Loading...
1/*
2 * Routines having to do with the 'struct sk_buff' memory handlers.
3 *
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
6 *
7 * Fixes:
8 * Alan Cox : Fixed the worst of the load
9 * balancer bugs.
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
22 *
23 * NOTE:
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
28 *
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
33 */
34
35/*
36 * The functions in this file will not compile correctly with gcc 2.4.x
37 */
38
39#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40
41#include <linux/module.h>
42#include <linux/types.h>
43#include <linux/kernel.h>
44#include <linux/mm.h>
45#include <linux/interrupt.h>
46#include <linux/in.h>
47#include <linux/inet.h>
48#include <linux/slab.h>
49#include <linux/tcp.h>
50#include <linux/udp.h>
51#include <linux/sctp.h>
52#include <linux/netdevice.h>
53#ifdef CONFIG_NET_CLS_ACT
54#include <net/pkt_sched.h>
55#endif
56#include <linux/string.h>
57#include <linux/skbuff.h>
58#include <linux/splice.h>
59#include <linux/cache.h>
60#include <linux/rtnetlink.h>
61#include <linux/init.h>
62#include <linux/scatterlist.h>
63#include <linux/errqueue.h>
64#include <linux/prefetch.h>
65#include <linux/if_vlan.h>
66
67#include <net/protocol.h>
68#include <net/dst.h>
69#include <net/sock.h>
70#include <net/checksum.h>
71#include <net/ip6_checksum.h>
72#include <net/xfrm.h>
73
74#include <linux/uaccess.h>
75#include <trace/events/skb.h>
76#include <linux/highmem.h>
77#include <linux/capability.h>
78#include <linux/user_namespace.h>
79
80struct kmem_cache *skbuff_head_cache __ro_after_init;
81static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
82int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
83EXPORT_SYMBOL(sysctl_max_skb_frags);
84
85/**
86 * skb_panic - private function for out-of-line support
87 * @skb: buffer
88 * @sz: size
89 * @addr: address
90 * @msg: skb_over_panic or skb_under_panic
91 *
92 * Out-of-line support for skb_put() and skb_push().
93 * Called via the wrapper skb_over_panic() or skb_under_panic().
94 * Keep out of line to prevent kernel bloat.
95 * __builtin_return_address is not used because it is not always reliable.
96 */
97static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
98 const char msg[])
99{
100 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
101 msg, addr, skb->len, sz, skb->head, skb->data,
102 (unsigned long)skb->tail, (unsigned long)skb->end,
103 skb->dev ? skb->dev->name : "<NULL>");
104 BUG();
105}
106
107static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
108{
109 skb_panic(skb, sz, addr, __func__);
110}
111
112static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
113{
114 skb_panic(skb, sz, addr, __func__);
115}
116
117/*
118 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
119 * the caller if emergency pfmemalloc reserves are being used. If it is and
120 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
121 * may be used. Otherwise, the packet data may be discarded until enough
122 * memory is free
123 */
124#define kmalloc_reserve(size, gfp, node, pfmemalloc) \
125 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
126
127static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
128 unsigned long ip, bool *pfmemalloc)
129{
130 void *obj;
131 bool ret_pfmemalloc = false;
132
133 /*
134 * Try a regular allocation, when that fails and we're not entitled
135 * to the reserves, fail.
136 */
137 obj = kmalloc_node_track_caller(size,
138 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
139 node);
140 if (obj || !(gfp_pfmemalloc_allowed(flags)))
141 goto out;
142
143 /* Try again but now we are using pfmemalloc reserves */
144 ret_pfmemalloc = true;
145 obj = kmalloc_node_track_caller(size, flags, node);
146
147out:
148 if (pfmemalloc)
149 *pfmemalloc = ret_pfmemalloc;
150
151 return obj;
152}
153
154/* Allocate a new skbuff. We do this ourselves so we can fill in a few
155 * 'private' fields and also do memory statistics to find all the
156 * [BEEP] leaks.
157 *
158 */
159
160/**
161 * __alloc_skb - allocate a network buffer
162 * @size: size to allocate
163 * @gfp_mask: allocation mask
164 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
165 * instead of head cache and allocate a cloned (child) skb.
166 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
167 * allocations in case the data is required for writeback
168 * @node: numa node to allocate memory on
169 *
170 * Allocate a new &sk_buff. The returned buffer has no headroom and a
171 * tail room of at least size bytes. The object has a reference count
172 * of one. The return is the buffer. On a failure the return is %NULL.
173 *
174 * Buffers may only be allocated from interrupts using a @gfp_mask of
175 * %GFP_ATOMIC.
176 */
177struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
178 int flags, int node)
179{
180 struct kmem_cache *cache;
181 struct skb_shared_info *shinfo;
182 struct sk_buff *skb;
183 u8 *data;
184 bool pfmemalloc;
185
186 cache = (flags & SKB_ALLOC_FCLONE)
187 ? skbuff_fclone_cache : skbuff_head_cache;
188
189 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
190 gfp_mask |= __GFP_MEMALLOC;
191
192 /* Get the HEAD */
193 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
194 if (!skb)
195 goto out;
196 prefetchw(skb);
197
198 /* We do our best to align skb_shared_info on a separate cache
199 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
200 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
201 * Both skb->head and skb_shared_info are cache line aligned.
202 */
203 size = SKB_DATA_ALIGN(size);
204 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
205 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
206 if (!data)
207 goto nodata;
208 /* kmalloc(size) might give us more room than requested.
209 * Put skb_shared_info exactly at the end of allocated zone,
210 * to allow max possible filling before reallocation.
211 */
212 size = SKB_WITH_OVERHEAD(ksize(data));
213 prefetchw(data + size);
214
215 /*
216 * Only clear those fields we need to clear, not those that we will
217 * actually initialise below. Hence, don't put any more fields after
218 * the tail pointer in struct sk_buff!
219 */
220 memset(skb, 0, offsetof(struct sk_buff, tail));
221 /* Account for allocated memory : skb + skb->head */
222 skb->truesize = SKB_TRUESIZE(size);
223 skb->pfmemalloc = pfmemalloc;
224 refcount_set(&skb->users, 1);
225 skb->head = data;
226 skb->data = data;
227 skb_reset_tail_pointer(skb);
228 skb->end = skb->tail + size;
229 skb->mac_header = (typeof(skb->mac_header))~0U;
230 skb->transport_header = (typeof(skb->transport_header))~0U;
231
232 /* make sure we initialize shinfo sequentially */
233 shinfo = skb_shinfo(skb);
234 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
235 atomic_set(&shinfo->dataref, 1);
236
237 if (flags & SKB_ALLOC_FCLONE) {
238 struct sk_buff_fclones *fclones;
239
240 fclones = container_of(skb, struct sk_buff_fclones, skb1);
241
242 skb->fclone = SKB_FCLONE_ORIG;
243 refcount_set(&fclones->fclone_ref, 1);
244
245 fclones->skb2.fclone = SKB_FCLONE_CLONE;
246 }
247out:
248 return skb;
249nodata:
250 kmem_cache_free(cache, skb);
251 skb = NULL;
252 goto out;
253}
254EXPORT_SYMBOL(__alloc_skb);
255
256/**
257 * __build_skb - build a network buffer
258 * @data: data buffer provided by caller
259 * @frag_size: size of data, or 0 if head was kmalloced
260 *
261 * Allocate a new &sk_buff. Caller provides space holding head and
262 * skb_shared_info. @data must have been allocated by kmalloc() only if
263 * @frag_size is 0, otherwise data should come from the page allocator
264 * or vmalloc()
265 * The return is the new skb buffer.
266 * On a failure the return is %NULL, and @data is not freed.
267 * Notes :
268 * Before IO, driver allocates only data buffer where NIC put incoming frame
269 * Driver should add room at head (NET_SKB_PAD) and
270 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
271 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
272 * before giving packet to stack.
273 * RX rings only contains data buffers, not full skbs.
274 */
275struct sk_buff *__build_skb(void *data, unsigned int frag_size)
276{
277 struct skb_shared_info *shinfo;
278 struct sk_buff *skb;
279 unsigned int size = frag_size ? : ksize(data);
280
281 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
282 if (!skb)
283 return NULL;
284
285 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
286
287 memset(skb, 0, offsetof(struct sk_buff, tail));
288 skb->truesize = SKB_TRUESIZE(size);
289 refcount_set(&skb->users, 1);
290 skb->head = data;
291 skb->data = data;
292 skb_reset_tail_pointer(skb);
293 skb->end = skb->tail + size;
294 skb->mac_header = (typeof(skb->mac_header))~0U;
295 skb->transport_header = (typeof(skb->transport_header))~0U;
296
297 /* make sure we initialize shinfo sequentially */
298 shinfo = skb_shinfo(skb);
299 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
300 atomic_set(&shinfo->dataref, 1);
301
302 return skb;
303}
304
305/* build_skb() is wrapper over __build_skb(), that specifically
306 * takes care of skb->head and skb->pfmemalloc
307 * This means that if @frag_size is not zero, then @data must be backed
308 * by a page fragment, not kmalloc() or vmalloc()
309 */
310struct sk_buff *build_skb(void *data, unsigned int frag_size)
311{
312 struct sk_buff *skb = __build_skb(data, frag_size);
313
314 if (skb && frag_size) {
315 skb->head_frag = 1;
316 if (page_is_pfmemalloc(virt_to_head_page(data)))
317 skb->pfmemalloc = 1;
318 }
319 return skb;
320}
321EXPORT_SYMBOL(build_skb);
322
323#define NAPI_SKB_CACHE_SIZE 64
324
325struct napi_alloc_cache {
326 struct page_frag_cache page;
327 unsigned int skb_count;
328 void *skb_cache[NAPI_SKB_CACHE_SIZE];
329};
330
331static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
332static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
333
334static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
335{
336 struct page_frag_cache *nc;
337 unsigned long flags;
338 void *data;
339
340 local_irq_save(flags);
341 nc = this_cpu_ptr(&netdev_alloc_cache);
342 data = page_frag_alloc(nc, fragsz, gfp_mask);
343 local_irq_restore(flags);
344 return data;
345}
346
347/**
348 * netdev_alloc_frag - allocate a page fragment
349 * @fragsz: fragment size
350 *
351 * Allocates a frag from a page for receive buffer.
352 * Uses GFP_ATOMIC allocations.
353 */
354void *netdev_alloc_frag(unsigned int fragsz)
355{
356 return __netdev_alloc_frag(fragsz, GFP_ATOMIC);
357}
358EXPORT_SYMBOL(netdev_alloc_frag);
359
360static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
361{
362 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
363
364 return page_frag_alloc(&nc->page, fragsz, gfp_mask);
365}
366
367void *napi_alloc_frag(unsigned int fragsz)
368{
369 return __napi_alloc_frag(fragsz, GFP_ATOMIC);
370}
371EXPORT_SYMBOL(napi_alloc_frag);
372
373/**
374 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
375 * @dev: network device to receive on
376 * @len: length to allocate
377 * @gfp_mask: get_free_pages mask, passed to alloc_skb
378 *
379 * Allocate a new &sk_buff and assign it a usage count of one. The
380 * buffer has NET_SKB_PAD headroom built in. Users should allocate
381 * the headroom they think they need without accounting for the
382 * built in space. The built in space is used for optimisations.
383 *
384 * %NULL is returned if there is no free memory.
385 */
386struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
387 gfp_t gfp_mask)
388{
389 struct page_frag_cache *nc;
390 unsigned long flags;
391 struct sk_buff *skb;
392 bool pfmemalloc;
393 void *data;
394
395 len += NET_SKB_PAD;
396
397 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
398 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
399 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
400 if (!skb)
401 goto skb_fail;
402 goto skb_success;
403 }
404
405 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
406 len = SKB_DATA_ALIGN(len);
407
408 if (sk_memalloc_socks())
409 gfp_mask |= __GFP_MEMALLOC;
410
411 local_irq_save(flags);
412
413 nc = this_cpu_ptr(&netdev_alloc_cache);
414 data = page_frag_alloc(nc, len, gfp_mask);
415 pfmemalloc = nc->pfmemalloc;
416
417 local_irq_restore(flags);
418
419 if (unlikely(!data))
420 return NULL;
421
422 skb = __build_skb(data, len);
423 if (unlikely(!skb)) {
424 skb_free_frag(data);
425 return NULL;
426 }
427
428 /* use OR instead of assignment to avoid clearing of bits in mask */
429 if (pfmemalloc)
430 skb->pfmemalloc = 1;
431 skb->head_frag = 1;
432
433skb_success:
434 skb_reserve(skb, NET_SKB_PAD);
435 skb->dev = dev;
436
437skb_fail:
438 return skb;
439}
440EXPORT_SYMBOL(__netdev_alloc_skb);
441
442/**
443 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
444 * @napi: napi instance this buffer was allocated for
445 * @len: length to allocate
446 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
447 *
448 * Allocate a new sk_buff for use in NAPI receive. This buffer will
449 * attempt to allocate the head from a special reserved region used
450 * only for NAPI Rx allocation. By doing this we can save several
451 * CPU cycles by avoiding having to disable and re-enable IRQs.
452 *
453 * %NULL is returned if there is no free memory.
454 */
455struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
456 gfp_t gfp_mask)
457{
458 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
459 struct sk_buff *skb;
460 void *data;
461
462 len += NET_SKB_PAD + NET_IP_ALIGN;
463
464 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
465 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
466 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
467 if (!skb)
468 goto skb_fail;
469 goto skb_success;
470 }
471
472 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
473 len = SKB_DATA_ALIGN(len);
474
475 if (sk_memalloc_socks())
476 gfp_mask |= __GFP_MEMALLOC;
477
478 data = page_frag_alloc(&nc->page, len, gfp_mask);
479 if (unlikely(!data))
480 return NULL;
481
482 skb = __build_skb(data, len);
483 if (unlikely(!skb)) {
484 skb_free_frag(data);
485 return NULL;
486 }
487
488 /* use OR instead of assignment to avoid clearing of bits in mask */
489 if (nc->page.pfmemalloc)
490 skb->pfmemalloc = 1;
491 skb->head_frag = 1;
492
493skb_success:
494 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
495 skb->dev = napi->dev;
496
497skb_fail:
498 return skb;
499}
500EXPORT_SYMBOL(__napi_alloc_skb);
501
502void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
503 int size, unsigned int truesize)
504{
505 skb_fill_page_desc(skb, i, page, off, size);
506 skb->len += size;
507 skb->data_len += size;
508 skb->truesize += truesize;
509}
510EXPORT_SYMBOL(skb_add_rx_frag);
511
512void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
513 unsigned int truesize)
514{
515 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
516
517 skb_frag_size_add(frag, size);
518 skb->len += size;
519 skb->data_len += size;
520 skb->truesize += truesize;
521}
522EXPORT_SYMBOL(skb_coalesce_rx_frag);
523
524static void skb_drop_list(struct sk_buff **listp)
525{
526 kfree_skb_list(*listp);
527 *listp = NULL;
528}
529
530static inline void skb_drop_fraglist(struct sk_buff *skb)
531{
532 skb_drop_list(&skb_shinfo(skb)->frag_list);
533}
534
535static void skb_clone_fraglist(struct sk_buff *skb)
536{
537 struct sk_buff *list;
538
539 skb_walk_frags(skb, list)
540 skb_get(list);
541}
542
543static void skb_free_head(struct sk_buff *skb)
544{
545 unsigned char *head = skb->head;
546
547 if (skb->head_frag)
548 skb_free_frag(head);
549 else
550 kfree(head);
551}
552
553static void skb_release_data(struct sk_buff *skb)
554{
555 struct skb_shared_info *shinfo = skb_shinfo(skb);
556 int i;
557
558 if (skb->cloned &&
559 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
560 &shinfo->dataref))
561 return;
562
563 for (i = 0; i < shinfo->nr_frags; i++)
564 __skb_frag_unref(&shinfo->frags[i]);
565
566 if (shinfo->frag_list)
567 kfree_skb_list(shinfo->frag_list);
568
569 skb_zcopy_clear(skb, true);
570 skb_free_head(skb);
571}
572
573/*
574 * Free an skbuff by memory without cleaning the state.
575 */
576static void kfree_skbmem(struct sk_buff *skb)
577{
578 struct sk_buff_fclones *fclones;
579
580 switch (skb->fclone) {
581 case SKB_FCLONE_UNAVAILABLE:
582 kmem_cache_free(skbuff_head_cache, skb);
583 return;
584
585 case SKB_FCLONE_ORIG:
586 fclones = container_of(skb, struct sk_buff_fclones, skb1);
587
588 /* We usually free the clone (TX completion) before original skb
589 * This test would have no chance to be true for the clone,
590 * while here, branch prediction will be good.
591 */
592 if (refcount_read(&fclones->fclone_ref) == 1)
593 goto fastpath;
594 break;
595
596 default: /* SKB_FCLONE_CLONE */
597 fclones = container_of(skb, struct sk_buff_fclones, skb2);
598 break;
599 }
600 if (!refcount_dec_and_test(&fclones->fclone_ref))
601 return;
602fastpath:
603 kmem_cache_free(skbuff_fclone_cache, fclones);
604}
605
606void skb_release_head_state(struct sk_buff *skb)
607{
608 skb_dst_drop(skb);
609 secpath_reset(skb);
610 if (skb->destructor) {
611 WARN_ON(in_irq());
612 skb->destructor(skb);
613 }
614#if IS_ENABLED(CONFIG_NF_CONNTRACK)
615 nf_conntrack_put(skb_nfct(skb));
616#endif
617#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
618 nf_bridge_put(skb->nf_bridge);
619#endif
620}
621
622/* Free everything but the sk_buff shell. */
623static void skb_release_all(struct sk_buff *skb)
624{
625 skb_release_head_state(skb);
626 if (likely(skb->head))
627 skb_release_data(skb);
628}
629
630/**
631 * __kfree_skb - private function
632 * @skb: buffer
633 *
634 * Free an sk_buff. Release anything attached to the buffer.
635 * Clean the state. This is an internal helper function. Users should
636 * always call kfree_skb
637 */
638
639void __kfree_skb(struct sk_buff *skb)
640{
641 skb_release_all(skb);
642 kfree_skbmem(skb);
643}
644EXPORT_SYMBOL(__kfree_skb);
645
646/**
647 * kfree_skb - free an sk_buff
648 * @skb: buffer to free
649 *
650 * Drop a reference to the buffer and free it if the usage count has
651 * hit zero.
652 */
653void kfree_skb(struct sk_buff *skb)
654{
655 if (!skb_unref(skb))
656 return;
657
658 trace_kfree_skb(skb, __builtin_return_address(0));
659 __kfree_skb(skb);
660}
661EXPORT_SYMBOL(kfree_skb);
662
663void kfree_skb_list(struct sk_buff *segs)
664{
665 while (segs) {
666 struct sk_buff *next = segs->next;
667
668 kfree_skb(segs);
669 segs = next;
670 }
671}
672EXPORT_SYMBOL(kfree_skb_list);
673
674/**
675 * skb_tx_error - report an sk_buff xmit error
676 * @skb: buffer that triggered an error
677 *
678 * Report xmit error if a device callback is tracking this skb.
679 * skb must be freed afterwards.
680 */
681void skb_tx_error(struct sk_buff *skb)
682{
683 skb_zcopy_clear(skb, true);
684}
685EXPORT_SYMBOL(skb_tx_error);
686
687/**
688 * consume_skb - free an skbuff
689 * @skb: buffer to free
690 *
691 * Drop a ref to the buffer and free it if the usage count has hit zero
692 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
693 * is being dropped after a failure and notes that
694 */
695void consume_skb(struct sk_buff *skb)
696{
697 if (!skb_unref(skb))
698 return;
699
700 trace_consume_skb(skb);
701 __kfree_skb(skb);
702}
703EXPORT_SYMBOL(consume_skb);
704
705/**
706 * consume_stateless_skb - free an skbuff, assuming it is stateless
707 * @skb: buffer to free
708 *
709 * Alike consume_skb(), but this variant assumes that this is the last
710 * skb reference and all the head states have been already dropped
711 */
712void __consume_stateless_skb(struct sk_buff *skb)
713{
714 trace_consume_skb(skb);
715 skb_release_data(skb);
716 kfree_skbmem(skb);
717}
718
719void __kfree_skb_flush(void)
720{
721 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
722
723 /* flush skb_cache if containing objects */
724 if (nc->skb_count) {
725 kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
726 nc->skb_cache);
727 nc->skb_count = 0;
728 }
729}
730
731static inline void _kfree_skb_defer(struct sk_buff *skb)
732{
733 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
734
735 /* drop skb->head and call any destructors for packet */
736 skb_release_all(skb);
737
738 /* record skb to CPU local list */
739 nc->skb_cache[nc->skb_count++] = skb;
740
741#ifdef CONFIG_SLUB
742 /* SLUB writes into objects when freeing */
743 prefetchw(skb);
744#endif
745
746 /* flush skb_cache if it is filled */
747 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
748 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
749 nc->skb_cache);
750 nc->skb_count = 0;
751 }
752}
753void __kfree_skb_defer(struct sk_buff *skb)
754{
755 _kfree_skb_defer(skb);
756}
757
758void napi_consume_skb(struct sk_buff *skb, int budget)
759{
760 if (unlikely(!skb))
761 return;
762
763 /* Zero budget indicate non-NAPI context called us, like netpoll */
764 if (unlikely(!budget)) {
765 dev_consume_skb_any(skb);
766 return;
767 }
768
769 if (!skb_unref(skb))
770 return;
771
772 /* if reaching here SKB is ready to free */
773 trace_consume_skb(skb);
774
775 /* if SKB is a clone, don't handle this case */
776 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
777 __kfree_skb(skb);
778 return;
779 }
780
781 _kfree_skb_defer(skb);
782}
783EXPORT_SYMBOL(napi_consume_skb);
784
785/* Make sure a field is enclosed inside headers_start/headers_end section */
786#define CHECK_SKB_FIELD(field) \
787 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \
788 offsetof(struct sk_buff, headers_start)); \
789 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \
790 offsetof(struct sk_buff, headers_end)); \
791
792static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
793{
794 new->tstamp = old->tstamp;
795 /* We do not copy old->sk */
796 new->dev = old->dev;
797 memcpy(new->cb, old->cb, sizeof(old->cb));
798 skb_dst_copy(new, old);
799#ifdef CONFIG_XFRM
800 new->sp = secpath_get(old->sp);
801#endif
802 __nf_copy(new, old, false);
803
804 /* Note : this field could be in headers_start/headers_end section
805 * It is not yet because we do not want to have a 16 bit hole
806 */
807 new->queue_mapping = old->queue_mapping;
808
809 memcpy(&new->headers_start, &old->headers_start,
810 offsetof(struct sk_buff, headers_end) -
811 offsetof(struct sk_buff, headers_start));
812 CHECK_SKB_FIELD(protocol);
813 CHECK_SKB_FIELD(csum);
814 CHECK_SKB_FIELD(hash);
815 CHECK_SKB_FIELD(priority);
816 CHECK_SKB_FIELD(skb_iif);
817 CHECK_SKB_FIELD(vlan_proto);
818 CHECK_SKB_FIELD(vlan_tci);
819 CHECK_SKB_FIELD(transport_header);
820 CHECK_SKB_FIELD(network_header);
821 CHECK_SKB_FIELD(mac_header);
822 CHECK_SKB_FIELD(inner_protocol);
823 CHECK_SKB_FIELD(inner_transport_header);
824 CHECK_SKB_FIELD(inner_network_header);
825 CHECK_SKB_FIELD(inner_mac_header);
826 CHECK_SKB_FIELD(mark);
827#ifdef CONFIG_NETWORK_SECMARK
828 CHECK_SKB_FIELD(secmark);
829#endif
830#ifdef CONFIG_NET_RX_BUSY_POLL
831 CHECK_SKB_FIELD(napi_id);
832#endif
833#ifdef CONFIG_XPS
834 CHECK_SKB_FIELD(sender_cpu);
835#endif
836#ifdef CONFIG_NET_SCHED
837 CHECK_SKB_FIELD(tc_index);
838#endif
839
840}
841
842/*
843 * You should not add any new code to this function. Add it to
844 * __copy_skb_header above instead.
845 */
846static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
847{
848#define C(x) n->x = skb->x
849
850 n->next = n->prev = NULL;
851 n->sk = NULL;
852 __copy_skb_header(n, skb);
853
854 C(len);
855 C(data_len);
856 C(mac_len);
857 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
858 n->cloned = 1;
859 n->nohdr = 0;
860 n->peeked = 0;
861 n->destructor = NULL;
862 C(tail);
863 C(end);
864 C(head);
865 C(head_frag);
866 C(data);
867 C(truesize);
868 refcount_set(&n->users, 1);
869
870 atomic_inc(&(skb_shinfo(skb)->dataref));
871 skb->cloned = 1;
872
873 return n;
874#undef C
875}
876
877/**
878 * skb_morph - morph one skb into another
879 * @dst: the skb to receive the contents
880 * @src: the skb to supply the contents
881 *
882 * This is identical to skb_clone except that the target skb is
883 * supplied by the user.
884 *
885 * The target skb is returned upon exit.
886 */
887struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
888{
889 skb_release_all(dst);
890 return __skb_clone(dst, src);
891}
892EXPORT_SYMBOL_GPL(skb_morph);
893
894int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
895{
896 unsigned long max_pg, num_pg, new_pg, old_pg;
897 struct user_struct *user;
898
899 if (capable(CAP_IPC_LOCK) || !size)
900 return 0;
901
902 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */
903 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
904 user = mmp->user ? : current_user();
905
906 do {
907 old_pg = atomic_long_read(&user->locked_vm);
908 new_pg = old_pg + num_pg;
909 if (new_pg > max_pg)
910 return -ENOBUFS;
911 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
912 old_pg);
913
914 if (!mmp->user) {
915 mmp->user = get_uid(user);
916 mmp->num_pg = num_pg;
917 } else {
918 mmp->num_pg += num_pg;
919 }
920
921 return 0;
922}
923EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
924
925void mm_unaccount_pinned_pages(struct mmpin *mmp)
926{
927 if (mmp->user) {
928 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
929 free_uid(mmp->user);
930 }
931}
932EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
933
934struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size)
935{
936 struct ubuf_info *uarg;
937 struct sk_buff *skb;
938
939 WARN_ON_ONCE(!in_task());
940
941 if (!sock_flag(sk, SOCK_ZEROCOPY))
942 return NULL;
943
944 skb = sock_omalloc(sk, 0, GFP_KERNEL);
945 if (!skb)
946 return NULL;
947
948 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
949 uarg = (void *)skb->cb;
950 uarg->mmp.user = NULL;
951
952 if (mm_account_pinned_pages(&uarg->mmp, size)) {
953 kfree_skb(skb);
954 return NULL;
955 }
956
957 uarg->callback = sock_zerocopy_callback;
958 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
959 uarg->len = 1;
960 uarg->bytelen = size;
961 uarg->zerocopy = 1;
962 refcount_set(&uarg->refcnt, 1);
963 sock_hold(sk);
964
965 return uarg;
966}
967EXPORT_SYMBOL_GPL(sock_zerocopy_alloc);
968
969static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
970{
971 return container_of((void *)uarg, struct sk_buff, cb);
972}
973
974struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
975 struct ubuf_info *uarg)
976{
977 if (uarg) {
978 const u32 byte_limit = 1 << 19; /* limit to a few TSO */
979 u32 bytelen, next;
980
981 /* realloc only when socket is locked (TCP, UDP cork),
982 * so uarg->len and sk_zckey access is serialized
983 */
984 if (!sock_owned_by_user(sk)) {
985 WARN_ON_ONCE(1);
986 return NULL;
987 }
988
989 bytelen = uarg->bytelen + size;
990 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
991 /* TCP can create new skb to attach new uarg */
992 if (sk->sk_type == SOCK_STREAM)
993 goto new_alloc;
994 return NULL;
995 }
996
997 next = (u32)atomic_read(&sk->sk_zckey);
998 if ((u32)(uarg->id + uarg->len) == next) {
999 if (mm_account_pinned_pages(&uarg->mmp, size))
1000 return NULL;
1001 uarg->len++;
1002 uarg->bytelen = bytelen;
1003 atomic_set(&sk->sk_zckey, ++next);
1004 sock_zerocopy_get(uarg);
1005 return uarg;
1006 }
1007 }
1008
1009new_alloc:
1010 return sock_zerocopy_alloc(sk, size);
1011}
1012EXPORT_SYMBOL_GPL(sock_zerocopy_realloc);
1013
1014static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1015{
1016 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1017 u32 old_lo, old_hi;
1018 u64 sum_len;
1019
1020 old_lo = serr->ee.ee_info;
1021 old_hi = serr->ee.ee_data;
1022 sum_len = old_hi - old_lo + 1ULL + len;
1023
1024 if (sum_len >= (1ULL << 32))
1025 return false;
1026
1027 if (lo != old_hi + 1)
1028 return false;
1029
1030 serr->ee.ee_data += len;
1031 return true;
1032}
1033
1034void sock_zerocopy_callback(struct ubuf_info *uarg, bool success)
1035{
1036 struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1037 struct sock_exterr_skb *serr;
1038 struct sock *sk = skb->sk;
1039 struct sk_buff_head *q;
1040 unsigned long flags;
1041 u32 lo, hi;
1042 u16 len;
1043
1044 mm_unaccount_pinned_pages(&uarg->mmp);
1045
1046 /* if !len, there was only 1 call, and it was aborted
1047 * so do not queue a completion notification
1048 */
1049 if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1050 goto release;
1051
1052 len = uarg->len;
1053 lo = uarg->id;
1054 hi = uarg->id + len - 1;
1055
1056 serr = SKB_EXT_ERR(skb);
1057 memset(serr, 0, sizeof(*serr));
1058 serr->ee.ee_errno = 0;
1059 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1060 serr->ee.ee_data = hi;
1061 serr->ee.ee_info = lo;
1062 if (!success)
1063 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1064
1065 q = &sk->sk_error_queue;
1066 spin_lock_irqsave(&q->lock, flags);
1067 tail = skb_peek_tail(q);
1068 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1069 !skb_zerocopy_notify_extend(tail, lo, len)) {
1070 __skb_queue_tail(q, skb);
1071 skb = NULL;
1072 }
1073 spin_unlock_irqrestore(&q->lock, flags);
1074
1075 sk->sk_error_report(sk);
1076
1077release:
1078 consume_skb(skb);
1079 sock_put(sk);
1080}
1081EXPORT_SYMBOL_GPL(sock_zerocopy_callback);
1082
1083void sock_zerocopy_put(struct ubuf_info *uarg)
1084{
1085 if (uarg && refcount_dec_and_test(&uarg->refcnt)) {
1086 if (uarg->callback)
1087 uarg->callback(uarg, uarg->zerocopy);
1088 else
1089 consume_skb(skb_from_uarg(uarg));
1090 }
1091}
1092EXPORT_SYMBOL_GPL(sock_zerocopy_put);
1093
1094void sock_zerocopy_put_abort(struct ubuf_info *uarg)
1095{
1096 if (uarg) {
1097 struct sock *sk = skb_from_uarg(uarg)->sk;
1098
1099 atomic_dec(&sk->sk_zckey);
1100 uarg->len--;
1101
1102 sock_zerocopy_put(uarg);
1103 }
1104}
1105EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort);
1106
1107extern int __zerocopy_sg_from_iter(struct sock *sk, struct sk_buff *skb,
1108 struct iov_iter *from, size_t length);
1109
1110int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1111 struct msghdr *msg, int len,
1112 struct ubuf_info *uarg)
1113{
1114 struct ubuf_info *orig_uarg = skb_zcopy(skb);
1115 struct iov_iter orig_iter = msg->msg_iter;
1116 int err, orig_len = skb->len;
1117
1118 /* An skb can only point to one uarg. This edge case happens when
1119 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1120 */
1121 if (orig_uarg && uarg != orig_uarg)
1122 return -EEXIST;
1123
1124 err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1125 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1126 struct sock *save_sk = skb->sk;
1127
1128 /* Streams do not free skb on error. Reset to prev state. */
1129 msg->msg_iter = orig_iter;
1130 skb->sk = sk;
1131 ___pskb_trim(skb, orig_len);
1132 skb->sk = save_sk;
1133 return err;
1134 }
1135
1136 skb_zcopy_set(skb, uarg);
1137 return skb->len - orig_len;
1138}
1139EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1140
1141static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1142 gfp_t gfp_mask)
1143{
1144 if (skb_zcopy(orig)) {
1145 if (skb_zcopy(nskb)) {
1146 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1147 if (!gfp_mask) {
1148 WARN_ON_ONCE(1);
1149 return -ENOMEM;
1150 }
1151 if (skb_uarg(nskb) == skb_uarg(orig))
1152 return 0;
1153 if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1154 return -EIO;
1155 }
1156 skb_zcopy_set(nskb, skb_uarg(orig));
1157 }
1158 return 0;
1159}
1160
1161/**
1162 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
1163 * @skb: the skb to modify
1164 * @gfp_mask: allocation priority
1165 *
1166 * This must be called on SKBTX_DEV_ZEROCOPY skb.
1167 * It will copy all frags into kernel and drop the reference
1168 * to userspace pages.
1169 *
1170 * If this function is called from an interrupt gfp_mask() must be
1171 * %GFP_ATOMIC.
1172 *
1173 * Returns 0 on success or a negative error code on failure
1174 * to allocate kernel memory to copy to.
1175 */
1176int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1177{
1178 int num_frags = skb_shinfo(skb)->nr_frags;
1179 struct page *page, *head = NULL;
1180 int i, new_frags;
1181 u32 d_off;
1182
1183 if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1184 return -EINVAL;
1185
1186 if (!num_frags)
1187 goto release;
1188
1189 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1190 for (i = 0; i < new_frags; i++) {
1191 page = alloc_page(gfp_mask);
1192 if (!page) {
1193 while (head) {
1194 struct page *next = (struct page *)page_private(head);
1195 put_page(head);
1196 head = next;
1197 }
1198 return -ENOMEM;
1199 }
1200 set_page_private(page, (unsigned long)head);
1201 head = page;
1202 }
1203
1204 page = head;
1205 d_off = 0;
1206 for (i = 0; i < num_frags; i++) {
1207 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1208 u32 p_off, p_len, copied;
1209 struct page *p;
1210 u8 *vaddr;
1211
1212 skb_frag_foreach_page(f, f->page_offset, skb_frag_size(f),
1213 p, p_off, p_len, copied) {
1214 u32 copy, done = 0;
1215 vaddr = kmap_atomic(p);
1216
1217 while (done < p_len) {
1218 if (d_off == PAGE_SIZE) {
1219 d_off = 0;
1220 page = (struct page *)page_private(page);
1221 }
1222 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1223 memcpy(page_address(page) + d_off,
1224 vaddr + p_off + done, copy);
1225 done += copy;
1226 d_off += copy;
1227 }
1228 kunmap_atomic(vaddr);
1229 }
1230 }
1231
1232 /* skb frags release userspace buffers */
1233 for (i = 0; i < num_frags; i++)
1234 skb_frag_unref(skb, i);
1235
1236 /* skb frags point to kernel buffers */
1237 for (i = 0; i < new_frags - 1; i++) {
1238 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1239 head = (struct page *)page_private(head);
1240 }
1241 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1242 skb_shinfo(skb)->nr_frags = new_frags;
1243
1244release:
1245 skb_zcopy_clear(skb, false);
1246 return 0;
1247}
1248EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1249
1250/**
1251 * skb_clone - duplicate an sk_buff
1252 * @skb: buffer to clone
1253 * @gfp_mask: allocation priority
1254 *
1255 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
1256 * copies share the same packet data but not structure. The new
1257 * buffer has a reference count of 1. If the allocation fails the
1258 * function returns %NULL otherwise the new buffer is returned.
1259 *
1260 * If this function is called from an interrupt gfp_mask() must be
1261 * %GFP_ATOMIC.
1262 */
1263
1264struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1265{
1266 struct sk_buff_fclones *fclones = container_of(skb,
1267 struct sk_buff_fclones,
1268 skb1);
1269 struct sk_buff *n;
1270
1271 if (skb_orphan_frags(skb, gfp_mask))
1272 return NULL;
1273
1274 if (skb->fclone == SKB_FCLONE_ORIG &&
1275 refcount_read(&fclones->fclone_ref) == 1) {
1276 n = &fclones->skb2;
1277 refcount_set(&fclones->fclone_ref, 2);
1278 } else {
1279 if (skb_pfmemalloc(skb))
1280 gfp_mask |= __GFP_MEMALLOC;
1281
1282 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1283 if (!n)
1284 return NULL;
1285
1286 n->fclone = SKB_FCLONE_UNAVAILABLE;
1287 }
1288
1289 return __skb_clone(n, skb);
1290}
1291EXPORT_SYMBOL(skb_clone);
1292
1293static void skb_headers_offset_update(struct sk_buff *skb, int off)
1294{
1295 /* Only adjust this if it actually is csum_start rather than csum */
1296 if (skb->ip_summed == CHECKSUM_PARTIAL)
1297 skb->csum_start += off;
1298 /* {transport,network,mac}_header and tail are relative to skb->head */
1299 skb->transport_header += off;
1300 skb->network_header += off;
1301 if (skb_mac_header_was_set(skb))
1302 skb->mac_header += off;
1303 skb->inner_transport_header += off;
1304 skb->inner_network_header += off;
1305 skb->inner_mac_header += off;
1306}
1307
1308static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1309{
1310 __copy_skb_header(new, old);
1311
1312 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1313 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1314 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1315}
1316
1317static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1318{
1319 if (skb_pfmemalloc(skb))
1320 return SKB_ALLOC_RX;
1321 return 0;
1322}
1323
1324/**
1325 * skb_copy - create private copy of an sk_buff
1326 * @skb: buffer to copy
1327 * @gfp_mask: allocation priority
1328 *
1329 * Make a copy of both an &sk_buff and its data. This is used when the
1330 * caller wishes to modify the data and needs a private copy of the
1331 * data to alter. Returns %NULL on failure or the pointer to the buffer
1332 * on success. The returned buffer has a reference count of 1.
1333 *
1334 * As by-product this function converts non-linear &sk_buff to linear
1335 * one, so that &sk_buff becomes completely private and caller is allowed
1336 * to modify all the data of returned buffer. This means that this
1337 * function is not recommended for use in circumstances when only
1338 * header is going to be modified. Use pskb_copy() instead.
1339 */
1340
1341struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1342{
1343 int headerlen = skb_headroom(skb);
1344 unsigned int size = skb_end_offset(skb) + skb->data_len;
1345 struct sk_buff *n = __alloc_skb(size, gfp_mask,
1346 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1347
1348 if (!n)
1349 return NULL;
1350
1351 /* Set the data pointer */
1352 skb_reserve(n, headerlen);
1353 /* Set the tail pointer and length */
1354 skb_put(n, skb->len);
1355
1356 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1357
1358 copy_skb_header(n, skb);
1359 return n;
1360}
1361EXPORT_SYMBOL(skb_copy);
1362
1363/**
1364 * __pskb_copy_fclone - create copy of an sk_buff with private head.
1365 * @skb: buffer to copy
1366 * @headroom: headroom of new skb
1367 * @gfp_mask: allocation priority
1368 * @fclone: if true allocate the copy of the skb from the fclone
1369 * cache instead of the head cache; it is recommended to set this
1370 * to true for the cases where the copy will likely be cloned
1371 *
1372 * Make a copy of both an &sk_buff and part of its data, located
1373 * in header. Fragmented data remain shared. This is used when
1374 * the caller wishes to modify only header of &sk_buff and needs
1375 * private copy of the header to alter. Returns %NULL on failure
1376 * or the pointer to the buffer on success.
1377 * The returned buffer has a reference count of 1.
1378 */
1379
1380struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1381 gfp_t gfp_mask, bool fclone)
1382{
1383 unsigned int size = skb_headlen(skb) + headroom;
1384 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1385 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1386
1387 if (!n)
1388 goto out;
1389
1390 /* Set the data pointer */
1391 skb_reserve(n, headroom);
1392 /* Set the tail pointer and length */
1393 skb_put(n, skb_headlen(skb));
1394 /* Copy the bytes */
1395 skb_copy_from_linear_data(skb, n->data, n->len);
1396
1397 n->truesize += skb->data_len;
1398 n->data_len = skb->data_len;
1399 n->len = skb->len;
1400
1401 if (skb_shinfo(skb)->nr_frags) {
1402 int i;
1403
1404 if (skb_orphan_frags(skb, gfp_mask) ||
1405 skb_zerocopy_clone(n, skb, gfp_mask)) {
1406 kfree_skb(n);
1407 n = NULL;
1408 goto out;
1409 }
1410 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1411 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1412 skb_frag_ref(skb, i);
1413 }
1414 skb_shinfo(n)->nr_frags = i;
1415 }
1416
1417 if (skb_has_frag_list(skb)) {
1418 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1419 skb_clone_fraglist(n);
1420 }
1421
1422 copy_skb_header(n, skb);
1423out:
1424 return n;
1425}
1426EXPORT_SYMBOL(__pskb_copy_fclone);
1427
1428/**
1429 * pskb_expand_head - reallocate header of &sk_buff
1430 * @skb: buffer to reallocate
1431 * @nhead: room to add at head
1432 * @ntail: room to add at tail
1433 * @gfp_mask: allocation priority
1434 *
1435 * Expands (or creates identical copy, if @nhead and @ntail are zero)
1436 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1437 * reference count of 1. Returns zero in the case of success or error,
1438 * if expansion failed. In the last case, &sk_buff is not changed.
1439 *
1440 * All the pointers pointing into skb header may change and must be
1441 * reloaded after call to this function.
1442 */
1443
1444int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1445 gfp_t gfp_mask)
1446{
1447 int i, osize = skb_end_offset(skb);
1448 int size = osize + nhead + ntail;
1449 long off;
1450 u8 *data;
1451
1452 BUG_ON(nhead < 0);
1453
1454 BUG_ON(skb_shared(skb));
1455
1456 size = SKB_DATA_ALIGN(size);
1457
1458 if (skb_pfmemalloc(skb))
1459 gfp_mask |= __GFP_MEMALLOC;
1460 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1461 gfp_mask, NUMA_NO_NODE, NULL);
1462 if (!data)
1463 goto nodata;
1464 size = SKB_WITH_OVERHEAD(ksize(data));
1465
1466 /* Copy only real data... and, alas, header. This should be
1467 * optimized for the cases when header is void.
1468 */
1469 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1470
1471 memcpy((struct skb_shared_info *)(data + size),
1472 skb_shinfo(skb),
1473 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1474
1475 /*
1476 * if shinfo is shared we must drop the old head gracefully, but if it
1477 * is not we can just drop the old head and let the existing refcount
1478 * be since all we did is relocate the values
1479 */
1480 if (skb_cloned(skb)) {
1481 if (skb_orphan_frags(skb, gfp_mask))
1482 goto nofrags;
1483 if (skb_zcopy(skb))
1484 refcount_inc(&skb_uarg(skb)->refcnt);
1485 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1486 skb_frag_ref(skb, i);
1487
1488 if (skb_has_frag_list(skb))
1489 skb_clone_fraglist(skb);
1490
1491 skb_release_data(skb);
1492 } else {
1493 skb_free_head(skb);
1494 }
1495 off = (data + nhead) - skb->head;
1496
1497 skb->head = data;
1498 skb->head_frag = 0;
1499 skb->data += off;
1500#ifdef NET_SKBUFF_DATA_USES_OFFSET
1501 skb->end = size;
1502 off = nhead;
1503#else
1504 skb->end = skb->head + size;
1505#endif
1506 skb->tail += off;
1507 skb_headers_offset_update(skb, nhead);
1508 skb->cloned = 0;
1509 skb->hdr_len = 0;
1510 skb->nohdr = 0;
1511 atomic_set(&skb_shinfo(skb)->dataref, 1);
1512
1513 skb_metadata_clear(skb);
1514
1515 /* It is not generally safe to change skb->truesize.
1516 * For the moment, we really care of rx path, or
1517 * when skb is orphaned (not attached to a socket).
1518 */
1519 if (!skb->sk || skb->destructor == sock_edemux)
1520 skb->truesize += size - osize;
1521
1522 return 0;
1523
1524nofrags:
1525 kfree(data);
1526nodata:
1527 return -ENOMEM;
1528}
1529EXPORT_SYMBOL(pskb_expand_head);
1530
1531/* Make private copy of skb with writable head and some headroom */
1532
1533struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1534{
1535 struct sk_buff *skb2;
1536 int delta = headroom - skb_headroom(skb);
1537
1538 if (delta <= 0)
1539 skb2 = pskb_copy(skb, GFP_ATOMIC);
1540 else {
1541 skb2 = skb_clone(skb, GFP_ATOMIC);
1542 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1543 GFP_ATOMIC)) {
1544 kfree_skb(skb2);
1545 skb2 = NULL;
1546 }
1547 }
1548 return skb2;
1549}
1550EXPORT_SYMBOL(skb_realloc_headroom);
1551
1552/**
1553 * skb_copy_expand - copy and expand sk_buff
1554 * @skb: buffer to copy
1555 * @newheadroom: new free bytes at head
1556 * @newtailroom: new free bytes at tail
1557 * @gfp_mask: allocation priority
1558 *
1559 * Make a copy of both an &sk_buff and its data and while doing so
1560 * allocate additional space.
1561 *
1562 * This is used when the caller wishes to modify the data and needs a
1563 * private copy of the data to alter as well as more space for new fields.
1564 * Returns %NULL on failure or the pointer to the buffer
1565 * on success. The returned buffer has a reference count of 1.
1566 *
1567 * You must pass %GFP_ATOMIC as the allocation priority if this function
1568 * is called from an interrupt.
1569 */
1570struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1571 int newheadroom, int newtailroom,
1572 gfp_t gfp_mask)
1573{
1574 /*
1575 * Allocate the copy buffer
1576 */
1577 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1578 gfp_mask, skb_alloc_rx_flag(skb),
1579 NUMA_NO_NODE);
1580 int oldheadroom = skb_headroom(skb);
1581 int head_copy_len, head_copy_off;
1582
1583 if (!n)
1584 return NULL;
1585
1586 skb_reserve(n, newheadroom);
1587
1588 /* Set the tail pointer and length */
1589 skb_put(n, skb->len);
1590
1591 head_copy_len = oldheadroom;
1592 head_copy_off = 0;
1593 if (newheadroom <= head_copy_len)
1594 head_copy_len = newheadroom;
1595 else
1596 head_copy_off = newheadroom - head_copy_len;
1597
1598 /* Copy the linear header and data. */
1599 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1600 skb->len + head_copy_len));
1601
1602 copy_skb_header(n, skb);
1603
1604 skb_headers_offset_update(n, newheadroom - oldheadroom);
1605
1606 return n;
1607}
1608EXPORT_SYMBOL(skb_copy_expand);
1609
1610/**
1611 * __skb_pad - zero pad the tail of an skb
1612 * @skb: buffer to pad
1613 * @pad: space to pad
1614 * @free_on_error: free buffer on error
1615 *
1616 * Ensure that a buffer is followed by a padding area that is zero
1617 * filled. Used by network drivers which may DMA or transfer data
1618 * beyond the buffer end onto the wire.
1619 *
1620 * May return error in out of memory cases. The skb is freed on error
1621 * if @free_on_error is true.
1622 */
1623
1624int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1625{
1626 int err;
1627 int ntail;
1628
1629 /* If the skbuff is non linear tailroom is always zero.. */
1630 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1631 memset(skb->data+skb->len, 0, pad);
1632 return 0;
1633 }
1634
1635 ntail = skb->data_len + pad - (skb->end - skb->tail);
1636 if (likely(skb_cloned(skb) || ntail > 0)) {
1637 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1638 if (unlikely(err))
1639 goto free_skb;
1640 }
1641
1642 /* FIXME: The use of this function with non-linear skb's really needs
1643 * to be audited.
1644 */
1645 err = skb_linearize(skb);
1646 if (unlikely(err))
1647 goto free_skb;
1648
1649 memset(skb->data + skb->len, 0, pad);
1650 return 0;
1651
1652free_skb:
1653 if (free_on_error)
1654 kfree_skb(skb);
1655 return err;
1656}
1657EXPORT_SYMBOL(__skb_pad);
1658
1659/**
1660 * pskb_put - add data to the tail of a potentially fragmented buffer
1661 * @skb: start of the buffer to use
1662 * @tail: tail fragment of the buffer to use
1663 * @len: amount of data to add
1664 *
1665 * This function extends the used data area of the potentially
1666 * fragmented buffer. @tail must be the last fragment of @skb -- or
1667 * @skb itself. If this would exceed the total buffer size the kernel
1668 * will panic. A pointer to the first byte of the extra data is
1669 * returned.
1670 */
1671
1672void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1673{
1674 if (tail != skb) {
1675 skb->data_len += len;
1676 skb->len += len;
1677 }
1678 return skb_put(tail, len);
1679}
1680EXPORT_SYMBOL_GPL(pskb_put);
1681
1682/**
1683 * skb_put - add data to a buffer
1684 * @skb: buffer to use
1685 * @len: amount of data to add
1686 *
1687 * This function extends the used data area of the buffer. If this would
1688 * exceed the total buffer size the kernel will panic. A pointer to the
1689 * first byte of the extra data is returned.
1690 */
1691void *skb_put(struct sk_buff *skb, unsigned int len)
1692{
1693 void *tmp = skb_tail_pointer(skb);
1694 SKB_LINEAR_ASSERT(skb);
1695 skb->tail += len;
1696 skb->len += len;
1697 if (unlikely(skb->tail > skb->end))
1698 skb_over_panic(skb, len, __builtin_return_address(0));
1699 return tmp;
1700}
1701EXPORT_SYMBOL(skb_put);
1702
1703/**
1704 * skb_push - add data to the start of a buffer
1705 * @skb: buffer to use
1706 * @len: amount of data to add
1707 *
1708 * This function extends the used data area of the buffer at the buffer
1709 * start. If this would exceed the total buffer headroom the kernel will
1710 * panic. A pointer to the first byte of the extra data is returned.
1711 */
1712void *skb_push(struct sk_buff *skb, unsigned int len)
1713{
1714 skb->data -= len;
1715 skb->len += len;
1716 if (unlikely(skb->data<skb->head))
1717 skb_under_panic(skb, len, __builtin_return_address(0));
1718 return skb->data;
1719}
1720EXPORT_SYMBOL(skb_push);
1721
1722/**
1723 * skb_pull - remove data from the start of a buffer
1724 * @skb: buffer to use
1725 * @len: amount of data to remove
1726 *
1727 * This function removes data from the start of a buffer, returning
1728 * the memory to the headroom. A pointer to the next data in the buffer
1729 * is returned. Once the data has been pulled future pushes will overwrite
1730 * the old data.
1731 */
1732void *skb_pull(struct sk_buff *skb, unsigned int len)
1733{
1734 return skb_pull_inline(skb, len);
1735}
1736EXPORT_SYMBOL(skb_pull);
1737
1738/**
1739 * skb_trim - remove end from a buffer
1740 * @skb: buffer to alter
1741 * @len: new length
1742 *
1743 * Cut the length of a buffer down by removing data from the tail. If
1744 * the buffer is already under the length specified it is not modified.
1745 * The skb must be linear.
1746 */
1747void skb_trim(struct sk_buff *skb, unsigned int len)
1748{
1749 if (skb->len > len)
1750 __skb_trim(skb, len);
1751}
1752EXPORT_SYMBOL(skb_trim);
1753
1754/* Trims skb to length len. It can change skb pointers.
1755 */
1756
1757int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1758{
1759 struct sk_buff **fragp;
1760 struct sk_buff *frag;
1761 int offset = skb_headlen(skb);
1762 int nfrags = skb_shinfo(skb)->nr_frags;
1763 int i;
1764 int err;
1765
1766 if (skb_cloned(skb) &&
1767 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1768 return err;
1769
1770 i = 0;
1771 if (offset >= len)
1772 goto drop_pages;
1773
1774 for (; i < nfrags; i++) {
1775 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1776
1777 if (end < len) {
1778 offset = end;
1779 continue;
1780 }
1781
1782 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1783
1784drop_pages:
1785 skb_shinfo(skb)->nr_frags = i;
1786
1787 for (; i < nfrags; i++)
1788 skb_frag_unref(skb, i);
1789
1790 if (skb_has_frag_list(skb))
1791 skb_drop_fraglist(skb);
1792 goto done;
1793 }
1794
1795 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1796 fragp = &frag->next) {
1797 int end = offset + frag->len;
1798
1799 if (skb_shared(frag)) {
1800 struct sk_buff *nfrag;
1801
1802 nfrag = skb_clone(frag, GFP_ATOMIC);
1803 if (unlikely(!nfrag))
1804 return -ENOMEM;
1805
1806 nfrag->next = frag->next;
1807 consume_skb(frag);
1808 frag = nfrag;
1809 *fragp = frag;
1810 }
1811
1812 if (end < len) {
1813 offset = end;
1814 continue;
1815 }
1816
1817 if (end > len &&
1818 unlikely((err = pskb_trim(frag, len - offset))))
1819 return err;
1820
1821 if (frag->next)
1822 skb_drop_list(&frag->next);
1823 break;
1824 }
1825
1826done:
1827 if (len > skb_headlen(skb)) {
1828 skb->data_len -= skb->len - len;
1829 skb->len = len;
1830 } else {
1831 skb->len = len;
1832 skb->data_len = 0;
1833 skb_set_tail_pointer(skb, len);
1834 }
1835
1836 if (!skb->sk || skb->destructor == sock_edemux)
1837 skb_condense(skb);
1838 return 0;
1839}
1840EXPORT_SYMBOL(___pskb_trim);
1841
1842/**
1843 * __pskb_pull_tail - advance tail of skb header
1844 * @skb: buffer to reallocate
1845 * @delta: number of bytes to advance tail
1846 *
1847 * The function makes a sense only on a fragmented &sk_buff,
1848 * it expands header moving its tail forward and copying necessary
1849 * data from fragmented part.
1850 *
1851 * &sk_buff MUST have reference count of 1.
1852 *
1853 * Returns %NULL (and &sk_buff does not change) if pull failed
1854 * or value of new tail of skb in the case of success.
1855 *
1856 * All the pointers pointing into skb header may change and must be
1857 * reloaded after call to this function.
1858 */
1859
1860/* Moves tail of skb head forward, copying data from fragmented part,
1861 * when it is necessary.
1862 * 1. It may fail due to malloc failure.
1863 * 2. It may change skb pointers.
1864 *
1865 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1866 */
1867void *__pskb_pull_tail(struct sk_buff *skb, int delta)
1868{
1869 /* If skb has not enough free space at tail, get new one
1870 * plus 128 bytes for future expansions. If we have enough
1871 * room at tail, reallocate without expansion only if skb is cloned.
1872 */
1873 int i, k, eat = (skb->tail + delta) - skb->end;
1874
1875 if (eat > 0 || skb_cloned(skb)) {
1876 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1877 GFP_ATOMIC))
1878 return NULL;
1879 }
1880
1881 BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
1882 skb_tail_pointer(skb), delta));
1883
1884 /* Optimization: no fragments, no reasons to preestimate
1885 * size of pulled pages. Superb.
1886 */
1887 if (!skb_has_frag_list(skb))
1888 goto pull_pages;
1889
1890 /* Estimate size of pulled pages. */
1891 eat = delta;
1892 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1893 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1894
1895 if (size >= eat)
1896 goto pull_pages;
1897 eat -= size;
1898 }
1899
1900 /* If we need update frag list, we are in troubles.
1901 * Certainly, it is possible to add an offset to skb data,
1902 * but taking into account that pulling is expected to
1903 * be very rare operation, it is worth to fight against
1904 * further bloating skb head and crucify ourselves here instead.
1905 * Pure masohism, indeed. 8)8)
1906 */
1907 if (eat) {
1908 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1909 struct sk_buff *clone = NULL;
1910 struct sk_buff *insp = NULL;
1911
1912 do {
1913 BUG_ON(!list);
1914
1915 if (list->len <= eat) {
1916 /* Eaten as whole. */
1917 eat -= list->len;
1918 list = list->next;
1919 insp = list;
1920 } else {
1921 /* Eaten partially. */
1922
1923 if (skb_shared(list)) {
1924 /* Sucks! We need to fork list. :-( */
1925 clone = skb_clone(list, GFP_ATOMIC);
1926 if (!clone)
1927 return NULL;
1928 insp = list->next;
1929 list = clone;
1930 } else {
1931 /* This may be pulled without
1932 * problems. */
1933 insp = list;
1934 }
1935 if (!pskb_pull(list, eat)) {
1936 kfree_skb(clone);
1937 return NULL;
1938 }
1939 break;
1940 }
1941 } while (eat);
1942
1943 /* Free pulled out fragments. */
1944 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1945 skb_shinfo(skb)->frag_list = list->next;
1946 kfree_skb(list);
1947 }
1948 /* And insert new clone at head. */
1949 if (clone) {
1950 clone->next = list;
1951 skb_shinfo(skb)->frag_list = clone;
1952 }
1953 }
1954 /* Success! Now we may commit changes to skb data. */
1955
1956pull_pages:
1957 eat = delta;
1958 k = 0;
1959 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1960 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1961
1962 if (size <= eat) {
1963 skb_frag_unref(skb, i);
1964 eat -= size;
1965 } else {
1966 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1967 if (eat) {
1968 skb_shinfo(skb)->frags[k].page_offset += eat;
1969 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1970 if (!i)
1971 goto end;
1972 eat = 0;
1973 }
1974 k++;
1975 }
1976 }
1977 skb_shinfo(skb)->nr_frags = k;
1978
1979end:
1980 skb->tail += delta;
1981 skb->data_len -= delta;
1982
1983 if (!skb->data_len)
1984 skb_zcopy_clear(skb, false);
1985
1986 return skb_tail_pointer(skb);
1987}
1988EXPORT_SYMBOL(__pskb_pull_tail);
1989
1990/**
1991 * skb_copy_bits - copy bits from skb to kernel buffer
1992 * @skb: source skb
1993 * @offset: offset in source
1994 * @to: destination buffer
1995 * @len: number of bytes to copy
1996 *
1997 * Copy the specified number of bytes from the source skb to the
1998 * destination buffer.
1999 *
2000 * CAUTION ! :
2001 * If its prototype is ever changed,
2002 * check arch/{*}/net/{*}.S files,
2003 * since it is called from BPF assembly code.
2004 */
2005int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2006{
2007 int start = skb_headlen(skb);
2008 struct sk_buff *frag_iter;
2009 int i, copy;
2010
2011 if (offset > (int)skb->len - len)
2012 goto fault;
2013
2014 /* Copy header. */
2015 if ((copy = start - offset) > 0) {
2016 if (copy > len)
2017 copy = len;
2018 skb_copy_from_linear_data_offset(skb, offset, to, copy);
2019 if ((len -= copy) == 0)
2020 return 0;
2021 offset += copy;
2022 to += copy;
2023 }
2024
2025 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2026 int end;
2027 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2028
2029 WARN_ON(start > offset + len);
2030
2031 end = start + skb_frag_size(f);
2032 if ((copy = end - offset) > 0) {
2033 u32 p_off, p_len, copied;
2034 struct page *p;
2035 u8 *vaddr;
2036
2037 if (copy > len)
2038 copy = len;
2039
2040 skb_frag_foreach_page(f,
2041 f->page_offset + offset - start,
2042 copy, p, p_off, p_len, copied) {
2043 vaddr = kmap_atomic(p);
2044 memcpy(to + copied, vaddr + p_off, p_len);
2045 kunmap_atomic(vaddr);
2046 }
2047
2048 if ((len -= copy) == 0)
2049 return 0;
2050 offset += copy;
2051 to += copy;
2052 }
2053 start = end;
2054 }
2055
2056 skb_walk_frags(skb, frag_iter) {
2057 int end;
2058
2059 WARN_ON(start > offset + len);
2060
2061 end = start + frag_iter->len;
2062 if ((copy = end - offset) > 0) {
2063 if (copy > len)
2064 copy = len;
2065 if (skb_copy_bits(frag_iter, offset - start, to, copy))
2066 goto fault;
2067 if ((len -= copy) == 0)
2068 return 0;
2069 offset += copy;
2070 to += copy;
2071 }
2072 start = end;
2073 }
2074
2075 if (!len)
2076 return 0;
2077
2078fault:
2079 return -EFAULT;
2080}
2081EXPORT_SYMBOL(skb_copy_bits);
2082
2083/*
2084 * Callback from splice_to_pipe(), if we need to release some pages
2085 * at the end of the spd in case we error'ed out in filling the pipe.
2086 */
2087static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2088{
2089 put_page(spd->pages[i]);
2090}
2091
2092static struct page *linear_to_page(struct page *page, unsigned int *len,
2093 unsigned int *offset,
2094 struct sock *sk)
2095{
2096 struct page_frag *pfrag = sk_page_frag(sk);
2097
2098 if (!sk_page_frag_refill(sk, pfrag))
2099 return NULL;
2100
2101 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2102
2103 memcpy(page_address(pfrag->page) + pfrag->offset,
2104 page_address(page) + *offset, *len);
2105 *offset = pfrag->offset;
2106 pfrag->offset += *len;
2107
2108 return pfrag->page;
2109}
2110
2111static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2112 struct page *page,
2113 unsigned int offset)
2114{
2115 return spd->nr_pages &&
2116 spd->pages[spd->nr_pages - 1] == page &&
2117 (spd->partial[spd->nr_pages - 1].offset +
2118 spd->partial[spd->nr_pages - 1].len == offset);
2119}
2120
2121/*
2122 * Fill page/offset/length into spd, if it can hold more pages.
2123 */
2124static bool spd_fill_page(struct splice_pipe_desc *spd,
2125 struct pipe_inode_info *pipe, struct page *page,
2126 unsigned int *len, unsigned int offset,
2127 bool linear,
2128 struct sock *sk)
2129{
2130 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2131 return true;
2132
2133 if (linear) {
2134 page = linear_to_page(page, len, &offset, sk);
2135 if (!page)
2136 return true;
2137 }
2138 if (spd_can_coalesce(spd, page, offset)) {
2139 spd->partial[spd->nr_pages - 1].len += *len;
2140 return false;
2141 }
2142 get_page(page);
2143 spd->pages[spd->nr_pages] = page;
2144 spd->partial[spd->nr_pages].len = *len;
2145 spd->partial[spd->nr_pages].offset = offset;
2146 spd->nr_pages++;
2147
2148 return false;
2149}
2150
2151static bool __splice_segment(struct page *page, unsigned int poff,
2152 unsigned int plen, unsigned int *off,
2153 unsigned int *len,
2154 struct splice_pipe_desc *spd, bool linear,
2155 struct sock *sk,
2156 struct pipe_inode_info *pipe)
2157{
2158 if (!*len)
2159 return true;
2160
2161 /* skip this segment if already processed */
2162 if (*off >= plen) {
2163 *off -= plen;
2164 return false;
2165 }
2166
2167 /* ignore any bits we already processed */
2168 poff += *off;
2169 plen -= *off;
2170 *off = 0;
2171
2172 do {
2173 unsigned int flen = min(*len, plen);
2174
2175 if (spd_fill_page(spd, pipe, page, &flen, poff,
2176 linear, sk))
2177 return true;
2178 poff += flen;
2179 plen -= flen;
2180 *len -= flen;
2181 } while (*len && plen);
2182
2183 return false;
2184}
2185
2186/*
2187 * Map linear and fragment data from the skb to spd. It reports true if the
2188 * pipe is full or if we already spliced the requested length.
2189 */
2190static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2191 unsigned int *offset, unsigned int *len,
2192 struct splice_pipe_desc *spd, struct sock *sk)
2193{
2194 int seg;
2195 struct sk_buff *iter;
2196
2197 /* map the linear part :
2198 * If skb->head_frag is set, this 'linear' part is backed by a
2199 * fragment, and if the head is not shared with any clones then
2200 * we can avoid a copy since we own the head portion of this page.
2201 */
2202 if (__splice_segment(virt_to_page(skb->data),
2203 (unsigned long) skb->data & (PAGE_SIZE - 1),
2204 skb_headlen(skb),
2205 offset, len, spd,
2206 skb_head_is_locked(skb),
2207 sk, pipe))
2208 return true;
2209
2210 /*
2211 * then map the fragments
2212 */
2213 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2214 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2215
2216 if (__splice_segment(skb_frag_page(f),
2217 f->page_offset, skb_frag_size(f),
2218 offset, len, spd, false, sk, pipe))
2219 return true;
2220 }
2221
2222 skb_walk_frags(skb, iter) {
2223 if (*offset >= iter->len) {
2224 *offset -= iter->len;
2225 continue;
2226 }
2227 /* __skb_splice_bits() only fails if the output has no room
2228 * left, so no point in going over the frag_list for the error
2229 * case.
2230 */
2231 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2232 return true;
2233 }
2234
2235 return false;
2236}
2237
2238/*
2239 * Map data from the skb to a pipe. Should handle both the linear part,
2240 * the fragments, and the frag list.
2241 */
2242int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2243 struct pipe_inode_info *pipe, unsigned int tlen,
2244 unsigned int flags)
2245{
2246 struct partial_page partial[MAX_SKB_FRAGS];
2247 struct page *pages[MAX_SKB_FRAGS];
2248 struct splice_pipe_desc spd = {
2249 .pages = pages,
2250 .partial = partial,
2251 .nr_pages_max = MAX_SKB_FRAGS,
2252 .ops = &nosteal_pipe_buf_ops,
2253 .spd_release = sock_spd_release,
2254 };
2255 int ret = 0;
2256
2257 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2258
2259 if (spd.nr_pages)
2260 ret = splice_to_pipe(pipe, &spd);
2261
2262 return ret;
2263}
2264EXPORT_SYMBOL_GPL(skb_splice_bits);
2265
2266/* Send skb data on a socket. Socket must be locked. */
2267int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2268 int len)
2269{
2270 unsigned int orig_len = len;
2271 struct sk_buff *head = skb;
2272 unsigned short fragidx;
2273 int slen, ret;
2274
2275do_frag_list:
2276
2277 /* Deal with head data */
2278 while (offset < skb_headlen(skb) && len) {
2279 struct kvec kv;
2280 struct msghdr msg;
2281
2282 slen = min_t(int, len, skb_headlen(skb) - offset);
2283 kv.iov_base = skb->data + offset;
2284 kv.iov_len = slen;
2285 memset(&msg, 0, sizeof(msg));
2286
2287 ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen);
2288 if (ret <= 0)
2289 goto error;
2290
2291 offset += ret;
2292 len -= ret;
2293 }
2294
2295 /* All the data was skb head? */
2296 if (!len)
2297 goto out;
2298
2299 /* Make offset relative to start of frags */
2300 offset -= skb_headlen(skb);
2301
2302 /* Find where we are in frag list */
2303 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2304 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2305
2306 if (offset < frag->size)
2307 break;
2308
2309 offset -= frag->size;
2310 }
2311
2312 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2313 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2314
2315 slen = min_t(size_t, len, frag->size - offset);
2316
2317 while (slen) {
2318 ret = kernel_sendpage_locked(sk, frag->page.p,
2319 frag->page_offset + offset,
2320 slen, MSG_DONTWAIT);
2321 if (ret <= 0)
2322 goto error;
2323
2324 len -= ret;
2325 offset += ret;
2326 slen -= ret;
2327 }
2328
2329 offset = 0;
2330 }
2331
2332 if (len) {
2333 /* Process any frag lists */
2334
2335 if (skb == head) {
2336 if (skb_has_frag_list(skb)) {
2337 skb = skb_shinfo(skb)->frag_list;
2338 goto do_frag_list;
2339 }
2340 } else if (skb->next) {
2341 skb = skb->next;
2342 goto do_frag_list;
2343 }
2344 }
2345
2346out:
2347 return orig_len - len;
2348
2349error:
2350 return orig_len == len ? ret : orig_len - len;
2351}
2352EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2353
2354/* Send skb data on a socket. */
2355int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
2356{
2357 int ret = 0;
2358
2359 lock_sock(sk);
2360 ret = skb_send_sock_locked(sk, skb, offset, len);
2361 release_sock(sk);
2362
2363 return ret;
2364}
2365EXPORT_SYMBOL_GPL(skb_send_sock);
2366
2367/**
2368 * skb_store_bits - store bits from kernel buffer to skb
2369 * @skb: destination buffer
2370 * @offset: offset in destination
2371 * @from: source buffer
2372 * @len: number of bytes to copy
2373 *
2374 * Copy the specified number of bytes from the source buffer to the
2375 * destination skb. This function handles all the messy bits of
2376 * traversing fragment lists and such.
2377 */
2378
2379int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2380{
2381 int start = skb_headlen(skb);
2382 struct sk_buff *frag_iter;
2383 int i, copy;
2384
2385 if (offset > (int)skb->len - len)
2386 goto fault;
2387
2388 if ((copy = start - offset) > 0) {
2389 if (copy > len)
2390 copy = len;
2391 skb_copy_to_linear_data_offset(skb, offset, from, copy);
2392 if ((len -= copy) == 0)
2393 return 0;
2394 offset += copy;
2395 from += copy;
2396 }
2397
2398 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2399 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2400 int end;
2401
2402 WARN_ON(start > offset + len);
2403
2404 end = start + skb_frag_size(frag);
2405 if ((copy = end - offset) > 0) {
2406 u32 p_off, p_len, copied;
2407 struct page *p;
2408 u8 *vaddr;
2409
2410 if (copy > len)
2411 copy = len;
2412
2413 skb_frag_foreach_page(frag,
2414 frag->page_offset + offset - start,
2415 copy, p, p_off, p_len, copied) {
2416 vaddr = kmap_atomic(p);
2417 memcpy(vaddr + p_off, from + copied, p_len);
2418 kunmap_atomic(vaddr);
2419 }
2420
2421 if ((len -= copy) == 0)
2422 return 0;
2423 offset += copy;
2424 from += copy;
2425 }
2426 start = end;
2427 }
2428
2429 skb_walk_frags(skb, frag_iter) {
2430 int end;
2431
2432 WARN_ON(start > offset + len);
2433
2434 end = start + frag_iter->len;
2435 if ((copy = end - offset) > 0) {
2436 if (copy > len)
2437 copy = len;
2438 if (skb_store_bits(frag_iter, offset - start,
2439 from, copy))
2440 goto fault;
2441 if ((len -= copy) == 0)
2442 return 0;
2443 offset += copy;
2444 from += copy;
2445 }
2446 start = end;
2447 }
2448 if (!len)
2449 return 0;
2450
2451fault:
2452 return -EFAULT;
2453}
2454EXPORT_SYMBOL(skb_store_bits);
2455
2456/* Checksum skb data. */
2457__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2458 __wsum csum, const struct skb_checksum_ops *ops)
2459{
2460 int start = skb_headlen(skb);
2461 int i, copy = start - offset;
2462 struct sk_buff *frag_iter;
2463 int pos = 0;
2464
2465 /* Checksum header. */
2466 if (copy > 0) {
2467 if (copy > len)
2468 copy = len;
2469 csum = ops->update(skb->data + offset, copy, csum);
2470 if ((len -= copy) == 0)
2471 return csum;
2472 offset += copy;
2473 pos = copy;
2474 }
2475
2476 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2477 int end;
2478 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2479
2480 WARN_ON(start > offset + len);
2481
2482 end = start + skb_frag_size(frag);
2483 if ((copy = end - offset) > 0) {
2484 u32 p_off, p_len, copied;
2485 struct page *p;
2486 __wsum csum2;
2487 u8 *vaddr;
2488
2489 if (copy > len)
2490 copy = len;
2491
2492 skb_frag_foreach_page(frag,
2493 frag->page_offset + offset - start,
2494 copy, p, p_off, p_len, copied) {
2495 vaddr = kmap_atomic(p);
2496 csum2 = ops->update(vaddr + p_off, p_len, 0);
2497 kunmap_atomic(vaddr);
2498 csum = ops->combine(csum, csum2, pos, p_len);
2499 pos += p_len;
2500 }
2501
2502 if (!(len -= copy))
2503 return csum;
2504 offset += copy;
2505 }
2506 start = end;
2507 }
2508
2509 skb_walk_frags(skb, frag_iter) {
2510 int end;
2511
2512 WARN_ON(start > offset + len);
2513
2514 end = start + frag_iter->len;
2515 if ((copy = end - offset) > 0) {
2516 __wsum csum2;
2517 if (copy > len)
2518 copy = len;
2519 csum2 = __skb_checksum(frag_iter, offset - start,
2520 copy, 0, ops);
2521 csum = ops->combine(csum, csum2, pos, copy);
2522 if ((len -= copy) == 0)
2523 return csum;
2524 offset += copy;
2525 pos += copy;
2526 }
2527 start = end;
2528 }
2529 BUG_ON(len);
2530
2531 return csum;
2532}
2533EXPORT_SYMBOL(__skb_checksum);
2534
2535__wsum skb_checksum(const struct sk_buff *skb, int offset,
2536 int len, __wsum csum)
2537{
2538 const struct skb_checksum_ops ops = {
2539 .update = csum_partial_ext,
2540 .combine = csum_block_add_ext,
2541 };
2542
2543 return __skb_checksum(skb, offset, len, csum, &ops);
2544}
2545EXPORT_SYMBOL(skb_checksum);
2546
2547/* Both of above in one bottle. */
2548
2549__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2550 u8 *to, int len, __wsum csum)
2551{
2552 int start = skb_headlen(skb);
2553 int i, copy = start - offset;
2554 struct sk_buff *frag_iter;
2555 int pos = 0;
2556
2557 /* Copy header. */
2558 if (copy > 0) {
2559 if (copy > len)
2560 copy = len;
2561 csum = csum_partial_copy_nocheck(skb->data + offset, to,
2562 copy, csum);
2563 if ((len -= copy) == 0)
2564 return csum;
2565 offset += copy;
2566 to += copy;
2567 pos = copy;
2568 }
2569
2570 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2571 int end;
2572
2573 WARN_ON(start > offset + len);
2574
2575 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2576 if ((copy = end - offset) > 0) {
2577 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2578 u32 p_off, p_len, copied;
2579 struct page *p;
2580 __wsum csum2;
2581 u8 *vaddr;
2582
2583 if (copy > len)
2584 copy = len;
2585
2586 skb_frag_foreach_page(frag,
2587 frag->page_offset + offset - start,
2588 copy, p, p_off, p_len, copied) {
2589 vaddr = kmap_atomic(p);
2590 csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2591 to + copied,
2592 p_len, 0);
2593 kunmap_atomic(vaddr);
2594 csum = csum_block_add(csum, csum2, pos);
2595 pos += p_len;
2596 }
2597
2598 if (!(len -= copy))
2599 return csum;
2600 offset += copy;
2601 to += copy;
2602 }
2603 start = end;
2604 }
2605
2606 skb_walk_frags(skb, frag_iter) {
2607 __wsum csum2;
2608 int end;
2609
2610 WARN_ON(start > offset + len);
2611
2612 end = start + frag_iter->len;
2613 if ((copy = end - offset) > 0) {
2614 if (copy > len)
2615 copy = len;
2616 csum2 = skb_copy_and_csum_bits(frag_iter,
2617 offset - start,
2618 to, copy, 0);
2619 csum = csum_block_add(csum, csum2, pos);
2620 if ((len -= copy) == 0)
2621 return csum;
2622 offset += copy;
2623 to += copy;
2624 pos += copy;
2625 }
2626 start = end;
2627 }
2628 BUG_ON(len);
2629 return csum;
2630}
2631EXPORT_SYMBOL(skb_copy_and_csum_bits);
2632
2633static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
2634{
2635 net_warn_ratelimited(
2636 "%s: attempt to compute crc32c without libcrc32c.ko\n",
2637 __func__);
2638 return 0;
2639}
2640
2641static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
2642 int offset, int len)
2643{
2644 net_warn_ratelimited(
2645 "%s: attempt to compute crc32c without libcrc32c.ko\n",
2646 __func__);
2647 return 0;
2648}
2649
2650static const struct skb_checksum_ops default_crc32c_ops = {
2651 .update = warn_crc32c_csum_update,
2652 .combine = warn_crc32c_csum_combine,
2653};
2654
2655const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
2656 &default_crc32c_ops;
2657EXPORT_SYMBOL(crc32c_csum_stub);
2658
2659 /**
2660 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2661 * @from: source buffer
2662 *
2663 * Calculates the amount of linear headroom needed in the 'to' skb passed
2664 * into skb_zerocopy().
2665 */
2666unsigned int
2667skb_zerocopy_headlen(const struct sk_buff *from)
2668{
2669 unsigned int hlen = 0;
2670
2671 if (!from->head_frag ||
2672 skb_headlen(from) < L1_CACHE_BYTES ||
2673 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2674 hlen = skb_headlen(from);
2675
2676 if (skb_has_frag_list(from))
2677 hlen = from->len;
2678
2679 return hlen;
2680}
2681EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2682
2683/**
2684 * skb_zerocopy - Zero copy skb to skb
2685 * @to: destination buffer
2686 * @from: source buffer
2687 * @len: number of bytes to copy from source buffer
2688 * @hlen: size of linear headroom in destination buffer
2689 *
2690 * Copies up to `len` bytes from `from` to `to` by creating references
2691 * to the frags in the source buffer.
2692 *
2693 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2694 * headroom in the `to` buffer.
2695 *
2696 * Return value:
2697 * 0: everything is OK
2698 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
2699 * -EFAULT: skb_copy_bits() found some problem with skb geometry
2700 */
2701int
2702skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2703{
2704 int i, j = 0;
2705 int plen = 0; /* length of skb->head fragment */
2706 int ret;
2707 struct page *page;
2708 unsigned int offset;
2709
2710 BUG_ON(!from->head_frag && !hlen);
2711
2712 /* dont bother with small payloads */
2713 if (len <= skb_tailroom(to))
2714 return skb_copy_bits(from, 0, skb_put(to, len), len);
2715
2716 if (hlen) {
2717 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2718 if (unlikely(ret))
2719 return ret;
2720 len -= hlen;
2721 } else {
2722 plen = min_t(int, skb_headlen(from), len);
2723 if (plen) {
2724 page = virt_to_head_page(from->head);
2725 offset = from->data - (unsigned char *)page_address(page);
2726 __skb_fill_page_desc(to, 0, page, offset, plen);
2727 get_page(page);
2728 j = 1;
2729 len -= plen;
2730 }
2731 }
2732
2733 to->truesize += len + plen;
2734 to->len += len + plen;
2735 to->data_len += len + plen;
2736
2737 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2738 skb_tx_error(from);
2739 return -ENOMEM;
2740 }
2741 skb_zerocopy_clone(to, from, GFP_ATOMIC);
2742
2743 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2744 if (!len)
2745 break;
2746 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2747 skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2748 len -= skb_shinfo(to)->frags[j].size;
2749 skb_frag_ref(to, j);
2750 j++;
2751 }
2752 skb_shinfo(to)->nr_frags = j;
2753
2754 return 0;
2755}
2756EXPORT_SYMBOL_GPL(skb_zerocopy);
2757
2758void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2759{
2760 __wsum csum;
2761 long csstart;
2762
2763 if (skb->ip_summed == CHECKSUM_PARTIAL)
2764 csstart = skb_checksum_start_offset(skb);
2765 else
2766 csstart = skb_headlen(skb);
2767
2768 BUG_ON(csstart > skb_headlen(skb));
2769
2770 skb_copy_from_linear_data(skb, to, csstart);
2771
2772 csum = 0;
2773 if (csstart != skb->len)
2774 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2775 skb->len - csstart, 0);
2776
2777 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2778 long csstuff = csstart + skb->csum_offset;
2779
2780 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
2781 }
2782}
2783EXPORT_SYMBOL(skb_copy_and_csum_dev);
2784
2785/**
2786 * skb_dequeue - remove from the head of the queue
2787 * @list: list to dequeue from
2788 *
2789 * Remove the head of the list. The list lock is taken so the function
2790 * may be used safely with other locking list functions. The head item is
2791 * returned or %NULL if the list is empty.
2792 */
2793
2794struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2795{
2796 unsigned long flags;
2797 struct sk_buff *result;
2798
2799 spin_lock_irqsave(&list->lock, flags);
2800 result = __skb_dequeue(list);
2801 spin_unlock_irqrestore(&list->lock, flags);
2802 return result;
2803}
2804EXPORT_SYMBOL(skb_dequeue);
2805
2806/**
2807 * skb_dequeue_tail - remove from the tail of the queue
2808 * @list: list to dequeue from
2809 *
2810 * Remove the tail of the list. The list lock is taken so the function
2811 * may be used safely with other locking list functions. The tail item is
2812 * returned or %NULL if the list is empty.
2813 */
2814struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2815{
2816 unsigned long flags;
2817 struct sk_buff *result;
2818
2819 spin_lock_irqsave(&list->lock, flags);
2820 result = __skb_dequeue_tail(list);
2821 spin_unlock_irqrestore(&list->lock, flags);
2822 return result;
2823}
2824EXPORT_SYMBOL(skb_dequeue_tail);
2825
2826/**
2827 * skb_queue_purge - empty a list
2828 * @list: list to empty
2829 *
2830 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2831 * the list and one reference dropped. This function takes the list
2832 * lock and is atomic with respect to other list locking functions.
2833 */
2834void skb_queue_purge(struct sk_buff_head *list)
2835{
2836 struct sk_buff *skb;
2837 while ((skb = skb_dequeue(list)) != NULL)
2838 kfree_skb(skb);
2839}
2840EXPORT_SYMBOL(skb_queue_purge);
2841
2842/**
2843 * skb_rbtree_purge - empty a skb rbtree
2844 * @root: root of the rbtree to empty
2845 *
2846 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
2847 * the list and one reference dropped. This function does not take
2848 * any lock. Synchronization should be handled by the caller (e.g., TCP
2849 * out-of-order queue is protected by the socket lock).
2850 */
2851void skb_rbtree_purge(struct rb_root *root)
2852{
2853 struct rb_node *p = rb_first(root);
2854
2855 while (p) {
2856 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
2857
2858 p = rb_next(p);
2859 rb_erase(&skb->rbnode, root);
2860 kfree_skb(skb);
2861 }
2862}
2863
2864/**
2865 * skb_queue_head - queue a buffer at the list head
2866 * @list: list to use
2867 * @newsk: buffer to queue
2868 *
2869 * Queue a buffer at the start of the list. This function takes the
2870 * list lock and can be used safely with other locking &sk_buff functions
2871 * safely.
2872 *
2873 * A buffer cannot be placed on two lists at the same time.
2874 */
2875void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2876{
2877 unsigned long flags;
2878
2879 spin_lock_irqsave(&list->lock, flags);
2880 __skb_queue_head(list, newsk);
2881 spin_unlock_irqrestore(&list->lock, flags);
2882}
2883EXPORT_SYMBOL(skb_queue_head);
2884
2885/**
2886 * skb_queue_tail - queue a buffer at the list tail
2887 * @list: list to use
2888 * @newsk: buffer to queue
2889 *
2890 * Queue a buffer at the tail of the list. This function takes the
2891 * list lock and can be used safely with other locking &sk_buff functions
2892 * safely.
2893 *
2894 * A buffer cannot be placed on two lists at the same time.
2895 */
2896void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2897{
2898 unsigned long flags;
2899
2900 spin_lock_irqsave(&list->lock, flags);
2901 __skb_queue_tail(list, newsk);
2902 spin_unlock_irqrestore(&list->lock, flags);
2903}
2904EXPORT_SYMBOL(skb_queue_tail);
2905
2906/**
2907 * skb_unlink - remove a buffer from a list
2908 * @skb: buffer to remove
2909 * @list: list to use
2910 *
2911 * Remove a packet from a list. The list locks are taken and this
2912 * function is atomic with respect to other list locked calls
2913 *
2914 * You must know what list the SKB is on.
2915 */
2916void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2917{
2918 unsigned long flags;
2919
2920 spin_lock_irqsave(&list->lock, flags);
2921 __skb_unlink(skb, list);
2922 spin_unlock_irqrestore(&list->lock, flags);
2923}
2924EXPORT_SYMBOL(skb_unlink);
2925
2926/**
2927 * skb_append - append a buffer
2928 * @old: buffer to insert after
2929 * @newsk: buffer to insert
2930 * @list: list to use
2931 *
2932 * Place a packet after a given packet in a list. The list locks are taken
2933 * and this function is atomic with respect to other list locked calls.
2934 * A buffer cannot be placed on two lists at the same time.
2935 */
2936void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2937{
2938 unsigned long flags;
2939
2940 spin_lock_irqsave(&list->lock, flags);
2941 __skb_queue_after(list, old, newsk);
2942 spin_unlock_irqrestore(&list->lock, flags);
2943}
2944EXPORT_SYMBOL(skb_append);
2945
2946/**
2947 * skb_insert - insert a buffer
2948 * @old: buffer to insert before
2949 * @newsk: buffer to insert
2950 * @list: list to use
2951 *
2952 * Place a packet before a given packet in a list. The list locks are
2953 * taken and this function is atomic with respect to other list locked
2954 * calls.
2955 *
2956 * A buffer cannot be placed on two lists at the same time.
2957 */
2958void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2959{
2960 unsigned long flags;
2961
2962 spin_lock_irqsave(&list->lock, flags);
2963 __skb_insert(newsk, old->prev, old, list);
2964 spin_unlock_irqrestore(&list->lock, flags);
2965}
2966EXPORT_SYMBOL(skb_insert);
2967
2968static inline void skb_split_inside_header(struct sk_buff *skb,
2969 struct sk_buff* skb1,
2970 const u32 len, const int pos)
2971{
2972 int i;
2973
2974 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2975 pos - len);
2976 /* And move data appendix as is. */
2977 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2978 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2979
2980 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2981 skb_shinfo(skb)->nr_frags = 0;
2982 skb1->data_len = skb->data_len;
2983 skb1->len += skb1->data_len;
2984 skb->data_len = 0;
2985 skb->len = len;
2986 skb_set_tail_pointer(skb, len);
2987}
2988
2989static inline void skb_split_no_header(struct sk_buff *skb,
2990 struct sk_buff* skb1,
2991 const u32 len, int pos)
2992{
2993 int i, k = 0;
2994 const int nfrags = skb_shinfo(skb)->nr_frags;
2995
2996 skb_shinfo(skb)->nr_frags = 0;
2997 skb1->len = skb1->data_len = skb->len - len;
2998 skb->len = len;
2999 skb->data_len = len - pos;
3000
3001 for (i = 0; i < nfrags; i++) {
3002 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3003
3004 if (pos + size > len) {
3005 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3006
3007 if (pos < len) {
3008 /* Split frag.
3009 * We have two variants in this case:
3010 * 1. Move all the frag to the second
3011 * part, if it is possible. F.e.
3012 * this approach is mandatory for TUX,
3013 * where splitting is expensive.
3014 * 2. Split is accurately. We make this.
3015 */
3016 skb_frag_ref(skb, i);
3017 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
3018 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3019 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3020 skb_shinfo(skb)->nr_frags++;
3021 }
3022 k++;
3023 } else
3024 skb_shinfo(skb)->nr_frags++;
3025 pos += size;
3026 }
3027 skb_shinfo(skb1)->nr_frags = k;
3028}
3029
3030/**
3031 * skb_split - Split fragmented skb to two parts at length len.
3032 * @skb: the buffer to split
3033 * @skb1: the buffer to receive the second part
3034 * @len: new length for skb
3035 */
3036void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3037{
3038 int pos = skb_headlen(skb);
3039
3040 skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags &
3041 SKBTX_SHARED_FRAG;
3042 skb_zerocopy_clone(skb1, skb, 0);
3043 if (len < pos) /* Split line is inside header. */
3044 skb_split_inside_header(skb, skb1, len, pos);
3045 else /* Second chunk has no header, nothing to copy. */
3046 skb_split_no_header(skb, skb1, len, pos);
3047}
3048EXPORT_SYMBOL(skb_split);
3049
3050/* Shifting from/to a cloned skb is a no-go.
3051 *
3052 * Caller cannot keep skb_shinfo related pointers past calling here!
3053 */
3054static int skb_prepare_for_shift(struct sk_buff *skb)
3055{
3056 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3057}
3058
3059/**
3060 * skb_shift - Shifts paged data partially from skb to another
3061 * @tgt: buffer into which tail data gets added
3062 * @skb: buffer from which the paged data comes from
3063 * @shiftlen: shift up to this many bytes
3064 *
3065 * Attempts to shift up to shiftlen worth of bytes, which may be less than
3066 * the length of the skb, from skb to tgt. Returns number bytes shifted.
3067 * It's up to caller to free skb if everything was shifted.
3068 *
3069 * If @tgt runs out of frags, the whole operation is aborted.
3070 *
3071 * Skb cannot include anything else but paged data while tgt is allowed
3072 * to have non-paged data as well.
3073 *
3074 * TODO: full sized shift could be optimized but that would need
3075 * specialized skb free'er to handle frags without up-to-date nr_frags.
3076 */
3077int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3078{
3079 int from, to, merge, todo;
3080 struct skb_frag_struct *fragfrom, *fragto;
3081
3082 BUG_ON(shiftlen > skb->len);
3083
3084 if (skb_headlen(skb))
3085 return 0;
3086 if (skb_zcopy(tgt) || skb_zcopy(skb))
3087 return 0;
3088
3089 todo = shiftlen;
3090 from = 0;
3091 to = skb_shinfo(tgt)->nr_frags;
3092 fragfrom = &skb_shinfo(skb)->frags[from];
3093
3094 /* Actual merge is delayed until the point when we know we can
3095 * commit all, so that we don't have to undo partial changes
3096 */
3097 if (!to ||
3098 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3099 fragfrom->page_offset)) {
3100 merge = -1;
3101 } else {
3102 merge = to - 1;
3103
3104 todo -= skb_frag_size(fragfrom);
3105 if (todo < 0) {
3106 if (skb_prepare_for_shift(skb) ||
3107 skb_prepare_for_shift(tgt))
3108 return 0;
3109
3110 /* All previous frag pointers might be stale! */
3111 fragfrom = &skb_shinfo(skb)->frags[from];
3112 fragto = &skb_shinfo(tgt)->frags[merge];
3113
3114 skb_frag_size_add(fragto, shiftlen);
3115 skb_frag_size_sub(fragfrom, shiftlen);
3116 fragfrom->page_offset += shiftlen;
3117
3118 goto onlymerged;
3119 }
3120
3121 from++;
3122 }
3123
3124 /* Skip full, not-fitting skb to avoid expensive operations */
3125 if ((shiftlen == skb->len) &&
3126 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3127 return 0;
3128
3129 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3130 return 0;
3131
3132 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3133 if (to == MAX_SKB_FRAGS)
3134 return 0;
3135
3136 fragfrom = &skb_shinfo(skb)->frags[from];
3137 fragto = &skb_shinfo(tgt)->frags[to];
3138
3139 if (todo >= skb_frag_size(fragfrom)) {
3140 *fragto = *fragfrom;
3141 todo -= skb_frag_size(fragfrom);
3142 from++;
3143 to++;
3144
3145 } else {
3146 __skb_frag_ref(fragfrom);
3147 fragto->page = fragfrom->page;
3148 fragto->page_offset = fragfrom->page_offset;
3149 skb_frag_size_set(fragto, todo);
3150
3151 fragfrom->page_offset += todo;
3152 skb_frag_size_sub(fragfrom, todo);
3153 todo = 0;
3154
3155 to++;
3156 break;
3157 }
3158 }
3159
3160 /* Ready to "commit" this state change to tgt */
3161 skb_shinfo(tgt)->nr_frags = to;
3162
3163 if (merge >= 0) {
3164 fragfrom = &skb_shinfo(skb)->frags[0];
3165 fragto = &skb_shinfo(tgt)->frags[merge];
3166
3167 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3168 __skb_frag_unref(fragfrom);
3169 }
3170
3171 /* Reposition in the original skb */
3172 to = 0;
3173 while (from < skb_shinfo(skb)->nr_frags)
3174 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3175 skb_shinfo(skb)->nr_frags = to;
3176
3177 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3178
3179onlymerged:
3180 /* Most likely the tgt won't ever need its checksum anymore, skb on
3181 * the other hand might need it if it needs to be resent
3182 */
3183 tgt->ip_summed = CHECKSUM_PARTIAL;
3184 skb->ip_summed = CHECKSUM_PARTIAL;
3185
3186 /* Yak, is it really working this way? Some helper please? */
3187 skb->len -= shiftlen;
3188 skb->data_len -= shiftlen;
3189 skb->truesize -= shiftlen;
3190 tgt->len += shiftlen;
3191 tgt->data_len += shiftlen;
3192 tgt->truesize += shiftlen;
3193
3194 return shiftlen;
3195}
3196
3197/**
3198 * skb_prepare_seq_read - Prepare a sequential read of skb data
3199 * @skb: the buffer to read
3200 * @from: lower offset of data to be read
3201 * @to: upper offset of data to be read
3202 * @st: state variable
3203 *
3204 * Initializes the specified state variable. Must be called before
3205 * invoking skb_seq_read() for the first time.
3206 */
3207void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3208 unsigned int to, struct skb_seq_state *st)
3209{
3210 st->lower_offset = from;
3211 st->upper_offset = to;
3212 st->root_skb = st->cur_skb = skb;
3213 st->frag_idx = st->stepped_offset = 0;
3214 st->frag_data = NULL;
3215}
3216EXPORT_SYMBOL(skb_prepare_seq_read);
3217
3218/**
3219 * skb_seq_read - Sequentially read skb data
3220 * @consumed: number of bytes consumed by the caller so far
3221 * @data: destination pointer for data to be returned
3222 * @st: state variable
3223 *
3224 * Reads a block of skb data at @consumed relative to the
3225 * lower offset specified to skb_prepare_seq_read(). Assigns
3226 * the head of the data block to @data and returns the length
3227 * of the block or 0 if the end of the skb data or the upper
3228 * offset has been reached.
3229 *
3230 * The caller is not required to consume all of the data
3231 * returned, i.e. @consumed is typically set to the number
3232 * of bytes already consumed and the next call to
3233 * skb_seq_read() will return the remaining part of the block.
3234 *
3235 * Note 1: The size of each block of data returned can be arbitrary,
3236 * this limitation is the cost for zerocopy sequential
3237 * reads of potentially non linear data.
3238 *
3239 * Note 2: Fragment lists within fragments are not implemented
3240 * at the moment, state->root_skb could be replaced with
3241 * a stack for this purpose.
3242 */
3243unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3244 struct skb_seq_state *st)
3245{
3246 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3247 skb_frag_t *frag;
3248
3249 if (unlikely(abs_offset >= st->upper_offset)) {
3250 if (st->frag_data) {
3251 kunmap_atomic(st->frag_data);
3252 st->frag_data = NULL;
3253 }
3254 return 0;
3255 }
3256
3257next_skb:
3258 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3259
3260 if (abs_offset < block_limit && !st->frag_data) {
3261 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3262 return block_limit - abs_offset;
3263 }
3264
3265 if (st->frag_idx == 0 && !st->frag_data)
3266 st->stepped_offset += skb_headlen(st->cur_skb);
3267
3268 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3269 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3270 block_limit = skb_frag_size(frag) + st->stepped_offset;
3271
3272 if (abs_offset < block_limit) {
3273 if (!st->frag_data)
3274 st->frag_data = kmap_atomic(skb_frag_page(frag));
3275
3276 *data = (u8 *) st->frag_data + frag->page_offset +
3277 (abs_offset - st->stepped_offset);
3278
3279 return block_limit - abs_offset;
3280 }
3281
3282 if (st->frag_data) {
3283 kunmap_atomic(st->frag_data);
3284 st->frag_data = NULL;
3285 }
3286
3287 st->frag_idx++;
3288 st->stepped_offset += skb_frag_size(frag);
3289 }
3290
3291 if (st->frag_data) {
3292 kunmap_atomic(st->frag_data);
3293 st->frag_data = NULL;
3294 }
3295
3296 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3297 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3298 st->frag_idx = 0;
3299 goto next_skb;
3300 } else if (st->cur_skb->next) {
3301 st->cur_skb = st->cur_skb->next;
3302 st->frag_idx = 0;
3303 goto next_skb;
3304 }
3305
3306 return 0;
3307}
3308EXPORT_SYMBOL(skb_seq_read);
3309
3310/**
3311 * skb_abort_seq_read - Abort a sequential read of skb data
3312 * @st: state variable
3313 *
3314 * Must be called if skb_seq_read() was not called until it
3315 * returned 0.
3316 */
3317void skb_abort_seq_read(struct skb_seq_state *st)
3318{
3319 if (st->frag_data)
3320 kunmap_atomic(st->frag_data);
3321}
3322EXPORT_SYMBOL(skb_abort_seq_read);
3323
3324#define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
3325
3326static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3327 struct ts_config *conf,
3328 struct ts_state *state)
3329{
3330 return skb_seq_read(offset, text, TS_SKB_CB(state));
3331}
3332
3333static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3334{
3335 skb_abort_seq_read(TS_SKB_CB(state));
3336}
3337
3338/**
3339 * skb_find_text - Find a text pattern in skb data
3340 * @skb: the buffer to look in
3341 * @from: search offset
3342 * @to: search limit
3343 * @config: textsearch configuration
3344 *
3345 * Finds a pattern in the skb data according to the specified
3346 * textsearch configuration. Use textsearch_next() to retrieve
3347 * subsequent occurrences of the pattern. Returns the offset
3348 * to the first occurrence or UINT_MAX if no match was found.
3349 */
3350unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3351 unsigned int to, struct ts_config *config)
3352{
3353 struct ts_state state;
3354 unsigned int ret;
3355
3356 config->get_next_block = skb_ts_get_next_block;
3357 config->finish = skb_ts_finish;
3358
3359 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3360
3361 ret = textsearch_find(config, &state);
3362 return (ret <= to - from ? ret : UINT_MAX);
3363}
3364EXPORT_SYMBOL(skb_find_text);
3365
3366/**
3367 * skb_append_datato_frags - append the user data to a skb
3368 * @sk: sock structure
3369 * @skb: skb structure to be appended with user data.
3370 * @getfrag: call back function to be used for getting the user data
3371 * @from: pointer to user message iov
3372 * @length: length of the iov message
3373 *
3374 * Description: This procedure append the user data in the fragment part
3375 * of the skb if any page alloc fails user this procedure returns -ENOMEM
3376 */
3377int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
3378 int (*getfrag)(void *from, char *to, int offset,
3379 int len, int odd, struct sk_buff *skb),
3380 void *from, int length)
3381{
3382 int frg_cnt = skb_shinfo(skb)->nr_frags;
3383 int copy;
3384 int offset = 0;
3385 int ret;
3386 struct page_frag *pfrag = ¤t->task_frag;
3387
3388 do {
3389 /* Return error if we don't have space for new frag */
3390 if (frg_cnt >= MAX_SKB_FRAGS)
3391 return -EMSGSIZE;
3392
3393 if (!sk_page_frag_refill(sk, pfrag))
3394 return -ENOMEM;
3395
3396 /* copy the user data to page */
3397 copy = min_t(int, length, pfrag->size - pfrag->offset);
3398
3399 ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
3400 offset, copy, 0, skb);
3401 if (ret < 0)
3402 return -EFAULT;
3403
3404 /* copy was successful so update the size parameters */
3405 skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
3406 copy);
3407 frg_cnt++;
3408 pfrag->offset += copy;
3409 get_page(pfrag->page);
3410
3411 skb->truesize += copy;
3412 refcount_add(copy, &sk->sk_wmem_alloc);
3413 skb->len += copy;
3414 skb->data_len += copy;
3415 offset += copy;
3416 length -= copy;
3417
3418 } while (length > 0);
3419
3420 return 0;
3421}
3422EXPORT_SYMBOL(skb_append_datato_frags);
3423
3424int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3425 int offset, size_t size)
3426{
3427 int i = skb_shinfo(skb)->nr_frags;
3428
3429 if (skb_can_coalesce(skb, i, page, offset)) {
3430 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3431 } else if (i < MAX_SKB_FRAGS) {
3432 get_page(page);
3433 skb_fill_page_desc(skb, i, page, offset, size);
3434 } else {
3435 return -EMSGSIZE;
3436 }
3437
3438 return 0;
3439}
3440EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3441
3442/**
3443 * skb_pull_rcsum - pull skb and update receive checksum
3444 * @skb: buffer to update
3445 * @len: length of data pulled
3446 *
3447 * This function performs an skb_pull on the packet and updates
3448 * the CHECKSUM_COMPLETE checksum. It should be used on
3449 * receive path processing instead of skb_pull unless you know
3450 * that the checksum difference is zero (e.g., a valid IP header)
3451 * or you are setting ip_summed to CHECKSUM_NONE.
3452 */
3453void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3454{
3455 unsigned char *data = skb->data;
3456
3457 BUG_ON(len > skb->len);
3458 __skb_pull(skb, len);
3459 skb_postpull_rcsum(skb, data, len);
3460 return skb->data;
3461}
3462EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3463
3464static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3465{
3466 skb_frag_t head_frag;
3467 struct page *page;
3468
3469 page = virt_to_head_page(frag_skb->head);
3470 head_frag.page.p = page;
3471 head_frag.page_offset = frag_skb->data -
3472 (unsigned char *)page_address(page);
3473 head_frag.size = skb_headlen(frag_skb);
3474 return head_frag;
3475}
3476
3477/**
3478 * skb_segment - Perform protocol segmentation on skb.
3479 * @head_skb: buffer to segment
3480 * @features: features for the output path (see dev->features)
3481 *
3482 * This function performs segmentation on the given skb. It returns
3483 * a pointer to the first in a list of new skbs for the segments.
3484 * In case of error it returns ERR_PTR(err).
3485 */
3486struct sk_buff *skb_segment(struct sk_buff *head_skb,
3487 netdev_features_t features)
3488{
3489 struct sk_buff *segs = NULL;
3490 struct sk_buff *tail = NULL;
3491 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3492 skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3493 unsigned int mss = skb_shinfo(head_skb)->gso_size;
3494 unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3495 struct sk_buff *frag_skb = head_skb;
3496 unsigned int offset = doffset;
3497 unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3498 unsigned int partial_segs = 0;
3499 unsigned int headroom;
3500 unsigned int len = head_skb->len;
3501 __be16 proto;
3502 bool csum, sg;
3503 int nfrags = skb_shinfo(head_skb)->nr_frags;
3504 int err = -ENOMEM;
3505 int i = 0;
3506 int pos;
3507 int dummy;
3508
3509 __skb_push(head_skb, doffset);
3510 proto = skb_network_protocol(head_skb, &dummy);
3511 if (unlikely(!proto))
3512 return ERR_PTR(-EINVAL);
3513
3514 sg = !!(features & NETIF_F_SG);
3515 csum = !!can_checksum_protocol(features, proto);
3516
3517 if (sg && csum && (mss != GSO_BY_FRAGS)) {
3518 if (!(features & NETIF_F_GSO_PARTIAL)) {
3519 struct sk_buff *iter;
3520 unsigned int frag_len;
3521
3522 if (!list_skb ||
3523 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3524 goto normal;
3525
3526 /* If we get here then all the required
3527 * GSO features except frag_list are supported.
3528 * Try to split the SKB to multiple GSO SKBs
3529 * with no frag_list.
3530 * Currently we can do that only when the buffers don't
3531 * have a linear part and all the buffers except
3532 * the last are of the same length.
3533 */
3534 frag_len = list_skb->len;
3535 skb_walk_frags(head_skb, iter) {
3536 if (frag_len != iter->len && iter->next)
3537 goto normal;
3538 if (skb_headlen(iter) && !iter->head_frag)
3539 goto normal;
3540
3541 len -= iter->len;
3542 }
3543
3544 if (len != frag_len)
3545 goto normal;
3546 }
3547
3548 /* GSO partial only requires that we trim off any excess that
3549 * doesn't fit into an MSS sized block, so take care of that
3550 * now.
3551 */
3552 partial_segs = len / mss;
3553 if (partial_segs > 1)
3554 mss *= partial_segs;
3555 else
3556 partial_segs = 0;
3557 }
3558
3559normal:
3560 headroom = skb_headroom(head_skb);
3561 pos = skb_headlen(head_skb);
3562
3563 do {
3564 struct sk_buff *nskb;
3565 skb_frag_t *nskb_frag;
3566 int hsize;
3567 int size;
3568
3569 if (unlikely(mss == GSO_BY_FRAGS)) {
3570 len = list_skb->len;
3571 } else {
3572 len = head_skb->len - offset;
3573 if (len > mss)
3574 len = mss;
3575 }
3576
3577 hsize = skb_headlen(head_skb) - offset;
3578 if (hsize < 0)
3579 hsize = 0;
3580 if (hsize > len || !sg)
3581 hsize = len;
3582
3583 if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3584 (skb_headlen(list_skb) == len || sg)) {
3585 BUG_ON(skb_headlen(list_skb) > len);
3586
3587 i = 0;
3588 nfrags = skb_shinfo(list_skb)->nr_frags;
3589 frag = skb_shinfo(list_skb)->frags;
3590 frag_skb = list_skb;
3591 pos += skb_headlen(list_skb);
3592
3593 while (pos < offset + len) {
3594 BUG_ON(i >= nfrags);
3595
3596 size = skb_frag_size(frag);
3597 if (pos + size > offset + len)
3598 break;
3599
3600 i++;
3601 pos += size;
3602 frag++;
3603 }
3604
3605 nskb = skb_clone(list_skb, GFP_ATOMIC);
3606 list_skb = list_skb->next;
3607
3608 if (unlikely(!nskb))
3609 goto err;
3610
3611 if (unlikely(pskb_trim(nskb, len))) {
3612 kfree_skb(nskb);
3613 goto err;
3614 }
3615
3616 hsize = skb_end_offset(nskb);
3617 if (skb_cow_head(nskb, doffset + headroom)) {
3618 kfree_skb(nskb);
3619 goto err;
3620 }
3621
3622 nskb->truesize += skb_end_offset(nskb) - hsize;
3623 skb_release_head_state(nskb);
3624 __skb_push(nskb, doffset);
3625 } else {
3626 nskb = __alloc_skb(hsize + doffset + headroom,
3627 GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3628 NUMA_NO_NODE);
3629
3630 if (unlikely(!nskb))
3631 goto err;
3632
3633 skb_reserve(nskb, headroom);
3634 __skb_put(nskb, doffset);
3635 }
3636
3637 if (segs)
3638 tail->next = nskb;
3639 else
3640 segs = nskb;
3641 tail = nskb;
3642
3643 __copy_skb_header(nskb, head_skb);
3644
3645 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3646 skb_reset_mac_len(nskb);
3647
3648 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3649 nskb->data - tnl_hlen,
3650 doffset + tnl_hlen);
3651
3652 if (nskb->len == len + doffset)
3653 goto perform_csum_check;
3654
3655 if (!sg) {
3656 if (!nskb->remcsum_offload)
3657 nskb->ip_summed = CHECKSUM_NONE;
3658 SKB_GSO_CB(nskb)->csum =
3659 skb_copy_and_csum_bits(head_skb, offset,
3660 skb_put(nskb, len),
3661 len, 0);
3662 SKB_GSO_CB(nskb)->csum_start =
3663 skb_headroom(nskb) + doffset;
3664 continue;
3665 }
3666
3667 nskb_frag = skb_shinfo(nskb)->frags;
3668
3669 skb_copy_from_linear_data_offset(head_skb, offset,
3670 skb_put(nskb, hsize), hsize);
3671
3672 skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags &
3673 SKBTX_SHARED_FRAG;
3674
3675 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3676 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
3677 goto err;
3678
3679 while (pos < offset + len) {
3680 if (i >= nfrags) {
3681 i = 0;
3682 nfrags = skb_shinfo(list_skb)->nr_frags;
3683 frag = skb_shinfo(list_skb)->frags;
3684 frag_skb = list_skb;
3685 if (!skb_headlen(list_skb)) {
3686 BUG_ON(!nfrags);
3687 } else {
3688 BUG_ON(!list_skb->head_frag);
3689
3690 /* to make room for head_frag. */
3691 i--;
3692 frag--;
3693 }
3694 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3695 skb_zerocopy_clone(nskb, frag_skb,
3696 GFP_ATOMIC))
3697 goto err;
3698
3699 list_skb = list_skb->next;
3700 }
3701
3702 if (unlikely(skb_shinfo(nskb)->nr_frags >=
3703 MAX_SKB_FRAGS)) {
3704 net_warn_ratelimited(
3705 "skb_segment: too many frags: %u %u\n",
3706 pos, mss);
3707 goto err;
3708 }
3709
3710 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
3711 __skb_frag_ref(nskb_frag);
3712 size = skb_frag_size(nskb_frag);
3713
3714 if (pos < offset) {
3715 nskb_frag->page_offset += offset - pos;
3716 skb_frag_size_sub(nskb_frag, offset - pos);
3717 }
3718
3719 skb_shinfo(nskb)->nr_frags++;
3720
3721 if (pos + size <= offset + len) {
3722 i++;
3723 frag++;
3724 pos += size;
3725 } else {
3726 skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3727 goto skip_fraglist;
3728 }
3729
3730 nskb_frag++;
3731 }
3732
3733skip_fraglist:
3734 nskb->data_len = len - hsize;
3735 nskb->len += nskb->data_len;
3736 nskb->truesize += nskb->data_len;
3737
3738perform_csum_check:
3739 if (!csum) {
3740 if (skb_has_shared_frag(nskb)) {
3741 err = __skb_linearize(nskb);
3742 if (err)
3743 goto err;
3744 }
3745 if (!nskb->remcsum_offload)
3746 nskb->ip_summed = CHECKSUM_NONE;
3747 SKB_GSO_CB(nskb)->csum =
3748 skb_checksum(nskb, doffset,
3749 nskb->len - doffset, 0);
3750 SKB_GSO_CB(nskb)->csum_start =
3751 skb_headroom(nskb) + doffset;
3752 }
3753 } while ((offset += len) < head_skb->len);
3754
3755 /* Some callers want to get the end of the list.
3756 * Put it in segs->prev to avoid walking the list.
3757 * (see validate_xmit_skb_list() for example)
3758 */
3759 segs->prev = tail;
3760
3761 if (partial_segs) {
3762 struct sk_buff *iter;
3763 int type = skb_shinfo(head_skb)->gso_type;
3764 unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
3765
3766 /* Update type to add partial and then remove dodgy if set */
3767 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
3768 type &= ~SKB_GSO_DODGY;
3769
3770 /* Update GSO info and prepare to start updating headers on
3771 * our way back down the stack of protocols.
3772 */
3773 for (iter = segs; iter; iter = iter->next) {
3774 skb_shinfo(iter)->gso_size = gso_size;
3775 skb_shinfo(iter)->gso_segs = partial_segs;
3776 skb_shinfo(iter)->gso_type = type;
3777 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
3778 }
3779
3780 if (tail->len - doffset <= gso_size)
3781 skb_shinfo(tail)->gso_size = 0;
3782 else if (tail != segs)
3783 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
3784 }
3785
3786 /* Following permits correct backpressure, for protocols
3787 * using skb_set_owner_w().
3788 * Idea is to tranfert ownership from head_skb to last segment.
3789 */
3790 if (head_skb->destructor == sock_wfree) {
3791 swap(tail->truesize, head_skb->truesize);
3792 swap(tail->destructor, head_skb->destructor);
3793 swap(tail->sk, head_skb->sk);
3794 }
3795 return segs;
3796
3797err:
3798 kfree_skb_list(segs);
3799 return ERR_PTR(err);
3800}
3801EXPORT_SYMBOL_GPL(skb_segment);
3802
3803int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3804{
3805 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3806 unsigned int offset = skb_gro_offset(skb);
3807 unsigned int headlen = skb_headlen(skb);
3808 unsigned int len = skb_gro_len(skb);
3809 struct sk_buff *lp, *p = *head;
3810 unsigned int delta_truesize;
3811
3812 if (unlikely(p->len + len >= 65536))
3813 return -E2BIG;
3814
3815 lp = NAPI_GRO_CB(p)->last;
3816 pinfo = skb_shinfo(lp);
3817
3818 if (headlen <= offset) {
3819 skb_frag_t *frag;
3820 skb_frag_t *frag2;
3821 int i = skbinfo->nr_frags;
3822 int nr_frags = pinfo->nr_frags + i;
3823
3824 if (nr_frags > MAX_SKB_FRAGS)
3825 goto merge;
3826
3827 offset -= headlen;
3828 pinfo->nr_frags = nr_frags;
3829 skbinfo->nr_frags = 0;
3830
3831 frag = pinfo->frags + nr_frags;
3832 frag2 = skbinfo->frags + i;
3833 do {
3834 *--frag = *--frag2;
3835 } while (--i);
3836
3837 frag->page_offset += offset;
3838 skb_frag_size_sub(frag, offset);
3839
3840 /* all fragments truesize : remove (head size + sk_buff) */
3841 delta_truesize = skb->truesize -
3842 SKB_TRUESIZE(skb_end_offset(skb));
3843
3844 skb->truesize -= skb->data_len;
3845 skb->len -= skb->data_len;
3846 skb->data_len = 0;
3847
3848 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3849 goto done;
3850 } else if (skb->head_frag) {
3851 int nr_frags = pinfo->nr_frags;
3852 skb_frag_t *frag = pinfo->frags + nr_frags;
3853 struct page *page = virt_to_head_page(skb->head);
3854 unsigned int first_size = headlen - offset;
3855 unsigned int first_offset;
3856
3857 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3858 goto merge;
3859
3860 first_offset = skb->data -
3861 (unsigned char *)page_address(page) +
3862 offset;
3863
3864 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3865
3866 frag->page.p = page;
3867 frag->page_offset = first_offset;
3868 skb_frag_size_set(frag, first_size);
3869
3870 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3871 /* We dont need to clear skbinfo->nr_frags here */
3872
3873 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3874 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3875 goto done;
3876 }
3877
3878merge:
3879 delta_truesize = skb->truesize;
3880 if (offset > headlen) {
3881 unsigned int eat = offset - headlen;
3882
3883 skbinfo->frags[0].page_offset += eat;
3884 skb_frag_size_sub(&skbinfo->frags[0], eat);
3885 skb->data_len -= eat;
3886 skb->len -= eat;
3887 offset = headlen;
3888 }
3889
3890 __skb_pull(skb, offset);
3891
3892 if (NAPI_GRO_CB(p)->last == p)
3893 skb_shinfo(p)->frag_list = skb;
3894 else
3895 NAPI_GRO_CB(p)->last->next = skb;
3896 NAPI_GRO_CB(p)->last = skb;
3897 __skb_header_release(skb);
3898 lp = p;
3899
3900done:
3901 NAPI_GRO_CB(p)->count++;
3902 p->data_len += len;
3903 p->truesize += delta_truesize;
3904 p->len += len;
3905 if (lp != p) {
3906 lp->data_len += len;
3907 lp->truesize += delta_truesize;
3908 lp->len += len;
3909 }
3910 NAPI_GRO_CB(skb)->same_flow = 1;
3911 return 0;
3912}
3913EXPORT_SYMBOL_GPL(skb_gro_receive);
3914
3915void __init skb_init(void)
3916{
3917 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
3918 sizeof(struct sk_buff),
3919 0,
3920 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3921 offsetof(struct sk_buff, cb),
3922 sizeof_field(struct sk_buff, cb),
3923 NULL);
3924 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3925 sizeof(struct sk_buff_fclones),
3926 0,
3927 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3928 NULL);
3929}
3930
3931static int
3932__skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
3933 unsigned int recursion_level)
3934{
3935 int start = skb_headlen(skb);
3936 int i, copy = start - offset;
3937 struct sk_buff *frag_iter;
3938 int elt = 0;
3939
3940 if (unlikely(recursion_level >= 24))
3941 return -EMSGSIZE;
3942
3943 if (copy > 0) {
3944 if (copy > len)
3945 copy = len;
3946 sg_set_buf(sg, skb->data + offset, copy);
3947 elt++;
3948 if ((len -= copy) == 0)
3949 return elt;
3950 offset += copy;
3951 }
3952
3953 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3954 int end;
3955
3956 WARN_ON(start > offset + len);
3957
3958 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3959 if ((copy = end - offset) > 0) {
3960 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3961 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
3962 return -EMSGSIZE;
3963
3964 if (copy > len)
3965 copy = len;
3966 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3967 frag->page_offset+offset-start);
3968 elt++;
3969 if (!(len -= copy))
3970 return elt;
3971 offset += copy;
3972 }
3973 start = end;
3974 }
3975
3976 skb_walk_frags(skb, frag_iter) {
3977 int end, ret;
3978
3979 WARN_ON(start > offset + len);
3980
3981 end = start + frag_iter->len;
3982 if ((copy = end - offset) > 0) {
3983 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
3984 return -EMSGSIZE;
3985
3986 if (copy > len)
3987 copy = len;
3988 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3989 copy, recursion_level + 1);
3990 if (unlikely(ret < 0))
3991 return ret;
3992 elt += ret;
3993 if ((len -= copy) == 0)
3994 return elt;
3995 offset += copy;
3996 }
3997 start = end;
3998 }
3999 BUG_ON(len);
4000 return elt;
4001}
4002
4003/**
4004 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4005 * @skb: Socket buffer containing the buffers to be mapped
4006 * @sg: The scatter-gather list to map into
4007 * @offset: The offset into the buffer's contents to start mapping
4008 * @len: Length of buffer space to be mapped
4009 *
4010 * Fill the specified scatter-gather list with mappings/pointers into a
4011 * region of the buffer space attached to a socket buffer. Returns either
4012 * the number of scatterlist items used, or -EMSGSIZE if the contents
4013 * could not fit.
4014 */
4015int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4016{
4017 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4018
4019 if (nsg <= 0)
4020 return nsg;
4021
4022 sg_mark_end(&sg[nsg - 1]);
4023
4024 return nsg;
4025}
4026EXPORT_SYMBOL_GPL(skb_to_sgvec);
4027
4028/* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4029 * sglist without mark the sg which contain last skb data as the end.
4030 * So the caller can mannipulate sg list as will when padding new data after
4031 * the first call without calling sg_unmark_end to expend sg list.
4032 *
4033 * Scenario to use skb_to_sgvec_nomark:
4034 * 1. sg_init_table
4035 * 2. skb_to_sgvec_nomark(payload1)
4036 * 3. skb_to_sgvec_nomark(payload2)
4037 *
4038 * This is equivalent to:
4039 * 1. sg_init_table
4040 * 2. skb_to_sgvec(payload1)
4041 * 3. sg_unmark_end
4042 * 4. skb_to_sgvec(payload2)
4043 *
4044 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4045 * is more preferable.
4046 */
4047int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4048 int offset, int len)
4049{
4050 return __skb_to_sgvec(skb, sg, offset, len, 0);
4051}
4052EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4053
4054
4055
4056/**
4057 * skb_cow_data - Check that a socket buffer's data buffers are writable
4058 * @skb: The socket buffer to check.
4059 * @tailbits: Amount of trailing space to be added
4060 * @trailer: Returned pointer to the skb where the @tailbits space begins
4061 *
4062 * Make sure that the data buffers attached to a socket buffer are
4063 * writable. If they are not, private copies are made of the data buffers
4064 * and the socket buffer is set to use these instead.
4065 *
4066 * If @tailbits is given, make sure that there is space to write @tailbits
4067 * bytes of data beyond current end of socket buffer. @trailer will be
4068 * set to point to the skb in which this space begins.
4069 *
4070 * The number of scatterlist elements required to completely map the
4071 * COW'd and extended socket buffer will be returned.
4072 */
4073int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4074{
4075 int copyflag;
4076 int elt;
4077 struct sk_buff *skb1, **skb_p;
4078
4079 /* If skb is cloned or its head is paged, reallocate
4080 * head pulling out all the pages (pages are considered not writable
4081 * at the moment even if they are anonymous).
4082 */
4083 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4084 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
4085 return -ENOMEM;
4086
4087 /* Easy case. Most of packets will go this way. */
4088 if (!skb_has_frag_list(skb)) {
4089 /* A little of trouble, not enough of space for trailer.
4090 * This should not happen, when stack is tuned to generate
4091 * good frames. OK, on miss we reallocate and reserve even more
4092 * space, 128 bytes is fair. */
4093
4094 if (skb_tailroom(skb) < tailbits &&
4095 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4096 return -ENOMEM;
4097
4098 /* Voila! */
4099 *trailer = skb;
4100 return 1;
4101 }
4102
4103 /* Misery. We are in troubles, going to mincer fragments... */
4104
4105 elt = 1;
4106 skb_p = &skb_shinfo(skb)->frag_list;
4107 copyflag = 0;
4108
4109 while ((skb1 = *skb_p) != NULL) {
4110 int ntail = 0;
4111
4112 /* The fragment is partially pulled by someone,
4113 * this can happen on input. Copy it and everything
4114 * after it. */
4115
4116 if (skb_shared(skb1))
4117 copyflag = 1;
4118
4119 /* If the skb is the last, worry about trailer. */
4120
4121 if (skb1->next == NULL && tailbits) {
4122 if (skb_shinfo(skb1)->nr_frags ||
4123 skb_has_frag_list(skb1) ||
4124 skb_tailroom(skb1) < tailbits)
4125 ntail = tailbits + 128;
4126 }
4127
4128 if (copyflag ||
4129 skb_cloned(skb1) ||
4130 ntail ||
4131 skb_shinfo(skb1)->nr_frags ||
4132 skb_has_frag_list(skb1)) {
4133 struct sk_buff *skb2;
4134
4135 /* Fuck, we are miserable poor guys... */
4136 if (ntail == 0)
4137 skb2 = skb_copy(skb1, GFP_ATOMIC);
4138 else
4139 skb2 = skb_copy_expand(skb1,
4140 skb_headroom(skb1),
4141 ntail,
4142 GFP_ATOMIC);
4143 if (unlikely(skb2 == NULL))
4144 return -ENOMEM;
4145
4146 if (skb1->sk)
4147 skb_set_owner_w(skb2, skb1->sk);
4148
4149 /* Looking around. Are we still alive?
4150 * OK, link new skb, drop old one */
4151
4152 skb2->next = skb1->next;
4153 *skb_p = skb2;
4154 kfree_skb(skb1);
4155 skb1 = skb2;
4156 }
4157 elt++;
4158 *trailer = skb1;
4159 skb_p = &skb1->next;
4160 }
4161
4162 return elt;
4163}
4164EXPORT_SYMBOL_GPL(skb_cow_data);
4165
4166static void sock_rmem_free(struct sk_buff *skb)
4167{
4168 struct sock *sk = skb->sk;
4169
4170 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4171}
4172
4173static void skb_set_err_queue(struct sk_buff *skb)
4174{
4175 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4176 * So, it is safe to (mis)use it to mark skbs on the error queue.
4177 */
4178 skb->pkt_type = PACKET_OUTGOING;
4179 BUILD_BUG_ON(PACKET_OUTGOING == 0);
4180}
4181
4182/*
4183 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4184 */
4185int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4186{
4187 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4188 (unsigned int)sk->sk_rcvbuf)
4189 return -ENOMEM;
4190
4191 skb_orphan(skb);
4192 skb->sk = sk;
4193 skb->destructor = sock_rmem_free;
4194 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4195 skb_set_err_queue(skb);
4196
4197 /* before exiting rcu section, make sure dst is refcounted */
4198 skb_dst_force(skb);
4199
4200 skb_queue_tail(&sk->sk_error_queue, skb);
4201 if (!sock_flag(sk, SOCK_DEAD))
4202 sk->sk_error_report(sk);
4203 return 0;
4204}
4205EXPORT_SYMBOL(sock_queue_err_skb);
4206
4207static bool is_icmp_err_skb(const struct sk_buff *skb)
4208{
4209 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4210 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4211}
4212
4213struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4214{
4215 struct sk_buff_head *q = &sk->sk_error_queue;
4216 struct sk_buff *skb, *skb_next = NULL;
4217 bool icmp_next = false;
4218 unsigned long flags;
4219
4220 spin_lock_irqsave(&q->lock, flags);
4221 skb = __skb_dequeue(q);
4222 if (skb && (skb_next = skb_peek(q))) {
4223 icmp_next = is_icmp_err_skb(skb_next);
4224 if (icmp_next)
4225 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_origin;
4226 }
4227 spin_unlock_irqrestore(&q->lock, flags);
4228
4229 if (is_icmp_err_skb(skb) && !icmp_next)
4230 sk->sk_err = 0;
4231
4232 if (skb_next)
4233 sk->sk_error_report(sk);
4234
4235 return skb;
4236}
4237EXPORT_SYMBOL(sock_dequeue_err_skb);
4238
4239/**
4240 * skb_clone_sk - create clone of skb, and take reference to socket
4241 * @skb: the skb to clone
4242 *
4243 * This function creates a clone of a buffer that holds a reference on
4244 * sk_refcnt. Buffers created via this function are meant to be
4245 * returned using sock_queue_err_skb, or free via kfree_skb.
4246 *
4247 * When passing buffers allocated with this function to sock_queue_err_skb
4248 * it is necessary to wrap the call with sock_hold/sock_put in order to
4249 * prevent the socket from being released prior to being enqueued on
4250 * the sk_error_queue.
4251 */
4252struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4253{
4254 struct sock *sk = skb->sk;
4255 struct sk_buff *clone;
4256
4257 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4258 return NULL;
4259
4260 clone = skb_clone(skb, GFP_ATOMIC);
4261 if (!clone) {
4262 sock_put(sk);
4263 return NULL;
4264 }
4265
4266 clone->sk = sk;
4267 clone->destructor = sock_efree;
4268
4269 return clone;
4270}
4271EXPORT_SYMBOL(skb_clone_sk);
4272
4273static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4274 struct sock *sk,
4275 int tstype,
4276 bool opt_stats)
4277{
4278 struct sock_exterr_skb *serr;
4279 int err;
4280
4281 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4282
4283 serr = SKB_EXT_ERR(skb);
4284 memset(serr, 0, sizeof(*serr));
4285 serr->ee.ee_errno = ENOMSG;
4286 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4287 serr->ee.ee_info = tstype;
4288 serr->opt_stats = opt_stats;
4289 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4290 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4291 serr->ee.ee_data = skb_shinfo(skb)->tskey;
4292 if (sk->sk_protocol == IPPROTO_TCP &&
4293 sk->sk_type == SOCK_STREAM)
4294 serr->ee.ee_data -= sk->sk_tskey;
4295 }
4296
4297 err = sock_queue_err_skb(sk, skb);
4298
4299 if (err)
4300 kfree_skb(skb);
4301}
4302
4303static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4304{
4305 bool ret;
4306
4307 if (likely(sysctl_tstamp_allow_data || tsonly))
4308 return true;
4309
4310 read_lock_bh(&sk->sk_callback_lock);
4311 ret = sk->sk_socket && sk->sk_socket->file &&
4312 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4313 read_unlock_bh(&sk->sk_callback_lock);
4314 return ret;
4315}
4316
4317void skb_complete_tx_timestamp(struct sk_buff *skb,
4318 struct skb_shared_hwtstamps *hwtstamps)
4319{
4320 struct sock *sk = skb->sk;
4321
4322 if (!skb_may_tx_timestamp(sk, false))
4323 goto err;
4324
4325 /* Take a reference to prevent skb_orphan() from freeing the socket,
4326 * but only if the socket refcount is not zero.
4327 */
4328 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4329 *skb_hwtstamps(skb) = *hwtstamps;
4330 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4331 sock_put(sk);
4332 return;
4333 }
4334
4335err:
4336 kfree_skb(skb);
4337}
4338EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4339
4340void __skb_tstamp_tx(struct sk_buff *orig_skb,
4341 struct skb_shared_hwtstamps *hwtstamps,
4342 struct sock *sk, int tstype)
4343{
4344 struct sk_buff *skb;
4345 bool tsonly, opt_stats = false;
4346
4347 if (!sk)
4348 return;
4349
4350 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4351 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4352 return;
4353
4354 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4355 if (!skb_may_tx_timestamp(sk, tsonly))
4356 return;
4357
4358 if (tsonly) {
4359#ifdef CONFIG_INET
4360 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4361 sk->sk_protocol == IPPROTO_TCP &&
4362 sk->sk_type == SOCK_STREAM) {
4363 skb = tcp_get_timestamping_opt_stats(sk);
4364 opt_stats = true;
4365 } else
4366#endif
4367 skb = alloc_skb(0, GFP_ATOMIC);
4368 } else {
4369 skb = skb_clone(orig_skb, GFP_ATOMIC);
4370 }
4371 if (!skb)
4372 return;
4373
4374 if (tsonly) {
4375 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4376 SKBTX_ANY_TSTAMP;
4377 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4378 }
4379
4380 if (hwtstamps)
4381 *skb_hwtstamps(skb) = *hwtstamps;
4382 else
4383 skb->tstamp = ktime_get_real();
4384
4385 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4386}
4387EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4388
4389void skb_tstamp_tx(struct sk_buff *orig_skb,
4390 struct skb_shared_hwtstamps *hwtstamps)
4391{
4392 return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
4393 SCM_TSTAMP_SND);
4394}
4395EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4396
4397void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4398{
4399 struct sock *sk = skb->sk;
4400 struct sock_exterr_skb *serr;
4401 int err = 1;
4402
4403 skb->wifi_acked_valid = 1;
4404 skb->wifi_acked = acked;
4405
4406 serr = SKB_EXT_ERR(skb);
4407 memset(serr, 0, sizeof(*serr));
4408 serr->ee.ee_errno = ENOMSG;
4409 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4410
4411 /* Take a reference to prevent skb_orphan() from freeing the socket,
4412 * but only if the socket refcount is not zero.
4413 */
4414 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4415 err = sock_queue_err_skb(sk, skb);
4416 sock_put(sk);
4417 }
4418 if (err)
4419 kfree_skb(skb);
4420}
4421EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4422
4423/**
4424 * skb_partial_csum_set - set up and verify partial csum values for packet
4425 * @skb: the skb to set
4426 * @start: the number of bytes after skb->data to start checksumming.
4427 * @off: the offset from start to place the checksum.
4428 *
4429 * For untrusted partially-checksummed packets, we need to make sure the values
4430 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4431 *
4432 * This function checks and sets those values and skb->ip_summed: if this
4433 * returns false you should drop the packet.
4434 */
4435bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4436{
4437 if (unlikely(start > skb_headlen(skb)) ||
4438 unlikely((int)start + off > skb_headlen(skb) - 2)) {
4439 net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
4440 start, off, skb_headlen(skb));
4441 return false;
4442 }
4443 skb->ip_summed = CHECKSUM_PARTIAL;
4444 skb->csum_start = skb_headroom(skb) + start;
4445 skb->csum_offset = off;
4446 skb_set_transport_header(skb, start);
4447 return true;
4448}
4449EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4450
4451static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4452 unsigned int max)
4453{
4454 if (skb_headlen(skb) >= len)
4455 return 0;
4456
4457 /* If we need to pullup then pullup to the max, so we
4458 * won't need to do it again.
4459 */
4460 if (max > skb->len)
4461 max = skb->len;
4462
4463 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4464 return -ENOMEM;
4465
4466 if (skb_headlen(skb) < len)
4467 return -EPROTO;
4468
4469 return 0;
4470}
4471
4472#define MAX_TCP_HDR_LEN (15 * 4)
4473
4474static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4475 typeof(IPPROTO_IP) proto,
4476 unsigned int off)
4477{
4478 switch (proto) {
4479 int err;
4480
4481 case IPPROTO_TCP:
4482 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4483 off + MAX_TCP_HDR_LEN);
4484 if (!err && !skb_partial_csum_set(skb, off,
4485 offsetof(struct tcphdr,
4486 check)))
4487 err = -EPROTO;
4488 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4489
4490 case IPPROTO_UDP:
4491 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4492 off + sizeof(struct udphdr));
4493 if (!err && !skb_partial_csum_set(skb, off,
4494 offsetof(struct udphdr,
4495 check)))
4496 err = -EPROTO;
4497 return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4498 }
4499
4500 return ERR_PTR(-EPROTO);
4501}
4502
4503/* This value should be large enough to cover a tagged ethernet header plus
4504 * maximally sized IP and TCP or UDP headers.
4505 */
4506#define MAX_IP_HDR_LEN 128
4507
4508static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4509{
4510 unsigned int off;
4511 bool fragment;
4512 __sum16 *csum;
4513 int err;
4514
4515 fragment = false;
4516
4517 err = skb_maybe_pull_tail(skb,
4518 sizeof(struct iphdr),
4519 MAX_IP_HDR_LEN);
4520 if (err < 0)
4521 goto out;
4522
4523 if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
4524 fragment = true;
4525
4526 off = ip_hdrlen(skb);
4527
4528 err = -EPROTO;
4529
4530 if (fragment)
4531 goto out;
4532
4533 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4534 if (IS_ERR(csum))
4535 return PTR_ERR(csum);
4536
4537 if (recalculate)
4538 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4539 ip_hdr(skb)->daddr,
4540 skb->len - off,
4541 ip_hdr(skb)->protocol, 0);
4542 err = 0;
4543
4544out:
4545 return err;
4546}
4547
4548/* This value should be large enough to cover a tagged ethernet header plus
4549 * an IPv6 header, all options, and a maximal TCP or UDP header.
4550 */
4551#define MAX_IPV6_HDR_LEN 256
4552
4553#define OPT_HDR(type, skb, off) \
4554 (type *)(skb_network_header(skb) + (off))
4555
4556static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4557{
4558 int err;
4559 u8 nexthdr;
4560 unsigned int off;
4561 unsigned int len;
4562 bool fragment;
4563 bool done;
4564 __sum16 *csum;
4565
4566 fragment = false;
4567 done = false;
4568
4569 off = sizeof(struct ipv6hdr);
4570
4571 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4572 if (err < 0)
4573 goto out;
4574
4575 nexthdr = ipv6_hdr(skb)->nexthdr;
4576
4577 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4578 while (off <= len && !done) {
4579 switch (nexthdr) {
4580 case IPPROTO_DSTOPTS:
4581 case IPPROTO_HOPOPTS:
4582 case IPPROTO_ROUTING: {
4583 struct ipv6_opt_hdr *hp;
4584
4585 err = skb_maybe_pull_tail(skb,
4586 off +
4587 sizeof(struct ipv6_opt_hdr),
4588 MAX_IPV6_HDR_LEN);
4589 if (err < 0)
4590 goto out;
4591
4592 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4593 nexthdr = hp->nexthdr;
4594 off += ipv6_optlen(hp);
4595 break;
4596 }
4597 case IPPROTO_AH: {
4598 struct ip_auth_hdr *hp;
4599
4600 err = skb_maybe_pull_tail(skb,
4601 off +
4602 sizeof(struct ip_auth_hdr),
4603 MAX_IPV6_HDR_LEN);
4604 if (err < 0)
4605 goto out;
4606
4607 hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4608 nexthdr = hp->nexthdr;
4609 off += ipv6_authlen(hp);
4610 break;
4611 }
4612 case IPPROTO_FRAGMENT: {
4613 struct frag_hdr *hp;
4614
4615 err = skb_maybe_pull_tail(skb,
4616 off +
4617 sizeof(struct frag_hdr),
4618 MAX_IPV6_HDR_LEN);
4619 if (err < 0)
4620 goto out;
4621
4622 hp = OPT_HDR(struct frag_hdr, skb, off);
4623
4624 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4625 fragment = true;
4626
4627 nexthdr = hp->nexthdr;
4628 off += sizeof(struct frag_hdr);
4629 break;
4630 }
4631 default:
4632 done = true;
4633 break;
4634 }
4635 }
4636
4637 err = -EPROTO;
4638
4639 if (!done || fragment)
4640 goto out;
4641
4642 csum = skb_checksum_setup_ip(skb, nexthdr, off);
4643 if (IS_ERR(csum))
4644 return PTR_ERR(csum);
4645
4646 if (recalculate)
4647 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4648 &ipv6_hdr(skb)->daddr,
4649 skb->len - off, nexthdr, 0);
4650 err = 0;
4651
4652out:
4653 return err;
4654}
4655
4656/**
4657 * skb_checksum_setup - set up partial checksum offset
4658 * @skb: the skb to set up
4659 * @recalculate: if true the pseudo-header checksum will be recalculated
4660 */
4661int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4662{
4663 int err;
4664
4665 switch (skb->protocol) {
4666 case htons(ETH_P_IP):
4667 err = skb_checksum_setup_ipv4(skb, recalculate);
4668 break;
4669
4670 case htons(ETH_P_IPV6):
4671 err = skb_checksum_setup_ipv6(skb, recalculate);
4672 break;
4673
4674 default:
4675 err = -EPROTO;
4676 break;
4677 }
4678
4679 return err;
4680}
4681EXPORT_SYMBOL(skb_checksum_setup);
4682
4683/**
4684 * skb_checksum_maybe_trim - maybe trims the given skb
4685 * @skb: the skb to check
4686 * @transport_len: the data length beyond the network header
4687 *
4688 * Checks whether the given skb has data beyond the given transport length.
4689 * If so, returns a cloned skb trimmed to this transport length.
4690 * Otherwise returns the provided skb. Returns NULL in error cases
4691 * (e.g. transport_len exceeds skb length or out-of-memory).
4692 *
4693 * Caller needs to set the skb transport header and free any returned skb if it
4694 * differs from the provided skb.
4695 */
4696static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
4697 unsigned int transport_len)
4698{
4699 struct sk_buff *skb_chk;
4700 unsigned int len = skb_transport_offset(skb) + transport_len;
4701 int ret;
4702
4703 if (skb->len < len)
4704 return NULL;
4705 else if (skb->len == len)
4706 return skb;
4707
4708 skb_chk = skb_clone(skb, GFP_ATOMIC);
4709 if (!skb_chk)
4710 return NULL;
4711
4712 ret = pskb_trim_rcsum(skb_chk, len);
4713 if (ret) {
4714 kfree_skb(skb_chk);
4715 return NULL;
4716 }
4717
4718 return skb_chk;
4719}
4720
4721/**
4722 * skb_checksum_trimmed - validate checksum of an skb
4723 * @skb: the skb to check
4724 * @transport_len: the data length beyond the network header
4725 * @skb_chkf: checksum function to use
4726 *
4727 * Applies the given checksum function skb_chkf to the provided skb.
4728 * Returns a checked and maybe trimmed skb. Returns NULL on error.
4729 *
4730 * If the skb has data beyond the given transport length, then a
4731 * trimmed & cloned skb is checked and returned.
4732 *
4733 * Caller needs to set the skb transport header and free any returned skb if it
4734 * differs from the provided skb.
4735 */
4736struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4737 unsigned int transport_len,
4738 __sum16(*skb_chkf)(struct sk_buff *skb))
4739{
4740 struct sk_buff *skb_chk;
4741 unsigned int offset = skb_transport_offset(skb);
4742 __sum16 ret;
4743
4744 skb_chk = skb_checksum_maybe_trim(skb, transport_len);
4745 if (!skb_chk)
4746 goto err;
4747
4748 if (!pskb_may_pull(skb_chk, offset))
4749 goto err;
4750
4751 skb_pull_rcsum(skb_chk, offset);
4752 ret = skb_chkf(skb_chk);
4753 skb_push_rcsum(skb_chk, offset);
4754
4755 if (ret)
4756 goto err;
4757
4758 return skb_chk;
4759
4760err:
4761 if (skb_chk && skb_chk != skb)
4762 kfree_skb(skb_chk);
4763
4764 return NULL;
4765
4766}
4767EXPORT_SYMBOL(skb_checksum_trimmed);
4768
4769void __skb_warn_lro_forwarding(const struct sk_buff *skb)
4770{
4771 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
4772 skb->dev->name);
4773}
4774EXPORT_SYMBOL(__skb_warn_lro_forwarding);
4775
4776void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
4777{
4778 if (head_stolen) {
4779 skb_release_head_state(skb);
4780 kmem_cache_free(skbuff_head_cache, skb);
4781 } else {
4782 __kfree_skb(skb);
4783 }
4784}
4785EXPORT_SYMBOL(kfree_skb_partial);
4786
4787/**
4788 * skb_try_coalesce - try to merge skb to prior one
4789 * @to: prior buffer
4790 * @from: buffer to add
4791 * @fragstolen: pointer to boolean
4792 * @delta_truesize: how much more was allocated than was requested
4793 */
4794bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
4795 bool *fragstolen, int *delta_truesize)
4796{
4797 struct skb_shared_info *to_shinfo, *from_shinfo;
4798 int i, delta, len = from->len;
4799
4800 *fragstolen = false;
4801
4802 if (skb_cloned(to))
4803 return false;
4804
4805 if (len <= skb_tailroom(to)) {
4806 if (len)
4807 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
4808 *delta_truesize = 0;
4809 return true;
4810 }
4811
4812 to_shinfo = skb_shinfo(to);
4813 from_shinfo = skb_shinfo(from);
4814 if (to_shinfo->frag_list || from_shinfo->frag_list)
4815 return false;
4816 if (skb_zcopy(to) || skb_zcopy(from))
4817 return false;
4818
4819 if (skb_headlen(from) != 0) {
4820 struct page *page;
4821 unsigned int offset;
4822
4823 if (to_shinfo->nr_frags +
4824 from_shinfo->nr_frags >= MAX_SKB_FRAGS)
4825 return false;
4826
4827 if (skb_head_is_locked(from))
4828 return false;
4829
4830 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4831
4832 page = virt_to_head_page(from->head);
4833 offset = from->data - (unsigned char *)page_address(page);
4834
4835 skb_fill_page_desc(to, to_shinfo->nr_frags,
4836 page, offset, skb_headlen(from));
4837 *fragstolen = true;
4838 } else {
4839 if (to_shinfo->nr_frags +
4840 from_shinfo->nr_frags > MAX_SKB_FRAGS)
4841 return false;
4842
4843 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
4844 }
4845
4846 WARN_ON_ONCE(delta < len);
4847
4848 memcpy(to_shinfo->frags + to_shinfo->nr_frags,
4849 from_shinfo->frags,
4850 from_shinfo->nr_frags * sizeof(skb_frag_t));
4851 to_shinfo->nr_frags += from_shinfo->nr_frags;
4852
4853 if (!skb_cloned(from))
4854 from_shinfo->nr_frags = 0;
4855
4856 /* if the skb is not cloned this does nothing
4857 * since we set nr_frags to 0.
4858 */
4859 for (i = 0; i < from_shinfo->nr_frags; i++)
4860 __skb_frag_ref(&from_shinfo->frags[i]);
4861
4862 to->truesize += delta;
4863 to->len += len;
4864 to->data_len += len;
4865
4866 *delta_truesize = delta;
4867 return true;
4868}
4869EXPORT_SYMBOL(skb_try_coalesce);
4870
4871/**
4872 * skb_scrub_packet - scrub an skb
4873 *
4874 * @skb: buffer to clean
4875 * @xnet: packet is crossing netns
4876 *
4877 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
4878 * into/from a tunnel. Some information have to be cleared during these
4879 * operations.
4880 * skb_scrub_packet can also be used to clean a skb before injecting it in
4881 * another namespace (@xnet == true). We have to clear all information in the
4882 * skb that could impact namespace isolation.
4883 */
4884void skb_scrub_packet(struct sk_buff *skb, bool xnet)
4885{
4886 skb->tstamp = 0;
4887 skb->pkt_type = PACKET_HOST;
4888 skb->skb_iif = 0;
4889 skb->ignore_df = 0;
4890 skb_dst_drop(skb);
4891 secpath_reset(skb);
4892 nf_reset(skb);
4893 nf_reset_trace(skb);
4894
4895 if (!xnet)
4896 return;
4897
4898 ipvs_reset(skb);
4899 skb_orphan(skb);
4900 skb->mark = 0;
4901}
4902EXPORT_SYMBOL_GPL(skb_scrub_packet);
4903
4904/**
4905 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
4906 *
4907 * @skb: GSO skb
4908 *
4909 * skb_gso_transport_seglen is used to determine the real size of the
4910 * individual segments, including Layer4 headers (TCP/UDP).
4911 *
4912 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
4913 */
4914static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
4915{
4916 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4917 unsigned int thlen = 0;
4918
4919 if (skb->encapsulation) {
4920 thlen = skb_inner_transport_header(skb) -
4921 skb_transport_header(skb);
4922
4923 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
4924 thlen += inner_tcp_hdrlen(skb);
4925 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4926 thlen = tcp_hdrlen(skb);
4927 } else if (unlikely(skb_is_gso_sctp(skb))) {
4928 thlen = sizeof(struct sctphdr);
4929 }
4930 /* UFO sets gso_size to the size of the fragmentation
4931 * payload, i.e. the size of the L4 (UDP) header is already
4932 * accounted for.
4933 */
4934 return thlen + shinfo->gso_size;
4935}
4936
4937/**
4938 * skb_gso_network_seglen - Return length of individual segments of a gso packet
4939 *
4940 * @skb: GSO skb
4941 *
4942 * skb_gso_network_seglen is used to determine the real size of the
4943 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
4944 *
4945 * The MAC/L2 header is not accounted for.
4946 */
4947static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
4948{
4949 unsigned int hdr_len = skb_transport_header(skb) -
4950 skb_network_header(skb);
4951
4952 return hdr_len + skb_gso_transport_seglen(skb);
4953}
4954
4955/**
4956 * skb_gso_mac_seglen - Return length of individual segments of a gso packet
4957 *
4958 * @skb: GSO skb
4959 *
4960 * skb_gso_mac_seglen is used to determine the real size of the
4961 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
4962 * headers (TCP/UDP).
4963 */
4964static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
4965{
4966 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
4967
4968 return hdr_len + skb_gso_transport_seglen(skb);
4969}
4970
4971/**
4972 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
4973 *
4974 * There are a couple of instances where we have a GSO skb, and we
4975 * want to determine what size it would be after it is segmented.
4976 *
4977 * We might want to check:
4978 * - L3+L4+payload size (e.g. IP forwarding)
4979 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
4980 *
4981 * This is a helper to do that correctly considering GSO_BY_FRAGS.
4982 *
4983 * @seg_len: The segmented length (from skb_gso_*_seglen). In the
4984 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
4985 *
4986 * @max_len: The maximum permissible length.
4987 *
4988 * Returns true if the segmented length <= max length.
4989 */
4990static inline bool skb_gso_size_check(const struct sk_buff *skb,
4991 unsigned int seg_len,
4992 unsigned int max_len) {
4993 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4994 const struct sk_buff *iter;
4995
4996 if (shinfo->gso_size != GSO_BY_FRAGS)
4997 return seg_len <= max_len;
4998
4999 /* Undo this so we can re-use header sizes */
5000 seg_len -= GSO_BY_FRAGS;
5001
5002 skb_walk_frags(skb, iter) {
5003 if (seg_len + skb_headlen(iter) > max_len)
5004 return false;
5005 }
5006
5007 return true;
5008}
5009
5010/**
5011 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5012 *
5013 * @skb: GSO skb
5014 * @mtu: MTU to validate against
5015 *
5016 * skb_gso_validate_network_len validates if a given skb will fit a
5017 * wanted MTU once split. It considers L3 headers, L4 headers, and the
5018 * payload.
5019 */
5020bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5021{
5022 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5023}
5024EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5025
5026/**
5027 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5028 *
5029 * @skb: GSO skb
5030 * @len: length to validate against
5031 *
5032 * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5033 * length once split, including L2, L3 and L4 headers and the payload.
5034 */
5035bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5036{
5037 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5038}
5039EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5040
5041static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5042{
5043 int mac_len;
5044
5045 if (skb_cow(skb, skb_headroom(skb)) < 0) {
5046 kfree_skb(skb);
5047 return NULL;
5048 }
5049
5050 mac_len = skb->data - skb_mac_header(skb);
5051 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5052 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5053 mac_len - VLAN_HLEN - ETH_TLEN);
5054 }
5055 skb->mac_header += VLAN_HLEN;
5056 return skb;
5057}
5058
5059struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5060{
5061 struct vlan_hdr *vhdr;
5062 u16 vlan_tci;
5063
5064 if (unlikely(skb_vlan_tag_present(skb))) {
5065 /* vlan_tci is already set-up so leave this for another time */
5066 return skb;
5067 }
5068
5069 skb = skb_share_check(skb, GFP_ATOMIC);
5070 if (unlikely(!skb))
5071 goto err_free;
5072
5073 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
5074 goto err_free;
5075
5076 vhdr = (struct vlan_hdr *)skb->data;
5077 vlan_tci = ntohs(vhdr->h_vlan_TCI);
5078 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5079
5080 skb_pull_rcsum(skb, VLAN_HLEN);
5081 vlan_set_encap_proto(skb, vhdr);
5082
5083 skb = skb_reorder_vlan_header(skb);
5084 if (unlikely(!skb))
5085 goto err_free;
5086
5087 skb_reset_network_header(skb);
5088 skb_reset_transport_header(skb);
5089 skb_reset_mac_len(skb);
5090
5091 return skb;
5092
5093err_free:
5094 kfree_skb(skb);
5095 return NULL;
5096}
5097EXPORT_SYMBOL(skb_vlan_untag);
5098
5099int skb_ensure_writable(struct sk_buff *skb, int write_len)
5100{
5101 if (!pskb_may_pull(skb, write_len))
5102 return -ENOMEM;
5103
5104 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5105 return 0;
5106
5107 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5108}
5109EXPORT_SYMBOL(skb_ensure_writable);
5110
5111/* remove VLAN header from packet and update csum accordingly.
5112 * expects a non skb_vlan_tag_present skb with a vlan tag payload
5113 */
5114int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5115{
5116 struct vlan_hdr *vhdr;
5117 int offset = skb->data - skb_mac_header(skb);
5118 int err;
5119
5120 if (WARN_ONCE(offset,
5121 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5122 offset)) {
5123 return -EINVAL;
5124 }
5125
5126 err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5127 if (unlikely(err))
5128 return err;
5129
5130 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5131
5132 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5133 *vlan_tci = ntohs(vhdr->h_vlan_TCI);
5134
5135 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5136 __skb_pull(skb, VLAN_HLEN);
5137
5138 vlan_set_encap_proto(skb, vhdr);
5139 skb->mac_header += VLAN_HLEN;
5140
5141 if (skb_network_offset(skb) < ETH_HLEN)
5142 skb_set_network_header(skb, ETH_HLEN);
5143
5144 skb_reset_mac_len(skb);
5145
5146 return err;
5147}
5148EXPORT_SYMBOL(__skb_vlan_pop);
5149
5150/* Pop a vlan tag either from hwaccel or from payload.
5151 * Expects skb->data at mac header.
5152 */
5153int skb_vlan_pop(struct sk_buff *skb)
5154{
5155 u16 vlan_tci;
5156 __be16 vlan_proto;
5157 int err;
5158
5159 if (likely(skb_vlan_tag_present(skb))) {
5160 skb->vlan_tci = 0;
5161 } else {
5162 if (unlikely(!eth_type_vlan(skb->protocol)))
5163 return 0;
5164
5165 err = __skb_vlan_pop(skb, &vlan_tci);
5166 if (err)
5167 return err;
5168 }
5169 /* move next vlan tag to hw accel tag */
5170 if (likely(!eth_type_vlan(skb->protocol)))
5171 return 0;
5172
5173 vlan_proto = skb->protocol;
5174 err = __skb_vlan_pop(skb, &vlan_tci);
5175 if (unlikely(err))
5176 return err;
5177
5178 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5179 return 0;
5180}
5181EXPORT_SYMBOL(skb_vlan_pop);
5182
5183/* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5184 * Expects skb->data at mac header.
5185 */
5186int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5187{
5188 if (skb_vlan_tag_present(skb)) {
5189 int offset = skb->data - skb_mac_header(skb);
5190 int err;
5191
5192 if (WARN_ONCE(offset,
5193 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5194 offset)) {
5195 return -EINVAL;
5196 }
5197
5198 err = __vlan_insert_tag(skb, skb->vlan_proto,
5199 skb_vlan_tag_get(skb));
5200 if (err)
5201 return err;
5202
5203 skb->protocol = skb->vlan_proto;
5204 skb->mac_len += VLAN_HLEN;
5205
5206 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5207 }
5208 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5209 return 0;
5210}
5211EXPORT_SYMBOL(skb_vlan_push);
5212
5213/**
5214 * alloc_skb_with_frags - allocate skb with page frags
5215 *
5216 * @header_len: size of linear part
5217 * @data_len: needed length in frags
5218 * @max_page_order: max page order desired.
5219 * @errcode: pointer to error code if any
5220 * @gfp_mask: allocation mask
5221 *
5222 * This can be used to allocate a paged skb, given a maximal order for frags.
5223 */
5224struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5225 unsigned long data_len,
5226 int max_page_order,
5227 int *errcode,
5228 gfp_t gfp_mask)
5229{
5230 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5231 unsigned long chunk;
5232 struct sk_buff *skb;
5233 struct page *page;
5234 gfp_t gfp_head;
5235 int i;
5236
5237 *errcode = -EMSGSIZE;
5238 /* Note this test could be relaxed, if we succeed to allocate
5239 * high order pages...
5240 */
5241 if (npages > MAX_SKB_FRAGS)
5242 return NULL;
5243
5244 gfp_head = gfp_mask;
5245 if (gfp_head & __GFP_DIRECT_RECLAIM)
5246 gfp_head |= __GFP_RETRY_MAYFAIL;
5247
5248 *errcode = -ENOBUFS;
5249 skb = alloc_skb(header_len, gfp_head);
5250 if (!skb)
5251 return NULL;
5252
5253 skb->truesize += npages << PAGE_SHIFT;
5254
5255 for (i = 0; npages > 0; i++) {
5256 int order = max_page_order;
5257
5258 while (order) {
5259 if (npages >= 1 << order) {
5260 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
5261 __GFP_COMP |
5262 __GFP_NOWARN |
5263 __GFP_NORETRY,
5264 order);
5265 if (page)
5266 goto fill_page;
5267 /* Do not retry other high order allocations */
5268 order = 1;
5269 max_page_order = 0;
5270 }
5271 order--;
5272 }
5273 page = alloc_page(gfp_mask);
5274 if (!page)
5275 goto failure;
5276fill_page:
5277 chunk = min_t(unsigned long, data_len,
5278 PAGE_SIZE << order);
5279 skb_fill_page_desc(skb, i, page, 0, chunk);
5280 data_len -= chunk;
5281 npages -= 1 << order;
5282 }
5283 return skb;
5284
5285failure:
5286 kfree_skb(skb);
5287 return NULL;
5288}
5289EXPORT_SYMBOL(alloc_skb_with_frags);
5290
5291/* carve out the first off bytes from skb when off < headlen */
5292static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
5293 const int headlen, gfp_t gfp_mask)
5294{
5295 int i;
5296 int size = skb_end_offset(skb);
5297 int new_hlen = headlen - off;
5298 u8 *data;
5299
5300 size = SKB_DATA_ALIGN(size);
5301
5302 if (skb_pfmemalloc(skb))
5303 gfp_mask |= __GFP_MEMALLOC;
5304 data = kmalloc_reserve(size +
5305 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5306 gfp_mask, NUMA_NO_NODE, NULL);
5307 if (!data)
5308 return -ENOMEM;
5309
5310 size = SKB_WITH_OVERHEAD(ksize(data));
5311
5312 /* Copy real data, and all frags */
5313 skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
5314 skb->len -= off;
5315
5316 memcpy((struct skb_shared_info *)(data + size),
5317 skb_shinfo(skb),
5318 offsetof(struct skb_shared_info,
5319 frags[skb_shinfo(skb)->nr_frags]));
5320 if (skb_cloned(skb)) {
5321 /* drop the old head gracefully */
5322 if (skb_orphan_frags(skb, gfp_mask)) {
5323 kfree(data);
5324 return -ENOMEM;
5325 }
5326 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
5327 skb_frag_ref(skb, i);
5328 if (skb_has_frag_list(skb))
5329 skb_clone_fraglist(skb);
5330 skb_release_data(skb);
5331 } else {
5332 /* we can reuse existing recount- all we did was
5333 * relocate values
5334 */
5335 skb_free_head(skb);
5336 }
5337
5338 skb->head = data;
5339 skb->data = data;
5340 skb->head_frag = 0;
5341#ifdef NET_SKBUFF_DATA_USES_OFFSET
5342 skb->end = size;
5343#else
5344 skb->end = skb->head + size;
5345#endif
5346 skb_set_tail_pointer(skb, skb_headlen(skb));
5347 skb_headers_offset_update(skb, 0);
5348 skb->cloned = 0;
5349 skb->hdr_len = 0;
5350 skb->nohdr = 0;
5351 atomic_set(&skb_shinfo(skb)->dataref, 1);
5352
5353 return 0;
5354}
5355
5356static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
5357
5358/* carve out the first eat bytes from skb's frag_list. May recurse into
5359 * pskb_carve()
5360 */
5361static int pskb_carve_frag_list(struct sk_buff *skb,
5362 struct skb_shared_info *shinfo, int eat,
5363 gfp_t gfp_mask)
5364{
5365 struct sk_buff *list = shinfo->frag_list;
5366 struct sk_buff *clone = NULL;
5367 struct sk_buff *insp = NULL;
5368
5369 do {
5370 if (!list) {
5371 pr_err("Not enough bytes to eat. Want %d\n", eat);
5372 return -EFAULT;
5373 }
5374 if (list->len <= eat) {
5375 /* Eaten as whole. */
5376 eat -= list->len;
5377 list = list->next;
5378 insp = list;
5379 } else {
5380 /* Eaten partially. */
5381 if (skb_shared(list)) {
5382 clone = skb_clone(list, gfp_mask);
5383 if (!clone)
5384 return -ENOMEM;
5385 insp = list->next;
5386 list = clone;
5387 } else {
5388 /* This may be pulled without problems. */
5389 insp = list;
5390 }
5391 if (pskb_carve(list, eat, gfp_mask) < 0) {
5392 kfree_skb(clone);
5393 return -ENOMEM;
5394 }
5395 break;
5396 }
5397 } while (eat);
5398
5399 /* Free pulled out fragments. */
5400 while ((list = shinfo->frag_list) != insp) {
5401 shinfo->frag_list = list->next;
5402 kfree_skb(list);
5403 }
5404 /* And insert new clone at head. */
5405 if (clone) {
5406 clone->next = list;
5407 shinfo->frag_list = clone;
5408 }
5409 return 0;
5410}
5411
5412/* carve off first len bytes from skb. Split line (off) is in the
5413 * non-linear part of skb
5414 */
5415static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
5416 int pos, gfp_t gfp_mask)
5417{
5418 int i, k = 0;
5419 int size = skb_end_offset(skb);
5420 u8 *data;
5421 const int nfrags = skb_shinfo(skb)->nr_frags;
5422 struct skb_shared_info *shinfo;
5423
5424 size = SKB_DATA_ALIGN(size);
5425
5426 if (skb_pfmemalloc(skb))
5427 gfp_mask |= __GFP_MEMALLOC;
5428 data = kmalloc_reserve(size +
5429 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5430 gfp_mask, NUMA_NO_NODE, NULL);
5431 if (!data)
5432 return -ENOMEM;
5433
5434 size = SKB_WITH_OVERHEAD(ksize(data));
5435
5436 memcpy((struct skb_shared_info *)(data + size),
5437 skb_shinfo(skb), offsetof(struct skb_shared_info,
5438 frags[skb_shinfo(skb)->nr_frags]));
5439 if (skb_orphan_frags(skb, gfp_mask)) {
5440 kfree(data);
5441 return -ENOMEM;
5442 }
5443 shinfo = (struct skb_shared_info *)(data + size);
5444 for (i = 0; i < nfrags; i++) {
5445 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
5446
5447 if (pos + fsize > off) {
5448 shinfo->frags[k] = skb_shinfo(skb)->frags[i];
5449
5450 if (pos < off) {
5451 /* Split frag.
5452 * We have two variants in this case:
5453 * 1. Move all the frag to the second
5454 * part, if it is possible. F.e.
5455 * this approach is mandatory for TUX,
5456 * where splitting is expensive.
5457 * 2. Split is accurately. We make this.
5458 */
5459 shinfo->frags[0].page_offset += off - pos;
5460 skb_frag_size_sub(&shinfo->frags[0], off - pos);
5461 }
5462 skb_frag_ref(skb, i);
5463 k++;
5464 }
5465 pos += fsize;
5466 }
5467 shinfo->nr_frags = k;
5468 if (skb_has_frag_list(skb))
5469 skb_clone_fraglist(skb);
5470
5471 if (k == 0) {
5472 /* split line is in frag list */
5473 pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask);
5474 }
5475 skb_release_data(skb);
5476
5477 skb->head = data;
5478 skb->head_frag = 0;
5479 skb->data = data;
5480#ifdef NET_SKBUFF_DATA_USES_OFFSET
5481 skb->end = size;
5482#else
5483 skb->end = skb->head + size;
5484#endif
5485 skb_reset_tail_pointer(skb);
5486 skb_headers_offset_update(skb, 0);
5487 skb->cloned = 0;
5488 skb->hdr_len = 0;
5489 skb->nohdr = 0;
5490 skb->len -= off;
5491 skb->data_len = skb->len;
5492 atomic_set(&skb_shinfo(skb)->dataref, 1);
5493 return 0;
5494}
5495
5496/* remove len bytes from the beginning of the skb */
5497static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
5498{
5499 int headlen = skb_headlen(skb);
5500
5501 if (len < headlen)
5502 return pskb_carve_inside_header(skb, len, headlen, gfp);
5503 else
5504 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
5505}
5506
5507/* Extract to_copy bytes starting at off from skb, and return this in
5508 * a new skb
5509 */
5510struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
5511 int to_copy, gfp_t gfp)
5512{
5513 struct sk_buff *clone = skb_clone(skb, gfp);
5514
5515 if (!clone)
5516 return NULL;
5517
5518 if (pskb_carve(clone, off, gfp) < 0 ||
5519 pskb_trim(clone, to_copy)) {
5520 kfree_skb(clone);
5521 return NULL;
5522 }
5523 return clone;
5524}
5525EXPORT_SYMBOL(pskb_extract);
5526
5527/**
5528 * skb_condense - try to get rid of fragments/frag_list if possible
5529 * @skb: buffer
5530 *
5531 * Can be used to save memory before skb is added to a busy queue.
5532 * If packet has bytes in frags and enough tail room in skb->head,
5533 * pull all of them, so that we can free the frags right now and adjust
5534 * truesize.
5535 * Notes:
5536 * We do not reallocate skb->head thus can not fail.
5537 * Caller must re-evaluate skb->truesize if needed.
5538 */
5539void skb_condense(struct sk_buff *skb)
5540{
5541 if (skb->data_len) {
5542 if (skb->data_len > skb->end - skb->tail ||
5543 skb_cloned(skb))
5544 return;
5545
5546 /* Nice, we can free page frag(s) right now */
5547 __pskb_pull_tail(skb, skb->data_len);
5548 }
5549 /* At this point, skb->truesize might be over estimated,
5550 * because skb had a fragment, and fragments do not tell
5551 * their truesize.
5552 * When we pulled its content into skb->head, fragment
5553 * was freed, but __pskb_pull_tail() could not possibly
5554 * adjust skb->truesize, not knowing the frag truesize.
5555 */
5556 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5557}
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Routines having to do with the 'struct sk_buff' memory handlers.
4 *
5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
6 * Florian La Roche <rzsfl@rz.uni-sb.de>
7 *
8 * Fixes:
9 * Alan Cox : Fixed the worst of the load
10 * balancer bugs.
11 * Dave Platt : Interrupt stacking fix.
12 * Richard Kooijman : Timestamp fixes.
13 * Alan Cox : Changed buffer format.
14 * Alan Cox : destructor hook for AF_UNIX etc.
15 * Linus Torvalds : Better skb_clone.
16 * Alan Cox : Added skb_copy.
17 * Alan Cox : Added all the changed routines Linus
18 * only put in the headers
19 * Ray VanTassle : Fixed --skb->lock in free
20 * Alan Cox : skb_copy copy arp field
21 * Andi Kleen : slabified it.
22 * Robert Olsson : Removed skb_head_pool
23 *
24 * NOTE:
25 * The __skb_ routines should be called with interrupts
26 * disabled, or you better be *real* sure that the operation is atomic
27 * with respect to whatever list is being frobbed (e.g. via lock_sock()
28 * or via disabling bottom half handlers, etc).
29 */
30
31/*
32 * The functions in this file will not compile correctly with gcc 2.4.x
33 */
34
35#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37#include <linux/module.h>
38#include <linux/types.h>
39#include <linux/kernel.h>
40#include <linux/mm.h>
41#include <linux/interrupt.h>
42#include <linux/in.h>
43#include <linux/inet.h>
44#include <linux/slab.h>
45#include <linux/tcp.h>
46#include <linux/udp.h>
47#include <linux/sctp.h>
48#include <linux/netdevice.h>
49#ifdef CONFIG_NET_CLS_ACT
50#include <net/pkt_sched.h>
51#endif
52#include <linux/string.h>
53#include <linux/skbuff.h>
54#include <linux/splice.h>
55#include <linux/cache.h>
56#include <linux/rtnetlink.h>
57#include <linux/init.h>
58#include <linux/scatterlist.h>
59#include <linux/errqueue.h>
60#include <linux/prefetch.h>
61#include <linux/if_vlan.h>
62#include <linux/mpls.h>
63
64#include <net/protocol.h>
65#include <net/dst.h>
66#include <net/sock.h>
67#include <net/checksum.h>
68#include <net/ip6_checksum.h>
69#include <net/xfrm.h>
70#include <net/mpls.h>
71#include <net/mptcp.h>
72
73#include <linux/uaccess.h>
74#include <trace/events/skb.h>
75#include <linux/highmem.h>
76#include <linux/capability.h>
77#include <linux/user_namespace.h>
78#include <linux/indirect_call_wrapper.h>
79
80#include "datagram.h"
81
82struct kmem_cache *skbuff_head_cache __ro_after_init;
83static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
84#ifdef CONFIG_SKB_EXTENSIONS
85static struct kmem_cache *skbuff_ext_cache __ro_after_init;
86#endif
87int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
88EXPORT_SYMBOL(sysctl_max_skb_frags);
89
90/**
91 * skb_panic - private function for out-of-line support
92 * @skb: buffer
93 * @sz: size
94 * @addr: address
95 * @msg: skb_over_panic or skb_under_panic
96 *
97 * Out-of-line support for skb_put() and skb_push().
98 * Called via the wrapper skb_over_panic() or skb_under_panic().
99 * Keep out of line to prevent kernel bloat.
100 * __builtin_return_address is not used because it is not always reliable.
101 */
102static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
103 const char msg[])
104{
105 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
106 msg, addr, skb->len, sz, skb->head, skb->data,
107 (unsigned long)skb->tail, (unsigned long)skb->end,
108 skb->dev ? skb->dev->name : "<NULL>");
109 BUG();
110}
111
112static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
113{
114 skb_panic(skb, sz, addr, __func__);
115}
116
117static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
118{
119 skb_panic(skb, sz, addr, __func__);
120}
121
122/*
123 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
124 * the caller if emergency pfmemalloc reserves are being used. If it is and
125 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
126 * may be used. Otherwise, the packet data may be discarded until enough
127 * memory is free
128 */
129#define kmalloc_reserve(size, gfp, node, pfmemalloc) \
130 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
131
132static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
133 unsigned long ip, bool *pfmemalloc)
134{
135 void *obj;
136 bool ret_pfmemalloc = false;
137
138 /*
139 * Try a regular allocation, when that fails and we're not entitled
140 * to the reserves, fail.
141 */
142 obj = kmalloc_node_track_caller(size,
143 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
144 node);
145 if (obj || !(gfp_pfmemalloc_allowed(flags)))
146 goto out;
147
148 /* Try again but now we are using pfmemalloc reserves */
149 ret_pfmemalloc = true;
150 obj = kmalloc_node_track_caller(size, flags, node);
151
152out:
153 if (pfmemalloc)
154 *pfmemalloc = ret_pfmemalloc;
155
156 return obj;
157}
158
159/* Allocate a new skbuff. We do this ourselves so we can fill in a few
160 * 'private' fields and also do memory statistics to find all the
161 * [BEEP] leaks.
162 *
163 */
164
165/**
166 * __alloc_skb - allocate a network buffer
167 * @size: size to allocate
168 * @gfp_mask: allocation mask
169 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
170 * instead of head cache and allocate a cloned (child) skb.
171 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
172 * allocations in case the data is required for writeback
173 * @node: numa node to allocate memory on
174 *
175 * Allocate a new &sk_buff. The returned buffer has no headroom and a
176 * tail room of at least size bytes. The object has a reference count
177 * of one. The return is the buffer. On a failure the return is %NULL.
178 *
179 * Buffers may only be allocated from interrupts using a @gfp_mask of
180 * %GFP_ATOMIC.
181 */
182struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
183 int flags, int node)
184{
185 struct kmem_cache *cache;
186 struct skb_shared_info *shinfo;
187 struct sk_buff *skb;
188 u8 *data;
189 bool pfmemalloc;
190
191 cache = (flags & SKB_ALLOC_FCLONE)
192 ? skbuff_fclone_cache : skbuff_head_cache;
193
194 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
195 gfp_mask |= __GFP_MEMALLOC;
196
197 /* Get the HEAD */
198 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
199 if (!skb)
200 goto out;
201 prefetchw(skb);
202
203 /* We do our best to align skb_shared_info on a separate cache
204 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
205 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
206 * Both skb->head and skb_shared_info are cache line aligned.
207 */
208 size = SKB_DATA_ALIGN(size);
209 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
210 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
211 if (!data)
212 goto nodata;
213 /* kmalloc(size) might give us more room than requested.
214 * Put skb_shared_info exactly at the end of allocated zone,
215 * to allow max possible filling before reallocation.
216 */
217 size = SKB_WITH_OVERHEAD(ksize(data));
218 prefetchw(data + size);
219
220 /*
221 * Only clear those fields we need to clear, not those that we will
222 * actually initialise below. Hence, don't put any more fields after
223 * the tail pointer in struct sk_buff!
224 */
225 memset(skb, 0, offsetof(struct sk_buff, tail));
226 /* Account for allocated memory : skb + skb->head */
227 skb->truesize = SKB_TRUESIZE(size);
228 skb->pfmemalloc = pfmemalloc;
229 refcount_set(&skb->users, 1);
230 skb->head = data;
231 skb->data = data;
232 skb_reset_tail_pointer(skb);
233 skb->end = skb->tail + size;
234 skb->mac_header = (typeof(skb->mac_header))~0U;
235 skb->transport_header = (typeof(skb->transport_header))~0U;
236
237 /* make sure we initialize shinfo sequentially */
238 shinfo = skb_shinfo(skb);
239 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
240 atomic_set(&shinfo->dataref, 1);
241
242 if (flags & SKB_ALLOC_FCLONE) {
243 struct sk_buff_fclones *fclones;
244
245 fclones = container_of(skb, struct sk_buff_fclones, skb1);
246
247 skb->fclone = SKB_FCLONE_ORIG;
248 refcount_set(&fclones->fclone_ref, 1);
249
250 fclones->skb2.fclone = SKB_FCLONE_CLONE;
251 }
252out:
253 return skb;
254nodata:
255 kmem_cache_free(cache, skb);
256 skb = NULL;
257 goto out;
258}
259EXPORT_SYMBOL(__alloc_skb);
260
261/* Caller must provide SKB that is memset cleared */
262static struct sk_buff *__build_skb_around(struct sk_buff *skb,
263 void *data, unsigned int frag_size)
264{
265 struct skb_shared_info *shinfo;
266 unsigned int size = frag_size ? : ksize(data);
267
268 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
269
270 /* Assumes caller memset cleared SKB */
271 skb->truesize = SKB_TRUESIZE(size);
272 refcount_set(&skb->users, 1);
273 skb->head = data;
274 skb->data = data;
275 skb_reset_tail_pointer(skb);
276 skb->end = skb->tail + size;
277 skb->mac_header = (typeof(skb->mac_header))~0U;
278 skb->transport_header = (typeof(skb->transport_header))~0U;
279
280 /* make sure we initialize shinfo sequentially */
281 shinfo = skb_shinfo(skb);
282 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
283 atomic_set(&shinfo->dataref, 1);
284
285 return skb;
286}
287
288/**
289 * __build_skb - build a network buffer
290 * @data: data buffer provided by caller
291 * @frag_size: size of data, or 0 if head was kmalloced
292 *
293 * Allocate a new &sk_buff. Caller provides space holding head and
294 * skb_shared_info. @data must have been allocated by kmalloc() only if
295 * @frag_size is 0, otherwise data should come from the page allocator
296 * or vmalloc()
297 * The return is the new skb buffer.
298 * On a failure the return is %NULL, and @data is not freed.
299 * Notes :
300 * Before IO, driver allocates only data buffer where NIC put incoming frame
301 * Driver should add room at head (NET_SKB_PAD) and
302 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
303 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
304 * before giving packet to stack.
305 * RX rings only contains data buffers, not full skbs.
306 */
307struct sk_buff *__build_skb(void *data, unsigned int frag_size)
308{
309 struct sk_buff *skb;
310
311 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
312 if (unlikely(!skb))
313 return NULL;
314
315 memset(skb, 0, offsetof(struct sk_buff, tail));
316
317 return __build_skb_around(skb, data, frag_size);
318}
319
320/* build_skb() is wrapper over __build_skb(), that specifically
321 * takes care of skb->head and skb->pfmemalloc
322 * This means that if @frag_size is not zero, then @data must be backed
323 * by a page fragment, not kmalloc() or vmalloc()
324 */
325struct sk_buff *build_skb(void *data, unsigned int frag_size)
326{
327 struct sk_buff *skb = __build_skb(data, frag_size);
328
329 if (skb && frag_size) {
330 skb->head_frag = 1;
331 if (page_is_pfmemalloc(virt_to_head_page(data)))
332 skb->pfmemalloc = 1;
333 }
334 return skb;
335}
336EXPORT_SYMBOL(build_skb);
337
338/**
339 * build_skb_around - build a network buffer around provided skb
340 * @skb: sk_buff provide by caller, must be memset cleared
341 * @data: data buffer provided by caller
342 * @frag_size: size of data, or 0 if head was kmalloced
343 */
344struct sk_buff *build_skb_around(struct sk_buff *skb,
345 void *data, unsigned int frag_size)
346{
347 if (unlikely(!skb))
348 return NULL;
349
350 skb = __build_skb_around(skb, data, frag_size);
351
352 if (skb && frag_size) {
353 skb->head_frag = 1;
354 if (page_is_pfmemalloc(virt_to_head_page(data)))
355 skb->pfmemalloc = 1;
356 }
357 return skb;
358}
359EXPORT_SYMBOL(build_skb_around);
360
361#define NAPI_SKB_CACHE_SIZE 64
362
363struct napi_alloc_cache {
364 struct page_frag_cache page;
365 unsigned int skb_count;
366 void *skb_cache[NAPI_SKB_CACHE_SIZE];
367};
368
369static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
370static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
371
372static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
373{
374 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
375
376 return page_frag_alloc(&nc->page, fragsz, gfp_mask);
377}
378
379void *napi_alloc_frag(unsigned int fragsz)
380{
381 fragsz = SKB_DATA_ALIGN(fragsz);
382
383 return __napi_alloc_frag(fragsz, GFP_ATOMIC);
384}
385EXPORT_SYMBOL(napi_alloc_frag);
386
387/**
388 * netdev_alloc_frag - allocate a page fragment
389 * @fragsz: fragment size
390 *
391 * Allocates a frag from a page for receive buffer.
392 * Uses GFP_ATOMIC allocations.
393 */
394void *netdev_alloc_frag(unsigned int fragsz)
395{
396 struct page_frag_cache *nc;
397 void *data;
398
399 fragsz = SKB_DATA_ALIGN(fragsz);
400 if (in_irq() || irqs_disabled()) {
401 nc = this_cpu_ptr(&netdev_alloc_cache);
402 data = page_frag_alloc(nc, fragsz, GFP_ATOMIC);
403 } else {
404 local_bh_disable();
405 data = __napi_alloc_frag(fragsz, GFP_ATOMIC);
406 local_bh_enable();
407 }
408 return data;
409}
410EXPORT_SYMBOL(netdev_alloc_frag);
411
412/**
413 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
414 * @dev: network device to receive on
415 * @len: length to allocate
416 * @gfp_mask: get_free_pages mask, passed to alloc_skb
417 *
418 * Allocate a new &sk_buff and assign it a usage count of one. The
419 * buffer has NET_SKB_PAD headroom built in. Users should allocate
420 * the headroom they think they need without accounting for the
421 * built in space. The built in space is used for optimisations.
422 *
423 * %NULL is returned if there is no free memory.
424 */
425struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
426 gfp_t gfp_mask)
427{
428 struct page_frag_cache *nc;
429 struct sk_buff *skb;
430 bool pfmemalloc;
431 void *data;
432
433 len += NET_SKB_PAD;
434
435 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
436 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
437 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
438 if (!skb)
439 goto skb_fail;
440 goto skb_success;
441 }
442
443 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
444 len = SKB_DATA_ALIGN(len);
445
446 if (sk_memalloc_socks())
447 gfp_mask |= __GFP_MEMALLOC;
448
449 if (in_irq() || irqs_disabled()) {
450 nc = this_cpu_ptr(&netdev_alloc_cache);
451 data = page_frag_alloc(nc, len, gfp_mask);
452 pfmemalloc = nc->pfmemalloc;
453 } else {
454 local_bh_disable();
455 nc = this_cpu_ptr(&napi_alloc_cache.page);
456 data = page_frag_alloc(nc, len, gfp_mask);
457 pfmemalloc = nc->pfmemalloc;
458 local_bh_enable();
459 }
460
461 if (unlikely(!data))
462 return NULL;
463
464 skb = __build_skb(data, len);
465 if (unlikely(!skb)) {
466 skb_free_frag(data);
467 return NULL;
468 }
469
470 if (pfmemalloc)
471 skb->pfmemalloc = 1;
472 skb->head_frag = 1;
473
474skb_success:
475 skb_reserve(skb, NET_SKB_PAD);
476 skb->dev = dev;
477
478skb_fail:
479 return skb;
480}
481EXPORT_SYMBOL(__netdev_alloc_skb);
482
483/**
484 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
485 * @napi: napi instance this buffer was allocated for
486 * @len: length to allocate
487 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
488 *
489 * Allocate a new sk_buff for use in NAPI receive. This buffer will
490 * attempt to allocate the head from a special reserved region used
491 * only for NAPI Rx allocation. By doing this we can save several
492 * CPU cycles by avoiding having to disable and re-enable IRQs.
493 *
494 * %NULL is returned if there is no free memory.
495 */
496struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
497 gfp_t gfp_mask)
498{
499 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
500 struct sk_buff *skb;
501 void *data;
502
503 len += NET_SKB_PAD + NET_IP_ALIGN;
504
505 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
506 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
507 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
508 if (!skb)
509 goto skb_fail;
510 goto skb_success;
511 }
512
513 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
514 len = SKB_DATA_ALIGN(len);
515
516 if (sk_memalloc_socks())
517 gfp_mask |= __GFP_MEMALLOC;
518
519 data = page_frag_alloc(&nc->page, len, gfp_mask);
520 if (unlikely(!data))
521 return NULL;
522
523 skb = __build_skb(data, len);
524 if (unlikely(!skb)) {
525 skb_free_frag(data);
526 return NULL;
527 }
528
529 if (nc->page.pfmemalloc)
530 skb->pfmemalloc = 1;
531 skb->head_frag = 1;
532
533skb_success:
534 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
535 skb->dev = napi->dev;
536
537skb_fail:
538 return skb;
539}
540EXPORT_SYMBOL(__napi_alloc_skb);
541
542void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
543 int size, unsigned int truesize)
544{
545 skb_fill_page_desc(skb, i, page, off, size);
546 skb->len += size;
547 skb->data_len += size;
548 skb->truesize += truesize;
549}
550EXPORT_SYMBOL(skb_add_rx_frag);
551
552void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
553 unsigned int truesize)
554{
555 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
556
557 skb_frag_size_add(frag, size);
558 skb->len += size;
559 skb->data_len += size;
560 skb->truesize += truesize;
561}
562EXPORT_SYMBOL(skb_coalesce_rx_frag);
563
564static void skb_drop_list(struct sk_buff **listp)
565{
566 kfree_skb_list(*listp);
567 *listp = NULL;
568}
569
570static inline void skb_drop_fraglist(struct sk_buff *skb)
571{
572 skb_drop_list(&skb_shinfo(skb)->frag_list);
573}
574
575static void skb_clone_fraglist(struct sk_buff *skb)
576{
577 struct sk_buff *list;
578
579 skb_walk_frags(skb, list)
580 skb_get(list);
581}
582
583static void skb_free_head(struct sk_buff *skb)
584{
585 unsigned char *head = skb->head;
586
587 if (skb->head_frag)
588 skb_free_frag(head);
589 else
590 kfree(head);
591}
592
593static void skb_release_data(struct sk_buff *skb)
594{
595 struct skb_shared_info *shinfo = skb_shinfo(skb);
596 int i;
597
598 if (skb->cloned &&
599 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
600 &shinfo->dataref))
601 return;
602
603 for (i = 0; i < shinfo->nr_frags; i++)
604 __skb_frag_unref(&shinfo->frags[i]);
605
606 if (shinfo->frag_list)
607 kfree_skb_list(shinfo->frag_list);
608
609 skb_zcopy_clear(skb, true);
610 skb_free_head(skb);
611}
612
613/*
614 * Free an skbuff by memory without cleaning the state.
615 */
616static void kfree_skbmem(struct sk_buff *skb)
617{
618 struct sk_buff_fclones *fclones;
619
620 switch (skb->fclone) {
621 case SKB_FCLONE_UNAVAILABLE:
622 kmem_cache_free(skbuff_head_cache, skb);
623 return;
624
625 case SKB_FCLONE_ORIG:
626 fclones = container_of(skb, struct sk_buff_fclones, skb1);
627
628 /* We usually free the clone (TX completion) before original skb
629 * This test would have no chance to be true for the clone,
630 * while here, branch prediction will be good.
631 */
632 if (refcount_read(&fclones->fclone_ref) == 1)
633 goto fastpath;
634 break;
635
636 default: /* SKB_FCLONE_CLONE */
637 fclones = container_of(skb, struct sk_buff_fclones, skb2);
638 break;
639 }
640 if (!refcount_dec_and_test(&fclones->fclone_ref))
641 return;
642fastpath:
643 kmem_cache_free(skbuff_fclone_cache, fclones);
644}
645
646void skb_release_head_state(struct sk_buff *skb)
647{
648 skb_dst_drop(skb);
649 if (skb->destructor) {
650 WARN_ON(in_irq());
651 skb->destructor(skb);
652 }
653#if IS_ENABLED(CONFIG_NF_CONNTRACK)
654 nf_conntrack_put(skb_nfct(skb));
655#endif
656 skb_ext_put(skb);
657}
658
659/* Free everything but the sk_buff shell. */
660static void skb_release_all(struct sk_buff *skb)
661{
662 skb_release_head_state(skb);
663 if (likely(skb->head))
664 skb_release_data(skb);
665}
666
667/**
668 * __kfree_skb - private function
669 * @skb: buffer
670 *
671 * Free an sk_buff. Release anything attached to the buffer.
672 * Clean the state. This is an internal helper function. Users should
673 * always call kfree_skb
674 */
675
676void __kfree_skb(struct sk_buff *skb)
677{
678 skb_release_all(skb);
679 kfree_skbmem(skb);
680}
681EXPORT_SYMBOL(__kfree_skb);
682
683/**
684 * kfree_skb - free an sk_buff
685 * @skb: buffer to free
686 *
687 * Drop a reference to the buffer and free it if the usage count has
688 * hit zero.
689 */
690void kfree_skb(struct sk_buff *skb)
691{
692 if (!skb_unref(skb))
693 return;
694
695 trace_kfree_skb(skb, __builtin_return_address(0));
696 __kfree_skb(skb);
697}
698EXPORT_SYMBOL(kfree_skb);
699
700void kfree_skb_list(struct sk_buff *segs)
701{
702 while (segs) {
703 struct sk_buff *next = segs->next;
704
705 kfree_skb(segs);
706 segs = next;
707 }
708}
709EXPORT_SYMBOL(kfree_skb_list);
710
711/* Dump skb information and contents.
712 *
713 * Must only be called from net_ratelimit()-ed paths.
714 *
715 * Dumps up to can_dump_full whole packets if full_pkt, headers otherwise.
716 */
717void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
718{
719 static atomic_t can_dump_full = ATOMIC_INIT(5);
720 struct skb_shared_info *sh = skb_shinfo(skb);
721 struct net_device *dev = skb->dev;
722 struct sock *sk = skb->sk;
723 struct sk_buff *list_skb;
724 bool has_mac, has_trans;
725 int headroom, tailroom;
726 int i, len, seg_len;
727
728 if (full_pkt)
729 full_pkt = atomic_dec_if_positive(&can_dump_full) >= 0;
730
731 if (full_pkt)
732 len = skb->len;
733 else
734 len = min_t(int, skb->len, MAX_HEADER + 128);
735
736 headroom = skb_headroom(skb);
737 tailroom = skb_tailroom(skb);
738
739 has_mac = skb_mac_header_was_set(skb);
740 has_trans = skb_transport_header_was_set(skb);
741
742 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
743 "mac=(%d,%d) net=(%d,%d) trans=%d\n"
744 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
745 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
746 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
747 level, skb->len, headroom, skb_headlen(skb), tailroom,
748 has_mac ? skb->mac_header : -1,
749 has_mac ? skb_mac_header_len(skb) : -1,
750 skb->network_header,
751 has_trans ? skb_network_header_len(skb) : -1,
752 has_trans ? skb->transport_header : -1,
753 sh->tx_flags, sh->nr_frags,
754 sh->gso_size, sh->gso_type, sh->gso_segs,
755 skb->csum, skb->ip_summed, skb->csum_complete_sw,
756 skb->csum_valid, skb->csum_level,
757 skb->hash, skb->sw_hash, skb->l4_hash,
758 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
759
760 if (dev)
761 printk("%sdev name=%s feat=0x%pNF\n",
762 level, dev->name, &dev->features);
763 if (sk)
764 printk("%ssk family=%hu type=%u proto=%u\n",
765 level, sk->sk_family, sk->sk_type, sk->sk_protocol);
766
767 if (full_pkt && headroom)
768 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
769 16, 1, skb->head, headroom, false);
770
771 seg_len = min_t(int, skb_headlen(skb), len);
772 if (seg_len)
773 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET,
774 16, 1, skb->data, seg_len, false);
775 len -= seg_len;
776
777 if (full_pkt && tailroom)
778 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
779 16, 1, skb_tail_pointer(skb), tailroom, false);
780
781 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
782 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
783 u32 p_off, p_len, copied;
784 struct page *p;
785 u8 *vaddr;
786
787 skb_frag_foreach_page(frag, skb_frag_off(frag),
788 skb_frag_size(frag), p, p_off, p_len,
789 copied) {
790 seg_len = min_t(int, p_len, len);
791 vaddr = kmap_atomic(p);
792 print_hex_dump(level, "skb frag: ",
793 DUMP_PREFIX_OFFSET,
794 16, 1, vaddr + p_off, seg_len, false);
795 kunmap_atomic(vaddr);
796 len -= seg_len;
797 if (!len)
798 break;
799 }
800 }
801
802 if (full_pkt && skb_has_frag_list(skb)) {
803 printk("skb fraglist:\n");
804 skb_walk_frags(skb, list_skb)
805 skb_dump(level, list_skb, true);
806 }
807}
808EXPORT_SYMBOL(skb_dump);
809
810/**
811 * skb_tx_error - report an sk_buff xmit error
812 * @skb: buffer that triggered an error
813 *
814 * Report xmit error if a device callback is tracking this skb.
815 * skb must be freed afterwards.
816 */
817void skb_tx_error(struct sk_buff *skb)
818{
819 skb_zcopy_clear(skb, true);
820}
821EXPORT_SYMBOL(skb_tx_error);
822
823#ifdef CONFIG_TRACEPOINTS
824/**
825 * consume_skb - free an skbuff
826 * @skb: buffer to free
827 *
828 * Drop a ref to the buffer and free it if the usage count has hit zero
829 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
830 * is being dropped after a failure and notes that
831 */
832void consume_skb(struct sk_buff *skb)
833{
834 if (!skb_unref(skb))
835 return;
836
837 trace_consume_skb(skb);
838 __kfree_skb(skb);
839}
840EXPORT_SYMBOL(consume_skb);
841#endif
842
843/**
844 * consume_stateless_skb - free an skbuff, assuming it is stateless
845 * @skb: buffer to free
846 *
847 * Alike consume_skb(), but this variant assumes that this is the last
848 * skb reference and all the head states have been already dropped
849 */
850void __consume_stateless_skb(struct sk_buff *skb)
851{
852 trace_consume_skb(skb);
853 skb_release_data(skb);
854 kfree_skbmem(skb);
855}
856
857void __kfree_skb_flush(void)
858{
859 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
860
861 /* flush skb_cache if containing objects */
862 if (nc->skb_count) {
863 kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
864 nc->skb_cache);
865 nc->skb_count = 0;
866 }
867}
868
869static inline void _kfree_skb_defer(struct sk_buff *skb)
870{
871 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
872
873 /* drop skb->head and call any destructors for packet */
874 skb_release_all(skb);
875
876 /* record skb to CPU local list */
877 nc->skb_cache[nc->skb_count++] = skb;
878
879#ifdef CONFIG_SLUB
880 /* SLUB writes into objects when freeing */
881 prefetchw(skb);
882#endif
883
884 /* flush skb_cache if it is filled */
885 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
886 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
887 nc->skb_cache);
888 nc->skb_count = 0;
889 }
890}
891void __kfree_skb_defer(struct sk_buff *skb)
892{
893 _kfree_skb_defer(skb);
894}
895
896void napi_consume_skb(struct sk_buff *skb, int budget)
897{
898 if (unlikely(!skb))
899 return;
900
901 /* Zero budget indicate non-NAPI context called us, like netpoll */
902 if (unlikely(!budget)) {
903 dev_consume_skb_any(skb);
904 return;
905 }
906
907 if (!skb_unref(skb))
908 return;
909
910 /* if reaching here SKB is ready to free */
911 trace_consume_skb(skb);
912
913 /* if SKB is a clone, don't handle this case */
914 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
915 __kfree_skb(skb);
916 return;
917 }
918
919 _kfree_skb_defer(skb);
920}
921EXPORT_SYMBOL(napi_consume_skb);
922
923/* Make sure a field is enclosed inside headers_start/headers_end section */
924#define CHECK_SKB_FIELD(field) \
925 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \
926 offsetof(struct sk_buff, headers_start)); \
927 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \
928 offsetof(struct sk_buff, headers_end)); \
929
930static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
931{
932 new->tstamp = old->tstamp;
933 /* We do not copy old->sk */
934 new->dev = old->dev;
935 memcpy(new->cb, old->cb, sizeof(old->cb));
936 skb_dst_copy(new, old);
937 __skb_ext_copy(new, old);
938 __nf_copy(new, old, false);
939
940 /* Note : this field could be in headers_start/headers_end section
941 * It is not yet because we do not want to have a 16 bit hole
942 */
943 new->queue_mapping = old->queue_mapping;
944
945 memcpy(&new->headers_start, &old->headers_start,
946 offsetof(struct sk_buff, headers_end) -
947 offsetof(struct sk_buff, headers_start));
948 CHECK_SKB_FIELD(protocol);
949 CHECK_SKB_FIELD(csum);
950 CHECK_SKB_FIELD(hash);
951 CHECK_SKB_FIELD(priority);
952 CHECK_SKB_FIELD(skb_iif);
953 CHECK_SKB_FIELD(vlan_proto);
954 CHECK_SKB_FIELD(vlan_tci);
955 CHECK_SKB_FIELD(transport_header);
956 CHECK_SKB_FIELD(network_header);
957 CHECK_SKB_FIELD(mac_header);
958 CHECK_SKB_FIELD(inner_protocol);
959 CHECK_SKB_FIELD(inner_transport_header);
960 CHECK_SKB_FIELD(inner_network_header);
961 CHECK_SKB_FIELD(inner_mac_header);
962 CHECK_SKB_FIELD(mark);
963#ifdef CONFIG_NETWORK_SECMARK
964 CHECK_SKB_FIELD(secmark);
965#endif
966#ifdef CONFIG_NET_RX_BUSY_POLL
967 CHECK_SKB_FIELD(napi_id);
968#endif
969#ifdef CONFIG_XPS
970 CHECK_SKB_FIELD(sender_cpu);
971#endif
972#ifdef CONFIG_NET_SCHED
973 CHECK_SKB_FIELD(tc_index);
974#endif
975
976}
977
978/*
979 * You should not add any new code to this function. Add it to
980 * __copy_skb_header above instead.
981 */
982static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
983{
984#define C(x) n->x = skb->x
985
986 n->next = n->prev = NULL;
987 n->sk = NULL;
988 __copy_skb_header(n, skb);
989
990 C(len);
991 C(data_len);
992 C(mac_len);
993 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
994 n->cloned = 1;
995 n->nohdr = 0;
996 n->peeked = 0;
997 C(pfmemalloc);
998 n->destructor = NULL;
999 C(tail);
1000 C(end);
1001 C(head);
1002 C(head_frag);
1003 C(data);
1004 C(truesize);
1005 refcount_set(&n->users, 1);
1006
1007 atomic_inc(&(skb_shinfo(skb)->dataref));
1008 skb->cloned = 1;
1009
1010 return n;
1011#undef C
1012}
1013
1014/**
1015 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1016 * @first: first sk_buff of the msg
1017 */
1018struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1019{
1020 struct sk_buff *n;
1021
1022 n = alloc_skb(0, GFP_ATOMIC);
1023 if (!n)
1024 return NULL;
1025
1026 n->len = first->len;
1027 n->data_len = first->len;
1028 n->truesize = first->truesize;
1029
1030 skb_shinfo(n)->frag_list = first;
1031
1032 __copy_skb_header(n, first);
1033 n->destructor = NULL;
1034
1035 return n;
1036}
1037EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1038
1039/**
1040 * skb_morph - morph one skb into another
1041 * @dst: the skb to receive the contents
1042 * @src: the skb to supply the contents
1043 *
1044 * This is identical to skb_clone except that the target skb is
1045 * supplied by the user.
1046 *
1047 * The target skb is returned upon exit.
1048 */
1049struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1050{
1051 skb_release_all(dst);
1052 return __skb_clone(dst, src);
1053}
1054EXPORT_SYMBOL_GPL(skb_morph);
1055
1056int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1057{
1058 unsigned long max_pg, num_pg, new_pg, old_pg;
1059 struct user_struct *user;
1060
1061 if (capable(CAP_IPC_LOCK) || !size)
1062 return 0;
1063
1064 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */
1065 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1066 user = mmp->user ? : current_user();
1067
1068 do {
1069 old_pg = atomic_long_read(&user->locked_vm);
1070 new_pg = old_pg + num_pg;
1071 if (new_pg > max_pg)
1072 return -ENOBUFS;
1073 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
1074 old_pg);
1075
1076 if (!mmp->user) {
1077 mmp->user = get_uid(user);
1078 mmp->num_pg = num_pg;
1079 } else {
1080 mmp->num_pg += num_pg;
1081 }
1082
1083 return 0;
1084}
1085EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1086
1087void mm_unaccount_pinned_pages(struct mmpin *mmp)
1088{
1089 if (mmp->user) {
1090 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1091 free_uid(mmp->user);
1092 }
1093}
1094EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1095
1096struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size)
1097{
1098 struct ubuf_info *uarg;
1099 struct sk_buff *skb;
1100
1101 WARN_ON_ONCE(!in_task());
1102
1103 skb = sock_omalloc(sk, 0, GFP_KERNEL);
1104 if (!skb)
1105 return NULL;
1106
1107 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1108 uarg = (void *)skb->cb;
1109 uarg->mmp.user = NULL;
1110
1111 if (mm_account_pinned_pages(&uarg->mmp, size)) {
1112 kfree_skb(skb);
1113 return NULL;
1114 }
1115
1116 uarg->callback = sock_zerocopy_callback;
1117 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1118 uarg->len = 1;
1119 uarg->bytelen = size;
1120 uarg->zerocopy = 1;
1121 refcount_set(&uarg->refcnt, 1);
1122 sock_hold(sk);
1123
1124 return uarg;
1125}
1126EXPORT_SYMBOL_GPL(sock_zerocopy_alloc);
1127
1128static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
1129{
1130 return container_of((void *)uarg, struct sk_buff, cb);
1131}
1132
1133struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
1134 struct ubuf_info *uarg)
1135{
1136 if (uarg) {
1137 const u32 byte_limit = 1 << 19; /* limit to a few TSO */
1138 u32 bytelen, next;
1139
1140 /* realloc only when socket is locked (TCP, UDP cork),
1141 * so uarg->len and sk_zckey access is serialized
1142 */
1143 if (!sock_owned_by_user(sk)) {
1144 WARN_ON_ONCE(1);
1145 return NULL;
1146 }
1147
1148 bytelen = uarg->bytelen + size;
1149 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1150 /* TCP can create new skb to attach new uarg */
1151 if (sk->sk_type == SOCK_STREAM)
1152 goto new_alloc;
1153 return NULL;
1154 }
1155
1156 next = (u32)atomic_read(&sk->sk_zckey);
1157 if ((u32)(uarg->id + uarg->len) == next) {
1158 if (mm_account_pinned_pages(&uarg->mmp, size))
1159 return NULL;
1160 uarg->len++;
1161 uarg->bytelen = bytelen;
1162 atomic_set(&sk->sk_zckey, ++next);
1163
1164 /* no extra ref when appending to datagram (MSG_MORE) */
1165 if (sk->sk_type == SOCK_STREAM)
1166 sock_zerocopy_get(uarg);
1167
1168 return uarg;
1169 }
1170 }
1171
1172new_alloc:
1173 return sock_zerocopy_alloc(sk, size);
1174}
1175EXPORT_SYMBOL_GPL(sock_zerocopy_realloc);
1176
1177static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1178{
1179 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1180 u32 old_lo, old_hi;
1181 u64 sum_len;
1182
1183 old_lo = serr->ee.ee_info;
1184 old_hi = serr->ee.ee_data;
1185 sum_len = old_hi - old_lo + 1ULL + len;
1186
1187 if (sum_len >= (1ULL << 32))
1188 return false;
1189
1190 if (lo != old_hi + 1)
1191 return false;
1192
1193 serr->ee.ee_data += len;
1194 return true;
1195}
1196
1197void sock_zerocopy_callback(struct ubuf_info *uarg, bool success)
1198{
1199 struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1200 struct sock_exterr_skb *serr;
1201 struct sock *sk = skb->sk;
1202 struct sk_buff_head *q;
1203 unsigned long flags;
1204 u32 lo, hi;
1205 u16 len;
1206
1207 mm_unaccount_pinned_pages(&uarg->mmp);
1208
1209 /* if !len, there was only 1 call, and it was aborted
1210 * so do not queue a completion notification
1211 */
1212 if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1213 goto release;
1214
1215 len = uarg->len;
1216 lo = uarg->id;
1217 hi = uarg->id + len - 1;
1218
1219 serr = SKB_EXT_ERR(skb);
1220 memset(serr, 0, sizeof(*serr));
1221 serr->ee.ee_errno = 0;
1222 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1223 serr->ee.ee_data = hi;
1224 serr->ee.ee_info = lo;
1225 if (!success)
1226 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1227
1228 q = &sk->sk_error_queue;
1229 spin_lock_irqsave(&q->lock, flags);
1230 tail = skb_peek_tail(q);
1231 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1232 !skb_zerocopy_notify_extend(tail, lo, len)) {
1233 __skb_queue_tail(q, skb);
1234 skb = NULL;
1235 }
1236 spin_unlock_irqrestore(&q->lock, flags);
1237
1238 sk->sk_error_report(sk);
1239
1240release:
1241 consume_skb(skb);
1242 sock_put(sk);
1243}
1244EXPORT_SYMBOL_GPL(sock_zerocopy_callback);
1245
1246void sock_zerocopy_put(struct ubuf_info *uarg)
1247{
1248 if (uarg && refcount_dec_and_test(&uarg->refcnt)) {
1249 if (uarg->callback)
1250 uarg->callback(uarg, uarg->zerocopy);
1251 else
1252 consume_skb(skb_from_uarg(uarg));
1253 }
1254}
1255EXPORT_SYMBOL_GPL(sock_zerocopy_put);
1256
1257void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1258{
1259 if (uarg) {
1260 struct sock *sk = skb_from_uarg(uarg)->sk;
1261
1262 atomic_dec(&sk->sk_zckey);
1263 uarg->len--;
1264
1265 if (have_uref)
1266 sock_zerocopy_put(uarg);
1267 }
1268}
1269EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort);
1270
1271int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len)
1272{
1273 return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len);
1274}
1275EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram);
1276
1277int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1278 struct msghdr *msg, int len,
1279 struct ubuf_info *uarg)
1280{
1281 struct ubuf_info *orig_uarg = skb_zcopy(skb);
1282 struct iov_iter orig_iter = msg->msg_iter;
1283 int err, orig_len = skb->len;
1284
1285 /* An skb can only point to one uarg. This edge case happens when
1286 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1287 */
1288 if (orig_uarg && uarg != orig_uarg)
1289 return -EEXIST;
1290
1291 err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1292 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1293 struct sock *save_sk = skb->sk;
1294
1295 /* Streams do not free skb on error. Reset to prev state. */
1296 msg->msg_iter = orig_iter;
1297 skb->sk = sk;
1298 ___pskb_trim(skb, orig_len);
1299 skb->sk = save_sk;
1300 return err;
1301 }
1302
1303 skb_zcopy_set(skb, uarg, NULL);
1304 return skb->len - orig_len;
1305}
1306EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1307
1308static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1309 gfp_t gfp_mask)
1310{
1311 if (skb_zcopy(orig)) {
1312 if (skb_zcopy(nskb)) {
1313 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1314 if (!gfp_mask) {
1315 WARN_ON_ONCE(1);
1316 return -ENOMEM;
1317 }
1318 if (skb_uarg(nskb) == skb_uarg(orig))
1319 return 0;
1320 if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1321 return -EIO;
1322 }
1323 skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1324 }
1325 return 0;
1326}
1327
1328/**
1329 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
1330 * @skb: the skb to modify
1331 * @gfp_mask: allocation priority
1332 *
1333 * This must be called on SKBTX_DEV_ZEROCOPY skb.
1334 * It will copy all frags into kernel and drop the reference
1335 * to userspace pages.
1336 *
1337 * If this function is called from an interrupt gfp_mask() must be
1338 * %GFP_ATOMIC.
1339 *
1340 * Returns 0 on success or a negative error code on failure
1341 * to allocate kernel memory to copy to.
1342 */
1343int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1344{
1345 int num_frags = skb_shinfo(skb)->nr_frags;
1346 struct page *page, *head = NULL;
1347 int i, new_frags;
1348 u32 d_off;
1349
1350 if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1351 return -EINVAL;
1352
1353 if (!num_frags)
1354 goto release;
1355
1356 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1357 for (i = 0; i < new_frags; i++) {
1358 page = alloc_page(gfp_mask);
1359 if (!page) {
1360 while (head) {
1361 struct page *next = (struct page *)page_private(head);
1362 put_page(head);
1363 head = next;
1364 }
1365 return -ENOMEM;
1366 }
1367 set_page_private(page, (unsigned long)head);
1368 head = page;
1369 }
1370
1371 page = head;
1372 d_off = 0;
1373 for (i = 0; i < num_frags; i++) {
1374 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1375 u32 p_off, p_len, copied;
1376 struct page *p;
1377 u8 *vaddr;
1378
1379 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1380 p, p_off, p_len, copied) {
1381 u32 copy, done = 0;
1382 vaddr = kmap_atomic(p);
1383
1384 while (done < p_len) {
1385 if (d_off == PAGE_SIZE) {
1386 d_off = 0;
1387 page = (struct page *)page_private(page);
1388 }
1389 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1390 memcpy(page_address(page) + d_off,
1391 vaddr + p_off + done, copy);
1392 done += copy;
1393 d_off += copy;
1394 }
1395 kunmap_atomic(vaddr);
1396 }
1397 }
1398
1399 /* skb frags release userspace buffers */
1400 for (i = 0; i < num_frags; i++)
1401 skb_frag_unref(skb, i);
1402
1403 /* skb frags point to kernel buffers */
1404 for (i = 0; i < new_frags - 1; i++) {
1405 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1406 head = (struct page *)page_private(head);
1407 }
1408 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1409 skb_shinfo(skb)->nr_frags = new_frags;
1410
1411release:
1412 skb_zcopy_clear(skb, false);
1413 return 0;
1414}
1415EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1416
1417/**
1418 * skb_clone - duplicate an sk_buff
1419 * @skb: buffer to clone
1420 * @gfp_mask: allocation priority
1421 *
1422 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
1423 * copies share the same packet data but not structure. The new
1424 * buffer has a reference count of 1. If the allocation fails the
1425 * function returns %NULL otherwise the new buffer is returned.
1426 *
1427 * If this function is called from an interrupt gfp_mask() must be
1428 * %GFP_ATOMIC.
1429 */
1430
1431struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1432{
1433 struct sk_buff_fclones *fclones = container_of(skb,
1434 struct sk_buff_fclones,
1435 skb1);
1436 struct sk_buff *n;
1437
1438 if (skb_orphan_frags(skb, gfp_mask))
1439 return NULL;
1440
1441 if (skb->fclone == SKB_FCLONE_ORIG &&
1442 refcount_read(&fclones->fclone_ref) == 1) {
1443 n = &fclones->skb2;
1444 refcount_set(&fclones->fclone_ref, 2);
1445 } else {
1446 if (skb_pfmemalloc(skb))
1447 gfp_mask |= __GFP_MEMALLOC;
1448
1449 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1450 if (!n)
1451 return NULL;
1452
1453 n->fclone = SKB_FCLONE_UNAVAILABLE;
1454 }
1455
1456 return __skb_clone(n, skb);
1457}
1458EXPORT_SYMBOL(skb_clone);
1459
1460void skb_headers_offset_update(struct sk_buff *skb, int off)
1461{
1462 /* Only adjust this if it actually is csum_start rather than csum */
1463 if (skb->ip_summed == CHECKSUM_PARTIAL)
1464 skb->csum_start += off;
1465 /* {transport,network,mac}_header and tail are relative to skb->head */
1466 skb->transport_header += off;
1467 skb->network_header += off;
1468 if (skb_mac_header_was_set(skb))
1469 skb->mac_header += off;
1470 skb->inner_transport_header += off;
1471 skb->inner_network_header += off;
1472 skb->inner_mac_header += off;
1473}
1474EXPORT_SYMBOL(skb_headers_offset_update);
1475
1476void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1477{
1478 __copy_skb_header(new, old);
1479
1480 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1481 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1482 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1483}
1484EXPORT_SYMBOL(skb_copy_header);
1485
1486static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1487{
1488 if (skb_pfmemalloc(skb))
1489 return SKB_ALLOC_RX;
1490 return 0;
1491}
1492
1493/**
1494 * skb_copy - create private copy of an sk_buff
1495 * @skb: buffer to copy
1496 * @gfp_mask: allocation priority
1497 *
1498 * Make a copy of both an &sk_buff and its data. This is used when the
1499 * caller wishes to modify the data and needs a private copy of the
1500 * data to alter. Returns %NULL on failure or the pointer to the buffer
1501 * on success. The returned buffer has a reference count of 1.
1502 *
1503 * As by-product this function converts non-linear &sk_buff to linear
1504 * one, so that &sk_buff becomes completely private and caller is allowed
1505 * to modify all the data of returned buffer. This means that this
1506 * function is not recommended for use in circumstances when only
1507 * header is going to be modified. Use pskb_copy() instead.
1508 */
1509
1510struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1511{
1512 int headerlen = skb_headroom(skb);
1513 unsigned int size = skb_end_offset(skb) + skb->data_len;
1514 struct sk_buff *n = __alloc_skb(size, gfp_mask,
1515 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1516
1517 if (!n)
1518 return NULL;
1519
1520 /* Set the data pointer */
1521 skb_reserve(n, headerlen);
1522 /* Set the tail pointer and length */
1523 skb_put(n, skb->len);
1524
1525 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1526
1527 skb_copy_header(n, skb);
1528 return n;
1529}
1530EXPORT_SYMBOL(skb_copy);
1531
1532/**
1533 * __pskb_copy_fclone - create copy of an sk_buff with private head.
1534 * @skb: buffer to copy
1535 * @headroom: headroom of new skb
1536 * @gfp_mask: allocation priority
1537 * @fclone: if true allocate the copy of the skb from the fclone
1538 * cache instead of the head cache; it is recommended to set this
1539 * to true for the cases where the copy will likely be cloned
1540 *
1541 * Make a copy of both an &sk_buff and part of its data, located
1542 * in header. Fragmented data remain shared. This is used when
1543 * the caller wishes to modify only header of &sk_buff and needs
1544 * private copy of the header to alter. Returns %NULL on failure
1545 * or the pointer to the buffer on success.
1546 * The returned buffer has a reference count of 1.
1547 */
1548
1549struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1550 gfp_t gfp_mask, bool fclone)
1551{
1552 unsigned int size = skb_headlen(skb) + headroom;
1553 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1554 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1555
1556 if (!n)
1557 goto out;
1558
1559 /* Set the data pointer */
1560 skb_reserve(n, headroom);
1561 /* Set the tail pointer and length */
1562 skb_put(n, skb_headlen(skb));
1563 /* Copy the bytes */
1564 skb_copy_from_linear_data(skb, n->data, n->len);
1565
1566 n->truesize += skb->data_len;
1567 n->data_len = skb->data_len;
1568 n->len = skb->len;
1569
1570 if (skb_shinfo(skb)->nr_frags) {
1571 int i;
1572
1573 if (skb_orphan_frags(skb, gfp_mask) ||
1574 skb_zerocopy_clone(n, skb, gfp_mask)) {
1575 kfree_skb(n);
1576 n = NULL;
1577 goto out;
1578 }
1579 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1580 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1581 skb_frag_ref(skb, i);
1582 }
1583 skb_shinfo(n)->nr_frags = i;
1584 }
1585
1586 if (skb_has_frag_list(skb)) {
1587 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1588 skb_clone_fraglist(n);
1589 }
1590
1591 skb_copy_header(n, skb);
1592out:
1593 return n;
1594}
1595EXPORT_SYMBOL(__pskb_copy_fclone);
1596
1597/**
1598 * pskb_expand_head - reallocate header of &sk_buff
1599 * @skb: buffer to reallocate
1600 * @nhead: room to add at head
1601 * @ntail: room to add at tail
1602 * @gfp_mask: allocation priority
1603 *
1604 * Expands (or creates identical copy, if @nhead and @ntail are zero)
1605 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1606 * reference count of 1. Returns zero in the case of success or error,
1607 * if expansion failed. In the last case, &sk_buff is not changed.
1608 *
1609 * All the pointers pointing into skb header may change and must be
1610 * reloaded after call to this function.
1611 */
1612
1613int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1614 gfp_t gfp_mask)
1615{
1616 int i, osize = skb_end_offset(skb);
1617 int size = osize + nhead + ntail;
1618 long off;
1619 u8 *data;
1620
1621 BUG_ON(nhead < 0);
1622
1623 BUG_ON(skb_shared(skb));
1624
1625 size = SKB_DATA_ALIGN(size);
1626
1627 if (skb_pfmemalloc(skb))
1628 gfp_mask |= __GFP_MEMALLOC;
1629 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1630 gfp_mask, NUMA_NO_NODE, NULL);
1631 if (!data)
1632 goto nodata;
1633 size = SKB_WITH_OVERHEAD(ksize(data));
1634
1635 /* Copy only real data... and, alas, header. This should be
1636 * optimized for the cases when header is void.
1637 */
1638 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1639
1640 memcpy((struct skb_shared_info *)(data + size),
1641 skb_shinfo(skb),
1642 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1643
1644 /*
1645 * if shinfo is shared we must drop the old head gracefully, but if it
1646 * is not we can just drop the old head and let the existing refcount
1647 * be since all we did is relocate the values
1648 */
1649 if (skb_cloned(skb)) {
1650 if (skb_orphan_frags(skb, gfp_mask))
1651 goto nofrags;
1652 if (skb_zcopy(skb))
1653 refcount_inc(&skb_uarg(skb)->refcnt);
1654 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1655 skb_frag_ref(skb, i);
1656
1657 if (skb_has_frag_list(skb))
1658 skb_clone_fraglist(skb);
1659
1660 skb_release_data(skb);
1661 } else {
1662 skb_free_head(skb);
1663 }
1664 off = (data + nhead) - skb->head;
1665
1666 skb->head = data;
1667 skb->head_frag = 0;
1668 skb->data += off;
1669#ifdef NET_SKBUFF_DATA_USES_OFFSET
1670 skb->end = size;
1671 off = nhead;
1672#else
1673 skb->end = skb->head + size;
1674#endif
1675 skb->tail += off;
1676 skb_headers_offset_update(skb, nhead);
1677 skb->cloned = 0;
1678 skb->hdr_len = 0;
1679 skb->nohdr = 0;
1680 atomic_set(&skb_shinfo(skb)->dataref, 1);
1681
1682 skb_metadata_clear(skb);
1683
1684 /* It is not generally safe to change skb->truesize.
1685 * For the moment, we really care of rx path, or
1686 * when skb is orphaned (not attached to a socket).
1687 */
1688 if (!skb->sk || skb->destructor == sock_edemux)
1689 skb->truesize += size - osize;
1690
1691 return 0;
1692
1693nofrags:
1694 kfree(data);
1695nodata:
1696 return -ENOMEM;
1697}
1698EXPORT_SYMBOL(pskb_expand_head);
1699
1700/* Make private copy of skb with writable head and some headroom */
1701
1702struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1703{
1704 struct sk_buff *skb2;
1705 int delta = headroom - skb_headroom(skb);
1706
1707 if (delta <= 0)
1708 skb2 = pskb_copy(skb, GFP_ATOMIC);
1709 else {
1710 skb2 = skb_clone(skb, GFP_ATOMIC);
1711 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1712 GFP_ATOMIC)) {
1713 kfree_skb(skb2);
1714 skb2 = NULL;
1715 }
1716 }
1717 return skb2;
1718}
1719EXPORT_SYMBOL(skb_realloc_headroom);
1720
1721/**
1722 * skb_copy_expand - copy and expand sk_buff
1723 * @skb: buffer to copy
1724 * @newheadroom: new free bytes at head
1725 * @newtailroom: new free bytes at tail
1726 * @gfp_mask: allocation priority
1727 *
1728 * Make a copy of both an &sk_buff and its data and while doing so
1729 * allocate additional space.
1730 *
1731 * This is used when the caller wishes to modify the data and needs a
1732 * private copy of the data to alter as well as more space for new fields.
1733 * Returns %NULL on failure or the pointer to the buffer
1734 * on success. The returned buffer has a reference count of 1.
1735 *
1736 * You must pass %GFP_ATOMIC as the allocation priority if this function
1737 * is called from an interrupt.
1738 */
1739struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1740 int newheadroom, int newtailroom,
1741 gfp_t gfp_mask)
1742{
1743 /*
1744 * Allocate the copy buffer
1745 */
1746 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1747 gfp_mask, skb_alloc_rx_flag(skb),
1748 NUMA_NO_NODE);
1749 int oldheadroom = skb_headroom(skb);
1750 int head_copy_len, head_copy_off;
1751
1752 if (!n)
1753 return NULL;
1754
1755 skb_reserve(n, newheadroom);
1756
1757 /* Set the tail pointer and length */
1758 skb_put(n, skb->len);
1759
1760 head_copy_len = oldheadroom;
1761 head_copy_off = 0;
1762 if (newheadroom <= head_copy_len)
1763 head_copy_len = newheadroom;
1764 else
1765 head_copy_off = newheadroom - head_copy_len;
1766
1767 /* Copy the linear header and data. */
1768 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1769 skb->len + head_copy_len));
1770
1771 skb_copy_header(n, skb);
1772
1773 skb_headers_offset_update(n, newheadroom - oldheadroom);
1774
1775 return n;
1776}
1777EXPORT_SYMBOL(skb_copy_expand);
1778
1779/**
1780 * __skb_pad - zero pad the tail of an skb
1781 * @skb: buffer to pad
1782 * @pad: space to pad
1783 * @free_on_error: free buffer on error
1784 *
1785 * Ensure that a buffer is followed by a padding area that is zero
1786 * filled. Used by network drivers which may DMA or transfer data
1787 * beyond the buffer end onto the wire.
1788 *
1789 * May return error in out of memory cases. The skb is freed on error
1790 * if @free_on_error is true.
1791 */
1792
1793int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1794{
1795 int err;
1796 int ntail;
1797
1798 /* If the skbuff is non linear tailroom is always zero.. */
1799 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1800 memset(skb->data+skb->len, 0, pad);
1801 return 0;
1802 }
1803
1804 ntail = skb->data_len + pad - (skb->end - skb->tail);
1805 if (likely(skb_cloned(skb) || ntail > 0)) {
1806 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1807 if (unlikely(err))
1808 goto free_skb;
1809 }
1810
1811 /* FIXME: The use of this function with non-linear skb's really needs
1812 * to be audited.
1813 */
1814 err = skb_linearize(skb);
1815 if (unlikely(err))
1816 goto free_skb;
1817
1818 memset(skb->data + skb->len, 0, pad);
1819 return 0;
1820
1821free_skb:
1822 if (free_on_error)
1823 kfree_skb(skb);
1824 return err;
1825}
1826EXPORT_SYMBOL(__skb_pad);
1827
1828/**
1829 * pskb_put - add data to the tail of a potentially fragmented buffer
1830 * @skb: start of the buffer to use
1831 * @tail: tail fragment of the buffer to use
1832 * @len: amount of data to add
1833 *
1834 * This function extends the used data area of the potentially
1835 * fragmented buffer. @tail must be the last fragment of @skb -- or
1836 * @skb itself. If this would exceed the total buffer size the kernel
1837 * will panic. A pointer to the first byte of the extra data is
1838 * returned.
1839 */
1840
1841void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1842{
1843 if (tail != skb) {
1844 skb->data_len += len;
1845 skb->len += len;
1846 }
1847 return skb_put(tail, len);
1848}
1849EXPORT_SYMBOL_GPL(pskb_put);
1850
1851/**
1852 * skb_put - add data to a buffer
1853 * @skb: buffer to use
1854 * @len: amount of data to add
1855 *
1856 * This function extends the used data area of the buffer. If this would
1857 * exceed the total buffer size the kernel will panic. A pointer to the
1858 * first byte of the extra data is returned.
1859 */
1860void *skb_put(struct sk_buff *skb, unsigned int len)
1861{
1862 void *tmp = skb_tail_pointer(skb);
1863 SKB_LINEAR_ASSERT(skb);
1864 skb->tail += len;
1865 skb->len += len;
1866 if (unlikely(skb->tail > skb->end))
1867 skb_over_panic(skb, len, __builtin_return_address(0));
1868 return tmp;
1869}
1870EXPORT_SYMBOL(skb_put);
1871
1872/**
1873 * skb_push - add data to the start of a buffer
1874 * @skb: buffer to use
1875 * @len: amount of data to add
1876 *
1877 * This function extends the used data area of the buffer at the buffer
1878 * start. If this would exceed the total buffer headroom the kernel will
1879 * panic. A pointer to the first byte of the extra data is returned.
1880 */
1881void *skb_push(struct sk_buff *skb, unsigned int len)
1882{
1883 skb->data -= len;
1884 skb->len += len;
1885 if (unlikely(skb->data < skb->head))
1886 skb_under_panic(skb, len, __builtin_return_address(0));
1887 return skb->data;
1888}
1889EXPORT_SYMBOL(skb_push);
1890
1891/**
1892 * skb_pull - remove data from the start of a buffer
1893 * @skb: buffer to use
1894 * @len: amount of data to remove
1895 *
1896 * This function removes data from the start of a buffer, returning
1897 * the memory to the headroom. A pointer to the next data in the buffer
1898 * is returned. Once the data has been pulled future pushes will overwrite
1899 * the old data.
1900 */
1901void *skb_pull(struct sk_buff *skb, unsigned int len)
1902{
1903 return skb_pull_inline(skb, len);
1904}
1905EXPORT_SYMBOL(skb_pull);
1906
1907/**
1908 * skb_trim - remove end from a buffer
1909 * @skb: buffer to alter
1910 * @len: new length
1911 *
1912 * Cut the length of a buffer down by removing data from the tail. If
1913 * the buffer is already under the length specified it is not modified.
1914 * The skb must be linear.
1915 */
1916void skb_trim(struct sk_buff *skb, unsigned int len)
1917{
1918 if (skb->len > len)
1919 __skb_trim(skb, len);
1920}
1921EXPORT_SYMBOL(skb_trim);
1922
1923/* Trims skb to length len. It can change skb pointers.
1924 */
1925
1926int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1927{
1928 struct sk_buff **fragp;
1929 struct sk_buff *frag;
1930 int offset = skb_headlen(skb);
1931 int nfrags = skb_shinfo(skb)->nr_frags;
1932 int i;
1933 int err;
1934
1935 if (skb_cloned(skb) &&
1936 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1937 return err;
1938
1939 i = 0;
1940 if (offset >= len)
1941 goto drop_pages;
1942
1943 for (; i < nfrags; i++) {
1944 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1945
1946 if (end < len) {
1947 offset = end;
1948 continue;
1949 }
1950
1951 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1952
1953drop_pages:
1954 skb_shinfo(skb)->nr_frags = i;
1955
1956 for (; i < nfrags; i++)
1957 skb_frag_unref(skb, i);
1958
1959 if (skb_has_frag_list(skb))
1960 skb_drop_fraglist(skb);
1961 goto done;
1962 }
1963
1964 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1965 fragp = &frag->next) {
1966 int end = offset + frag->len;
1967
1968 if (skb_shared(frag)) {
1969 struct sk_buff *nfrag;
1970
1971 nfrag = skb_clone(frag, GFP_ATOMIC);
1972 if (unlikely(!nfrag))
1973 return -ENOMEM;
1974
1975 nfrag->next = frag->next;
1976 consume_skb(frag);
1977 frag = nfrag;
1978 *fragp = frag;
1979 }
1980
1981 if (end < len) {
1982 offset = end;
1983 continue;
1984 }
1985
1986 if (end > len &&
1987 unlikely((err = pskb_trim(frag, len - offset))))
1988 return err;
1989
1990 if (frag->next)
1991 skb_drop_list(&frag->next);
1992 break;
1993 }
1994
1995done:
1996 if (len > skb_headlen(skb)) {
1997 skb->data_len -= skb->len - len;
1998 skb->len = len;
1999 } else {
2000 skb->len = len;
2001 skb->data_len = 0;
2002 skb_set_tail_pointer(skb, len);
2003 }
2004
2005 if (!skb->sk || skb->destructor == sock_edemux)
2006 skb_condense(skb);
2007 return 0;
2008}
2009EXPORT_SYMBOL(___pskb_trim);
2010
2011/* Note : use pskb_trim_rcsum() instead of calling this directly
2012 */
2013int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2014{
2015 if (skb->ip_summed == CHECKSUM_COMPLETE) {
2016 int delta = skb->len - len;
2017
2018 skb->csum = csum_block_sub(skb->csum,
2019 skb_checksum(skb, len, delta, 0),
2020 len);
2021 }
2022 return __pskb_trim(skb, len);
2023}
2024EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2025
2026/**
2027 * __pskb_pull_tail - advance tail of skb header
2028 * @skb: buffer to reallocate
2029 * @delta: number of bytes to advance tail
2030 *
2031 * The function makes a sense only on a fragmented &sk_buff,
2032 * it expands header moving its tail forward and copying necessary
2033 * data from fragmented part.
2034 *
2035 * &sk_buff MUST have reference count of 1.
2036 *
2037 * Returns %NULL (and &sk_buff does not change) if pull failed
2038 * or value of new tail of skb in the case of success.
2039 *
2040 * All the pointers pointing into skb header may change and must be
2041 * reloaded after call to this function.
2042 */
2043
2044/* Moves tail of skb head forward, copying data from fragmented part,
2045 * when it is necessary.
2046 * 1. It may fail due to malloc failure.
2047 * 2. It may change skb pointers.
2048 *
2049 * It is pretty complicated. Luckily, it is called only in exceptional cases.
2050 */
2051void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2052{
2053 /* If skb has not enough free space at tail, get new one
2054 * plus 128 bytes for future expansions. If we have enough
2055 * room at tail, reallocate without expansion only if skb is cloned.
2056 */
2057 int i, k, eat = (skb->tail + delta) - skb->end;
2058
2059 if (eat > 0 || skb_cloned(skb)) {
2060 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2061 GFP_ATOMIC))
2062 return NULL;
2063 }
2064
2065 BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2066 skb_tail_pointer(skb), delta));
2067
2068 /* Optimization: no fragments, no reasons to preestimate
2069 * size of pulled pages. Superb.
2070 */
2071 if (!skb_has_frag_list(skb))
2072 goto pull_pages;
2073
2074 /* Estimate size of pulled pages. */
2075 eat = delta;
2076 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2077 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2078
2079 if (size >= eat)
2080 goto pull_pages;
2081 eat -= size;
2082 }
2083
2084 /* If we need update frag list, we are in troubles.
2085 * Certainly, it is possible to add an offset to skb data,
2086 * but taking into account that pulling is expected to
2087 * be very rare operation, it is worth to fight against
2088 * further bloating skb head and crucify ourselves here instead.
2089 * Pure masohism, indeed. 8)8)
2090 */
2091 if (eat) {
2092 struct sk_buff *list = skb_shinfo(skb)->frag_list;
2093 struct sk_buff *clone = NULL;
2094 struct sk_buff *insp = NULL;
2095
2096 do {
2097 if (list->len <= eat) {
2098 /* Eaten as whole. */
2099 eat -= list->len;
2100 list = list->next;
2101 insp = list;
2102 } else {
2103 /* Eaten partially. */
2104
2105 if (skb_shared(list)) {
2106 /* Sucks! We need to fork list. :-( */
2107 clone = skb_clone(list, GFP_ATOMIC);
2108 if (!clone)
2109 return NULL;
2110 insp = list->next;
2111 list = clone;
2112 } else {
2113 /* This may be pulled without
2114 * problems. */
2115 insp = list;
2116 }
2117 if (!pskb_pull(list, eat)) {
2118 kfree_skb(clone);
2119 return NULL;
2120 }
2121 break;
2122 }
2123 } while (eat);
2124
2125 /* Free pulled out fragments. */
2126 while ((list = skb_shinfo(skb)->frag_list) != insp) {
2127 skb_shinfo(skb)->frag_list = list->next;
2128 kfree_skb(list);
2129 }
2130 /* And insert new clone at head. */
2131 if (clone) {
2132 clone->next = list;
2133 skb_shinfo(skb)->frag_list = clone;
2134 }
2135 }
2136 /* Success! Now we may commit changes to skb data. */
2137
2138pull_pages:
2139 eat = delta;
2140 k = 0;
2141 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2142 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2143
2144 if (size <= eat) {
2145 skb_frag_unref(skb, i);
2146 eat -= size;
2147 } else {
2148 skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2149
2150 *frag = skb_shinfo(skb)->frags[i];
2151 if (eat) {
2152 skb_frag_off_add(frag, eat);
2153 skb_frag_size_sub(frag, eat);
2154 if (!i)
2155 goto end;
2156 eat = 0;
2157 }
2158 k++;
2159 }
2160 }
2161 skb_shinfo(skb)->nr_frags = k;
2162
2163end:
2164 skb->tail += delta;
2165 skb->data_len -= delta;
2166
2167 if (!skb->data_len)
2168 skb_zcopy_clear(skb, false);
2169
2170 return skb_tail_pointer(skb);
2171}
2172EXPORT_SYMBOL(__pskb_pull_tail);
2173
2174/**
2175 * skb_copy_bits - copy bits from skb to kernel buffer
2176 * @skb: source skb
2177 * @offset: offset in source
2178 * @to: destination buffer
2179 * @len: number of bytes to copy
2180 *
2181 * Copy the specified number of bytes from the source skb to the
2182 * destination buffer.
2183 *
2184 * CAUTION ! :
2185 * If its prototype is ever changed,
2186 * check arch/{*}/net/{*}.S files,
2187 * since it is called from BPF assembly code.
2188 */
2189int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2190{
2191 int start = skb_headlen(skb);
2192 struct sk_buff *frag_iter;
2193 int i, copy;
2194
2195 if (offset > (int)skb->len - len)
2196 goto fault;
2197
2198 /* Copy header. */
2199 if ((copy = start - offset) > 0) {
2200 if (copy > len)
2201 copy = len;
2202 skb_copy_from_linear_data_offset(skb, offset, to, copy);
2203 if ((len -= copy) == 0)
2204 return 0;
2205 offset += copy;
2206 to += copy;
2207 }
2208
2209 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2210 int end;
2211 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2212
2213 WARN_ON(start > offset + len);
2214
2215 end = start + skb_frag_size(f);
2216 if ((copy = end - offset) > 0) {
2217 u32 p_off, p_len, copied;
2218 struct page *p;
2219 u8 *vaddr;
2220
2221 if (copy > len)
2222 copy = len;
2223
2224 skb_frag_foreach_page(f,
2225 skb_frag_off(f) + offset - start,
2226 copy, p, p_off, p_len, copied) {
2227 vaddr = kmap_atomic(p);
2228 memcpy(to + copied, vaddr + p_off, p_len);
2229 kunmap_atomic(vaddr);
2230 }
2231
2232 if ((len -= copy) == 0)
2233 return 0;
2234 offset += copy;
2235 to += copy;
2236 }
2237 start = end;
2238 }
2239
2240 skb_walk_frags(skb, frag_iter) {
2241 int end;
2242
2243 WARN_ON(start > offset + len);
2244
2245 end = start + frag_iter->len;
2246 if ((copy = end - offset) > 0) {
2247 if (copy > len)
2248 copy = len;
2249 if (skb_copy_bits(frag_iter, offset - start, to, copy))
2250 goto fault;
2251 if ((len -= copy) == 0)
2252 return 0;
2253 offset += copy;
2254 to += copy;
2255 }
2256 start = end;
2257 }
2258
2259 if (!len)
2260 return 0;
2261
2262fault:
2263 return -EFAULT;
2264}
2265EXPORT_SYMBOL(skb_copy_bits);
2266
2267/*
2268 * Callback from splice_to_pipe(), if we need to release some pages
2269 * at the end of the spd in case we error'ed out in filling the pipe.
2270 */
2271static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2272{
2273 put_page(spd->pages[i]);
2274}
2275
2276static struct page *linear_to_page(struct page *page, unsigned int *len,
2277 unsigned int *offset,
2278 struct sock *sk)
2279{
2280 struct page_frag *pfrag = sk_page_frag(sk);
2281
2282 if (!sk_page_frag_refill(sk, pfrag))
2283 return NULL;
2284
2285 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2286
2287 memcpy(page_address(pfrag->page) + pfrag->offset,
2288 page_address(page) + *offset, *len);
2289 *offset = pfrag->offset;
2290 pfrag->offset += *len;
2291
2292 return pfrag->page;
2293}
2294
2295static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2296 struct page *page,
2297 unsigned int offset)
2298{
2299 return spd->nr_pages &&
2300 spd->pages[spd->nr_pages - 1] == page &&
2301 (spd->partial[spd->nr_pages - 1].offset +
2302 spd->partial[spd->nr_pages - 1].len == offset);
2303}
2304
2305/*
2306 * Fill page/offset/length into spd, if it can hold more pages.
2307 */
2308static bool spd_fill_page(struct splice_pipe_desc *spd,
2309 struct pipe_inode_info *pipe, struct page *page,
2310 unsigned int *len, unsigned int offset,
2311 bool linear,
2312 struct sock *sk)
2313{
2314 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2315 return true;
2316
2317 if (linear) {
2318 page = linear_to_page(page, len, &offset, sk);
2319 if (!page)
2320 return true;
2321 }
2322 if (spd_can_coalesce(spd, page, offset)) {
2323 spd->partial[spd->nr_pages - 1].len += *len;
2324 return false;
2325 }
2326 get_page(page);
2327 spd->pages[spd->nr_pages] = page;
2328 spd->partial[spd->nr_pages].len = *len;
2329 spd->partial[spd->nr_pages].offset = offset;
2330 spd->nr_pages++;
2331
2332 return false;
2333}
2334
2335static bool __splice_segment(struct page *page, unsigned int poff,
2336 unsigned int plen, unsigned int *off,
2337 unsigned int *len,
2338 struct splice_pipe_desc *spd, bool linear,
2339 struct sock *sk,
2340 struct pipe_inode_info *pipe)
2341{
2342 if (!*len)
2343 return true;
2344
2345 /* skip this segment if already processed */
2346 if (*off >= plen) {
2347 *off -= plen;
2348 return false;
2349 }
2350
2351 /* ignore any bits we already processed */
2352 poff += *off;
2353 plen -= *off;
2354 *off = 0;
2355
2356 do {
2357 unsigned int flen = min(*len, plen);
2358
2359 if (spd_fill_page(spd, pipe, page, &flen, poff,
2360 linear, sk))
2361 return true;
2362 poff += flen;
2363 plen -= flen;
2364 *len -= flen;
2365 } while (*len && plen);
2366
2367 return false;
2368}
2369
2370/*
2371 * Map linear and fragment data from the skb to spd. It reports true if the
2372 * pipe is full or if we already spliced the requested length.
2373 */
2374static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2375 unsigned int *offset, unsigned int *len,
2376 struct splice_pipe_desc *spd, struct sock *sk)
2377{
2378 int seg;
2379 struct sk_buff *iter;
2380
2381 /* map the linear part :
2382 * If skb->head_frag is set, this 'linear' part is backed by a
2383 * fragment, and if the head is not shared with any clones then
2384 * we can avoid a copy since we own the head portion of this page.
2385 */
2386 if (__splice_segment(virt_to_page(skb->data),
2387 (unsigned long) skb->data & (PAGE_SIZE - 1),
2388 skb_headlen(skb),
2389 offset, len, spd,
2390 skb_head_is_locked(skb),
2391 sk, pipe))
2392 return true;
2393
2394 /*
2395 * then map the fragments
2396 */
2397 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2398 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2399
2400 if (__splice_segment(skb_frag_page(f),
2401 skb_frag_off(f), skb_frag_size(f),
2402 offset, len, spd, false, sk, pipe))
2403 return true;
2404 }
2405
2406 skb_walk_frags(skb, iter) {
2407 if (*offset >= iter->len) {
2408 *offset -= iter->len;
2409 continue;
2410 }
2411 /* __skb_splice_bits() only fails if the output has no room
2412 * left, so no point in going over the frag_list for the error
2413 * case.
2414 */
2415 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2416 return true;
2417 }
2418
2419 return false;
2420}
2421
2422/*
2423 * Map data from the skb to a pipe. Should handle both the linear part,
2424 * the fragments, and the frag list.
2425 */
2426int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2427 struct pipe_inode_info *pipe, unsigned int tlen,
2428 unsigned int flags)
2429{
2430 struct partial_page partial[MAX_SKB_FRAGS];
2431 struct page *pages[MAX_SKB_FRAGS];
2432 struct splice_pipe_desc spd = {
2433 .pages = pages,
2434 .partial = partial,
2435 .nr_pages_max = MAX_SKB_FRAGS,
2436 .ops = &nosteal_pipe_buf_ops,
2437 .spd_release = sock_spd_release,
2438 };
2439 int ret = 0;
2440
2441 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2442
2443 if (spd.nr_pages)
2444 ret = splice_to_pipe(pipe, &spd);
2445
2446 return ret;
2447}
2448EXPORT_SYMBOL_GPL(skb_splice_bits);
2449
2450/* Send skb data on a socket. Socket must be locked. */
2451int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2452 int len)
2453{
2454 unsigned int orig_len = len;
2455 struct sk_buff *head = skb;
2456 unsigned short fragidx;
2457 int slen, ret;
2458
2459do_frag_list:
2460
2461 /* Deal with head data */
2462 while (offset < skb_headlen(skb) && len) {
2463 struct kvec kv;
2464 struct msghdr msg;
2465
2466 slen = min_t(int, len, skb_headlen(skb) - offset);
2467 kv.iov_base = skb->data + offset;
2468 kv.iov_len = slen;
2469 memset(&msg, 0, sizeof(msg));
2470 msg.msg_flags = MSG_DONTWAIT;
2471
2472 ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen);
2473 if (ret <= 0)
2474 goto error;
2475
2476 offset += ret;
2477 len -= ret;
2478 }
2479
2480 /* All the data was skb head? */
2481 if (!len)
2482 goto out;
2483
2484 /* Make offset relative to start of frags */
2485 offset -= skb_headlen(skb);
2486
2487 /* Find where we are in frag list */
2488 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2489 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2490
2491 if (offset < skb_frag_size(frag))
2492 break;
2493
2494 offset -= skb_frag_size(frag);
2495 }
2496
2497 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2498 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2499
2500 slen = min_t(size_t, len, skb_frag_size(frag) - offset);
2501
2502 while (slen) {
2503 ret = kernel_sendpage_locked(sk, skb_frag_page(frag),
2504 skb_frag_off(frag) + offset,
2505 slen, MSG_DONTWAIT);
2506 if (ret <= 0)
2507 goto error;
2508
2509 len -= ret;
2510 offset += ret;
2511 slen -= ret;
2512 }
2513
2514 offset = 0;
2515 }
2516
2517 if (len) {
2518 /* Process any frag lists */
2519
2520 if (skb == head) {
2521 if (skb_has_frag_list(skb)) {
2522 skb = skb_shinfo(skb)->frag_list;
2523 goto do_frag_list;
2524 }
2525 } else if (skb->next) {
2526 skb = skb->next;
2527 goto do_frag_list;
2528 }
2529 }
2530
2531out:
2532 return orig_len - len;
2533
2534error:
2535 return orig_len == len ? ret : orig_len - len;
2536}
2537EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2538
2539/**
2540 * skb_store_bits - store bits from kernel buffer to skb
2541 * @skb: destination buffer
2542 * @offset: offset in destination
2543 * @from: source buffer
2544 * @len: number of bytes to copy
2545 *
2546 * Copy the specified number of bytes from the source buffer to the
2547 * destination skb. This function handles all the messy bits of
2548 * traversing fragment lists and such.
2549 */
2550
2551int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2552{
2553 int start = skb_headlen(skb);
2554 struct sk_buff *frag_iter;
2555 int i, copy;
2556
2557 if (offset > (int)skb->len - len)
2558 goto fault;
2559
2560 if ((copy = start - offset) > 0) {
2561 if (copy > len)
2562 copy = len;
2563 skb_copy_to_linear_data_offset(skb, offset, from, copy);
2564 if ((len -= copy) == 0)
2565 return 0;
2566 offset += copy;
2567 from += copy;
2568 }
2569
2570 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2571 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2572 int end;
2573
2574 WARN_ON(start > offset + len);
2575
2576 end = start + skb_frag_size(frag);
2577 if ((copy = end - offset) > 0) {
2578 u32 p_off, p_len, copied;
2579 struct page *p;
2580 u8 *vaddr;
2581
2582 if (copy > len)
2583 copy = len;
2584
2585 skb_frag_foreach_page(frag,
2586 skb_frag_off(frag) + offset - start,
2587 copy, p, p_off, p_len, copied) {
2588 vaddr = kmap_atomic(p);
2589 memcpy(vaddr + p_off, from + copied, p_len);
2590 kunmap_atomic(vaddr);
2591 }
2592
2593 if ((len -= copy) == 0)
2594 return 0;
2595 offset += copy;
2596 from += copy;
2597 }
2598 start = end;
2599 }
2600
2601 skb_walk_frags(skb, frag_iter) {
2602 int end;
2603
2604 WARN_ON(start > offset + len);
2605
2606 end = start + frag_iter->len;
2607 if ((copy = end - offset) > 0) {
2608 if (copy > len)
2609 copy = len;
2610 if (skb_store_bits(frag_iter, offset - start,
2611 from, copy))
2612 goto fault;
2613 if ((len -= copy) == 0)
2614 return 0;
2615 offset += copy;
2616 from += copy;
2617 }
2618 start = end;
2619 }
2620 if (!len)
2621 return 0;
2622
2623fault:
2624 return -EFAULT;
2625}
2626EXPORT_SYMBOL(skb_store_bits);
2627
2628/* Checksum skb data. */
2629__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2630 __wsum csum, const struct skb_checksum_ops *ops)
2631{
2632 int start = skb_headlen(skb);
2633 int i, copy = start - offset;
2634 struct sk_buff *frag_iter;
2635 int pos = 0;
2636
2637 /* Checksum header. */
2638 if (copy > 0) {
2639 if (copy > len)
2640 copy = len;
2641 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
2642 skb->data + offset, copy, csum);
2643 if ((len -= copy) == 0)
2644 return csum;
2645 offset += copy;
2646 pos = copy;
2647 }
2648
2649 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2650 int end;
2651 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2652
2653 WARN_ON(start > offset + len);
2654
2655 end = start + skb_frag_size(frag);
2656 if ((copy = end - offset) > 0) {
2657 u32 p_off, p_len, copied;
2658 struct page *p;
2659 __wsum csum2;
2660 u8 *vaddr;
2661
2662 if (copy > len)
2663 copy = len;
2664
2665 skb_frag_foreach_page(frag,
2666 skb_frag_off(frag) + offset - start,
2667 copy, p, p_off, p_len, copied) {
2668 vaddr = kmap_atomic(p);
2669 csum2 = INDIRECT_CALL_1(ops->update,
2670 csum_partial_ext,
2671 vaddr + p_off, p_len, 0);
2672 kunmap_atomic(vaddr);
2673 csum = INDIRECT_CALL_1(ops->combine,
2674 csum_block_add_ext, csum,
2675 csum2, pos, p_len);
2676 pos += p_len;
2677 }
2678
2679 if (!(len -= copy))
2680 return csum;
2681 offset += copy;
2682 }
2683 start = end;
2684 }
2685
2686 skb_walk_frags(skb, frag_iter) {
2687 int end;
2688
2689 WARN_ON(start > offset + len);
2690
2691 end = start + frag_iter->len;
2692 if ((copy = end - offset) > 0) {
2693 __wsum csum2;
2694 if (copy > len)
2695 copy = len;
2696 csum2 = __skb_checksum(frag_iter, offset - start,
2697 copy, 0, ops);
2698 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
2699 csum, csum2, pos, copy);
2700 if ((len -= copy) == 0)
2701 return csum;
2702 offset += copy;
2703 pos += copy;
2704 }
2705 start = end;
2706 }
2707 BUG_ON(len);
2708
2709 return csum;
2710}
2711EXPORT_SYMBOL(__skb_checksum);
2712
2713__wsum skb_checksum(const struct sk_buff *skb, int offset,
2714 int len, __wsum csum)
2715{
2716 const struct skb_checksum_ops ops = {
2717 .update = csum_partial_ext,
2718 .combine = csum_block_add_ext,
2719 };
2720
2721 return __skb_checksum(skb, offset, len, csum, &ops);
2722}
2723EXPORT_SYMBOL(skb_checksum);
2724
2725/* Both of above in one bottle. */
2726
2727__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2728 u8 *to, int len, __wsum csum)
2729{
2730 int start = skb_headlen(skb);
2731 int i, copy = start - offset;
2732 struct sk_buff *frag_iter;
2733 int pos = 0;
2734
2735 /* Copy header. */
2736 if (copy > 0) {
2737 if (copy > len)
2738 copy = len;
2739 csum = csum_partial_copy_nocheck(skb->data + offset, to,
2740 copy, csum);
2741 if ((len -= copy) == 0)
2742 return csum;
2743 offset += copy;
2744 to += copy;
2745 pos = copy;
2746 }
2747
2748 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2749 int end;
2750
2751 WARN_ON(start > offset + len);
2752
2753 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2754 if ((copy = end - offset) > 0) {
2755 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2756 u32 p_off, p_len, copied;
2757 struct page *p;
2758 __wsum csum2;
2759 u8 *vaddr;
2760
2761 if (copy > len)
2762 copy = len;
2763
2764 skb_frag_foreach_page(frag,
2765 skb_frag_off(frag) + offset - start,
2766 copy, p, p_off, p_len, copied) {
2767 vaddr = kmap_atomic(p);
2768 csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2769 to + copied,
2770 p_len, 0);
2771 kunmap_atomic(vaddr);
2772 csum = csum_block_add(csum, csum2, pos);
2773 pos += p_len;
2774 }
2775
2776 if (!(len -= copy))
2777 return csum;
2778 offset += copy;
2779 to += copy;
2780 }
2781 start = end;
2782 }
2783
2784 skb_walk_frags(skb, frag_iter) {
2785 __wsum csum2;
2786 int end;
2787
2788 WARN_ON(start > offset + len);
2789
2790 end = start + frag_iter->len;
2791 if ((copy = end - offset) > 0) {
2792 if (copy > len)
2793 copy = len;
2794 csum2 = skb_copy_and_csum_bits(frag_iter,
2795 offset - start,
2796 to, copy, 0);
2797 csum = csum_block_add(csum, csum2, pos);
2798 if ((len -= copy) == 0)
2799 return csum;
2800 offset += copy;
2801 to += copy;
2802 pos += copy;
2803 }
2804 start = end;
2805 }
2806 BUG_ON(len);
2807 return csum;
2808}
2809EXPORT_SYMBOL(skb_copy_and_csum_bits);
2810
2811__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
2812{
2813 __sum16 sum;
2814
2815 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
2816 /* See comments in __skb_checksum_complete(). */
2817 if (likely(!sum)) {
2818 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2819 !skb->csum_complete_sw)
2820 netdev_rx_csum_fault(skb->dev, skb);
2821 }
2822 if (!skb_shared(skb))
2823 skb->csum_valid = !sum;
2824 return sum;
2825}
2826EXPORT_SYMBOL(__skb_checksum_complete_head);
2827
2828/* This function assumes skb->csum already holds pseudo header's checksum,
2829 * which has been changed from the hardware checksum, for example, by
2830 * __skb_checksum_validate_complete(). And, the original skb->csum must
2831 * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
2832 *
2833 * It returns non-zero if the recomputed checksum is still invalid, otherwise
2834 * zero. The new checksum is stored back into skb->csum unless the skb is
2835 * shared.
2836 */
2837__sum16 __skb_checksum_complete(struct sk_buff *skb)
2838{
2839 __wsum csum;
2840 __sum16 sum;
2841
2842 csum = skb_checksum(skb, 0, skb->len, 0);
2843
2844 sum = csum_fold(csum_add(skb->csum, csum));
2845 /* This check is inverted, because we already knew the hardware
2846 * checksum is invalid before calling this function. So, if the
2847 * re-computed checksum is valid instead, then we have a mismatch
2848 * between the original skb->csum and skb_checksum(). This means either
2849 * the original hardware checksum is incorrect or we screw up skb->csum
2850 * when moving skb->data around.
2851 */
2852 if (likely(!sum)) {
2853 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2854 !skb->csum_complete_sw)
2855 netdev_rx_csum_fault(skb->dev, skb);
2856 }
2857
2858 if (!skb_shared(skb)) {
2859 /* Save full packet checksum */
2860 skb->csum = csum;
2861 skb->ip_summed = CHECKSUM_COMPLETE;
2862 skb->csum_complete_sw = 1;
2863 skb->csum_valid = !sum;
2864 }
2865
2866 return sum;
2867}
2868EXPORT_SYMBOL(__skb_checksum_complete);
2869
2870static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
2871{
2872 net_warn_ratelimited(
2873 "%s: attempt to compute crc32c without libcrc32c.ko\n",
2874 __func__);
2875 return 0;
2876}
2877
2878static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
2879 int offset, int len)
2880{
2881 net_warn_ratelimited(
2882 "%s: attempt to compute crc32c without libcrc32c.ko\n",
2883 __func__);
2884 return 0;
2885}
2886
2887static const struct skb_checksum_ops default_crc32c_ops = {
2888 .update = warn_crc32c_csum_update,
2889 .combine = warn_crc32c_csum_combine,
2890};
2891
2892const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
2893 &default_crc32c_ops;
2894EXPORT_SYMBOL(crc32c_csum_stub);
2895
2896 /**
2897 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2898 * @from: source buffer
2899 *
2900 * Calculates the amount of linear headroom needed in the 'to' skb passed
2901 * into skb_zerocopy().
2902 */
2903unsigned int
2904skb_zerocopy_headlen(const struct sk_buff *from)
2905{
2906 unsigned int hlen = 0;
2907
2908 if (!from->head_frag ||
2909 skb_headlen(from) < L1_CACHE_BYTES ||
2910 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2911 hlen = skb_headlen(from);
2912
2913 if (skb_has_frag_list(from))
2914 hlen = from->len;
2915
2916 return hlen;
2917}
2918EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2919
2920/**
2921 * skb_zerocopy - Zero copy skb to skb
2922 * @to: destination buffer
2923 * @from: source buffer
2924 * @len: number of bytes to copy from source buffer
2925 * @hlen: size of linear headroom in destination buffer
2926 *
2927 * Copies up to `len` bytes from `from` to `to` by creating references
2928 * to the frags in the source buffer.
2929 *
2930 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2931 * headroom in the `to` buffer.
2932 *
2933 * Return value:
2934 * 0: everything is OK
2935 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
2936 * -EFAULT: skb_copy_bits() found some problem with skb geometry
2937 */
2938int
2939skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2940{
2941 int i, j = 0;
2942 int plen = 0; /* length of skb->head fragment */
2943 int ret;
2944 struct page *page;
2945 unsigned int offset;
2946
2947 BUG_ON(!from->head_frag && !hlen);
2948
2949 /* dont bother with small payloads */
2950 if (len <= skb_tailroom(to))
2951 return skb_copy_bits(from, 0, skb_put(to, len), len);
2952
2953 if (hlen) {
2954 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2955 if (unlikely(ret))
2956 return ret;
2957 len -= hlen;
2958 } else {
2959 plen = min_t(int, skb_headlen(from), len);
2960 if (plen) {
2961 page = virt_to_head_page(from->head);
2962 offset = from->data - (unsigned char *)page_address(page);
2963 __skb_fill_page_desc(to, 0, page, offset, plen);
2964 get_page(page);
2965 j = 1;
2966 len -= plen;
2967 }
2968 }
2969
2970 to->truesize += len + plen;
2971 to->len += len + plen;
2972 to->data_len += len + plen;
2973
2974 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2975 skb_tx_error(from);
2976 return -ENOMEM;
2977 }
2978 skb_zerocopy_clone(to, from, GFP_ATOMIC);
2979
2980 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2981 int size;
2982
2983 if (!len)
2984 break;
2985 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2986 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
2987 len);
2988 skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
2989 len -= size;
2990 skb_frag_ref(to, j);
2991 j++;
2992 }
2993 skb_shinfo(to)->nr_frags = j;
2994
2995 return 0;
2996}
2997EXPORT_SYMBOL_GPL(skb_zerocopy);
2998
2999void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3000{
3001 __wsum csum;
3002 long csstart;
3003
3004 if (skb->ip_summed == CHECKSUM_PARTIAL)
3005 csstart = skb_checksum_start_offset(skb);
3006 else
3007 csstart = skb_headlen(skb);
3008
3009 BUG_ON(csstart > skb_headlen(skb));
3010
3011 skb_copy_from_linear_data(skb, to, csstart);
3012
3013 csum = 0;
3014 if (csstart != skb->len)
3015 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3016 skb->len - csstart, 0);
3017
3018 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3019 long csstuff = csstart + skb->csum_offset;
3020
3021 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
3022 }
3023}
3024EXPORT_SYMBOL(skb_copy_and_csum_dev);
3025
3026/**
3027 * skb_dequeue - remove from the head of the queue
3028 * @list: list to dequeue from
3029 *
3030 * Remove the head of the list. The list lock is taken so the function
3031 * may be used safely with other locking list functions. The head item is
3032 * returned or %NULL if the list is empty.
3033 */
3034
3035struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3036{
3037 unsigned long flags;
3038 struct sk_buff *result;
3039
3040 spin_lock_irqsave(&list->lock, flags);
3041 result = __skb_dequeue(list);
3042 spin_unlock_irqrestore(&list->lock, flags);
3043 return result;
3044}
3045EXPORT_SYMBOL(skb_dequeue);
3046
3047/**
3048 * skb_dequeue_tail - remove from the tail of the queue
3049 * @list: list to dequeue from
3050 *
3051 * Remove the tail of the list. The list lock is taken so the function
3052 * may be used safely with other locking list functions. The tail item is
3053 * returned or %NULL if the list is empty.
3054 */
3055struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3056{
3057 unsigned long flags;
3058 struct sk_buff *result;
3059
3060 spin_lock_irqsave(&list->lock, flags);
3061 result = __skb_dequeue_tail(list);
3062 spin_unlock_irqrestore(&list->lock, flags);
3063 return result;
3064}
3065EXPORT_SYMBOL(skb_dequeue_tail);
3066
3067/**
3068 * skb_queue_purge - empty a list
3069 * @list: list to empty
3070 *
3071 * Delete all buffers on an &sk_buff list. Each buffer is removed from
3072 * the list and one reference dropped. This function takes the list
3073 * lock and is atomic with respect to other list locking functions.
3074 */
3075void skb_queue_purge(struct sk_buff_head *list)
3076{
3077 struct sk_buff *skb;
3078 while ((skb = skb_dequeue(list)) != NULL)
3079 kfree_skb(skb);
3080}
3081EXPORT_SYMBOL(skb_queue_purge);
3082
3083/**
3084 * skb_rbtree_purge - empty a skb rbtree
3085 * @root: root of the rbtree to empty
3086 * Return value: the sum of truesizes of all purged skbs.
3087 *
3088 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3089 * the list and one reference dropped. This function does not take
3090 * any lock. Synchronization should be handled by the caller (e.g., TCP
3091 * out-of-order queue is protected by the socket lock).
3092 */
3093unsigned int skb_rbtree_purge(struct rb_root *root)
3094{
3095 struct rb_node *p = rb_first(root);
3096 unsigned int sum = 0;
3097
3098 while (p) {
3099 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3100
3101 p = rb_next(p);
3102 rb_erase(&skb->rbnode, root);
3103 sum += skb->truesize;
3104 kfree_skb(skb);
3105 }
3106 return sum;
3107}
3108
3109/**
3110 * skb_queue_head - queue a buffer at the list head
3111 * @list: list to use
3112 * @newsk: buffer to queue
3113 *
3114 * Queue a buffer at the start of the list. This function takes the
3115 * list lock and can be used safely with other locking &sk_buff functions
3116 * safely.
3117 *
3118 * A buffer cannot be placed on two lists at the same time.
3119 */
3120void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3121{
3122 unsigned long flags;
3123
3124 spin_lock_irqsave(&list->lock, flags);
3125 __skb_queue_head(list, newsk);
3126 spin_unlock_irqrestore(&list->lock, flags);
3127}
3128EXPORT_SYMBOL(skb_queue_head);
3129
3130/**
3131 * skb_queue_tail - queue a buffer at the list tail
3132 * @list: list to use
3133 * @newsk: buffer to queue
3134 *
3135 * Queue a buffer at the tail of the list. This function takes the
3136 * list lock and can be used safely with other locking &sk_buff functions
3137 * safely.
3138 *
3139 * A buffer cannot be placed on two lists at the same time.
3140 */
3141void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3142{
3143 unsigned long flags;
3144
3145 spin_lock_irqsave(&list->lock, flags);
3146 __skb_queue_tail(list, newsk);
3147 spin_unlock_irqrestore(&list->lock, flags);
3148}
3149EXPORT_SYMBOL(skb_queue_tail);
3150
3151/**
3152 * skb_unlink - remove a buffer from a list
3153 * @skb: buffer to remove
3154 * @list: list to use
3155 *
3156 * Remove a packet from a list. The list locks are taken and this
3157 * function is atomic with respect to other list locked calls
3158 *
3159 * You must know what list the SKB is on.
3160 */
3161void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3162{
3163 unsigned long flags;
3164
3165 spin_lock_irqsave(&list->lock, flags);
3166 __skb_unlink(skb, list);
3167 spin_unlock_irqrestore(&list->lock, flags);
3168}
3169EXPORT_SYMBOL(skb_unlink);
3170
3171/**
3172 * skb_append - append a buffer
3173 * @old: buffer to insert after
3174 * @newsk: buffer to insert
3175 * @list: list to use
3176 *
3177 * Place a packet after a given packet in a list. The list locks are taken
3178 * and this function is atomic with respect to other list locked calls.
3179 * A buffer cannot be placed on two lists at the same time.
3180 */
3181void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3182{
3183 unsigned long flags;
3184
3185 spin_lock_irqsave(&list->lock, flags);
3186 __skb_queue_after(list, old, newsk);
3187 spin_unlock_irqrestore(&list->lock, flags);
3188}
3189EXPORT_SYMBOL(skb_append);
3190
3191static inline void skb_split_inside_header(struct sk_buff *skb,
3192 struct sk_buff* skb1,
3193 const u32 len, const int pos)
3194{
3195 int i;
3196
3197 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3198 pos - len);
3199 /* And move data appendix as is. */
3200 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3201 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3202
3203 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3204 skb_shinfo(skb)->nr_frags = 0;
3205 skb1->data_len = skb->data_len;
3206 skb1->len += skb1->data_len;
3207 skb->data_len = 0;
3208 skb->len = len;
3209 skb_set_tail_pointer(skb, len);
3210}
3211
3212static inline void skb_split_no_header(struct sk_buff *skb,
3213 struct sk_buff* skb1,
3214 const u32 len, int pos)
3215{
3216 int i, k = 0;
3217 const int nfrags = skb_shinfo(skb)->nr_frags;
3218
3219 skb_shinfo(skb)->nr_frags = 0;
3220 skb1->len = skb1->data_len = skb->len - len;
3221 skb->len = len;
3222 skb->data_len = len - pos;
3223
3224 for (i = 0; i < nfrags; i++) {
3225 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3226
3227 if (pos + size > len) {
3228 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3229
3230 if (pos < len) {
3231 /* Split frag.
3232 * We have two variants in this case:
3233 * 1. Move all the frag to the second
3234 * part, if it is possible. F.e.
3235 * this approach is mandatory for TUX,
3236 * where splitting is expensive.
3237 * 2. Split is accurately. We make this.
3238 */
3239 skb_frag_ref(skb, i);
3240 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3241 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3242 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3243 skb_shinfo(skb)->nr_frags++;
3244 }
3245 k++;
3246 } else
3247 skb_shinfo(skb)->nr_frags++;
3248 pos += size;
3249 }
3250 skb_shinfo(skb1)->nr_frags = k;
3251}
3252
3253/**
3254 * skb_split - Split fragmented skb to two parts at length len.
3255 * @skb: the buffer to split
3256 * @skb1: the buffer to receive the second part
3257 * @len: new length for skb
3258 */
3259void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3260{
3261 int pos = skb_headlen(skb);
3262
3263 skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags &
3264 SKBTX_SHARED_FRAG;
3265 skb_zerocopy_clone(skb1, skb, 0);
3266 if (len < pos) /* Split line is inside header. */
3267 skb_split_inside_header(skb, skb1, len, pos);
3268 else /* Second chunk has no header, nothing to copy. */
3269 skb_split_no_header(skb, skb1, len, pos);
3270}
3271EXPORT_SYMBOL(skb_split);
3272
3273/* Shifting from/to a cloned skb is a no-go.
3274 *
3275 * Caller cannot keep skb_shinfo related pointers past calling here!
3276 */
3277static int skb_prepare_for_shift(struct sk_buff *skb)
3278{
3279 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3280}
3281
3282/**
3283 * skb_shift - Shifts paged data partially from skb to another
3284 * @tgt: buffer into which tail data gets added
3285 * @skb: buffer from which the paged data comes from
3286 * @shiftlen: shift up to this many bytes
3287 *
3288 * Attempts to shift up to shiftlen worth of bytes, which may be less than
3289 * the length of the skb, from skb to tgt. Returns number bytes shifted.
3290 * It's up to caller to free skb if everything was shifted.
3291 *
3292 * If @tgt runs out of frags, the whole operation is aborted.
3293 *
3294 * Skb cannot include anything else but paged data while tgt is allowed
3295 * to have non-paged data as well.
3296 *
3297 * TODO: full sized shift could be optimized but that would need
3298 * specialized skb free'er to handle frags without up-to-date nr_frags.
3299 */
3300int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3301{
3302 int from, to, merge, todo;
3303 skb_frag_t *fragfrom, *fragto;
3304
3305 BUG_ON(shiftlen > skb->len);
3306
3307 if (skb_headlen(skb))
3308 return 0;
3309 if (skb_zcopy(tgt) || skb_zcopy(skb))
3310 return 0;
3311
3312 todo = shiftlen;
3313 from = 0;
3314 to = skb_shinfo(tgt)->nr_frags;
3315 fragfrom = &skb_shinfo(skb)->frags[from];
3316
3317 /* Actual merge is delayed until the point when we know we can
3318 * commit all, so that we don't have to undo partial changes
3319 */
3320 if (!to ||
3321 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3322 skb_frag_off(fragfrom))) {
3323 merge = -1;
3324 } else {
3325 merge = to - 1;
3326
3327 todo -= skb_frag_size(fragfrom);
3328 if (todo < 0) {
3329 if (skb_prepare_for_shift(skb) ||
3330 skb_prepare_for_shift(tgt))
3331 return 0;
3332
3333 /* All previous frag pointers might be stale! */
3334 fragfrom = &skb_shinfo(skb)->frags[from];
3335 fragto = &skb_shinfo(tgt)->frags[merge];
3336
3337 skb_frag_size_add(fragto, shiftlen);
3338 skb_frag_size_sub(fragfrom, shiftlen);
3339 skb_frag_off_add(fragfrom, shiftlen);
3340
3341 goto onlymerged;
3342 }
3343
3344 from++;
3345 }
3346
3347 /* Skip full, not-fitting skb to avoid expensive operations */
3348 if ((shiftlen == skb->len) &&
3349 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3350 return 0;
3351
3352 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3353 return 0;
3354
3355 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3356 if (to == MAX_SKB_FRAGS)
3357 return 0;
3358
3359 fragfrom = &skb_shinfo(skb)->frags[from];
3360 fragto = &skb_shinfo(tgt)->frags[to];
3361
3362 if (todo >= skb_frag_size(fragfrom)) {
3363 *fragto = *fragfrom;
3364 todo -= skb_frag_size(fragfrom);
3365 from++;
3366 to++;
3367
3368 } else {
3369 __skb_frag_ref(fragfrom);
3370 skb_frag_page_copy(fragto, fragfrom);
3371 skb_frag_off_copy(fragto, fragfrom);
3372 skb_frag_size_set(fragto, todo);
3373
3374 skb_frag_off_add(fragfrom, todo);
3375 skb_frag_size_sub(fragfrom, todo);
3376 todo = 0;
3377
3378 to++;
3379 break;
3380 }
3381 }
3382
3383 /* Ready to "commit" this state change to tgt */
3384 skb_shinfo(tgt)->nr_frags = to;
3385
3386 if (merge >= 0) {
3387 fragfrom = &skb_shinfo(skb)->frags[0];
3388 fragto = &skb_shinfo(tgt)->frags[merge];
3389
3390 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3391 __skb_frag_unref(fragfrom);
3392 }
3393
3394 /* Reposition in the original skb */
3395 to = 0;
3396 while (from < skb_shinfo(skb)->nr_frags)
3397 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3398 skb_shinfo(skb)->nr_frags = to;
3399
3400 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3401
3402onlymerged:
3403 /* Most likely the tgt won't ever need its checksum anymore, skb on
3404 * the other hand might need it if it needs to be resent
3405 */
3406 tgt->ip_summed = CHECKSUM_PARTIAL;
3407 skb->ip_summed = CHECKSUM_PARTIAL;
3408
3409 /* Yak, is it really working this way? Some helper please? */
3410 skb->len -= shiftlen;
3411 skb->data_len -= shiftlen;
3412 skb->truesize -= shiftlen;
3413 tgt->len += shiftlen;
3414 tgt->data_len += shiftlen;
3415 tgt->truesize += shiftlen;
3416
3417 return shiftlen;
3418}
3419
3420/**
3421 * skb_prepare_seq_read - Prepare a sequential read of skb data
3422 * @skb: the buffer to read
3423 * @from: lower offset of data to be read
3424 * @to: upper offset of data to be read
3425 * @st: state variable
3426 *
3427 * Initializes the specified state variable. Must be called before
3428 * invoking skb_seq_read() for the first time.
3429 */
3430void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3431 unsigned int to, struct skb_seq_state *st)
3432{
3433 st->lower_offset = from;
3434 st->upper_offset = to;
3435 st->root_skb = st->cur_skb = skb;
3436 st->frag_idx = st->stepped_offset = 0;
3437 st->frag_data = NULL;
3438}
3439EXPORT_SYMBOL(skb_prepare_seq_read);
3440
3441/**
3442 * skb_seq_read - Sequentially read skb data
3443 * @consumed: number of bytes consumed by the caller so far
3444 * @data: destination pointer for data to be returned
3445 * @st: state variable
3446 *
3447 * Reads a block of skb data at @consumed relative to the
3448 * lower offset specified to skb_prepare_seq_read(). Assigns
3449 * the head of the data block to @data and returns the length
3450 * of the block or 0 if the end of the skb data or the upper
3451 * offset has been reached.
3452 *
3453 * The caller is not required to consume all of the data
3454 * returned, i.e. @consumed is typically set to the number
3455 * of bytes already consumed and the next call to
3456 * skb_seq_read() will return the remaining part of the block.
3457 *
3458 * Note 1: The size of each block of data returned can be arbitrary,
3459 * this limitation is the cost for zerocopy sequential
3460 * reads of potentially non linear data.
3461 *
3462 * Note 2: Fragment lists within fragments are not implemented
3463 * at the moment, state->root_skb could be replaced with
3464 * a stack for this purpose.
3465 */
3466unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3467 struct skb_seq_state *st)
3468{
3469 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3470 skb_frag_t *frag;
3471
3472 if (unlikely(abs_offset >= st->upper_offset)) {
3473 if (st->frag_data) {
3474 kunmap_atomic(st->frag_data);
3475 st->frag_data = NULL;
3476 }
3477 return 0;
3478 }
3479
3480next_skb:
3481 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3482
3483 if (abs_offset < block_limit && !st->frag_data) {
3484 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3485 return block_limit - abs_offset;
3486 }
3487
3488 if (st->frag_idx == 0 && !st->frag_data)
3489 st->stepped_offset += skb_headlen(st->cur_skb);
3490
3491 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3492 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3493 block_limit = skb_frag_size(frag) + st->stepped_offset;
3494
3495 if (abs_offset < block_limit) {
3496 if (!st->frag_data)
3497 st->frag_data = kmap_atomic(skb_frag_page(frag));
3498
3499 *data = (u8 *) st->frag_data + skb_frag_off(frag) +
3500 (abs_offset - st->stepped_offset);
3501
3502 return block_limit - abs_offset;
3503 }
3504
3505 if (st->frag_data) {
3506 kunmap_atomic(st->frag_data);
3507 st->frag_data = NULL;
3508 }
3509
3510 st->frag_idx++;
3511 st->stepped_offset += skb_frag_size(frag);
3512 }
3513
3514 if (st->frag_data) {
3515 kunmap_atomic(st->frag_data);
3516 st->frag_data = NULL;
3517 }
3518
3519 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3520 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3521 st->frag_idx = 0;
3522 goto next_skb;
3523 } else if (st->cur_skb->next) {
3524 st->cur_skb = st->cur_skb->next;
3525 st->frag_idx = 0;
3526 goto next_skb;
3527 }
3528
3529 return 0;
3530}
3531EXPORT_SYMBOL(skb_seq_read);
3532
3533/**
3534 * skb_abort_seq_read - Abort a sequential read of skb data
3535 * @st: state variable
3536 *
3537 * Must be called if skb_seq_read() was not called until it
3538 * returned 0.
3539 */
3540void skb_abort_seq_read(struct skb_seq_state *st)
3541{
3542 if (st->frag_data)
3543 kunmap_atomic(st->frag_data);
3544}
3545EXPORT_SYMBOL(skb_abort_seq_read);
3546
3547#define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
3548
3549static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3550 struct ts_config *conf,
3551 struct ts_state *state)
3552{
3553 return skb_seq_read(offset, text, TS_SKB_CB(state));
3554}
3555
3556static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3557{
3558 skb_abort_seq_read(TS_SKB_CB(state));
3559}
3560
3561/**
3562 * skb_find_text - Find a text pattern in skb data
3563 * @skb: the buffer to look in
3564 * @from: search offset
3565 * @to: search limit
3566 * @config: textsearch configuration
3567 *
3568 * Finds a pattern in the skb data according to the specified
3569 * textsearch configuration. Use textsearch_next() to retrieve
3570 * subsequent occurrences of the pattern. Returns the offset
3571 * to the first occurrence or UINT_MAX if no match was found.
3572 */
3573unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3574 unsigned int to, struct ts_config *config)
3575{
3576 struct ts_state state;
3577 unsigned int ret;
3578
3579 config->get_next_block = skb_ts_get_next_block;
3580 config->finish = skb_ts_finish;
3581
3582 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3583
3584 ret = textsearch_find(config, &state);
3585 return (ret <= to - from ? ret : UINT_MAX);
3586}
3587EXPORT_SYMBOL(skb_find_text);
3588
3589int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3590 int offset, size_t size)
3591{
3592 int i = skb_shinfo(skb)->nr_frags;
3593
3594 if (skb_can_coalesce(skb, i, page, offset)) {
3595 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3596 } else if (i < MAX_SKB_FRAGS) {
3597 get_page(page);
3598 skb_fill_page_desc(skb, i, page, offset, size);
3599 } else {
3600 return -EMSGSIZE;
3601 }
3602
3603 return 0;
3604}
3605EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3606
3607/**
3608 * skb_pull_rcsum - pull skb and update receive checksum
3609 * @skb: buffer to update
3610 * @len: length of data pulled
3611 *
3612 * This function performs an skb_pull on the packet and updates
3613 * the CHECKSUM_COMPLETE checksum. It should be used on
3614 * receive path processing instead of skb_pull unless you know
3615 * that the checksum difference is zero (e.g., a valid IP header)
3616 * or you are setting ip_summed to CHECKSUM_NONE.
3617 */
3618void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3619{
3620 unsigned char *data = skb->data;
3621
3622 BUG_ON(len > skb->len);
3623 __skb_pull(skb, len);
3624 skb_postpull_rcsum(skb, data, len);
3625 return skb->data;
3626}
3627EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3628
3629static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3630{
3631 skb_frag_t head_frag;
3632 struct page *page;
3633
3634 page = virt_to_head_page(frag_skb->head);
3635 __skb_frag_set_page(&head_frag, page);
3636 skb_frag_off_set(&head_frag, frag_skb->data -
3637 (unsigned char *)page_address(page));
3638 skb_frag_size_set(&head_frag, skb_headlen(frag_skb));
3639 return head_frag;
3640}
3641
3642struct sk_buff *skb_segment_list(struct sk_buff *skb,
3643 netdev_features_t features,
3644 unsigned int offset)
3645{
3646 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
3647 unsigned int tnl_hlen = skb_tnl_header_len(skb);
3648 unsigned int delta_truesize = 0;
3649 unsigned int delta_len = 0;
3650 struct sk_buff *tail = NULL;
3651 struct sk_buff *nskb;
3652
3653 skb_push(skb, -skb_network_offset(skb) + offset);
3654
3655 skb_shinfo(skb)->frag_list = NULL;
3656
3657 do {
3658 nskb = list_skb;
3659 list_skb = list_skb->next;
3660
3661 if (!tail)
3662 skb->next = nskb;
3663 else
3664 tail->next = nskb;
3665
3666 tail = nskb;
3667
3668 delta_len += nskb->len;
3669 delta_truesize += nskb->truesize;
3670
3671 skb_push(nskb, -skb_network_offset(nskb) + offset);
3672
3673 skb_release_head_state(nskb);
3674 __copy_skb_header(nskb, skb);
3675
3676 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
3677 skb_copy_from_linear_data_offset(skb, -tnl_hlen,
3678 nskb->data - tnl_hlen,
3679 offset + tnl_hlen);
3680
3681 if (skb_needs_linearize(nskb, features) &&
3682 __skb_linearize(nskb))
3683 goto err_linearize;
3684
3685 } while (list_skb);
3686
3687 skb->truesize = skb->truesize - delta_truesize;
3688 skb->data_len = skb->data_len - delta_len;
3689 skb->len = skb->len - delta_len;
3690
3691 skb_gso_reset(skb);
3692
3693 skb->prev = tail;
3694
3695 if (skb_needs_linearize(skb, features) &&
3696 __skb_linearize(skb))
3697 goto err_linearize;
3698
3699 skb_get(skb);
3700
3701 return skb;
3702
3703err_linearize:
3704 kfree_skb_list(skb->next);
3705 skb->next = NULL;
3706 return ERR_PTR(-ENOMEM);
3707}
3708EXPORT_SYMBOL_GPL(skb_segment_list);
3709
3710int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb)
3711{
3712 if (unlikely(p->len + skb->len >= 65536))
3713 return -E2BIG;
3714
3715 if (NAPI_GRO_CB(p)->last == p)
3716 skb_shinfo(p)->frag_list = skb;
3717 else
3718 NAPI_GRO_CB(p)->last->next = skb;
3719
3720 skb_pull(skb, skb_gro_offset(skb));
3721
3722 NAPI_GRO_CB(p)->last = skb;
3723 NAPI_GRO_CB(p)->count++;
3724 p->data_len += skb->len;
3725 p->truesize += skb->truesize;
3726 p->len += skb->len;
3727
3728 NAPI_GRO_CB(skb)->same_flow = 1;
3729
3730 return 0;
3731}
3732
3733/**
3734 * skb_segment - Perform protocol segmentation on skb.
3735 * @head_skb: buffer to segment
3736 * @features: features for the output path (see dev->features)
3737 *
3738 * This function performs segmentation on the given skb. It returns
3739 * a pointer to the first in a list of new skbs for the segments.
3740 * In case of error it returns ERR_PTR(err).
3741 */
3742struct sk_buff *skb_segment(struct sk_buff *head_skb,
3743 netdev_features_t features)
3744{
3745 struct sk_buff *segs = NULL;
3746 struct sk_buff *tail = NULL;
3747 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3748 skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3749 unsigned int mss = skb_shinfo(head_skb)->gso_size;
3750 unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3751 struct sk_buff *frag_skb = head_skb;
3752 unsigned int offset = doffset;
3753 unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3754 unsigned int partial_segs = 0;
3755 unsigned int headroom;
3756 unsigned int len = head_skb->len;
3757 __be16 proto;
3758 bool csum, sg;
3759 int nfrags = skb_shinfo(head_skb)->nr_frags;
3760 int err = -ENOMEM;
3761 int i = 0;
3762 int pos;
3763
3764 if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) &&
3765 (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) {
3766 /* gso_size is untrusted, and we have a frag_list with a linear
3767 * non head_frag head.
3768 *
3769 * (we assume checking the first list_skb member suffices;
3770 * i.e if either of the list_skb members have non head_frag
3771 * head, then the first one has too).
3772 *
3773 * If head_skb's headlen does not fit requested gso_size, it
3774 * means that the frag_list members do NOT terminate on exact
3775 * gso_size boundaries. Hence we cannot perform skb_frag_t page
3776 * sharing. Therefore we must fallback to copying the frag_list
3777 * skbs; we do so by disabling SG.
3778 */
3779 if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb))
3780 features &= ~NETIF_F_SG;
3781 }
3782
3783 __skb_push(head_skb, doffset);
3784 proto = skb_network_protocol(head_skb, NULL);
3785 if (unlikely(!proto))
3786 return ERR_PTR(-EINVAL);
3787
3788 sg = !!(features & NETIF_F_SG);
3789 csum = !!can_checksum_protocol(features, proto);
3790
3791 if (sg && csum && (mss != GSO_BY_FRAGS)) {
3792 if (!(features & NETIF_F_GSO_PARTIAL)) {
3793 struct sk_buff *iter;
3794 unsigned int frag_len;
3795
3796 if (!list_skb ||
3797 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3798 goto normal;
3799
3800 /* If we get here then all the required
3801 * GSO features except frag_list are supported.
3802 * Try to split the SKB to multiple GSO SKBs
3803 * with no frag_list.
3804 * Currently we can do that only when the buffers don't
3805 * have a linear part and all the buffers except
3806 * the last are of the same length.
3807 */
3808 frag_len = list_skb->len;
3809 skb_walk_frags(head_skb, iter) {
3810 if (frag_len != iter->len && iter->next)
3811 goto normal;
3812 if (skb_headlen(iter) && !iter->head_frag)
3813 goto normal;
3814
3815 len -= iter->len;
3816 }
3817
3818 if (len != frag_len)
3819 goto normal;
3820 }
3821
3822 /* GSO partial only requires that we trim off any excess that
3823 * doesn't fit into an MSS sized block, so take care of that
3824 * now.
3825 */
3826 partial_segs = len / mss;
3827 if (partial_segs > 1)
3828 mss *= partial_segs;
3829 else
3830 partial_segs = 0;
3831 }
3832
3833normal:
3834 headroom = skb_headroom(head_skb);
3835 pos = skb_headlen(head_skb);
3836
3837 do {
3838 struct sk_buff *nskb;
3839 skb_frag_t *nskb_frag;
3840 int hsize;
3841 int size;
3842
3843 if (unlikely(mss == GSO_BY_FRAGS)) {
3844 len = list_skb->len;
3845 } else {
3846 len = head_skb->len - offset;
3847 if (len > mss)
3848 len = mss;
3849 }
3850
3851 hsize = skb_headlen(head_skb) - offset;
3852 if (hsize < 0)
3853 hsize = 0;
3854 if (hsize > len || !sg)
3855 hsize = len;
3856
3857 if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3858 (skb_headlen(list_skb) == len || sg)) {
3859 BUG_ON(skb_headlen(list_skb) > len);
3860
3861 i = 0;
3862 nfrags = skb_shinfo(list_skb)->nr_frags;
3863 frag = skb_shinfo(list_skb)->frags;
3864 frag_skb = list_skb;
3865 pos += skb_headlen(list_skb);
3866
3867 while (pos < offset + len) {
3868 BUG_ON(i >= nfrags);
3869
3870 size = skb_frag_size(frag);
3871 if (pos + size > offset + len)
3872 break;
3873
3874 i++;
3875 pos += size;
3876 frag++;
3877 }
3878
3879 nskb = skb_clone(list_skb, GFP_ATOMIC);
3880 list_skb = list_skb->next;
3881
3882 if (unlikely(!nskb))
3883 goto err;
3884
3885 if (unlikely(pskb_trim(nskb, len))) {
3886 kfree_skb(nskb);
3887 goto err;
3888 }
3889
3890 hsize = skb_end_offset(nskb);
3891 if (skb_cow_head(nskb, doffset + headroom)) {
3892 kfree_skb(nskb);
3893 goto err;
3894 }
3895
3896 nskb->truesize += skb_end_offset(nskb) - hsize;
3897 skb_release_head_state(nskb);
3898 __skb_push(nskb, doffset);
3899 } else {
3900 nskb = __alloc_skb(hsize + doffset + headroom,
3901 GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3902 NUMA_NO_NODE);
3903
3904 if (unlikely(!nskb))
3905 goto err;
3906
3907 skb_reserve(nskb, headroom);
3908 __skb_put(nskb, doffset);
3909 }
3910
3911 if (segs)
3912 tail->next = nskb;
3913 else
3914 segs = nskb;
3915 tail = nskb;
3916
3917 __copy_skb_header(nskb, head_skb);
3918
3919 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3920 skb_reset_mac_len(nskb);
3921
3922 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3923 nskb->data - tnl_hlen,
3924 doffset + tnl_hlen);
3925
3926 if (nskb->len == len + doffset)
3927 goto perform_csum_check;
3928
3929 if (!sg) {
3930 if (!csum) {
3931 if (!nskb->remcsum_offload)
3932 nskb->ip_summed = CHECKSUM_NONE;
3933 SKB_GSO_CB(nskb)->csum =
3934 skb_copy_and_csum_bits(head_skb, offset,
3935 skb_put(nskb,
3936 len),
3937 len, 0);
3938 SKB_GSO_CB(nskb)->csum_start =
3939 skb_headroom(nskb) + doffset;
3940 } else {
3941 skb_copy_bits(head_skb, offset,
3942 skb_put(nskb, len),
3943 len);
3944 }
3945 continue;
3946 }
3947
3948 nskb_frag = skb_shinfo(nskb)->frags;
3949
3950 skb_copy_from_linear_data_offset(head_skb, offset,
3951 skb_put(nskb, hsize), hsize);
3952
3953 skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags &
3954 SKBTX_SHARED_FRAG;
3955
3956 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3957 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
3958 goto err;
3959
3960 while (pos < offset + len) {
3961 if (i >= nfrags) {
3962 i = 0;
3963 nfrags = skb_shinfo(list_skb)->nr_frags;
3964 frag = skb_shinfo(list_skb)->frags;
3965 frag_skb = list_skb;
3966 if (!skb_headlen(list_skb)) {
3967 BUG_ON(!nfrags);
3968 } else {
3969 BUG_ON(!list_skb->head_frag);
3970
3971 /* to make room for head_frag. */
3972 i--;
3973 frag--;
3974 }
3975 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3976 skb_zerocopy_clone(nskb, frag_skb,
3977 GFP_ATOMIC))
3978 goto err;
3979
3980 list_skb = list_skb->next;
3981 }
3982
3983 if (unlikely(skb_shinfo(nskb)->nr_frags >=
3984 MAX_SKB_FRAGS)) {
3985 net_warn_ratelimited(
3986 "skb_segment: too many frags: %u %u\n",
3987 pos, mss);
3988 err = -EINVAL;
3989 goto err;
3990 }
3991
3992 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
3993 __skb_frag_ref(nskb_frag);
3994 size = skb_frag_size(nskb_frag);
3995
3996 if (pos < offset) {
3997 skb_frag_off_add(nskb_frag, offset - pos);
3998 skb_frag_size_sub(nskb_frag, offset - pos);
3999 }
4000
4001 skb_shinfo(nskb)->nr_frags++;
4002
4003 if (pos + size <= offset + len) {
4004 i++;
4005 frag++;
4006 pos += size;
4007 } else {
4008 skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4009 goto skip_fraglist;
4010 }
4011
4012 nskb_frag++;
4013 }
4014
4015skip_fraglist:
4016 nskb->data_len = len - hsize;
4017 nskb->len += nskb->data_len;
4018 nskb->truesize += nskb->data_len;
4019
4020perform_csum_check:
4021 if (!csum) {
4022 if (skb_has_shared_frag(nskb) &&
4023 __skb_linearize(nskb))
4024 goto err;
4025
4026 if (!nskb->remcsum_offload)
4027 nskb->ip_summed = CHECKSUM_NONE;
4028 SKB_GSO_CB(nskb)->csum =
4029 skb_checksum(nskb, doffset,
4030 nskb->len - doffset, 0);
4031 SKB_GSO_CB(nskb)->csum_start =
4032 skb_headroom(nskb) + doffset;
4033 }
4034 } while ((offset += len) < head_skb->len);
4035
4036 /* Some callers want to get the end of the list.
4037 * Put it in segs->prev to avoid walking the list.
4038 * (see validate_xmit_skb_list() for example)
4039 */
4040 segs->prev = tail;
4041
4042 if (partial_segs) {
4043 struct sk_buff *iter;
4044 int type = skb_shinfo(head_skb)->gso_type;
4045 unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4046
4047 /* Update type to add partial and then remove dodgy if set */
4048 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4049 type &= ~SKB_GSO_DODGY;
4050
4051 /* Update GSO info and prepare to start updating headers on
4052 * our way back down the stack of protocols.
4053 */
4054 for (iter = segs; iter; iter = iter->next) {
4055 skb_shinfo(iter)->gso_size = gso_size;
4056 skb_shinfo(iter)->gso_segs = partial_segs;
4057 skb_shinfo(iter)->gso_type = type;
4058 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4059 }
4060
4061 if (tail->len - doffset <= gso_size)
4062 skb_shinfo(tail)->gso_size = 0;
4063 else if (tail != segs)
4064 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4065 }
4066
4067 /* Following permits correct backpressure, for protocols
4068 * using skb_set_owner_w().
4069 * Idea is to tranfert ownership from head_skb to last segment.
4070 */
4071 if (head_skb->destructor == sock_wfree) {
4072 swap(tail->truesize, head_skb->truesize);
4073 swap(tail->destructor, head_skb->destructor);
4074 swap(tail->sk, head_skb->sk);
4075 }
4076 return segs;
4077
4078err:
4079 kfree_skb_list(segs);
4080 return ERR_PTR(err);
4081}
4082EXPORT_SYMBOL_GPL(skb_segment);
4083
4084int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb)
4085{
4086 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
4087 unsigned int offset = skb_gro_offset(skb);
4088 unsigned int headlen = skb_headlen(skb);
4089 unsigned int len = skb_gro_len(skb);
4090 unsigned int delta_truesize;
4091 struct sk_buff *lp;
4092
4093 if (unlikely(p->len + len >= 65536 || NAPI_GRO_CB(skb)->flush))
4094 return -E2BIG;
4095
4096 lp = NAPI_GRO_CB(p)->last;
4097 pinfo = skb_shinfo(lp);
4098
4099 if (headlen <= offset) {
4100 skb_frag_t *frag;
4101 skb_frag_t *frag2;
4102 int i = skbinfo->nr_frags;
4103 int nr_frags = pinfo->nr_frags + i;
4104
4105 if (nr_frags > MAX_SKB_FRAGS)
4106 goto merge;
4107
4108 offset -= headlen;
4109 pinfo->nr_frags = nr_frags;
4110 skbinfo->nr_frags = 0;
4111
4112 frag = pinfo->frags + nr_frags;
4113 frag2 = skbinfo->frags + i;
4114 do {
4115 *--frag = *--frag2;
4116 } while (--i);
4117
4118 skb_frag_off_add(frag, offset);
4119 skb_frag_size_sub(frag, offset);
4120
4121 /* all fragments truesize : remove (head size + sk_buff) */
4122 delta_truesize = skb->truesize -
4123 SKB_TRUESIZE(skb_end_offset(skb));
4124
4125 skb->truesize -= skb->data_len;
4126 skb->len -= skb->data_len;
4127 skb->data_len = 0;
4128
4129 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
4130 goto done;
4131 } else if (skb->head_frag) {
4132 int nr_frags = pinfo->nr_frags;
4133 skb_frag_t *frag = pinfo->frags + nr_frags;
4134 struct page *page = virt_to_head_page(skb->head);
4135 unsigned int first_size = headlen - offset;
4136 unsigned int first_offset;
4137
4138 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
4139 goto merge;
4140
4141 first_offset = skb->data -
4142 (unsigned char *)page_address(page) +
4143 offset;
4144
4145 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
4146
4147 __skb_frag_set_page(frag, page);
4148 skb_frag_off_set(frag, first_offset);
4149 skb_frag_size_set(frag, first_size);
4150
4151 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
4152 /* We dont need to clear skbinfo->nr_frags here */
4153
4154 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4155 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
4156 goto done;
4157 }
4158
4159merge:
4160 delta_truesize = skb->truesize;
4161 if (offset > headlen) {
4162 unsigned int eat = offset - headlen;
4163
4164 skb_frag_off_add(&skbinfo->frags[0], eat);
4165 skb_frag_size_sub(&skbinfo->frags[0], eat);
4166 skb->data_len -= eat;
4167 skb->len -= eat;
4168 offset = headlen;
4169 }
4170
4171 __skb_pull(skb, offset);
4172
4173 if (NAPI_GRO_CB(p)->last == p)
4174 skb_shinfo(p)->frag_list = skb;
4175 else
4176 NAPI_GRO_CB(p)->last->next = skb;
4177 NAPI_GRO_CB(p)->last = skb;
4178 __skb_header_release(skb);
4179 lp = p;
4180
4181done:
4182 NAPI_GRO_CB(p)->count++;
4183 p->data_len += len;
4184 p->truesize += delta_truesize;
4185 p->len += len;
4186 if (lp != p) {
4187 lp->data_len += len;
4188 lp->truesize += delta_truesize;
4189 lp->len += len;
4190 }
4191 NAPI_GRO_CB(skb)->same_flow = 1;
4192 return 0;
4193}
4194
4195#ifdef CONFIG_SKB_EXTENSIONS
4196#define SKB_EXT_ALIGN_VALUE 8
4197#define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4198
4199static const u8 skb_ext_type_len[] = {
4200#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4201 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4202#endif
4203#ifdef CONFIG_XFRM
4204 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4205#endif
4206#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4207 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4208#endif
4209#if IS_ENABLED(CONFIG_MPTCP)
4210 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4211#endif
4212};
4213
4214static __always_inline unsigned int skb_ext_total_length(void)
4215{
4216 return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4217#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4218 skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4219#endif
4220#ifdef CONFIG_XFRM
4221 skb_ext_type_len[SKB_EXT_SEC_PATH] +
4222#endif
4223#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4224 skb_ext_type_len[TC_SKB_EXT] +
4225#endif
4226#if IS_ENABLED(CONFIG_MPTCP)
4227 skb_ext_type_len[SKB_EXT_MPTCP] +
4228#endif
4229 0;
4230}
4231
4232static void skb_extensions_init(void)
4233{
4234 BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4235 BUILD_BUG_ON(skb_ext_total_length() > 255);
4236
4237 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4238 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4239 0,
4240 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4241 NULL);
4242}
4243#else
4244static void skb_extensions_init(void) {}
4245#endif
4246
4247void __init skb_init(void)
4248{
4249 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4250 sizeof(struct sk_buff),
4251 0,
4252 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4253 offsetof(struct sk_buff, cb),
4254 sizeof_field(struct sk_buff, cb),
4255 NULL);
4256 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4257 sizeof(struct sk_buff_fclones),
4258 0,
4259 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4260 NULL);
4261 skb_extensions_init();
4262}
4263
4264static int
4265__skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4266 unsigned int recursion_level)
4267{
4268 int start = skb_headlen(skb);
4269 int i, copy = start - offset;
4270 struct sk_buff *frag_iter;
4271 int elt = 0;
4272
4273 if (unlikely(recursion_level >= 24))
4274 return -EMSGSIZE;
4275
4276 if (copy > 0) {
4277 if (copy > len)
4278 copy = len;
4279 sg_set_buf(sg, skb->data + offset, copy);
4280 elt++;
4281 if ((len -= copy) == 0)
4282 return elt;
4283 offset += copy;
4284 }
4285
4286 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4287 int end;
4288
4289 WARN_ON(start > offset + len);
4290
4291 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4292 if ((copy = end - offset) > 0) {
4293 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4294 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4295 return -EMSGSIZE;
4296
4297 if (copy > len)
4298 copy = len;
4299 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4300 skb_frag_off(frag) + offset - start);
4301 elt++;
4302 if (!(len -= copy))
4303 return elt;
4304 offset += copy;
4305 }
4306 start = end;
4307 }
4308
4309 skb_walk_frags(skb, frag_iter) {
4310 int end, ret;
4311
4312 WARN_ON(start > offset + len);
4313
4314 end = start + frag_iter->len;
4315 if ((copy = end - offset) > 0) {
4316 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4317 return -EMSGSIZE;
4318
4319 if (copy > len)
4320 copy = len;
4321 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4322 copy, recursion_level + 1);
4323 if (unlikely(ret < 0))
4324 return ret;
4325 elt += ret;
4326 if ((len -= copy) == 0)
4327 return elt;
4328 offset += copy;
4329 }
4330 start = end;
4331 }
4332 BUG_ON(len);
4333 return elt;
4334}
4335
4336/**
4337 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4338 * @skb: Socket buffer containing the buffers to be mapped
4339 * @sg: The scatter-gather list to map into
4340 * @offset: The offset into the buffer's contents to start mapping
4341 * @len: Length of buffer space to be mapped
4342 *
4343 * Fill the specified scatter-gather list with mappings/pointers into a
4344 * region of the buffer space attached to a socket buffer. Returns either
4345 * the number of scatterlist items used, or -EMSGSIZE if the contents
4346 * could not fit.
4347 */
4348int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4349{
4350 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4351
4352 if (nsg <= 0)
4353 return nsg;
4354
4355 sg_mark_end(&sg[nsg - 1]);
4356
4357 return nsg;
4358}
4359EXPORT_SYMBOL_GPL(skb_to_sgvec);
4360
4361/* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4362 * sglist without mark the sg which contain last skb data as the end.
4363 * So the caller can mannipulate sg list as will when padding new data after
4364 * the first call without calling sg_unmark_end to expend sg list.
4365 *
4366 * Scenario to use skb_to_sgvec_nomark:
4367 * 1. sg_init_table
4368 * 2. skb_to_sgvec_nomark(payload1)
4369 * 3. skb_to_sgvec_nomark(payload2)
4370 *
4371 * This is equivalent to:
4372 * 1. sg_init_table
4373 * 2. skb_to_sgvec(payload1)
4374 * 3. sg_unmark_end
4375 * 4. skb_to_sgvec(payload2)
4376 *
4377 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4378 * is more preferable.
4379 */
4380int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4381 int offset, int len)
4382{
4383 return __skb_to_sgvec(skb, sg, offset, len, 0);
4384}
4385EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4386
4387
4388
4389/**
4390 * skb_cow_data - Check that a socket buffer's data buffers are writable
4391 * @skb: The socket buffer to check.
4392 * @tailbits: Amount of trailing space to be added
4393 * @trailer: Returned pointer to the skb where the @tailbits space begins
4394 *
4395 * Make sure that the data buffers attached to a socket buffer are
4396 * writable. If they are not, private copies are made of the data buffers
4397 * and the socket buffer is set to use these instead.
4398 *
4399 * If @tailbits is given, make sure that there is space to write @tailbits
4400 * bytes of data beyond current end of socket buffer. @trailer will be
4401 * set to point to the skb in which this space begins.
4402 *
4403 * The number of scatterlist elements required to completely map the
4404 * COW'd and extended socket buffer will be returned.
4405 */
4406int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4407{
4408 int copyflag;
4409 int elt;
4410 struct sk_buff *skb1, **skb_p;
4411
4412 /* If skb is cloned or its head is paged, reallocate
4413 * head pulling out all the pages (pages are considered not writable
4414 * at the moment even if they are anonymous).
4415 */
4416 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4417 !__pskb_pull_tail(skb, __skb_pagelen(skb)))
4418 return -ENOMEM;
4419
4420 /* Easy case. Most of packets will go this way. */
4421 if (!skb_has_frag_list(skb)) {
4422 /* A little of trouble, not enough of space for trailer.
4423 * This should not happen, when stack is tuned to generate
4424 * good frames. OK, on miss we reallocate and reserve even more
4425 * space, 128 bytes is fair. */
4426
4427 if (skb_tailroom(skb) < tailbits &&
4428 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4429 return -ENOMEM;
4430
4431 /* Voila! */
4432 *trailer = skb;
4433 return 1;
4434 }
4435
4436 /* Misery. We are in troubles, going to mincer fragments... */
4437
4438 elt = 1;
4439 skb_p = &skb_shinfo(skb)->frag_list;
4440 copyflag = 0;
4441
4442 while ((skb1 = *skb_p) != NULL) {
4443 int ntail = 0;
4444
4445 /* The fragment is partially pulled by someone,
4446 * this can happen on input. Copy it and everything
4447 * after it. */
4448
4449 if (skb_shared(skb1))
4450 copyflag = 1;
4451
4452 /* If the skb is the last, worry about trailer. */
4453
4454 if (skb1->next == NULL && tailbits) {
4455 if (skb_shinfo(skb1)->nr_frags ||
4456 skb_has_frag_list(skb1) ||
4457 skb_tailroom(skb1) < tailbits)
4458 ntail = tailbits + 128;
4459 }
4460
4461 if (copyflag ||
4462 skb_cloned(skb1) ||
4463 ntail ||
4464 skb_shinfo(skb1)->nr_frags ||
4465 skb_has_frag_list(skb1)) {
4466 struct sk_buff *skb2;
4467
4468 /* Fuck, we are miserable poor guys... */
4469 if (ntail == 0)
4470 skb2 = skb_copy(skb1, GFP_ATOMIC);
4471 else
4472 skb2 = skb_copy_expand(skb1,
4473 skb_headroom(skb1),
4474 ntail,
4475 GFP_ATOMIC);
4476 if (unlikely(skb2 == NULL))
4477 return -ENOMEM;
4478
4479 if (skb1->sk)
4480 skb_set_owner_w(skb2, skb1->sk);
4481
4482 /* Looking around. Are we still alive?
4483 * OK, link new skb, drop old one */
4484
4485 skb2->next = skb1->next;
4486 *skb_p = skb2;
4487 kfree_skb(skb1);
4488 skb1 = skb2;
4489 }
4490 elt++;
4491 *trailer = skb1;
4492 skb_p = &skb1->next;
4493 }
4494
4495 return elt;
4496}
4497EXPORT_SYMBOL_GPL(skb_cow_data);
4498
4499static void sock_rmem_free(struct sk_buff *skb)
4500{
4501 struct sock *sk = skb->sk;
4502
4503 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4504}
4505
4506static void skb_set_err_queue(struct sk_buff *skb)
4507{
4508 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4509 * So, it is safe to (mis)use it to mark skbs on the error queue.
4510 */
4511 skb->pkt_type = PACKET_OUTGOING;
4512 BUILD_BUG_ON(PACKET_OUTGOING == 0);
4513}
4514
4515/*
4516 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4517 */
4518int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4519{
4520 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4521 (unsigned int)READ_ONCE(sk->sk_rcvbuf))
4522 return -ENOMEM;
4523
4524 skb_orphan(skb);
4525 skb->sk = sk;
4526 skb->destructor = sock_rmem_free;
4527 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4528 skb_set_err_queue(skb);
4529
4530 /* before exiting rcu section, make sure dst is refcounted */
4531 skb_dst_force(skb);
4532
4533 skb_queue_tail(&sk->sk_error_queue, skb);
4534 if (!sock_flag(sk, SOCK_DEAD))
4535 sk->sk_error_report(sk);
4536 return 0;
4537}
4538EXPORT_SYMBOL(sock_queue_err_skb);
4539
4540static bool is_icmp_err_skb(const struct sk_buff *skb)
4541{
4542 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4543 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4544}
4545
4546struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4547{
4548 struct sk_buff_head *q = &sk->sk_error_queue;
4549 struct sk_buff *skb, *skb_next = NULL;
4550 bool icmp_next = false;
4551 unsigned long flags;
4552
4553 spin_lock_irqsave(&q->lock, flags);
4554 skb = __skb_dequeue(q);
4555 if (skb && (skb_next = skb_peek(q))) {
4556 icmp_next = is_icmp_err_skb(skb_next);
4557 if (icmp_next)
4558 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_origin;
4559 }
4560 spin_unlock_irqrestore(&q->lock, flags);
4561
4562 if (is_icmp_err_skb(skb) && !icmp_next)
4563 sk->sk_err = 0;
4564
4565 if (skb_next)
4566 sk->sk_error_report(sk);
4567
4568 return skb;
4569}
4570EXPORT_SYMBOL(sock_dequeue_err_skb);
4571
4572/**
4573 * skb_clone_sk - create clone of skb, and take reference to socket
4574 * @skb: the skb to clone
4575 *
4576 * This function creates a clone of a buffer that holds a reference on
4577 * sk_refcnt. Buffers created via this function are meant to be
4578 * returned using sock_queue_err_skb, or free via kfree_skb.
4579 *
4580 * When passing buffers allocated with this function to sock_queue_err_skb
4581 * it is necessary to wrap the call with sock_hold/sock_put in order to
4582 * prevent the socket from being released prior to being enqueued on
4583 * the sk_error_queue.
4584 */
4585struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4586{
4587 struct sock *sk = skb->sk;
4588 struct sk_buff *clone;
4589
4590 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4591 return NULL;
4592
4593 clone = skb_clone(skb, GFP_ATOMIC);
4594 if (!clone) {
4595 sock_put(sk);
4596 return NULL;
4597 }
4598
4599 clone->sk = sk;
4600 clone->destructor = sock_efree;
4601
4602 return clone;
4603}
4604EXPORT_SYMBOL(skb_clone_sk);
4605
4606static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4607 struct sock *sk,
4608 int tstype,
4609 bool opt_stats)
4610{
4611 struct sock_exterr_skb *serr;
4612 int err;
4613
4614 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4615
4616 serr = SKB_EXT_ERR(skb);
4617 memset(serr, 0, sizeof(*serr));
4618 serr->ee.ee_errno = ENOMSG;
4619 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4620 serr->ee.ee_info = tstype;
4621 serr->opt_stats = opt_stats;
4622 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4623 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4624 serr->ee.ee_data = skb_shinfo(skb)->tskey;
4625 if (sk->sk_protocol == IPPROTO_TCP &&
4626 sk->sk_type == SOCK_STREAM)
4627 serr->ee.ee_data -= sk->sk_tskey;
4628 }
4629
4630 err = sock_queue_err_skb(sk, skb);
4631
4632 if (err)
4633 kfree_skb(skb);
4634}
4635
4636static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4637{
4638 bool ret;
4639
4640 if (likely(sysctl_tstamp_allow_data || tsonly))
4641 return true;
4642
4643 read_lock_bh(&sk->sk_callback_lock);
4644 ret = sk->sk_socket && sk->sk_socket->file &&
4645 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4646 read_unlock_bh(&sk->sk_callback_lock);
4647 return ret;
4648}
4649
4650void skb_complete_tx_timestamp(struct sk_buff *skb,
4651 struct skb_shared_hwtstamps *hwtstamps)
4652{
4653 struct sock *sk = skb->sk;
4654
4655 if (!skb_may_tx_timestamp(sk, false))
4656 goto err;
4657
4658 /* Take a reference to prevent skb_orphan() from freeing the socket,
4659 * but only if the socket refcount is not zero.
4660 */
4661 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4662 *skb_hwtstamps(skb) = *hwtstamps;
4663 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4664 sock_put(sk);
4665 return;
4666 }
4667
4668err:
4669 kfree_skb(skb);
4670}
4671EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4672
4673void __skb_tstamp_tx(struct sk_buff *orig_skb,
4674 struct skb_shared_hwtstamps *hwtstamps,
4675 struct sock *sk, int tstype)
4676{
4677 struct sk_buff *skb;
4678 bool tsonly, opt_stats = false;
4679
4680 if (!sk)
4681 return;
4682
4683 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4684 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4685 return;
4686
4687 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4688 if (!skb_may_tx_timestamp(sk, tsonly))
4689 return;
4690
4691 if (tsonly) {
4692#ifdef CONFIG_INET
4693 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4694 sk->sk_protocol == IPPROTO_TCP &&
4695 sk->sk_type == SOCK_STREAM) {
4696 skb = tcp_get_timestamping_opt_stats(sk, orig_skb);
4697 opt_stats = true;
4698 } else
4699#endif
4700 skb = alloc_skb(0, GFP_ATOMIC);
4701 } else {
4702 skb = skb_clone(orig_skb, GFP_ATOMIC);
4703 }
4704 if (!skb)
4705 return;
4706
4707 if (tsonly) {
4708 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4709 SKBTX_ANY_TSTAMP;
4710 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4711 }
4712
4713 if (hwtstamps)
4714 *skb_hwtstamps(skb) = *hwtstamps;
4715 else
4716 skb->tstamp = ktime_get_real();
4717
4718 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4719}
4720EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4721
4722void skb_tstamp_tx(struct sk_buff *orig_skb,
4723 struct skb_shared_hwtstamps *hwtstamps)
4724{
4725 return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
4726 SCM_TSTAMP_SND);
4727}
4728EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4729
4730void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4731{
4732 struct sock *sk = skb->sk;
4733 struct sock_exterr_skb *serr;
4734 int err = 1;
4735
4736 skb->wifi_acked_valid = 1;
4737 skb->wifi_acked = acked;
4738
4739 serr = SKB_EXT_ERR(skb);
4740 memset(serr, 0, sizeof(*serr));
4741 serr->ee.ee_errno = ENOMSG;
4742 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4743
4744 /* Take a reference to prevent skb_orphan() from freeing the socket,
4745 * but only if the socket refcount is not zero.
4746 */
4747 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4748 err = sock_queue_err_skb(sk, skb);
4749 sock_put(sk);
4750 }
4751 if (err)
4752 kfree_skb(skb);
4753}
4754EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4755
4756/**
4757 * skb_partial_csum_set - set up and verify partial csum values for packet
4758 * @skb: the skb to set
4759 * @start: the number of bytes after skb->data to start checksumming.
4760 * @off: the offset from start to place the checksum.
4761 *
4762 * For untrusted partially-checksummed packets, we need to make sure the values
4763 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4764 *
4765 * This function checks and sets those values and skb->ip_summed: if this
4766 * returns false you should drop the packet.
4767 */
4768bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4769{
4770 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
4771 u32 csum_start = skb_headroom(skb) + (u32)start;
4772
4773 if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
4774 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
4775 start, off, skb_headroom(skb), skb_headlen(skb));
4776 return false;
4777 }
4778 skb->ip_summed = CHECKSUM_PARTIAL;
4779 skb->csum_start = csum_start;
4780 skb->csum_offset = off;
4781 skb_set_transport_header(skb, start);
4782 return true;
4783}
4784EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4785
4786static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4787 unsigned int max)
4788{
4789 if (skb_headlen(skb) >= len)
4790 return 0;
4791
4792 /* If we need to pullup then pullup to the max, so we
4793 * won't need to do it again.
4794 */
4795 if (max > skb->len)
4796 max = skb->len;
4797
4798 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4799 return -ENOMEM;
4800
4801 if (skb_headlen(skb) < len)
4802 return -EPROTO;
4803
4804 return 0;
4805}
4806
4807#define MAX_TCP_HDR_LEN (15 * 4)
4808
4809static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4810 typeof(IPPROTO_IP) proto,
4811 unsigned int off)
4812{
4813 int err;
4814
4815 switch (proto) {
4816 case IPPROTO_TCP:
4817 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4818 off + MAX_TCP_HDR_LEN);
4819 if (!err && !skb_partial_csum_set(skb, off,
4820 offsetof(struct tcphdr,
4821 check)))
4822 err = -EPROTO;
4823 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4824
4825 case IPPROTO_UDP:
4826 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4827 off + sizeof(struct udphdr));
4828 if (!err && !skb_partial_csum_set(skb, off,
4829 offsetof(struct udphdr,
4830 check)))
4831 err = -EPROTO;
4832 return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4833 }
4834
4835 return ERR_PTR(-EPROTO);
4836}
4837
4838/* This value should be large enough to cover a tagged ethernet header plus
4839 * maximally sized IP and TCP or UDP headers.
4840 */
4841#define MAX_IP_HDR_LEN 128
4842
4843static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4844{
4845 unsigned int off;
4846 bool fragment;
4847 __sum16 *csum;
4848 int err;
4849
4850 fragment = false;
4851
4852 err = skb_maybe_pull_tail(skb,
4853 sizeof(struct iphdr),
4854 MAX_IP_HDR_LEN);
4855 if (err < 0)
4856 goto out;
4857
4858 if (ip_is_fragment(ip_hdr(skb)))
4859 fragment = true;
4860
4861 off = ip_hdrlen(skb);
4862
4863 err = -EPROTO;
4864
4865 if (fragment)
4866 goto out;
4867
4868 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4869 if (IS_ERR(csum))
4870 return PTR_ERR(csum);
4871
4872 if (recalculate)
4873 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4874 ip_hdr(skb)->daddr,
4875 skb->len - off,
4876 ip_hdr(skb)->protocol, 0);
4877 err = 0;
4878
4879out:
4880 return err;
4881}
4882
4883/* This value should be large enough to cover a tagged ethernet header plus
4884 * an IPv6 header, all options, and a maximal TCP or UDP header.
4885 */
4886#define MAX_IPV6_HDR_LEN 256
4887
4888#define OPT_HDR(type, skb, off) \
4889 (type *)(skb_network_header(skb) + (off))
4890
4891static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4892{
4893 int err;
4894 u8 nexthdr;
4895 unsigned int off;
4896 unsigned int len;
4897 bool fragment;
4898 bool done;
4899 __sum16 *csum;
4900
4901 fragment = false;
4902 done = false;
4903
4904 off = sizeof(struct ipv6hdr);
4905
4906 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4907 if (err < 0)
4908 goto out;
4909
4910 nexthdr = ipv6_hdr(skb)->nexthdr;
4911
4912 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4913 while (off <= len && !done) {
4914 switch (nexthdr) {
4915 case IPPROTO_DSTOPTS:
4916 case IPPROTO_HOPOPTS:
4917 case IPPROTO_ROUTING: {
4918 struct ipv6_opt_hdr *hp;
4919
4920 err = skb_maybe_pull_tail(skb,
4921 off +
4922 sizeof(struct ipv6_opt_hdr),
4923 MAX_IPV6_HDR_LEN);
4924 if (err < 0)
4925 goto out;
4926
4927 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4928 nexthdr = hp->nexthdr;
4929 off += ipv6_optlen(hp);
4930 break;
4931 }
4932 case IPPROTO_AH: {
4933 struct ip_auth_hdr *hp;
4934
4935 err = skb_maybe_pull_tail(skb,
4936 off +
4937 sizeof(struct ip_auth_hdr),
4938 MAX_IPV6_HDR_LEN);
4939 if (err < 0)
4940 goto out;
4941
4942 hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4943 nexthdr = hp->nexthdr;
4944 off += ipv6_authlen(hp);
4945 break;
4946 }
4947 case IPPROTO_FRAGMENT: {
4948 struct frag_hdr *hp;
4949
4950 err = skb_maybe_pull_tail(skb,
4951 off +
4952 sizeof(struct frag_hdr),
4953 MAX_IPV6_HDR_LEN);
4954 if (err < 0)
4955 goto out;
4956
4957 hp = OPT_HDR(struct frag_hdr, skb, off);
4958
4959 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4960 fragment = true;
4961
4962 nexthdr = hp->nexthdr;
4963 off += sizeof(struct frag_hdr);
4964 break;
4965 }
4966 default:
4967 done = true;
4968 break;
4969 }
4970 }
4971
4972 err = -EPROTO;
4973
4974 if (!done || fragment)
4975 goto out;
4976
4977 csum = skb_checksum_setup_ip(skb, nexthdr, off);
4978 if (IS_ERR(csum))
4979 return PTR_ERR(csum);
4980
4981 if (recalculate)
4982 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4983 &ipv6_hdr(skb)->daddr,
4984 skb->len - off, nexthdr, 0);
4985 err = 0;
4986
4987out:
4988 return err;
4989}
4990
4991/**
4992 * skb_checksum_setup - set up partial checksum offset
4993 * @skb: the skb to set up
4994 * @recalculate: if true the pseudo-header checksum will be recalculated
4995 */
4996int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4997{
4998 int err;
4999
5000 switch (skb->protocol) {
5001 case htons(ETH_P_IP):
5002 err = skb_checksum_setup_ipv4(skb, recalculate);
5003 break;
5004
5005 case htons(ETH_P_IPV6):
5006 err = skb_checksum_setup_ipv6(skb, recalculate);
5007 break;
5008
5009 default:
5010 err = -EPROTO;
5011 break;
5012 }
5013
5014 return err;
5015}
5016EXPORT_SYMBOL(skb_checksum_setup);
5017
5018/**
5019 * skb_checksum_maybe_trim - maybe trims the given skb
5020 * @skb: the skb to check
5021 * @transport_len: the data length beyond the network header
5022 *
5023 * Checks whether the given skb has data beyond the given transport length.
5024 * If so, returns a cloned skb trimmed to this transport length.
5025 * Otherwise returns the provided skb. Returns NULL in error cases
5026 * (e.g. transport_len exceeds skb length or out-of-memory).
5027 *
5028 * Caller needs to set the skb transport header and free any returned skb if it
5029 * differs from the provided skb.
5030 */
5031static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5032 unsigned int transport_len)
5033{
5034 struct sk_buff *skb_chk;
5035 unsigned int len = skb_transport_offset(skb) + transport_len;
5036 int ret;
5037
5038 if (skb->len < len)
5039 return NULL;
5040 else if (skb->len == len)
5041 return skb;
5042
5043 skb_chk = skb_clone(skb, GFP_ATOMIC);
5044 if (!skb_chk)
5045 return NULL;
5046
5047 ret = pskb_trim_rcsum(skb_chk, len);
5048 if (ret) {
5049 kfree_skb(skb_chk);
5050 return NULL;
5051 }
5052
5053 return skb_chk;
5054}
5055
5056/**
5057 * skb_checksum_trimmed - validate checksum of an skb
5058 * @skb: the skb to check
5059 * @transport_len: the data length beyond the network header
5060 * @skb_chkf: checksum function to use
5061 *
5062 * Applies the given checksum function skb_chkf to the provided skb.
5063 * Returns a checked and maybe trimmed skb. Returns NULL on error.
5064 *
5065 * If the skb has data beyond the given transport length, then a
5066 * trimmed & cloned skb is checked and returned.
5067 *
5068 * Caller needs to set the skb transport header and free any returned skb if it
5069 * differs from the provided skb.
5070 */
5071struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5072 unsigned int transport_len,
5073 __sum16(*skb_chkf)(struct sk_buff *skb))
5074{
5075 struct sk_buff *skb_chk;
5076 unsigned int offset = skb_transport_offset(skb);
5077 __sum16 ret;
5078
5079 skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5080 if (!skb_chk)
5081 goto err;
5082
5083 if (!pskb_may_pull(skb_chk, offset))
5084 goto err;
5085
5086 skb_pull_rcsum(skb_chk, offset);
5087 ret = skb_chkf(skb_chk);
5088 skb_push_rcsum(skb_chk, offset);
5089
5090 if (ret)
5091 goto err;
5092
5093 return skb_chk;
5094
5095err:
5096 if (skb_chk && skb_chk != skb)
5097 kfree_skb(skb_chk);
5098
5099 return NULL;
5100
5101}
5102EXPORT_SYMBOL(skb_checksum_trimmed);
5103
5104void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5105{
5106 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5107 skb->dev->name);
5108}
5109EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5110
5111void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5112{
5113 if (head_stolen) {
5114 skb_release_head_state(skb);
5115 kmem_cache_free(skbuff_head_cache, skb);
5116 } else {
5117 __kfree_skb(skb);
5118 }
5119}
5120EXPORT_SYMBOL(kfree_skb_partial);
5121
5122/**
5123 * skb_try_coalesce - try to merge skb to prior one
5124 * @to: prior buffer
5125 * @from: buffer to add
5126 * @fragstolen: pointer to boolean
5127 * @delta_truesize: how much more was allocated than was requested
5128 */
5129bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5130 bool *fragstolen, int *delta_truesize)
5131{
5132 struct skb_shared_info *to_shinfo, *from_shinfo;
5133 int i, delta, len = from->len;
5134
5135 *fragstolen = false;
5136
5137 if (skb_cloned(to))
5138 return false;
5139
5140 if (len <= skb_tailroom(to)) {
5141 if (len)
5142 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5143 *delta_truesize = 0;
5144 return true;
5145 }
5146
5147 to_shinfo = skb_shinfo(to);
5148 from_shinfo = skb_shinfo(from);
5149 if (to_shinfo->frag_list || from_shinfo->frag_list)
5150 return false;
5151 if (skb_zcopy(to) || skb_zcopy(from))
5152 return false;
5153
5154 if (skb_headlen(from) != 0) {
5155 struct page *page;
5156 unsigned int offset;
5157
5158 if (to_shinfo->nr_frags +
5159 from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5160 return false;
5161
5162 if (skb_head_is_locked(from))
5163 return false;
5164
5165 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5166
5167 page = virt_to_head_page(from->head);
5168 offset = from->data - (unsigned char *)page_address(page);
5169
5170 skb_fill_page_desc(to, to_shinfo->nr_frags,
5171 page, offset, skb_headlen(from));
5172 *fragstolen = true;
5173 } else {
5174 if (to_shinfo->nr_frags +
5175 from_shinfo->nr_frags > MAX_SKB_FRAGS)
5176 return false;
5177
5178 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5179 }
5180
5181 WARN_ON_ONCE(delta < len);
5182
5183 memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5184 from_shinfo->frags,
5185 from_shinfo->nr_frags * sizeof(skb_frag_t));
5186 to_shinfo->nr_frags += from_shinfo->nr_frags;
5187
5188 if (!skb_cloned(from))
5189 from_shinfo->nr_frags = 0;
5190
5191 /* if the skb is not cloned this does nothing
5192 * since we set nr_frags to 0.
5193 */
5194 for (i = 0; i < from_shinfo->nr_frags; i++)
5195 __skb_frag_ref(&from_shinfo->frags[i]);
5196
5197 to->truesize += delta;
5198 to->len += len;
5199 to->data_len += len;
5200
5201 *delta_truesize = delta;
5202 return true;
5203}
5204EXPORT_SYMBOL(skb_try_coalesce);
5205
5206/**
5207 * skb_scrub_packet - scrub an skb
5208 *
5209 * @skb: buffer to clean
5210 * @xnet: packet is crossing netns
5211 *
5212 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5213 * into/from a tunnel. Some information have to be cleared during these
5214 * operations.
5215 * skb_scrub_packet can also be used to clean a skb before injecting it in
5216 * another namespace (@xnet == true). We have to clear all information in the
5217 * skb that could impact namespace isolation.
5218 */
5219void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5220{
5221 skb->pkt_type = PACKET_HOST;
5222 skb->skb_iif = 0;
5223 skb->ignore_df = 0;
5224 skb_dst_drop(skb);
5225 skb_ext_reset(skb);
5226 nf_reset_ct(skb);
5227 nf_reset_trace(skb);
5228
5229#ifdef CONFIG_NET_SWITCHDEV
5230 skb->offload_fwd_mark = 0;
5231 skb->offload_l3_fwd_mark = 0;
5232#endif
5233
5234 if (!xnet)
5235 return;
5236
5237 ipvs_reset(skb);
5238 skb->mark = 0;
5239 skb->tstamp = 0;
5240}
5241EXPORT_SYMBOL_GPL(skb_scrub_packet);
5242
5243/**
5244 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5245 *
5246 * @skb: GSO skb
5247 *
5248 * skb_gso_transport_seglen is used to determine the real size of the
5249 * individual segments, including Layer4 headers (TCP/UDP).
5250 *
5251 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5252 */
5253static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5254{
5255 const struct skb_shared_info *shinfo = skb_shinfo(skb);
5256 unsigned int thlen = 0;
5257
5258 if (skb->encapsulation) {
5259 thlen = skb_inner_transport_header(skb) -
5260 skb_transport_header(skb);
5261
5262 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5263 thlen += inner_tcp_hdrlen(skb);
5264 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5265 thlen = tcp_hdrlen(skb);
5266 } else if (unlikely(skb_is_gso_sctp(skb))) {
5267 thlen = sizeof(struct sctphdr);
5268 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5269 thlen = sizeof(struct udphdr);
5270 }
5271 /* UFO sets gso_size to the size of the fragmentation
5272 * payload, i.e. the size of the L4 (UDP) header is already
5273 * accounted for.
5274 */
5275 return thlen + shinfo->gso_size;
5276}
5277
5278/**
5279 * skb_gso_network_seglen - Return length of individual segments of a gso packet
5280 *
5281 * @skb: GSO skb
5282 *
5283 * skb_gso_network_seglen is used to determine the real size of the
5284 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5285 *
5286 * The MAC/L2 header is not accounted for.
5287 */
5288static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5289{
5290 unsigned int hdr_len = skb_transport_header(skb) -
5291 skb_network_header(skb);
5292
5293 return hdr_len + skb_gso_transport_seglen(skb);
5294}
5295
5296/**
5297 * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5298 *
5299 * @skb: GSO skb
5300 *
5301 * skb_gso_mac_seglen is used to determine the real size of the
5302 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5303 * headers (TCP/UDP).
5304 */
5305static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5306{
5307 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5308
5309 return hdr_len + skb_gso_transport_seglen(skb);
5310}
5311
5312/**
5313 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5314 *
5315 * There are a couple of instances where we have a GSO skb, and we
5316 * want to determine what size it would be after it is segmented.
5317 *
5318 * We might want to check:
5319 * - L3+L4+payload size (e.g. IP forwarding)
5320 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5321 *
5322 * This is a helper to do that correctly considering GSO_BY_FRAGS.
5323 *
5324 * @skb: GSO skb
5325 *
5326 * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5327 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5328 *
5329 * @max_len: The maximum permissible length.
5330 *
5331 * Returns true if the segmented length <= max length.
5332 */
5333static inline bool skb_gso_size_check(const struct sk_buff *skb,
5334 unsigned int seg_len,
5335 unsigned int max_len) {
5336 const struct skb_shared_info *shinfo = skb_shinfo(skb);
5337 const struct sk_buff *iter;
5338
5339 if (shinfo->gso_size != GSO_BY_FRAGS)
5340 return seg_len <= max_len;
5341
5342 /* Undo this so we can re-use header sizes */
5343 seg_len -= GSO_BY_FRAGS;
5344
5345 skb_walk_frags(skb, iter) {
5346 if (seg_len + skb_headlen(iter) > max_len)
5347 return false;
5348 }
5349
5350 return true;
5351}
5352
5353/**
5354 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5355 *
5356 * @skb: GSO skb
5357 * @mtu: MTU to validate against
5358 *
5359 * skb_gso_validate_network_len validates if a given skb will fit a
5360 * wanted MTU once split. It considers L3 headers, L4 headers, and the
5361 * payload.
5362 */
5363bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5364{
5365 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5366}
5367EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5368
5369/**
5370 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5371 *
5372 * @skb: GSO skb
5373 * @len: length to validate against
5374 *
5375 * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5376 * length once split, including L2, L3 and L4 headers and the payload.
5377 */
5378bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5379{
5380 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5381}
5382EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5383
5384static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5385{
5386 int mac_len, meta_len;
5387 void *meta;
5388
5389 if (skb_cow(skb, skb_headroom(skb)) < 0) {
5390 kfree_skb(skb);
5391 return NULL;
5392 }
5393
5394 mac_len = skb->data - skb_mac_header(skb);
5395 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5396 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5397 mac_len - VLAN_HLEN - ETH_TLEN);
5398 }
5399
5400 meta_len = skb_metadata_len(skb);
5401 if (meta_len) {
5402 meta = skb_metadata_end(skb) - meta_len;
5403 memmove(meta + VLAN_HLEN, meta, meta_len);
5404 }
5405
5406 skb->mac_header += VLAN_HLEN;
5407 return skb;
5408}
5409
5410struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5411{
5412 struct vlan_hdr *vhdr;
5413 u16 vlan_tci;
5414
5415 if (unlikely(skb_vlan_tag_present(skb))) {
5416 /* vlan_tci is already set-up so leave this for another time */
5417 return skb;
5418 }
5419
5420 skb = skb_share_check(skb, GFP_ATOMIC);
5421 if (unlikely(!skb))
5422 goto err_free;
5423 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5424 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5425 goto err_free;
5426
5427 vhdr = (struct vlan_hdr *)skb->data;
5428 vlan_tci = ntohs(vhdr->h_vlan_TCI);
5429 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5430
5431 skb_pull_rcsum(skb, VLAN_HLEN);
5432 vlan_set_encap_proto(skb, vhdr);
5433
5434 skb = skb_reorder_vlan_header(skb);
5435 if (unlikely(!skb))
5436 goto err_free;
5437
5438 skb_reset_network_header(skb);
5439 skb_reset_transport_header(skb);
5440 skb_reset_mac_len(skb);
5441
5442 return skb;
5443
5444err_free:
5445 kfree_skb(skb);
5446 return NULL;
5447}
5448EXPORT_SYMBOL(skb_vlan_untag);
5449
5450int skb_ensure_writable(struct sk_buff *skb, int write_len)
5451{
5452 if (!pskb_may_pull(skb, write_len))
5453 return -ENOMEM;
5454
5455 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5456 return 0;
5457
5458 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5459}
5460EXPORT_SYMBOL(skb_ensure_writable);
5461
5462/* remove VLAN header from packet and update csum accordingly.
5463 * expects a non skb_vlan_tag_present skb with a vlan tag payload
5464 */
5465int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5466{
5467 struct vlan_hdr *vhdr;
5468 int offset = skb->data - skb_mac_header(skb);
5469 int err;
5470
5471 if (WARN_ONCE(offset,
5472 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5473 offset)) {
5474 return -EINVAL;
5475 }
5476
5477 err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5478 if (unlikely(err))
5479 return err;
5480
5481 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5482
5483 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5484 *vlan_tci = ntohs(vhdr->h_vlan_TCI);
5485
5486 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5487 __skb_pull(skb, VLAN_HLEN);
5488
5489 vlan_set_encap_proto(skb, vhdr);
5490 skb->mac_header += VLAN_HLEN;
5491
5492 if (skb_network_offset(skb) < ETH_HLEN)
5493 skb_set_network_header(skb, ETH_HLEN);
5494
5495 skb_reset_mac_len(skb);
5496
5497 return err;
5498}
5499EXPORT_SYMBOL(__skb_vlan_pop);
5500
5501/* Pop a vlan tag either from hwaccel or from payload.
5502 * Expects skb->data at mac header.
5503 */
5504int skb_vlan_pop(struct sk_buff *skb)
5505{
5506 u16 vlan_tci;
5507 __be16 vlan_proto;
5508 int err;
5509
5510 if (likely(skb_vlan_tag_present(skb))) {
5511 __vlan_hwaccel_clear_tag(skb);
5512 } else {
5513 if (unlikely(!eth_type_vlan(skb->protocol)))
5514 return 0;
5515
5516 err = __skb_vlan_pop(skb, &vlan_tci);
5517 if (err)
5518 return err;
5519 }
5520 /* move next vlan tag to hw accel tag */
5521 if (likely(!eth_type_vlan(skb->protocol)))
5522 return 0;
5523
5524 vlan_proto = skb->protocol;
5525 err = __skb_vlan_pop(skb, &vlan_tci);
5526 if (unlikely(err))
5527 return err;
5528
5529 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5530 return 0;
5531}
5532EXPORT_SYMBOL(skb_vlan_pop);
5533
5534/* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5535 * Expects skb->data at mac header.
5536 */
5537int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5538{
5539 if (skb_vlan_tag_present(skb)) {
5540 int offset = skb->data - skb_mac_header(skb);
5541 int err;
5542
5543 if (WARN_ONCE(offset,
5544 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5545 offset)) {
5546 return -EINVAL;
5547 }
5548
5549 err = __vlan_insert_tag(skb, skb->vlan_proto,
5550 skb_vlan_tag_get(skb));
5551 if (err)
5552 return err;
5553
5554 skb->protocol = skb->vlan_proto;
5555 skb->mac_len += VLAN_HLEN;
5556
5557 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5558 }
5559 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5560 return 0;
5561}
5562EXPORT_SYMBOL(skb_vlan_push);
5563
5564/* Update the ethertype of hdr and the skb csum value if required. */
5565static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
5566 __be16 ethertype)
5567{
5568 if (skb->ip_summed == CHECKSUM_COMPLETE) {
5569 __be16 diff[] = { ~hdr->h_proto, ethertype };
5570
5571 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5572 }
5573
5574 hdr->h_proto = ethertype;
5575}
5576
5577/**
5578 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
5579 * the packet
5580 *
5581 * @skb: buffer
5582 * @mpls_lse: MPLS label stack entry to push
5583 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
5584 * @mac_len: length of the MAC header
5585 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
5586 * ethernet
5587 *
5588 * Expects skb->data at mac header.
5589 *
5590 * Returns 0 on success, -errno otherwise.
5591 */
5592int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
5593 int mac_len, bool ethernet)
5594{
5595 struct mpls_shim_hdr *lse;
5596 int err;
5597
5598 if (unlikely(!eth_p_mpls(mpls_proto)))
5599 return -EINVAL;
5600
5601 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
5602 if (skb->encapsulation)
5603 return -EINVAL;
5604
5605 err = skb_cow_head(skb, MPLS_HLEN);
5606 if (unlikely(err))
5607 return err;
5608
5609 if (!skb->inner_protocol) {
5610 skb_set_inner_network_header(skb, skb_network_offset(skb));
5611 skb_set_inner_protocol(skb, skb->protocol);
5612 }
5613
5614 skb_push(skb, MPLS_HLEN);
5615 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
5616 mac_len);
5617 skb_reset_mac_header(skb);
5618 skb_set_network_header(skb, mac_len);
5619 skb_reset_mac_len(skb);
5620
5621 lse = mpls_hdr(skb);
5622 lse->label_stack_entry = mpls_lse;
5623 skb_postpush_rcsum(skb, lse, MPLS_HLEN);
5624
5625 if (ethernet && mac_len >= ETH_HLEN)
5626 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
5627 skb->protocol = mpls_proto;
5628
5629 return 0;
5630}
5631EXPORT_SYMBOL_GPL(skb_mpls_push);
5632
5633/**
5634 * skb_mpls_pop() - pop the outermost MPLS header
5635 *
5636 * @skb: buffer
5637 * @next_proto: ethertype of header after popped MPLS header
5638 * @mac_len: length of the MAC header
5639 * @ethernet: flag to indicate if the packet is ethernet
5640 *
5641 * Expects skb->data at mac header.
5642 *
5643 * Returns 0 on success, -errno otherwise.
5644 */
5645int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
5646 bool ethernet)
5647{
5648 int err;
5649
5650 if (unlikely(!eth_p_mpls(skb->protocol)))
5651 return 0;
5652
5653 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
5654 if (unlikely(err))
5655 return err;
5656
5657 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
5658 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
5659 mac_len);
5660
5661 __skb_pull(skb, MPLS_HLEN);
5662 skb_reset_mac_header(skb);
5663 skb_set_network_header(skb, mac_len);
5664
5665 if (ethernet && mac_len >= ETH_HLEN) {
5666 struct ethhdr *hdr;
5667
5668 /* use mpls_hdr() to get ethertype to account for VLANs. */
5669 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
5670 skb_mod_eth_type(skb, hdr, next_proto);
5671 }
5672 skb->protocol = next_proto;
5673
5674 return 0;
5675}
5676EXPORT_SYMBOL_GPL(skb_mpls_pop);
5677
5678/**
5679 * skb_mpls_update_lse() - modify outermost MPLS header and update csum
5680 *
5681 * @skb: buffer
5682 * @mpls_lse: new MPLS label stack entry to update to
5683 *
5684 * Expects skb->data at mac header.
5685 *
5686 * Returns 0 on success, -errno otherwise.
5687 */
5688int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
5689{
5690 int err;
5691
5692 if (unlikely(!eth_p_mpls(skb->protocol)))
5693 return -EINVAL;
5694
5695 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
5696 if (unlikely(err))
5697 return err;
5698
5699 if (skb->ip_summed == CHECKSUM_COMPLETE) {
5700 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
5701
5702 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5703 }
5704
5705 mpls_hdr(skb)->label_stack_entry = mpls_lse;
5706
5707 return 0;
5708}
5709EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
5710
5711/**
5712 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
5713 *
5714 * @skb: buffer
5715 *
5716 * Expects skb->data at mac header.
5717 *
5718 * Returns 0 on success, -errno otherwise.
5719 */
5720int skb_mpls_dec_ttl(struct sk_buff *skb)
5721{
5722 u32 lse;
5723 u8 ttl;
5724
5725 if (unlikely(!eth_p_mpls(skb->protocol)))
5726 return -EINVAL;
5727
5728 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
5729 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
5730 if (!--ttl)
5731 return -EINVAL;
5732
5733 lse &= ~MPLS_LS_TTL_MASK;
5734 lse |= ttl << MPLS_LS_TTL_SHIFT;
5735
5736 return skb_mpls_update_lse(skb, cpu_to_be32(lse));
5737}
5738EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
5739
5740/**
5741 * alloc_skb_with_frags - allocate skb with page frags
5742 *
5743 * @header_len: size of linear part
5744 * @data_len: needed length in frags
5745 * @max_page_order: max page order desired.
5746 * @errcode: pointer to error code if any
5747 * @gfp_mask: allocation mask
5748 *
5749 * This can be used to allocate a paged skb, given a maximal order for frags.
5750 */
5751struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5752 unsigned long data_len,
5753 int max_page_order,
5754 int *errcode,
5755 gfp_t gfp_mask)
5756{
5757 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5758 unsigned long chunk;
5759 struct sk_buff *skb;
5760 struct page *page;
5761 int i;
5762
5763 *errcode = -EMSGSIZE;
5764 /* Note this test could be relaxed, if we succeed to allocate
5765 * high order pages...
5766 */
5767 if (npages > MAX_SKB_FRAGS)
5768 return NULL;
5769
5770 *errcode = -ENOBUFS;
5771 skb = alloc_skb(header_len, gfp_mask);
5772 if (!skb)
5773 return NULL;
5774
5775 skb->truesize += npages << PAGE_SHIFT;
5776
5777 for (i = 0; npages > 0; i++) {
5778 int order = max_page_order;
5779
5780 while (order) {
5781 if (npages >= 1 << order) {
5782 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
5783 __GFP_COMP |
5784 __GFP_NOWARN,
5785 order);
5786 if (page)
5787 goto fill_page;
5788 /* Do not retry other high order allocations */
5789 order = 1;
5790 max_page_order = 0;
5791 }
5792 order--;
5793 }
5794 page = alloc_page(gfp_mask);
5795 if (!page)
5796 goto failure;
5797fill_page:
5798 chunk = min_t(unsigned long, data_len,
5799 PAGE_SIZE << order);
5800 skb_fill_page_desc(skb, i, page, 0, chunk);
5801 data_len -= chunk;
5802 npages -= 1 << order;
5803 }
5804 return skb;
5805
5806failure:
5807 kfree_skb(skb);
5808 return NULL;
5809}
5810EXPORT_SYMBOL(alloc_skb_with_frags);
5811
5812/* carve out the first off bytes from skb when off < headlen */
5813static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
5814 const int headlen, gfp_t gfp_mask)
5815{
5816 int i;
5817 int size = skb_end_offset(skb);
5818 int new_hlen = headlen - off;
5819 u8 *data;
5820
5821 size = SKB_DATA_ALIGN(size);
5822
5823 if (skb_pfmemalloc(skb))
5824 gfp_mask |= __GFP_MEMALLOC;
5825 data = kmalloc_reserve(size +
5826 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5827 gfp_mask, NUMA_NO_NODE, NULL);
5828 if (!data)
5829 return -ENOMEM;
5830
5831 size = SKB_WITH_OVERHEAD(ksize(data));
5832
5833 /* Copy real data, and all frags */
5834 skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
5835 skb->len -= off;
5836
5837 memcpy((struct skb_shared_info *)(data + size),
5838 skb_shinfo(skb),
5839 offsetof(struct skb_shared_info,
5840 frags[skb_shinfo(skb)->nr_frags]));
5841 if (skb_cloned(skb)) {
5842 /* drop the old head gracefully */
5843 if (skb_orphan_frags(skb, gfp_mask)) {
5844 kfree(data);
5845 return -ENOMEM;
5846 }
5847 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
5848 skb_frag_ref(skb, i);
5849 if (skb_has_frag_list(skb))
5850 skb_clone_fraglist(skb);
5851 skb_release_data(skb);
5852 } else {
5853 /* we can reuse existing recount- all we did was
5854 * relocate values
5855 */
5856 skb_free_head(skb);
5857 }
5858
5859 skb->head = data;
5860 skb->data = data;
5861 skb->head_frag = 0;
5862#ifdef NET_SKBUFF_DATA_USES_OFFSET
5863 skb->end = size;
5864#else
5865 skb->end = skb->head + size;
5866#endif
5867 skb_set_tail_pointer(skb, skb_headlen(skb));
5868 skb_headers_offset_update(skb, 0);
5869 skb->cloned = 0;
5870 skb->hdr_len = 0;
5871 skb->nohdr = 0;
5872 atomic_set(&skb_shinfo(skb)->dataref, 1);
5873
5874 return 0;
5875}
5876
5877static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
5878
5879/* carve out the first eat bytes from skb's frag_list. May recurse into
5880 * pskb_carve()
5881 */
5882static int pskb_carve_frag_list(struct sk_buff *skb,
5883 struct skb_shared_info *shinfo, int eat,
5884 gfp_t gfp_mask)
5885{
5886 struct sk_buff *list = shinfo->frag_list;
5887 struct sk_buff *clone = NULL;
5888 struct sk_buff *insp = NULL;
5889
5890 do {
5891 if (!list) {
5892 pr_err("Not enough bytes to eat. Want %d\n", eat);
5893 return -EFAULT;
5894 }
5895 if (list->len <= eat) {
5896 /* Eaten as whole. */
5897 eat -= list->len;
5898 list = list->next;
5899 insp = list;
5900 } else {
5901 /* Eaten partially. */
5902 if (skb_shared(list)) {
5903 clone = skb_clone(list, gfp_mask);
5904 if (!clone)
5905 return -ENOMEM;
5906 insp = list->next;
5907 list = clone;
5908 } else {
5909 /* This may be pulled without problems. */
5910 insp = list;
5911 }
5912 if (pskb_carve(list, eat, gfp_mask) < 0) {
5913 kfree_skb(clone);
5914 return -ENOMEM;
5915 }
5916 break;
5917 }
5918 } while (eat);
5919
5920 /* Free pulled out fragments. */
5921 while ((list = shinfo->frag_list) != insp) {
5922 shinfo->frag_list = list->next;
5923 kfree_skb(list);
5924 }
5925 /* And insert new clone at head. */
5926 if (clone) {
5927 clone->next = list;
5928 shinfo->frag_list = clone;
5929 }
5930 return 0;
5931}
5932
5933/* carve off first len bytes from skb. Split line (off) is in the
5934 * non-linear part of skb
5935 */
5936static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
5937 int pos, gfp_t gfp_mask)
5938{
5939 int i, k = 0;
5940 int size = skb_end_offset(skb);
5941 u8 *data;
5942 const int nfrags = skb_shinfo(skb)->nr_frags;
5943 struct skb_shared_info *shinfo;
5944
5945 size = SKB_DATA_ALIGN(size);
5946
5947 if (skb_pfmemalloc(skb))
5948 gfp_mask |= __GFP_MEMALLOC;
5949 data = kmalloc_reserve(size +
5950 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5951 gfp_mask, NUMA_NO_NODE, NULL);
5952 if (!data)
5953 return -ENOMEM;
5954
5955 size = SKB_WITH_OVERHEAD(ksize(data));
5956
5957 memcpy((struct skb_shared_info *)(data + size),
5958 skb_shinfo(skb), offsetof(struct skb_shared_info,
5959 frags[skb_shinfo(skb)->nr_frags]));
5960 if (skb_orphan_frags(skb, gfp_mask)) {
5961 kfree(data);
5962 return -ENOMEM;
5963 }
5964 shinfo = (struct skb_shared_info *)(data + size);
5965 for (i = 0; i < nfrags; i++) {
5966 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
5967
5968 if (pos + fsize > off) {
5969 shinfo->frags[k] = skb_shinfo(skb)->frags[i];
5970
5971 if (pos < off) {
5972 /* Split frag.
5973 * We have two variants in this case:
5974 * 1. Move all the frag to the second
5975 * part, if it is possible. F.e.
5976 * this approach is mandatory for TUX,
5977 * where splitting is expensive.
5978 * 2. Split is accurately. We make this.
5979 */
5980 skb_frag_off_add(&shinfo->frags[0], off - pos);
5981 skb_frag_size_sub(&shinfo->frags[0], off - pos);
5982 }
5983 skb_frag_ref(skb, i);
5984 k++;
5985 }
5986 pos += fsize;
5987 }
5988 shinfo->nr_frags = k;
5989 if (skb_has_frag_list(skb))
5990 skb_clone_fraglist(skb);
5991
5992 /* split line is in frag list */
5993 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
5994 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
5995 if (skb_has_frag_list(skb))
5996 kfree_skb_list(skb_shinfo(skb)->frag_list);
5997 kfree(data);
5998 return -ENOMEM;
5999 }
6000 skb_release_data(skb);
6001
6002 skb->head = data;
6003 skb->head_frag = 0;
6004 skb->data = data;
6005#ifdef NET_SKBUFF_DATA_USES_OFFSET
6006 skb->end = size;
6007#else
6008 skb->end = skb->head + size;
6009#endif
6010 skb_reset_tail_pointer(skb);
6011 skb_headers_offset_update(skb, 0);
6012 skb->cloned = 0;
6013 skb->hdr_len = 0;
6014 skb->nohdr = 0;
6015 skb->len -= off;
6016 skb->data_len = skb->len;
6017 atomic_set(&skb_shinfo(skb)->dataref, 1);
6018 return 0;
6019}
6020
6021/* remove len bytes from the beginning of the skb */
6022static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6023{
6024 int headlen = skb_headlen(skb);
6025
6026 if (len < headlen)
6027 return pskb_carve_inside_header(skb, len, headlen, gfp);
6028 else
6029 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6030}
6031
6032/* Extract to_copy bytes starting at off from skb, and return this in
6033 * a new skb
6034 */
6035struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6036 int to_copy, gfp_t gfp)
6037{
6038 struct sk_buff *clone = skb_clone(skb, gfp);
6039
6040 if (!clone)
6041 return NULL;
6042
6043 if (pskb_carve(clone, off, gfp) < 0 ||
6044 pskb_trim(clone, to_copy)) {
6045 kfree_skb(clone);
6046 return NULL;
6047 }
6048 return clone;
6049}
6050EXPORT_SYMBOL(pskb_extract);
6051
6052/**
6053 * skb_condense - try to get rid of fragments/frag_list if possible
6054 * @skb: buffer
6055 *
6056 * Can be used to save memory before skb is added to a busy queue.
6057 * If packet has bytes in frags and enough tail room in skb->head,
6058 * pull all of them, so that we can free the frags right now and adjust
6059 * truesize.
6060 * Notes:
6061 * We do not reallocate skb->head thus can not fail.
6062 * Caller must re-evaluate skb->truesize if needed.
6063 */
6064void skb_condense(struct sk_buff *skb)
6065{
6066 if (skb->data_len) {
6067 if (skb->data_len > skb->end - skb->tail ||
6068 skb_cloned(skb))
6069 return;
6070
6071 /* Nice, we can free page frag(s) right now */
6072 __pskb_pull_tail(skb, skb->data_len);
6073 }
6074 /* At this point, skb->truesize might be over estimated,
6075 * because skb had a fragment, and fragments do not tell
6076 * their truesize.
6077 * When we pulled its content into skb->head, fragment
6078 * was freed, but __pskb_pull_tail() could not possibly
6079 * adjust skb->truesize, not knowing the frag truesize.
6080 */
6081 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6082}
6083
6084#ifdef CONFIG_SKB_EXTENSIONS
6085static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6086{
6087 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6088}
6089
6090/**
6091 * __skb_ext_alloc - allocate a new skb extensions storage
6092 *
6093 * @flags: See kmalloc().
6094 *
6095 * Returns the newly allocated pointer. The pointer can later attached to a
6096 * skb via __skb_ext_set().
6097 * Note: caller must handle the skb_ext as an opaque data.
6098 */
6099struct skb_ext *__skb_ext_alloc(gfp_t flags)
6100{
6101 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6102
6103 if (new) {
6104 memset(new->offset, 0, sizeof(new->offset));
6105 refcount_set(&new->refcnt, 1);
6106 }
6107
6108 return new;
6109}
6110
6111static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6112 unsigned int old_active)
6113{
6114 struct skb_ext *new;
6115
6116 if (refcount_read(&old->refcnt) == 1)
6117 return old;
6118
6119 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6120 if (!new)
6121 return NULL;
6122
6123 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6124 refcount_set(&new->refcnt, 1);
6125
6126#ifdef CONFIG_XFRM
6127 if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6128 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6129 unsigned int i;
6130
6131 for (i = 0; i < sp->len; i++)
6132 xfrm_state_hold(sp->xvec[i]);
6133 }
6134#endif
6135 __skb_ext_put(old);
6136 return new;
6137}
6138
6139/**
6140 * __skb_ext_set - attach the specified extension storage to this skb
6141 * @skb: buffer
6142 * @id: extension id
6143 * @ext: extension storage previously allocated via __skb_ext_alloc()
6144 *
6145 * Existing extensions, if any, are cleared.
6146 *
6147 * Returns the pointer to the extension.
6148 */
6149void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6150 struct skb_ext *ext)
6151{
6152 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6153
6154 skb_ext_put(skb);
6155 newlen = newoff + skb_ext_type_len[id];
6156 ext->chunks = newlen;
6157 ext->offset[id] = newoff;
6158 skb->extensions = ext;
6159 skb->active_extensions = 1 << id;
6160 return skb_ext_get_ptr(ext, id);
6161}
6162
6163/**
6164 * skb_ext_add - allocate space for given extension, COW if needed
6165 * @skb: buffer
6166 * @id: extension to allocate space for
6167 *
6168 * Allocates enough space for the given extension.
6169 * If the extension is already present, a pointer to that extension
6170 * is returned.
6171 *
6172 * If the skb was cloned, COW applies and the returned memory can be
6173 * modified without changing the extension space of clones buffers.
6174 *
6175 * Returns pointer to the extension or NULL on allocation failure.
6176 */
6177void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6178{
6179 struct skb_ext *new, *old = NULL;
6180 unsigned int newlen, newoff;
6181
6182 if (skb->active_extensions) {
6183 old = skb->extensions;
6184
6185 new = skb_ext_maybe_cow(old, skb->active_extensions);
6186 if (!new)
6187 return NULL;
6188
6189 if (__skb_ext_exist(new, id))
6190 goto set_active;
6191
6192 newoff = new->chunks;
6193 } else {
6194 newoff = SKB_EXT_CHUNKSIZEOF(*new);
6195
6196 new = __skb_ext_alloc(GFP_ATOMIC);
6197 if (!new)
6198 return NULL;
6199 }
6200
6201 newlen = newoff + skb_ext_type_len[id];
6202 new->chunks = newlen;
6203 new->offset[id] = newoff;
6204set_active:
6205 skb->extensions = new;
6206 skb->active_extensions |= 1 << id;
6207 return skb_ext_get_ptr(new, id);
6208}
6209EXPORT_SYMBOL(skb_ext_add);
6210
6211#ifdef CONFIG_XFRM
6212static void skb_ext_put_sp(struct sec_path *sp)
6213{
6214 unsigned int i;
6215
6216 for (i = 0; i < sp->len; i++)
6217 xfrm_state_put(sp->xvec[i]);
6218}
6219#endif
6220
6221void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6222{
6223 struct skb_ext *ext = skb->extensions;
6224
6225 skb->active_extensions &= ~(1 << id);
6226 if (skb->active_extensions == 0) {
6227 skb->extensions = NULL;
6228 __skb_ext_put(ext);
6229#ifdef CONFIG_XFRM
6230 } else if (id == SKB_EXT_SEC_PATH &&
6231 refcount_read(&ext->refcnt) == 1) {
6232 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6233
6234 skb_ext_put_sp(sp);
6235 sp->len = 0;
6236#endif
6237 }
6238}
6239EXPORT_SYMBOL(__skb_ext_del);
6240
6241void __skb_ext_put(struct skb_ext *ext)
6242{
6243 /* If this is last clone, nothing can increment
6244 * it after check passes. Avoids one atomic op.
6245 */
6246 if (refcount_read(&ext->refcnt) == 1)
6247 goto free_now;
6248
6249 if (!refcount_dec_and_test(&ext->refcnt))
6250 return;
6251free_now:
6252#ifdef CONFIG_XFRM
6253 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6254 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6255#endif
6256
6257 kmem_cache_free(skbuff_ext_cache, ext);
6258}
6259EXPORT_SYMBOL(__skb_ext_put);
6260#endif /* CONFIG_SKB_EXTENSIONS */