stacking fix.
  11 *	Richard Kooijman	:	Timestamp fixes.
  12 *		Alan Cox	:	Changed buffer format.
  13 *		Alan Cox	:	destructor hook for AF_UNIX etc.
  14 *		Linus Torvalds	:	Better skb_clone.
  15 *		Alan Cox	:	Added skb_copy.
  16 *		Alan Cox	:	Added all the changed routines Linus
  17 *					only put in the headers
  18 *		Ray VanTassle	:	Fixed --skb->lock in free
  19 *		Alan Cox	:	skb_copy copy arp field
  20 *		Andi Kleen	:	slabified it.
  21 *		Robert Olsson	:	Removed skb_head_pool
  22 *
  23 *	NOTE:
  24 *		The __skb_ routines should be called with interrupts
  25 *	disabled, or you better be *real* sure that the operation is atomic
  26 *	with respect to whatever list is being frobbed (e.g. via lock_sock()
  27 *	or via disabling bottom half handlers, etc).
  28 *
  29 *	This program is free software; you can redistribute it and/or
  30 *	modify it under the terms of the GNU General Public License
  31 *	as published by the Free Software Foundation; either version
  32 *	2 of the License, or (at your option) any later version.
  33 */
  34
  35/*
  36 *	The functions in this file will not compile correctly with gcc 2.4.x
  37 */
  38
  39#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  40
  41#include <linux/module.h>
  42#include <linux/types.h>
  43#include <linux/kernel.h>
  44#include <linux/mm.h>
  45#include <linux/interrupt.h>
  46#include <linux/in.h>
  47#include <linux/inet.h>
  48#include <linux/slab.h>
  49#include <linux/tcp.h>
  50#include <linux/udp.h>
  51#include <linux/sctp.h>
  52#include <linux/netdevice.h>
  53#ifdef CONFIG_NET_CLS_ACT
  54#include <net/pkt_sched.h>
  55#endif
  56#include <linux/string.h>
  57#include <linux/skbuff.h>
  58#include <linux/splice.h>
  59#include <linux/cache.h>
  60#include <linux/rtnetlink.h>
  61#include <linux/init.h>
  62#include <linux/scatterlist.h>
  63#include <linux/errqueue.h>
  64#include <linux/prefetch.h>
 
  65#include <linux/if_vlan.h>
 
 
 
  66
  67#include <net/protocol.h>
  68#include <net/dst.h>
  69#include <net/sock.h>
  70#include <net/checksum.h>
 
 
  71#include <net/ip6_checksum.h>
  72#include <net/xfrm.h>
 
 
 
 
 
  73
  74#include <linux/uaccess.h>
  75#include <trace/events/skb.h>
  76#include <linux/highmem.h>
  77#include <linux/capability.h>
  78#include <linux/user_namespace.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  79
  80struct kmem_cache *skbuff_head_cache __ro_after_init;
  81static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
  82int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
  83EXPORT_SYMBOL(sysctl_max_skb_frags);
  84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  85/**
  86 *	skb_panic - private function for out-of-line support
  87 *	@skb:	buffer
  88 *	@sz:	size
  89 *	@addr:	address
  90 *	@msg:	skb_over_panic or skb_under_panic
  91 *
  92 *	Out-of-line support for skb_put() and skb_push().
  93 *	Called via the wrapper skb_over_panic() or skb_under_panic().
  94 *	Keep out of line to prevent kernel bloat.
  95 *	__builtin_return_address is not used because it is not always reliable.
  96 */
  97static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
  98		      const char msg[])
  99{
 100	pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
 101		 msg, addr, skb->len, sz, skb->head, skb->data,
 102		 (unsigned long)skb->tail, (unsigned long)skb->end,
 103		 skb->dev ? skb->dev->name : "<NULL>");
 104	BUG();
 105}
 106
 107static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
 108{
 109	skb_panic(skb, sz, addr, __func__);
 110}
 111
 112static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
 113{
 114	skb_panic(skb, sz, addr, __func__);
 115}
 116
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 117/*
 118 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
 119 * the caller if emergency pfmemalloc reserves are being used. If it is and
 120 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
 121 * may be used. Otherwise, the packet data may be discarded until enough
 122 * memory is free
 123 */
 124#define kmalloc_reserve(size, gfp, node, pfmemalloc) \
 125	 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
 126
 127static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
 128			       unsigned long ip, bool *pfmemalloc)
 129{
 130	void *obj;
 131	bool ret_pfmemalloc = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 132
 133	/*
 134	 * Try a regular allocation, when that fails and we're not entitled
 135	 * to the reserves, fail.
 136	 */
 137	obj = kmalloc_node_track_caller(size,
 138					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
 139					node);
 140	if (obj || !(gfp_pfmemalloc_allowed(flags)))
 141		goto out;
 142
 143	/* Try again but now we are using pfmemalloc reserves */
 144	ret_pfmemalloc = true;
 145	obj = kmalloc_node_track_caller(size, flags, node);
 146
 147out:
 148	if (pfmemalloc)
 149		*pfmemalloc = ret_pfmemalloc;
 150
 151	return obj;
 152}
 153
 154/* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
 155 *	'private' fields and also do memory statistics to find all the
 156 *	[BEEP] leaks.
 157 *
 158 */
 159
 160/**
 161 *	__alloc_skb	-	allocate a network buffer
 162 *	@size: size to allocate
 163 *	@gfp_mask: allocation mask
 164 *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
 165 *		instead of head cache and allocate a cloned (child) skb.
 166 *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
 167 *		allocations in case the data is required for writeback
 168 *	@node: numa node to allocate memory on
 169 *
 170 *	Allocate a new &sk_buff. The returned buffer has no headroom and a
 171 *	tail room of at least size bytes. The object has a reference count
 172 *	of one. The return is the buffer. On a failure the return is %NULL.
 173 *
 174 *	Buffers may only be allocated from interrupts using a @gfp_mask of
 175 *	%GFP_ATOMIC.
 176 */
 177struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
 178			    int flags, int node)
 179{
 180	struct kmem_cache *cache;
 181	struct skb_shared_info *shinfo;
 182	struct sk_buff *skb;
 183	u8 *data;
 184	bool pfmemalloc;
 
 185
 186	cache = (flags & SKB_ALLOC_FCLONE)
 187		? skbuff_fclone_cache : skbuff_head_cache;
 188
 189	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
 190		gfp_mask |= __GFP_MEMALLOC;
 191
 192	/* Get the HEAD */
 193	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
 194	if (!skb)
 195		goto out;
 
 
 
 
 196	prefetchw(skb);
 197
 198	/* We do our best to align skb_shared_info on a separate cache
 199	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
 200	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
 201	 * Both skb->head and skb_shared_info are cache line aligned.
 202	 */
 203	size = SKB_DATA_ALIGN(size);
 204	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 205	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
 206	if (!data)
 207		goto nodata;
 208	/* kmalloc(size) might give us more room than requested.
 209	 * Put skb_shared_info exactly at the end of allocated zone,
 210	 * to allow max possible filling before reallocation.
 211	 */
 212	size = SKB_WITH_OVERHEAD(ksize(data));
 213	prefetchw(data + size);
 214
 215	/*
 216	 * Only clear those fields we need to clear, not those that we will
 217	 * actually initialise below. Hence, don't put any more fields after
 218	 * the tail pointer in struct sk_buff!
 219	 */
 220	memset(skb, 0, offsetof(struct sk_buff, tail));
 221	/* Account for allocated memory : skb + skb->head */
 222	skb->truesize = SKB_TRUESIZE(size);
 223	skb->pfmemalloc = pfmemalloc;
 224	refcount_set(&skb->users, 1);
 225	skb->head = data;
 226	skb->data = data;
 227	skb_reset_tail_pointer(skb);
 228	skb->end = skb->tail + size;
 229	skb->mac_header = (typeof(skb->mac_header))~0U;
 230	skb->transport_header = (typeof(skb->transport_header))~0U;
 231
 232	/* make sure we initialize shinfo sequentially */
 233	shinfo = skb_shinfo(skb);
 234	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
 235	atomic_set(&shinfo->dataref, 1);
 236
 237	if (flags & SKB_ALLOC_FCLONE) {
 238		struct sk_buff_fclones *fclones;
 239
 240		fclones = container_of(skb, struct sk_buff_fclones, skb1);
 241
 242		skb->fclone = SKB_FCLONE_ORIG;
 243		refcount_set(&fclones->fclone_ref, 1);
 244
 245		fclones->skb2.fclone = SKB_FCLONE_CLONE;
 246	}
 247out:
 248	return skb;
 
 249nodata:
 250	kmem_cache_free(cache, skb);
 251	skb = NULL;
 252	goto out;
 253}
 254EXPORT_SYMBOL(__alloc_skb);
 255
 256/**
 257 * __build_skb - build a network buffer
 258 * @data: data buffer provided by caller
 259 * @frag_size: size of data, or 0 if head was kmalloced
 260 *
 261 * Allocate a new &sk_buff. Caller provides space holding head and
 262 * skb_shared_info. @data must have been allocated by kmalloc() only if
 263 * @frag_size is 0, otherwise data should come from the page allocator
 264 *  or vmalloc()
 265 * The return is the new skb buffer.
 266 * On a failure the return is %NULL, and @data is not freed.
 267 * Notes :
 268 *  Before IO, driver allocates only data buffer where NIC put incoming frame
 269 *  Driver should add room at head (NET_SKB_PAD) and
 270 *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
 271 *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
 272 *  before giving packet to stack.
 273 *  RX rings only contains data buffers, not full skbs.
 274 */
 275struct sk_buff *__build_skb(void *data, unsigned int frag_size)
 276{
 277	struct skb_shared_info *shinfo;
 278	struct sk_buff *skb;
 279	unsigned int size = frag_size ? : ksize(data);
 280
 281	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
 282	if (!skb)
 283		return NULL;
 284
 285	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 286
 287	memset(skb, 0, offsetof(struct sk_buff, tail));
 288	skb->truesize = SKB_TRUESIZE(size);
 289	refcount_set(&skb->users, 1);
 290	skb->head = data;
 291	skb->data = data;
 292	skb_reset_tail_pointer(skb);
 293	skb->end = skb->tail + size;
 294	skb->mac_header = (typeof(skb->mac_header))~0U;
 295	skb->transport_header = (typeof(skb->transport_header))~0U;
 296
 297	/* make sure we initialize shinfo sequentially */
 298	shinfo = skb_shinfo(skb);
 299	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
 300	atomic_set(&shinfo->dataref, 1);
 301
 302	return skb;
 303}
 304
 305/* build_skb() is wrapper over __build_skb(), that specifically
 306 * takes care of skb->head and skb->pfmemalloc
 307 * This means that if @frag_size is not zero, then @data must be backed
 308 * by a page fragment, not kmalloc() or vmalloc()
 309 */
 310struct sk_buff *build_skb(void *data, unsigned int frag_size)
 311{
 312	struct sk_buff *skb = __build_skb(data, frag_size);
 313
 314	if (skb && frag_size) {
 315		skb->head_frag = 1;
 316		if (page_is_pfmemalloc(virt_to_head_page(data)))
 317			skb->pfmemalloc = 1;
 318	}
 319	return skb;
 320}
 321EXPORT_SYMBOL(build_skb);
 322
 323#define NAPI_SKB_CACHE_SIZE	64
 324
 325struct napi_alloc_cache {
 326	struct page_frag_cache page;
 327	unsigned int skb_count;
 328	void *skb_cache[NAPI_SKB_CACHE_SIZE];
 329};
 330
 331static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
 332static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
 333
 334static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
 335{
 336	struct page_frag_cache *nc;
 337	unsigned long flags;
 338	void *data;
 339
 340	local_irq_save(flags);
 341	nc = this_cpu_ptr(&netdev_alloc_cache);
 342	data = page_frag_alloc(nc, fragsz, gfp_mask);
 343	local_irq_restore(flags);
 344	return data;
 345}
 346
 347/**
 348 * netdev_alloc_frag - allocate a page fragment
 349 * @fragsz: fragment size
 350 *
 351 * Allocates a frag from a page for receive buffer.
 352 * Uses GFP_ATOMIC allocations.
 353 */
 354void *netdev_alloc_frag(unsigned int fragsz)
 355{
 356	return __netdev_alloc_frag(fragsz, GFP_ATOMIC);
 357}
 358EXPORT_SYMBOL(netdev_alloc_frag);
 359
 360static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
 361{
 362	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
 363
 364	return page_frag_alloc(&nc->page, fragsz, gfp_mask);
 365}
 366
 367void *napi_alloc_frag(unsigned int fragsz)
 368{
 369	return __napi_alloc_frag(fragsz, GFP_ATOMIC);
 370}
 371EXPORT_SYMBOL(napi_alloc_frag);
 372
 373/**
 374 *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
 375 *	@dev: network device to receive on
 376 *	@len: length to allocate
 377 *	@gfp_mask: get_free_pages mask, passed to alloc_skb
 378 *
 379 *	Allocate a new &sk_buff and assign it a usage count of one. The
 380 *	buffer has NET_SKB_PAD headroom built in. Users should allocate
 381 *	the headroom they think they need without accounting for the
 382 *	built in space. The built in space is used for optimisations.
 383 *
 384 *	%NULL is returned if there is no free memory.
 385 */
 386struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
 387				   gfp_t gfp_mask)
 388{
 389	struct page_frag_cache *nc;
 390	unsigned long flags;
 391	struct sk_buff *skb;
 392	bool pfmemalloc;
 393	void *data;
 394
 395	len += NET_SKB_PAD;
 396
 397	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
 
 
 
 
 398	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
 399		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
 400		if (!skb)
 401			goto skb_fail;
 402		goto skb_success;
 403	}
 404
 405	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 406	len = SKB_DATA_ALIGN(len);
 407
 408	if (sk_memalloc_socks())
 409		gfp_mask |= __GFP_MEMALLOC;
 410
 411	local_irq_save(flags);
 412
 413	nc = this_cpu_ptr(&netdev_alloc_cache);
 414	data = page_frag_alloc(nc, len, gfp_mask);
 415	pfmemalloc = nc->pfmemalloc;
 416
 417	local_irq_restore(flags);
 
 
 
 
 418
 419	if (unlikely(!data))
 420		return NULL;
 421
 422	skb = __build_skb(data, len);
 423	if (unlikely(!skb)) {
 424		skb_free_frag(data);
 425		return NULL;
 426	}
 427
 428	/* use OR instead of assignment to avoid clearing of bits in mask */
 429	if (pfmemalloc)
 430		skb->pfmemalloc = 1;
 431	skb->head_frag = 1;
 432
 433skb_success:
 434	skb_reserve(skb, NET_SKB_PAD);
 435	skb->dev = dev;
 436
 437skb_fail:
 438	return skb;
 439}
 440EXPORT_SYMBOL(__netdev_alloc_skb);
 441
 442/**
 443 *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
 444 *	@napi: napi instance this buffer was allocated for
 445 *	@len: length to allocate
 446 *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
 447 *
 448 *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
 449 *	attempt to allocate the head from a special reserved region used
 450 *	only for NAPI Rx allocation.  By doing this we can save several
 451 *	CPU cycles by avoiding having to disable and re-enable IRQs.
 452 *
 453 *	%NULL is returned if there is no free memory.
 454 */
 455struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
 456				 gfp_t gfp_mask)
 457{
 458	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
 459	struct sk_buff *skb;
 
 460	void *data;
 461
 
 462	len += NET_SKB_PAD + NET_IP_ALIGN;
 463
 464	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
 
 
 
 
 
 
 465	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
 466		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
 
 467		if (!skb)
 468			goto skb_fail;
 469		goto skb_success;
 470	}
 471
 472	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 473	len = SKB_DATA_ALIGN(len);
 474
 475	if (sk_memalloc_socks())
 476		gfp_mask |= __GFP_MEMALLOC;
 477
 478	data = page_frag_alloc(&nc->page, len, gfp_mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 479	if (unlikely(!data))
 480		return NULL;
 481
 482	skb = __build_skb(data, len);
 483	if (unlikely(!skb)) {
 484		skb_free_frag(data);
 485		return NULL;
 486	}
 487
 488	/* use OR instead of assignment to avoid clearing of bits in mask */
 489	if (nc->page.pfmemalloc)
 490		skb->pfmemalloc = 1;
 491	skb->head_frag = 1;
 492
 493skb_success:
 494	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
 495	skb->dev = napi->dev;
 496
 497skb_fail:
 498	return skb;
 499}
 500EXPORT_SYMBOL(__napi_alloc_skb);
 501
 502void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
 503		     int size, unsigned int truesize)
 504{
 505	skb_fill_page_desc(skb, i, page, off, size);
 
 
 506	skb->len += size;
 507	skb->data_len += size;
 508	skb->truesize += truesize;
 509}
 510EXPORT_SYMBOL(skb_add_rx_frag);
 511
 512void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
 513			  unsigned int truesize)
 514{
 515	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
 516
 
 
 517	skb_frag_size_add(frag, size);
 518	skb->len += size;
 519	skb->data_len += size;
 520	skb->truesize += truesize;
 521}
 522EXPORT_SYMBOL(skb_coalesce_rx_frag);
 523
 524static void skb_drop_list(struct sk_buff **listp)
 525{
 526	kfree_skb_list(*listp);
 527	*listp = NULL;
 528}
 529
 530static inline void skb_drop_fraglist(struct sk_buff *skb)
 531{
 532	skb_drop_list(&skb_shinfo(skb)->frag_list);
 533}
 534
 535static void skb_clone_fraglist(struct sk_buff *skb)
 536{
 537	struct sk_buff *list;
 538
 539	skb_walk_frags(skb, list)
 540		skb_get(list);
 541}
 542
 543static void skb_free_head(struct sk_buff *skb)
 544{
 545	unsigned char *head = skb->head;
 
 546
 547	if (skb->head_frag)
 548		skb_free_frag(head);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 549	else
 550		kfree(head);
 551}
 552
 553static void skb_release_data(struct sk_buff *skb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 554{
 555	struct skb_shared_info *shinfo = skb_shinfo(skb);
 556	int i;
 557
 558	if (skb->cloned &&
 559	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
 560			      &shinfo->dataref))
 561		return;
 
 
 
 
 
 
 562
 563	for (i = 0; i < shinfo->nr_frags; i++)
 564		__skb_frag_unref(&shinfo->frags[i]);
 565
 
 566	if (shinfo->frag_list)
 567		kfree_skb_list(shinfo->frag_list);
 568
 569	skb_zcopy_clear(skb, true);
 570	skb_free_head(skb);
 
 
 
 
 
 
 
 
 
 
 571}
 572
 573/*
 574 *	Free an skbuff by memory without cleaning the state.
 575 */
 576static void kfree_skbmem(struct sk_buff *skb)
 577{
 578	struct sk_buff_fclones *fclones;
 579
 580	switch (skb->fclone) {
 581	case SKB_FCLONE_UNAVAILABLE:
 582		kmem_cache_free(skbuff_head_cache, skb);
 583		return;
 584
 585	case SKB_FCLONE_ORIG:
 586		fclones = container_of(skb, struct sk_buff_fclones, skb1);
 587
 588		/* We usually free the clone (TX completion) before original skb
 589		 * This test would have no chance to be true for the clone,
 590		 * while here, branch prediction will be good.
 591		 */
 592		if (refcount_read(&fclones->fclone_ref) == 1)
 593			goto fastpath;
 594		break;
 595
 596	default: /* SKB_FCLONE_CLONE */
 597		fclones = container_of(skb, struct sk_buff_fclones, skb2);
 598		break;
 599	}
 600	if (!refcount_dec_and_test(&fclones->fclone_ref))
 601		return;
 602fastpath:
 603	kmem_cache_free(skbuff_fclone_cache, fclones);
 604}
 605
 606void skb_release_head_state(struct sk_buff *skb)
 607{
 608	skb_dst_drop(skb);
 609	secpath_reset(skb);
 610	if (skb->destructor) {
 611		WARN_ON(in_irq());
 612		skb->destructor(skb);
 613	}
 614#if IS_ENABLED(CONFIG_NF_CONNTRACK)
 615	nf_conntrack_put(skb_nfct(skb));
 616#endif
 617#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
 618	nf_bridge_put(skb->nf_bridge);
 619#endif
 620}
 621
 622/* Free everything but the sk_buff shell. */
 623static void skb_release_all(struct sk_buff *skb)
 
 624{
 625	skb_release_head_state(skb);
 626	if (likely(skb->head))
 627		skb_release_data(skb);
 628}
 629
 630/**
 631 *	__kfree_skb - private function
 632 *	@skb: buffer
 633 *
 634 *	Free an sk_buff. Release anything attached to the buffer.
 635 *	Clean the state. This is an internal helper function. Users should
 636 *	always call kfree_skb
 637 */
 638
 639void __kfree_skb(struct sk_buff *skb)
 640{
 641	skb_release_all(skb);
 642	kfree_skbmem(skb);
 643}
 644EXPORT_SYMBOL(__kfree_skb);
 645
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 646/**
 647 *	kfree_skb - free an sk_buff
 648 *	@skb: buffer to free
 
 649 *
 650 *	Drop a reference to the buffer and free it if the usage count has
 651 *	hit zero.
 
 652 */
 653void kfree_skb(struct sk_buff *skb)
 
 654{
 655	if (!skb_unref(skb))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 656		return;
 
 657
 658	trace_kfree_skb(skb, __builtin_return_address(0));
 659	__kfree_skb(skb);
 
 
 
 
 
 
 660}
 661EXPORT_SYMBOL(kfree_skb);
 662
 663void kfree_skb_list(struct sk_buff *segs)
 
 664{
 
 
 
 
 665	while (segs) {
 666		struct sk_buff *next = segs->next;
 667
 668		kfree_skb(segs);
 
 
 
 
 669		segs = next;
 670	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 671}
 672EXPORT_SYMBOL(kfree_skb_list);
 673
 674/**
 675 *	skb_tx_error - report an sk_buff xmit error
 676 *	@skb: buffer that triggered an error
 677 *
 678 *	Report xmit error if a device callback is tracking this skb.
 679 *	skb must be freed afterwards.
 680 */
 681void skb_tx_error(struct sk_buff *skb)
 682{
 683	skb_zcopy_clear(skb, true);
 
 
 
 684}
 685EXPORT_SYMBOL(skb_tx_error);
 686
 
 687/**
 688 *	consume_skb - free an skbuff
 689 *	@skb: buffer to free
 690 *
 691 *	Drop a ref to the buffer and free it if the usage count has hit zero
 692 *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
 693 *	is being dropped after a failure and notes that
 694 */
 695void consume_skb(struct sk_buff *skb)
 696{
 697	if (!skb_unref(skb))
 698		return;
 699
 700	trace_consume_skb(skb);
 701	__kfree_skb(skb);
 702}
 703EXPORT_SYMBOL(consume_skb);
 
 704
 705/**
 706 *	consume_stateless_skb - free an skbuff, assuming it is stateless
 707 *	@skb: buffer to free
 708 *
 709 *	Alike consume_skb(), but this variant assumes that this is the last
 710 *	skb reference and all the head states have been already dropped
 711 */
 712void __consume_stateless_skb(struct sk_buff *skb)
 713{
 714	trace_consume_skb(skb);
 715	skb_release_data(skb);
 716	kfree_skbmem(skb);
 717}
 718
 719void __kfree_skb_flush(void)
 720{
 721	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
 722
 723	/* flush skb_cache if containing objects */
 724	if (nc->skb_count) {
 725		kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
 726				     nc->skb_cache);
 727		nc->skb_count = 0;
 728	}
 729}
 730
 731static inline void _kfree_skb_defer(struct sk_buff *skb)
 732{
 733	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
 
 734
 735	/* drop skb->head and call any destructors for packet */
 736	skb_release_all(skb);
 737
 738	/* record skb to CPU local list */
 739	nc->skb_cache[nc->skb_count++] = skb;
 740
 741#ifdef CONFIG_SLUB
 742	/* SLUB writes into objects when freeing */
 743	prefetchw(skb);
 744#endif
 745
 746	/* flush skb_cache if it is filled */
 747	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
 748		kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
 749				     nc->skb_cache);
 750		nc->skb_count = 0;
 
 
 
 
 751	}
 752}
 753void __kfree_skb_defer(struct sk_buff *skb)
 
 754{
 755	_kfree_skb_defer(skb);
 
 756}
 757
 758void napi_consume_skb(struct sk_buff *skb, int budget)
 759{
 760	if (unlikely(!skb))
 761		return;
 
 
 
 
 
 
 
 762
 
 
 763	/* Zero budget indicate non-NAPI context called us, like netpoll */
 764	if (unlikely(!budget)) {
 765		dev_consume_skb_any(skb);
 766		return;
 767	}
 768
 
 
 769	if (!skb_unref(skb))
 770		return;
 771
 772	/* if reaching here SKB is ready to free */
 773	trace_consume_skb(skb);
 774
 775	/* if SKB is a clone, don't handle this case */
 776	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
 777		__kfree_skb(skb);
 778		return;
 779	}
 780
 781	_kfree_skb_defer(skb);
 
 782}
 783EXPORT_SYMBOL(napi_consume_skb);
 784
 785/* Make sure a field is enclosed inside headers_start/headers_end section */
 786#define CHECK_SKB_FIELD(field) \
 787	BUILD_BUG_ON(offsetof(struct sk_buff, field) <		\
 788		     offsetof(struct sk_buff, headers_start));	\
 789	BUILD_BUG_ON(offsetof(struct sk_buff, field) >		\
 790		     offsetof(struct sk_buff, headers_end));	\
 791
 792static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
 793{
 794	new->tstamp		= old->tstamp;
 795	/* We do not copy old->sk */
 796	new->dev		= old->dev;
 797	memcpy(new->cb, old->cb, sizeof(old->cb));
 798	skb_dst_copy(new, old);
 799#ifdef CONFIG_XFRM
 800	new->sp			= secpath_get(old->sp);
 801#endif
 802	__nf_copy(new, old, false);
 803
 804	/* Note : this field could be in headers_start/headers_end section
 805	 * It is not yet because we do not want to have a 16 bit hole
 806	 */
 807	new->queue_mapping = old->queue_mapping;
 808
 809	memcpy(&new->headers_start, &old->headers_start,
 810	       offsetof(struct sk_buff, headers_end) -
 811	       offsetof(struct sk_buff, headers_start));
 812	CHECK_SKB_FIELD(protocol);
 813	CHECK_SKB_FIELD(csum);
 814	CHECK_SKB_FIELD(hash);
 815	CHECK_SKB_FIELD(priority);
 816	CHECK_SKB_FIELD(skb_iif);
 817	CHECK_SKB_FIELD(vlan_proto);
 818	CHECK_SKB_FIELD(vlan_tci);
 819	CHECK_SKB_FIELD(transport_header);
 820	CHECK_SKB_FIELD(network_header);
 821	CHECK_SKB_FIELD(mac_header);
 822	CHECK_SKB_FIELD(inner_protocol);
 823	CHECK_SKB_FIELD(inner_transport_header);
 824	CHECK_SKB_FIELD(inner_network_header);
 825	CHECK_SKB_FIELD(inner_mac_header);
 826	CHECK_SKB_FIELD(mark);
 827#ifdef CONFIG_NETWORK_SECMARK
 828	CHECK_SKB_FIELD(secmark);
 829#endif
 830#ifdef CONFIG_NET_RX_BUSY_POLL
 831	CHECK_SKB_FIELD(napi_id);
 832#endif
 
 833#ifdef CONFIG_XPS
 834	CHECK_SKB_FIELD(sender_cpu);
 835#endif
 836#ifdef CONFIG_NET_SCHED
 837	CHECK_SKB_FIELD(tc_index);
 838#endif
 839
 840}
 841
 842/*
 843 * You should not add any new code to this function.  Add it to
 844 * __copy_skb_header above instead.
 845 */
 846static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
 847{
 848#define C(x) n->x = skb->x
 849
 850	n->next = n->prev = NULL;
 851	n->sk = NULL;
 852	__copy_skb_header(n, skb);
 853
 854	C(len);
 855	C(data_len);
 856	C(mac_len);
 857	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
 858	n->cloned = 1;
 859	n->nohdr = 0;
 860	n->peeked = 0;
 
 
 861	n->destructor = NULL;
 862	C(tail);
 863	C(end);
 864	C(head);
 865	C(head_frag);
 866	C(data);
 867	C(truesize);
 868	refcount_set(&n->users, 1);
 869
 870	atomic_inc(&(skb_shinfo(skb)->dataref));
 871	skb->cloned = 1;
 872
 873	return n;
 874#undef C
 875}
 876
 877/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 878 *	skb_morph	-	morph one skb into another
 879 *	@dst: the skb to receive the contents
 880 *	@src: the skb to supply the contents
 881 *
 882 *	This is identical to skb_clone except that the target skb is
 883 *	supplied by the user.
 884 *
 885 *	The target skb is returned upon exit.
 886 */
 887struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
 888{
 889	skb_release_all(dst);
 890	return __skb_clone(dst, src);
 891}
 892EXPORT_SYMBOL_GPL(skb_morph);
 893
 894int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
 895{
 896	unsigned long max_pg, num_pg, new_pg, old_pg;
 897	struct user_struct *user;
 898
 899	if (capable(CAP_IPC_LOCK) || !size)
 900		return 0;
 901
 
 
 
 
 902	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
 903	max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
 904	user = mmp->user ? : current_user();
 905
 
 906	do {
 907		old_pg = atomic_long_read(&user->locked_vm);
 908		new_pg = old_pg + num_pg;
 909		if (new_pg > max_pg)
 910			return -ENOBUFS;
 911	} while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
 912		 old_pg);
 913
 914	if (!mmp->user) {
 915		mmp->user = get_uid(user);
 916		mmp->num_pg = num_pg;
 917	} else {
 918		mmp->num_pg += num_pg;
 919	}
 920
 921	return 0;
 922}
 923EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
 924
 925void mm_unaccount_pinned_pages(struct mmpin *mmp)
 926{
 927	if (mmp->user) {
 928		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
 929		free_uid(mmp->user);
 930	}
 931}
 932EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
 933
 934struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size)
 935{
 936	struct ubuf_info *uarg;
 937	struct sk_buff *skb;
 938
 939	WARN_ON_ONCE(!in_task());
 940
 941	if (!sock_flag(sk, SOCK_ZEROCOPY))
 942		return NULL;
 943
 944	skb = sock_omalloc(sk, 0, GFP_KERNEL);
 945	if (!skb)
 946		return NULL;
 947
 948	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
 949	uarg = (void *)skb->cb;
 950	uarg->mmp.user = NULL;
 951
 952	if (mm_account_pinned_pages(&uarg->mmp, size)) {
 953		kfree_skb(skb);
 954		return NULL;
 955	}
 956
 957	uarg->callback = sock_zerocopy_callback;
 958	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
 959	uarg->len = 1;
 960	uarg->bytelen = size;
 961	uarg->zerocopy = 1;
 962	refcount_set(&uarg->refcnt, 1);
 
 963	sock_hold(sk);
 964
 965	return uarg;
 966}
 967EXPORT_SYMBOL_GPL(sock_zerocopy_alloc);
 968
 969static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
 970{
 971	return container_of((void *)uarg, struct sk_buff, cb);
 972}
 973
 974struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
 975					struct ubuf_info *uarg)
 976{
 977	if (uarg) {
 
 978		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
 979		u32 bytelen, next;
 980
 
 
 
 
 981		/* realloc only when socket is locked (TCP, UDP cork),
 982		 * so uarg->len and sk_zckey access is serialized
 983		 */
 984		if (!sock_owned_by_user(sk)) {
 985			WARN_ON_ONCE(1);
 986			return NULL;
 987		}
 988
 989		bytelen = uarg->bytelen + size;
 990		if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
 
 991			/* TCP can create new skb to attach new uarg */
 992			if (sk->sk_type == SOCK_STREAM)
 993				goto new_alloc;
 994			return NULL;
 995		}
 996
 997		next = (u32)atomic_read(&sk->sk_zckey);
 998		if ((u32)(uarg->id + uarg->len) == next) {
 999			if (mm_account_pinned_pages(&uarg->mmp, size))
1000				return NULL;
1001			uarg->len++;
1002			uarg->bytelen = bytelen;
1003			atomic_set(&sk->sk_zckey, ++next);
1004			sock_zerocopy_get(uarg);
 
 
 
 
1005			return uarg;
1006		}
1007	}
1008
1009new_alloc:
1010	return sock_zerocopy_alloc(sk, size);
1011}
1012EXPORT_SYMBOL_GPL(sock_zerocopy_realloc);
1013
1014static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1015{
1016	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1017	u32 old_lo, old_hi;
1018	u64 sum_len;
1019
1020	old_lo = serr->ee.ee_info;
1021	old_hi = serr->ee.ee_data;
1022	sum_len = old_hi - old_lo + 1ULL + len;
1023
1024	if (sum_len >= (1ULL << 32))
1025		return false;
1026
1027	if (lo != old_hi + 1)
1028		return false;
1029
1030	serr->ee.ee_data += len;
1031	return true;
1032}
1033
1034void sock_zerocopy_callback(struct ubuf_info *uarg, bool success)
1035{
1036	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1037	struct sock_exterr_skb *serr;
1038	struct sock *sk = skb->sk;
1039	struct sk_buff_head *q;
1040	unsigned long flags;
 
1041	u32 lo, hi;
1042	u16 len;
1043
1044	mm_unaccount_pinned_pages(&uarg->mmp);
1045
1046	/* if !len, there was only 1 call, and it was aborted
1047	 * so do not queue a completion notification
1048	 */
1049	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1050		goto release;
1051
1052	len = uarg->len;
1053	lo = uarg->id;
1054	hi = uarg->id + len - 1;
 
1055
1056	serr = SKB_EXT_ERR(skb);
1057	memset(serr, 0, sizeof(*serr));
1058	serr->ee.ee_errno = 0;
1059	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1060	serr->ee.ee_data = hi;
1061	serr->ee.ee_info = lo;
1062	if (!success)
1063		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1064
1065	q = &sk->sk_error_queue;
1066	spin_lock_irqsave(&q->lock, flags);
1067	tail = skb_peek_tail(q);
1068	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1069	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1070		__skb_queue_tail(q, skb);
1071		skb = NULL;
1072	}
1073	spin_unlock_irqrestore(&q->lock, flags);
1074
1075	sk->sk_error_report(sk);
1076
1077release:
1078	consume_skb(skb);
1079	sock_put(sk);
1080}
1081EXPORT_SYMBOL_GPL(sock_zerocopy_callback);
1082
1083void sock_zerocopy_put(struct ubuf_info *uarg)
 
1084{
1085	if (uarg && refcount_dec_and_test(&uarg->refcnt)) {
1086		if (uarg->callback)
1087			uarg->callback(uarg, uarg->zerocopy);
1088		else
1089			consume_skb(skb_from_uarg(uarg));
1090	}
1091}
1092EXPORT_SYMBOL_GPL(sock_zerocopy_put);
1093
1094void sock_zerocopy_put_abort(struct ubuf_info *uarg)
1095{
1096	if (uarg) {
1097		struct sock *sk = skb_from_uarg(uarg)->sk;
1098
1099		atomic_dec(&sk->sk_zckey);
1100		uarg->len--;
1101
1102		sock_zerocopy_put(uarg);
1103	}
1104}
1105EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort);
1106
1107extern int __zerocopy_sg_from_iter(struct sock *sk, struct sk_buff *skb,
1108				   struct iov_iter *from, size_t length);
1109
1110int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1111			     struct msghdr *msg, int len,
1112			     struct ubuf_info *uarg)
1113{
1114	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1115	struct iov_iter orig_iter = msg->msg_iter;
1116	int err, orig_len = skb->len;
1117
1118	/* An skb can only point to one uarg. This edge case happens when
1119	 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1120	 */
1121	if (orig_uarg && uarg != orig_uarg)
1122		return -EEXIST;
1123
1124	err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1125	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1126		struct sock *save_sk = skb->sk;
1127
1128		/* Streams do not free skb on error. Reset to prev state. */
1129		msg->msg_iter = orig_iter;
1130		skb->sk = sk;
1131		___pskb_trim(skb, orig_len);
1132		skb->sk = save_sk;
1133		return err;
1134	}
1135
1136	skb_zcopy_set(skb, uarg);
1137	return skb->len - orig_len;
1138}
1139EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1140
 
 
 
 
 
 
 
 
 
 
1141static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1142			      gfp_t gfp_mask)
1143{
1144	if (skb_zcopy(orig)) {
1145		if (skb_zcopy(nskb)) {
1146			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1147			if (!gfp_mask) {
1148				WARN_ON_ONCE(1);
1149				return -ENOMEM;
1150			}
1151			if (skb_uarg(nskb) == skb_uarg(orig))
1152				return 0;
1153			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1154				return -EIO;
1155		}
1156		skb_zcopy_set(nskb, skb_uarg(orig));
1157	}
1158	return 0;
1159}
1160
1161/**
1162 *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1163 *	@skb: the skb to modify
1164 *	@gfp_mask: allocation priority
1165 *
1166 *	This must be called on SKBTX_DEV_ZEROCOPY skb.
1167 *	It will copy all frags into kernel and drop the reference
1168 *	to userspace pages.
1169 *
1170 *	If this function is called from an interrupt gfp_mask() must be
1171 *	%GFP_ATOMIC.
1172 *
1173 *	Returns 0 on success or a negative error code on failure
1174 *	to allocate kernel memory to copy to.
1175 */
1176int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1177{
1178	int num_frags = skb_shinfo(skb)->nr_frags;
1179	struct page *page, *head = NULL;
1180	int i, new_frags;
1181	u32 d_off;
1182
1183	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1184		return -EINVAL;
1185
1186	if (!num_frags)
1187		goto release;
1188
1189	new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
 
 
 
 
 
 
 
 
1190	for (i = 0; i < new_frags; i++) {
1191		page = alloc_page(gfp_mask);
1192		if (!page) {
1193			while (head) {
1194				struct page *next = (struct page *)page_private(head);
1195				put_page(head);
1196				head = next;
1197			}
1198			return -ENOMEM;
1199		}
1200		set_page_private(page, (unsigned long)head);
1201		head = page;
1202	}
1203
1204	page = head;
1205	d_off = 0;
1206	for (i = 0; i < num_frags; i++) {
1207		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1208		u32 p_off, p_len, copied;
1209		struct page *p;
1210		u8 *vaddr;
1211
1212		skb_frag_foreach_page(f, f->page_offset, skb_frag_size(f),
1213				      p, p_off, p_len, copied) {
1214			u32 copy, done = 0;
1215			vaddr = kmap_atomic(p);
1216
1217			while (done < p_len) {
1218				if (d_off == PAGE_SIZE) {
1219					d_off = 0;
1220					page = (struct page *)page_private(page);
1221				}
1222				copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1223				memcpy(page_address(page) + d_off,
1224				       vaddr + p_off + done, copy);
1225				done += copy;
1226				d_off += copy;
1227			}
1228			kunmap_atomic(vaddr);
1229		}
1230	}
1231
1232	/* skb frags release userspace buffers */
1233	for (i = 0; i < num_frags; i++)
1234		skb_frag_unref(skb, i);
1235
1236	/* skb frags point to kernel buffers */
1237	for (i = 0; i < new_frags - 1; i++) {
1238		__skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1239		head = (struct page *)page_private(head);
1240	}
1241	__skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
 
1242	skb_shinfo(skb)->nr_frags = new_frags;
1243
1244release:
1245	skb_zcopy_clear(skb, false);
1246	return 0;
1247}
1248EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1249
1250/**
1251 *	skb_clone	-	duplicate an sk_buff
1252 *	@skb: buffer to clone
1253 *	@gfp_mask: allocation priority
1254 *
1255 *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1256 *	copies share the same packet data but not structure. The new
1257 *	buffer has a reference count of 1. If the allocation fails the
1258 *	function returns %NULL otherwise the new buffer is returned.
1259 *
1260 *	If this function is called from an interrupt gfp_mask() must be
1261 *	%GFP_ATOMIC.
1262 */
1263
1264struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1265{
1266	struct sk_buff_fclones *fclones = container_of(skb,
1267						       struct sk_buff_fclones,
1268						       skb1);
1269	struct sk_buff *n;
1270
1271	if (skb_orphan_frags(skb, gfp_mask))
1272		return NULL;
1273
1274	if (skb->fclone == SKB_FCLONE_ORIG &&
1275	    refcount_read(&fclones->fclone_ref) == 1) {
1276		n = &fclones->skb2;
1277		refcount_set(&fclones->fclone_ref, 2);
 
1278	} else {
1279		if (skb_pfmemalloc(skb))
1280			gfp_mask |= __GFP_MEMALLOC;
1281
1282		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1283		if (!n)
1284			return NULL;
1285
1286		n->fclone = SKB_FCLONE_UNAVAILABLE;
1287	}
1288
1289	return __skb_clone(n, skb);
1290}
1291EXPORT_SYMBOL(skb_clone);
1292
1293static void skb_headers_offset_update(struct sk_buff *skb, int off)
1294{
1295	/* Only adjust this if it actually is csum_start rather than csum */
1296	if (skb->ip_summed == CHECKSUM_PARTIAL)
1297		skb->csum_start += off;
1298	/* {transport,network,mac}_header and tail are relative to skb->head */
1299	skb->transport_header += off;
1300	skb->network_header   += off;
1301	if (skb_mac_header_was_set(skb))
1302		skb->mac_header += off;
1303	skb->inner_transport_header += off;
1304	skb->inner_network_header += off;
1305	skb->inner_mac_header += off;
1306}
 
1307
1308static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1309{
1310	__copy_skb_header(new, old);
1311
1312	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1313	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1314	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1315}
 
1316
1317static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1318{
1319	if (skb_pfmemalloc(skb))
1320		return SKB_ALLOC_RX;
1321	return 0;
1322}
1323
1324/**
1325 *	skb_copy	-	create private copy of an sk_buff
1326 *	@skb: buffer to copy
1327 *	@gfp_mask: allocation priority
1328 *
1329 *	Make a copy of both an &sk_buff and its data. This is used when the
1330 *	caller wishes to modify the data and needs a private copy of the
1331 *	data to alter. Returns %NULL on failure or the pointer to the buffer
1332 *	on success. The returned buffer has a reference count of 1.
1333 *
1334 *	As by-product this function converts non-linear &sk_buff to linear
1335 *	one, so that &sk_buff becomes completely private and caller is allowed
1336 *	to modify all the data of returned buffer. This means that this
1337 *	function is not recommended for use in circumstances when only
1338 *	header is going to be modified. Use pskb_copy() instead.
1339 */
1340
1341struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1342{
1343	int headerlen = skb_headroom(skb);
1344	unsigned int size = skb_end_offset(skb) + skb->data_len;
1345	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1346					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
 
 
1347
 
 
 
 
1348	if (!n)
1349		return NULL;
1350
1351	/* Set the data pointer */
1352	skb_reserve(n, headerlen);
1353	/* Set the tail pointer and length */
1354	skb_put(n, skb->len);
1355
1356	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1357
1358	copy_skb_header(n, skb);
1359	return n;
1360}
1361EXPORT_SYMBOL(skb_copy);
1362
1363/**
1364 *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1365 *	@skb: buffer to copy
1366 *	@headroom: headroom of new skb
1367 *	@gfp_mask: allocation priority
1368 *	@fclone: if true allocate the copy of the skb from the fclone
1369 *	cache instead of the head cache; it is recommended to set this
1370 *	to true for the cases where the copy will likely be cloned
1371 *
1372 *	Make a copy of both an &sk_buff and part of its data, located
1373 *	in header. Fragmented data remain shared. This is used when
1374 *	the caller wishes to modify only header of &sk_buff and needs
1375 *	private copy of the header to alter. Returns %NULL on failure
1376 *	or the pointer to the buffer on success.
1377 *	The returned buffer has a reference count of 1.
1378 */
1379
1380struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1381				   gfp_t gfp_mask, bool fclone)
1382{
1383	unsigned int size = skb_headlen(skb) + headroom;
1384	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1385	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1386
1387	if (!n)
1388		goto out;
1389
1390	/* Set the data pointer */
1391	skb_reserve(n, headroom);
1392	/* Set the tail pointer and length */
1393	skb_put(n, skb_headlen(skb));
1394	/* Copy the bytes */
1395	skb_copy_from_linear_data(skb, n->data, n->len);
1396
1397	n->truesize += skb->data_len;
1398	n->data_len  = skb->data_len;
1399	n->len	     = skb->len;
1400
1401	if (skb_shinfo(skb)->nr_frags) {
1402		int i;
1403
1404		if (skb_orphan_frags(skb, gfp_mask) ||
1405		    skb_zerocopy_clone(n, skb, gfp_mask)) {
1406			kfree_skb(n);
1407			n = NULL;
1408			goto out;
1409		}
1410		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1411			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1412			skb_frag_ref(skb, i);
1413		}
1414		skb_shinfo(n)->nr_frags = i;
1415	}
1416
1417	if (skb_has_frag_list(skb)) {
1418		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1419		skb_clone_fraglist(n);
1420	}
1421
1422	copy_skb_header(n, skb);
1423out:
1424	return n;
1425}
1426EXPORT_SYMBOL(__pskb_copy_fclone);
1427
1428/**
1429 *	pskb_expand_head - reallocate header of &sk_buff
1430 *	@skb: buffer to reallocate
1431 *	@nhead: room to add at head
1432 *	@ntail: room to add at tail
1433 *	@gfp_mask: allocation priority
1434 *
1435 *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1436 *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1437 *	reference count of 1. Returns zero in the case of success or error,
1438 *	if expansion failed. In the last case, &sk_buff is not changed.
1439 *
1440 *	All the pointers pointing into skb header may change and must be
1441 *	reloaded after call to this function.
1442 */
1443
1444int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1445		     gfp_t gfp_mask)
1446{
1447	int i, osize = skb_end_offset(skb);
1448	int size = osize + nhead + ntail;
1449	long off;
1450	u8 *data;
 
1451
1452	BUG_ON(nhead < 0);
1453
1454	BUG_ON(skb_shared(skb));
1455
1456	size = SKB_DATA_ALIGN(size);
1457
1458	if (skb_pfmemalloc(skb))
1459		gfp_mask |= __GFP_MEMALLOC;
1460	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1461			       gfp_mask, NUMA_NO_NODE, NULL);
1462	if (!data)
1463		goto nodata;
1464	size = SKB_WITH_OVERHEAD(ksize(data));
1465
1466	/* Copy only real data... and, alas, header. This should be
1467	 * optimized for the cases when header is void.
1468	 */
1469	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1470
1471	memcpy((struct skb_shared_info *)(data + size),
1472	       skb_shinfo(skb),
1473	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1474
1475	/*
1476	 * if shinfo is shared we must drop the old head gracefully, but if it
1477	 * is not we can just drop the old head and let the existing refcount
1478	 * be since all we did is relocate the values
1479	 */
1480	if (skb_cloned(skb)) {
1481		if (skb_orphan_frags(skb, gfp_mask))
1482			goto nofrags;
1483		if (skb_zcopy(skb))
1484			refcount_inc(&skb_uarg(skb)->refcnt);
1485		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1486			skb_frag_ref(skb, i);
1487
1488		if (skb_has_frag_list(skb))
1489			skb_clone_fraglist(skb);
1490
1491		skb_release_data(skb);
1492	} else {
1493		skb_free_head(skb);
1494	}
1495	off = (data + nhead) - skb->head;
1496
1497	skb->head     = data;
1498	skb->head_frag = 0;
1499	skb->data    += off;
 
 
1500#ifdef NET_SKBUFF_DATA_USES_OFFSET
1501	skb->end      = size;
1502	off           = nhead;
1503#else
1504	skb->end      = skb->head + size;
1505#endif
1506	skb->tail	      += off;
1507	skb_headers_offset_update(skb, nhead);
1508	skb->cloned   = 0;
1509	skb->hdr_len  = 0;
1510	skb->nohdr    = 0;
1511	atomic_set(&skb_shinfo(skb)->dataref, 1);
1512
1513	skb_metadata_clear(skb);
1514
1515	/* It is not generally safe to change skb->truesize.
1516	 * For the moment, we really care of rx path, or
1517	 * when skb is orphaned (not attached to a socket).
1518	 */
1519	if (!skb->sk || skb->destructor == sock_edemux)
1520		skb->truesize += size - osize;
1521
1522	return 0;
1523
1524nofrags:
1525	kfree(data);
1526nodata:
1527	return -ENOMEM;
1528}
1529EXPORT_SYMBOL(pskb_expand_head);
1530
1531/* Make private copy of skb with writable head and some headroom */
1532
1533struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1534{
1535	struct sk_buff *skb2;
1536	int delta = headroom - skb_headroom(skb);
1537
1538	if (delta <= 0)
1539		skb2 = pskb_copy(skb, GFP_ATOMIC);
1540	else {
1541		skb2 = skb_clone(skb, GFP_ATOMIC);
1542		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1543					     GFP_ATOMIC)) {
1544			kfree_skb(skb2);
1545			skb2 = NULL;
1546		}
1547	}
1548	return skb2;
1549}
1550EXPORT_SYMBOL(skb_realloc_headroom);
1551
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1552/**
1553 *	skb_copy_expand	-	copy and expand sk_buff
1554 *	@skb: buffer to copy
1555 *	@newheadroom: new free bytes at head
1556 *	@newtailroom: new free bytes at tail
1557 *	@gfp_mask: allocation priority
1558 *
1559 *	Make a copy of both an &sk_buff and its data and while doing so
1560 *	allocate additional space.
1561 *
1562 *	This is used when the caller wishes to modify the data and needs a
1563 *	private copy of the data to alter as well as more space for new fields.
1564 *	Returns %NULL on failure or the pointer to the buffer
1565 *	on success. The returned buffer has a reference count of 1.
1566 *
1567 *	You must pass %GFP_ATOMIC as the allocation priority if this function
1568 *	is called from an interrupt.
1569 */
1570struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1571				int newheadroom, int newtailroom,
1572				gfp_t gfp_mask)
1573{
1574	/*
1575	 *	Allocate the copy buffer
1576	 */
1577	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1578					gfp_mask, skb_alloc_rx_flag(skb),
1579					NUMA_NO_NODE);
1580	int oldheadroom = skb_headroom(skb);
1581	int head_copy_len, head_copy_off;
 
 
1582
 
 
 
 
 
 
 
1583	if (!n)
1584		return NULL;
1585
1586	skb_reserve(n, newheadroom);
1587
1588	/* Set the tail pointer and length */
1589	skb_put(n, skb->len);
1590
1591	head_copy_len = oldheadroom;
1592	head_copy_off = 0;
1593	if (newheadroom <= head_copy_len)
1594		head_copy_len = newheadroom;
1595	else
1596		head_copy_off = newheadroom - head_copy_len;
1597
1598	/* Copy the linear header and data. */
1599	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1600			     skb->len + head_copy_len));
1601
1602	copy_skb_header(n, skb);
1603
1604	skb_headers_offset_update(n, newheadroom - oldheadroom);
1605
1606	return n;
1607}
1608EXPORT_SYMBOL(skb_copy_expand);
1609
1610/**
1611 *	__skb_pad		-	zero pad the tail of an skb
1612 *	@skb: buffer to pad
1613 *	@pad: space to pad
1614 *	@free_on_error: free buffer on error
1615 *
1616 *	Ensure that a buffer is followed by a padding area that is zero
1617 *	filled. Used by network drivers which may DMA or transfer data
1618 *	beyond the buffer end onto the wire.
1619 *
1620 *	May return error in out of memory cases. The skb is freed on error
1621 *	if @free_on_error is true.
1622 */
1623
1624int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1625{
1626	int err;
1627	int ntail;
1628
1629	/* If the skbuff is non linear tailroom is always zero.. */
1630	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1631		memset(skb->data+skb->len, 0, pad);
1632		return 0;
1633	}
1634
1635	ntail = skb->data_len + pad - (skb->end - skb->tail);
1636	if (likely(skb_cloned(skb) || ntail > 0)) {
1637		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1638		if (unlikely(err))
1639			goto free_skb;
1640	}
1641
1642	/* FIXME: The use of this function with non-linear skb's really needs
1643	 * to be audited.
1644	 */
1645	err = skb_linearize(skb);
1646	if (unlikely(err))
1647		goto free_skb;
1648
1649	memset(skb->data + skb->len, 0, pad);
1650	return 0;
1651
1652free_skb:
1653	if (free_on_error)
1654		kfree_skb(skb);
1655	return err;
1656}
1657EXPORT_SYMBOL(__skb_pad);
1658
1659/**
1660 *	pskb_put - add data to the tail of a potentially fragmented buffer
1661 *	@skb: start of the buffer to use
1662 *	@tail: tail fragment of the buffer to use
1663 *	@len: amount of data to add
1664 *
1665 *	This function extends the used data area of the potentially
1666 *	fragmented buffer. @tail must be the last fragment of @skb -- or
1667 *	@skb itself. If this would exceed the total buffer size the kernel
1668 *	will panic. A pointer to the first byte of the extra data is
1669 *	returned.
1670 */
1671
1672void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1673{
1674	if (tail != skb) {
1675		skb->data_len += len;
1676		skb->len += len;
1677	}
1678	return skb_put(tail, len);
1679}
1680EXPORT_SYMBOL_GPL(pskb_put);
1681
1682/**
1683 *	skb_put - add data to a buffer
1684 *	@skb: buffer to use
1685 *	@len: amount of data to add
1686 *
1687 *	This function extends the used data area of the buffer. If this would
1688 *	exceed the total buffer size the kernel will panic. A pointer to the
1689 *	first byte of the extra data is returned.
1690 */
1691void *skb_put(struct sk_buff *skb, unsigned int len)
1692{
1693	void *tmp = skb_tail_pointer(skb);
1694	SKB_LINEAR_ASSERT(skb);
1695	skb->tail += len;
1696	skb->len  += len;
1697	if (unlikely(skb->tail > skb->end))
1698		skb_over_panic(skb, len, __builtin_return_address(0));
1699	return tmp;
1700}
1701EXPORT_SYMBOL(skb_put);
1702
1703/**
1704 *	skb_push - add data to the start of a buffer
1705 *	@skb: buffer to use
1706 *	@len: amount of data to add
1707 *
1708 *	This function extends the used data area of the buffer at the buffer
1709 *	start. If this would exceed the total buffer headroom the kernel will
1710 *	panic. A pointer to the first byte of the extra data is returned.
1711 */
1712void *skb_push(struct sk_buff *skb, unsigned int len)
1713{
1714	skb->data -= len;
1715	skb->len  += len;
1716	if (unlikely(skb->data<skb->head))
1717		skb_under_panic(skb, len, __builtin_return_address(0));
1718	return skb->data;
1719}
1720EXPORT_SYMBOL(skb_push);
1721
1722/**
1723 *	skb_pull - remove data from the start of a buffer
1724 *	@skb: buffer to use
1725 *	@len: amount of data to remove
1726 *
1727 *	This function removes data from the start of a buffer, returning
1728 *	the memory to the headroom. A pointer to the next data in the buffer
1729 *	is returned. Once the data has been pulled future pushes will overwrite
1730 *	the old data.
1731 */
1732void *skb_pull(struct sk_buff *skb, unsigned int len)
1733{
1734	return skb_pull_inline(skb, len);
1735}
1736EXPORT_SYMBOL(skb_pull);
1737
1738/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1739 *	skb_trim - remove end from a buffer
1740 *	@skb: buffer to alter
1741 *	@len: new length
1742 *
1743 *	Cut the length of a buffer down by removing data from the tail. If
1744 *	the buffer is already under the length specified it is not modified.
1745 *	The skb must be linear.
1746 */
1747void skb_trim(struct sk_buff *skb, unsigned int len)
1748{
1749	if (skb->len > len)
1750		__skb_trim(skb, len);
1751}
1752EXPORT_SYMBOL(skb_trim);
1753
1754/* Trims skb to length len. It can change skb pointers.
1755 */
1756
1757int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1758{
1759	struct sk_buff **fragp;
1760	struct sk_buff *frag;
1761	int offset = skb_headlen(skb);
1762	int nfrags = skb_shinfo(skb)->nr_frags;
1763	int i;
1764	int err;
1765
1766	if (skb_cloned(skb) &&
1767	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1768		return err;
1769
1770	i = 0;
1771	if (offset >= len)
1772		goto drop_pages;
1773
1774	for (; i < nfrags; i++) {
1775		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1776
1777		if (end < len) {
1778			offset = end;
1779			continue;
1780		}
1781
1782		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1783
1784drop_pages:
1785		skb_shinfo(skb)->nr_frags = i;
1786
1787		for (; i < nfrags; i++)
1788			skb_frag_unref(skb, i);
1789
1790		if (skb_has_frag_list(skb))
1791			skb_drop_fraglist(skb);
1792		goto done;
1793	}
1794
1795	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1796	     fragp = &frag->next) {
1797		int end = offset + frag->len;
1798
1799		if (skb_shared(frag)) {
1800			struct sk_buff *nfrag;
1801
1802			nfrag = skb_clone(frag, GFP_ATOMIC);
1803			if (unlikely(!nfrag))
1804				return -ENOMEM;
1805
1806			nfrag->next = frag->next;
1807			consume_skb(frag);
1808			frag = nfrag;
1809			*fragp = frag;
1810		}
1811
1812		if (end < len) {
1813			offset = end;
1814			continue;
1815		}
1816
1817		if (end > len &&
1818		    unlikely((err = pskb_trim(frag, len - offset))))
1819			return err;
1820
1821		if (frag->next)
1822			skb_drop_list(&frag->next);
1823		break;
1824	}
1825
1826done:
1827	if (len > skb_headlen(skb)) {
1828		skb->data_len -= skb->len - len;
1829		skb->len       = len;
1830	} else {
1831		skb->len       = len;
1832		skb->data_len  = 0;
1833		skb_set_tail_pointer(skb, len);
1834	}
1835
1836	if (!skb->sk || skb->destructor == sock_edemux)
1837		skb_condense(skb);
1838	return 0;
1839}
1840EXPORT_SYMBOL(___pskb_trim);
1841
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1842/**
1843 *	__pskb_pull_tail - advance tail of skb header
1844 *	@skb: buffer to reallocate
1845 *	@delta: number of bytes to advance tail
1846 *
1847 *	The function makes a sense only on a fragmented &sk_buff,
1848 *	it expands header moving its tail forward and copying necessary
1849 *	data from fragmented part.
1850 *
1851 *	&sk_buff MUST have reference count of 1.
1852 *
1853 *	Returns %NULL (and &sk_buff does not change) if pull failed
1854 *	or value of new tail of skb in the case of success.
1855 *
1856 *	All the pointers pointing into skb header may change and must be
1857 *	reloaded after call to this function.
1858 */
1859
1860/* Moves tail of skb head forward, copying data from fragmented part,
1861 * when it is necessary.
1862 * 1. It may fail due to malloc failure.
1863 * 2. It may change skb pointers.
1864 *
1865 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1866 */
1867void *__pskb_pull_tail(struct sk_buff *skb, int delta)
1868{
1869	/* If skb has not enough free space at tail, get new one
1870	 * plus 128 bytes for future expansions. If we have enough
1871	 * room at tail, reallocate without expansion only if skb is cloned.
1872	 */
1873	int i, k, eat = (skb->tail + delta) - skb->end;
1874
1875	if (eat > 0 || skb_cloned(skb)) {
1876		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1877				     GFP_ATOMIC))
1878			return NULL;
1879	}
1880
1881	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
1882			     skb_tail_pointer(skb), delta));
1883
1884	/* Optimization: no fragments, no reasons to preestimate
1885	 * size of pulled pages. Superb.
1886	 */
1887	if (!skb_has_frag_list(skb))
1888		goto pull_pages;
1889
1890	/* Estimate size of pulled pages. */
1891	eat = delta;
1892	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1893		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1894
1895		if (size >= eat)
1896			goto pull_pages;
1897		eat -= size;
1898	}
1899
1900	/* If we need update frag list, we are in troubles.
1901	 * Certainly, it is possible to add an offset to skb data,
1902	 * but taking into account that pulling is expected to
1903	 * be very rare operation, it is worth to fight against
1904	 * further bloating skb head and crucify ourselves here instead.
1905	 * Pure masohism, indeed. 8)8)
1906	 */
1907	if (eat) {
1908		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1909		struct sk_buff *clone = NULL;
1910		struct sk_buff *insp = NULL;
1911
1912		do {
1913			BUG_ON(!list);
1914
1915			if (list->len <= eat) {
1916				/* Eaten as whole. */
1917				eat -= list->len;
1918				list = list->next;
1919				insp = list;
1920			} else {
1921				/* Eaten partially. */
 
 
 
1922
1923				if (skb_shared(list)) {
1924					/* Sucks! We need to fork list. :-( */
1925					clone = skb_clone(list, GFP_ATOMIC);
1926					if (!clone)
1927						return NULL;
1928					insp = list->next;
1929					list = clone;
1930				} else {
1931					/* This may be pulled without
1932					 * problems. */
1933					insp = list;
1934				}
1935				if (!pskb_pull(list, eat)) {
1936					kfree_skb(clone);
1937					return NULL;
1938				}
1939				break;
1940			}
1941		} while (eat);
1942
1943		/* Free pulled out fragments. */
1944		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1945			skb_shinfo(skb)->frag_list = list->next;
1946			kfree_skb(list);
1947		}
1948		/* And insert new clone at head. */
1949		if (clone) {
1950			clone->next = list;
1951			skb_shinfo(skb)->frag_list = clone;
1952		}
1953	}
1954	/* Success! Now we may commit changes to skb data. */
1955
1956pull_pages:
1957	eat = delta;
1958	k = 0;
1959	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1960		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1961
1962		if (size <= eat) {
1963			skb_frag_unref(skb, i);
1964			eat -= size;
1965		} else {
1966			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
 
 
1967			if (eat) {
1968				skb_shinfo(skb)->frags[k].page_offset += eat;
1969				skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1970				if (!i)
1971					goto end;
1972				eat = 0;
1973			}
1974			k++;
1975		}
1976	}
1977	skb_shinfo(skb)->nr_frags = k;
1978
1979end:
1980	skb->tail     += delta;
1981	skb->data_len -= delta;
1982
1983	if (!skb->data_len)
1984		skb_zcopy_clear(skb, false);
1985
1986	return skb_tail_pointer(skb);
1987}
1988EXPORT_SYMBOL(__pskb_pull_tail);
1989
1990/**
1991 *	skb_copy_bits - copy bits from skb to kernel buffer
1992 *	@skb: source skb
1993 *	@offset: offset in source
1994 *	@to: destination buffer
1995 *	@len: number of bytes to copy
1996 *
1997 *	Copy the specified number of bytes from the source skb to the
1998 *	destination buffer.
1999 *
2000 *	CAUTION ! :
2001 *		If its prototype is ever changed,
2002 *		check arch/{*}/net/{*}.S files,
2003 *		since it is called from BPF assembly code.
2004 */
2005int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2006{
2007	int start = skb_headlen(skb);
2008	struct sk_buff *frag_iter;
2009	int i, copy;
2010
2011	if (offset > (int)skb->len - len)
2012		goto fault;
2013
2014	/* Copy header. */
2015	if ((copy = start - offset) > 0) {
2016		if (copy > len)
2017			copy = len;
2018		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2019		if ((len -= copy) == 0)
2020			return 0;
2021		offset += copy;
2022		to     += copy;
2023	}
2024
2025	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2026		int end;
2027		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2028
2029		WARN_ON(start > offset + len);
2030
2031		end = start + skb_frag_size(f);
2032		if ((copy = end - offset) > 0) {
2033			u32 p_off, p_len, copied;
2034			struct page *p;
2035			u8 *vaddr;
2036
2037			if (copy > len)
2038				copy = len;
2039
2040			skb_frag_foreach_page(f,
2041					      f->page_offset + offset - start,
2042					      copy, p, p_off, p_len, copied) {
2043				vaddr = kmap_atomic(p);
2044				memcpy(to + copied, vaddr + p_off, p_len);
2045				kunmap_atomic(vaddr);
2046			}
2047
2048			if ((len -= copy) == 0)
2049				return 0;
2050			offset += copy;
2051			to     += copy;
2052		}
2053		start = end;
2054	}
2055
2056	skb_walk_frags(skb, frag_iter) {
2057		int end;
2058
2059		WARN_ON(start > offset + len);
2060
2061		end = start + frag_iter->len;
2062		if ((copy = end - offset) > 0) {
2063			if (copy > len)
2064				copy = len;
2065			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2066				goto fault;
2067			if ((len -= copy) == 0)
2068				return 0;
2069			offset += copy;
2070			to     += copy;
2071		}
2072		start = end;
2073	}
2074
2075	if (!len)
2076		return 0;
2077
2078fault:
2079	return -EFAULT;
2080}
2081EXPORT_SYMBOL(skb_copy_bits);
2082
2083/*
2084 * Callback from splice_to_pipe(), if we need to release some pages
2085 * at the end of the spd in case we error'ed out in filling the pipe.
2086 */
2087static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2088{
2089	put_page(spd->pages[i]);
2090}
2091
2092static struct page *linear_to_page(struct page *page, unsigned int *len,
2093				   unsigned int *offset,
2094				   struct sock *sk)
2095{
2096	struct page_frag *pfrag = sk_page_frag(sk);
2097
2098	if (!sk_page_frag_refill(sk, pfrag))
2099		return NULL;
2100
2101	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2102
2103	memcpy(page_address(pfrag->page) + pfrag->offset,
2104	       page_address(page) + *offset, *len);
2105	*offset = pfrag->offset;
2106	pfrag->offset += *len;
2107
2108	return pfrag->page;
2109}
2110
2111static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2112			     struct page *page,
2113			     unsigned int offset)
2114{
2115	return	spd->nr_pages &&
2116		spd->pages[spd->nr_pages - 1] == page &&
2117		(spd->partial[spd->nr_pages - 1].offset +
2118		 spd->partial[spd->nr_pages - 1].len == offset);
2119}
2120
2121/*
2122 * Fill page/offset/length into spd, if it can hold more pages.
2123 */
2124static bool spd_fill_page(struct splice_pipe_desc *spd,
2125			  struct pipe_inode_info *pipe, struct page *page,
2126			  unsigned int *len, unsigned int offset,
2127			  bool linear,
2128			  struct sock *sk)
2129{
2130	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2131		return true;
2132
2133	if (linear) {
2134		page = linear_to_page(page, len, &offset, sk);
2135		if (!page)
2136			return true;
2137	}
2138	if (spd_can_coalesce(spd, page, offset)) {
2139		spd->partial[spd->nr_pages - 1].len += *len;
2140		return false;
2141	}
2142	get_page(page);
2143	spd->pages[spd->nr_pages] = page;
2144	spd->partial[spd->nr_pages].len = *len;
2145	spd->partial[spd->nr_pages].offset = offset;
2146	spd->nr_pages++;
2147
2148	return false;
2149}
2150
2151static bool __splice_segment(struct page *page, unsigned int poff,
2152			     unsigned int plen, unsigned int *off,
2153			     unsigned int *len,
2154			     struct splice_pipe_desc *spd, bool linear,
2155			     struct sock *sk,
2156			     struct pipe_inode_info *pipe)
2157{
2158	if (!*len)
2159		return true;
2160
2161	/* skip this segment if already processed */
2162	if (*off >= plen) {
2163		*off -= plen;
2164		return false;
2165	}
2166
2167	/* ignore any bits we already processed */
2168	poff += *off;
2169	plen -= *off;
2170	*off = 0;
2171
2172	do {
2173		unsigned int flen = min(*len, plen);
2174
2175		if (spd_fill_page(spd, pipe, page, &flen, poff,
2176				  linear, sk))
2177			return true;
2178		poff += flen;
2179		plen -= flen;
2180		*len -= flen;
2181	} while (*len && plen);
2182
2183	return false;
2184}
2185
2186/*
2187 * Map linear and fragment data from the skb to spd. It reports true if the
2188 * pipe is full or if we already spliced the requested length.
2189 */
2190static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2191			      unsigned int *offset, unsigned int *len,
2192			      struct splice_pipe_desc *spd, struct sock *sk)
2193{
2194	int seg;
2195	struct sk_buff *iter;
2196
2197	/* map the linear part :
2198	 * If skb->head_frag is set, this 'linear' part is backed by a
2199	 * fragment, and if the head is not shared with any clones then
2200	 * we can avoid a copy since we own the head portion of this page.
2201	 */
2202	if (__splice_segment(virt_to_page(skb->data),
2203			     (unsigned long) skb->data & (PAGE_SIZE - 1),
2204			     skb_headlen(skb),
2205			     offset, len, spd,
2206			     skb_head_is_locked(skb),
2207			     sk, pipe))
2208		return true;
2209
2210	/*
2211	 * then map the fragments
2212	 */
2213	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2214		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2215
2216		if (__splice_segment(skb_frag_page(f),
2217				     f->page_offset, skb_frag_size(f),
2218				     offset, len, spd, false, sk, pipe))
2219			return true;
2220	}
2221
2222	skb_walk_frags(skb, iter) {
2223		if (*offset >= iter->len) {
2224			*offset -= iter->len;
2225			continue;
2226		}
2227		/* __skb_splice_bits() only fails if the output has no room
2228		 * left, so no point in going over the frag_list for the error
2229		 * case.
2230		 */
2231		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2232			return true;
2233	}
2234
2235	return false;
2236}
2237
2238/*
2239 * Map data from the skb to a pipe. Should handle both the linear part,
2240 * the fragments, and the frag list.
2241 */
2242int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2243		    struct pipe_inode_info *pipe, unsigned int tlen,
2244		    unsigned int flags)
2245{
2246	struct partial_page partial[MAX_SKB_FRAGS];
2247	struct page *pages[MAX_SKB_FRAGS];
2248	struct splice_pipe_desc spd = {
2249		.pages = pages,
2250		.partial = partial,
2251		.nr_pages_max = MAX_SKB_FRAGS,
2252		.ops = &nosteal_pipe_buf_ops,
2253		.spd_release = sock_spd_release,
2254	};
2255	int ret = 0;
2256
2257	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2258
2259	if (spd.nr_pages)
2260		ret = splice_to_pipe(pipe, &spd);
2261
2262	return ret;
2263}
2264EXPORT_SYMBOL_GPL(skb_splice_bits);
2265
2266/* Send skb data on a socket. Socket must be locked. */
2267int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2268			 int len)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2269{
2270	unsigned int orig_len = len;
2271	struct sk_buff *head = skb;
2272	unsigned short fragidx;
2273	int slen, ret;
2274
2275do_frag_list:
2276
2277	/* Deal with head data */
2278	while (offset < skb_headlen(skb) && len) {
2279		struct kvec kv;
2280		struct msghdr msg;
2281
2282		slen = min_t(int, len, skb_headlen(skb) - offset);
2283		kv.iov_base = skb->data + offset;
2284		kv.iov_len = slen;
2285		memset(&msg, 0, sizeof(msg));
 
2286
2287		ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen);
 
 
2288		if (ret <= 0)
2289			goto error;
2290
2291		offset += ret;
2292		len -= ret;
2293	}
2294
2295	/* All the data was skb head? */
2296	if (!len)
2297		goto out;
2298
2299	/* Make offset relative to start of frags */
2300	offset -= skb_headlen(skb);
2301
2302	/* Find where we are in frag list */
2303	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2304		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2305
2306		if (offset < frag->size)
2307			break;
2308
2309		offset -= frag->size;
2310	}
2311
2312	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2313		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2314
2315		slen = min_t(size_t, len, frag->size - offset);
2316
2317		while (slen) {
2318			ret = kernel_sendpage_locked(sk, frag->page.p,
2319						     frag->page_offset + offset,
2320						     slen, MSG_DONTWAIT);
 
 
 
 
 
 
 
 
 
2321			if (ret <= 0)
2322				goto error;
2323
2324			len -= ret;
2325			offset += ret;
2326			slen -= ret;
2327		}
2328
2329		offset = 0;
2330	}
2331
2332	if (len) {
2333		/* Process any frag lists */
2334
2335		if (skb == head) {
2336			if (skb_has_frag_list(skb)) {
2337				skb = skb_shinfo(skb)->frag_list;
2338				goto do_frag_list;
2339			}
2340		} else if (skb->next) {
2341			skb = skb->next;
2342			goto do_frag_list;
2343		}
2344	}
2345
2346out:
2347	return orig_len - len;
2348
2349error:
2350	return orig_len == len ? ret : orig_len - len;
2351}
 
 
 
 
 
 
 
2352EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2353
2354/* Send skb data on a socket. */
2355int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
2356{
2357	int ret = 0;
2358
2359	lock_sock(sk);
2360	ret = skb_send_sock_locked(sk, skb, offset, len);
2361	release_sock(sk);
2362
2363	return ret;
2364}
2365EXPORT_SYMBOL_GPL(skb_send_sock);
2366
2367/**
2368 *	skb_store_bits - store bits from kernel buffer to skb
2369 *	@skb: destination buffer
2370 *	@offset: offset in destination
2371 *	@from: source buffer
2372 *	@len: number of bytes to copy
2373 *
2374 *	Copy the specified number of bytes from the source buffer to the
2375 *	destination skb.  This function handles all the messy bits of
2376 *	traversing fragment lists and such.
2377 */
2378
2379int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2380{
2381	int start = skb_headlen(skb);
2382	struct sk_buff *frag_iter;
2383	int i, copy;
2384
2385	if (offset > (int)skb->len - len)
2386		goto fault;
2387
2388	if ((copy = start - offset) > 0) {
2389		if (copy > len)
2390			copy = len;
2391		skb_copy_to_linear_data_offset(skb, offset, from, copy);
2392		if ((len -= copy) == 0)
2393			return 0;
2394		offset += copy;
2395		from += copy;
2396	}
2397
2398	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2399		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2400		int end;
2401
2402		WARN_ON(start > offset + len);
2403
2404		end = start + skb_frag_size(frag);
2405		if ((copy = end - offset) > 0) {
2406			u32 p_off, p_len, copied;
2407			struct page *p;
2408			u8 *vaddr;
2409
2410			if (copy > len)
2411				copy = len;
2412
2413			skb_frag_foreach_page(frag,
2414					      frag->page_offset + offset - start,
2415					      copy, p, p_off, p_len, copied) {
2416				vaddr = kmap_atomic(p);
2417				memcpy(vaddr + p_off, from + copied, p_len);
2418				kunmap_atomic(vaddr);
2419			}
2420
2421			if ((len -= copy) == 0)
2422				return 0;
2423			offset += copy;
2424			from += copy;
2425		}
2426		start = end;
2427	}
2428
2429	skb_walk_frags(skb, frag_iter) {
2430		int end;
2431
2432		WARN_ON(start > offset + len);
2433
2434		end = start + frag_iter->len;
2435		if ((copy = end - offset) > 0) {
2436			if (copy > len)
2437				copy = len;
2438			if (skb_store_bits(frag_iter, offset - start,
2439					   from, copy))
2440				goto fault;
2441			if ((len -= copy) == 0)
2442				return 0;
2443			offset += copy;
2444			from += copy;
2445		}
2446		start = end;
2447	}
2448	if (!len)
2449		return 0;
2450
2451fault:
2452	return -EFAULT;
2453}
2454EXPORT_SYMBOL(skb_store_bits);
2455
2456/* Checksum skb data. */
2457__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2458		      __wsum csum, const struct skb_checksum_ops *ops)
2459{
2460	int start = skb_headlen(skb);
2461	int i, copy = start - offset;
2462	struct sk_buff *frag_iter;
2463	int pos = 0;
2464
2465	/* Checksum header. */
2466	if (copy > 0) {
2467		if (copy > len)
2468			copy = len;
2469		csum = ops->update(skb->data + offset, copy, csum);
 
2470		if ((len -= copy) == 0)
2471			return csum;
2472		offset += copy;
2473		pos	= copy;
2474	}
2475
2476	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2477		int end;
2478		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2479
2480		WARN_ON(start > offset + len);
2481
2482		end = start + skb_frag_size(frag);
2483		if ((copy = end - offset) > 0) {
2484			u32 p_off, p_len, copied;
2485			struct page *p;
2486			__wsum csum2;
2487			u8 *vaddr;
2488
2489			if (copy > len)
2490				copy = len;
2491
2492			skb_frag_foreach_page(frag,
2493					      frag->page_offset + offset - start,
2494					      copy, p, p_off, p_len, copied) {
2495				vaddr = kmap_atomic(p);
2496				csum2 = ops->update(vaddr + p_off, p_len, 0);
 
 
2497				kunmap_atomic(vaddr);
2498				csum = ops->combine(csum, csum2, pos, p_len);
 
 
2499				pos += p_len;
2500			}
2501
2502			if (!(len -= copy))
2503				return csum;
2504			offset += copy;
2505		}
2506		start = end;
2507	}
2508
2509	skb_walk_frags(skb, frag_iter) {
2510		int end;
2511
2512		WARN_ON(start > offset + len);
2513
2514		end = start + frag_iter->len;
2515		if ((copy = end - offset) > 0) {
2516			__wsum csum2;
2517			if (copy > len)
2518				copy = len;
2519			csum2 = __skb_checksum(frag_iter, offset - start,
2520					       copy, 0, ops);
2521			csum = ops->combine(csum, csum2, pos, copy);
 
2522			if ((len -= copy) == 0)
2523				return csum;
2524			offset += copy;
2525			pos    += copy;
2526		}
2527		start = end;
2528	}
2529	BUG_ON(len);
2530
2531	return csum;
2532}
2533EXPORT_SYMBOL(__skb_checksum);
2534
2535__wsum skb_checksum(const struct sk_buff *skb, int offset,
2536		    int len, __wsum csum)
2537{
2538	const struct skb_checksum_ops ops = {
2539		.update  = csum_partial_ext,
2540		.combine = csum_block_add_ext,
2541	};
2542
2543	return __skb_checksum(skb, offset, len, csum, &ops);
2544}
2545EXPORT_SYMBOL(skb_checksum);
2546
2547/* Both of above in one bottle. */
2548
2549__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2550				    u8 *to, int len, __wsum csum)
2551{
2552	int start = skb_headlen(skb);
2553	int i, copy = start - offset;
2554	struct sk_buff *frag_iter;
2555	int pos = 0;
 
2556
2557	/* Copy header. */
2558	if (copy > 0) {
2559		if (copy > len)
2560			copy = len;
2561		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2562						 copy, csum);
2563		if ((len -= copy) == 0)
2564			return csum;
2565		offset += copy;
2566		to     += copy;
2567		pos	= copy;
2568	}
2569
2570	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2571		int end;
2572
2573		WARN_ON(start > offset + len);
2574
2575		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2576		if ((copy = end - offset) > 0) {
2577			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2578			u32 p_off, p_len, copied;
2579			struct page *p;
2580			__wsum csum2;
2581			u8 *vaddr;
2582
2583			if (copy > len)
2584				copy = len;
2585
2586			skb_frag_foreach_page(frag,
2587					      frag->page_offset + offset - start,
2588					      copy, p, p_off, p_len, copied) {
2589				vaddr = kmap_atomic(p);
2590				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2591								  to + copied,
2592								  p_len, 0);
2593				kunmap_atomic(vaddr);
2594				csum = csum_block_add(csum, csum2, pos);
2595				pos += p_len;
2596			}
2597
2598			if (!(len -= copy))
2599				return csum;
2600			offset += copy;
2601			to     += copy;
2602		}
2603		start = end;
2604	}
2605
2606	skb_walk_frags(skb, frag_iter) {
2607		__wsum csum2;
2608		int end;
2609
2610		WARN_ON(start > offset + len);
2611
2612		end = start + frag_iter->len;
2613		if ((copy = end - offset) > 0) {
2614			if (copy > len)
2615				copy = len;
2616			csum2 = skb_copy_and_csum_bits(frag_iter,
2617						       offset - start,
2618						       to, copy, 0);
2619			csum = csum_block_add(csum, csum2, pos);
2620			if ((len -= copy) == 0)
2621				return csum;
2622			offset += copy;
2623			to     += copy;
2624			pos    += copy;
2625		}
2626		start = end;
2627	}
2628	BUG_ON(len);
2629	return csum;
2630}
2631EXPORT_SYMBOL(skb_copy_and_csum_bits);
2632
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2633static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
2634{
2635	net_warn_ratelimited(
2636		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2637		__func__);
2638	return 0;
2639}
2640
2641static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
2642				       int offset, int len)
2643{
2644	net_warn_ratelimited(
2645		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2646		__func__);
2647	return 0;
2648}
2649
2650static const struct skb_checksum_ops default_crc32c_ops = {
2651	.update  = warn_crc32c_csum_update,
2652	.combine = warn_crc32c_csum_combine,
2653};
2654
2655const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
2656	&default_crc32c_ops;
2657EXPORT_SYMBOL(crc32c_csum_stub);
2658
2659 /**
2660 *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2661 *	@from: source buffer
2662 *
2663 *	Calculates the amount of linear headroom needed in the 'to' skb passed
2664 *	into skb_zerocopy().
2665 */
2666unsigned int
2667skb_zerocopy_headlen(const struct sk_buff *from)
2668{
2669	unsigned int hlen = 0;
2670
2671	if (!from->head_frag ||
2672	    skb_headlen(from) < L1_CACHE_BYTES ||
2673	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2674		hlen = skb_headlen(from);
 
 
 
2675
2676	if (skb_has_frag_list(from))
2677		hlen = from->len;
2678
2679	return hlen;
2680}
2681EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2682
2683/**
2684 *	skb_zerocopy - Zero copy skb to skb
2685 *	@to: destination buffer
2686 *	@from: source buffer
2687 *	@len: number of bytes to copy from source buffer
2688 *	@hlen: size of linear headroom in destination buffer
2689 *
2690 *	Copies up to `len` bytes from `from` to `to` by creating references
2691 *	to the frags in the source buffer.
2692 *
2693 *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2694 *	headroom in the `to` buffer.
2695 *
2696 *	Return value:
2697 *	0: everything is OK
2698 *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
2699 *	-EFAULT: skb_copy_bits() found some problem with skb geometry
2700 */
2701int
2702skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2703{
2704	int i, j = 0;
2705	int plen = 0; /* length of skb->head fragment */
2706	int ret;
2707	struct page *page;
2708	unsigned int offset;
2709
2710	BUG_ON(!from->head_frag && !hlen);
2711
2712	/* dont bother with small payloads */
2713	if (len <= skb_tailroom(to))
2714		return skb_copy_bits(from, 0, skb_put(to, len), len);
2715
2716	if (hlen) {
2717		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2718		if (unlikely(ret))
2719			return ret;
2720		len -= hlen;
2721	} else {
2722		plen = min_t(int, skb_headlen(from), len);
2723		if (plen) {
2724			page = virt_to_head_page(from->head);
2725			offset = from->data - (unsigned char *)page_address(page);
2726			__skb_fill_page_desc(to, 0, page, offset, plen);
 
2727			get_page(page);
2728			j = 1;
2729			len -= plen;
2730		}
2731	}
2732
2733	to->truesize += len + plen;
2734	to->len += len + plen;
2735	to->data_len += len + plen;
2736
2737	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2738		skb_tx_error(from);
2739		return -ENOMEM;
2740	}
2741	skb_zerocopy_clone(to, from, GFP_ATOMIC);
2742
2743	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
 
 
2744		if (!len)
2745			break;
2746		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2747		skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2748		len -= skb_shinfo(to)->frags[j].size;
 
 
2749		skb_frag_ref(to, j);
2750		j++;
2751	}
2752	skb_shinfo(to)->nr_frags = j;
2753
2754	return 0;
2755}
2756EXPORT_SYMBOL_GPL(skb_zerocopy);
2757
2758void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2759{
2760	__wsum csum;
2761	long csstart;
2762
2763	if (skb->ip_summed == CHECKSUM_PARTIAL)
2764		csstart = skb_checksum_start_offset(skb);
2765	else
2766		csstart = skb_headlen(skb);
2767
2768	BUG_ON(csstart > skb_headlen(skb));
2769
2770	skb_copy_from_linear_data(skb, to, csstart);
2771
2772	csum = 0;
2773	if (csstart != skb->len)
2774		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2775					      skb->len - csstart, 0);
2776
2777	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2778		long csstuff = csstart + skb->csum_offset;
2779
2780		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
2781	}
2782}
2783EXPORT_SYMBOL(skb_copy_and_csum_dev);
2784
2785/**
2786 *	skb_dequeue - remove from the head of the queue
2787 *	@list: list to dequeue from
2788 *
2789 *	Remove the head of the list. The list lock is taken so the function
2790 *	may be used safely with other locking list functions. The head item is
2791 *	returned or %NULL if the list is empty.
2792 */
2793
2794struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2795{
2796	unsigned long flags;
2797	struct sk_buff *result;
2798
2799	spin_lock_irqsave(&list->lock, flags);
2800	result = __skb_dequeue(list);
2801	spin_unlock_irqrestore(&list->lock, flags);
2802	return result;
2803}
2804EXPORT_SYMBOL(skb_dequeue);
2805
2806/**
2807 *	skb_dequeue_tail - remove from the tail of the queue
2808 *	@list: list to dequeue from
2809 *
2810 *	Remove the tail of the list. The list lock is taken so the function
2811 *	may be used safely with other locking list functions. The tail item is
2812 *	returned or %NULL if the list is empty.
2813 */
2814struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2815{
2816	unsigned long flags;
2817	struct sk_buff *result;
2818
2819	spin_lock_irqsave(&list->lock, flags);
2820	result = __skb_dequeue_tail(list);
2821	spin_unlock_irqrestore(&list->lock, flags);
2822	return result;
2823}
2824EXPORT_SYMBOL(skb_dequeue_tail);
2825
2826/**
2827 *	skb_queue_purge - empty a list
2828 *	@list: list to empty
 
2829 *
2830 *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2831 *	the list and one reference dropped. This function takes the list
2832 *	lock and is atomic with respect to other list locking functions.
2833 */
2834void skb_queue_purge(struct sk_buff_head *list)
 
2835{
2836	struct sk_buff *skb;
2837	while ((skb = skb_dequeue(list)) != NULL)
2838		kfree_skb(skb);
 
 
 
 
 
 
 
 
 
 
2839}
2840EXPORT_SYMBOL(skb_queue_purge);
2841
2842/**
2843 *	skb_rbtree_purge - empty a skb rbtree
2844 *	@root: root of the rbtree to empty
 
2845 *
2846 *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
2847 *	the list and one reference dropped. This function does not take
2848 *	any lock. Synchronization should be handled by the caller (e.g., TCP
2849 *	out-of-order queue is protected by the socket lock).
2850 */
2851void skb_rbtree_purge(struct rb_root *root)
2852{
2853	struct rb_node *p = rb_first(root);
 
2854
2855	while (p) {
2856		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
2857
2858		p = rb_next(p);
2859		rb_erase(&skb->rbnode, root);
 
2860		kfree_skb(skb);
2861	}
 
2862}
2863
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2864/**
2865 *	skb_queue_head - queue a buffer at the list head
2866 *	@list: list to use
2867 *	@newsk: buffer to queue
2868 *
2869 *	Queue a buffer at the start of the list. This function takes the
2870 *	list lock and can be used safely with other locking &sk_buff functions
2871 *	safely.
2872 *
2873 *	A buffer cannot be placed on two lists at the same time.
2874 */
2875void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2876{
2877	unsigned long flags;
2878
2879	spin_lock_irqsave(&list->lock, flags);
2880	__skb_queue_head(list, newsk);
2881	spin_unlock_irqrestore(&list->lock, flags);
2882}
2883EXPORT_SYMBOL(skb_queue_head);
2884
2885/**
2886 *	skb_queue_tail - queue a buffer at the list tail
2887 *	@list: list to use
2888 *	@newsk: buffer to queue
2889 *
2890 *	Queue a buffer at the tail of the list. This function takes the
2891 *	list lock and can be used safely with other locking &sk_buff functions
2892 *	safely.
2893 *
2894 *	A buffer cannot be placed on two lists at the same time.
2895 */
2896void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2897{
2898	unsigned long flags;
2899
2900	spin_lock_irqsave(&list->lock, flags);
2901	__skb_queue_tail(list, newsk);
2902	spin_unlock_irqrestore(&list->lock, flags);
2903}
2904EXPORT_SYMBOL(skb_queue_tail);
2905
2906/**
2907 *	skb_unlink	-	remove a buffer from a list
2908 *	@skb: buffer to remove
2909 *	@list: list to use
2910 *
2911 *	Remove a packet from a list. The list locks are taken and this
2912 *	function is atomic with respect to other list locked calls
2913 *
2914 *	You must know what list the SKB is on.
2915 */
2916void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2917{
2918	unsigned long flags;
2919
2920	spin_lock_irqsave(&list->lock, flags);
2921	__skb_unlink(skb, list);
2922	spin_unlock_irqrestore(&list->lock, flags);
2923}
2924EXPORT_SYMBOL(skb_unlink);
2925
2926/**
2927 *	skb_append	-	append a buffer
2928 *	@old: buffer to insert after
2929 *	@newsk: buffer to insert
2930 *	@list: list to use
2931 *
2932 *	Place a packet after a given packet in a list. The list locks are taken
2933 *	and this function is atomic with respect to other list locked calls.
2934 *	A buffer cannot be placed on two lists at the same time.
2935 */
2936void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2937{
2938	unsigned long flags;
2939
2940	spin_lock_irqsave(&list->lock, flags);
2941	__skb_queue_after(list, old, newsk);
2942	spin_unlock_irqrestore(&list->lock, flags);
2943}
2944EXPORT_SYMBOL(skb_append);
2945
2946/**
2947 *	skb_insert	-	insert a buffer
2948 *	@old: buffer to insert before
2949 *	@newsk: buffer to insert
2950 *	@list: list to use
2951 *
2952 *	Place a packet before a given packet in a list. The list locks are
2953 * 	taken and this function is atomic with respect to other list locked
2954 *	calls.
2955 *
2956 *	A buffer cannot be placed on two lists at the same time.
2957 */
2958void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2959{
2960	unsigned long flags;
2961
2962	spin_lock_irqsave(&list->lock, flags);
2963	__skb_insert(newsk, old->prev, old, list);
2964	spin_unlock_irqrestore(&list->lock, flags);
2965}
2966EXPORT_SYMBOL(skb_insert);
2967
2968static inline void skb_split_inside_header(struct sk_buff *skb,
2969					   struct sk_buff* skb1,
2970					   const u32 len, const int pos)
2971{
2972	int i;
2973
2974	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2975					 pos - len);
2976	/* And move data appendix as is. */
2977	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2978		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2979
2980	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2981	skb_shinfo(skb)->nr_frags  = 0;
2982	skb1->data_len		   = skb->data_len;
2983	skb1->len		   += skb1->data_len;
2984	skb->data_len		   = 0;
2985	skb->len		   = len;
2986	skb_set_tail_pointer(skb, len);
2987}
2988
2989static inline void skb_split_no_header(struct sk_buff *skb,
2990				       struct sk_buff* skb1,
2991				       const u32 len, int pos)
2992{
2993	int i, k = 0;
2994	const int nfrags = skb_shinfo(skb)->nr_frags;
2995
2996	skb_shinfo(skb)->nr_frags = 0;
2997	skb1->len		  = skb1->data_len = skb->len - len;
2998	skb->len		  = len;
2999	skb->data_len		  = len - pos;
3000
3001	for (i = 0; i < nfrags; i++) {
3002		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3003
3004		if (pos + size > len) {
3005			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3006
3007			if (pos < len) {
3008				/* Split frag.
3009				 * We have two variants in this case:
3010				 * 1. Move all the frag to the second
3011				 *    part, if it is possible. F.e.
3012				 *    this approach is mandatory for TUX,
3013				 *    where splitting is expensive.
3014				 * 2. Split is accurately. We make this.
3015				 */
3016				skb_frag_ref(skb, i);
3017				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
3018				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3019				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3020				skb_shinfo(skb)->nr_frags++;
3021			}
3022			k++;
3023		} else
3024			skb_shinfo(skb)->nr_frags++;
3025		pos += size;
3026	}
3027	skb_shinfo(skb1)->nr_frags = k;
3028}
3029
3030/**
3031 * skb_split - Split fragmented skb to two parts at length len.
3032 * @skb: the buffer to split
3033 * @skb1: the buffer to receive the second part
3034 * @len: new length for skb
3035 */
3036void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3037{
3038	int pos = skb_headlen(skb);
 
3039
3040	skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags &
3041				      SKBTX_SHARED_FRAG;
 
3042	skb_zerocopy_clone(skb1, skb, 0);
3043	if (len < pos)	/* Split line is inside header. */
3044		skb_split_inside_header(skb, skb1, len, pos);
3045	else		/* Second chunk has no header, nothing to copy. */
3046		skb_split_no_header(skb, skb1, len, pos);
3047}
3048EXPORT_SYMBOL(skb_split);
3049
3050/* Shifting from/to a cloned skb is a no-go.
3051 *
3052 * Caller cannot keep skb_shinfo related pointers past calling here!
3053 */
3054static int skb_prepare_for_shift(struct sk_buff *skb)
3055{
3056	return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3057}
3058
3059/**
3060 * skb_shift - Shifts paged data partially from skb to another
3061 * @tgt: buffer into which tail data gets added
3062 * @skb: buffer from which the paged data comes from
3063 * @shiftlen: shift up to this many bytes
3064 *
3065 * Attempts to shift up to shiftlen worth of bytes, which may be less than
3066 * the length of the skb, from skb to tgt. Returns number bytes shifted.
3067 * It's up to caller to free skb if everything was shifted.
3068 *
3069 * If @tgt runs out of frags, the whole operation is aborted.
3070 *
3071 * Skb cannot include anything else but paged data while tgt is allowed
3072 * to have non-paged data as well.
3073 *
3074 * TODO: full sized shift could be optimized but that would need
3075 * specialized skb free'er to handle frags without up-to-date nr_frags.
3076 */
3077int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3078{
3079	int from, to, merge, todo;
3080	struct skb_frag_struct *fragfrom, *fragto;
3081
3082	BUG_ON(shiftlen > skb->len);
3083
3084	if (skb_headlen(skb))
3085		return 0;
3086	if (skb_zcopy(tgt) || skb_zcopy(skb))
3087		return 0;
3088
3089	todo = shiftlen;
3090	from = 0;
3091	to = skb_shinfo(tgt)->nr_frags;
3092	fragfrom = &skb_shinfo(skb)->frags[from];
3093
3094	/* Actual merge is delayed until the point when we know we can
3095	 * commit all, so that we don't have to undo partial changes
3096	 */
3097	if (!to ||
3098	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3099			      fragfrom->page_offset)) {
3100		merge = -1;
3101	} else {
3102		merge = to - 1;
3103
3104		todo -= skb_frag_size(fragfrom);
3105		if (todo < 0) {
3106			if (skb_prepare_for_shift(skb) ||
3107			    skb_prepare_for_shift(tgt))
3108				return 0;
3109
3110			/* All previous frag pointers might be stale! */
3111			fragfrom = &skb_shinfo(skb)->frags[from];
3112			fragto = &skb_shinfo(tgt)->frags[merge];
3113
3114			skb_frag_size_add(fragto, shiftlen);
3115			skb_frag_size_sub(fragfrom, shiftlen);
3116			fragfrom->page_offset += shiftlen;
3117
3118			goto onlymerged;
3119		}
3120
3121		from++;
3122	}
3123
3124	/* Skip full, not-fitting skb to avoid expensive operations */
3125	if ((shiftlen == skb->len) &&
3126	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3127		return 0;
3128
3129	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3130		return 0;
3131
3132	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3133		if (to == MAX_SKB_FRAGS)
3134			return 0;
3135
3136		fragfrom = &skb_shinfo(skb)->frags[from];
3137		fragto = &skb_shinfo(tgt)->frags[to];
3138
3139		if (todo >= skb_frag_size(fragfrom)) {
3140			*fragto = *fragfrom;
3141			todo -= skb_frag_size(fragfrom);
3142			from++;
3143			to++;
3144
3145		} else {
3146			__skb_frag_ref(fragfrom);
3147			fragto->page = fragfrom->page;
3148			fragto->page_offset = fragfrom->page_offset;
3149			skb_frag_size_set(fragto, todo);
3150
3151			fragfrom->page_offset += todo;
3152			skb_frag_size_sub(fragfrom, todo);
3153			todo = 0;
3154
3155			to++;
3156			break;
3157		}
3158	}
3159
3160	/* Ready to "commit" this state change to tgt */
3161	skb_shinfo(tgt)->nr_frags = to;
3162
3163	if (merge >= 0) {
3164		fragfrom = &skb_shinfo(skb)->frags[0];
3165		fragto = &skb_shinfo(tgt)->frags[merge];
3166
3167		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3168		__skb_frag_unref(fragfrom);
3169	}
3170
3171	/* Reposition in the original skb */
3172	to = 0;
3173	while (from < skb_shinfo(skb)->nr_frags)
3174		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3175	skb_shinfo(skb)->nr_frags = to;
3176
3177	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3178
3179onlymerged:
3180	/* Most likely the tgt won't ever need its checksum anymore, skb on
3181	 * the other hand might need it if it needs to be resent
3182	 */
3183	tgt->ip_summed = CHECKSUM_PARTIAL;
3184	skb->ip_summed = CHECKSUM_PARTIAL;
3185
3186	/* Yak, is it really working this way? Some helper please? */
3187	skb->len -= shiftlen;
3188	skb->data_len -= shiftlen;
3189	skb->truesize -= shiftlen;
3190	tgt->len += shiftlen;
3191	tgt->data_len += shiftlen;
3192	tgt->truesize += shiftlen;
3193
3194	return shiftlen;
3195}
3196
3197/**
3198 * skb_prepare_seq_read - Prepare a sequential read of skb data
3199 * @skb: the buffer to read
3200 * @from: lower offset of data to be read
3201 * @to: upper offset of data to be read
3202 * @st: state variable
3203 *
3204 * Initializes the specified state variable. Must be called before
3205 * invoking skb_seq_read() for the first time.
3206 */
3207void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3208			  unsigned int to, struct skb_seq_state *st)
3209{
3210	st->lower_offset = from;
3211	st->upper_offset = to;
3212	st->root_skb = st->cur_skb = skb;
3213	st->frag_idx = st->stepped_offset = 0;
3214	st->frag_data = NULL;
 
3215}
3216EXPORT_SYMBOL(skb_prepare_seq_read);
3217
3218/**
3219 * skb_seq_read - Sequentially read skb data
3220 * @consumed: number of bytes consumed by the caller so far
3221 * @data: destination pointer for data to be returned
3222 * @st: state variable
3223 *
3224 * Reads a block of skb data at @consumed relative to the
3225 * lower offset specified to skb_prepare_seq_read(). Assigns
3226 * the head of the data block to @data and returns the length
3227 * of the block or 0 if the end of the skb data or the upper
3228 * offset has been reached.
3229 *
3230 * The caller is not required to consume all of the data
3231 * returned, i.e. @consumed is typically set to the number
3232 * of bytes already consumed and the next call to
3233 * skb_seq_read() will return the remaining part of the block.
3234 *
3235 * Note 1: The size of each block of data returned can be arbitrary,
3236 *       this limitation is the cost for zerocopy sequential
3237 *       reads of potentially non linear data.
3238 *
3239 * Note 2: Fragment lists within fragments are not implemented
3240 *       at the moment, state->root_skb could be replaced with
3241 *       a stack for this purpose.
3242 */
3243unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3244			  struct skb_seq_state *st)
3245{
3246	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3247	skb_frag_t *frag;
3248
3249	if (unlikely(abs_offset >= st->upper_offset)) {
3250		if (st->frag_data) {
3251			kunmap_atomic(st->frag_data);
3252			st->frag_data = NULL;
3253		}
3254		return 0;
3255	}
3256
3257next_skb:
3258	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3259
3260	if (abs_offset < block_limit && !st->frag_data) {
3261		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3262		return block_limit - abs_offset;
3263	}
3264
3265	if (st->frag_idx == 0 && !st->frag_data)
3266		st->stepped_offset += skb_headlen(st->cur_skb);
3267
3268	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
 
 
3269		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3270		block_limit = skb_frag_size(frag) + st->stepped_offset;
3271
 
 
 
 
 
 
 
 
 
 
 
 
3272		if (abs_offset < block_limit) {
3273			if (!st->frag_data)
3274				st->frag_data = kmap_atomic(skb_frag_page(frag));
3275
3276			*data = (u8 *) st->frag_data + frag->page_offset +
3277				(abs_offset - st->stepped_offset);
3278
3279			return block_limit - abs_offset;
3280		}
3281
3282		if (st->frag_data) {
3283			kunmap_atomic(st->frag_data);
3284			st->frag_data = NULL;
3285		}
3286
3287		st->frag_idx++;
3288		st->stepped_offset += skb_frag_size(frag);
 
 
 
 
3289	}
3290
3291	if (st->frag_data) {
3292		kunmap_atomic(st->frag_data);
3293		st->frag_data = NULL;
3294	}
3295
3296	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3297		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3298		st->frag_idx = 0;
3299		goto next_skb;
3300	} else if (st->cur_skb->next) {
3301		st->cur_skb = st->cur_skb->next;
3302		st->frag_idx = 0;
3303		goto next_skb;
3304	}
3305
3306	return 0;
3307}
3308EXPORT_SYMBOL(skb_seq_read);
3309
3310/**
3311 * skb_abort_seq_read - Abort a sequential read of skb data
3312 * @st: state variable
3313 *
3314 * Must be called if skb_seq_read() was not called until it
3315 * returned 0.
3316 */
3317void skb_abort_seq_read(struct skb_seq_state *st)
3318{
3319	if (st->frag_data)
3320		kunmap_atomic(st->frag_data);
3321}
3322EXPORT_SYMBOL(skb_abort_seq_read);
3323
3324#define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
3325
3326static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3327					  struct ts_config *conf,
3328					  struct ts_state *state)
3329{
3330	return skb_seq_read(offset, text, TS_SKB_CB(state));
3331}
3332
3333static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3334{
3335	skb_abort_seq_read(TS_SKB_CB(state));
3336}
3337
3338/**
3339 * skb_find_text - Find a text pattern in skb data
3340 * @skb: the buffer to look in
3341 * @from: search offset
3342 * @to: search limit
3343 * @config: textsearch configuration
3344 *
3345 * Finds a pattern in the skb data according to the specified
3346 * textsearch configuration. Use textsearch_next() to retrieve
3347 * subsequent occurrences of the pattern. Returns the offset
3348 * to the first occurrence or UINT_MAX if no match was found.
3349 */
3350unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3351			   unsigned int to, struct ts_config *config)
3352{
 
3353	struct ts_state state;
3354	unsigned int ret;
3355
 
 
3356	config->get_next_block = skb_ts_get_next_block;
3357	config->finish = skb_ts_finish;
3358
3359	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3360
3361	ret = textsearch_find(config, &state);
3362	return (ret <= to - from ? ret : UINT_MAX);
3363}
3364EXPORT_SYMBOL(skb_find_text);
3365
3366/**
3367 * skb_append_datato_frags - append the user data to a skb
3368 * @sk: sock  structure
3369 * @skb: skb structure to be appended with user data.
3370 * @getfrag: call back function to be used for getting the user data
3371 * @from: pointer to user message iov
3372 * @length: length of the iov message
3373 *
3374 * Description: This procedure append the user data in the fragment part
3375 * of the skb if any page alloc fails user this procedure returns  -ENOMEM
3376 */
3377int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
3378			int (*getfrag)(void *from, char *to, int offset,
3379					int len, int odd, struct sk_buff *skb),
3380			void *from, int length)
3381{
3382	int frg_cnt = skb_shinfo(skb)->nr_frags;
3383	int copy;
3384	int offset = 0;
3385	int ret;
3386	struct page_frag *pfrag = &current->task_frag;
3387
3388	do {
3389		/* Return error if we don't have space for new frag */
3390		if (frg_cnt >= MAX_SKB_FRAGS)
3391			return -EMSGSIZE;
3392
3393		if (!sk_page_frag_refill(sk, pfrag))
3394			return -ENOMEM;
3395
3396		/* copy the user data to page */
3397		copy = min_t(int, length, pfrag->size - pfrag->offset);
3398
3399		ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
3400			      offset, copy, 0, skb);
3401		if (ret < 0)
3402			return -EFAULT;
3403
3404		/* copy was successful so update the size parameters */
3405		skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
3406				   copy);
3407		frg_cnt++;
3408		pfrag->offset += copy;
3409		get_page(pfrag->page);
3410
3411		skb->truesize += copy;
3412		refcount_add(copy, &sk->sk_wmem_alloc);
3413		skb->len += copy;
3414		skb->data_len += copy;
3415		offset += copy;
3416		length -= copy;
3417
3418	} while (length > 0);
3419
3420	return 0;
3421}
3422EXPORT_SYMBOL(skb_append_datato_frags);
3423
3424int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3425			 int offset, size_t size)
3426{
3427	int i = skb_shinfo(skb)->nr_frags;
3428
3429	if (skb_can_coalesce(skb, i, page, offset)) {
3430		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3431	} else if (i < MAX_SKB_FRAGS) {
 
3432		get_page(page);
3433		skb_fill_page_desc(skb, i, page, offset, size);
3434	} else {
3435		return -EMSGSIZE;
3436	}
3437
3438	return 0;
3439}
3440EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3441
3442/**
3443 *	skb_pull_rcsum - pull skb and update receive checksum
3444 *	@skb: buffer to update
3445 *	@len: length of data pulled
3446 *
3447 *	This function performs an skb_pull on the packet and updates
3448 *	the CHECKSUM_COMPLETE checksum.  It should be used on
3449 *	receive path processing instead of skb_pull unless you know
3450 *	that the checksum difference is zero (e.g., a valid IP header)
3451 *	or you are setting ip_summed to CHECKSUM_NONE.
3452 */
3453void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3454{
3455	unsigned char *data = skb->data;
3456
3457	BUG_ON(len > skb->len);
3458	__skb_pull(skb, len);
3459	skb_postpull_rcsum(skb, data, len);
3460	return skb->data;
3461}
3462EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3463
3464static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3465{
3466	skb_frag_t head_frag;
3467	struct page *page;
3468
3469	page = virt_to_head_page(frag_skb->head);
3470	head_frag.page.p = page;
3471	head_frag.page_offset = frag_skb->data -
3472		(unsigned char *)page_address(page);
3473	head_frag.size = skb_headlen(frag_skb);
3474	return head_frag;
3475}
3476
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3477/**
3478 *	skb_segment - Perform protocol segmentation on skb.
3479 *	@head_skb: buffer to segment
3480 *	@features: features for the output path (see dev->features)
3481 *
3482 *	This function performs segmentation on the given skb.  It returns
3483 *	a pointer to the first in a list of new skbs for the segments.
3484 *	In case of error it returns ERR_PTR(err).
3485 */
3486struct sk_buff *skb_segment(struct sk_buff *head_skb,
3487			    netdev_features_t features)
3488{
3489	struct sk_buff *segs = NULL;
3490	struct sk_buff *tail = NULL;
3491	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3492	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3493	unsigned int mss = skb_shinfo(head_skb)->gso_size;
3494	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3495	struct sk_buff *frag_skb = head_skb;
3496	unsigned int offset = doffset;
3497	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3498	unsigned int partial_segs = 0;
3499	unsigned int headroom;
3500	unsigned int len = head_skb->len;
 
 
3501	__be16 proto;
3502	bool csum, sg;
3503	int nfrags = skb_shinfo(head_skb)->nr_frags;
3504	int err = -ENOMEM;
3505	int i = 0;
3506	int pos;
3507	int dummy;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3508
3509	__skb_push(head_skb, doffset);
3510	proto = skb_network_protocol(head_skb, &dummy);
3511	if (unlikely(!proto))
3512		return ERR_PTR(-EINVAL);
3513
3514	sg = !!(features & NETIF_F_SG);
3515	csum = !!can_checksum_protocol(features, proto);
3516
3517	if (sg && csum && (mss != GSO_BY_FRAGS))  {
3518		if (!(features & NETIF_F_GSO_PARTIAL)) {
3519			struct sk_buff *iter;
3520			unsigned int frag_len;
3521
3522			if (!list_skb ||
3523			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3524				goto normal;
3525
3526			/* If we get here then all the required
3527			 * GSO features except frag_list are supported.
3528			 * Try to split the SKB to multiple GSO SKBs
3529			 * with no frag_list.
3530			 * Currently we can do that only when the buffers don't
3531			 * have a linear part and all the buffers except
3532			 * the last are of the same length.
3533			 */
3534			frag_len = list_skb->len;
3535			skb_walk_frags(head_skb, iter) {
3536				if (frag_len != iter->len && iter->next)
3537					goto normal;
3538				if (skb_headlen(iter) && !iter->head_frag)
3539					goto normal;
3540
3541				len -= iter->len;
3542			}
3543
3544			if (len != frag_len)
3545				goto normal;
3546		}
3547
3548		/* GSO partial only requires that we trim off any excess that
3549		 * doesn't fit into an MSS sized block, so take care of that
3550		 * now.
 
3551		 */
3552		partial_segs = len / mss;
3553		if (partial_segs > 1)
3554			mss *= partial_segs;
3555		else
3556			partial_segs = 0;
3557	}
3558
3559normal:
3560	headroom = skb_headroom(head_skb);
3561	pos = skb_headlen(head_skb);
3562
 
 
 
 
 
 
 
3563	do {
3564		struct sk_buff *nskb;
3565		skb_frag_t *nskb_frag;
3566		int hsize;
3567		int size;
3568
3569		if (unlikely(mss == GSO_BY_FRAGS)) {
3570			len = list_skb->len;
3571		} else {
3572			len = head_skb->len - offset;
3573			if (len > mss)
3574				len = mss;
3575		}
3576
3577		hsize = skb_headlen(head_skb) - offset;
3578		if (hsize < 0)
3579			hsize = 0;
3580		if (hsize > len || !sg)
3581			hsize = len;
3582
3583		if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3584		    (skb_headlen(list_skb) == len || sg)) {
3585			BUG_ON(skb_headlen(list_skb) > len);
3586
 
 
 
 
3587			i = 0;
3588			nfrags = skb_shinfo(list_skb)->nr_frags;
3589			frag = skb_shinfo(list_skb)->frags;
3590			frag_skb = list_skb;
3591			pos += skb_headlen(list_skb);
3592
3593			while (pos < offset + len) {
3594				BUG_ON(i >= nfrags);
3595
3596				size = skb_frag_size(frag);
3597				if (pos + size > offset + len)
3598					break;
3599
3600				i++;
3601				pos += size;
3602				frag++;
3603			}
3604
3605			nskb = skb_clone(list_skb, GFP_ATOMIC);
3606			list_skb = list_skb->next;
3607
3608			if (unlikely(!nskb))
3609				goto err;
3610
3611			if (unlikely(pskb_trim(nskb, len))) {
3612				kfree_skb(nskb);
3613				goto err;
3614			}
3615
3616			hsize = skb_end_offset(nskb);
3617			if (skb_cow_head(nskb, doffset + headroom)) {
3618				kfree_skb(nskb);
3619				goto err;
3620			}
3621
3622			nskb->truesize += skb_end_offset(nskb) - hsize;
3623			skb_release_head_state(nskb);
3624			__skb_push(nskb, doffset);
3625		} else {
 
 
 
 
 
3626			nskb = __alloc_skb(hsize + doffset + headroom,
3627					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3628					   NUMA_NO_NODE);
3629
3630			if (unlikely(!nskb))
3631				goto err;
3632
3633			skb_reserve(nskb, headroom);
3634			__skb_put(nskb, doffset);
3635		}
3636
3637		if (segs)
3638			tail->next = nskb;
3639		else
3640			segs = nskb;
3641		tail = nskb;
3642
3643		__copy_skb_header(nskb, head_skb);
3644
3645		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3646		skb_reset_mac_len(nskb);
3647
3648		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3649						 nskb->data - tnl_hlen,
3650						 doffset + tnl_hlen);
3651
3652		if (nskb->len == len + doffset)
3653			goto perform_csum_check;
3654
3655		if (!sg) {
3656			if (!nskb->remcsum_offload)
3657				nskb->ip_summed = CHECKSUM_NONE;
3658			SKB_GSO_CB(nskb)->csum =
3659				skb_copy_and_csum_bits(head_skb, offset,
3660						       skb_put(nskb, len),
3661						       len, 0);
3662			SKB_GSO_CB(nskb)->csum_start =
3663				skb_headroom(nskb) + doffset;
 
 
 
 
 
 
3664			continue;
3665		}
3666
3667		nskb_frag = skb_shinfo(nskb)->frags;
3668
3669		skb_copy_from_linear_data_offset(head_skb, offset,
3670						 skb_put(nskb, hsize), hsize);
3671
3672		skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags &
3673					      SKBTX_SHARED_FRAG;
3674
3675		if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3676		    skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
3677			goto err;
3678
3679		while (pos < offset + len) {
3680			if (i >= nfrags) {
 
 
 
 
 
3681				i = 0;
3682				nfrags = skb_shinfo(list_skb)->nr_frags;
3683				frag = skb_shinfo(list_skb)->frags;
3684				frag_skb = list_skb;
3685				if (!skb_headlen(list_skb)) {
3686					BUG_ON(!nfrags);
3687				} else {
3688					BUG_ON(!list_skb->head_frag);
3689
3690					/* to make room for head_frag. */
3691					i--;
3692					frag--;
3693				}
3694				if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3695				    skb_zerocopy_clone(nskb, frag_skb,
3696						       GFP_ATOMIC))
3697					goto err;
3698
3699				list_skb = list_skb->next;
3700			}
3701
3702			if (unlikely(skb_shinfo(nskb)->nr_frags >=
3703				     MAX_SKB_FRAGS)) {
3704				net_warn_ratelimited(
3705					"skb_segment: too many frags: %u %u\n",
3706					pos, mss);
 
3707				goto err;
3708			}
3709
3710			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
3711			__skb_frag_ref(nskb_frag);
3712			size = skb_frag_size(nskb_frag);
3713
3714			if (pos < offset) {
3715				nskb_frag->page_offset += offset - pos;
3716				skb_frag_size_sub(nskb_frag, offset - pos);
3717			}
3718
3719			skb_shinfo(nskb)->nr_frags++;
3720
3721			if (pos + size <= offset + len) {
3722				i++;
3723				frag++;
3724				pos += size;
3725			} else {
3726				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3727				goto skip_fraglist;
3728			}
3729
3730			nskb_frag++;
3731		}
3732
3733skip_fraglist:
3734		nskb->data_len = len - hsize;
3735		nskb->len += nskb->data_len;
3736		nskb->truesize += nskb->data_len;
3737
3738perform_csum_check:
3739		if (!csum) {
3740			if (skb_has_shared_frag(nskb)) {
3741				err = __skb_linearize(nskb);
3742				if (err)
3743					goto err;
3744			}
3745			if (!nskb->remcsum_offload)
3746				nskb->ip_summed = CHECKSUM_NONE;
3747			SKB_GSO_CB(nskb)->csum =
3748				skb_checksum(nskb, doffset,
3749					     nskb->len - doffset, 0);
3750			SKB_GSO_CB(nskb)->csum_start =
3751				skb_headroom(nskb) + doffset;
3752		}
3753	} while ((offset += len) < head_skb->len);
3754
3755	/* Some callers want to get the end of the list.
3756	 * Put it in segs->prev to avoid walking the list.
3757	 * (see validate_xmit_skb_list() for example)
3758	 */
3759	segs->prev = tail;
3760
3761	if (partial_segs) {
3762		struct sk_buff *iter;
3763		int type = skb_shinfo(head_skb)->gso_type;
3764		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
3765
3766		/* Update type to add partial and then remove dodgy if set */
3767		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
3768		type &= ~SKB_GSO_DODGY;
3769
3770		/* Update GSO info and prepare to start updating headers on
3771		 * our way back down the stack of protocols.
3772		 */
3773		for (iter = segs; iter; iter = iter->next) {
3774			skb_shinfo(iter)->gso_size = gso_size;
3775			skb_shinfo(iter)->gso_segs = partial_segs;
3776			skb_shinfo(iter)->gso_type = type;
3777			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
3778		}
3779
3780		if (tail->len - doffset <= gso_size)
3781			skb_shinfo(tail)->gso_size = 0;
3782		else if (tail != segs)
3783			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
3784	}
3785
3786	/* Following permits correct backpressure, for protocols
3787	 * using skb_set_owner_w().
3788	 * Idea is to tranfert ownership from head_skb to last segment.
3789	 */
3790	if (head_skb->destructor == sock_wfree) {
3791		swap(tail->truesize, head_skb->truesize);
3792		swap(tail->destructor, head_skb->destructor);
3793		swap(tail->sk, head_skb->sk);
3794	}
3795	return segs;
3796
3797err:
3798	kfree_skb_list(segs);
3799	return ERR_PTR(err);
3800}
3801EXPORT_SYMBOL_GPL(skb_segment);
3802
3803int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3804{
3805	struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3806	unsigned int offset = skb_gro_offset(skb);
3807	unsigned int headlen = skb_headlen(skb);
3808	unsigned int len = skb_gro_len(skb);
3809	struct sk_buff *lp, *p = *head;
3810	unsigned int delta_truesize;
3811
3812	if (unlikely(p->len + len >= 65536))
3813		return -E2BIG;
3814
3815	lp = NAPI_GRO_CB(p)->last;
3816	pinfo = skb_shinfo(lp);
3817
3818	if (headlen <= offset) {
3819		skb_frag_t *frag;
3820		skb_frag_t *frag2;
3821		int i = skbinfo->nr_frags;
3822		int nr_frags = pinfo->nr_frags + i;
3823
3824		if (nr_frags > MAX_SKB_FRAGS)
3825			goto merge;
3826
3827		offset -= headlen;
3828		pinfo->nr_frags = nr_frags;
3829		skbinfo->nr_frags = 0;
3830
3831		frag = pinfo->frags + nr_frags;
3832		frag2 = skbinfo->frags + i;
3833		do {
3834			*--frag = *--frag2;
3835		} while (--i);
3836
3837		frag->page_offset += offset;
3838		skb_frag_size_sub(frag, offset);
3839
3840		/* all fragments truesize : remove (head size + sk_buff) */
3841		delta_truesize = skb->truesize -
3842				 SKB_TRUESIZE(skb_end_offset(skb));
3843
3844		skb->truesize -= skb->data_len;
3845		skb->len -= skb->data_len;
3846		skb->data_len = 0;
3847
3848		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3849		goto done;
3850	} else if (skb->head_frag) {
3851		int nr_frags = pinfo->nr_frags;
3852		skb_frag_t *frag = pinfo->frags + nr_frags;
3853		struct page *page = virt_to_head_page(skb->head);
3854		unsigned int first_size = headlen - offset;
3855		unsigned int first_offset;
3856
3857		if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3858			goto merge;
3859
3860		first_offset = skb->data -
3861			       (unsigned char *)page_address(page) +
3862			       offset;
3863
3864		pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3865
3866		frag->page.p	  = page;
3867		frag->page_offset = first_offset;
3868		skb_frag_size_set(frag, first_size);
3869
3870		memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3871		/* We dont need to clear skbinfo->nr_frags here */
3872
3873		delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3874		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3875		goto done;
3876	}
3877
3878merge:
3879	delta_truesize = skb->truesize;
3880	if (offset > headlen) {
3881		unsigned int eat = offset - headlen;
3882
3883		skbinfo->frags[0].page_offset += eat;
3884		skb_frag_size_sub(&skbinfo->frags[0], eat);
3885		skb->data_len -= eat;
3886		skb->len -= eat;
3887		offset = headlen;
3888	}
3889
3890	__skb_pull(skb, offset);
 
3891
3892	if (NAPI_GRO_CB(p)->last == p)
3893		skb_shinfo(p)->frag_list = skb;
3894	else
3895		NAPI_GRO_CB(p)->last->next = skb;
3896	NAPI_GRO_CB(p)->last = skb;
3897	__skb_header_release(skb);
3898	lp = p;
3899
3900done:
3901	NAPI_GRO_CB(p)->count++;
3902	p->data_len += len;
3903	p->truesize += delta_truesize;
3904	p->len += len;
3905	if (lp != p) {
3906		lp->data_len += len;
3907		lp->truesize += delta_truesize;
3908		lp->len += len;
3909	}
3910	NAPI_GRO_CB(skb)->same_flow = 1;
3911	return 0;
3912}
3913EXPORT_SYMBOL_GPL(skb_gro_receive);
 
 
 
 
 
 
 
 
 
 
 
 
3914
3915void __init skb_init(void)
3916{
3917	skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
3918					      sizeof(struct sk_buff),
3919					      0,
3920					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
 
3921					      offsetof(struct sk_buff, cb),
3922					      sizeof_field(struct sk_buff, cb),
3923					      NULL);
3924	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3925						sizeof(struct sk_buff_fclones),
3926						0,
3927						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3928						NULL);
 
 
 
 
 
 
 
 
 
 
 
 
3929}
3930
3931static int
3932__skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
3933	       unsigned int recursion_level)
3934{
3935	int start = skb_headlen(skb);
3936	int i, copy = start - offset;
3937	struct sk_buff *frag_iter;
3938	int elt = 0;
3939
3940	if (unlikely(recursion_level >= 24))
3941		return -EMSGSIZE;
3942
3943	if (copy > 0) {
3944		if (copy > len)
3945			copy = len;
3946		sg_set_buf(sg, skb->data + offset, copy);
3947		elt++;
3948		if ((len -= copy) == 0)
3949			return elt;
3950		offset += copy;
3951	}
3952
3953	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3954		int end;
3955
3956		WARN_ON(start > offset + len);
3957
3958		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3959		if ((copy = end - offset) > 0) {
3960			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3961			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
3962				return -EMSGSIZE;
3963
3964			if (copy > len)
3965				copy = len;
3966			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3967					frag->page_offset+offset-start);
3968			elt++;
3969			if (!(len -= copy))
3970				return elt;
3971			offset += copy;
3972		}
3973		start = end;
3974	}
3975
3976	skb_walk_frags(skb, frag_iter) {
3977		int end, ret;
3978
3979		WARN_ON(start > offset + len);
3980
3981		end = start + frag_iter->len;
3982		if ((copy = end - offset) > 0) {
3983			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
3984				return -EMSGSIZE;
3985
3986			if (copy > len)
3987				copy = len;
3988			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3989					      copy, recursion_level + 1);
3990			if (unlikely(ret < 0))
3991				return ret;
3992			elt += ret;
3993			if ((len -= copy) == 0)
3994				return elt;
3995			offset += copy;
3996		}
3997		start = end;
3998	}
3999	BUG_ON(len);
4000	return elt;
4001}
4002
4003/**
4004 *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4005 *	@skb: Socket buffer containing the buffers to be mapped
4006 *	@sg: The scatter-gather list to map into
4007 *	@offset: The offset into the buffer's contents to start mapping
4008 *	@len: Length of buffer space to be mapped
4009 *
4010 *	Fill the specified scatter-gather list with mappings/pointers into a
4011 *	region of the buffer space attached to a socket buffer. Returns either
4012 *	the number of scatterlist items used, or -EMSGSIZE if the contents
4013 *	could not fit.
4014 */
4015int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4016{
4017	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4018
4019	if (nsg <= 0)
4020		return nsg;
4021
4022	sg_mark_end(&sg[nsg - 1]);
4023
4024	return nsg;
4025}
4026EXPORT_SYMBOL_GPL(skb_to_sgvec);
4027
4028/* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4029 * sglist without mark the sg which contain last skb data as the end.
4030 * So the caller can mannipulate sg list as will when padding new data after
4031 * the first call without calling sg_unmark_end to expend sg list.
4032 *
4033 * Scenario to use skb_to_sgvec_nomark:
4034 * 1. sg_init_table
4035 * 2. skb_to_sgvec_nomark(payload1)
4036 * 3. skb_to_sgvec_nomark(payload2)
4037 *
4038 * This is equivalent to:
4039 * 1. sg_init_table
4040 * 2. skb_to_sgvec(payload1)
4041 * 3. sg_unmark_end
4042 * 4. skb_to_sgvec(payload2)
4043 *
4044 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4045 * is more preferable.
4046 */
4047int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4048			int offset, int len)
4049{
4050	return __skb_to_sgvec(skb, sg, offset, len, 0);
4051}
4052EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4053
4054
4055
4056/**
4057 *	skb_cow_data - Check that a socket buffer's data buffers are writable
4058 *	@skb: The socket buffer to check.
4059 *	@tailbits: Amount of trailing space to be added
4060 *	@trailer: Returned pointer to the skb where the @tailbits space begins
4061 *
4062 *	Make sure that the data buffers attached to a socket buffer are
4063 *	writable. If they are not, private copies are made of the data buffers
4064 *	and the socket buffer is set to use these instead.
4065 *
4066 *	If @tailbits is given, make sure that there is space to write @tailbits
4067 *	bytes of data beyond current end of socket buffer.  @trailer will be
4068 *	set to point to the skb in which this space begins.
4069 *
4070 *	The number of scatterlist elements required to completely map the
4071 *	COW'd and extended socket buffer will be returned.
4072 */
4073int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4074{
4075	int copyflag;
4076	int elt;
4077	struct sk_buff *skb1, **skb_p;
4078
4079	/* If skb is cloned or its head is paged, reallocate
4080	 * head pulling out all the pages (pages are considered not writable
4081	 * at the moment even if they are anonymous).
4082	 */
4083	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4084	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
4085		return -ENOMEM;
4086
4087	/* Easy case. Most of packets will go this way. */
4088	if (!skb_has_frag_list(skb)) {
4089		/* A little of trouble, not enough of space for trailer.
4090		 * This should not happen, when stack is tuned to generate
4091		 * good frames. OK, on miss we reallocate and reserve even more
4092		 * space, 128 bytes is fair. */
4093
4094		if (skb_tailroom(skb) < tailbits &&
4095		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4096			return -ENOMEM;
4097
4098		/* Voila! */
4099		*trailer = skb;
4100		return 1;
4101	}
4102
4103	/* Misery. We are in troubles, going to mincer fragments... */
4104
4105	elt = 1;
4106	skb_p = &skb_shinfo(skb)->frag_list;
4107	copyflag = 0;
4108
4109	while ((skb1 = *skb_p) != NULL) {
4110		int ntail = 0;
4111
4112		/* The fragment is partially pulled by someone,
4113		 * this can happen on input. Copy it and everything
4114		 * after it. */
4115
4116		if (skb_shared(skb1))
4117			copyflag = 1;
4118
4119		/* If the skb is the last, worry about trailer. */
4120
4121		if (skb1->next == NULL && tailbits) {
4122			if (skb_shinfo(skb1)->nr_frags ||
4123			    skb_has_frag_list(skb1) ||
4124			    skb_tailroom(skb1) < tailbits)
4125				ntail = tailbits + 128;
4126		}
4127
4128		if (copyflag ||
4129		    skb_cloned(skb1) ||
4130		    ntail ||
4131		    skb_shinfo(skb1)->nr_frags ||
4132		    skb_has_frag_list(skb1)) {
4133			struct sk_buff *skb2;
4134
4135			/* Fuck, we are miserable poor guys... */
4136			if (ntail == 0)
4137				skb2 = skb_copy(skb1, GFP_ATOMIC);
4138			else
4139				skb2 = skb_copy_expand(skb1,
4140						       skb_headroom(skb1),
4141						       ntail,
4142						       GFP_ATOMIC);
4143			if (unlikely(skb2 == NULL))
4144				return -ENOMEM;
4145
4146			if (skb1->sk)
4147				skb_set_owner_w(skb2, skb1->sk);
4148
4149			/* Looking around. Are we still alive?
4150			 * OK, link new skb, drop old one */
4151
4152			skb2->next = skb1->next;
4153			*skb_p = skb2;
4154			kfree_skb(skb1);
4155			skb1 = skb2;
4156		}
4157		elt++;
4158		*trailer = skb1;
4159		skb_p = &skb1->next;
4160	}
4161
4162	return elt;
4163}
4164EXPORT_SYMBOL_GPL(skb_cow_data);
4165
4166static void sock_rmem_free(struct sk_buff *skb)
4167{
4168	struct sock *sk = skb->sk;
4169
4170	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4171}
4172
4173static void skb_set_err_queue(struct sk_buff *skb)
4174{
4175	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4176	 * So, it is safe to (mis)use it to mark skbs on the error queue.
4177	 */
4178	skb->pkt_type = PACKET_OUTGOING;
4179	BUILD_BUG_ON(PACKET_OUTGOING == 0);
4180}
4181
4182/*
4183 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4184 */
4185int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4186{
4187	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4188	    (unsigned int)sk->sk_rcvbuf)
4189		return -ENOMEM;
4190
4191	skb_orphan(skb);
4192	skb->sk = sk;
4193	skb->destructor = sock_rmem_free;
4194	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4195	skb_set_err_queue(skb);
4196
4197	/* before exiting rcu section, make sure dst is refcounted */
4198	skb_dst_force(skb);
4199
4200	skb_queue_tail(&sk->sk_error_queue, skb);
4201	if (!sock_flag(sk, SOCK_DEAD))
4202		sk->sk_error_report(sk);
4203	return 0;
4204}
4205EXPORT_SYMBOL(sock_queue_err_skb);
4206
4207static bool is_icmp_err_skb(const struct sk_buff *skb)
4208{
4209	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4210		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4211}
4212
4213struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4214{
4215	struct sk_buff_head *q = &sk->sk_error_queue;
4216	struct sk_buff *skb, *skb_next = NULL;
4217	bool icmp_next = false;
4218	unsigned long flags;
4219
 
 
 
4220	spin_lock_irqsave(&q->lock, flags);
4221	skb = __skb_dequeue(q);
4222	if (skb && (skb_next = skb_peek(q))) {
4223		icmp_next = is_icmp_err_skb(skb_next);
4224		if (icmp_next)
4225			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_origin;
4226	}
4227	spin_unlock_irqrestore(&q->lock, flags);
4228
4229	if (is_icmp_err_skb(skb) && !icmp_next)
4230		sk->sk_err = 0;
4231
4232	if (skb_next)
4233		sk->sk_error_report(sk);
4234
4235	return skb;
4236}
4237EXPORT_SYMBOL(sock_dequeue_err_skb);
4238
4239/**
4240 * skb_clone_sk - create clone of skb, and take reference to socket
4241 * @skb: the skb to clone
4242 *
4243 * This function creates a clone of a buffer that holds a reference on
4244 * sk_refcnt.  Buffers created via this function are meant to be
4245 * returned using sock_queue_err_skb, or free via kfree_skb.
4246 *
4247 * When passing buffers allocated with this function to sock_queue_err_skb
4248 * it is necessary to wrap the call with sock_hold/sock_put in order to
4249 * prevent the socket from being released prior to being enqueued on
4250 * the sk_error_queue.
4251 */
4252struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4253{
4254	struct sock *sk = skb->sk;
4255	struct sk_buff *clone;
4256
4257	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4258		return NULL;
4259
4260	clone = skb_clone(skb, GFP_ATOMIC);
4261	if (!clone) {
4262		sock_put(sk);
4263		return NULL;
4264	}
4265
4266	clone->sk = sk;
4267	clone->destructor = sock_efree;
4268
4269	return clone;
4270}
4271EXPORT_SYMBOL(skb_clone_sk);
4272
4273static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4274					struct sock *sk,
4275					int tstype,
4276					bool opt_stats)
4277{
4278	struct sock_exterr_skb *serr;
4279	int err;
4280
4281	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4282
4283	serr = SKB_EXT_ERR(skb);
4284	memset(serr, 0, sizeof(*serr));
4285	serr->ee.ee_errno = ENOMSG;
4286	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4287	serr->ee.ee_info = tstype;
4288	serr->opt_stats = opt_stats;
4289	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4290	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4291		serr->ee.ee_data = skb_shinfo(skb)->tskey;
4292		if (sk->sk_protocol == IPPROTO_TCP &&
4293		    sk->sk_type == SOCK_STREAM)
4294			serr->ee.ee_data -= sk->sk_tskey;
4295	}
4296
4297	err = sock_queue_err_skb(sk, skb);
4298
4299	if (err)
4300		kfree_skb(skb);
4301}
4302
4303static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4304{
4305	bool ret;
4306
4307	if (likely(sysctl_tstamp_allow_data || tsonly))
4308		return true;
4309
4310	read_lock_bh(&sk->sk_callback_lock);
4311	ret = sk->sk_socket && sk->sk_socket->file &&
4312	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4313	read_unlock_bh(&sk->sk_callback_lock);
4314	return ret;
4315}
4316
4317void skb_complete_tx_timestamp(struct sk_buff *skb,
4318			       struct skb_shared_hwtstamps *hwtstamps)
4319{
4320	struct sock *sk = skb->sk;
4321
4322	if (!skb_may_tx_timestamp(sk, false))
4323		goto err;
4324
4325	/* Take a reference to prevent skb_orphan() from freeing the socket,
4326	 * but only if the socket refcount is not zero.
4327	 */
4328	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4329		*skb_hwtstamps(skb) = *hwtstamps;
4330		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4331		sock_put(sk);
4332		return;
4333	}
4334
4335err:
4336	kfree_skb(skb);
4337}
4338EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4339
4340void __skb_tstamp_tx(struct sk_buff *orig_skb,
 
4341		     struct skb_shared_hwtstamps *hwtstamps,
4342		     struct sock *sk, int tstype)
4343{
4344	struct sk_buff *skb;
4345	bool tsonly, opt_stats = false;
 
4346
4347	if (!sk)
4348		return;
4349
4350	if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
 
4351	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4352		return;
4353
4354	tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4355	if (!skb_may_tx_timestamp(sk, tsonly))
4356		return;
4357
4358	if (tsonly) {
4359#ifdef CONFIG_INET
4360		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4361		    sk->sk_protocol == IPPROTO_TCP &&
4362		    sk->sk_type == SOCK_STREAM) {
4363			skb = tcp_get_timestamping_opt_stats(sk);
4364			opt_stats = true;
4365		} else
4366#endif
4367			skb = alloc_skb(0, GFP_ATOMIC);
4368	} else {
4369		skb = skb_clone(orig_skb, GFP_ATOMIC);
 
 
 
 
 
4370	}
4371	if (!skb)
4372		return;
4373
4374	if (tsonly) {
4375		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4376					     SKBTX_ANY_TSTAMP;
4377		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4378	}
4379
4380	if (hwtstamps)
4381		*skb_hwtstamps(skb) = *hwtstamps;
4382	else
4383		skb->tstamp = ktime_get_real();
4384
4385	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4386}
4387EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4388
4389void skb_tstamp_tx(struct sk_buff *orig_skb,
4390		   struct skb_shared_hwtstamps *hwtstamps)
4391{
4392	return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
4393			       SCM_TSTAMP_SND);
4394}
4395EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4396
 
4397void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4398{
4399	struct sock *sk = skb->sk;
4400	struct sock_exterr_skb *serr;
4401	int err = 1;
4402
4403	skb->wifi_acked_valid = 1;
4404	skb->wifi_acked = acked;
4405
4406	serr = SKB_EXT_ERR(skb);
4407	memset(serr, 0, sizeof(*serr));
4408	serr->ee.ee_errno = ENOMSG;
4409	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4410
4411	/* Take a reference to prevent skb_orphan() from freeing the socket,
4412	 * but only if the socket refcount is not zero.
4413	 */
4414	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4415		err = sock_queue_err_skb(sk, skb);
4416		sock_put(sk);
4417	}
4418	if (err)
4419		kfree_skb(skb);
4420}
4421EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
 
4422
4423/**
4424 * skb_partial_csum_set - set up and verify partial csum values for packet
4425 * @skb: the skb to set
4426 * @start: the number of bytes after skb->data to start checksumming.
4427 * @off: the offset from start to place the checksum.
4428 *
4429 * For untrusted partially-checksummed packets, we need to make sure the values
4430 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4431 *
4432 * This function checks and sets those values and skb->ip_summed: if this
4433 * returns false you should drop the packet.
4434 */
4435bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4436{
4437	if (unlikely(start > skb_headlen(skb)) ||
4438	    unlikely((int)start + off > skb_headlen(skb) - 2)) {
4439		net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
4440				     start, off, skb_headlen(skb));
 
 
4441		return false;
4442	}
4443	skb->ip_summed = CHECKSUM_PARTIAL;
4444	skb->csum_start = skb_headroom(skb) + start;
4445	skb->csum_offset = off;
4446	skb_set_transport_header(skb, start);
4447	return true;
4448}
4449EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4450
4451static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4452			       unsigned int max)
4453{
4454	if (skb_headlen(skb) >= len)
4455		return 0;
4456
4457	/* If we need to pullup then pullup to the max, so we
4458	 * won't need to do it again.
4459	 */
4460	if (max > skb->len)
4461		max = skb->len;
4462
4463	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4464		return -ENOMEM;
4465
4466	if (skb_headlen(skb) < len)
4467		return -EPROTO;
4468
4469	return 0;
4470}
4471
4472#define MAX_TCP_HDR_LEN (15 * 4)
4473
4474static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4475				      typeof(IPPROTO_IP) proto,
4476				      unsigned int off)
4477{
4478	switch (proto) {
4479		int err;
4480
 
4481	case IPPROTO_TCP:
4482		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4483					  off + MAX_TCP_HDR_LEN);
4484		if (!err && !skb_partial_csum_set(skb, off,
4485						  offsetof(struct tcphdr,
4486							   check)))
4487			err = -EPROTO;
4488		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4489
4490	case IPPROTO_UDP:
4491		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4492					  off + sizeof(struct udphdr));
4493		if (!err && !skb_partial_csum_set(skb, off,
4494						  offsetof(struct udphdr,
4495							   check)))
4496			err = -EPROTO;
4497		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4498	}
4499
4500	return ERR_PTR(-EPROTO);
4501}
4502
4503/* This value should be large enough to cover a tagged ethernet header plus
4504 * maximally sized IP and TCP or UDP headers.
4505 */
4506#define MAX_IP_HDR_LEN 128
4507
4508static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4509{
4510	unsigned int off;
4511	bool fragment;
4512	__sum16 *csum;
4513	int err;
4514
4515	fragment = false;
4516
4517	err = skb_maybe_pull_tail(skb,
4518				  sizeof(struct iphdr),
4519				  MAX_IP_HDR_LEN);
4520	if (err < 0)
4521		goto out;
4522
4523	if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
4524		fragment = true;
4525
4526	off = ip_hdrlen(skb);
4527
4528	err = -EPROTO;
4529
4530	if (fragment)
4531		goto out;
4532
4533	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4534	if (IS_ERR(csum))
4535		return PTR_ERR(csum);
4536
4537	if (recalculate)
4538		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4539					   ip_hdr(skb)->daddr,
4540					   skb->len - off,
4541					   ip_hdr(skb)->protocol, 0);
4542	err = 0;
4543
4544out:
4545	return err;
4546}
4547
4548/* This value should be large enough to cover a tagged ethernet header plus
4549 * an IPv6 header, all options, and a maximal TCP or UDP header.
4550 */
4551#define MAX_IPV6_HDR_LEN 256
4552
4553#define OPT_HDR(type, skb, off) \
4554	(type *)(skb_network_header(skb) + (off))
4555
4556static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4557{
4558	int err;
4559	u8 nexthdr;
4560	unsigned int off;
4561	unsigned int len;
4562	bool fragment;
4563	bool done;
4564	__sum16 *csum;
4565
4566	fragment = false;
4567	done = false;
4568
4569	off = sizeof(struct ipv6hdr);
4570
4571	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4572	if (err < 0)
4573		goto out;
4574
4575	nexthdr = ipv6_hdr(skb)->nexthdr;
4576
4577	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4578	while (off <= len && !done) {
4579		switch (nexthdr) {
4580		case IPPROTO_DSTOPTS:
4581		case IPPROTO_HOPOPTS:
4582		case IPPROTO_ROUTING: {
4583			struct ipv6_opt_hdr *hp;
4584
4585			err = skb_maybe_pull_tail(skb,
4586						  off +
4587						  sizeof(struct ipv6_opt_hdr),
4588						  MAX_IPV6_HDR_LEN);
4589			if (err < 0)
4590				goto out;
4591
4592			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4593			nexthdr = hp->nexthdr;
4594			off += ipv6_optlen(hp);
4595			break;
4596		}
4597		case IPPROTO_AH: {
4598			struct ip_auth_hdr *hp;
4599
4600			err = skb_maybe_pull_tail(skb,
4601						  off +
4602						  sizeof(struct ip_auth_hdr),
4603						  MAX_IPV6_HDR_LEN);
4604			if (err < 0)
4605				goto out;
4606
4607			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4608			nexthdr = hp->nexthdr;
4609			off += ipv6_authlen(hp);
4610			break;
4611		}
4612		case IPPROTO_FRAGMENT: {
4613			struct frag_hdr *hp;
4614
4615			err = skb_maybe_pull_tail(skb,
4616						  off +
4617						  sizeof(struct frag_hdr),
4618						  MAX_IPV6_HDR_LEN);
4619			if (err < 0)
4620				goto out;
4621
4622			hp = OPT_HDR(struct frag_hdr, skb, off);
4623
4624			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4625				fragment = true;
4626
4627			nexthdr = hp->nexthdr;
4628			off += sizeof(struct frag_hdr);
4629			break;
4630		}
4631		default:
4632			done = true;
4633			break;
4634		}
4635	}
4636
4637	err = -EPROTO;
4638
4639	if (!done || fragment)
4640		goto out;
4641
4642	csum = skb_checksum_setup_ip(skb, nexthdr, off);
4643	if (IS_ERR(csum))
4644		return PTR_ERR(csum);
4645
4646	if (recalculate)
4647		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4648					 &ipv6_hdr(skb)->daddr,
4649					 skb->len - off, nexthdr, 0);
4650	err = 0;
4651
4652out:
4653	return err;
4654}
4655
4656/**
4657 * skb_checksum_setup - set up partial checksum offset
4658 * @skb: the skb to set up
4659 * @recalculate: if true the pseudo-header checksum will be recalculated
4660 */
4661int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4662{
4663	int err;
4664
4665	switch (skb->protocol) {
4666	case htons(ETH_P_IP):
4667		err = skb_checksum_setup_ipv4(skb, recalculate);
4668		break;
4669
4670	case htons(ETH_P_IPV6):
4671		err = skb_checksum_setup_ipv6(skb, recalculate);
4672		break;
4673
4674	default:
4675		err = -EPROTO;
4676		break;
4677	}
4678
4679	return err;
4680}
4681EXPORT_SYMBOL(skb_checksum_setup);
4682
4683/**
4684 * skb_checksum_maybe_trim - maybe trims the given skb
4685 * @skb: the skb to check
4686 * @transport_len: the data length beyond the network header
4687 *
4688 * Checks whether the given skb has data beyond the given transport length.
4689 * If so, returns a cloned skb trimmed to this transport length.
4690 * Otherwise returns the provided skb. Returns NULL in error cases
4691 * (e.g. transport_len exceeds skb length or out-of-memory).
4692 *
4693 * Caller needs to set the skb transport header and free any returned skb if it
4694 * differs from the provided skb.
4695 */
4696static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
4697					       unsigned int transport_len)
4698{
4699	struct sk_buff *skb_chk;
4700	unsigned int len = skb_transport_offset(skb) + transport_len;
4701	int ret;
4702
4703	if (skb->len < len)
4704		return NULL;
4705	else if (skb->len == len)
4706		return skb;
4707
4708	skb_chk = skb_clone(skb, GFP_ATOMIC);
4709	if (!skb_chk)
4710		return NULL;
4711
4712	ret = pskb_trim_rcsum(skb_chk, len);
4713	if (ret) {
4714		kfree_skb(skb_chk);
4715		return NULL;
4716	}
4717
4718	return skb_chk;
4719}
4720
4721/**
4722 * skb_checksum_trimmed - validate checksum of an skb
4723 * @skb: the skb to check
4724 * @transport_len: the data length beyond the network header
4725 * @skb_chkf: checksum function to use
4726 *
4727 * Applies the given checksum function skb_chkf to the provided skb.
4728 * Returns a checked and maybe trimmed skb. Returns NULL on error.
4729 *
4730 * If the skb has data beyond the given transport length, then a
4731 * trimmed & cloned skb is checked and returned.
4732 *
4733 * Caller needs to set the skb transport header and free any returned skb if it
4734 * differs from the provided skb.
4735 */
4736struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4737				     unsigned int transport_len,
4738				     __sum16(*skb_chkf)(struct sk_buff *skb))
4739{
4740	struct sk_buff *skb_chk;
4741	unsigned int offset = skb_transport_offset(skb);
4742	__sum16 ret;
4743
4744	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
4745	if (!skb_chk)
4746		goto err;
4747
4748	if (!pskb_may_pull(skb_chk, offset))
4749		goto err;
4750
4751	skb_pull_rcsum(skb_chk, offset);
4752	ret = skb_chkf(skb_chk);
4753	skb_push_rcsum(skb_chk, offset);
4754
4755	if (ret)
4756		goto err;
4757
4758	return skb_chk;
4759
4760err:
4761	if (skb_chk && skb_chk != skb)
4762		kfree_skb(skb_chk);
4763
4764	return NULL;
4765
4766}
4767EXPORT_SYMBOL(skb_checksum_trimmed);
4768
4769void __skb_warn_lro_forwarding(const struct sk_buff *skb)
4770{
4771	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
4772			     skb->dev->name);
4773}
4774EXPORT_SYMBOL(__skb_warn_lro_forwarding);
4775
4776void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
4777{
4778	if (head_stolen) {
4779		skb_release_head_state(skb);
4780		kmem_cache_free(skbuff_head_cache, skb);
4781	} else {
4782		__kfree_skb(skb);
4783	}
4784}
4785EXPORT_SYMBOL(kfree_skb_partial);
4786
4787/**
4788 * skb_try_coalesce - try to merge skb to prior one
4789 * @to: prior buffer
4790 * @from: buffer to add
4791 * @fragstolen: pointer to boolean
4792 * @delta_truesize: how much more was allocated than was requested
4793 */
4794bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
4795		      bool *fragstolen, int *delta_truesize)
4796{
4797	struct skb_shared_info *to_shinfo, *from_shinfo;
4798	int i, delta, len = from->len;
4799
4800	*fragstolen = false;
4801
4802	if (skb_cloned(to))
4803		return false;
4804
 
 
 
 
 
 
 
 
 
4805	if (len <= skb_tailroom(to)) {
4806		if (len)
4807			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
4808		*delta_truesize = 0;
4809		return true;
4810	}
4811
4812	to_shinfo = skb_shinfo(to);
4813	from_shinfo = skb_shinfo(from);
4814	if (to_shinfo->frag_list || from_shinfo->frag_list)
4815		return false;
4816	if (skb_zcopy(to) || skb_zcopy(from))
4817		return false;
4818
4819	if (skb_headlen(from) != 0) {
4820		struct page *page;
4821		unsigned int offset;
4822
4823		if (to_shinfo->nr_frags +
4824		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
4825			return false;
4826
4827		if (skb_head_is_locked(from))
4828			return false;
4829
4830		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4831
4832		page = virt_to_head_page(from->head);
4833		offset = from->data - (unsigned char *)page_address(page);
4834
4835		skb_fill_page_desc(to, to_shinfo->nr_frags,
4836				   page, offset, skb_headlen(from));
4837		*fragstolen = true;
4838	} else {
4839		if (to_shinfo->nr_frags +
4840		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
4841			return false;
4842
4843		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
4844	}
4845
4846	WARN_ON_ONCE(delta < len);
4847
4848	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
4849	       from_shinfo->frags,
4850	       from_shinfo->nr_frags * sizeof(skb_frag_t));
4851	to_shinfo->nr_frags += from_shinfo->nr_frags;
4852
4853	if (!skb_cloned(from))
4854		from_shinfo->nr_frags = 0;
4855
4856	/* if the skb is not cloned this does nothing
4857	 * since we set nr_frags to 0.
4858	 */
4859	for (i = 0; i < from_shinfo->nr_frags; i++)
4860		__skb_frag_ref(&from_shinfo->frags[i]);
 
 
4861
4862	to->truesize += delta;
4863	to->len += len;
4864	to->data_len += len;
4865
4866	*delta_truesize = delta;
4867	return true;
4868}
4869EXPORT_SYMBOL(skb_try_coalesce);
4870
4871/**
4872 * skb_scrub_packet - scrub an skb
4873 *
4874 * @skb: buffer to clean
4875 * @xnet: packet is crossing netns
4876 *
4877 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
4878 * into/from a tunnel. Some information have to be cleared during these
4879 * operations.
4880 * skb_scrub_packet can also be used to clean a skb before injecting it in
4881 * another namespace (@xnet == true). We have to clear all information in the
4882 * skb that could impact namespace isolation.
4883 */
4884void skb_scrub_packet(struct sk_buff *skb, bool xnet)
4885{
4886	skb->tstamp = 0;
4887	skb->pkt_type = PACKET_HOST;
4888	skb->skb_iif = 0;
4889	skb->ignore_df = 0;
4890	skb_dst_drop(skb);
4891	secpath_reset(skb);
4892	nf_reset(skb);
4893	nf_reset_trace(skb);
4894
 
 
 
 
 
4895	if (!xnet)
4896		return;
4897
4898	ipvs_reset(skb);
4899	skb_orphan(skb);
4900	skb->mark = 0;
 
4901}
4902EXPORT_SYMBOL_GPL(skb_scrub_packet);
4903
4904/**
4905 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
4906 *
4907 * @skb: GSO skb
4908 *
4909 * skb_gso_transport_seglen is used to determine the real size of the
4910 * individual segments, including Layer4 headers (TCP/UDP).
4911 *
4912 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
4913 */
4914static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
4915{
4916	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4917	unsigned int thlen = 0;
4918
4919	if (skb->encapsulation) {
4920		thlen = skb_inner_transport_header(skb) -
4921			skb_transport_header(skb);
4922
4923		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
4924			thlen += inner_tcp_hdrlen(skb);
4925	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4926		thlen = tcp_hdrlen(skb);
4927	} else if (unlikely(skb_is_gso_sctp(skb))) {
4928		thlen = sizeof(struct sctphdr);
4929	}
4930	/* UFO sets gso_size to the size of the fragmentation
4931	 * payload, i.e. the size of the L4 (UDP) header is already
4932	 * accounted for.
4933	 */
4934	return thlen + shinfo->gso_size;
4935}
4936
4937/**
4938 * skb_gso_network_seglen - Return length of individual segments of a gso packet
4939 *
4940 * @skb: GSO skb
4941 *
4942 * skb_gso_network_seglen is used to determine the real size of the
4943 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
4944 *
4945 * The MAC/L2 header is not accounted for.
4946 */
4947static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
4948{
4949	unsigned int hdr_len = skb_transport_header(skb) -
4950			       skb_network_header(skb);
4951
4952	return hdr_len + skb_gso_transport_seglen(skb);
4953}
4954
4955/**
4956 * skb_gso_mac_seglen - Return length of individual segments of a gso packet
4957 *
4958 * @skb: GSO skb
4959 *
4960 * skb_gso_mac_seglen is used to determine the real size of the
4961 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
4962 * headers (TCP/UDP).
4963 */
4964static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
4965{
4966	unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
4967
4968	return hdr_len + skb_gso_transport_seglen(skb);
4969}
4970
4971/**
4972 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
4973 *
4974 * There are a couple of instances where we have a GSO skb, and we
4975 * want to determine what size it would be after it is segmented.
4976 *
4977 * We might want to check:
4978 * -    L3+L4+payload size (e.g. IP forwarding)
4979 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
4980 *
4981 * This is a helper to do that correctly considering GSO_BY_FRAGS.
4982 *
4983 * @seg_len: The segmented length (from skb_gso_*_seglen). In the
4984 *           GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
4985 *
4986 * @max_len: The maximum permissible length.
4987 *
4988 * Returns true if the segmented length <= max length.
4989 */
4990static inline bool skb_gso_size_check(const struct sk_buff *skb,
4991				      unsigned int seg_len,
4992				      unsigned int max_len) {
4993	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4994	const struct sk_buff *iter;
4995
4996	if (shinfo->gso_size != GSO_BY_FRAGS)
4997		return seg_len <= max_len;
4998
4999	/* Undo this so we can re-use header sizes */
5000	seg_len -= GSO_BY_FRAGS;
5001
5002	skb_walk_frags(skb, iter) {
5003		if (seg_len + skb_headlen(iter) > max_len)
5004			return false;
5005	}
5006
5007	return true;
5008}
5009
5010/**
5011 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5012 *
5013 * @skb: GSO skb
5014 * @mtu: MTU to validate against
5015 *
5016 * skb_gso_validate_network_len validates if a given skb will fit a
5017 * wanted MTU once split. It considers L3 headers, L4 headers, and the
5018 * payload.
5019 */
5020bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5021{
5022	return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5023}
5024EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5025
5026/**
5027 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5028 *
5029 * @skb: GSO skb
5030 * @len: length to validate against
5031 *
5032 * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5033 * length once split, including L2, L3 and L4 headers and the payload.
5034 */
5035bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5036{
5037	return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5038}
5039EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5040
5041static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5042{
5043	int mac_len;
 
5044
5045	if (skb_cow(skb, skb_headroom(skb)) < 0) {
5046		kfree_skb(skb);
5047		return NULL;
5048	}
5049
5050	mac_len = skb->data - skb_mac_header(skb);
5051	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5052		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5053			mac_len - VLAN_HLEN - ETH_TLEN);
5054	}
 
 
 
 
 
 
 
5055	skb->mac_header += VLAN_HLEN;
5056	return skb;
5057}
5058
5059struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5060{
5061	struct vlan_hdr *vhdr;
5062	u16 vlan_tci;
5063
5064	if (unlikely(skb_vlan_tag_present(skb))) {
5065		/* vlan_tci is already set-up so leave this for another time */
5066		return skb;
5067	}
5068
5069	skb = skb_share_check(skb, GFP_ATOMIC);
5070	if (unlikely(!skb))
5071		goto err_free;
5072
5073	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
5074		goto err_free;
5075
5076	vhdr = (struct vlan_hdr *)skb->data;
5077	vlan_tci = ntohs(vhdr->h_vlan_TCI);
5078	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5079
5080	skb_pull_rcsum(skb, VLAN_HLEN);
5081	vlan_set_encap_proto(skb, vhdr);
5082
5083	skb = skb_reorder_vlan_header(skb);
5084	if (unlikely(!skb))
5085		goto err_free;
5086
5087	skb_reset_network_header(skb);
5088	skb_reset_transport_header(skb);
 
5089	skb_reset_mac_len(skb);
5090
5091	return skb;
5092
5093err_free:
5094	kfree_skb(skb);
5095	return NULL;
5096}
5097EXPORT_SYMBOL(skb_vlan_untag);
5098
5099int skb_ensure_writable(struct sk_buff *skb, int write_len)
5100{
5101	if (!pskb_may_pull(skb, write_len))
5102		return -ENOMEM;
5103
5104	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5105		return 0;
5106
5107	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5108}
5109EXPORT_SYMBOL(skb_ensure_writable);
5110
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5111/* remove VLAN header from packet and update csum accordingly.
5112 * expects a non skb_vlan_tag_present skb with a vlan tag payload
5113 */
5114int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5115{
5116	struct vlan_hdr *vhdr;
5117	int offset = skb->data - skb_mac_header(skb);
5118	int err;
5119
5120	if (WARN_ONCE(offset,
5121		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5122		      offset)) {
5123		return -EINVAL;
5124	}
5125
5126	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5127	if (unlikely(err))
5128		return err;
5129
5130	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5131
5132	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5133	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
5134
5135	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5136	__skb_pull(skb, VLAN_HLEN);
5137
5138	vlan_set_encap_proto(skb, vhdr);
5139	skb->mac_header += VLAN_HLEN;
5140
5141	if (skb_network_offset(skb) < ETH_HLEN)
5142		skb_set_network_header(skb, ETH_HLEN);
5143
5144	skb_reset_mac_len(skb);
5145
5146	return err;
5147}
5148EXPORT_SYMBOL(__skb_vlan_pop);
5149
5150/* Pop a vlan tag either from hwaccel or from payload.
5151 * Expects skb->data at mac header.
5152 */
5153int skb_vlan_pop(struct sk_buff *skb)
5154{
5155	u16 vlan_tci;
5156	__be16 vlan_proto;
5157	int err;
5158
5159	if (likely(skb_vlan_tag_present(skb))) {
5160		skb->vlan_tci = 0;
5161	} else {
5162		if (unlikely(!eth_type_vlan(skb->protocol)))
5163			return 0;
5164
5165		err = __skb_vlan_pop(skb, &vlan_tci);
5166		if (err)
5167			return err;
5168	}
5169	/* move next vlan tag to hw accel tag */
5170	if (likely(!eth_type_vlan(skb->protocol)))
5171		return 0;
5172
5173	vlan_proto = skb->protocol;
5174	err = __skb_vlan_pop(skb, &vlan_tci);
5175	if (unlikely(err))
5176		return err;
5177
5178	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5179	return 0;
5180}
5181EXPORT_SYMBOL(skb_vlan_pop);
5182
5183/* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5184 * Expects skb->data at mac header.
5185 */
5186int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5187{
5188	if (skb_vlan_tag_present(skb)) {
5189		int offset = skb->data - skb_mac_header(skb);
5190		int err;
5191
5192		if (WARN_ONCE(offset,
5193			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5194			      offset)) {
5195			return -EINVAL;
5196		}
5197
5198		err = __vlan_insert_tag(skb, skb->vlan_proto,
5199					skb_vlan_tag_get(skb));
5200		if (err)
5201			return err;
5202
5203		skb->protocol = skb->vlan_proto;
5204		skb->mac_len += VLAN_HLEN;
5205
5206		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5207	}
5208	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5209	return 0;
5210}
5211EXPORT_SYMBOL(skb_vlan_push);
5212
5213/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5214 * alloc_skb_with_frags - allocate skb with page frags
5215 *
5216 * @header_len: size of linear part
5217 * @data_len: needed length in frags
5218 * @max_page_order: max page order desired.
5219 * @errcode: pointer to error code if any
5220 * @gfp_mask: allocation mask
5221 *
5222 * This can be used to allocate a paged skb, given a maximal order for frags.
5223 */
5224struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5225				     unsigned long data_len,
5226				     int max_page_order,
5227				     int *errcode,
5228				     gfp_t gfp_mask)
5229{
5230	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5231	unsigned long chunk;
5232	struct sk_buff *skb;
5233	struct page *page;
5234	gfp_t gfp_head;
5235	int i;
5236
5237	*errcode = -EMSGSIZE;
5238	/* Note this test could be relaxed, if we succeed to allocate
5239	 * high order pages...
5240	 */
5241	if (npages > MAX_SKB_FRAGS)
5242		return NULL;
5243
5244	gfp_head = gfp_mask;
5245	if (gfp_head & __GFP_DIRECT_RECLAIM)
5246		gfp_head |= __GFP_RETRY_MAYFAIL;
5247
5248	*errcode = -ENOBUFS;
5249	skb = alloc_skb(header_len, gfp_head);
5250	if (!skb)
5251		return NULL;
5252
5253	skb->truesize += npages << PAGE_SHIFT;
5254
5255	for (i = 0; npages > 0; i++) {
5256		int order = max_page_order;
 
5257
5258		while (order) {
5259			if (npages >= 1 << order) {
5260				page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
5261						   __GFP_COMP |
5262						   __GFP_NOWARN |
5263						   __GFP_NORETRY,
5264						   order);
5265				if (page)
5266					goto fill_page;
5267				/* Do not retry other high order allocations */
5268				order = 1;
5269				max_page_order = 0;
5270			}
5271			order--;
 
 
 
5272		}
5273		page = alloc_page(gfp_mask);
5274		if (!page)
5275			goto failure;
5276fill_page:
5277		chunk = min_t(unsigned long, data_len,
5278			      PAGE_SIZE << order);
5279		skb_fill_page_desc(skb, i, page, 0, chunk);
 
 
5280		data_len -= chunk;
5281		npages -= 1 << order;
5282	}
5283	return skb;
5284
5285failure:
5286	kfree_skb(skb);
5287	return NULL;
5288}
5289EXPORT_SYMBOL(alloc_skb_with_frags);
5290
5291/* carve out the first off bytes from skb when off < headlen */
5292static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
5293				    const int headlen, gfp_t gfp_mask)
5294{
5295	int i;
5296	int size = skb_end_offset(skb);
5297	int new_hlen = headlen - off;
5298	u8 *data;
5299
5300	size = SKB_DATA_ALIGN(size);
5301
5302	if (skb_pfmemalloc(skb))
5303		gfp_mask |= __GFP_MEMALLOC;
5304	data = kmalloc_reserve(size +
5305			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5306			       gfp_mask, NUMA_NO_NODE, NULL);
5307	if (!data)
5308		return -ENOMEM;
5309
5310	size = SKB_WITH_OVERHEAD(ksize(data));
5311
5312	/* Copy real data, and all frags */
5313	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
5314	skb->len -= off;
5315
5316	memcpy((struct skb_shared_info *)(data + size),
5317	       skb_shinfo(skb),
5318	       offsetof(struct skb_shared_info,
5319			frags[skb_shinfo(skb)->nr_frags]));
5320	if (skb_cloned(skb)) {
5321		/* drop the old head gracefully */
5322		if (skb_orphan_frags(skb, gfp_mask)) {
5323			kfree(data);
5324			return -ENOMEM;
5325		}
5326		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
5327			skb_frag_ref(skb, i);
5328		if (skb_has_frag_list(skb))
5329			skb_clone_fraglist(skb);
5330		skb_release_data(skb);
5331	} else {
5332		/* we can reuse existing recount- all we did was
5333		 * relocate values
5334		 */
5335		skb_free_head(skb);
5336	}
5337
5338	skb->head = data;
5339	skb->data = data;
5340	skb->head_frag = 0;
5341#ifdef NET_SKBUFF_DATA_USES_OFFSET
5342	skb->end = size;
5343#else
5344	skb->end = skb->head + size;
5345#endif
5346	skb_set_tail_pointer(skb, skb_headlen(skb));
5347	skb_headers_offset_update(skb, 0);
5348	skb->cloned = 0;
5349	skb->hdr_len = 0;
5350	skb->nohdr = 0;
5351	atomic_set(&skb_shinfo(skb)->dataref, 1);
5352
5353	return 0;
5354}
5355
5356static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
5357
5358/* carve out the first eat bytes from skb's frag_list. May recurse into
5359 * pskb_carve()
5360 */
5361static int pskb_carve_frag_list(struct sk_buff *skb,
5362				struct skb_shared_info *shinfo, int eat,
5363				gfp_t gfp_mask)
5364{
5365	struct sk_buff *list = shinfo->frag_list;
5366	struct sk_buff *clone = NULL;
5367	struct sk_buff *insp = NULL;
5368
5369	do {
5370		if (!list) {
5371			pr_err("Not enough bytes to eat. Want %d\n", eat);
5372			return -EFAULT;
5373		}
5374		if (list->len <= eat) {
5375			/* Eaten as whole. */
5376			eat -= list->len;
5377			list = list->next;
5378			insp = list;
5379		} else {
5380			/* Eaten partially. */
5381			if (skb_shared(list)) {
5382				clone = skb_clone(list, gfp_mask);
5383				if (!clone)
5384					return -ENOMEM;
5385				insp = list->next;
5386				list = clone;
5387			} else {
5388				/* This may be pulled without problems. */
5389				insp = list;
5390			}
5391			if (pskb_carve(list, eat, gfp_mask) < 0) {
5392				kfree_skb(clone);
5393				return -ENOMEM;
5394			}
5395			break;
5396		}
5397	} while (eat);
5398
5399	/* Free pulled out fragments. */
5400	while ((list = shinfo->frag_list) != insp) {
5401		shinfo->frag_list = list->next;
5402		kfree_skb(list);
5403	}
5404	/* And insert new clone at head. */
5405	if (clone) {
5406		clone->next = list;
5407		shinfo->frag_list = clone;
5408	}
5409	return 0;
5410}
5411
5412/* carve off first len bytes from skb. Split line (off) is in the
5413 * non-linear part of skb
5414 */
5415static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
5416				       int pos, gfp_t gfp_mask)
5417{
5418	int i, k = 0;
5419	int size = skb_end_offset(skb);
5420	u8 *data;
5421	const int nfrags = skb_shinfo(skb)->nr_frags;
5422	struct skb_shared_info *shinfo;
5423
5424	size = SKB_DATA_ALIGN(size);
5425
5426	if (skb_pfmemalloc(skb))
5427		gfp_mask |= __GFP_MEMALLOC;
5428	data = kmalloc_reserve(size +
5429			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5430			       gfp_mask, NUMA_NO_NODE, NULL);
5431	if (!data)
5432		return -ENOMEM;
5433
5434	size = SKB_WITH_OVERHEAD(ksize(data));
5435
5436	memcpy((struct skb_shared_info *)(data + size),
5437	       skb_shinfo(skb), offsetof(struct skb_shared_info,
5438					 frags[skb_shinfo(skb)->nr_frags]));
5439	if (skb_orphan_frags(skb, gfp_mask)) {
5440		kfree(data);
5441		return -ENOMEM;
5442	}
5443	shinfo = (struct skb_shared_info *)(data + size);
5444	for (i = 0; i < nfrags; i++) {
5445		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
5446
5447		if (pos + fsize > off) {
5448			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
5449
5450			if (pos < off) {
5451				/* Split frag.
5452				 * We have two variants in this case:
5453				 * 1. Move all the frag to the second
5454				 *    part, if it is possible. F.e.
5455				 *    this approach is mandatory for TUX,
5456				 *    where splitting is expensive.
5457				 * 2. Split is accurately. We make this.
5458				 */
5459				shinfo->frags[0].page_offset += off - pos;
5460				skb_frag_size_sub(&shinfo->frags[0], off - pos);
5461			}
5462			skb_frag_ref(skb, i);
5463			k++;
5464		}
5465		pos += fsize;
5466	}
5467	shinfo->nr_frags = k;
5468	if (skb_has_frag_list(skb))
5469		skb_clone_fraglist(skb);
5470
5471	if (k == 0) {
5472		/* split line is in frag list */
5473		pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask);
 
 
 
 
5474	}
5475	skb_release_data(skb);
5476
5477	skb->head = data;
5478	skb->head_frag = 0;
5479	skb->data = data;
5480#ifdef NET_SKBUFF_DATA_USES_OFFSET
5481	skb->end = size;
5482#else
5483	skb->end = skb->head + size;
5484#endif
5485	skb_reset_tail_pointer(skb);
5486	skb_headers_offset_update(skb, 0);
5487	skb->cloned   = 0;
5488	skb->hdr_len  = 0;
5489	skb->nohdr    = 0;
5490	skb->len -= off;
5491	skb->data_len = skb->len;
5492	atomic_set(&skb_shinfo(skb)->dataref, 1);
5493	return 0;
5494}
5495
5496/* remove len bytes from the beginning of the skb */
5497static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
5498{
5499	int headlen = skb_headlen(skb);
5500
5501	if (len < headlen)
5502		return pskb_carve_inside_header(skb, len, headlen, gfp);
5503	else
5504		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
5505}
5506
5507/* Extract to_copy bytes starting at off from skb, and return this in
5508 * a new skb
5509 */
5510struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
5511			     int to_copy, gfp_t gfp)
5512{
5513	struct sk_buff  *clone = skb_clone(skb, gfp);
5514
5515	if (!clone)
5516		return NULL;
5517
5518	if (pskb_carve(clone, off, gfp) < 0 ||
5519	    pskb_trim(clone, to_copy)) {
5520		kfree_skb(clone);
5521		return NULL;
5522	}
5523	return clone;
5524}
5525EXPORT_SYMBOL(pskb_extract);
5526
5527/**
5528 * skb_condense - try to get rid of fragments/frag_list if possible
5529 * @skb: buffer
5530 *
5531 * Can be used to save memory before skb is added to a busy queue.
5532 * If packet has bytes in frags and enough tail room in skb->head,
5533 * pull all of them, so that we can free the frags right now and adjust
5534 * truesize.
5535 * Notes:
5536 *	We do not reallocate skb->head thus can not fail.
5537 *	Caller must re-evaluate skb->truesize if needed.
5538 */
5539void skb_condense(struct sk_buff *skb)
5540{
5541	if (skb->data_len) {
5542		if (skb->data_len > skb->end - skb->tail ||
5543		    skb_cloned(skb))
5544			return;
5545
5546		/* Nice, we can free page frag(s) right now */
5547		__pskb_pull_tail(skb, skb->data_len);
5548	}
5549	/* At this point, skb->truesize might be over estimated,
5550	 * because skb had a fragment, and fragments do not tell
5551	 * their truesize.
5552	 * When we pulled its content into skb->head, fragment
5553	 * was freed, but __pskb_pull_tail() could not possibly
5554	 * adjust skb->truesize, not knowing the frag truesize.
5555	 */
5556	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5557}
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *	Routines having to do with the 'struct sk_buff' memory handlers.
   4 *
   5 *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
   6 *			Florian La Roche <rzsfl@rz.uni-sb.de>
   7 *
   8 *	Fixes:
   9 *		Alan Cox	:	Fixed the worst of the load
  10 *					balancer bugs.
  11 *		Dave Platt	:	Interrupt stacking fix.
  12 *	Richard Kooijman	:	Timestamp fixes.
  13 *		Alan Cox	:	Changed buffer format.
  14 *		Alan Cox	:	destructor hook for AF_UNIX etc.
  15 *		Linus Torvalds	:	Better skb_clone.
  16 *		Alan Cox	:	Added skb_copy.
  17 *		Alan Cox	:	Added all the changed routines Linus
  18 *					only put in the headers
  19 *		Ray VanTassle	:	Fixed --skb->lock in free
  20 *		Alan Cox	:	skb_copy copy arp field
  21 *		Andi Kleen	:	slabified it.
  22 *		Robert Olsson	:	Removed skb_head_pool
  23 *
  24 *	NOTE:
  25 *		The __skb_ routines should be called with interrupts
  26 *	disabled, or you better be *real* sure that the operation is atomic
  27 *	with respect to whatever list is being frobbed (e.g. via lock_sock()
  28 *	or via disabling bottom half handlers, etc).
 
 
 
 
 
  29 */
  30
  31/*
  32 *	The functions in this file will not compile correctly with gcc 2.4.x
  33 */
  34
  35#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  36
  37#include <linux/module.h>
  38#include <linux/types.h>
  39#include <linux/kernel.h>
  40#include <linux/mm.h>
  41#include <linux/interrupt.h>
  42#include <linux/in.h>
  43#include <linux/inet.h>
  44#include <linux/slab.h>
  45#include <linux/tcp.h>
  46#include <linux/udp.h>
  47#include <linux/sctp.h>
  48#include <linux/netdevice.h>
  49#ifdef CONFIG_NET_CLS_ACT
  50#include <net/pkt_sched.h>
  51#endif
  52#include <linux/string.h>
  53#include <linux/skbuff.h>
  54#include <linux/splice.h>
  55#include <linux/cache.h>
  56#include <linux/rtnetlink.h>
  57#include <linux/init.h>
  58#include <linux/scatterlist.h>
  59#include <linux/errqueue.h>
  60#include <linux/prefetch.h>
  61#include <linux/bitfield.h>
  62#include <linux/if_vlan.h>
  63#include <linux/mpls.h>
  64#include <linux/kcov.h>
  65#include <linux/iov_iter.h>
  66
  67#include <net/protocol.h>
  68#include <net/dst.h>
  69#include <net/sock.h>
  70#include <net/checksum.h>
  71#include <net/gso.h>
  72#include <net/hotdata.h>
  73#include <net/ip6_checksum.h>
  74#include <net/xfrm.h>
  75#include <net/mpls.h>
  76#include <net/mptcp.h>
  77#include <net/mctp.h>
  78#include <net/page_pool/helpers.h>
  79#include <net/dropreason.h>
  80
  81#include <linux/uaccess.h>
  82#include <trace/events/skb.h>
  83#include <linux/highmem.h>
  84#include <linux/capability.h>
  85#include <linux/user_namespace.h>
  86#include <linux/indirect_call_wrapper.h>
  87#include <linux/textsearch.h>
  88
  89#include "dev.h"
  90#include "sock_destructor.h"
  91
  92#ifdef CONFIG_SKB_EXTENSIONS
  93static struct kmem_cache *skbuff_ext_cache __ro_after_init;
  94#endif
  95
  96#define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(MAX_TCP_HEADER)
  97
  98/* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two.
  99 * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique
 100 * size, and we can differentiate heads from skb_small_head_cache
 101 * vs system slabs by looking at their size (skb_end_offset()).
 102 */
 103#define SKB_SMALL_HEAD_CACHE_SIZE					\
 104	(is_power_of_2(SKB_SMALL_HEAD_SIZE) ?			\
 105		(SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) :	\
 106		SKB_SMALL_HEAD_SIZE)
 107
 108#define SKB_SMALL_HEAD_HEADROOM						\
 109	SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE)
 110
 
 
 111int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
 112EXPORT_SYMBOL(sysctl_max_skb_frags);
 113
 114/* kcm_write_msgs() relies on casting paged frags to bio_vec to use
 115 * iov_iter_bvec(). These static asserts ensure the cast is valid is long as the
 116 * netmem is a page.
 117 */
 118static_assert(offsetof(struct bio_vec, bv_page) ==
 119	      offsetof(skb_frag_t, netmem));
 120static_assert(sizeof_field(struct bio_vec, bv_page) ==
 121	      sizeof_field(skb_frag_t, netmem));
 122
 123static_assert(offsetof(struct bio_vec, bv_len) == offsetof(skb_frag_t, len));
 124static_assert(sizeof_field(struct bio_vec, bv_len) ==
 125	      sizeof_field(skb_frag_t, len));
 126
 127static_assert(offsetof(struct bio_vec, bv_offset) ==
 128	      offsetof(skb_frag_t, offset));
 129static_assert(sizeof_field(struct bio_vec, bv_offset) ==
 130	      sizeof_field(skb_frag_t, offset));
 131
 132#undef FN
 133#define FN(reason) [SKB_DROP_REASON_##reason] = #reason,
 134static const char * const drop_reasons[] = {
 135	[SKB_CONSUMED] = "CONSUMED",
 136	DEFINE_DROP_REASON(FN, FN)
 137};
 138
 139static const struct drop_reason_list drop_reasons_core = {
 140	.reasons = drop_reasons,
 141	.n_reasons = ARRAY_SIZE(drop_reasons),
 142};
 143
 144const struct drop_reason_list __rcu *
 145drop_reasons_by_subsys[SKB_DROP_REASON_SUBSYS_NUM] = {
 146	[SKB_DROP_REASON_SUBSYS_CORE] = RCU_INITIALIZER(&drop_reasons_core),
 147};
 148EXPORT_SYMBOL(drop_reasons_by_subsys);
 149
 150/**
 151 * drop_reasons_register_subsys - register another drop reason subsystem
 152 * @subsys: the subsystem to register, must not be the core
 153 * @list: the list of drop reasons within the subsystem, must point to
 154 *	a statically initialized list
 155 */
 156void drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys,
 157				  const struct drop_reason_list *list)
 158{
 159	if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
 160		 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
 161		 "invalid subsystem %d\n", subsys))
 162		return;
 163
 164	/* must point to statically allocated memory, so INIT is OK */
 165	RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], list);
 166}
 167EXPORT_SYMBOL_GPL(drop_reasons_register_subsys);
 168
 169/**
 170 * drop_reasons_unregister_subsys - unregister a drop reason subsystem
 171 * @subsys: the subsystem to remove, must not be the core
 172 *
 173 * Note: This will synchronize_rcu() to ensure no users when it returns.
 174 */
 175void drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys)
 176{
 177	if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
 178		 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
 179		 "invalid subsystem %d\n", subsys))
 180		return;
 181
 182	RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], NULL);
 183
 184	synchronize_rcu();
 185}
 186EXPORT_SYMBOL_GPL(drop_reasons_unregister_subsys);
 187
 188/**
 189 *	skb_panic - private function for out-of-line support
 190 *	@skb:	buffer
 191 *	@sz:	size
 192 *	@addr:	address
 193 *	@msg:	skb_over_panic or skb_under_panic
 194 *
 195 *	Out-of-line support for skb_put() and skb_push().
 196 *	Called via the wrapper skb_over_panic() or skb_under_panic().
 197 *	Keep out of line to prevent kernel bloat.
 198 *	__builtin_return_address is not used because it is not always reliable.
 199 */
 200static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
 201		      const char msg[])
 202{
 203	pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
 204		 msg, addr, skb->len, sz, skb->head, skb->data,
 205		 (unsigned long)skb->tail, (unsigned long)skb->end,
 206		 skb->dev ? skb->dev->name : "<NULL>");
 207	BUG();
 208}
 209
 210static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
 211{
 212	skb_panic(skb, sz, addr, __func__);
 213}
 214
 215static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
 216{
 217	skb_panic(skb, sz, addr, __func__);
 218}
 219
 220#define NAPI_SKB_CACHE_SIZE	64
 221#define NAPI_SKB_CACHE_BULK	16
 222#define NAPI_SKB_CACHE_HALF	(NAPI_SKB_CACHE_SIZE / 2)
 223
 224#if PAGE_SIZE == SZ_4K
 225
 226#define NAPI_HAS_SMALL_PAGE_FRAG	1
 227#define NAPI_SMALL_PAGE_PFMEMALLOC(nc)	((nc).pfmemalloc)
 228
 229/* specialized page frag allocator using a single order 0 page
 230 * and slicing it into 1K sized fragment. Constrained to systems
 231 * with a very limited amount of 1K fragments fitting a single
 232 * page - to avoid excessive truesize underestimation
 233 */
 234
 235struct page_frag_1k {
 236	void *va;
 237	u16 offset;
 238	bool pfmemalloc;
 239};
 240
 241static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp)
 242{
 243	struct page *page;
 244	int offset;
 245
 246	offset = nc->offset - SZ_1K;
 247	if (likely(offset >= 0))
 248		goto use_frag;
 249
 250	page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
 251	if (!page)
 252		return NULL;
 253
 254	nc->va = page_address(page);
 255	nc->pfmemalloc = page_is_pfmemalloc(page);
 256	offset = PAGE_SIZE - SZ_1K;
 257	page_ref_add(page, offset / SZ_1K);
 258
 259use_frag:
 260	nc->offset = offset;
 261	return nc->va + offset;
 262}
 263#else
 264
 265/* the small page is actually unused in this build; add dummy helpers
 266 * to please the compiler and avoid later preprocessor's conditionals
 267 */
 268#define NAPI_HAS_SMALL_PAGE_FRAG	0
 269#define NAPI_SMALL_PAGE_PFMEMALLOC(nc)	false
 270
 271struct page_frag_1k {
 272};
 273
 274static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp_mask)
 275{
 276	return NULL;
 277}
 278
 279#endif
 280
 281struct napi_alloc_cache {
 282	struct page_frag_cache page;
 283	struct page_frag_1k page_small;
 284	unsigned int skb_count;
 285	void *skb_cache[NAPI_SKB_CACHE_SIZE];
 286};
 287
 288static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
 289static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
 290
 291/* Double check that napi_get_frags() allocates skbs with
 292 * skb->head being backed by slab, not a page fragment.
 293 * This is to make sure bug fixed in 3226b158e67c
 294 * ("net: avoid 32 x truesize under-estimation for tiny skbs")
 295 * does not accidentally come back.
 296 */
 297void napi_get_frags_check(struct napi_struct *napi)
 298{
 299	struct sk_buff *skb;
 300
 301	local_bh_disable();
 302	skb = napi_get_frags(napi);
 303	WARN_ON_ONCE(!NAPI_HAS_SMALL_PAGE_FRAG && skb && skb->head_frag);
 304	napi_free_frags(napi);
 305	local_bh_enable();
 306}
 307
 308void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
 309{
 310	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
 311
 312	fragsz = SKB_DATA_ALIGN(fragsz);
 313
 314	return __page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC,
 315				       align_mask);
 316}
 317EXPORT_SYMBOL(__napi_alloc_frag_align);
 318
 319void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
 320{
 321	void *data;
 322
 323	fragsz = SKB_DATA_ALIGN(fragsz);
 324	if (in_hardirq() || irqs_disabled()) {
 325		struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache);
 326
 327		data = __page_frag_alloc_align(nc, fragsz, GFP_ATOMIC,
 328					       align_mask);
 329	} else {
 330		struct napi_alloc_cache *nc;
 331
 332		local_bh_disable();
 333		nc = this_cpu_ptr(&napi_alloc_cache);
 334		data = __page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC,
 335					       align_mask);
 336		local_bh_enable();
 337	}
 338	return data;
 339}
 340EXPORT_SYMBOL(__netdev_alloc_frag_align);
 341
 342static struct sk_buff *napi_skb_cache_get(void)
 343{
 344	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
 345	struct sk_buff *skb;
 346
 347	if (unlikely(!nc->skb_count)) {
 348		nc->skb_count = kmem_cache_alloc_bulk(net_hotdata.skbuff_cache,
 349						      GFP_ATOMIC,
 350						      NAPI_SKB_CACHE_BULK,
 351						      nc->skb_cache);
 352		if (unlikely(!nc->skb_count))
 353			return NULL;
 354	}
 355
 356	skb = nc->skb_cache[--nc->skb_count];
 357	kasan_mempool_unpoison_object(skb, kmem_cache_size(net_hotdata.skbuff_cache));
 358
 359	return skb;
 360}
 361
 362static inline void __finalize_skb_around(struct sk_buff *skb, void *data,
 363					 unsigned int size)
 364{
 365	struct skb_shared_info *shinfo;
 366
 367	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 368
 369	/* Assumes caller memset cleared SKB */
 370	skb->truesize = SKB_TRUESIZE(size);
 371	refcount_set(&skb->users, 1);
 372	skb->head = data;
 373	skb->data = data;
 374	skb_reset_tail_pointer(skb);
 375	skb_set_end_offset(skb, size);
 376	skb->mac_header = (typeof(skb->mac_header))~0U;
 377	skb->transport_header = (typeof(skb->transport_header))~0U;
 378	skb->alloc_cpu = raw_smp_processor_id();
 379	/* make sure we initialize shinfo sequentially */
 380	shinfo = skb_shinfo(skb);
 381	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
 382	atomic_set(&shinfo->dataref, 1);
 383
 384	skb_set_kcov_handle(skb, kcov_common_handle());
 385}
 386
 387static inline void *__slab_build_skb(struct sk_buff *skb, void *data,
 388				     unsigned int *size)
 389{
 390	void *resized;
 391
 392	/* Must find the allocation size (and grow it to match). */
 393	*size = ksize(data);
 394	/* krealloc() will immediately return "data" when
 395	 * "ksize(data)" is requested: it is the existing upper
 396	 * bounds. As a result, GFP_ATOMIC will be ignored. Note
 397	 * that this "new" pointer needs to be passed back to the
 398	 * caller for use so the __alloc_size hinting will be
 399	 * tracked correctly.
 400	 */
 401	resized = krealloc(data, *size, GFP_ATOMIC);
 402	WARN_ON_ONCE(resized != data);
 403	return resized;
 404}
 405
 406/* build_skb() variant which can operate on slab buffers.
 407 * Note that this should be used sparingly as slab buffers
 408 * cannot be combined efficiently by GRO!
 409 */
 410struct sk_buff *slab_build_skb(void *data)
 411{
 412	struct sk_buff *skb;
 413	unsigned int size;
 414
 415	skb = kmem_cache_alloc(net_hotdata.skbuff_cache, GFP_ATOMIC);
 416	if (unlikely(!skb))
 417		return NULL;
 418
 419	memset(skb, 0, offsetof(struct sk_buff, tail));
 420	data = __slab_build_skb(skb, data, &size);
 421	__finalize_skb_around(skb, data, size);
 422
 423	return skb;
 424}
 425EXPORT_SYMBOL(slab_build_skb);
 426
 427/* Caller must provide SKB that is memset cleared */
 428static void __build_skb_around(struct sk_buff *skb, void *data,
 429			       unsigned int frag_size)
 430{
 431	unsigned int size = frag_size;
 432
 433	/* frag_size == 0 is considered deprecated now. Callers
 434	 * using slab buffer should use slab_build_skb() instead.
 435	 */
 436	if (WARN_ONCE(size == 0, "Use slab_build_skb() instead"))
 437		data = __slab_build_skb(skb, data, &size);
 438
 439	__finalize_skb_around(skb, data, size);
 440}
 441
 442/**
 443 * __build_skb - build a network buffer
 444 * @data: data buffer provided by caller
 445 * @frag_size: size of data (must not be 0)
 446 *
 447 * Allocate a new &sk_buff. Caller provides space holding head and
 448 * skb_shared_info. @data must have been allocated from the page
 449 * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc()
 450 * allocation is deprecated, and callers should use slab_build_skb()
 451 * instead.)
 452 * The return is the new skb buffer.
 453 * On a failure the return is %NULL, and @data is not freed.
 454 * Notes :
 455 *  Before IO, driver allocates only data buffer where NIC put incoming frame
 456 *  Driver should add room at head (NET_SKB_PAD) and
 457 *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
 458 *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
 459 *  before giving packet to stack.
 460 *  RX rings only contains data buffers, not full skbs.
 461 */
 462struct sk_buff *__build_skb(void *data, unsigned int frag_size)
 463{
 464	struct sk_buff *skb;
 465
 466	skb = kmem_cache_alloc(net_hotdata.skbuff_cache, GFP_ATOMIC);
 467	if (unlikely(!skb))
 468		return NULL;
 469
 470	memset(skb, 0, offsetof(struct sk_buff, tail));
 471	__build_skb_around(skb, data, frag_size);
 472
 473	return skb;
 474}
 475
 476/* build_skb() is wrapper over __build_skb(), that specifically
 477 * takes care of skb->head and skb->pfmemalloc
 478 */
 479struct sk_buff *build_skb(void *data, unsigned int frag_size)
 480{
 481	struct sk_buff *skb = __build_skb(data, frag_size);
 482
 483	if (likely(skb && frag_size)) {
 484		skb->head_frag = 1;
 485		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
 486	}
 487	return skb;
 488}
 489EXPORT_SYMBOL(build_skb);
 490
 491/**
 492 * build_skb_around - build a network buffer around provided skb
 493 * @skb: sk_buff provide by caller, must be memset cleared
 494 * @data: data buffer provided by caller
 495 * @frag_size: size of data
 496 */
 497struct sk_buff *build_skb_around(struct sk_buff *skb,
 498				 void *data, unsigned int frag_size)
 499{
 500	if (unlikely(!skb))
 501		return NULL;
 502
 503	__build_skb_around(skb, data, frag_size);
 504
 505	if (frag_size) {
 506		skb->head_frag = 1;
 507		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
 508	}
 509	return skb;
 510}
 511EXPORT_SYMBOL(build_skb_around);
 512
 513/**
 514 * __napi_build_skb - build a network buffer
 515 * @data: data buffer provided by caller
 516 * @frag_size: size of data
 517 *
 518 * Version of __build_skb() that uses NAPI percpu caches to obtain
 519 * skbuff_head instead of inplace allocation.
 520 *
 521 * Returns a new &sk_buff on success, %NULL on allocation failure.
 522 */
 523static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
 524{
 525	struct sk_buff *skb;
 526
 527	skb = napi_skb_cache_get();
 528	if (unlikely(!skb))
 529		return NULL;
 530
 531	memset(skb, 0, offsetof(struct sk_buff, tail));
 532	__build_skb_around(skb, data, frag_size);
 533
 534	return skb;
 535}
 536
 537/**
 538 * napi_build_skb - build a network buffer
 539 * @data: data buffer provided by caller
 540 * @frag_size: size of data
 541 *
 542 * Version of __napi_build_skb() that takes care of skb->head_frag
 543 * and skb->pfmemalloc when the data is a page or page fragment.
 544 *
 545 * Returns a new &sk_buff on success, %NULL on allocation failure.
 546 */
 547struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
 548{
 549	struct sk_buff *skb = __napi_build_skb(data, frag_size);
 550
 551	if (likely(skb) && frag_size) {
 552		skb->head_frag = 1;
 553		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
 554	}
 555
 556	return skb;
 557}
 558EXPORT_SYMBOL(napi_build_skb);
 559
 560/*
 561 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
 562 * the caller if emergency pfmemalloc reserves are being used. If it is and
 563 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
 564 * may be used. Otherwise, the packet data may be discarded until enough
 565 * memory is free
 566 */
 567static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node,
 568			     bool *pfmemalloc)
 
 
 
 569{
 
 570	bool ret_pfmemalloc = false;
 571	size_t obj_size;
 572	void *obj;
 573
 574	obj_size = SKB_HEAD_ALIGN(*size);
 575	if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE &&
 576	    !(flags & KMALLOC_NOT_NORMAL_BITS)) {
 577		obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache,
 578				flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
 579				node);
 580		*size = SKB_SMALL_HEAD_CACHE_SIZE;
 581		if (obj || !(gfp_pfmemalloc_allowed(flags)))
 582			goto out;
 583		/* Try again but now we are using pfmemalloc reserves */
 584		ret_pfmemalloc = true;
 585		obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache, flags, node);
 586		goto out;
 587	}
 588
 589	obj_size = kmalloc_size_roundup(obj_size);
 590	/* The following cast might truncate high-order bits of obj_size, this
 591	 * is harmless because kmalloc(obj_size >= 2^32) will fail anyway.
 592	 */
 593	*size = (unsigned int)obj_size;
 594
 595	/*
 596	 * Try a regular allocation, when that fails and we're not entitled
 597	 * to the reserves, fail.
 598	 */
 599	obj = kmalloc_node_track_caller(obj_size,
 600					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
 601					node);
 602	if (obj || !(gfp_pfmemalloc_allowed(flags)))
 603		goto out;
 604
 605	/* Try again but now we are using pfmemalloc reserves */
 606	ret_pfmemalloc = true;
 607	obj = kmalloc_node_track_caller(obj_size, flags, node);
 608
 609out:
 610	if (pfmemalloc)
 611		*pfmemalloc = ret_pfmemalloc;
 612
 613	return obj;
 614}
 615
 616/* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
 617 *	'private' fields and also do memory statistics to find all the
 618 *	[BEEP] leaks.
 619 *
 620 */
 621
 622/**
 623 *	__alloc_skb	-	allocate a network buffer
 624 *	@size: size to allocate
 625 *	@gfp_mask: allocation mask
 626 *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
 627 *		instead of head cache and allocate a cloned (child) skb.
 628 *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
 629 *		allocations in case the data is required for writeback
 630 *	@node: numa node to allocate memory on
 631 *
 632 *	Allocate a new &sk_buff. The returned buffer has no headroom and a
 633 *	tail room of at least size bytes. The object has a reference count
 634 *	of one. The return is the buffer. On a failure the return is %NULL.
 635 *
 636 *	Buffers may only be allocated from interrupts using a @gfp_mask of
 637 *	%GFP_ATOMIC.
 638 */
 639struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
 640			    int flags, int node)
 641{
 642	struct kmem_cache *cache;
 
 643	struct sk_buff *skb;
 
 644	bool pfmemalloc;
 645	u8 *data;
 646
 647	cache = (flags & SKB_ALLOC_FCLONE)
 648		? net_hotdata.skbuff_fclone_cache : net_hotdata.skbuff_cache;
 649
 650	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
 651		gfp_mask |= __GFP_MEMALLOC;
 652
 653	/* Get the HEAD */
 654	if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
 655	    likely(node == NUMA_NO_NODE || node == numa_mem_id()))
 656		skb = napi_skb_cache_get();
 657	else
 658		skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
 659	if (unlikely(!skb))
 660		return NULL;
 661	prefetchw(skb);
 662
 663	/* We do our best to align skb_shared_info on a separate cache
 664	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
 665	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
 666	 * Both skb->head and skb_shared_info are cache line aligned.
 667	 */
 668	data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc);
 669	if (unlikely(!data))
 
 
 670		goto nodata;
 671	/* kmalloc_size_roundup() might give us more room than requested.
 672	 * Put skb_shared_info exactly at the end of allocated zone,
 673	 * to allow max possible filling before reallocation.
 674	 */
 675	prefetchw(data + SKB_WITH_OVERHEAD(size));
 
 676
 677	/*
 678	 * Only clear those fields we need to clear, not those that we will
 679	 * actually initialise below. Hence, don't put any more fields after
 680	 * the tail pointer in struct sk_buff!
 681	 */
 682	memset(skb, 0, offsetof(struct sk_buff, tail));
 683	__build_skb_around(skb, data, size);
 
 684	skb->pfmemalloc = pfmemalloc;
 
 
 
 
 
 
 
 
 
 
 
 
 685
 686	if (flags & SKB_ALLOC_FCLONE) {
 687		struct sk_buff_fclones *fclones;
 688
 689		fclones = container_of(skb, struct sk_buff_fclones, skb1);
 690
 691		skb->fclone = SKB_FCLONE_ORIG;
 692		refcount_set(&fclones->fclone_ref, 1);
 
 
 693	}
 694
 695	return skb;
 696
 697nodata:
 698	kmem_cache_free(cache, skb);
 699	return NULL;
 
 700}
 701EXPORT_SYMBOL(__alloc_skb);
 702
 703/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 704 *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
 705 *	@dev: network device to receive on
 706 *	@len: length to allocate
 707 *	@gfp_mask: get_free_pages mask, passed to alloc_skb
 708 *
 709 *	Allocate a new &sk_buff and assign it a usage count of one. The
 710 *	buffer has NET_SKB_PAD headroom built in. Users should allocate
 711 *	the headroom they think they need without accounting for the
 712 *	built in space. The built in space is used for optimisations.
 713 *
 714 *	%NULL is returned if there is no free memory.
 715 */
 716struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
 717				   gfp_t gfp_mask)
 718{
 719	struct page_frag_cache *nc;
 
 720	struct sk_buff *skb;
 721	bool pfmemalloc;
 722	void *data;
 723
 724	len += NET_SKB_PAD;
 725
 726	/* If requested length is either too small or too big,
 727	 * we use kmalloc() for skb->head allocation.
 728	 */
 729	if (len <= SKB_WITH_OVERHEAD(1024) ||
 730	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
 731	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
 732		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
 733		if (!skb)
 734			goto skb_fail;
 735		goto skb_success;
 736	}
 737
 738	len = SKB_HEAD_ALIGN(len);
 
 739
 740	if (sk_memalloc_socks())
 741		gfp_mask |= __GFP_MEMALLOC;
 742
 743	if (in_hardirq() || irqs_disabled()) {
 744		nc = this_cpu_ptr(&netdev_alloc_cache);
 745		data = page_frag_alloc(nc, len, gfp_mask);
 746		pfmemalloc = nc->pfmemalloc;
 747	} else {
 748		local_bh_disable();
 749		nc = this_cpu_ptr(&napi_alloc_cache.page);
 750		data = page_frag_alloc(nc, len, gfp_mask);
 751		pfmemalloc = nc->pfmemalloc;
 752		local_bh_enable();
 753	}
 754
 755	if (unlikely(!data))
 756		return NULL;
 757
 758	skb = __build_skb(data, len);
 759	if (unlikely(!skb)) {
 760		skb_free_frag(data);
 761		return NULL;
 762	}
 763
 
 764	if (pfmemalloc)
 765		skb->pfmemalloc = 1;
 766	skb->head_frag = 1;
 767
 768skb_success:
 769	skb_reserve(skb, NET_SKB_PAD);
 770	skb->dev = dev;
 771
 772skb_fail:
 773	return skb;
 774}
 775EXPORT_SYMBOL(__netdev_alloc_skb);
 776
 777/**
 778 *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
 779 *	@napi: napi instance this buffer was allocated for
 780 *	@len: length to allocate
 781 *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
 782 *
 783 *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
 784 *	attempt to allocate the head from a special reserved region used
 785 *	only for NAPI Rx allocation.  By doing this we can save several
 786 *	CPU cycles by avoiding having to disable and re-enable IRQs.
 787 *
 788 *	%NULL is returned if there is no free memory.
 789 */
 790struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
 791				 gfp_t gfp_mask)
 792{
 793	struct napi_alloc_cache *nc;
 794	struct sk_buff *skb;
 795	bool pfmemalloc;
 796	void *data;
 797
 798	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
 799	len += NET_SKB_PAD + NET_IP_ALIGN;
 800
 801	/* If requested length is either too small or too big,
 802	 * we use kmalloc() for skb->head allocation.
 803	 * When the small frag allocator is available, prefer it over kmalloc
 804	 * for small fragments
 805	 */
 806	if ((!NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) ||
 807	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
 808	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
 809		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
 810				  NUMA_NO_NODE);
 811		if (!skb)
 812			goto skb_fail;
 813		goto skb_success;
 814	}
 815
 816	nc = this_cpu_ptr(&napi_alloc_cache);
 
 817
 818	if (sk_memalloc_socks())
 819		gfp_mask |= __GFP_MEMALLOC;
 820
 821	if (NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) {
 822		/* we are artificially inflating the allocation size, but
 823		 * that is not as bad as it may look like, as:
 824		 * - 'len' less than GRO_MAX_HEAD makes little sense
 825		 * - On most systems, larger 'len' values lead to fragment
 826		 *   size above 512 bytes
 827		 * - kmalloc would use the kmalloc-1k slab for such values
 828		 * - Builds with smaller GRO_MAX_HEAD will very likely do
 829		 *   little networking, as that implies no WiFi and no
 830		 *   tunnels support, and 32 bits arches.
 831		 */
 832		len = SZ_1K;
 833
 834		data = page_frag_alloc_1k(&nc->page_small, gfp_mask);
 835		pfmemalloc = NAPI_SMALL_PAGE_PFMEMALLOC(nc->page_small);
 836	} else {
 837		len = SKB_HEAD_ALIGN(len);
 838
 839		data = page_frag_alloc(&nc->page, len, gfp_mask);
 840		pfmemalloc = nc->page.pfmemalloc;
 841	}
 842
 843	if (unlikely(!data))
 844		return NULL;
 845
 846	skb = __napi_build_skb(data, len);
 847	if (unlikely(!skb)) {
 848		skb_free_frag(data);
 849		return NULL;
 850	}
 851
 852	if (pfmemalloc)
 
 853		skb->pfmemalloc = 1;
 854	skb->head_frag = 1;
 855
 856skb_success:
 857	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
 858	skb->dev = napi->dev;
 859
 860skb_fail:
 861	return skb;
 862}
 863EXPORT_SYMBOL(__napi_alloc_skb);
 864
 865void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem,
 866			    int off, int size, unsigned int truesize)
 867{
 868	DEBUG_NET_WARN_ON_ONCE(size > truesize);
 869
 870	skb_fill_netmem_desc(skb, i, netmem, off, size);
 871	skb->len += size;
 872	skb->data_len += size;
 873	skb->truesize += truesize;
 874}
 875EXPORT_SYMBOL(skb_add_rx_frag_netmem);
 876
 877void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
 878			  unsigned int truesize)
 879{
 880	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
 881
 882	DEBUG_NET_WARN_ON_ONCE(size > truesize);
 883
 884	skb_frag_size_add(frag, size);
 885	skb->len += size;
 886	skb->data_len += size;
 887	skb->truesize += truesize;
 888}
 889EXPORT_SYMBOL(skb_coalesce_rx_frag);
 890
 891static void skb_drop_list(struct sk_buff **listp)
 892{
 893	kfree_skb_list(*listp);
 894	*listp = NULL;
 895}
 896
 897static inline void skb_drop_fraglist(struct sk_buff *skb)
 898{
 899	skb_drop_list(&skb_shinfo(skb)->frag_list);
 900}
 901
 902static void skb_clone_fraglist(struct sk_buff *skb)
 903{
 904	struct sk_buff *list;
 905
 906	skb_walk_frags(skb, list)
 907		skb_get(list);
 908}
 909
 910static bool is_pp_page(struct page *page)
 911{
 912	return (page->pp_magic & ~0x3UL) == PP_SIGNATURE;
 913}
 914
 915int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb,
 916		    unsigned int headroom)
 917{
 918#if IS_ENABLED(CONFIG_PAGE_POOL)
 919	u32 size, truesize, len, max_head_size, off;
 920	struct sk_buff *skb = *pskb, *nskb;
 921	int err, i, head_off;
 922	void *data;
 923
 924	/* XDP does not support fraglist so we need to linearize
 925	 * the skb.
 926	 */
 927	if (skb_has_frag_list(skb))
 928		return -EOPNOTSUPP;
 929
 930	max_head_size = SKB_WITH_OVERHEAD(PAGE_SIZE - headroom);
 931	if (skb->len > max_head_size + MAX_SKB_FRAGS * PAGE_SIZE)
 932		return -ENOMEM;
 933
 934	size = min_t(u32, skb->len, max_head_size);
 935	truesize = SKB_HEAD_ALIGN(size) + headroom;
 936	data = page_pool_dev_alloc_va(pool, &truesize);
 937	if (!data)
 938		return -ENOMEM;
 939
 940	nskb = napi_build_skb(data, truesize);
 941	if (!nskb) {
 942		page_pool_free_va(pool, data, true);
 943		return -ENOMEM;
 944	}
 945
 946	skb_reserve(nskb, headroom);
 947	skb_copy_header(nskb, skb);
 948	skb_mark_for_recycle(nskb);
 949
 950	err = skb_copy_bits(skb, 0, nskb->data, size);
 951	if (err) {
 952		consume_skb(nskb);
 953		return err;
 954	}
 955	skb_put(nskb, size);
 956
 957	head_off = skb_headroom(nskb) - skb_headroom(skb);
 958	skb_headers_offset_update(nskb, head_off);
 959
 960	off = size;
 961	len = skb->len - off;
 962	for (i = 0; i < MAX_SKB_FRAGS && off < skb->len; i++) {
 963		struct page *page;
 964		u32 page_off;
 965
 966		size = min_t(u32, len, PAGE_SIZE);
 967		truesize = size;
 968
 969		page = page_pool_dev_alloc(pool, &page_off, &truesize);
 970		if (!page) {
 971			consume_skb(nskb);
 972			return -ENOMEM;
 973		}
 974
 975		skb_add_rx_frag(nskb, i, page, page_off, size, truesize);
 976		err = skb_copy_bits(skb, off, page_address(page) + page_off,
 977				    size);
 978		if (err) {
 979			consume_skb(nskb);
 980			return err;
 981		}
 982
 983		len -= size;
 984		off += size;
 985	}
 986
 987	consume_skb(skb);
 988	*pskb = nskb;
 989
 990	return 0;
 991#else
 992	return -EOPNOTSUPP;
 993#endif
 994}
 995EXPORT_SYMBOL(skb_pp_cow_data);
 996
 997int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb,
 998			 struct bpf_prog *prog)
 999{
1000	if (!prog->aux->xdp_has_frags)
1001		return -EINVAL;
1002
1003	return skb_pp_cow_data(pool, pskb, XDP_PACKET_HEADROOM);
1004}
1005EXPORT_SYMBOL(skb_cow_data_for_xdp);
1006
1007#if IS_ENABLED(CONFIG_PAGE_POOL)
1008bool napi_pp_put_page(struct page *page, bool napi_safe)
1009{
1010	bool allow_direct = false;
1011	struct page_pool *pp;
1012
1013	page = compound_head(page);
1014
1015	/* page->pp_magic is OR'ed with PP_SIGNATURE after the allocation
1016	 * in order to preserve any existing bits, such as bit 0 for the
1017	 * head page of compound page and bit 1 for pfmemalloc page, so
1018	 * mask those bits for freeing side when doing below checking,
1019	 * and page_is_pfmemalloc() is checked in __page_pool_put_page()
1020	 * to avoid recycling the pfmemalloc page.
1021	 */
1022	if (unlikely(!is_pp_page(page)))
1023		return false;
1024
1025	pp = page->pp;
1026
1027	/* Allow direct recycle if we have reasons to believe that we are
1028	 * in the same context as the consumer would run, so there's
1029	 * no possible race.
1030	 * __page_pool_put_page() makes sure we're not in hardirq context
1031	 * and interrupts are enabled prior to accessing the cache.
1032	 */
1033	if (napi_safe || in_softirq()) {
1034		const struct napi_struct *napi = READ_ONCE(pp->p.napi);
1035		unsigned int cpuid = smp_processor_id();
1036
1037		allow_direct = napi && READ_ONCE(napi->list_owner) == cpuid;
1038		allow_direct |= READ_ONCE(pp->cpuid) == cpuid;
1039	}
1040
1041	/* Driver set this to memory recycling info. Reset it on recycle.
1042	 * This will *not* work for NIC using a split-page memory model.
1043	 * The page will be returned to the pool here regardless of the
1044	 * 'flipped' fragment being in use or not.
1045	 */
1046	page_pool_put_full_page(pp, page, allow_direct);
1047
1048	return true;
1049}
1050EXPORT_SYMBOL(napi_pp_put_page);
1051#endif
1052
1053static bool skb_pp_recycle(struct sk_buff *skb, void *data, bool napi_safe)
1054{
1055	if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
1056		return false;
1057	return napi_pp_put_page(virt_to_page(data), napi_safe);
1058}
1059
1060/**
1061 * skb_pp_frag_ref() - Increase fragment references of a page pool aware skb
1062 * @skb:	page pool aware skb
1063 *
1064 * Increase the fragment reference count (pp_ref_count) of a skb. This is
1065 * intended to gain fragment references only for page pool aware skbs,
1066 * i.e. when skb->pp_recycle is true, and not for fragments in a
1067 * non-pp-recycling skb. It has a fallback to increase references on normal
1068 * pages, as page pool aware skbs may also have normal page fragments.
1069 */
1070static int skb_pp_frag_ref(struct sk_buff *skb)
1071{
1072	struct skb_shared_info *shinfo;
1073	struct page *head_page;
1074	int i;
1075
1076	if (!skb->pp_recycle)
1077		return -EINVAL;
1078
1079	shinfo = skb_shinfo(skb);
1080
1081	for (i = 0; i < shinfo->nr_frags; i++) {
1082		head_page = compound_head(skb_frag_page(&shinfo->frags[i]));
1083		if (likely(is_pp_page(head_page)))
1084			page_pool_ref_page(head_page);
1085		else
1086			page_ref_inc(head_page);
1087	}
1088	return 0;
1089}
1090
1091static void skb_kfree_head(void *head, unsigned int end_offset)
1092{
1093	if (end_offset == SKB_SMALL_HEAD_HEADROOM)
1094		kmem_cache_free(net_hotdata.skb_small_head_cache, head);
1095	else
1096		kfree(head);
1097}
1098
1099static void skb_free_head(struct sk_buff *skb, bool napi_safe)
1100{
1101	unsigned char *head = skb->head;
1102
1103	if (skb->head_frag) {
1104		if (skb_pp_recycle(skb, head, napi_safe))
1105			return;
1106		skb_free_frag(head);
1107	} else {
1108		skb_kfree_head(head, skb_end_offset(skb));
1109	}
1110}
1111
1112static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason,
1113			     bool napi_safe)
1114{
1115	struct skb_shared_info *shinfo = skb_shinfo(skb);
1116	int i;
1117
1118	if (!skb_data_unref(skb, shinfo))
1119		goto exit;
1120
1121	if (skb_zcopy(skb)) {
1122		bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS;
1123
1124		skb_zcopy_clear(skb, true);
1125		if (skip_unref)
1126			goto free_head;
1127	}
1128
1129	for (i = 0; i < shinfo->nr_frags; i++)
1130		napi_frag_unref(&shinfo->frags[i], skb->pp_recycle, napi_safe);
1131
1132free_head:
1133	if (shinfo->frag_list)
1134		kfree_skb_list_reason(shinfo->frag_list, reason);
1135
1136	skb_free_head(skb, napi_safe);
1137exit:
1138	/* When we clone an SKB we copy the reycling bit. The pp_recycle
1139	 * bit is only set on the head though, so in order to avoid races
1140	 * while trying to recycle fragments on __skb_frag_unref() we need
1141	 * to make one SKB responsible for triggering the recycle path.
1142	 * So disable the recycling bit if an SKB is cloned and we have
1143	 * additional references to the fragmented part of the SKB.
1144	 * Eventually the last SKB will have the recycling bit set and it's
1145	 * dataref set to 0, which will trigger the recycling
1146	 */
1147	skb->pp_recycle = 0;
1148}
1149
1150/*
1151 *	Free an skbuff by memory without cleaning the state.
1152 */
1153static void kfree_skbmem(struct sk_buff *skb)
1154{
1155	struct sk_buff_fclones *fclones;
1156
1157	switch (skb->fclone) {
1158	case SKB_FCLONE_UNAVAILABLE:
1159		kmem_cache_free(net_hotdata.skbuff_cache, skb);
1160		return;
1161
1162	case SKB_FCLONE_ORIG:
1163		fclones = container_of(skb, struct sk_buff_fclones, skb1);
1164
1165		/* We usually free the clone (TX completion) before original skb
1166		 * This test would have no chance to be true for the clone,
1167		 * while here, branch prediction will be good.
1168		 */
1169		if (refcount_read(&fclones->fclone_ref) == 1)
1170			goto fastpath;
1171		break;
1172
1173	default: /* SKB_FCLONE_CLONE */
1174		fclones = container_of(skb, struct sk_buff_fclones, skb2);
1175		break;
1176	}
1177	if (!refcount_dec_and_test(&fclones->fclone_ref))
1178		return;
1179fastpath:
1180	kmem_cache_free(net_hotdata.skbuff_fclone_cache, fclones);
1181}
1182
1183void skb_release_head_state(struct sk_buff *skb)
1184{
1185	skb_dst_drop(skb);
 
1186	if (skb->destructor) {
1187		DEBUG_NET_WARN_ON_ONCE(in_hardirq());
1188		skb->destructor(skb);
1189	}
1190#if IS_ENABLED(CONFIG_NF_CONNTRACK)
1191	nf_conntrack_put(skb_nfct(skb));
1192#endif
1193	skb_ext_put(skb);
 
 
1194}
1195
1196/* Free everything but the sk_buff shell. */
1197static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason,
1198			    bool napi_safe)
1199{
1200	skb_release_head_state(skb);
1201	if (likely(skb->head))
1202		skb_release_data(skb, reason, napi_safe);
1203}
1204
1205/**
1206 *	__kfree_skb - private function
1207 *	@skb: buffer
1208 *
1209 *	Free an sk_buff. Release anything attached to the buffer.
1210 *	Clean the state. This is an internal helper function. Users should
1211 *	always call kfree_skb
1212 */
1213
1214void __kfree_skb(struct sk_buff *skb)
1215{
1216	skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED, false);
1217	kfree_skbmem(skb);
1218}
1219EXPORT_SYMBOL(__kfree_skb);
1220
1221static __always_inline
1222bool __kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
1223{
1224	if (unlikely(!skb_unref(skb)))
1225		return false;
1226
1227	DEBUG_NET_WARN_ON_ONCE(reason == SKB_NOT_DROPPED_YET ||
1228			       u32_get_bits(reason,
1229					    SKB_DROP_REASON_SUBSYS_MASK) >=
1230				SKB_DROP_REASON_SUBSYS_NUM);
1231
1232	if (reason == SKB_CONSUMED)
1233		trace_consume_skb(skb, __builtin_return_address(0));
1234	else
1235		trace_kfree_skb(skb, __builtin_return_address(0), reason);
1236	return true;
1237}
1238
1239/**
1240 *	kfree_skb_reason - free an sk_buff with special reason
1241 *	@skb: buffer to free
1242 *	@reason: reason why this skb is dropped
1243 *
1244 *	Drop a reference to the buffer and free it if the usage count has
1245 *	hit zero. Meanwhile, pass the drop reason to 'kfree_skb'
1246 *	tracepoint.
1247 */
1248void __fix_address
1249kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
1250{
1251	if (__kfree_skb_reason(skb, reason))
1252		__kfree_skb(skb);
1253}
1254EXPORT_SYMBOL(kfree_skb_reason);
1255
1256#define KFREE_SKB_BULK_SIZE	16
1257
1258struct skb_free_array {
1259	unsigned int skb_count;
1260	void *skb_array[KFREE_SKB_BULK_SIZE];
1261};
1262
1263static void kfree_skb_add_bulk(struct sk_buff *skb,
1264			       struct skb_free_array *sa,
1265			       enum skb_drop_reason reason)
1266{
1267	/* if SKB is a clone, don't handle this case */
1268	if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) {
1269		__kfree_skb(skb);
1270		return;
1271	}
1272
1273	skb_release_all(skb, reason, false);
1274	sa->skb_array[sa->skb_count++] = skb;
1275
1276	if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) {
1277		kmem_cache_free_bulk(net_hotdata.skbuff_cache, KFREE_SKB_BULK_SIZE,
1278				     sa->skb_array);
1279		sa->skb_count = 0;
1280	}
1281}
 
1282
1283void __fix_address
1284kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason)
1285{
1286	struct skb_free_array sa;
1287
1288	sa.skb_count = 0;
1289
1290	while (segs) {
1291		struct sk_buff *next = segs->next;
1292
1293		if (__kfree_skb_reason(segs, reason)) {
1294			skb_poison_list(segs);
1295			kfree_skb_add_bulk(segs, &sa, reason);
1296		}
1297
1298		segs = next;
1299	}
1300
1301	if (sa.skb_count)
1302		kmem_cache_free_bulk(net_hotdata.skbuff_cache, sa.skb_count, sa.skb_array);
1303}
1304EXPORT_SYMBOL(kfree_skb_list_reason);
1305
1306/* Dump skb information and contents.
1307 *
1308 * Must only be called from net_ratelimit()-ed paths.
1309 *
1310 * Dumps whole packets if full_pkt, only headers otherwise.
1311 */
1312void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
1313{
1314	struct skb_shared_info *sh = skb_shinfo(skb);
1315	struct net_device *dev = skb->dev;
1316	struct sock *sk = skb->sk;
1317	struct sk_buff *list_skb;
1318	bool has_mac, has_trans;
1319	int headroom, tailroom;
1320	int i, len, seg_len;
1321
1322	if (full_pkt)
1323		len = skb->len;
1324	else
1325		len = min_t(int, skb->len, MAX_HEADER + 128);
1326
1327	headroom = skb_headroom(skb);
1328	tailroom = skb_tailroom(skb);
1329
1330	has_mac = skb_mac_header_was_set(skb);
1331	has_trans = skb_transport_header_was_set(skb);
1332
1333	printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
1334	       "mac=(%d,%d) net=(%d,%d) trans=%d\n"
1335	       "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
1336	       "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
1337	       "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
1338	       level, skb->len, headroom, skb_headlen(skb), tailroom,
1339	       has_mac ? skb->mac_header : -1,
1340	       has_mac ? skb_mac_header_len(skb) : -1,
1341	       skb->network_header,
1342	       has_trans ? skb_network_header_len(skb) : -1,
1343	       has_trans ? skb->transport_header : -1,
1344	       sh->tx_flags, sh->nr_frags,
1345	       sh->gso_size, sh->gso_type, sh->gso_segs,
1346	       skb->csum, skb->ip_summed, skb->csum_complete_sw,
1347	       skb->csum_valid, skb->csum_level,
1348	       skb->hash, skb->sw_hash, skb->l4_hash,
1349	       ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
1350
1351	if (dev)
1352		printk("%sdev name=%s feat=%pNF\n",
1353		       level, dev->name, &dev->features);
1354	if (sk)
1355		printk("%ssk family=%hu type=%u proto=%u\n",
1356		       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
1357
1358	if (full_pkt && headroom)
1359		print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
1360			       16, 1, skb->head, headroom, false);
1361
1362	seg_len = min_t(int, skb_headlen(skb), len);
1363	if (seg_len)
1364		print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
1365			       16, 1, skb->data, seg_len, false);
1366	len -= seg_len;
1367
1368	if (full_pkt && tailroom)
1369		print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
1370			       16, 1, skb_tail_pointer(skb), tailroom, false);
1371
1372	for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
1373		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1374		u32 p_off, p_len, copied;
1375		struct page *p;
1376		u8 *vaddr;
1377
1378		skb_frag_foreach_page(frag, skb_frag_off(frag),
1379				      skb_frag_size(frag), p, p_off, p_len,
1380				      copied) {
1381			seg_len = min_t(int, p_len, len);
1382			vaddr = kmap_atomic(p);
1383			print_hex_dump(level, "skb frag:     ",
1384				       DUMP_PREFIX_OFFSET,
1385				       16, 1, vaddr + p_off, seg_len, false);
1386			kunmap_atomic(vaddr);
1387			len -= seg_len;
1388			if (!len)
1389				break;
1390		}
1391	}
1392
1393	if (full_pkt && skb_has_frag_list(skb)) {
1394		printk("skb fraglist:\n");
1395		skb_walk_frags(skb, list_skb)
1396			skb_dump(level, list_skb, true);
1397	}
1398}
1399EXPORT_SYMBOL(skb_dump);
1400
1401/**
1402 *	skb_tx_error - report an sk_buff xmit error
1403 *	@skb: buffer that triggered an error
1404 *
1405 *	Report xmit error if a device callback is tracking this skb.
1406 *	skb must be freed afterwards.
1407 */
1408void skb_tx_error(struct sk_buff *skb)
1409{
1410	if (skb) {
1411		skb_zcopy_downgrade_managed(skb);
1412		skb_zcopy_clear(skb, true);
1413	}
1414}
1415EXPORT_SYMBOL(skb_tx_error);
1416
1417#ifdef CONFIG_TRACEPOINTS
1418/**
1419 *	consume_skb - free an skbuff
1420 *	@skb: buffer to free
1421 *
1422 *	Drop a ref to the buffer and free it if the usage count has hit zero
1423 *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
1424 *	is being dropped after a failure and notes that
1425 */
1426void consume_skb(struct sk_buff *skb)
1427{
1428	if (!skb_unref(skb))
1429		return;
1430
1431	trace_consume_skb(skb, __builtin_return_address(0));
1432	__kfree_skb(skb);
1433}
1434EXPORT_SYMBOL(consume_skb);
1435#endif
1436
1437/**
1438 *	__consume_stateless_skb - free an skbuff, assuming it is stateless
1439 *	@skb: buffer to free
1440 *
1441 *	Alike consume_skb(), but this variant assumes that this is the last
1442 *	skb reference and all the head states have been already dropped
1443 */
1444void __consume_stateless_skb(struct sk_buff *skb)
1445{
1446	trace_consume_skb(skb, __builtin_return_address(0));
1447	skb_release_data(skb, SKB_CONSUMED, false);
1448	kfree_skbmem(skb);
1449}
1450
1451static void napi_skb_cache_put(struct sk_buff *skb)
 
 
 
 
 
 
 
 
 
 
 
 
1452{
1453	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
1454	u32 i;
1455
1456	if (!kasan_mempool_poison_object(skb))
1457		return;
1458
 
1459	nc->skb_cache[nc->skb_count++] = skb;
1460
 
 
 
 
 
 
1461	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
1462		for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
1463			kasan_mempool_unpoison_object(nc->skb_cache[i],
1464						kmem_cache_size(net_hotdata.skbuff_cache));
1465
1466		kmem_cache_free_bulk(net_hotdata.skbuff_cache, NAPI_SKB_CACHE_HALF,
1467				     nc->skb_cache + NAPI_SKB_CACHE_HALF);
1468		nc->skb_count = NAPI_SKB_CACHE_HALF;
1469	}
1470}
1471
1472void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason)
1473{
1474	skb_release_all(skb, reason, true);
1475	napi_skb_cache_put(skb);
1476}
1477
1478void napi_skb_free_stolen_head(struct sk_buff *skb)
1479{
1480	if (unlikely(skb->slow_gro)) {
1481		nf_reset_ct(skb);
1482		skb_dst_drop(skb);
1483		skb_ext_put(skb);
1484		skb_orphan(skb);
1485		skb->slow_gro = 0;
1486	}
1487	napi_skb_cache_put(skb);
1488}
1489
1490void napi_consume_skb(struct sk_buff *skb, int budget)
1491{
1492	/* Zero budget indicate non-NAPI context called us, like netpoll */
1493	if (unlikely(!budget)) {
1494		dev_consume_skb_any(skb);
1495		return;
1496	}
1497
1498	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
1499
1500	if (!skb_unref(skb))
1501		return;
1502
1503	/* if reaching here SKB is ready to free */
1504	trace_consume_skb(skb, __builtin_return_address(0));
1505
1506	/* if SKB is a clone, don't handle this case */
1507	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
1508		__kfree_skb(skb);
1509		return;
1510	}
1511
1512	skb_release_all(skb, SKB_CONSUMED, !!budget);
1513	napi_skb_cache_put(skb);
1514}
1515EXPORT_SYMBOL(napi_consume_skb);
1516
1517/* Make sure a field is contained by headers group */
1518#define CHECK_SKB_FIELD(field) \
1519	BUILD_BUG_ON(offsetof(struct sk_buff, field) !=		\
1520		     offsetof(struct sk_buff, headers.field));	\
 
 
1521
1522static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1523{
1524	new->tstamp		= old->tstamp;
1525	/* We do not copy old->sk */
1526	new->dev		= old->dev;
1527	memcpy(new->cb, old->cb, sizeof(old->cb));
1528	skb_dst_copy(new, old);
1529	__skb_ext_copy(new, old);
 
 
1530	__nf_copy(new, old, false);
1531
1532	/* Note : this field could be in the headers group.
1533	 * It is not yet because we do not want to have a 16 bit hole
1534	 */
1535	new->queue_mapping = old->queue_mapping;
1536
1537	memcpy(&new->headers, &old->headers, sizeof(new->headers));
 
 
1538	CHECK_SKB_FIELD(protocol);
1539	CHECK_SKB_FIELD(csum);
1540	CHECK_SKB_FIELD(hash);
1541	CHECK_SKB_FIELD(priority);
1542	CHECK_SKB_FIELD(skb_iif);
1543	CHECK_SKB_FIELD(vlan_proto);
1544	CHECK_SKB_FIELD(vlan_tci);
1545	CHECK_SKB_FIELD(transport_header);
1546	CHECK_SKB_FIELD(network_header);
1547	CHECK_SKB_FIELD(mac_header);
1548	CHECK_SKB_FIELD(inner_protocol);
1549	CHECK_SKB_FIELD(inner_transport_header);
1550	CHECK_SKB_FIELD(inner_network_header);
1551	CHECK_SKB_FIELD(inner_mac_header);
1552	CHECK_SKB_FIELD(mark);
1553#ifdef CONFIG_NETWORK_SECMARK
1554	CHECK_SKB_FIELD(secmark);
1555#endif
1556#ifdef CONFIG_NET_RX_BUSY_POLL
1557	CHECK_SKB_FIELD(napi_id);
1558#endif
1559	CHECK_SKB_FIELD(alloc_cpu);
1560#ifdef CONFIG_XPS
1561	CHECK_SKB_FIELD(sender_cpu);
1562#endif
1563#ifdef CONFIG_NET_SCHED
1564	CHECK_SKB_FIELD(tc_index);
1565#endif
1566
1567}
1568
1569/*
1570 * You should not add any new code to this function.  Add it to
1571 * __copy_skb_header above instead.
1572 */
1573static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1574{
1575#define C(x) n->x = skb->x
1576
1577	n->next = n->prev = NULL;
1578	n->sk = NULL;
1579	__copy_skb_header(n, skb);
1580
1581	C(len);
1582	C(data_len);
1583	C(mac_len);
1584	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1585	n->cloned = 1;
1586	n->nohdr = 0;
1587	n->peeked = 0;
1588	C(pfmemalloc);
1589	C(pp_recycle);
1590	n->destructor = NULL;
1591	C(tail);
1592	C(end);
1593	C(head);
1594	C(head_frag);
1595	C(data);
1596	C(truesize);
1597	refcount_set(&n->users, 1);
1598
1599	atomic_inc(&(skb_shinfo(skb)->dataref));
1600	skb->cloned = 1;
1601
1602	return n;
1603#undef C
1604}
1605
1606/**
1607 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1608 * @first: first sk_buff of the msg
1609 */
1610struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1611{
1612	struct sk_buff *n;
1613
1614	n = alloc_skb(0, GFP_ATOMIC);
1615	if (!n)
1616		return NULL;
1617
1618	n->len = first->len;
1619	n->data_len = first->len;
1620	n->truesize = first->truesize;
1621
1622	skb_shinfo(n)->frag_list = first;
1623
1624	__copy_skb_header(n, first);
1625	n->destructor = NULL;
1626
1627	return n;
1628}
1629EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1630
1631/**
1632 *	skb_morph	-	morph one skb into another
1633 *	@dst: the skb to receive the contents
1634 *	@src: the skb to supply the contents
1635 *
1636 *	This is identical to skb_clone except that the target skb is
1637 *	supplied by the user.
1638 *
1639 *	The target skb is returned upon exit.
1640 */
1641struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1642{
1643	skb_release_all(dst, SKB_CONSUMED, false);
1644	return __skb_clone(dst, src);
1645}
1646EXPORT_SYMBOL_GPL(skb_morph);
1647
1648int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1649{
1650	unsigned long max_pg, num_pg, new_pg, old_pg, rlim;
1651	struct user_struct *user;
1652
1653	if (capable(CAP_IPC_LOCK) || !size)
1654		return 0;
1655
1656	rlim = rlimit(RLIMIT_MEMLOCK);
1657	if (rlim == RLIM_INFINITY)
1658		return 0;
1659
1660	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
1661	max_pg = rlim >> PAGE_SHIFT;
1662	user = mmp->user ? : current_user();
1663
1664	old_pg = atomic_long_read(&user->locked_vm);
1665	do {
 
1666		new_pg = old_pg + num_pg;
1667		if (new_pg > max_pg)
1668			return -ENOBUFS;
1669	} while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg));
 
1670
1671	if (!mmp->user) {
1672		mmp->user = get_uid(user);
1673		mmp->num_pg = num_pg;
1674	} else {
1675		mmp->num_pg += num_pg;
1676	}
1677
1678	return 0;
1679}
1680EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1681
1682void mm_unaccount_pinned_pages(struct mmpin *mmp)
1683{
1684	if (mmp->user) {
1685		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1686		free_uid(mmp->user);
1687	}
1688}
1689EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1690
1691static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1692{
1693	struct ubuf_info_msgzc *uarg;
1694	struct sk_buff *skb;
1695
1696	WARN_ON_ONCE(!in_task());
1697
 
 
 
1698	skb = sock_omalloc(sk, 0, GFP_KERNEL);
1699	if (!skb)
1700		return NULL;
1701
1702	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1703	uarg = (void *)skb->cb;
1704	uarg->mmp.user = NULL;
1705
1706	if (mm_account_pinned_pages(&uarg->mmp, size)) {
1707		kfree_skb(skb);
1708		return NULL;
1709	}
1710
1711	uarg->ubuf.callback = msg_zerocopy_callback;
1712	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1713	uarg->len = 1;
1714	uarg->bytelen = size;
1715	uarg->zerocopy = 1;
1716	uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN;
1717	refcount_set(&uarg->ubuf.refcnt, 1);
1718	sock_hold(sk);
1719
1720	return &uarg->ubuf;
1721}
 
1722
1723static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg)
1724{
1725	return container_of((void *)uarg, struct sk_buff, cb);
1726}
1727
1728struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1729				       struct ubuf_info *uarg)
1730{
1731	if (uarg) {
1732		struct ubuf_info_msgzc *uarg_zc;
1733		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
1734		u32 bytelen, next;
1735
1736		/* there might be non MSG_ZEROCOPY users */
1737		if (uarg->callback != msg_zerocopy_callback)
1738			return NULL;
1739
1740		/* realloc only when socket is locked (TCP, UDP cork),
1741		 * so uarg->len and sk_zckey access is serialized
1742		 */
1743		if (!sock_owned_by_user(sk)) {
1744			WARN_ON_ONCE(1);
1745			return NULL;
1746		}
1747
1748		uarg_zc = uarg_to_msgzc(uarg);
1749		bytelen = uarg_zc->bytelen + size;
1750		if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1751			/* TCP can create new skb to attach new uarg */
1752			if (sk->sk_type == SOCK_STREAM)
1753				goto new_alloc;
1754			return NULL;
1755		}
1756
1757		next = (u32)atomic_read(&sk->sk_zckey);
1758		if ((u32)(uarg_zc->id + uarg_zc->len) == next) {
1759			if (mm_account_pinned_pages(&uarg_zc->mmp, size))
1760				return NULL;
1761			uarg_zc->len++;
1762			uarg_zc->bytelen = bytelen;
1763			atomic_set(&sk->sk_zckey, ++next);
1764
1765			/* no extra ref when appending to datagram (MSG_MORE) */
1766			if (sk->sk_type == SOCK_STREAM)
1767				net_zcopy_get(uarg);
1768
1769			return uarg;
1770		}
1771	}
1772
1773new_alloc:
1774	return msg_zerocopy_alloc(sk, size);
1775}
1776EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1777
1778static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1779{
1780	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1781	u32 old_lo, old_hi;
1782	u64 sum_len;
1783
1784	old_lo = serr->ee.ee_info;
1785	old_hi = serr->ee.ee_data;
1786	sum_len = old_hi - old_lo + 1ULL + len;
1787
1788	if (sum_len >= (1ULL << 32))
1789		return false;
1790
1791	if (lo != old_hi + 1)
1792		return false;
1793
1794	serr->ee.ee_data += len;
1795	return true;
1796}
1797
1798static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg)
1799{
1800	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1801	struct sock_exterr_skb *serr;
1802	struct sock *sk = skb->sk;
1803	struct sk_buff_head *q;
1804	unsigned long flags;
1805	bool is_zerocopy;
1806	u32 lo, hi;
1807	u16 len;
1808
1809	mm_unaccount_pinned_pages(&uarg->mmp);
1810
1811	/* if !len, there was only 1 call, and it was aborted
1812	 * so do not queue a completion notification
1813	 */
1814	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1815		goto release;
1816
1817	len = uarg->len;
1818	lo = uarg->id;
1819	hi = uarg->id + len - 1;
1820	is_zerocopy = uarg->zerocopy;
1821
1822	serr = SKB_EXT_ERR(skb);
1823	memset(serr, 0, sizeof(*serr));
1824	serr->ee.ee_errno = 0;
1825	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1826	serr->ee.ee_data = hi;
1827	serr->ee.ee_info = lo;
1828	if (!is_zerocopy)
1829		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1830
1831	q = &sk->sk_error_queue;
1832	spin_lock_irqsave(&q->lock, flags);
1833	tail = skb_peek_tail(q);
1834	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1835	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1836		__skb_queue_tail(q, skb);
1837		skb = NULL;
1838	}
1839	spin_unlock_irqrestore(&q->lock, flags);
1840
1841	sk_error_report(sk);
1842
1843release:
1844	consume_skb(skb);
1845	sock_put(sk);
1846}
 
1847
1848void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1849			   bool success)
1850{
1851	struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg);
1852
1853	uarg_zc->zerocopy = uarg_zc->zerocopy & success;
1854
1855	if (refcount_dec_and_test(&uarg->refcnt))
1856		__msg_zerocopy_callback(uarg_zc);
1857}
1858EXPORT_SYMBOL_GPL(msg_zerocopy_callback);
1859
1860void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1861{
1862	struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk;
 
1863
1864	atomic_dec(&sk->sk_zckey);
1865	uarg_to_msgzc(uarg)->len--;
1866
1867	if (have_uref)
1868		msg_zerocopy_callback(NULL, uarg, true);
1869}
1870EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
 
 
 
1871
1872int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1873			     struct msghdr *msg, int len,
1874			     struct ubuf_info *uarg)
1875{
1876	struct ubuf_info *orig_uarg = skb_zcopy(skb);
 
1877	int err, orig_len = skb->len;
1878
1879	/* An skb can only point to one uarg. This edge case happens when
1880	 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1881	 */
1882	if (orig_uarg && uarg != orig_uarg)
1883		return -EEXIST;
1884
1885	err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len);
1886	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1887		struct sock *save_sk = skb->sk;
1888
1889		/* Streams do not free skb on error. Reset to prev state. */
1890		iov_iter_revert(&msg->msg_iter, skb->len - orig_len);
1891		skb->sk = sk;
1892		___pskb_trim(skb, orig_len);
1893		skb->sk = save_sk;
1894		return err;
1895	}
1896
1897	skb_zcopy_set(skb, uarg, NULL);
1898	return skb->len - orig_len;
1899}
1900EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1901
1902void __skb_zcopy_downgrade_managed(struct sk_buff *skb)
1903{
1904	int i;
1905
1906	skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS;
1907	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1908		skb_frag_ref(skb, i);
1909}
1910EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed);
1911
1912static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1913			      gfp_t gfp_mask)
1914{
1915	if (skb_zcopy(orig)) {
1916		if (skb_zcopy(nskb)) {
1917			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1918			if (!gfp_mask) {
1919				WARN_ON_ONCE(1);
1920				return -ENOMEM;
1921			}
1922			if (skb_uarg(nskb) == skb_uarg(orig))
1923				return 0;
1924			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1925				return -EIO;
1926		}
1927		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1928	}
1929	return 0;
1930}
1931
1932/**
1933 *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1934 *	@skb: the skb to modify
1935 *	@gfp_mask: allocation priority
1936 *
1937 *	This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1938 *	It will copy all frags into kernel and drop the reference
1939 *	to userspace pages.
1940 *
1941 *	If this function is called from an interrupt gfp_mask() must be
1942 *	%GFP_ATOMIC.
1943 *
1944 *	Returns 0 on success or a negative error code on failure
1945 *	to allocate kernel memory to copy to.
1946 */
1947int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1948{
1949	int num_frags = skb_shinfo(skb)->nr_frags;
1950	struct page *page, *head = NULL;
1951	int i, order, psize, new_frags;
1952	u32 d_off;
1953
1954	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1955		return -EINVAL;
1956
1957	if (!num_frags)
1958		goto release;
1959
1960	/* We might have to allocate high order pages, so compute what minimum
1961	 * page order is needed.
1962	 */
1963	order = 0;
1964	while ((PAGE_SIZE << order) * MAX_SKB_FRAGS < __skb_pagelen(skb))
1965		order++;
1966	psize = (PAGE_SIZE << order);
1967
1968	new_frags = (__skb_pagelen(skb) + psize - 1) >> (PAGE_SHIFT + order);
1969	for (i = 0; i < new_frags; i++) {
1970		page = alloc_pages(gfp_mask | __GFP_COMP, order);
1971		if (!page) {
1972			while (head) {
1973				struct page *next = (struct page *)page_private(head);
1974				put_page(head);
1975				head = next;
1976			}
1977			return -ENOMEM;
1978		}
1979		set_page_private(page, (unsigned long)head);
1980		head = page;
1981	}
1982
1983	page = head;
1984	d_off = 0;
1985	for (i = 0; i < num_frags; i++) {
1986		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1987		u32 p_off, p_len, copied;
1988		struct page *p;
1989		u8 *vaddr;
1990
1991		skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1992				      p, p_off, p_len, copied) {
1993			u32 copy, done = 0;
1994			vaddr = kmap_atomic(p);
1995
1996			while (done < p_len) {
1997				if (d_off == psize) {
1998					d_off = 0;
1999					page = (struct page *)page_private(page);
2000				}
2001				copy = min_t(u32, psize - d_off, p_len - done);
2002				memcpy(page_address(page) + d_off,
2003				       vaddr + p_off + done, copy);
2004				done += copy;
2005				d_off += copy;
2006			}
2007			kunmap_atomic(vaddr);
2008		}
2009	}
2010
2011	/* skb frags release userspace buffers */
2012	for (i = 0; i < num_frags; i++)
2013		skb_frag_unref(skb, i);
2014
2015	/* skb frags point to kernel buffers */
2016	for (i = 0; i < new_frags - 1; i++) {
2017		__skb_fill_netmem_desc(skb, i, page_to_netmem(head), 0, psize);
2018		head = (struct page *)page_private(head);
2019	}
2020	__skb_fill_netmem_desc(skb, new_frags - 1, page_to_netmem(head), 0,
2021			       d_off);
2022	skb_shinfo(skb)->nr_frags = new_frags;
2023
2024release:
2025	skb_zcopy_clear(skb, false);
2026	return 0;
2027}
2028EXPORT_SYMBOL_GPL(skb_copy_ubufs);
2029
2030/**
2031 *	skb_clone	-	duplicate an sk_buff
2032 *	@skb: buffer to clone
2033 *	@gfp_mask: allocation priority
2034 *
2035 *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
2036 *	copies share the same packet data but not structure. The new
2037 *	buffer has a reference count of 1. If the allocation fails the
2038 *	function returns %NULL otherwise the new buffer is returned.
2039 *
2040 *	If this function is called from an interrupt gfp_mask() must be
2041 *	%GFP_ATOMIC.
2042 */
2043
2044struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
2045{
2046	struct sk_buff_fclones *fclones = container_of(skb,
2047						       struct sk_buff_fclones,
2048						       skb1);
2049	struct sk_buff *n;
2050
2051	if (skb_orphan_frags(skb, gfp_mask))
2052		return NULL;
2053
2054	if (skb->fclone == SKB_FCLONE_ORIG &&
2055	    refcount_read(&fclones->fclone_ref) == 1) {
2056		n = &fclones->skb2;
2057		refcount_set(&fclones->fclone_ref, 2);
2058		n->fclone = SKB_FCLONE_CLONE;
2059	} else {
2060		if (skb_pfmemalloc(skb))
2061			gfp_mask |= __GFP_MEMALLOC;
2062
2063		n = kmem_cache_alloc(net_hotdata.skbuff_cache, gfp_mask);
2064		if (!n)
2065			return NULL;
2066
2067		n->fclone = SKB_FCLONE_UNAVAILABLE;
2068	}
2069
2070	return __skb_clone(n, skb);
2071}
2072EXPORT_SYMBOL(skb_clone);
2073
2074void skb_headers_offset_update(struct sk_buff *skb, int off)
2075{
2076	/* Only adjust this if it actually is csum_start rather than csum */
2077	if (skb->ip_summed == CHECKSUM_PARTIAL)
2078		skb->csum_start += off;
2079	/* {transport,network,mac}_header and tail are relative to skb->head */
2080	skb->transport_header += off;
2081	skb->network_header   += off;
2082	if (skb_mac_header_was_set(skb))
2083		skb->mac_header += off;
2084	skb->inner_transport_header += off;
2085	skb->inner_network_header += off;
2086	skb->inner_mac_header += off;
2087}
2088EXPORT_SYMBOL(skb_headers_offset_update);
2089
2090void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
2091{
2092	__copy_skb_header(new, old);
2093
2094	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
2095	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
2096	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
2097}
2098EXPORT_SYMBOL(skb_copy_header);
2099
2100static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
2101{
2102	if (skb_pfmemalloc(skb))
2103		return SKB_ALLOC_RX;
2104	return 0;
2105}
2106
2107/**
2108 *	skb_copy	-	create private copy of an sk_buff
2109 *	@skb: buffer to copy
2110 *	@gfp_mask: allocation priority
2111 *
2112 *	Make a copy of both an &sk_buff and its data. This is used when the
2113 *	caller wishes to modify the data and needs a private copy of the
2114 *	data to alter. Returns %NULL on failure or the pointer to the buffer
2115 *	on success. The returned buffer has a reference count of 1.
2116 *
2117 *	As by-product this function converts non-linear &sk_buff to linear
2118 *	one, so that &sk_buff becomes completely private and caller is allowed
2119 *	to modify all the data of returned buffer. This means that this
2120 *	function is not recommended for use in circumstances when only
2121 *	header is going to be modified. Use pskb_copy() instead.
2122 */
2123
2124struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
2125{
2126	struct sk_buff *n;
2127	unsigned int size;
2128	int headerlen;
2129
2130	if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST))
2131		return NULL;
2132
2133	headerlen = skb_headroom(skb);
2134	size = skb_end_offset(skb) + skb->data_len;
2135	n = __alloc_skb(size, gfp_mask,
2136			skb_alloc_rx_flag(skb), NUMA_NO_NODE);
2137	if (!n)
2138		return NULL;
2139
2140	/* Set the data pointer */
2141	skb_reserve(n, headerlen);
2142	/* Set the tail pointer and length */
2143	skb_put(n, skb->len);
2144
2145	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
2146
2147	skb_copy_header(n, skb);
2148	return n;
2149}
2150EXPORT_SYMBOL(skb_copy);
2151
2152/**
2153 *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
2154 *	@skb: buffer to copy
2155 *	@headroom: headroom of new skb
2156 *	@gfp_mask: allocation priority
2157 *	@fclone: if true allocate the copy of the skb from the fclone
2158 *	cache instead of the head cache; it is recommended to set this
2159 *	to true for the cases where the copy will likely be cloned
2160 *
2161 *	Make a copy of both an &sk_buff and part of its data, located
2162 *	in header. Fragmented data remain shared. This is used when
2163 *	the caller wishes to modify only header of &sk_buff and needs
2164 *	private copy of the header to alter. Returns %NULL on failure
2165 *	or the pointer to the buffer on success.
2166 *	The returned buffer has a reference count of 1.
2167 */
2168
2169struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
2170				   gfp_t gfp_mask, bool fclone)
2171{
2172	unsigned int size = skb_headlen(skb) + headroom;
2173	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
2174	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
2175
2176	if (!n)
2177		goto out;
2178
2179	/* Set the data pointer */
2180	skb_reserve(n, headroom);
2181	/* Set the tail pointer and length */
2182	skb_put(n, skb_headlen(skb));
2183	/* Copy the bytes */
2184	skb_copy_from_linear_data(skb, n->data, n->len);
2185
2186	n->truesize += skb->data_len;
2187	n->data_len  = skb->data_len;
2188	n->len	     = skb->len;
2189
2190	if (skb_shinfo(skb)->nr_frags) {
2191		int i;
2192
2193		if (skb_orphan_frags(skb, gfp_mask) ||
2194		    skb_zerocopy_clone(n, skb, gfp_mask)) {
2195			kfree_skb(n);
2196			n = NULL;
2197			goto out;
2198		}
2199		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2200			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
2201			skb_frag_ref(skb, i);
2202		}
2203		skb_shinfo(n)->nr_frags = i;
2204	}
2205
2206	if (skb_has_frag_list(skb)) {
2207		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
2208		skb_clone_fraglist(n);
2209	}
2210
2211	skb_copy_header(n, skb);
2212out:
2213	return n;
2214}
2215EXPORT_SYMBOL(__pskb_copy_fclone);
2216
2217/**
2218 *	pskb_expand_head - reallocate header of &sk_buff
2219 *	@skb: buffer to reallocate
2220 *	@nhead: room to add at head
2221 *	@ntail: room to add at tail
2222 *	@gfp_mask: allocation priority
2223 *
2224 *	Expands (or creates identical copy, if @nhead and @ntail are zero)
2225 *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
2226 *	reference count of 1. Returns zero in the case of success or error,
2227 *	if expansion failed. In the last case, &sk_buff is not changed.
2228 *
2229 *	All the pointers pointing into skb header may change and must be
2230 *	reloaded after call to this function.
2231 */
2232
2233int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
2234		     gfp_t gfp_mask)
2235{
2236	unsigned int osize = skb_end_offset(skb);
2237	unsigned int size = osize + nhead + ntail;
2238	long off;
2239	u8 *data;
2240	int i;
2241
2242	BUG_ON(nhead < 0);
2243
2244	BUG_ON(skb_shared(skb));
2245
2246	skb_zcopy_downgrade_managed(skb);
2247
2248	if (skb_pfmemalloc(skb))
2249		gfp_mask |= __GFP_MEMALLOC;
2250
2251	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
2252	if (!data)
2253		goto nodata;
2254	size = SKB_WITH_OVERHEAD(size);
2255
2256	/* Copy only real data... and, alas, header. This should be
2257	 * optimized for the cases when header is void.
2258	 */
2259	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
2260
2261	memcpy((struct skb_shared_info *)(data + size),
2262	       skb_shinfo(skb),
2263	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
2264
2265	/*
2266	 * if shinfo is shared we must drop the old head gracefully, but if it
2267	 * is not we can just drop the old head and let the existing refcount
2268	 * be since all we did is relocate the values
2269	 */
2270	if (skb_cloned(skb)) {
2271		if (skb_orphan_frags(skb, gfp_mask))
2272			goto nofrags;
2273		if (skb_zcopy(skb))
2274			refcount_inc(&skb_uarg(skb)->refcnt);
2275		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2276			skb_frag_ref(skb, i);
2277
2278		if (skb_has_frag_list(skb))
2279			skb_clone_fraglist(skb);
2280
2281		skb_release_data(skb, SKB_CONSUMED, false);
2282	} else {
2283		skb_free_head(skb, false);
2284	}
2285	off = (data + nhead) - skb->head;
2286
2287	skb->head     = data;
2288	skb->head_frag = 0;
2289	skb->data    += off;
2290
2291	skb_set_end_offset(skb, size);
2292#ifdef NET_SKBUFF_DATA_USES_OFFSET
 
2293	off           = nhead;
 
 
2294#endif
2295	skb->tail	      += off;
2296	skb_headers_offset_update(skb, nhead);
2297	skb->cloned   = 0;
2298	skb->hdr_len  = 0;
2299	skb->nohdr    = 0;
2300	atomic_set(&skb_shinfo(skb)->dataref, 1);
2301
2302	skb_metadata_clear(skb);
2303
2304	/* It is not generally safe to change skb->truesize.
2305	 * For the moment, we really care of rx path, or
2306	 * when skb is orphaned (not attached to a socket).
2307	 */
2308	if (!skb->sk || skb->destructor == sock_edemux)
2309		skb->truesize += size - osize;
2310
2311	return 0;
2312
2313nofrags:
2314	skb_kfree_head(data, size);
2315nodata:
2316	return -ENOMEM;
2317}
2318EXPORT_SYMBOL(pskb_expand_head);
2319
2320/* Make private copy of skb with writable head and some headroom */
2321
2322struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
2323{
2324	struct sk_buff *skb2;
2325	int delta = headroom - skb_headroom(skb);
2326
2327	if (delta <= 0)
2328		skb2 = pskb_copy(skb, GFP_ATOMIC);
2329	else {
2330		skb2 = skb_clone(skb, GFP_ATOMIC);
2331		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
2332					     GFP_ATOMIC)) {
2333			kfree_skb(skb2);
2334			skb2 = NULL;
2335		}
2336	}
2337	return skb2;
2338}
2339EXPORT_SYMBOL(skb_realloc_headroom);
2340
2341/* Note: We plan to rework this in linux-6.4 */
2342int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
2343{
2344	unsigned int saved_end_offset, saved_truesize;
2345	struct skb_shared_info *shinfo;
2346	int res;
2347
2348	saved_end_offset = skb_end_offset(skb);
2349	saved_truesize = skb->truesize;
2350
2351	res = pskb_expand_head(skb, 0, 0, pri);
2352	if (res)
2353		return res;
2354
2355	skb->truesize = saved_truesize;
2356
2357	if (likely(skb_end_offset(skb) == saved_end_offset))
2358		return 0;
2359
2360	/* We can not change skb->end if the original or new value
2361	 * is SKB_SMALL_HEAD_HEADROOM, as it might break skb_kfree_head().
2362	 */
2363	if (saved_end_offset == SKB_SMALL_HEAD_HEADROOM ||
2364	    skb_end_offset(skb) == SKB_SMALL_HEAD_HEADROOM) {
2365		/* We think this path should not be taken.
2366		 * Add a temporary trace to warn us just in case.
2367		 */
2368		pr_err_once("__skb_unclone_keeptruesize() skb_end_offset() %u -> %u\n",
2369			    saved_end_offset, skb_end_offset(skb));
2370		WARN_ON_ONCE(1);
2371		return 0;
2372	}
2373
2374	shinfo = skb_shinfo(skb);
2375
2376	/* We are about to change back skb->end,
2377	 * we need to move skb_shinfo() to its new location.
2378	 */
2379	memmove(skb->head + saved_end_offset,
2380		shinfo,
2381		offsetof(struct skb_shared_info, frags[shinfo->nr_frags]));
2382
2383	skb_set_end_offset(skb, saved_end_offset);
2384
2385	return 0;
2386}
2387
2388/**
2389 *	skb_expand_head - reallocate header of &sk_buff
2390 *	@skb: buffer to reallocate
2391 *	@headroom: needed headroom
2392 *
2393 *	Unlike skb_realloc_headroom, this one does not allocate a new skb
2394 *	if possible; copies skb->sk to new skb as needed
2395 *	and frees original skb in case of failures.
2396 *
2397 *	It expect increased headroom and generates warning otherwise.
2398 */
2399
2400struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
2401{
2402	int delta = headroom - skb_headroom(skb);
2403	int osize = skb_end_offset(skb);
2404	struct sock *sk = skb->sk;
2405
2406	if (WARN_ONCE(delta <= 0,
2407		      "%s is expecting an increase in the headroom", __func__))
2408		return skb;
2409
2410	delta = SKB_DATA_ALIGN(delta);
2411	/* pskb_expand_head() might crash, if skb is shared. */
2412	if (skb_shared(skb) || !is_skb_wmem(skb)) {
2413		struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2414
2415		if (unlikely(!nskb))
2416			goto fail;
2417
2418		if (sk)
2419			skb_set_owner_w(nskb, sk);
2420		consume_skb(skb);
2421		skb = nskb;
2422	}
2423	if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
2424		goto fail;
2425
2426	if (sk && is_skb_wmem(skb)) {
2427		delta = skb_end_offset(skb) - osize;
2428		refcount_add(delta, &sk->sk_wmem_alloc);
2429		skb->truesize += delta;
2430	}
2431	return skb;
2432
2433fail:
2434	kfree_skb(skb);
2435	return NULL;
2436}
2437EXPORT_SYMBOL(skb_expand_head);
2438
2439/**
2440 *	skb_copy_expand	-	copy and expand sk_buff
2441 *	@skb: buffer to copy
2442 *	@newheadroom: new free bytes at head
2443 *	@newtailroom: new free bytes at tail
2444 *	@gfp_mask: allocation priority
2445 *
2446 *	Make a copy of both an &sk_buff and its data and while doing so
2447 *	allocate additional space.
2448 *
2449 *	This is used when the caller wishes to modify the data and needs a
2450 *	private copy of the data to alter as well as more space for new fields.
2451 *	Returns %NULL on failure or the pointer to the buffer
2452 *	on success. The returned buffer has a reference count of 1.
2453 *
2454 *	You must pass %GFP_ATOMIC as the allocation priority if this function
2455 *	is called from an interrupt.
2456 */
2457struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
2458				int newheadroom, int newtailroom,
2459				gfp_t gfp_mask)
2460{
2461	/*
2462	 *	Allocate the copy buffer
2463	 */
 
 
 
 
2464	int head_copy_len, head_copy_off;
2465	struct sk_buff *n;
2466	int oldheadroom;
2467
2468	if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST))
2469		return NULL;
2470
2471	oldheadroom = skb_headroom(skb);
2472	n = __alloc_skb(newheadroom + skb->len + newtailroom,
2473			gfp_mask, skb_alloc_rx_flag(skb),
2474			NUMA_NO_NODE);
2475	if (!n)
2476		return NULL;
2477
2478	skb_reserve(n, newheadroom);
2479
2480	/* Set the tail pointer and length */
2481	skb_put(n, skb->len);
2482
2483	head_copy_len = oldheadroom;
2484	head_copy_off = 0;
2485	if (newheadroom <= head_copy_len)
2486		head_copy_len = newheadroom;
2487	else
2488		head_copy_off = newheadroom - head_copy_len;
2489
2490	/* Copy the linear header and data. */
2491	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
2492			     skb->len + head_copy_len));
2493
2494	skb_copy_header(n, skb);
2495
2496	skb_headers_offset_update(n, newheadroom - oldheadroom);
2497
2498	return n;
2499}
2500EXPORT_SYMBOL(skb_copy_expand);
2501
2502/**
2503 *	__skb_pad		-	zero pad the tail of an skb
2504 *	@skb: buffer to pad
2505 *	@pad: space to pad
2506 *	@free_on_error: free buffer on error
2507 *
2508 *	Ensure that a buffer is followed by a padding area that is zero
2509 *	filled. Used by network drivers which may DMA or transfer data
2510 *	beyond the buffer end onto the wire.
2511 *
2512 *	May return error in out of memory cases. The skb is freed on error
2513 *	if @free_on_error is true.
2514 */
2515
2516int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
2517{
2518	int err;
2519	int ntail;
2520
2521	/* If the skbuff is non linear tailroom is always zero.. */
2522	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
2523		memset(skb->data+skb->len, 0, pad);
2524		return 0;
2525	}
2526
2527	ntail = skb->data_len + pad - (skb->end - skb->tail);
2528	if (likely(skb_cloned(skb) || ntail > 0)) {
2529		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
2530		if (unlikely(err))
2531			goto free_skb;
2532	}
2533
2534	/* FIXME: The use of this function with non-linear skb's really needs
2535	 * to be audited.
2536	 */
2537	err = skb_linearize(skb);
2538	if (unlikely(err))
2539		goto free_skb;
2540
2541	memset(skb->data + skb->len, 0, pad);
2542	return 0;
2543
2544free_skb:
2545	if (free_on_error)
2546		kfree_skb(skb);
2547	return err;
2548}
2549EXPORT_SYMBOL(__skb_pad);
2550
2551/**
2552 *	pskb_put - add data to the tail of a potentially fragmented buffer
2553 *	@skb: start of the buffer to use
2554 *	@tail: tail fragment of the buffer to use
2555 *	@len: amount of data to add
2556 *
2557 *	This function extends the used data area of the potentially
2558 *	fragmented buffer. @tail must be the last fragment of @skb -- or
2559 *	@skb itself. If this would exceed the total buffer size the kernel
2560 *	will panic. A pointer to the first byte of the extra data is
2561 *	returned.
2562 */
2563
2564void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
2565{
2566	if (tail != skb) {
2567		skb->data_len += len;
2568		skb->len += len;
2569	}
2570	return skb_put(tail, len);
2571}
2572EXPORT_SYMBOL_GPL(pskb_put);
2573
2574/**
2575 *	skb_put - add data to a buffer
2576 *	@skb: buffer to use
2577 *	@len: amount of data to add
2578 *
2579 *	This function extends the used data area of the buffer. If this would
2580 *	exceed the total buffer size the kernel will panic. A pointer to the
2581 *	first byte of the extra data is returned.
2582 */
2583void *skb_put(struct sk_buff *skb, unsigned int len)
2584{
2585	void *tmp = skb_tail_pointer(skb);
2586	SKB_LINEAR_ASSERT(skb);
2587	skb->tail += len;
2588	skb->len  += len;
2589	if (unlikely(skb->tail > skb->end))
2590		skb_over_panic(skb, len, __builtin_return_address(0));
2591	return tmp;
2592}
2593EXPORT_SYMBOL(skb_put);
2594
2595/**
2596 *	skb_push - add data to the start of a buffer
2597 *	@skb: buffer to use
2598 *	@len: amount of data to add
2599 *
2600 *	This function extends the used data area of the buffer at the buffer
2601 *	start. If this would exceed the total buffer headroom the kernel will
2602 *	panic. A pointer to the first byte of the extra data is returned.
2603 */
2604void *skb_push(struct sk_buff *skb, unsigned int len)
2605{
2606	skb->data -= len;
2607	skb->len  += len;
2608	if (unlikely(skb->data < skb->head))
2609		skb_under_panic(skb, len, __builtin_return_address(0));
2610	return skb->data;
2611}
2612EXPORT_SYMBOL(skb_push);
2613
2614/**
2615 *	skb_pull - remove data from the start of a buffer
2616 *	@skb: buffer to use
2617 *	@len: amount of data to remove
2618 *
2619 *	This function removes data from the start of a buffer, returning
2620 *	the memory to the headroom. A pointer to the next data in the buffer
2621 *	is returned. Once the data has been pulled future pushes will overwrite
2622 *	the old data.
2623 */
2624void *skb_pull(struct sk_buff *skb, unsigned int len)
2625{
2626	return skb_pull_inline(skb, len);
2627}
2628EXPORT_SYMBOL(skb_pull);
2629
2630/**
2631 *	skb_pull_data - remove data from the start of a buffer returning its
2632 *	original position.
2633 *	@skb: buffer to use
2634 *	@len: amount of data to remove
2635 *
2636 *	This function removes data from the start of a buffer, returning
2637 *	the memory to the headroom. A pointer to the original data in the buffer
2638 *	is returned after checking if there is enough data to pull. Once the
2639 *	data has been pulled future pushes will overwrite the old data.
2640 */
2641void *skb_pull_data(struct sk_buff *skb, size_t len)
2642{
2643	void *data = skb->data;
2644
2645	if (skb->len < len)
2646		return NULL;
2647
2648	skb_pull(skb, len);
2649
2650	return data;
2651}
2652EXPORT_SYMBOL(skb_pull_data);
2653
2654/**
2655 *	skb_trim - remove end from a buffer
2656 *	@skb: buffer to alter
2657 *	@len: new length
2658 *
2659 *	Cut the length of a buffer down by removing data from the tail. If
2660 *	the buffer is already under the length specified it is not modified.
2661 *	The skb must be linear.
2662 */
2663void skb_trim(struct sk_buff *skb, unsigned int len)
2664{
2665	if (skb->len > len)
2666		__skb_trim(skb, len);
2667}
2668EXPORT_SYMBOL(skb_trim);
2669
2670/* Trims skb to length len. It can change skb pointers.
2671 */
2672
2673int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2674{
2675	struct sk_buff **fragp;
2676	struct sk_buff *frag;
2677	int offset = skb_headlen(skb);
2678	int nfrags = skb_shinfo(skb)->nr_frags;
2679	int i;
2680	int err;
2681
2682	if (skb_cloned(skb) &&
2683	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2684		return err;
2685
2686	i = 0;
2687	if (offset >= len)
2688		goto drop_pages;
2689
2690	for (; i < nfrags; i++) {
2691		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2692
2693		if (end < len) {
2694			offset = end;
2695			continue;
2696		}
2697
2698		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2699
2700drop_pages:
2701		skb_shinfo(skb)->nr_frags = i;
2702
2703		for (; i < nfrags; i++)
2704			skb_frag_unref(skb, i);
2705
2706		if (skb_has_frag_list(skb))
2707			skb_drop_fraglist(skb);
2708		goto done;
2709	}
2710
2711	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2712	     fragp = &frag->next) {
2713		int end = offset + frag->len;
2714
2715		if (skb_shared(frag)) {
2716			struct sk_buff *nfrag;
2717
2718			nfrag = skb_clone(frag, GFP_ATOMIC);
2719			if (unlikely(!nfrag))
2720				return -ENOMEM;
2721
2722			nfrag->next = frag->next;
2723			consume_skb(frag);
2724			frag = nfrag;
2725			*fragp = frag;
2726		}
2727
2728		if (end < len) {
2729			offset = end;
2730			continue;
2731		}
2732
2733		if (end > len &&
2734		    unlikely((err = pskb_trim(frag, len - offset))))
2735			return err;
2736
2737		if (frag->next)
2738			skb_drop_list(&frag->next);
2739		break;
2740	}
2741
2742done:
2743	if (len > skb_headlen(skb)) {
2744		skb->data_len -= skb->len - len;
2745		skb->len       = len;
2746	} else {
2747		skb->len       = len;
2748		skb->data_len  = 0;
2749		skb_set_tail_pointer(skb, len);
2750	}
2751
2752	if (!skb->sk || skb->destructor == sock_edemux)
2753		skb_condense(skb);
2754	return 0;
2755}
2756EXPORT_SYMBOL(___pskb_trim);
2757
2758/* Note : use pskb_trim_rcsum() instead of calling this directly
2759 */
2760int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2761{
2762	if (skb->ip_summed == CHECKSUM_COMPLETE) {
2763		int delta = skb->len - len;
2764
2765		skb->csum = csum_block_sub(skb->csum,
2766					   skb_checksum(skb, len, delta, 0),
2767					   len);
2768	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2769		int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2770		int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2771
2772		if (offset + sizeof(__sum16) > hdlen)
2773			return -EINVAL;
2774	}
2775	return __pskb_trim(skb, len);
2776}
2777EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2778
2779/**
2780 *	__pskb_pull_tail - advance tail of skb header
2781 *	@skb: buffer to reallocate
2782 *	@delta: number of bytes to advance tail
2783 *
2784 *	The function makes a sense only on a fragmented &sk_buff,
2785 *	it expands header moving its tail forward and copying necessary
2786 *	data from fragmented part.
2787 *
2788 *	&sk_buff MUST have reference count of 1.
2789 *
2790 *	Returns %NULL (and &sk_buff does not change) if pull failed
2791 *	or value of new tail of skb in the case of success.
2792 *
2793 *	All the pointers pointing into skb header may change and must be
2794 *	reloaded after call to this function.
2795 */
2796
2797/* Moves tail of skb head forward, copying data from fragmented part,
2798 * when it is necessary.
2799 * 1. It may fail due to malloc failure.
2800 * 2. It may change skb pointers.
2801 *
2802 * It is pretty complicated. Luckily, it is called only in exceptional cases.
2803 */
2804void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2805{
2806	/* If skb has not enough free space at tail, get new one
2807	 * plus 128 bytes for future expansions. If we have enough
2808	 * room at tail, reallocate without expansion only if skb is cloned.
2809	 */
2810	int i, k, eat = (skb->tail + delta) - skb->end;
2811
2812	if (eat > 0 || skb_cloned(skb)) {
2813		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2814				     GFP_ATOMIC))
2815			return NULL;
2816	}
2817
2818	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2819			     skb_tail_pointer(skb), delta));
2820
2821	/* Optimization: no fragments, no reasons to preestimate
2822	 * size of pulled pages. Superb.
2823	 */
2824	if (!skb_has_frag_list(skb))
2825		goto pull_pages;
2826
2827	/* Estimate size of pulled pages. */
2828	eat = delta;
2829	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2830		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2831
2832		if (size >= eat)
2833			goto pull_pages;
2834		eat -= size;
2835	}
2836
2837	/* If we need update frag list, we are in troubles.
2838	 * Certainly, it is possible to add an offset to skb data,
2839	 * but taking into account that pulling is expected to
2840	 * be very rare operation, it is worth to fight against
2841	 * further bloating skb head and crucify ourselves here instead.
2842	 * Pure masohism, indeed. 8)8)
2843	 */
2844	if (eat) {
2845		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2846		struct sk_buff *clone = NULL;
2847		struct sk_buff *insp = NULL;
2848
2849		do {
 
 
2850			if (list->len <= eat) {
2851				/* Eaten as whole. */
2852				eat -= list->len;
2853				list = list->next;
2854				insp = list;
2855			} else {
2856				/* Eaten partially. */
2857				if (skb_is_gso(skb) && !list->head_frag &&
2858				    skb_headlen(list))
2859					skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2860
2861				if (skb_shared(list)) {
2862					/* Sucks! We need to fork list. :-( */
2863					clone = skb_clone(list, GFP_ATOMIC);
2864					if (!clone)
2865						return NULL;
2866					insp = list->next;
2867					list = clone;
2868				} else {
2869					/* This may be pulled without
2870					 * problems. */
2871					insp = list;
2872				}
2873				if (!pskb_pull(list, eat)) {
2874					kfree_skb(clone);
2875					return NULL;
2876				}
2877				break;
2878			}
2879		} while (eat);
2880
2881		/* Free pulled out fragments. */
2882		while ((list = skb_shinfo(skb)->frag_list) != insp) {
2883			skb_shinfo(skb)->frag_list = list->next;
2884			consume_skb(list);
2885		}
2886		/* And insert new clone at head. */
2887		if (clone) {
2888			clone->next = list;
2889			skb_shinfo(skb)->frag_list = clone;
2890		}
2891	}
2892	/* Success! Now we may commit changes to skb data. */
2893
2894pull_pages:
2895	eat = delta;
2896	k = 0;
2897	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2898		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2899
2900		if (size <= eat) {
2901			skb_frag_unref(skb, i);
2902			eat -= size;
2903		} else {
2904			skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2905
2906			*frag = skb_shinfo(skb)->frags[i];
2907			if (eat) {
2908				skb_frag_off_add(frag, eat);
2909				skb_frag_size_sub(frag, eat);
2910				if (!i)
2911					goto end;
2912				eat = 0;
2913			}
2914			k++;
2915		}
2916	}
2917	skb_shinfo(skb)->nr_frags = k;
2918
2919end:
2920	skb->tail     += delta;
2921	skb->data_len -= delta;
2922
2923	if (!skb->data_len)
2924		skb_zcopy_clear(skb, false);
2925
2926	return skb_tail_pointer(skb);
2927}
2928EXPORT_SYMBOL(__pskb_pull_tail);
2929
2930/**
2931 *	skb_copy_bits - copy bits from skb to kernel buffer
2932 *	@skb: source skb
2933 *	@offset: offset in source
2934 *	@to: destination buffer
2935 *	@len: number of bytes to copy
2936 *
2937 *	Copy the specified number of bytes from the source skb to the
2938 *	destination buffer.
2939 *
2940 *	CAUTION ! :
2941 *		If its prototype is ever changed,
2942 *		check arch/{*}/net/{*}.S files,
2943 *		since it is called from BPF assembly code.
2944 */
2945int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2946{
2947	int start = skb_headlen(skb);
2948	struct sk_buff *frag_iter;
2949	int i, copy;
2950
2951	if (offset > (int)skb->len - len)
2952		goto fault;
2953
2954	/* Copy header. */
2955	if ((copy = start - offset) > 0) {
2956		if (copy > len)
2957			copy = len;
2958		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2959		if ((len -= copy) == 0)
2960			return 0;
2961		offset += copy;
2962		to     += copy;
2963	}
2964
2965	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2966		int end;
2967		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2968
2969		WARN_ON(start > offset + len);
2970
2971		end = start + skb_frag_size(f);
2972		if ((copy = end - offset) > 0) {
2973			u32 p_off, p_len, copied;
2974			struct page *p;
2975			u8 *vaddr;
2976
2977			if (copy > len)
2978				copy = len;
2979
2980			skb_frag_foreach_page(f,
2981					      skb_frag_off(f) + offset - start,
2982					      copy, p, p_off, p_len, copied) {
2983				vaddr = kmap_atomic(p);
2984				memcpy(to + copied, vaddr + p_off, p_len);
2985				kunmap_atomic(vaddr);
2986			}
2987
2988			if ((len -= copy) == 0)
2989				return 0;
2990			offset += copy;
2991			to     += copy;
2992		}
2993		start = end;
2994	}
2995
2996	skb_walk_frags(skb, frag_iter) {
2997		int end;
2998
2999		WARN_ON(start > offset + len);
3000
3001		end = start + frag_iter->len;
3002		if ((copy = end - offset) > 0) {
3003			if (copy > len)
3004				copy = len;
3005			if (skb_copy_bits(frag_iter, offset - start, to, copy))
3006				goto fault;
3007			if ((len -= copy) == 0)
3008				return 0;
3009			offset += copy;
3010			to     += copy;
3011		}
3012		start = end;
3013	}
3014
3015	if (!len)
3016		return 0;
3017
3018fault:
3019	return -EFAULT;
3020}
3021EXPORT_SYMBOL(skb_copy_bits);
3022
3023/*
3024 * Callback from splice_to_pipe(), if we need to release some pages
3025 * at the end of the spd in case we error'ed out in filling the pipe.
3026 */
3027static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
3028{
3029	put_page(spd->pages[i]);
3030}
3031
3032static struct page *linear_to_page(struct page *page, unsigned int *len,
3033				   unsigned int *offset,
3034				   struct sock *sk)
3035{
3036	struct page_frag *pfrag = sk_page_frag(sk);
3037
3038	if (!sk_page_frag_refill(sk, pfrag))
3039		return NULL;
3040
3041	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
3042
3043	memcpy(page_address(pfrag->page) + pfrag->offset,
3044	       page_address(page) + *offset, *len);
3045	*offset = pfrag->offset;
3046	pfrag->offset += *len;
3047
3048	return pfrag->page;
3049}
3050
3051static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
3052			     struct page *page,
3053			     unsigned int offset)
3054{
3055	return	spd->nr_pages &&
3056		spd->pages[spd->nr_pages - 1] == page &&
3057		(spd->partial[spd->nr_pages - 1].offset +
3058		 spd->partial[spd->nr_pages - 1].len == offset);
3059}
3060
3061/*
3062 * Fill page/offset/length into spd, if it can hold more pages.
3063 */
3064static bool spd_fill_page(struct splice_pipe_desc *spd,
3065			  struct pipe_inode_info *pipe, struct page *page,
3066			  unsigned int *len, unsigned int offset,
3067			  bool linear,
3068			  struct sock *sk)
3069{
3070	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
3071		return true;
3072
3073	if (linear) {
3074		page = linear_to_page(page, len, &offset, sk);
3075		if (!page)
3076			return true;
3077	}
3078	if (spd_can_coalesce(spd, page, offset)) {
3079		spd->partial[spd->nr_pages - 1].len += *len;
3080		return false;
3081	}
3082	get_page(page);
3083	spd->pages[spd->nr_pages] = page;
3084	spd->partial[spd->nr_pages].len = *len;
3085	spd->partial[spd->nr_pages].offset = offset;
3086	spd->nr_pages++;
3087
3088	return false;
3089}
3090
3091static bool __splice_segment(struct page *page, unsigned int poff,
3092			     unsigned int plen, unsigned int *off,
3093			     unsigned int *len,
3094			     struct splice_pipe_desc *spd, bool linear,
3095			     struct sock *sk,
3096			     struct pipe_inode_info *pipe)
3097{
3098	if (!*len)
3099		return true;
3100
3101	/* skip this segment if already processed */
3102	if (*off >= plen) {
3103		*off -= plen;
3104		return false;
3105	}
3106
3107	/* ignore any bits we already processed */
3108	poff += *off;
3109	plen -= *off;
3110	*off = 0;
3111
3112	do {
3113		unsigned int flen = min(*len, plen);
3114
3115		if (spd_fill_page(spd, pipe, page, &flen, poff,
3116				  linear, sk))
3117			return true;
3118		poff += flen;
3119		plen -= flen;
3120		*len -= flen;
3121	} while (*len && plen);
3122
3123	return false;
3124}
3125
3126/*
3127 * Map linear and fragment data from the skb to spd. It reports true if the
3128 * pipe is full or if we already spliced the requested length.
3129 */
3130static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
3131			      unsigned int *offset, unsigned int *len,
3132			      struct splice_pipe_desc *spd, struct sock *sk)
3133{
3134	int seg;
3135	struct sk_buff *iter;
3136
3137	/* map the linear part :
3138	 * If skb->head_frag is set, this 'linear' part is backed by a
3139	 * fragment, and if the head is not shared with any clones then
3140	 * we can avoid a copy since we own the head portion of this page.
3141	 */
3142	if (__splice_segment(virt_to_page(skb->data),
3143			     (unsigned long) skb->data & (PAGE_SIZE - 1),
3144			     skb_headlen(skb),
3145			     offset, len, spd,
3146			     skb_head_is_locked(skb),
3147			     sk, pipe))
3148		return true;
3149
3150	/*
3151	 * then map the fragments
3152	 */
3153	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
3154		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
3155
3156		if (__splice_segment(skb_frag_page(f),
3157				     skb_frag_off(f), skb_frag_size(f),
3158				     offset, len, spd, false, sk, pipe))
3159			return true;
3160	}
3161
3162	skb_walk_frags(skb, iter) {
3163		if (*offset >= iter->len) {
3164			*offset -= iter->len;
3165			continue;
3166		}
3167		/* __skb_splice_bits() only fails if the output has no room
3168		 * left, so no point in going over the frag_list for the error
3169		 * case.
3170		 */
3171		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
3172			return true;
3173	}
3174
3175	return false;
3176}
3177
3178/*
3179 * Map data from the skb to a pipe. Should handle both the linear part,
3180 * the fragments, and the frag list.
3181 */
3182int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3183		    struct pipe_inode_info *pipe, unsigned int tlen,
3184		    unsigned int flags)
3185{
3186	struct partial_page partial[MAX_SKB_FRAGS];
3187	struct page *pages[MAX_SKB_FRAGS];
3188	struct splice_pipe_desc spd = {
3189		.pages = pages,
3190		.partial = partial,
3191		.nr_pages_max = MAX_SKB_FRAGS,
3192		.ops = &nosteal_pipe_buf_ops,
3193		.spd_release = sock_spd_release,
3194	};
3195	int ret = 0;
3196
3197	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
3198
3199	if (spd.nr_pages)
3200		ret = splice_to_pipe(pipe, &spd);
3201
3202	return ret;
3203}
3204EXPORT_SYMBOL_GPL(skb_splice_bits);
3205
3206static int sendmsg_locked(struct sock *sk, struct msghdr *msg)
3207{
3208	struct socket *sock = sk->sk_socket;
3209	size_t size = msg_data_left(msg);
3210
3211	if (!sock)
3212		return -EINVAL;
3213
3214	if (!sock->ops->sendmsg_locked)
3215		return sock_no_sendmsg_locked(sk, msg, size);
3216
3217	return sock->ops->sendmsg_locked(sk, msg, size);
3218}
3219
3220static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg)
3221{
3222	struct socket *sock = sk->sk_socket;
3223
3224	if (!sock)
3225		return -EINVAL;
3226	return sock_sendmsg(sock, msg);
3227}
3228
3229typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg);
3230static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
3231			   int len, sendmsg_func sendmsg)
3232{
3233	unsigned int orig_len = len;
3234	struct sk_buff *head = skb;
3235	unsigned short fragidx;
3236	int slen, ret;
3237
3238do_frag_list:
3239
3240	/* Deal with head data */
3241	while (offset < skb_headlen(skb) && len) {
3242		struct kvec kv;
3243		struct msghdr msg;
3244
3245		slen = min_t(int, len, skb_headlen(skb) - offset);
3246		kv.iov_base = skb->data + offset;
3247		kv.iov_len = slen;
3248		memset(&msg, 0, sizeof(msg));
3249		msg.msg_flags = MSG_DONTWAIT;
3250
3251		iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &kv, 1, slen);
3252		ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3253				      sendmsg_unlocked, sk, &msg);
3254		if (ret <= 0)
3255			goto error;
3256
3257		offset += ret;
3258		len -= ret;
3259	}
3260
3261	/* All the data was skb head? */
3262	if (!len)
3263		goto out;
3264
3265	/* Make offset relative to start of frags */
3266	offset -= skb_headlen(skb);
3267
3268	/* Find where we are in frag list */
3269	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3270		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
3271
3272		if (offset < skb_frag_size(frag))
3273			break;
3274
3275		offset -= skb_frag_size(frag);
3276	}
3277
3278	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3279		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
3280
3281		slen = min_t(size_t, len, skb_frag_size(frag) - offset);
3282
3283		while (slen) {
3284			struct bio_vec bvec;
3285			struct msghdr msg = {
3286				.msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT,
3287			};
3288
3289			bvec_set_page(&bvec, skb_frag_page(frag), slen,
3290				      skb_frag_off(frag) + offset);
3291			iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1,
3292				      slen);
3293
3294			ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3295					      sendmsg_unlocked, sk, &msg);
3296			if (ret <= 0)
3297				goto error;
3298
3299			len -= ret;
3300			offset += ret;
3301			slen -= ret;
3302		}
3303
3304		offset = 0;
3305	}
3306
3307	if (len) {
3308		/* Process any frag lists */
3309
3310		if (skb == head) {
3311			if (skb_has_frag_list(skb)) {
3312				skb = skb_shinfo(skb)->frag_list;
3313				goto do_frag_list;
3314			}
3315		} else if (skb->next) {
3316			skb = skb->next;
3317			goto do_frag_list;
3318		}
3319	}
3320
3321out:
3322	return orig_len - len;
3323
3324error:
3325	return orig_len == len ? ret : orig_len - len;
3326}
3327
3328/* Send skb data on a socket. Socket must be locked. */
3329int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3330			 int len)
3331{
3332	return __skb_send_sock(sk, skb, offset, len, sendmsg_locked);
3333}
3334EXPORT_SYMBOL_GPL(skb_send_sock_locked);
3335
3336/* Send skb data on a socket. Socket must be unlocked. */
3337int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
3338{
3339	return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked);
 
 
 
 
 
 
3340}
 
3341
3342/**
3343 *	skb_store_bits - store bits from kernel buffer to skb
3344 *	@skb: destination buffer
3345 *	@offset: offset in destination
3346 *	@from: source buffer
3347 *	@len: number of bytes to copy
3348 *
3349 *	Copy the specified number of bytes from the source buffer to the
3350 *	destination skb.  This function handles all the messy bits of
3351 *	traversing fragment lists and such.
3352 */
3353
3354int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
3355{
3356	int start = skb_headlen(skb);
3357	struct sk_buff *frag_iter;
3358	int i, copy;
3359
3360	if (offset > (int)skb->len - len)
3361		goto fault;
3362
3363	if ((copy = start - offset) > 0) {
3364		if (copy > len)
3365			copy = len;
3366		skb_copy_to_linear_data_offset(skb, offset, from, copy);
3367		if ((len -= copy) == 0)
3368			return 0;
3369		offset += copy;
3370		from += copy;
3371	}
3372
3373	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3374		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3375		int end;
3376
3377		WARN_ON(start > offset + len);
3378
3379		end = start + skb_frag_size(frag);
3380		if ((copy = end - offset) > 0) {
3381			u32 p_off, p_len, copied;
3382			struct page *p;
3383			u8 *vaddr;
3384
3385			if (copy > len)
3386				copy = len;
3387
3388			skb_frag_foreach_page(frag,
3389					      skb_frag_off(frag) + offset - start,
3390					      copy, p, p_off, p_len, copied) {
3391				vaddr = kmap_atomic(p);
3392				memcpy(vaddr + p_off, from + copied, p_len);
3393				kunmap_atomic(vaddr);
3394			}
3395
3396			if ((len -= copy) == 0)
3397				return 0;
3398			offset += copy;
3399			from += copy;
3400		}
3401		start = end;
3402	}
3403
3404	skb_walk_frags(skb, frag_iter) {
3405		int end;
3406
3407		WARN_ON(start > offset + len);
3408
3409		end = start + frag_iter->len;
3410		if ((copy = end - offset) > 0) {
3411			if (copy > len)
3412				copy = len;
3413			if (skb_store_bits(frag_iter, offset - start,
3414					   from, copy))
3415				goto fault;
3416			if ((len -= copy) == 0)
3417				return 0;
3418			offset += copy;
3419			from += copy;
3420		}
3421		start = end;
3422	}
3423	if (!len)
3424		return 0;
3425
3426fault:
3427	return -EFAULT;
3428}
3429EXPORT_SYMBOL(skb_store_bits);
3430
3431/* Checksum skb data. */
3432__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3433		      __wsum csum, const struct skb_checksum_ops *ops)
3434{
3435	int start = skb_headlen(skb);
3436	int i, copy = start - offset;
3437	struct sk_buff *frag_iter;
3438	int pos = 0;
3439
3440	/* Checksum header. */
3441	if (copy > 0) {
3442		if (copy > len)
3443			copy = len;
3444		csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
3445				       skb->data + offset, copy, csum);
3446		if ((len -= copy) == 0)
3447			return csum;
3448		offset += copy;
3449		pos	= copy;
3450	}
3451
3452	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3453		int end;
3454		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3455
3456		WARN_ON(start > offset + len);
3457
3458		end = start + skb_frag_size(frag);
3459		if ((copy = end - offset) > 0) {
3460			u32 p_off, p_len, copied;
3461			struct page *p;
3462			__wsum csum2;
3463			u8 *vaddr;
3464
3465			if (copy > len)
3466				copy = len;
3467
3468			skb_frag_foreach_page(frag,
3469					      skb_frag_off(frag) + offset - start,
3470					      copy, p, p_off, p_len, copied) {
3471				vaddr = kmap_atomic(p);
3472				csum2 = INDIRECT_CALL_1(ops->update,
3473							csum_partial_ext,
3474							vaddr + p_off, p_len, 0);
3475				kunmap_atomic(vaddr);
3476				csum = INDIRECT_CALL_1(ops->combine,
3477						       csum_block_add_ext, csum,
3478						       csum2, pos, p_len);
3479				pos += p_len;
3480			}
3481
3482			if (!(len -= copy))
3483				return csum;
3484			offset += copy;
3485		}
3486		start = end;
3487	}
3488
3489	skb_walk_frags(skb, frag_iter) {
3490		int end;
3491
3492		WARN_ON(start > offset + len);
3493
3494		end = start + frag_iter->len;
3495		if ((copy = end - offset) > 0) {
3496			__wsum csum2;
3497			if (copy > len)
3498				copy = len;
3499			csum2 = __skb_checksum(frag_iter, offset - start,
3500					       copy, 0, ops);
3501			csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
3502					       csum, csum2, pos, copy);
3503			if ((len -= copy) == 0)
3504				return csum;
3505			offset += copy;
3506			pos    += copy;
3507		}
3508		start = end;
3509	}
3510	BUG_ON(len);
3511
3512	return csum;
3513}
3514EXPORT_SYMBOL(__skb_checksum);
3515
3516__wsum skb_checksum(const struct sk_buff *skb, int offset,
3517		    int len, __wsum csum)
3518{
3519	const struct skb_checksum_ops ops = {
3520		.update  = csum_partial_ext,
3521		.combine = csum_block_add_ext,
3522	};
3523
3524	return __skb_checksum(skb, offset, len, csum, &ops);
3525}
3526EXPORT_SYMBOL(skb_checksum);
3527
3528/* Both of above in one bottle. */
3529
3530__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
3531				    u8 *to, int len)
3532{
3533	int start = skb_headlen(skb);
3534	int i, copy = start - offset;
3535	struct sk_buff *frag_iter;
3536	int pos = 0;
3537	__wsum csum = 0;
3538
3539	/* Copy header. */
3540	if (copy > 0) {
3541		if (copy > len)
3542			copy = len;
3543		csum = csum_partial_copy_nocheck(skb->data + offset, to,
3544						 copy);
3545		if ((len -= copy) == 0)
3546			return csum;
3547		offset += copy;
3548		to     += copy;
3549		pos	= copy;
3550	}
3551
3552	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3553		int end;
3554
3555		WARN_ON(start > offset + len);
3556
3557		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3558		if ((copy = end - offset) > 0) {
3559			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3560			u32 p_off, p_len, copied;
3561			struct page *p;
3562			__wsum csum2;
3563			u8 *vaddr;
3564
3565			if (copy > len)
3566				copy = len;
3567
3568			skb_frag_foreach_page(frag,
3569					      skb_frag_off(frag) + offset - start,
3570					      copy, p, p_off, p_len, copied) {
3571				vaddr = kmap_atomic(p);
3572				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
3573								  to + copied,
3574								  p_len);
3575				kunmap_atomic(vaddr);
3576				csum = csum_block_add(csum, csum2, pos);
3577				pos += p_len;
3578			}
3579
3580			if (!(len -= copy))
3581				return csum;
3582			offset += copy;
3583			to     += copy;
3584		}
3585		start = end;
3586	}
3587
3588	skb_walk_frags(skb, frag_iter) {
3589		__wsum csum2;
3590		int end;
3591
3592		WARN_ON(start > offset + len);
3593
3594		end = start + frag_iter->len;
3595		if ((copy = end - offset) > 0) {
3596			if (copy > len)
3597				copy = len;
3598			csum2 = skb_copy_and_csum_bits(frag_iter,
3599						       offset - start,
3600						       to, copy);
3601			csum = csum_block_add(csum, csum2, pos);
3602			if ((len -= copy) == 0)
3603				return csum;
3604			offset += copy;
3605			to     += copy;
3606			pos    += copy;
3607		}
3608		start = end;
3609	}
3610	BUG_ON(len);
3611	return csum;
3612}
3613EXPORT_SYMBOL(skb_copy_and_csum_bits);
3614
3615__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
3616{
3617	__sum16 sum;
3618
3619	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
3620	/* See comments in __skb_checksum_complete(). */
3621	if (likely(!sum)) {
3622		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3623		    !skb->csum_complete_sw)
3624			netdev_rx_csum_fault(skb->dev, skb);
3625	}
3626	if (!skb_shared(skb))
3627		skb->csum_valid = !sum;
3628	return sum;
3629}
3630EXPORT_SYMBOL(__skb_checksum_complete_head);
3631
3632/* This function assumes skb->csum already holds pseudo header's checksum,
3633 * which has been changed from the hardware checksum, for example, by
3634 * __skb_checksum_validate_complete(). And, the original skb->csum must
3635 * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3636 *
3637 * It returns non-zero if the recomputed checksum is still invalid, otherwise
3638 * zero. The new checksum is stored back into skb->csum unless the skb is
3639 * shared.
3640 */
3641__sum16 __skb_checksum_complete(struct sk_buff *skb)
3642{
3643	__wsum csum;
3644	__sum16 sum;
3645
3646	csum = skb_checksum(skb, 0, skb->len, 0);
3647
3648	sum = csum_fold(csum_add(skb->csum, csum));
3649	/* This check is inverted, because we already knew the hardware
3650	 * checksum is invalid before calling this function. So, if the
3651	 * re-computed checksum is valid instead, then we have a mismatch
3652	 * between the original skb->csum and skb_checksum(). This means either
3653	 * the original hardware checksum is incorrect or we screw up skb->csum
3654	 * when moving skb->data around.
3655	 */
3656	if (likely(!sum)) {
3657		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3658		    !skb->csum_complete_sw)
3659			netdev_rx_csum_fault(skb->dev, skb);
3660	}
3661
3662	if (!skb_shared(skb)) {
3663		/* Save full packet checksum */
3664		skb->csum = csum;
3665		skb->ip_summed = CHECKSUM_COMPLETE;
3666		skb->csum_complete_sw = 1;
3667		skb->csum_valid = !sum;
3668	}
3669
3670	return sum;
3671}
3672EXPORT_SYMBOL(__skb_checksum_complete);
3673
3674static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
3675{
3676	net_warn_ratelimited(
3677		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3678		__func__);
3679	return 0;
3680}
3681
3682static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
3683				       int offset, int len)
3684{
3685	net_warn_ratelimited(
3686		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3687		__func__);
3688	return 0;
3689}
3690
3691static const struct skb_checksum_ops default_crc32c_ops = {
3692	.update  = warn_crc32c_csum_update,
3693	.combine = warn_crc32c_csum_combine,
3694};
3695
3696const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
3697	&default_crc32c_ops;
3698EXPORT_SYMBOL(crc32c_csum_stub);
3699
3700 /**
3701 *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3702 *	@from: source buffer
3703 *
3704 *	Calculates the amount of linear headroom needed in the 'to' skb passed
3705 *	into skb_zerocopy().
3706 */
3707unsigned int
3708skb_zerocopy_headlen(const struct sk_buff *from)
3709{
3710	unsigned int hlen = 0;
3711
3712	if (!from->head_frag ||
3713	    skb_headlen(from) < L1_CACHE_BYTES ||
3714	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3715		hlen = skb_headlen(from);
3716		if (!hlen)
3717			hlen = from->len;
3718	}
3719
3720	if (skb_has_frag_list(from))
3721		hlen = from->len;
3722
3723	return hlen;
3724}
3725EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3726
3727/**
3728 *	skb_zerocopy - Zero copy skb to skb
3729 *	@to: destination buffer
3730 *	@from: source buffer
3731 *	@len: number of bytes to copy from source buffer
3732 *	@hlen: size of linear headroom in destination buffer
3733 *
3734 *	Copies up to `len` bytes from `from` to `to` by creating references
3735 *	to the frags in the source buffer.
3736 *
3737 *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3738 *	headroom in the `to` buffer.
3739 *
3740 *	Return value:
3741 *	0: everything is OK
3742 *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
3743 *	-EFAULT: skb_copy_bits() found some problem with skb geometry
3744 */
3745int
3746skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3747{
3748	int i, j = 0;
3749	int plen = 0; /* length of skb->head fragment */
3750	int ret;
3751	struct page *page;
3752	unsigned int offset;
3753
3754	BUG_ON(!from->head_frag && !hlen);
3755
3756	/* dont bother with small payloads */
3757	if (len <= skb_tailroom(to))
3758		return skb_copy_bits(from, 0, skb_put(to, len), len);
3759
3760	if (hlen) {
3761		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3762		if (unlikely(ret))
3763			return ret;
3764		len -= hlen;
3765	} else {
3766		plen = min_t(int, skb_headlen(from), len);
3767		if (plen) {
3768			page = virt_to_head_page(from->head);
3769			offset = from->data - (unsigned char *)page_address(page);
3770			__skb_fill_netmem_desc(to, 0, page_to_netmem(page),
3771					       offset, plen);
3772			get_page(page);
3773			j = 1;
3774			len -= plen;
3775		}
3776	}
3777
3778	skb_len_add(to, len + plen);
 
 
3779
3780	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3781		skb_tx_error(from);
3782		return -ENOMEM;
3783	}
3784	skb_zerocopy_clone(to, from, GFP_ATOMIC);
3785
3786	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3787		int size;
3788
3789		if (!len)
3790			break;
3791		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3792		size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3793					len);
3794		skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3795		len -= size;
3796		skb_frag_ref(to, j);
3797		j++;
3798	}
3799	skb_shinfo(to)->nr_frags = j;
3800
3801	return 0;
3802}
3803EXPORT_SYMBOL_GPL(skb_zerocopy);
3804
3805void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3806{
3807	__wsum csum;
3808	long csstart;
3809
3810	if (skb->ip_summed == CHECKSUM_PARTIAL)
3811		csstart = skb_checksum_start_offset(skb);
3812	else
3813		csstart = skb_headlen(skb);
3814
3815	BUG_ON(csstart > skb_headlen(skb));
3816
3817	skb_copy_from_linear_data(skb, to, csstart);
3818
3819	csum = 0;
3820	if (csstart != skb->len)
3821		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3822					      skb->len - csstart);
3823
3824	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3825		long csstuff = csstart + skb->csum_offset;
3826
3827		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
3828	}
3829}
3830EXPORT_SYMBOL(skb_copy_and_csum_dev);
3831
3832/**
3833 *	skb_dequeue - remove from the head of the queue
3834 *	@list: list to dequeue from
3835 *
3836 *	Remove the head of the list. The list lock is taken so the function
3837 *	may be used safely with other locking list functions. The head item is
3838 *	returned or %NULL if the list is empty.
3839 */
3840
3841struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3842{
3843	unsigned long flags;
3844	struct sk_buff *result;
3845
3846	spin_lock_irqsave(&list->lock, flags);
3847	result = __skb_dequeue(list);
3848	spin_unlock_irqrestore(&list->lock, flags);
3849	return result;
3850}
3851EXPORT_SYMBOL(skb_dequeue);
3852
3853/**
3854 *	skb_dequeue_tail - remove from the tail of the queue
3855 *	@list: list to dequeue from
3856 *
3857 *	Remove the tail of the list. The list lock is taken so the function
3858 *	may be used safely with other locking list functions. The tail item is
3859 *	returned or %NULL if the list is empty.
3860 */
3861struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3862{
3863	unsigned long flags;
3864	struct sk_buff *result;
3865
3866	spin_lock_irqsave(&list->lock, flags);
3867	result = __skb_dequeue_tail(list);
3868	spin_unlock_irqrestore(&list->lock, flags);
3869	return result;
3870}
3871EXPORT_SYMBOL(skb_dequeue_tail);
3872
3873/**
3874 *	skb_queue_purge_reason - empty a list
3875 *	@list: list to empty
3876 *	@reason: drop reason
3877 *
3878 *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3879 *	the list and one reference dropped. This function takes the list
3880 *	lock and is atomic with respect to other list locking functions.
3881 */
3882void skb_queue_purge_reason(struct sk_buff_head *list,
3883			    enum skb_drop_reason reason)
3884{
3885	struct sk_buff_head tmp;
3886	unsigned long flags;
3887
3888	if (skb_queue_empty_lockless(list))
3889		return;
3890
3891	__skb_queue_head_init(&tmp);
3892
3893	spin_lock_irqsave(&list->lock, flags);
3894	skb_queue_splice_init(list, &tmp);
3895	spin_unlock_irqrestore(&list->lock, flags);
3896
3897	__skb_queue_purge_reason(&tmp, reason);
3898}
3899EXPORT_SYMBOL(skb_queue_purge_reason);
3900
3901/**
3902 *	skb_rbtree_purge - empty a skb rbtree
3903 *	@root: root of the rbtree to empty
3904 *	Return value: the sum of truesizes of all purged skbs.
3905 *
3906 *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3907 *	the list and one reference dropped. This function does not take
3908 *	any lock. Synchronization should be handled by the caller (e.g., TCP
3909 *	out-of-order queue is protected by the socket lock).
3910 */
3911unsigned int skb_rbtree_purge(struct rb_root *root)
3912{
3913	struct rb_node *p = rb_first(root);
3914	unsigned int sum = 0;
3915
3916	while (p) {
3917		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3918
3919		p = rb_next(p);
3920		rb_erase(&skb->rbnode, root);
3921		sum += skb->truesize;
3922		kfree_skb(skb);
3923	}
3924	return sum;
3925}
3926
3927void skb_errqueue_purge(struct sk_buff_head *list)
3928{
3929	struct sk_buff *skb, *next;
3930	struct sk_buff_head kill;
3931	unsigned long flags;
3932
3933	__skb_queue_head_init(&kill);
3934
3935	spin_lock_irqsave(&list->lock, flags);
3936	skb_queue_walk_safe(list, skb, next) {
3937		if (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ZEROCOPY ||
3938		    SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_TIMESTAMPING)
3939			continue;
3940		__skb_unlink(skb, list);
3941		__skb_queue_tail(&kill, skb);
3942	}
3943	spin_unlock_irqrestore(&list->lock, flags);
3944	__skb_queue_purge(&kill);
3945}
3946EXPORT_SYMBOL(skb_errqueue_purge);
3947
3948/**
3949 *	skb_queue_head - queue a buffer at the list head
3950 *	@list: list to use
3951 *	@newsk: buffer to queue
3952 *
3953 *	Queue a buffer at the start of the list. This function takes the
3954 *	list lock and can be used safely with other locking &sk_buff functions
3955 *	safely.
3956 *
3957 *	A buffer cannot be placed on two lists at the same time.
3958 */
3959void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3960{
3961	unsigned long flags;
3962
3963	spin_lock_irqsave(&list->lock, flags);
3964	__skb_queue_head(list, newsk);
3965	spin_unlock_irqrestore(&list->lock, flags);
3966}
3967EXPORT_SYMBOL(skb_queue_head);
3968
3969/**
3970 *	skb_queue_tail - queue a buffer at the list tail
3971 *	@list: list to use
3972 *	@newsk: buffer to queue
3973 *
3974 *	Queue a buffer at the tail of the list. This function takes the
3975 *	list lock and can be used safely with other locking &sk_buff functions
3976 *	safely.
3977 *
3978 *	A buffer cannot be placed on two lists at the same time.
3979 */
3980void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3981{
3982	unsigned long flags;
3983
3984	spin_lock_irqsave(&list->lock, flags);
3985	__skb_queue_tail(list, newsk);
3986	spin_unlock_irqrestore(&list->lock, flags);
3987}
3988EXPORT_SYMBOL(skb_queue_tail);
3989
3990/**
3991 *	skb_unlink	-	remove a buffer from a list
3992 *	@skb: buffer to remove
3993 *	@list: list to use
3994 *
3995 *	Remove a packet from a list. The list locks are taken and this
3996 *	function is atomic with respect to other list locked calls
3997 *
3998 *	You must know what list the SKB is on.
3999 */
4000void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
4001{
4002	unsigned long flags;
4003
4004	spin_lock_irqsave(&list->lock, flags);
4005	__skb_unlink(skb, list);
4006	spin_unlock_irqrestore(&list->lock, flags);
4007}
4008EXPORT_SYMBOL(skb_unlink);
4009
4010/**
4011 *	skb_append	-	append a buffer
4012 *	@old: buffer to insert after
4013 *	@newsk: buffer to insert
4014 *	@list: list to use
4015 *
4016 *	Place a packet after a given packet in a list. The list locks are taken
4017 *	and this function is atomic with respect to other list locked calls.
4018 *	A buffer cannot be placed on two lists at the same time.
4019 */
4020void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
4021{
4022	unsigned long flags;
4023
4024	spin_lock_irqsave(&list->lock, flags);
4025	__skb_queue_after(list, old, newsk);
4026	spin_unlock_irqrestore(&list->lock, flags);
4027}
4028EXPORT_SYMBOL(skb_append);
4029
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4030static inline void skb_split_inside_header(struct sk_buff *skb,
4031					   struct sk_buff* skb1,
4032					   const u32 len, const int pos)
4033{
4034	int i;
4035
4036	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
4037					 pos - len);
4038	/* And move data appendix as is. */
4039	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
4040		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
4041
4042	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
4043	skb_shinfo(skb)->nr_frags  = 0;
4044	skb1->data_len		   = skb->data_len;
4045	skb1->len		   += skb1->data_len;
4046	skb->data_len		   = 0;
4047	skb->len		   = len;
4048	skb_set_tail_pointer(skb, len);
4049}
4050
4051static inline void skb_split_no_header(struct sk_buff *skb,
4052				       struct sk_buff* skb1,
4053				       const u32 len, int pos)
4054{
4055	int i, k = 0;
4056	const int nfrags = skb_shinfo(skb)->nr_frags;
4057
4058	skb_shinfo(skb)->nr_frags = 0;
4059	skb1->len		  = skb1->data_len = skb->len - len;
4060	skb->len		  = len;
4061	skb->data_len		  = len - pos;
4062
4063	for (i = 0; i < nfrags; i++) {
4064		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
4065
4066		if (pos + size > len) {
4067			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
4068
4069			if (pos < len) {
4070				/* Split frag.
4071				 * We have two variants in this case:
4072				 * 1. Move all the frag to the second
4073				 *    part, if it is possible. F.e.
4074				 *    this approach is mandatory for TUX,
4075				 *    where splitting is expensive.
4076				 * 2. Split is accurately. We make this.
4077				 */
4078				skb_frag_ref(skb, i);
4079				skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
4080				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
4081				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
4082				skb_shinfo(skb)->nr_frags++;
4083			}
4084			k++;
4085		} else
4086			skb_shinfo(skb)->nr_frags++;
4087		pos += size;
4088	}
4089	skb_shinfo(skb1)->nr_frags = k;
4090}
4091
4092/**
4093 * skb_split - Split fragmented skb to two parts at length len.
4094 * @skb: the buffer to split
4095 * @skb1: the buffer to receive the second part
4096 * @len: new length for skb
4097 */
4098void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
4099{
4100	int pos = skb_headlen(skb);
4101	const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY;
4102
4103	skb_zcopy_downgrade_managed(skb);
4104
4105	skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags;
4106	skb_zerocopy_clone(skb1, skb, 0);
4107	if (len < pos)	/* Split line is inside header. */
4108		skb_split_inside_header(skb, skb1, len, pos);
4109	else		/* Second chunk has no header, nothing to copy. */
4110		skb_split_no_header(skb, skb1, len, pos);
4111}
4112EXPORT_SYMBOL(skb_split);
4113
4114/* Shifting from/to a cloned skb is a no-go.
4115 *
4116 * Caller cannot keep skb_shinfo related pointers past calling here!
4117 */
4118static int skb_prepare_for_shift(struct sk_buff *skb)
4119{
4120	return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
4121}
4122
4123/**
4124 * skb_shift - Shifts paged data partially from skb to another
4125 * @tgt: buffer into which tail data gets added
4126 * @skb: buffer from which the paged data comes from
4127 * @shiftlen: shift up to this many bytes
4128 *
4129 * Attempts to shift up to shiftlen worth of bytes, which may be less than
4130 * the length of the skb, from skb to tgt. Returns number bytes shifted.
4131 * It's up to caller to free skb if everything was shifted.
4132 *
4133 * If @tgt runs out of frags, the whole operation is aborted.
4134 *
4135 * Skb cannot include anything else but paged data while tgt is allowed
4136 * to have non-paged data as well.
4137 *
4138 * TODO: full sized shift could be optimized but that would need
4139 * specialized skb free'er to handle frags without up-to-date nr_frags.
4140 */
4141int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
4142{
4143	int from, to, merge, todo;
4144	skb_frag_t *fragfrom, *fragto;
4145
4146	BUG_ON(shiftlen > skb->len);
4147
4148	if (skb_headlen(skb))
4149		return 0;
4150	if (skb_zcopy(tgt) || skb_zcopy(skb))
4151		return 0;
4152
4153	todo = shiftlen;
4154	from = 0;
4155	to = skb_shinfo(tgt)->nr_frags;
4156	fragfrom = &skb_shinfo(skb)->frags[from];
4157
4158	/* Actual merge is delayed until the point when we know we can
4159	 * commit all, so that we don't have to undo partial changes
4160	 */
4161	if (!to ||
4162	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
4163			      skb_frag_off(fragfrom))) {
4164		merge = -1;
4165	} else {
4166		merge = to - 1;
4167
4168		todo -= skb_frag_size(fragfrom);
4169		if (todo < 0) {
4170			if (skb_prepare_for_shift(skb) ||
4171			    skb_prepare_for_shift(tgt))
4172				return 0;
4173
4174			/* All previous frag pointers might be stale! */
4175			fragfrom = &skb_shinfo(skb)->frags[from];
4176			fragto = &skb_shinfo(tgt)->frags[merge];
4177
4178			skb_frag_size_add(fragto, shiftlen);
4179			skb_frag_size_sub(fragfrom, shiftlen);
4180			skb_frag_off_add(fragfrom, shiftlen);
4181
4182			goto onlymerged;
4183		}
4184
4185		from++;
4186	}
4187
4188	/* Skip full, not-fitting skb to avoid expensive operations */
4189	if ((shiftlen == skb->len) &&
4190	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
4191		return 0;
4192
4193	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
4194		return 0;
4195
4196	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
4197		if (to == MAX_SKB_FRAGS)
4198			return 0;
4199
4200		fragfrom = &skb_shinfo(skb)->frags[from];
4201		fragto = &skb_shinfo(tgt)->frags[to];
4202
4203		if (todo >= skb_frag_size(fragfrom)) {
4204			*fragto = *fragfrom;
4205			todo -= skb_frag_size(fragfrom);
4206			from++;
4207			to++;
4208
4209		} else {
4210			__skb_frag_ref(fragfrom);
4211			skb_frag_page_copy(fragto, fragfrom);
4212			skb_frag_off_copy(fragto, fragfrom);
4213			skb_frag_size_set(fragto, todo);
4214
4215			skb_frag_off_add(fragfrom, todo);
4216			skb_frag_size_sub(fragfrom, todo);
4217			todo = 0;
4218
4219			to++;
4220			break;
4221		}
4222	}
4223
4224	/* Ready to "commit" this state change to tgt */
4225	skb_shinfo(tgt)->nr_frags = to;
4226
4227	if (merge >= 0) {
4228		fragfrom = &skb_shinfo(skb)->frags[0];
4229		fragto = &skb_shinfo(tgt)->frags[merge];
4230
4231		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
4232		__skb_frag_unref(fragfrom, skb->pp_recycle);
4233	}
4234
4235	/* Reposition in the original skb */
4236	to = 0;
4237	while (from < skb_shinfo(skb)->nr_frags)
4238		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
4239	skb_shinfo(skb)->nr_frags = to;
4240
4241	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
4242
4243onlymerged:
4244	/* Most likely the tgt won't ever need its checksum anymore, skb on
4245	 * the other hand might need it if it needs to be resent
4246	 */
4247	tgt->ip_summed = CHECKSUM_PARTIAL;
4248	skb->ip_summed = CHECKSUM_PARTIAL;
4249
4250	skb_len_add(skb, -shiftlen);
4251	skb_len_add(tgt, shiftlen);
 
 
 
 
 
4252
4253	return shiftlen;
4254}
4255
4256/**
4257 * skb_prepare_seq_read - Prepare a sequential read of skb data
4258 * @skb: the buffer to read
4259 * @from: lower offset of data to be read
4260 * @to: upper offset of data to be read
4261 * @st: state variable
4262 *
4263 * Initializes the specified state variable. Must be called before
4264 * invoking skb_seq_read() for the first time.
4265 */
4266void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
4267			  unsigned int to, struct skb_seq_state *st)
4268{
4269	st->lower_offset = from;
4270	st->upper_offset = to;
4271	st->root_skb = st->cur_skb = skb;
4272	st->frag_idx = st->stepped_offset = 0;
4273	st->frag_data = NULL;
4274	st->frag_off = 0;
4275}
4276EXPORT_SYMBOL(skb_prepare_seq_read);
4277
4278/**
4279 * skb_seq_read - Sequentially read skb data
4280 * @consumed: number of bytes consumed by the caller so far
4281 * @data: destination pointer for data to be returned
4282 * @st: state variable
4283 *
4284 * Reads a block of skb data at @consumed relative to the
4285 * lower offset specified to skb_prepare_seq_read(). Assigns
4286 * the head of the data block to @data and returns the length
4287 * of the block or 0 if the end of the skb data or the upper
4288 * offset has been reached.
4289 *
4290 * The caller is not required to consume all of the data
4291 * returned, i.e. @consumed is typically set to the number
4292 * of bytes already consumed and the next call to
4293 * skb_seq_read() will return the remaining part of the block.
4294 *
4295 * Note 1: The size of each block of data returned can be arbitrary,
4296 *       this limitation is the cost for zerocopy sequential
4297 *       reads of potentially non linear data.
4298 *
4299 * Note 2: Fragment lists within fragments are not implemented
4300 *       at the moment, state->root_skb could be replaced with
4301 *       a stack for this purpose.
4302 */
4303unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
4304			  struct skb_seq_state *st)
4305{
4306	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
4307	skb_frag_t *frag;
4308
4309	if (unlikely(abs_offset >= st->upper_offset)) {
4310		if (st->frag_data) {
4311			kunmap_atomic(st->frag_data);
4312			st->frag_data = NULL;
4313		}
4314		return 0;
4315	}
4316
4317next_skb:
4318	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
4319
4320	if (abs_offset < block_limit && !st->frag_data) {
4321		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
4322		return block_limit - abs_offset;
4323	}
4324
4325	if (st->frag_idx == 0 && !st->frag_data)
4326		st->stepped_offset += skb_headlen(st->cur_skb);
4327
4328	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
4329		unsigned int pg_idx, pg_off, pg_sz;
4330
4331		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
 
4332
4333		pg_idx = 0;
4334		pg_off = skb_frag_off(frag);
4335		pg_sz = skb_frag_size(frag);
4336
4337		if (skb_frag_must_loop(skb_frag_page(frag))) {
4338			pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
4339			pg_off = offset_in_page(pg_off + st->frag_off);
4340			pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
4341						    PAGE_SIZE - pg_off);
4342		}
4343
4344		block_limit = pg_sz + st->stepped_offset;
4345		if (abs_offset < block_limit) {
4346			if (!st->frag_data)
4347				st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
4348
4349			*data = (u8 *)st->frag_data + pg_off +
4350				(abs_offset - st->stepped_offset);
4351
4352			return block_limit - abs_offset;
4353		}
4354
4355		if (st->frag_data) {
4356			kunmap_atomic(st->frag_data);
4357			st->frag_data = NULL;
4358		}
4359
4360		st->stepped_offset += pg_sz;
4361		st->frag_off += pg_sz;
4362		if (st->frag_off == skb_frag_size(frag)) {
4363			st->frag_off = 0;
4364			st->frag_idx++;
4365		}
4366	}
4367
4368	if (st->frag_data) {
4369		kunmap_atomic(st->frag_data);
4370		st->frag_data = NULL;
4371	}
4372
4373	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
4374		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
4375		st->frag_idx = 0;
4376		goto next_skb;
4377	} else if (st->cur_skb->next) {
4378		st->cur_skb = st->cur_skb->next;
4379		st->frag_idx = 0;
4380		goto next_skb;
4381	}
4382
4383	return 0;
4384}
4385EXPORT_SYMBOL(skb_seq_read);
4386
4387/**
4388 * skb_abort_seq_read - Abort a sequential read of skb data
4389 * @st: state variable
4390 *
4391 * Must be called if skb_seq_read() was not called until it
4392 * returned 0.
4393 */
4394void skb_abort_seq_read(struct skb_seq_state *st)
4395{
4396	if (st->frag_data)
4397		kunmap_atomic(st->frag_data);
4398}
4399EXPORT_SYMBOL(skb_abort_seq_read);
4400
4401#define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
4402
4403static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
4404					  struct ts_config *conf,
4405					  struct ts_state *state)
4406{
4407	return skb_seq_read(offset, text, TS_SKB_CB(state));
4408}
4409
4410static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
4411{
4412	skb_abort_seq_read(TS_SKB_CB(state));
4413}
4414
4415/**
4416 * skb_find_text - Find a text pattern in skb data
4417 * @skb: the buffer to look in
4418 * @from: search offset
4419 * @to: search limit
4420 * @config: textsearch configuration
4421 *
4422 * Finds a pattern in the skb data according to the specified
4423 * textsearch configuration. Use textsearch_next() to retrieve
4424 * subsequent occurrences of the pattern. Returns the offset
4425 * to the first occurrence or UINT_MAX if no match was found.
4426 */
4427unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
4428			   unsigned int to, struct ts_config *config)
4429{
4430	unsigned int patlen = config->ops->get_pattern_len(config);
4431	struct ts_state state;
4432	unsigned int ret;
4433
4434	BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
4435
4436	config->get_next_block = skb_ts_get_next_block;
4437	config->finish = skb_ts_finish;
4438
4439	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
4440
4441	ret = textsearch_find(config, &state);
4442	return (ret + patlen <= to - from ? ret : UINT_MAX);
4443}
4444EXPORT_SYMBOL(skb_find_text);
4445
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4446int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
4447			 int offset, size_t size, size_t max_frags)
4448{
4449	int i = skb_shinfo(skb)->nr_frags;
4450
4451	if (skb_can_coalesce(skb, i, page, offset)) {
4452		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
4453	} else if (i < max_frags) {
4454		skb_zcopy_downgrade_managed(skb);
4455		get_page(page);
4456		skb_fill_page_desc_noacc(skb, i, page, offset, size);
4457	} else {
4458		return -EMSGSIZE;
4459	}
4460
4461	return 0;
4462}
4463EXPORT_SYMBOL_GPL(skb_append_pagefrags);
4464
4465/**
4466 *	skb_pull_rcsum - pull skb and update receive checksum
4467 *	@skb: buffer to update
4468 *	@len: length of data pulled
4469 *
4470 *	This function performs an skb_pull on the packet and updates
4471 *	the CHECKSUM_COMPLETE checksum.  It should be used on
4472 *	receive path processing instead of skb_pull unless you know
4473 *	that the checksum difference is zero (e.g., a valid IP header)
4474 *	or you are setting ip_summed to CHECKSUM_NONE.
4475 */
4476void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
4477{
4478	unsigned char *data = skb->data;
4479
4480	BUG_ON(len > skb->len);
4481	__skb_pull(skb, len);
4482	skb_postpull_rcsum(skb, data, len);
4483	return skb->data;
4484}
4485EXPORT_SYMBOL_GPL(skb_pull_rcsum);
4486
4487static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
4488{
4489	skb_frag_t head_frag;
4490	struct page *page;
4491
4492	page = virt_to_head_page(frag_skb->head);
4493	skb_frag_fill_page_desc(&head_frag, page, frag_skb->data -
4494				(unsigned char *)page_address(page),
4495				skb_headlen(frag_skb));
 
4496	return head_frag;
4497}
4498
4499struct sk_buff *skb_segment_list(struct sk_buff *skb,
4500				 netdev_features_t features,
4501				 unsigned int offset)
4502{
4503	struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
4504	unsigned int tnl_hlen = skb_tnl_header_len(skb);
4505	unsigned int delta_truesize = 0;
4506	unsigned int delta_len = 0;
4507	struct sk_buff *tail = NULL;
4508	struct sk_buff *nskb, *tmp;
4509	int len_diff, err;
4510
4511	skb_push(skb, -skb_network_offset(skb) + offset);
4512
4513	/* Ensure the head is writeable before touching the shared info */
4514	err = skb_unclone(skb, GFP_ATOMIC);
4515	if (err)
4516		goto err_linearize;
4517
4518	skb_shinfo(skb)->frag_list = NULL;
4519
4520	while (list_skb) {
4521		nskb = list_skb;
4522		list_skb = list_skb->next;
4523
4524		err = 0;
4525		delta_truesize += nskb->truesize;
4526		if (skb_shared(nskb)) {
4527			tmp = skb_clone(nskb, GFP_ATOMIC);
4528			if (tmp) {
4529				consume_skb(nskb);
4530				nskb = tmp;
4531				err = skb_unclone(nskb, GFP_ATOMIC);
4532			} else {
4533				err = -ENOMEM;
4534			}
4535		}
4536
4537		if (!tail)
4538			skb->next = nskb;
4539		else
4540			tail->next = nskb;
4541
4542		if (unlikely(err)) {
4543			nskb->next = list_skb;
4544			goto err_linearize;
4545		}
4546
4547		tail = nskb;
4548
4549		delta_len += nskb->len;
4550
4551		skb_push(nskb, -skb_network_offset(nskb) + offset);
4552
4553		skb_release_head_state(nskb);
4554		len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb);
4555		__copy_skb_header(nskb, skb);
4556
4557		skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
4558		nskb->transport_header += len_diff;
4559		skb_copy_from_linear_data_offset(skb, -tnl_hlen,
4560						 nskb->data - tnl_hlen,
4561						 offset + tnl_hlen);
4562
4563		if (skb_needs_linearize(nskb, features) &&
4564		    __skb_linearize(nskb))
4565			goto err_linearize;
4566	}
4567
4568	skb->truesize = skb->truesize - delta_truesize;
4569	skb->data_len = skb->data_len - delta_len;
4570	skb->len = skb->len - delta_len;
4571
4572	skb_gso_reset(skb);
4573
4574	skb->prev = tail;
4575
4576	if (skb_needs_linearize(skb, features) &&
4577	    __skb_linearize(skb))
4578		goto err_linearize;
4579
4580	skb_get(skb);
4581
4582	return skb;
4583
4584err_linearize:
4585	kfree_skb_list(skb->next);
4586	skb->next = NULL;
4587	return ERR_PTR(-ENOMEM);
4588}
4589EXPORT_SYMBOL_GPL(skb_segment_list);
4590
4591/**
4592 *	skb_segment - Perform protocol segmentation on skb.
4593 *	@head_skb: buffer to segment
4594 *	@features: features for the output path (see dev->features)
4595 *
4596 *	This function performs segmentation on the given skb.  It returns
4597 *	a pointer to the first in a list of new skbs for the segments.
4598 *	In case of error it returns ERR_PTR(err).
4599 */
4600struct sk_buff *skb_segment(struct sk_buff *head_skb,
4601			    netdev_features_t features)
4602{
4603	struct sk_buff *segs = NULL;
4604	struct sk_buff *tail = NULL;
4605	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
 
4606	unsigned int mss = skb_shinfo(head_skb)->gso_size;
4607	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
 
4608	unsigned int offset = doffset;
4609	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
4610	unsigned int partial_segs = 0;
4611	unsigned int headroom;
4612	unsigned int len = head_skb->len;
4613	struct sk_buff *frag_skb;
4614	skb_frag_t *frag;
4615	__be16 proto;
4616	bool csum, sg;
 
4617	int err = -ENOMEM;
4618	int i = 0;
4619	int nfrags, pos;
4620
4621	if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) &&
4622	    mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) {
4623		struct sk_buff *check_skb;
4624
4625		for (check_skb = list_skb; check_skb; check_skb = check_skb->next) {
4626			if (skb_headlen(check_skb) && !check_skb->head_frag) {
4627				/* gso_size is untrusted, and we have a frag_list with
4628				 * a linear non head_frag item.
4629				 *
4630				 * If head_skb's headlen does not fit requested gso_size,
4631				 * it means that the frag_list members do NOT terminate
4632				 * on exact gso_size boundaries. Hence we cannot perform
4633				 * skb_frag_t page sharing. Therefore we must fallback to
4634				 * copying the frag_list skbs; we do so by disabling SG.
4635				 */
4636				features &= ~NETIF_F_SG;
4637				break;
4638			}
4639		}
4640	}
4641
4642	__skb_push(head_skb, doffset);
4643	proto = skb_network_protocol(head_skb, NULL);
4644	if (unlikely(!proto))
4645		return ERR_PTR(-EINVAL);
4646
4647	sg = !!(features & NETIF_F_SG);
4648	csum = !!can_checksum_protocol(features, proto);
4649
4650	if (sg && csum && (mss != GSO_BY_FRAGS))  {
4651		if (!(features & NETIF_F_GSO_PARTIAL)) {
4652			struct sk_buff *iter;
4653			unsigned int frag_len;
4654
4655			if (!list_skb ||
4656			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4657				goto normal;
4658
4659			/* If we get here then all the required
4660			 * GSO features except frag_list are supported.
4661			 * Try to split the SKB to multiple GSO SKBs
4662			 * with no frag_list.
4663			 * Currently we can do that only when the buffers don't
4664			 * have a linear part and all the buffers except
4665			 * the last are of the same length.
4666			 */
4667			frag_len = list_skb->len;
4668			skb_walk_frags(head_skb, iter) {
4669				if (frag_len != iter->len && iter->next)
4670					goto normal;
4671				if (skb_headlen(iter) && !iter->head_frag)
4672					goto normal;
4673
4674				len -= iter->len;
4675			}
4676
4677			if (len != frag_len)
4678				goto normal;
4679		}
4680
4681		/* GSO partial only requires that we trim off any excess that
4682		 * doesn't fit into an MSS sized block, so take care of that
4683		 * now.
4684		 * Cap len to not accidentally hit GSO_BY_FRAGS.
4685		 */
4686		partial_segs = min(len, GSO_BY_FRAGS - 1) / mss;
4687		if (partial_segs > 1)
4688			mss *= partial_segs;
4689		else
4690			partial_segs = 0;
4691	}
4692
4693normal:
4694	headroom = skb_headroom(head_skb);
4695	pos = skb_headlen(head_skb);
4696
4697	if (skb_orphan_frags(head_skb, GFP_ATOMIC))
4698		return ERR_PTR(-ENOMEM);
4699
4700	nfrags = skb_shinfo(head_skb)->nr_frags;
4701	frag = skb_shinfo(head_skb)->frags;
4702	frag_skb = head_skb;
4703
4704	do {
4705		struct sk_buff *nskb;
4706		skb_frag_t *nskb_frag;
4707		int hsize;
4708		int size;
4709
4710		if (unlikely(mss == GSO_BY_FRAGS)) {
4711			len = list_skb->len;
4712		} else {
4713			len = head_skb->len - offset;
4714			if (len > mss)
4715				len = mss;
4716		}
4717
4718		hsize = skb_headlen(head_skb) - offset;
 
 
 
 
4719
4720		if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4721		    (skb_headlen(list_skb) == len || sg)) {
4722			BUG_ON(skb_headlen(list_skb) > len);
4723
4724			nskb = skb_clone(list_skb, GFP_ATOMIC);
4725			if (unlikely(!nskb))
4726				goto err;
4727
4728			i = 0;
4729			nfrags = skb_shinfo(list_skb)->nr_frags;
4730			frag = skb_shinfo(list_skb)->frags;
4731			frag_skb = list_skb;
4732			pos += skb_headlen(list_skb);
4733
4734			while (pos < offset + len) {
4735				BUG_ON(i >= nfrags);
4736
4737				size = skb_frag_size(frag);
4738				if (pos + size > offset + len)
4739					break;
4740
4741				i++;
4742				pos += size;
4743				frag++;
4744			}
4745
 
4746			list_skb = list_skb->next;
4747
 
 
 
4748			if (unlikely(pskb_trim(nskb, len))) {
4749				kfree_skb(nskb);
4750				goto err;
4751			}
4752
4753			hsize = skb_end_offset(nskb);
4754			if (skb_cow_head(nskb, doffset + headroom)) {
4755				kfree_skb(nskb);
4756				goto err;
4757			}
4758
4759			nskb->truesize += skb_end_offset(nskb) - hsize;
4760			skb_release_head_state(nskb);
4761			__skb_push(nskb, doffset);
4762		} else {
4763			if (hsize < 0)
4764				hsize = 0;
4765			if (hsize > len || !sg)
4766				hsize = len;
4767
4768			nskb = __alloc_skb(hsize + doffset + headroom,
4769					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4770					   NUMA_NO_NODE);
4771
4772			if (unlikely(!nskb))
4773				goto err;
4774
4775			skb_reserve(nskb, headroom);
4776			__skb_put(nskb, doffset);
4777		}
4778
4779		if (segs)
4780			tail->next = nskb;
4781		else
4782			segs = nskb;
4783		tail = nskb;
4784
4785		__copy_skb_header(nskb, head_skb);
4786
4787		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4788		skb_reset_mac_len(nskb);
4789
4790		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4791						 nskb->data - tnl_hlen,
4792						 doffset + tnl_hlen);
4793
4794		if (nskb->len == len + doffset)
4795			goto perform_csum_check;
4796
4797		if (!sg) {
4798			if (!csum) {
4799				if (!nskb->remcsum_offload)
4800					nskb->ip_summed = CHECKSUM_NONE;
4801				SKB_GSO_CB(nskb)->csum =
4802					skb_copy_and_csum_bits(head_skb, offset,
4803							       skb_put(nskb,
4804								       len),
4805							       len);
4806				SKB_GSO_CB(nskb)->csum_start =
4807					skb_headroom(nskb) + doffset;
4808			} else {
4809				if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len))
4810					goto err;
4811			}
4812			continue;
4813		}
4814
4815		nskb_frag = skb_shinfo(nskb)->frags;
4816
4817		skb_copy_from_linear_data_offset(head_skb, offset,
4818						 skb_put(nskb, hsize), hsize);
4819
4820		skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4821					   SKBFL_SHARED_FRAG;
4822
4823		if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
 
4824			goto err;
4825
4826		while (pos < offset + len) {
4827			if (i >= nfrags) {
4828				if (skb_orphan_frags(list_skb, GFP_ATOMIC) ||
4829				    skb_zerocopy_clone(nskb, list_skb,
4830						       GFP_ATOMIC))
4831					goto err;
4832
4833				i = 0;
4834				nfrags = skb_shinfo(list_skb)->nr_frags;
4835				frag = skb_shinfo(list_skb)->frags;
4836				frag_skb = list_skb;
4837				if (!skb_headlen(list_skb)) {
4838					BUG_ON(!nfrags);
4839				} else {
4840					BUG_ON(!list_skb->head_frag);
4841
4842					/* to make room for head_frag. */
4843					i--;
4844					frag--;
4845				}
 
 
 
 
4846
4847				list_skb = list_skb->next;
4848			}
4849
4850			if (unlikely(skb_shinfo(nskb)->nr_frags >=
4851				     MAX_SKB_FRAGS)) {
4852				net_warn_ratelimited(
4853					"skb_segment: too many frags: %u %u\n",
4854					pos, mss);
4855				err = -EINVAL;
4856				goto err;
4857			}
4858
4859			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4860			__skb_frag_ref(nskb_frag);
4861			size = skb_frag_size(nskb_frag);
4862
4863			if (pos < offset) {
4864				skb_frag_off_add(nskb_frag, offset - pos);
4865				skb_frag_size_sub(nskb_frag, offset - pos);
4866			}
4867
4868			skb_shinfo(nskb)->nr_frags++;
4869
4870			if (pos + size <= offset + len) {
4871				i++;
4872				frag++;
4873				pos += size;
4874			} else {
4875				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4876				goto skip_fraglist;
4877			}
4878
4879			nskb_frag++;
4880		}
4881
4882skip_fraglist:
4883		nskb->data_len = len - hsize;
4884		nskb->len += nskb->data_len;
4885		nskb->truesize += nskb->data_len;
4886
4887perform_csum_check:
4888		if (!csum) {
4889			if (skb_has_shared_frag(nskb) &&
4890			    __skb_linearize(nskb))
4891				goto err;
4892
 
4893			if (!nskb->remcsum_offload)
4894				nskb->ip_summed = CHECKSUM_NONE;
4895			SKB_GSO_CB(nskb)->csum =
4896				skb_checksum(nskb, doffset,
4897					     nskb->len - doffset, 0);
4898			SKB_GSO_CB(nskb)->csum_start =
4899				skb_headroom(nskb) + doffset;
4900		}
4901	} while ((offset += len) < head_skb->len);
4902
4903	/* Some callers want to get the end of the list.
4904	 * Put it in segs->prev to avoid walking the list.
4905	 * (see validate_xmit_skb_list() for example)
4906	 */
4907	segs->prev = tail;
4908
4909	if (partial_segs) {
4910		struct sk_buff *iter;
4911		int type = skb_shinfo(head_skb)->gso_type;
4912		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4913
4914		/* Update type to add partial and then remove dodgy if set */
4915		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4916		type &= ~SKB_GSO_DODGY;
4917
4918		/* Update GSO info and prepare to start updating headers on
4919		 * our way back down the stack of protocols.
4920		 */
4921		for (iter = segs; iter; iter = iter->next) {
4922			skb_shinfo(iter)->gso_size = gso_size;
4923			skb_shinfo(iter)->gso_segs = partial_segs;
4924			skb_shinfo(iter)->gso_type = type;
4925			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4926		}
4927
4928		if (tail->len - doffset <= gso_size)
4929			skb_shinfo(tail)->gso_size = 0;
4930		else if (tail != segs)
4931			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4932	}
4933
4934	/* Following permits correct backpressure, for protocols
4935	 * using skb_set_owner_w().
4936	 * Idea is to tranfert ownership from head_skb to last segment.
4937	 */
4938	if (head_skb->destructor == sock_wfree) {
4939		swap(tail->truesize, head_skb->truesize);
4940		swap(tail->destructor, head_skb->destructor);
4941		swap(tail->sk, head_skb->sk);
4942	}
4943	return segs;
4944
4945err:
4946	kfree_skb_list(segs);
4947	return ERR_PTR(err);
4948}
4949EXPORT_SYMBOL_GPL(skb_segment);
4950
4951#ifdef CONFIG_SKB_EXTENSIONS
4952#define SKB_EXT_ALIGN_VALUE	8
4953#define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4954
4955static const u8 skb_ext_type_len[] = {
4956#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4957	[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4958#endif
4959#ifdef CONFIG_XFRM
4960	[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4961#endif
4962#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4963	[TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4964#endif
4965#if IS_ENABLED(CONFIG_MPTCP)
4966	[SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4967#endif
4968#if IS_ENABLED(CONFIG_MCTP_FLOWS)
4969	[SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow),
4970#endif
4971};
 
 
 
 
 
 
 
 
 
 
 
4972
4973static __always_inline unsigned int skb_ext_total_length(void)
4974{
4975	unsigned int l = SKB_EXT_CHUNKSIZEOF(struct skb_ext);
4976	int i;
4977
4978	for (i = 0; i < ARRAY_SIZE(skb_ext_type_len); i++)
4979		l += skb_ext_type_len[i];
 
 
 
 
 
 
 
 
 
4980
4981	return l;
4982}
4983
4984static void skb_extensions_init(void)
4985{
4986	BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4987#if !IS_ENABLED(CONFIG_KCOV_INSTRUMENT_ALL)
4988	BUILD_BUG_ON(skb_ext_total_length() > 255);
4989#endif
 
4990
4991	skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4992					     SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4993					     0,
4994					     SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4995					     NULL);
 
 
 
 
 
 
 
4996}
4997#else
4998static void skb_extensions_init(void) {}
4999#endif
5000
5001/* The SKB kmem_cache slab is critical for network performance.  Never
5002 * merge/alias the slab with similar sized objects.  This avoids fragmentation
5003 * that hurts performance of kmem_cache_{alloc,free}_bulk APIs.
5004 */
5005#ifndef CONFIG_SLUB_TINY
5006#define FLAG_SKB_NO_MERGE	SLAB_NO_MERGE
5007#else /* CONFIG_SLUB_TINY - simple loop in kmem_cache_alloc_bulk */
5008#define FLAG_SKB_NO_MERGE	0
5009#endif
5010
5011void __init skb_init(void)
5012{
5013	net_hotdata.skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache",
5014					      sizeof(struct sk_buff),
5015					      0,
5016					      SLAB_HWCACHE_ALIGN|SLAB_PANIC|
5017						FLAG_SKB_NO_MERGE,
5018					      offsetof(struct sk_buff, cb),
5019					      sizeof_field(struct sk_buff, cb),
5020					      NULL);
5021	net_hotdata.skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
5022						sizeof(struct sk_buff_fclones),
5023						0,
5024						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
5025						NULL);
5026	/* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes.
5027	 * struct skb_shared_info is located at the end of skb->head,
5028	 * and should not be copied to/from user.
5029	 */
5030	net_hotdata.skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head",
5031						SKB_SMALL_HEAD_CACHE_SIZE,
5032						0,
5033						SLAB_HWCACHE_ALIGN | SLAB_PANIC,
5034						0,
5035						SKB_SMALL_HEAD_HEADROOM,
5036						NULL);
5037	skb_extensions_init();
5038}
5039
5040static int
5041__skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
5042	       unsigned int recursion_level)
5043{
5044	int start = skb_headlen(skb);
5045	int i, copy = start - offset;
5046	struct sk_buff *frag_iter;
5047	int elt = 0;
5048
5049	if (unlikely(recursion_level >= 24))
5050		return -EMSGSIZE;
5051
5052	if (copy > 0) {
5053		if (copy > len)
5054			copy = len;
5055		sg_set_buf(sg, skb->data + offset, copy);
5056		elt++;
5057		if ((len -= copy) == 0)
5058			return elt;
5059		offset += copy;
5060	}
5061
5062	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
5063		int end;
5064
5065		WARN_ON(start > offset + len);
5066
5067		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
5068		if ((copy = end - offset) > 0) {
5069			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
5070			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
5071				return -EMSGSIZE;
5072
5073			if (copy > len)
5074				copy = len;
5075			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
5076				    skb_frag_off(frag) + offset - start);
5077			elt++;
5078			if (!(len -= copy))
5079				return elt;
5080			offset += copy;
5081		}
5082		start = end;
5083	}
5084
5085	skb_walk_frags(skb, frag_iter) {
5086		int end, ret;
5087
5088		WARN_ON(start > offset + len);
5089
5090		end = start + frag_iter->len;
5091		if ((copy = end - offset) > 0) {
5092			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
5093				return -EMSGSIZE;
5094
5095			if (copy > len)
5096				copy = len;
5097			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
5098					      copy, recursion_level + 1);
5099			if (unlikely(ret < 0))
5100				return ret;
5101			elt += ret;
5102			if ((len -= copy) == 0)
5103				return elt;
5104			offset += copy;
5105		}
5106		start = end;
5107	}
5108	BUG_ON(len);
5109	return elt;
5110}
5111
5112/**
5113 *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
5114 *	@skb: Socket buffer containing the buffers to be mapped
5115 *	@sg: The scatter-gather list to map into
5116 *	@offset: The offset into the buffer's contents to start mapping
5117 *	@len: Length of buffer space to be mapped
5118 *
5119 *	Fill the specified scatter-gather list with mappings/pointers into a
5120 *	region of the buffer space attached to a socket buffer. Returns either
5121 *	the number of scatterlist items used, or -EMSGSIZE if the contents
5122 *	could not fit.
5123 */
5124int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
5125{
5126	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
5127
5128	if (nsg <= 0)
5129		return nsg;
5130
5131	sg_mark_end(&sg[nsg - 1]);
5132
5133	return nsg;
5134}
5135EXPORT_SYMBOL_GPL(skb_to_sgvec);
5136
5137/* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
5138 * sglist without mark the sg which contain last skb data as the end.
5139 * So the caller can mannipulate sg list as will when padding new data after
5140 * the first call without calling sg_unmark_end to expend sg list.
5141 *
5142 * Scenario to use skb_to_sgvec_nomark:
5143 * 1. sg_init_table
5144 * 2. skb_to_sgvec_nomark(payload1)
5145 * 3. skb_to_sgvec_nomark(payload2)
5146 *
5147 * This is equivalent to:
5148 * 1. sg_init_table
5149 * 2. skb_to_sgvec(payload1)
5150 * 3. sg_unmark_end
5151 * 4. skb_to_sgvec(payload2)
5152 *
5153 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
5154 * is more preferable.
5155 */
5156int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
5157			int offset, int len)
5158{
5159	return __skb_to_sgvec(skb, sg, offset, len, 0);
5160}
5161EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
5162
5163
5164
5165/**
5166 *	skb_cow_data - Check that a socket buffer's data buffers are writable
5167 *	@skb: The socket buffer to check.
5168 *	@tailbits: Amount of trailing space to be added
5169 *	@trailer: Returned pointer to the skb where the @tailbits space begins
5170 *
5171 *	Make sure that the data buffers attached to a socket buffer are
5172 *	writable. If they are not, private copies are made of the data buffers
5173 *	and the socket buffer is set to use these instead.
5174 *
5175 *	If @tailbits is given, make sure that there is space to write @tailbits
5176 *	bytes of data beyond current end of socket buffer.  @trailer will be
5177 *	set to point to the skb in which this space begins.
5178 *
5179 *	The number of scatterlist elements required to completely map the
5180 *	COW'd and extended socket buffer will be returned.
5181 */
5182int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
5183{
5184	int copyflag;
5185	int elt;
5186	struct sk_buff *skb1, **skb_p;
5187
5188	/* If skb is cloned or its head is paged, reallocate
5189	 * head pulling out all the pages (pages are considered not writable
5190	 * at the moment even if they are anonymous).
5191	 */
5192	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
5193	    !__pskb_pull_tail(skb, __skb_pagelen(skb)))
5194		return -ENOMEM;
5195
5196	/* Easy case. Most of packets will go this way. */
5197	if (!skb_has_frag_list(skb)) {
5198		/* A little of trouble, not enough of space for trailer.
5199		 * This should not happen, when stack is tuned to generate
5200		 * good frames. OK, on miss we reallocate and reserve even more
5201		 * space, 128 bytes is fair. */
5202
5203		if (skb_tailroom(skb) < tailbits &&
5204		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
5205			return -ENOMEM;
5206
5207		/* Voila! */
5208		*trailer = skb;
5209		return 1;
5210	}
5211
5212	/* Misery. We are in troubles, going to mincer fragments... */
5213
5214	elt = 1;
5215	skb_p = &skb_shinfo(skb)->frag_list;
5216	copyflag = 0;
5217
5218	while ((skb1 = *skb_p) != NULL) {
5219		int ntail = 0;
5220
5221		/* The fragment is partially pulled by someone,
5222		 * this can happen on input. Copy it and everything
5223		 * after it. */
5224
5225		if (skb_shared(skb1))
5226			copyflag = 1;
5227
5228		/* If the skb is the last, worry about trailer. */
5229
5230		if (skb1->next == NULL && tailbits) {
5231			if (skb_shinfo(skb1)->nr_frags ||
5232			    skb_has_frag_list(skb1) ||
5233			    skb_tailroom(skb1) < tailbits)
5234				ntail = tailbits + 128;
5235		}
5236
5237		if (copyflag ||
5238		    skb_cloned(skb1) ||
5239		    ntail ||
5240		    skb_shinfo(skb1)->nr_frags ||
5241		    skb_has_frag_list(skb1)) {
5242			struct sk_buff *skb2;
5243
5244			/* Fuck, we are miserable poor guys... */
5245			if (ntail == 0)
5246				skb2 = skb_copy(skb1, GFP_ATOMIC);
5247			else
5248				skb2 = skb_copy_expand(skb1,
5249						       skb_headroom(skb1),
5250						       ntail,
5251						       GFP_ATOMIC);
5252			if (unlikely(skb2 == NULL))
5253				return -ENOMEM;
5254
5255			if (skb1->sk)
5256				skb_set_owner_w(skb2, skb1->sk);
5257
5258			/* Looking around. Are we still alive?
5259			 * OK, link new skb, drop old one */
5260
5261			skb2->next = skb1->next;
5262			*skb_p = skb2;
5263			kfree_skb(skb1);
5264			skb1 = skb2;
5265		}
5266		elt++;
5267		*trailer = skb1;
5268		skb_p = &skb1->next;
5269	}
5270
5271	return elt;
5272}
5273EXPORT_SYMBOL_GPL(skb_cow_data);
5274
5275static void sock_rmem_free(struct sk_buff *skb)
5276{
5277	struct sock *sk = skb->sk;
5278
5279	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
5280}
5281
5282static void skb_set_err_queue(struct sk_buff *skb)
5283{
5284	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
5285	 * So, it is safe to (mis)use it to mark skbs on the error queue.
5286	 */
5287	skb->pkt_type = PACKET_OUTGOING;
5288	BUILD_BUG_ON(PACKET_OUTGOING == 0);
5289}
5290
5291/*
5292 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
5293 */
5294int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
5295{
5296	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
5297	    (unsigned int)READ_ONCE(sk->sk_rcvbuf))
5298		return -ENOMEM;
5299
5300	skb_orphan(skb);
5301	skb->sk = sk;
5302	skb->destructor = sock_rmem_free;
5303	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
5304	skb_set_err_queue(skb);
5305
5306	/* before exiting rcu section, make sure dst is refcounted */
5307	skb_dst_force(skb);
5308
5309	skb_queue_tail(&sk->sk_error_queue, skb);
5310	if (!sock_flag(sk, SOCK_DEAD))
5311		sk_error_report(sk);
5312	return 0;
5313}
5314EXPORT_SYMBOL(sock_queue_err_skb);
5315
5316static bool is_icmp_err_skb(const struct sk_buff *skb)
5317{
5318	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
5319		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
5320}
5321
5322struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
5323{
5324	struct sk_buff_head *q = &sk->sk_error_queue;
5325	struct sk_buff *skb, *skb_next = NULL;
5326	bool icmp_next = false;
5327	unsigned long flags;
5328
5329	if (skb_queue_empty_lockless(q))
5330		return NULL;
5331
5332	spin_lock_irqsave(&q->lock, flags);
5333	skb = __skb_dequeue(q);
5334	if (skb && (skb_next = skb_peek(q))) {
5335		icmp_next = is_icmp_err_skb(skb_next);
5336		if (icmp_next)
5337			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
5338	}
5339	spin_unlock_irqrestore(&q->lock, flags);
5340
5341	if (is_icmp_err_skb(skb) && !icmp_next)
5342		sk->sk_err = 0;
5343
5344	if (skb_next)
5345		sk_error_report(sk);
5346
5347	return skb;
5348}
5349EXPORT_SYMBOL(sock_dequeue_err_skb);
5350
5351/**
5352 * skb_clone_sk - create clone of skb, and take reference to socket
5353 * @skb: the skb to clone
5354 *
5355 * This function creates a clone of a buffer that holds a reference on
5356 * sk_refcnt.  Buffers created via this function are meant to be
5357 * returned using sock_queue_err_skb, or free via kfree_skb.
5358 *
5359 * When passing buffers allocated with this function to sock_queue_err_skb
5360 * it is necessary to wrap the call with sock_hold/sock_put in order to
5361 * prevent the socket from being released prior to being enqueued on
5362 * the sk_error_queue.
5363 */
5364struct sk_buff *skb_clone_sk(struct sk_buff *skb)
5365{
5366	struct sock *sk = skb->sk;
5367	struct sk_buff *clone;
5368
5369	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
5370		return NULL;
5371
5372	clone = skb_clone(skb, GFP_ATOMIC);
5373	if (!clone) {
5374		sock_put(sk);
5375		return NULL;
5376	}
5377
5378	clone->sk = sk;
5379	clone->destructor = sock_efree;
5380
5381	return clone;
5382}
5383EXPORT_SYMBOL(skb_clone_sk);
5384
5385static void __skb_complete_tx_timestamp(struct sk_buff *skb,
5386					struct sock *sk,
5387					int tstype,
5388					bool opt_stats)
5389{
5390	struct sock_exterr_skb *serr;
5391	int err;
5392
5393	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
5394
5395	serr = SKB_EXT_ERR(skb);
5396	memset(serr, 0, sizeof(*serr));
5397	serr->ee.ee_errno = ENOMSG;
5398	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
5399	serr->ee.ee_info = tstype;
5400	serr->opt_stats = opt_stats;
5401	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
5402	if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) {
5403		serr->ee.ee_data = skb_shinfo(skb)->tskey;
5404		if (sk_is_tcp(sk))
5405			serr->ee.ee_data -= atomic_read(&sk->sk_tskey);
 
5406	}
5407
5408	err = sock_queue_err_skb(sk, skb);
5409
5410	if (err)
5411		kfree_skb(skb);
5412}
5413
5414static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
5415{
5416	bool ret;
5417
5418	if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly))
5419		return true;
5420
5421	read_lock_bh(&sk->sk_callback_lock);
5422	ret = sk->sk_socket && sk->sk_socket->file &&
5423	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
5424	read_unlock_bh(&sk->sk_callback_lock);
5425	return ret;
5426}
5427
5428void skb_complete_tx_timestamp(struct sk_buff *skb,
5429			       struct skb_shared_hwtstamps *hwtstamps)
5430{
5431	struct sock *sk = skb->sk;
5432
5433	if (!skb_may_tx_timestamp(sk, false))
5434		goto err;
5435
5436	/* Take a reference to prevent skb_orphan() from freeing the socket,
5437	 * but only if the socket refcount is not zero.
5438	 */
5439	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5440		*skb_hwtstamps(skb) = *hwtstamps;
5441		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
5442		sock_put(sk);
5443		return;
5444	}
5445
5446err:
5447	kfree_skb(skb);
5448}
5449EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
5450
5451void __skb_tstamp_tx(struct sk_buff *orig_skb,
5452		     const struct sk_buff *ack_skb,
5453		     struct skb_shared_hwtstamps *hwtstamps,
5454		     struct sock *sk, int tstype)
5455{
5456	struct sk_buff *skb;
5457	bool tsonly, opt_stats = false;
5458	u32 tsflags;
5459
5460	if (!sk)
5461		return;
5462
5463	tsflags = READ_ONCE(sk->sk_tsflags);
5464	if (!hwtstamps && !(tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
5465	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
5466		return;
5467
5468	tsonly = tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
5469	if (!skb_may_tx_timestamp(sk, tsonly))
5470		return;
5471
5472	if (tsonly) {
5473#ifdef CONFIG_INET
5474		if ((tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
5475		    sk_is_tcp(sk)) {
5476			skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
5477							     ack_skb);
5478			opt_stats = true;
5479		} else
5480#endif
5481			skb = alloc_skb(0, GFP_ATOMIC);
5482	} else {
5483		skb = skb_clone(orig_skb, GFP_ATOMIC);
5484
5485		if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) {
5486			kfree_skb(skb);
5487			return;
5488		}
5489	}
5490	if (!skb)
5491		return;
5492
5493	if (tsonly) {
5494		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
5495					     SKBTX_ANY_TSTAMP;
5496		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
5497	}
5498
5499	if (hwtstamps)
5500		*skb_hwtstamps(skb) = *hwtstamps;
5501	else
5502		__net_timestamp(skb);
5503
5504	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
5505}
5506EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
5507
5508void skb_tstamp_tx(struct sk_buff *orig_skb,
5509		   struct skb_shared_hwtstamps *hwtstamps)
5510{
5511	return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
5512			       SCM_TSTAMP_SND);
5513}
5514EXPORT_SYMBOL_GPL(skb_tstamp_tx);
5515
5516#ifdef CONFIG_WIRELESS
5517void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
5518{
5519	struct sock *sk = skb->sk;
5520	struct sock_exterr_skb *serr;
5521	int err = 1;
5522
5523	skb->wifi_acked_valid = 1;
5524	skb->wifi_acked = acked;
5525
5526	serr = SKB_EXT_ERR(skb);
5527	memset(serr, 0, sizeof(*serr));
5528	serr->ee.ee_errno = ENOMSG;
5529	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
5530
5531	/* Take a reference to prevent skb_orphan() from freeing the socket,
5532	 * but only if the socket refcount is not zero.
5533	 */
5534	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5535		err = sock_queue_err_skb(sk, skb);
5536		sock_put(sk);
5537	}
5538	if (err)
5539		kfree_skb(skb);
5540}
5541EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
5542#endif /* CONFIG_WIRELESS */
5543
5544/**
5545 * skb_partial_csum_set - set up and verify partial csum values for packet
5546 * @skb: the skb to set
5547 * @start: the number of bytes after skb->data to start checksumming.
5548 * @off: the offset from start to place the checksum.
5549 *
5550 * For untrusted partially-checksummed packets, we need to make sure the values
5551 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
5552 *
5553 * This function checks and sets those values and skb->ip_summed: if this
5554 * returns false you should drop the packet.
5555 */
5556bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
5557{
5558	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
5559	u32 csum_start = skb_headroom(skb) + (u32)start;
5560
5561	if (unlikely(csum_start >= U16_MAX || csum_end > skb_headlen(skb))) {
5562		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
5563				     start, off, skb_headroom(skb), skb_headlen(skb));
5564		return false;
5565	}
5566	skb->ip_summed = CHECKSUM_PARTIAL;
5567	skb->csum_start = csum_start;
5568	skb->csum_offset = off;
5569	skb->transport_header = csum_start;
5570	return true;
5571}
5572EXPORT_SYMBOL_GPL(skb_partial_csum_set);
5573
5574static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
5575			       unsigned int max)
5576{
5577	if (skb_headlen(skb) >= len)
5578		return 0;
5579
5580	/* If we need to pullup then pullup to the max, so we
5581	 * won't need to do it again.
5582	 */
5583	if (max > skb->len)
5584		max = skb->len;
5585
5586	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
5587		return -ENOMEM;
5588
5589	if (skb_headlen(skb) < len)
5590		return -EPROTO;
5591
5592	return 0;
5593}
5594
5595#define MAX_TCP_HDR_LEN (15 * 4)
5596
5597static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
5598				      typeof(IPPROTO_IP) proto,
5599				      unsigned int off)
5600{
5601	int err;
 
5602
5603	switch (proto) {
5604	case IPPROTO_TCP:
5605		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
5606					  off + MAX_TCP_HDR_LEN);
5607		if (!err && !skb_partial_csum_set(skb, off,
5608						  offsetof(struct tcphdr,
5609							   check)))
5610			err = -EPROTO;
5611		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
5612
5613	case IPPROTO_UDP:
5614		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
5615					  off + sizeof(struct udphdr));
5616		if (!err && !skb_partial_csum_set(skb, off,
5617						  offsetof(struct udphdr,
5618							   check)))
5619			err = -EPROTO;
5620		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
5621	}
5622
5623	return ERR_PTR(-EPROTO);
5624}
5625
5626/* This value should be large enough to cover a tagged ethernet header plus
5627 * maximally sized IP and TCP or UDP headers.
5628 */
5629#define MAX_IP_HDR_LEN 128
5630
5631static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5632{
5633	unsigned int off;
5634	bool fragment;
5635	__sum16 *csum;
5636	int err;
5637
5638	fragment = false;
5639
5640	err = skb_maybe_pull_tail(skb,
5641				  sizeof(struct iphdr),
5642				  MAX_IP_HDR_LEN);
5643	if (err < 0)
5644		goto out;
5645
5646	if (ip_is_fragment(ip_hdr(skb)))
5647		fragment = true;
5648
5649	off = ip_hdrlen(skb);
5650
5651	err = -EPROTO;
5652
5653	if (fragment)
5654		goto out;
5655
5656	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5657	if (IS_ERR(csum))
5658		return PTR_ERR(csum);
5659
5660	if (recalculate)
5661		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5662					   ip_hdr(skb)->daddr,
5663					   skb->len - off,
5664					   ip_hdr(skb)->protocol, 0);
5665	err = 0;
5666
5667out:
5668	return err;
5669}
5670
5671/* This value should be large enough to cover a tagged ethernet header plus
5672 * an IPv6 header, all options, and a maximal TCP or UDP header.
5673 */
5674#define MAX_IPV6_HDR_LEN 256
5675
5676#define OPT_HDR(type, skb, off) \
5677	(type *)(skb_network_header(skb) + (off))
5678
5679static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5680{
5681	int err;
5682	u8 nexthdr;
5683	unsigned int off;
5684	unsigned int len;
5685	bool fragment;
5686	bool done;
5687	__sum16 *csum;
5688
5689	fragment = false;
5690	done = false;
5691
5692	off = sizeof(struct ipv6hdr);
5693
5694	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5695	if (err < 0)
5696		goto out;
5697
5698	nexthdr = ipv6_hdr(skb)->nexthdr;
5699
5700	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5701	while (off <= len && !done) {
5702		switch (nexthdr) {
5703		case IPPROTO_DSTOPTS:
5704		case IPPROTO_HOPOPTS:
5705		case IPPROTO_ROUTING: {
5706			struct ipv6_opt_hdr *hp;
5707
5708			err = skb_maybe_pull_tail(skb,
5709						  off +
5710						  sizeof(struct ipv6_opt_hdr),
5711						  MAX_IPV6_HDR_LEN);
5712			if (err < 0)
5713				goto out;
5714
5715			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5716			nexthdr = hp->nexthdr;
5717			off += ipv6_optlen(hp);
5718			break;
5719		}
5720		case IPPROTO_AH: {
5721			struct ip_auth_hdr *hp;
5722
5723			err = skb_maybe_pull_tail(skb,
5724						  off +
5725						  sizeof(struct ip_auth_hdr),
5726						  MAX_IPV6_HDR_LEN);
5727			if (err < 0)
5728				goto out;
5729
5730			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5731			nexthdr = hp->nexthdr;
5732			off += ipv6_authlen(hp);
5733			break;
5734		}
5735		case IPPROTO_FRAGMENT: {
5736			struct frag_hdr *hp;
5737
5738			err = skb_maybe_pull_tail(skb,
5739						  off +
5740						  sizeof(struct frag_hdr),
5741						  MAX_IPV6_HDR_LEN);
5742			if (err < 0)
5743				goto out;
5744
5745			hp = OPT_HDR(struct frag_hdr, skb, off);
5746
5747			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5748				fragment = true;
5749
5750			nexthdr = hp->nexthdr;
5751			off += sizeof(struct frag_hdr);
5752			break;
5753		}
5754		default:
5755			done = true;
5756			break;
5757		}
5758	}
5759
5760	err = -EPROTO;
5761
5762	if (!done || fragment)
5763		goto out;
5764
5765	csum = skb_checksum_setup_ip(skb, nexthdr, off);
5766	if (IS_ERR(csum))
5767		return PTR_ERR(csum);
5768
5769	if (recalculate)
5770		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5771					 &ipv6_hdr(skb)->daddr,
5772					 skb->len - off, nexthdr, 0);
5773	err = 0;
5774
5775out:
5776	return err;
5777}
5778
5779/**
5780 * skb_checksum_setup - set up partial checksum offset
5781 * @skb: the skb to set up
5782 * @recalculate: if true the pseudo-header checksum will be recalculated
5783 */
5784int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5785{
5786	int err;
5787
5788	switch (skb->protocol) {
5789	case htons(ETH_P_IP):
5790		err = skb_checksum_setup_ipv4(skb, recalculate);
5791		break;
5792
5793	case htons(ETH_P_IPV6):
5794		err = skb_checksum_setup_ipv6(skb, recalculate);
5795		break;
5796
5797	default:
5798		err = -EPROTO;
5799		break;
5800	}
5801
5802	return err;
5803}
5804EXPORT_SYMBOL(skb_checksum_setup);
5805
5806/**
5807 * skb_checksum_maybe_trim - maybe trims the given skb
5808 * @skb: the skb to check
5809 * @transport_len: the data length beyond the network header
5810 *
5811 * Checks whether the given skb has data beyond the given transport length.
5812 * If so, returns a cloned skb trimmed to this transport length.
5813 * Otherwise returns the provided skb. Returns NULL in error cases
5814 * (e.g. transport_len exceeds skb length or out-of-memory).
5815 *
5816 * Caller needs to set the skb transport header and free any returned skb if it
5817 * differs from the provided skb.
5818 */
5819static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5820					       unsigned int transport_len)
5821{
5822	struct sk_buff *skb_chk;
5823	unsigned int len = skb_transport_offset(skb) + transport_len;
5824	int ret;
5825
5826	if (skb->len < len)
5827		return NULL;
5828	else if (skb->len == len)
5829		return skb;
5830
5831	skb_chk = skb_clone(skb, GFP_ATOMIC);
5832	if (!skb_chk)
5833		return NULL;
5834
5835	ret = pskb_trim_rcsum(skb_chk, len);
5836	if (ret) {
5837		kfree_skb(skb_chk);
5838		return NULL;
5839	}
5840
5841	return skb_chk;
5842}
5843
5844/**
5845 * skb_checksum_trimmed - validate checksum of an skb
5846 * @skb: the skb to check
5847 * @transport_len: the data length beyond the network header
5848 * @skb_chkf: checksum function to use
5849 *
5850 * Applies the given checksum function skb_chkf to the provided skb.
5851 * Returns a checked and maybe trimmed skb. Returns NULL on error.
5852 *
5853 * If the skb has data beyond the given transport length, then a
5854 * trimmed & cloned skb is checked and returned.
5855 *
5856 * Caller needs to set the skb transport header and free any returned skb if it
5857 * differs from the provided skb.
5858 */
5859struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5860				     unsigned int transport_len,
5861				     __sum16(*skb_chkf)(struct sk_buff *skb))
5862{
5863	struct sk_buff *skb_chk;
5864	unsigned int offset = skb_transport_offset(skb);
5865	__sum16 ret;
5866
5867	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5868	if (!skb_chk)
5869		goto err;
5870
5871	if (!pskb_may_pull(skb_chk, offset))
5872		goto err;
5873
5874	skb_pull_rcsum(skb_chk, offset);
5875	ret = skb_chkf(skb_chk);
5876	skb_push_rcsum(skb_chk, offset);
5877
5878	if (ret)
5879		goto err;
5880
5881	return skb_chk;
5882
5883err:
5884	if (skb_chk && skb_chk != skb)
5885		kfree_skb(skb_chk);
5886
5887	return NULL;
5888
5889}
5890EXPORT_SYMBOL(skb_checksum_trimmed);
5891
5892void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5893{
5894	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5895			     skb->dev->name);
5896}
5897EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5898
5899void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5900{
5901	if (head_stolen) {
5902		skb_release_head_state(skb);
5903		kmem_cache_free(net_hotdata.skbuff_cache, skb);
5904	} else {
5905		__kfree_skb(skb);
5906	}
5907}
5908EXPORT_SYMBOL(kfree_skb_partial);
5909
5910/**
5911 * skb_try_coalesce - try to merge skb to prior one
5912 * @to: prior buffer
5913 * @from: buffer to add
5914 * @fragstolen: pointer to boolean
5915 * @delta_truesize: how much more was allocated than was requested
5916 */
5917bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5918		      bool *fragstolen, int *delta_truesize)
5919{
5920	struct skb_shared_info *to_shinfo, *from_shinfo;
5921	int i, delta, len = from->len;
5922
5923	*fragstolen = false;
5924
5925	if (skb_cloned(to))
5926		return false;
5927
5928	/* In general, avoid mixing page_pool and non-page_pool allocated
5929	 * pages within the same SKB. In theory we could take full
5930	 * references if @from is cloned and !@to->pp_recycle but its
5931	 * tricky (due to potential race with the clone disappearing) and
5932	 * rare, so not worth dealing with.
5933	 */
5934	if (to->pp_recycle != from->pp_recycle)
5935		return false;
5936
5937	if (len <= skb_tailroom(to)) {
5938		if (len)
5939			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5940		*delta_truesize = 0;
5941		return true;
5942	}
5943
5944	to_shinfo = skb_shinfo(to);
5945	from_shinfo = skb_shinfo(from);
5946	if (to_shinfo->frag_list || from_shinfo->frag_list)
5947		return false;
5948	if (skb_zcopy(to) || skb_zcopy(from))
5949		return false;
5950
5951	if (skb_headlen(from) != 0) {
5952		struct page *page;
5953		unsigned int offset;
5954
5955		if (to_shinfo->nr_frags +
5956		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5957			return false;
5958
5959		if (skb_head_is_locked(from))
5960			return false;
5961
5962		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5963
5964		page = virt_to_head_page(from->head);
5965		offset = from->data - (unsigned char *)page_address(page);
5966
5967		skb_fill_page_desc(to, to_shinfo->nr_frags,
5968				   page, offset, skb_headlen(from));
5969		*fragstolen = true;
5970	} else {
5971		if (to_shinfo->nr_frags +
5972		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
5973			return false;
5974
5975		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5976	}
5977
5978	WARN_ON_ONCE(delta < len);
5979
5980	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5981	       from_shinfo->frags,
5982	       from_shinfo->nr_frags * sizeof(skb_frag_t));
5983	to_shinfo->nr_frags += from_shinfo->nr_frags;
5984
5985	if (!skb_cloned(from))
5986		from_shinfo->nr_frags = 0;
5987
5988	/* if the skb is not cloned this does nothing
5989	 * since we set nr_frags to 0.
5990	 */
5991	if (skb_pp_frag_ref(from)) {
5992		for (i = 0; i < from_shinfo->nr_frags; i++)
5993			__skb_frag_ref(&from_shinfo->frags[i]);
5994	}
5995
5996	to->truesize += delta;
5997	to->len += len;
5998	to->data_len += len;
5999
6000	*delta_truesize = delta;
6001	return true;
6002}
6003EXPORT_SYMBOL(skb_try_coalesce);
6004
6005/**
6006 * skb_scrub_packet - scrub an skb
6007 *
6008 * @skb: buffer to clean
6009 * @xnet: packet is crossing netns
6010 *
6011 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
6012 * into/from a tunnel. Some information have to be cleared during these
6013 * operations.
6014 * skb_scrub_packet can also be used to clean a skb before injecting it in
6015 * another namespace (@xnet == true). We have to clear all information in the
6016 * skb that could impact namespace isolation.
6017 */
6018void skb_scrub_packet(struct sk_buff *skb, bool xnet)
6019{
 
6020	skb->pkt_type = PACKET_HOST;
6021	skb->skb_iif = 0;
6022	skb->ignore_df = 0;
6023	skb_dst_drop(skb);
6024	skb_ext_reset(skb);
6025	nf_reset_ct(skb);
6026	nf_reset_trace(skb);
6027
6028#ifdef CONFIG_NET_SWITCHDEV
6029	skb->offload_fwd_mark = 0;
6030	skb->offload_l3_fwd_mark = 0;
6031#endif
6032
6033	if (!xnet)
6034		return;
6035
6036	ipvs_reset(skb);
 
6037	skb->mark = 0;
6038	skb_clear_tstamp(skb);
6039}
6040EXPORT_SYMBOL_GPL(skb_scrub_packet);
6041
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6042static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
6043{
6044	int mac_len, meta_len;
6045	void *meta;
6046
6047	if (skb_cow(skb, skb_headroom(skb)) < 0) {
6048		kfree_skb(skb);
6049		return NULL;
6050	}
6051
6052	mac_len = skb->data - skb_mac_header(skb);
6053	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
6054		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
6055			mac_len - VLAN_HLEN - ETH_TLEN);
6056	}
6057
6058	meta_len = skb_metadata_len(skb);
6059	if (meta_len) {
6060		meta = skb_metadata_end(skb) - meta_len;
6061		memmove(meta + VLAN_HLEN, meta, meta_len);
6062	}
6063
6064	skb->mac_header += VLAN_HLEN;
6065	return skb;
6066}
6067
6068struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
6069{
6070	struct vlan_hdr *vhdr;
6071	u16 vlan_tci;
6072
6073	if (unlikely(skb_vlan_tag_present(skb))) {
6074		/* vlan_tci is already set-up so leave this for another time */
6075		return skb;
6076	}
6077
6078	skb = skb_share_check(skb, GFP_ATOMIC);
6079	if (unlikely(!skb))
6080		goto err_free;
6081	/* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
6082	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
6083		goto err_free;
6084
6085	vhdr = (struct vlan_hdr *)skb->data;
6086	vlan_tci = ntohs(vhdr->h_vlan_TCI);
6087	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
6088
6089	skb_pull_rcsum(skb, VLAN_HLEN);
6090	vlan_set_encap_proto(skb, vhdr);
6091
6092	skb = skb_reorder_vlan_header(skb);
6093	if (unlikely(!skb))
6094		goto err_free;
6095
6096	skb_reset_network_header(skb);
6097	if (!skb_transport_header_was_set(skb))
6098		skb_reset_transport_header(skb);
6099	skb_reset_mac_len(skb);
6100
6101	return skb;
6102
6103err_free:
6104	kfree_skb(skb);
6105	return NULL;
6106}
6107EXPORT_SYMBOL(skb_vlan_untag);
6108
6109int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len)
6110{
6111	if (!pskb_may_pull(skb, write_len))
6112		return -ENOMEM;
6113
6114	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
6115		return 0;
6116
6117	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
6118}
6119EXPORT_SYMBOL(skb_ensure_writable);
6120
6121int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev)
6122{
6123	int needed_headroom = dev->needed_headroom;
6124	int needed_tailroom = dev->needed_tailroom;
6125
6126	/* For tail taggers, we need to pad short frames ourselves, to ensure
6127	 * that the tail tag does not fail at its role of being at the end of
6128	 * the packet, once the conduit interface pads the frame. Account for
6129	 * that pad length here, and pad later.
6130	 */
6131	if (unlikely(needed_tailroom && skb->len < ETH_ZLEN))
6132		needed_tailroom += ETH_ZLEN - skb->len;
6133	/* skb_headroom() returns unsigned int... */
6134	needed_headroom = max_t(int, needed_headroom - skb_headroom(skb), 0);
6135	needed_tailroom = max_t(int, needed_tailroom - skb_tailroom(skb), 0);
6136
6137	if (likely(!needed_headroom && !needed_tailroom && !skb_cloned(skb)))
6138		/* No reallocation needed, yay! */
6139		return 0;
6140
6141	return pskb_expand_head(skb, needed_headroom, needed_tailroom,
6142				GFP_ATOMIC);
6143}
6144EXPORT_SYMBOL(skb_ensure_writable_head_tail);
6145
6146/* remove VLAN header from packet and update csum accordingly.
6147 * expects a non skb_vlan_tag_present skb with a vlan tag payload
6148 */
6149int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
6150{
 
6151	int offset = skb->data - skb_mac_header(skb);
6152	int err;
6153
6154	if (WARN_ONCE(offset,
6155		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
6156		      offset)) {
6157		return -EINVAL;
6158	}
6159
6160	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
6161	if (unlikely(err))
6162		return err;
6163
6164	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6165
6166	vlan_remove_tag(skb, vlan_tci);
 
 
 
 
6167
 
6168	skb->mac_header += VLAN_HLEN;
6169
6170	if (skb_network_offset(skb) < ETH_HLEN)
6171		skb_set_network_header(skb, ETH_HLEN);
6172
6173	skb_reset_mac_len(skb);
6174
6175	return err;
6176}
6177EXPORT_SYMBOL(__skb_vlan_pop);
6178
6179/* Pop a vlan tag either from hwaccel or from payload.
6180 * Expects skb->data at mac header.
6181 */
6182int skb_vlan_pop(struct sk_buff *skb)
6183{
6184	u16 vlan_tci;
6185	__be16 vlan_proto;
6186	int err;
6187
6188	if (likely(skb_vlan_tag_present(skb))) {
6189		__vlan_hwaccel_clear_tag(skb);
6190	} else {
6191		if (unlikely(!eth_type_vlan(skb->protocol)))
6192			return 0;
6193
6194		err = __skb_vlan_pop(skb, &vlan_tci);
6195		if (err)
6196			return err;
6197	}
6198	/* move next vlan tag to hw accel tag */
6199	if (likely(!eth_type_vlan(skb->protocol)))
6200		return 0;
6201
6202	vlan_proto = skb->protocol;
6203	err = __skb_vlan_pop(skb, &vlan_tci);
6204	if (unlikely(err))
6205		return err;
6206
6207	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6208	return 0;
6209}
6210EXPORT_SYMBOL(skb_vlan_pop);
6211
6212/* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
6213 * Expects skb->data at mac header.
6214 */
6215int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
6216{
6217	if (skb_vlan_tag_present(skb)) {
6218		int offset = skb->data - skb_mac_header(skb);
6219		int err;
6220
6221		if (WARN_ONCE(offset,
6222			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
6223			      offset)) {
6224			return -EINVAL;
6225		}
6226
6227		err = __vlan_insert_tag(skb, skb->vlan_proto,
6228					skb_vlan_tag_get(skb));
6229		if (err)
6230			return err;
6231
6232		skb->protocol = skb->vlan_proto;
6233		skb->mac_len += VLAN_HLEN;
6234
6235		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6236	}
6237	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6238	return 0;
6239}
6240EXPORT_SYMBOL(skb_vlan_push);
6241
6242/**
6243 * skb_eth_pop() - Drop the Ethernet header at the head of a packet
6244 *
6245 * @skb: Socket buffer to modify
6246 *
6247 * Drop the Ethernet header of @skb.
6248 *
6249 * Expects that skb->data points to the mac header and that no VLAN tags are
6250 * present.
6251 *
6252 * Returns 0 on success, -errno otherwise.
6253 */
6254int skb_eth_pop(struct sk_buff *skb)
6255{
6256	if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
6257	    skb_network_offset(skb) < ETH_HLEN)
6258		return -EPROTO;
6259
6260	skb_pull_rcsum(skb, ETH_HLEN);
6261	skb_reset_mac_header(skb);
6262	skb_reset_mac_len(skb);
6263
6264	return 0;
6265}
6266EXPORT_SYMBOL(skb_eth_pop);
6267
6268/**
6269 * skb_eth_push() - Add a new Ethernet header at the head of a packet
6270 *
6271 * @skb: Socket buffer to modify
6272 * @dst: Destination MAC address of the new header
6273 * @src: Source MAC address of the new header
6274 *
6275 * Prepend @skb with a new Ethernet header.
6276 *
6277 * Expects that skb->data points to the mac header, which must be empty.
6278 *
6279 * Returns 0 on success, -errno otherwise.
6280 */
6281int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
6282		 const unsigned char *src)
6283{
6284	struct ethhdr *eth;
6285	int err;
6286
6287	if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
6288		return -EPROTO;
6289
6290	err = skb_cow_head(skb, sizeof(*eth));
6291	if (err < 0)
6292		return err;
6293
6294	skb_push(skb, sizeof(*eth));
6295	skb_reset_mac_header(skb);
6296	skb_reset_mac_len(skb);
6297
6298	eth = eth_hdr(skb);
6299	ether_addr_copy(eth->h_dest, dst);
6300	ether_addr_copy(eth->h_source, src);
6301	eth->h_proto = skb->protocol;
6302
6303	skb_postpush_rcsum(skb, eth, sizeof(*eth));
6304
6305	return 0;
6306}
6307EXPORT_SYMBOL(skb_eth_push);
6308
6309/* Update the ethertype of hdr and the skb csum value if required. */
6310static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
6311			     __be16 ethertype)
6312{
6313	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6314		__be16 diff[] = { ~hdr->h_proto, ethertype };
6315
6316		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6317	}
6318
6319	hdr->h_proto = ethertype;
6320}
6321
6322/**
6323 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
6324 *                   the packet
6325 *
6326 * @skb: buffer
6327 * @mpls_lse: MPLS label stack entry to push
6328 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
6329 * @mac_len: length of the MAC header
6330 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
6331 *            ethernet
6332 *
6333 * Expects skb->data at mac header.
6334 *
6335 * Returns 0 on success, -errno otherwise.
6336 */
6337int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
6338		  int mac_len, bool ethernet)
6339{
6340	struct mpls_shim_hdr *lse;
6341	int err;
6342
6343	if (unlikely(!eth_p_mpls(mpls_proto)))
6344		return -EINVAL;
6345
6346	/* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
6347	if (skb->encapsulation)
6348		return -EINVAL;
6349
6350	err = skb_cow_head(skb, MPLS_HLEN);
6351	if (unlikely(err))
6352		return err;
6353
6354	if (!skb->inner_protocol) {
6355		skb_set_inner_network_header(skb, skb_network_offset(skb));
6356		skb_set_inner_protocol(skb, skb->protocol);
6357	}
6358
6359	skb_push(skb, MPLS_HLEN);
6360	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
6361		mac_len);
6362	skb_reset_mac_header(skb);
6363	skb_set_network_header(skb, mac_len);
6364	skb_reset_mac_len(skb);
6365
6366	lse = mpls_hdr(skb);
6367	lse->label_stack_entry = mpls_lse;
6368	skb_postpush_rcsum(skb, lse, MPLS_HLEN);
6369
6370	if (ethernet && mac_len >= ETH_HLEN)
6371		skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
6372	skb->protocol = mpls_proto;
6373
6374	return 0;
6375}
6376EXPORT_SYMBOL_GPL(skb_mpls_push);
6377
6378/**
6379 * skb_mpls_pop() - pop the outermost MPLS header
6380 *
6381 * @skb: buffer
6382 * @next_proto: ethertype of header after popped MPLS header
6383 * @mac_len: length of the MAC header
6384 * @ethernet: flag to indicate if the packet is ethernet
6385 *
6386 * Expects skb->data at mac header.
6387 *
6388 * Returns 0 on success, -errno otherwise.
6389 */
6390int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
6391		 bool ethernet)
6392{
6393	int err;
6394
6395	if (unlikely(!eth_p_mpls(skb->protocol)))
6396		return 0;
6397
6398	err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
6399	if (unlikely(err))
6400		return err;
6401
6402	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
6403	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
6404		mac_len);
6405
6406	__skb_pull(skb, MPLS_HLEN);
6407	skb_reset_mac_header(skb);
6408	skb_set_network_header(skb, mac_len);
6409
6410	if (ethernet && mac_len >= ETH_HLEN) {
6411		struct ethhdr *hdr;
6412
6413		/* use mpls_hdr() to get ethertype to account for VLANs. */
6414		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
6415		skb_mod_eth_type(skb, hdr, next_proto);
6416	}
6417	skb->protocol = next_proto;
6418
6419	return 0;
6420}
6421EXPORT_SYMBOL_GPL(skb_mpls_pop);
6422
6423/**
6424 * skb_mpls_update_lse() - modify outermost MPLS header and update csum
6425 *
6426 * @skb: buffer
6427 * @mpls_lse: new MPLS label stack entry to update to
6428 *
6429 * Expects skb->data at mac header.
6430 *
6431 * Returns 0 on success, -errno otherwise.
6432 */
6433int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
6434{
6435	int err;
6436
6437	if (unlikely(!eth_p_mpls(skb->protocol)))
6438		return -EINVAL;
6439
6440	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
6441	if (unlikely(err))
6442		return err;
6443
6444	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6445		__be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
6446
6447		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6448	}
6449
6450	mpls_hdr(skb)->label_stack_entry = mpls_lse;
6451
6452	return 0;
6453}
6454EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
6455
6456/**
6457 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
6458 *
6459 * @skb: buffer
6460 *
6461 * Expects skb->data at mac header.
6462 *
6463 * Returns 0 on success, -errno otherwise.
6464 */
6465int skb_mpls_dec_ttl(struct sk_buff *skb)
6466{
6467	u32 lse;
6468	u8 ttl;
6469
6470	if (unlikely(!eth_p_mpls(skb->protocol)))
6471		return -EINVAL;
6472
6473	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
6474		return -ENOMEM;
6475
6476	lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
6477	ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
6478	if (!--ttl)
6479		return -EINVAL;
6480
6481	lse &= ~MPLS_LS_TTL_MASK;
6482	lse |= ttl << MPLS_LS_TTL_SHIFT;
6483
6484	return skb_mpls_update_lse(skb, cpu_to_be32(lse));
6485}
6486EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
6487
6488/**
6489 * alloc_skb_with_frags - allocate skb with page frags
6490 *
6491 * @header_len: size of linear part
6492 * @data_len: needed length in frags
6493 * @order: max page order desired.
6494 * @errcode: pointer to error code if any
6495 * @gfp_mask: allocation mask
6496 *
6497 * This can be used to allocate a paged skb, given a maximal order for frags.
6498 */
6499struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
6500				     unsigned long data_len,
6501				     int order,
6502				     int *errcode,
6503				     gfp_t gfp_mask)
6504{
 
6505	unsigned long chunk;
6506	struct sk_buff *skb;
6507	struct page *page;
6508	int nr_frags = 0;
 
6509
6510	*errcode = -EMSGSIZE;
6511	if (unlikely(data_len > MAX_SKB_FRAGS * (PAGE_SIZE << order)))
 
 
 
6512		return NULL;
6513
 
 
 
 
6514	*errcode = -ENOBUFS;
6515	skb = alloc_skb(header_len, gfp_mask);
6516	if (!skb)
6517		return NULL;
6518
6519	while (data_len) {
6520		if (nr_frags == MAX_SKB_FRAGS - 1)
6521			goto failure;
6522		while (order && PAGE_ALIGN(data_len) < (PAGE_SIZE << order))
6523			order--;
6524
6525		if (order) {
6526			page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6527					   __GFP_COMP |
6528					   __GFP_NOWARN,
6529					   order);
6530			if (!page) {
6531				order--;
6532				continue;
 
 
 
 
6533			}
6534		} else {
6535			page = alloc_page(gfp_mask);
6536			if (!page)
6537				goto failure;
6538		}
 
 
 
 
6539		chunk = min_t(unsigned long, data_len,
6540			      PAGE_SIZE << order);
6541		skb_fill_page_desc(skb, nr_frags, page, 0, chunk);
6542		nr_frags++;
6543		skb->truesize += (PAGE_SIZE << order);
6544		data_len -= chunk;
 
6545	}
6546	return skb;
6547
6548failure:
6549	kfree_skb(skb);
6550	return NULL;
6551}
6552EXPORT_SYMBOL(alloc_skb_with_frags);
6553
6554/* carve out the first off bytes from skb when off < headlen */
6555static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6556				    const int headlen, gfp_t gfp_mask)
6557{
6558	int i;
6559	unsigned int size = skb_end_offset(skb);
6560	int new_hlen = headlen - off;
6561	u8 *data;
6562
 
 
6563	if (skb_pfmemalloc(skb))
6564		gfp_mask |= __GFP_MEMALLOC;
6565
6566	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
 
6567	if (!data)
6568		return -ENOMEM;
6569	size = SKB_WITH_OVERHEAD(size);
 
6570
6571	/* Copy real data, and all frags */
6572	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6573	skb->len -= off;
6574
6575	memcpy((struct skb_shared_info *)(data + size),
6576	       skb_shinfo(skb),
6577	       offsetof(struct skb_shared_info,
6578			frags[skb_shinfo(skb)->nr_frags]));
6579	if (skb_cloned(skb)) {
6580		/* drop the old head gracefully */
6581		if (skb_orphan_frags(skb, gfp_mask)) {
6582			skb_kfree_head(data, size);
6583			return -ENOMEM;
6584		}
6585		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6586			skb_frag_ref(skb, i);
6587		if (skb_has_frag_list(skb))
6588			skb_clone_fraglist(skb);
6589		skb_release_data(skb, SKB_CONSUMED, false);
6590	} else {
6591		/* we can reuse existing recount- all we did was
6592		 * relocate values
6593		 */
6594		skb_free_head(skb, false);
6595	}
6596
6597	skb->head = data;
6598	skb->data = data;
6599	skb->head_frag = 0;
6600	skb_set_end_offset(skb, size);
 
 
 
 
6601	skb_set_tail_pointer(skb, skb_headlen(skb));
6602	skb_headers_offset_update(skb, 0);
6603	skb->cloned = 0;
6604	skb->hdr_len = 0;
6605	skb->nohdr = 0;
6606	atomic_set(&skb_shinfo(skb)->dataref, 1);
6607
6608	return 0;
6609}
6610
6611static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6612
6613/* carve out the first eat bytes from skb's frag_list. May recurse into
6614 * pskb_carve()
6615 */
6616static int pskb_carve_frag_list(struct sk_buff *skb,
6617				struct skb_shared_info *shinfo, int eat,
6618				gfp_t gfp_mask)
6619{
6620	struct sk_buff *list = shinfo->frag_list;
6621	struct sk_buff *clone = NULL;
6622	struct sk_buff *insp = NULL;
6623
6624	do {
6625		if (!list) {
6626			pr_err("Not enough bytes to eat. Want %d\n", eat);
6627			return -EFAULT;
6628		}
6629		if (list->len <= eat) {
6630			/* Eaten as whole. */
6631			eat -= list->len;
6632			list = list->next;
6633			insp = list;
6634		} else {
6635			/* Eaten partially. */
6636			if (skb_shared(list)) {
6637				clone = skb_clone(list, gfp_mask);
6638				if (!clone)
6639					return -ENOMEM;
6640				insp = list->next;
6641				list = clone;
6642			} else {
6643				/* This may be pulled without problems. */
6644				insp = list;
6645			}
6646			if (pskb_carve(list, eat, gfp_mask) < 0) {
6647				kfree_skb(clone);
6648				return -ENOMEM;
6649			}
6650			break;
6651		}
6652	} while (eat);
6653
6654	/* Free pulled out fragments. */
6655	while ((list = shinfo->frag_list) != insp) {
6656		shinfo->frag_list = list->next;
6657		consume_skb(list);
6658	}
6659	/* And insert new clone at head. */
6660	if (clone) {
6661		clone->next = list;
6662		shinfo->frag_list = clone;
6663	}
6664	return 0;
6665}
6666
6667/* carve off first len bytes from skb. Split line (off) is in the
6668 * non-linear part of skb
6669 */
6670static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6671				       int pos, gfp_t gfp_mask)
6672{
6673	int i, k = 0;
6674	unsigned int size = skb_end_offset(skb);
6675	u8 *data;
6676	const int nfrags = skb_shinfo(skb)->nr_frags;
6677	struct skb_shared_info *shinfo;
6678
 
 
6679	if (skb_pfmemalloc(skb))
6680		gfp_mask |= __GFP_MEMALLOC;
6681
6682	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
 
6683	if (!data)
6684		return -ENOMEM;
6685	size = SKB_WITH_OVERHEAD(size);
 
6686
6687	memcpy((struct skb_shared_info *)(data + size),
6688	       skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
 
6689	if (skb_orphan_frags(skb, gfp_mask)) {
6690		skb_kfree_head(data, size);
6691		return -ENOMEM;
6692	}
6693	shinfo = (struct skb_shared_info *)(data + size);
6694	for (i = 0; i < nfrags; i++) {
6695		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6696
6697		if (pos + fsize > off) {
6698			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6699
6700			if (pos < off) {
6701				/* Split frag.
6702				 * We have two variants in this case:
6703				 * 1. Move all the frag to the second
6704				 *    part, if it is possible. F.e.
6705				 *    this approach is mandatory for TUX,
6706				 *    where splitting is expensive.
6707				 * 2. Split is accurately. We make this.
6708				 */
6709				skb_frag_off_add(&shinfo->frags[0], off - pos);
6710				skb_frag_size_sub(&shinfo->frags[0], off - pos);
6711			}
6712			skb_frag_ref(skb, i);
6713			k++;
6714		}
6715		pos += fsize;
6716	}
6717	shinfo->nr_frags = k;
6718	if (skb_has_frag_list(skb))
6719		skb_clone_fraglist(skb);
6720
6721	/* split line is in frag list */
6722	if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6723		/* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6724		if (skb_has_frag_list(skb))
6725			kfree_skb_list(skb_shinfo(skb)->frag_list);
6726		skb_kfree_head(data, size);
6727		return -ENOMEM;
6728	}
6729	skb_release_data(skb, SKB_CONSUMED, false);
6730
6731	skb->head = data;
6732	skb->head_frag = 0;
6733	skb->data = data;
6734	skb_set_end_offset(skb, size);
 
 
 
 
6735	skb_reset_tail_pointer(skb);
6736	skb_headers_offset_update(skb, 0);
6737	skb->cloned   = 0;
6738	skb->hdr_len  = 0;
6739	skb->nohdr    = 0;
6740	skb->len -= off;
6741	skb->data_len = skb->len;
6742	atomic_set(&skb_shinfo(skb)->dataref, 1);
6743	return 0;
6744}
6745
6746/* remove len bytes from the beginning of the skb */
6747static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6748{
6749	int headlen = skb_headlen(skb);
6750
6751	if (len < headlen)
6752		return pskb_carve_inside_header(skb, len, headlen, gfp);
6753	else
6754		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6755}
6756
6757/* Extract to_copy bytes starting at off from skb, and return this in
6758 * a new skb
6759 */
6760struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6761			     int to_copy, gfp_t gfp)
6762{
6763	struct sk_buff  *clone = skb_clone(skb, gfp);
6764
6765	if (!clone)
6766		return NULL;
6767
6768	if (pskb_carve(clone, off, gfp) < 0 ||
6769	    pskb_trim(clone, to_copy)) {
6770		kfree_skb(clone);
6771		return NULL;
6772	}
6773	return clone;
6774}
6775EXPORT_SYMBOL(pskb_extract);
6776
6777/**
6778 * skb_condense - try to get rid of fragments/frag_list if possible
6779 * @skb: buffer
6780 *
6781 * Can be used to save memory before skb is added to a busy queue.
6782 * If packet has bytes in frags and enough tail room in skb->head,
6783 * pull all of them, so that we can free the frags right now and adjust
6784 * truesize.
6785 * Notes:
6786 *	We do not reallocate skb->head thus can not fail.
6787 *	Caller must re-evaluate skb->truesize if needed.
6788 */
6789void skb_condense(struct sk_buff *skb)
6790{
6791	if (skb->data_len) {
6792		if (skb->data_len > skb->end - skb->tail ||
6793		    skb_cloned(skb))
6794			return;
6795
6796		/* Nice, we can free page frag(s) right now */
6797		__pskb_pull_tail(skb, skb->data_len);
6798	}
6799	/* At this point, skb->truesize might be over estimated,
6800	 * because skb had a fragment, and fragments do not tell
6801	 * their truesize.
6802	 * When we pulled its content into skb->head, fragment
6803	 * was freed, but __pskb_pull_tail() could not possibly
6804	 * adjust skb->truesize, not knowing the frag truesize.
6805	 */
6806	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6807}
6808EXPORT_SYMBOL(skb_condense);
6809
6810#ifdef CONFIG_SKB_EXTENSIONS
6811static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6812{
6813	return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6814}
6815
6816/**
6817 * __skb_ext_alloc - allocate a new skb extensions storage
6818 *
6819 * @flags: See kmalloc().
6820 *
6821 * Returns the newly allocated pointer. The pointer can later attached to a
6822 * skb via __skb_ext_set().
6823 * Note: caller must handle the skb_ext as an opaque data.
6824 */
6825struct skb_ext *__skb_ext_alloc(gfp_t flags)
6826{
6827	struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6828
6829	if (new) {
6830		memset(new->offset, 0, sizeof(new->offset));
6831		refcount_set(&new->refcnt, 1);
6832	}
6833
6834	return new;
6835}
6836
6837static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6838					 unsigned int old_active)
6839{
6840	struct skb_ext *new;
6841
6842	if (refcount_read(&old->refcnt) == 1)
6843		return old;
6844
6845	new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6846	if (!new)
6847		return NULL;
6848
6849	memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6850	refcount_set(&new->refcnt, 1);
6851
6852#ifdef CONFIG_XFRM
6853	if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6854		struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6855		unsigned int i;
6856
6857		for (i = 0; i < sp->len; i++)
6858			xfrm_state_hold(sp->xvec[i]);
6859	}
6860#endif
6861#ifdef CONFIG_MCTP_FLOWS
6862	if (old_active & (1 << SKB_EXT_MCTP)) {
6863		struct mctp_flow *flow = skb_ext_get_ptr(old, SKB_EXT_MCTP);
6864
6865		if (flow->key)
6866			refcount_inc(&flow->key->refs);
6867	}
6868#endif
6869	__skb_ext_put(old);
6870	return new;
6871}
6872
6873/**
6874 * __skb_ext_set - attach the specified extension storage to this skb
6875 * @skb: buffer
6876 * @id: extension id
6877 * @ext: extension storage previously allocated via __skb_ext_alloc()
6878 *
6879 * Existing extensions, if any, are cleared.
6880 *
6881 * Returns the pointer to the extension.
6882 */
6883void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6884		    struct skb_ext *ext)
6885{
6886	unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6887
6888	skb_ext_put(skb);
6889	newlen = newoff + skb_ext_type_len[id];
6890	ext->chunks = newlen;
6891	ext->offset[id] = newoff;
6892	skb->extensions = ext;
6893	skb->active_extensions = 1 << id;
6894	return skb_ext_get_ptr(ext, id);
6895}
6896
6897/**
6898 * skb_ext_add - allocate space for given extension, COW if needed
6899 * @skb: buffer
6900 * @id: extension to allocate space for
6901 *
6902 * Allocates enough space for the given extension.
6903 * If the extension is already present, a pointer to that extension
6904 * is returned.
6905 *
6906 * If the skb was cloned, COW applies and the returned memory can be
6907 * modified without changing the extension space of clones buffers.
6908 *
6909 * Returns pointer to the extension or NULL on allocation failure.
6910 */
6911void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6912{
6913	struct skb_ext *new, *old = NULL;
6914	unsigned int newlen, newoff;
6915
6916	if (skb->active_extensions) {
6917		old = skb->extensions;
6918
6919		new = skb_ext_maybe_cow(old, skb->active_extensions);
6920		if (!new)
6921			return NULL;
6922
6923		if (__skb_ext_exist(new, id))
6924			goto set_active;
6925
6926		newoff = new->chunks;
6927	} else {
6928		newoff = SKB_EXT_CHUNKSIZEOF(*new);
6929
6930		new = __skb_ext_alloc(GFP_ATOMIC);
6931		if (!new)
6932			return NULL;
6933	}
6934
6935	newlen = newoff + skb_ext_type_len[id];
6936	new->chunks = newlen;
6937	new->offset[id] = newoff;
6938set_active:
6939	skb->slow_gro = 1;
6940	skb->extensions = new;
6941	skb->active_extensions |= 1 << id;
6942	return skb_ext_get_ptr(new, id);
6943}
6944EXPORT_SYMBOL(skb_ext_add);
6945
6946#ifdef CONFIG_XFRM
6947static void skb_ext_put_sp(struct sec_path *sp)
6948{
6949	unsigned int i;
6950
6951	for (i = 0; i < sp->len; i++)
6952		xfrm_state_put(sp->xvec[i]);
6953}
6954#endif
6955
6956#ifdef CONFIG_MCTP_FLOWS
6957static void skb_ext_put_mctp(struct mctp_flow *flow)
6958{
6959	if (flow->key)
6960		mctp_key_unref(flow->key);
6961}
6962#endif
6963
6964void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6965{
6966	struct skb_ext *ext = skb->extensions;
6967
6968	skb->active_extensions &= ~(1 << id);
6969	if (skb->active_extensions == 0) {
6970		skb->extensions = NULL;
6971		__skb_ext_put(ext);
6972#ifdef CONFIG_XFRM
6973	} else if (id == SKB_EXT_SEC_PATH &&
6974		   refcount_read(&ext->refcnt) == 1) {
6975		struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6976
6977		skb_ext_put_sp(sp);
6978		sp->len = 0;
6979#endif
6980	}
6981}
6982EXPORT_SYMBOL(__skb_ext_del);
6983
6984void __skb_ext_put(struct skb_ext *ext)
6985{
6986	/* If this is last clone, nothing can increment
6987	 * it after check passes.  Avoids one atomic op.
6988	 */
6989	if (refcount_read(&ext->refcnt) == 1)
6990		goto free_now;
6991
6992	if (!refcount_dec_and_test(&ext->refcnt))
6993		return;
6994free_now:
6995#ifdef CONFIG_XFRM
6996	if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6997		skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6998#endif
6999#ifdef CONFIG_MCTP_FLOWS
7000	if (__skb_ext_exist(ext, SKB_EXT_MCTP))
7001		skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP));
7002#endif
7003
7004	kmem_cache_free(skbuff_ext_cache, ext);
7005}
7006EXPORT_SYMBOL(__skb_ext_put);
7007#endif /* CONFIG_SKB_EXTENSIONS */
7008
7009/**
7010 * skb_attempt_defer_free - queue skb for remote freeing
7011 * @skb: buffer
7012 *
7013 * Put @skb in a per-cpu list, using the cpu which
7014 * allocated the skb/pages to reduce false sharing
7015 * and memory zone spinlock contention.
7016 */
7017void skb_attempt_defer_free(struct sk_buff *skb)
7018{
7019	int cpu = skb->alloc_cpu;
7020	struct softnet_data *sd;
7021	unsigned int defer_max;
7022	bool kick;
7023
7024	if (WARN_ON_ONCE(cpu >= nr_cpu_ids) ||
7025	    !cpu_online(cpu) ||
7026	    cpu == raw_smp_processor_id()) {
7027nodefer:	__kfree_skb(skb);
7028		return;
7029	}
7030
7031	DEBUG_NET_WARN_ON_ONCE(skb_dst(skb));
7032	DEBUG_NET_WARN_ON_ONCE(skb->destructor);
7033
7034	sd = &per_cpu(softnet_data, cpu);
7035	defer_max = READ_ONCE(sysctl_skb_defer_max);
7036	if (READ_ONCE(sd->defer_count) >= defer_max)
7037		goto nodefer;
7038
7039	spin_lock_bh(&sd->defer_lock);
7040	/* Send an IPI every time queue reaches half capacity. */
7041	kick = sd->defer_count == (defer_max >> 1);
7042	/* Paired with the READ_ONCE() few lines above */
7043	WRITE_ONCE(sd->defer_count, sd->defer_count + 1);
7044
7045	skb->next = sd->defer_list;
7046	/* Paired with READ_ONCE() in skb_defer_free_flush() */
7047	WRITE_ONCE(sd->defer_list, skb);
7048	spin_unlock_bh(&sd->defer_lock);
7049
7050	/* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU
7051	 * if we are unlucky enough (this seems very unlikely).
7052	 */
7053	if (unlikely(kick) && !cmpxchg(&sd->defer_ipi_scheduled, 0, 1))
7054		smp_call_function_single_async(cpu, &sd->defer_csd);
7055}
7056
7057static void skb_splice_csum_page(struct sk_buff *skb, struct page *page,
7058				 size_t offset, size_t len)
7059{
7060	const char *kaddr;
7061	__wsum csum;
7062
7063	kaddr = kmap_local_page(page);
7064	csum = csum_partial(kaddr + offset, len, 0);
7065	kunmap_local(kaddr);
7066	skb->csum = csum_block_add(skb->csum, csum, skb->len);
7067}
7068
7069/**
7070 * skb_splice_from_iter - Splice (or copy) pages to skbuff
7071 * @skb: The buffer to add pages to
7072 * @iter: Iterator representing the pages to be added
7073 * @maxsize: Maximum amount of pages to be added
7074 * @gfp: Allocation flags
7075 *
7076 * This is a common helper function for supporting MSG_SPLICE_PAGES.  It
7077 * extracts pages from an iterator and adds them to the socket buffer if
7078 * possible, copying them to fragments if not possible (such as if they're slab
7079 * pages).
7080 *
7081 * Returns the amount of data spliced/copied or -EMSGSIZE if there's
7082 * insufficient space in the buffer to transfer anything.
7083 */
7084ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
7085			     ssize_t maxsize, gfp_t gfp)
7086{
7087	size_t frag_limit = READ_ONCE(sysctl_max_skb_frags);
7088	struct page *pages[8], **ppages = pages;
7089	ssize_t spliced = 0, ret = 0;
7090	unsigned int i;
7091
7092	while (iter->count > 0) {
7093		ssize_t space, nr, len;
7094		size_t off;
7095
7096		ret = -EMSGSIZE;
7097		space = frag_limit - skb_shinfo(skb)->nr_frags;
7098		if (space < 0)
7099			break;
7100
7101		/* We might be able to coalesce without increasing nr_frags */
7102		nr = clamp_t(size_t, space, 1, ARRAY_SIZE(pages));
7103
7104		len = iov_iter_extract_pages(iter, &ppages, maxsize, nr, 0, &off);
7105		if (len <= 0) {
7106			ret = len ?: -EIO;
7107			break;
7108		}
7109
7110		i = 0;
7111		do {
7112			struct page *page = pages[i++];
7113			size_t part = min_t(size_t, PAGE_SIZE - off, len);
7114
7115			ret = -EIO;
7116			if (WARN_ON_ONCE(!sendpage_ok(page)))
7117				goto out;
7118
7119			ret = skb_append_pagefrags(skb, page, off, part,
7120						   frag_limit);
7121			if (ret < 0) {
7122				iov_iter_revert(iter, len);
7123				goto out;
7124			}
7125
7126			if (skb->ip_summed == CHECKSUM_NONE)
7127				skb_splice_csum_page(skb, page, off, part);
7128
7129			off = 0;
7130			spliced += part;
7131			maxsize -= part;
7132			len -= part;
7133		} while (len > 0);
7134
7135		if (maxsize <= 0)
7136			break;
7137	}
7138
7139out:
7140	skb_len_add(skb, spliced);
7141	return spliced ?: ret;
7142}
7143EXPORT_SYMBOL(skb_splice_from_iter);
7144
7145static __always_inline
7146size_t memcpy_from_iter_csum(void *iter_from, size_t progress,
7147			     size_t len, void *to, void *priv2)
7148{
7149	__wsum *csum = priv2;
7150	__wsum next = csum_partial_copy_nocheck(iter_from, to + progress, len);
7151
7152	*csum = csum_block_add(*csum, next, progress);
7153	return 0;
7154}
7155
7156static __always_inline
7157size_t copy_from_user_iter_csum(void __user *iter_from, size_t progress,
7158				size_t len, void *to, void *priv2)
7159{
7160	__wsum next, *csum = priv2;
7161
7162	next = csum_and_copy_from_user(iter_from, to + progress, len);
7163	*csum = csum_block_add(*csum, next, progress);
7164	return next ? 0 : len;
7165}
7166
7167bool csum_and_copy_from_iter_full(void *addr, size_t bytes,
7168				  __wsum *csum, struct iov_iter *i)
7169{
7170	size_t copied;
7171
7172	if (WARN_ON_ONCE(!i->data_source))
7173		return false;
7174	copied = iterate_and_advance2(i, bytes, addr, csum,
7175				      copy_from_user_iter_csum,
7176				      memcpy_from_iter_csum);
7177	if (likely(copied == bytes))
7178		return true;
7179	iov_iter_revert(i, copied);
7180	return false;
7181}
7182EXPORT_SYMBOL(csum_and_copy_from_iter_full);