Loading...
1/*
2 * linux/mm/memory_hotplug.c
3 *
4 * Copyright (C)
5 */
6
7#include <linux/stddef.h>
8#include <linux/mm.h>
9#include <linux/sched/signal.h>
10#include <linux/swap.h>
11#include <linux/interrupt.h>
12#include <linux/pagemap.h>
13#include <linux/compiler.h>
14#include <linux/export.h>
15#include <linux/pagevec.h>
16#include <linux/writeback.h>
17#include <linux/slab.h>
18#include <linux/sysctl.h>
19#include <linux/cpu.h>
20#include <linux/memory.h>
21#include <linux/memremap.h>
22#include <linux/memory_hotplug.h>
23#include <linux/highmem.h>
24#include <linux/vmalloc.h>
25#include <linux/ioport.h>
26#include <linux/delay.h>
27#include <linux/migrate.h>
28#include <linux/page-isolation.h>
29#include <linux/pfn.h>
30#include <linux/suspend.h>
31#include <linux/mm_inline.h>
32#include <linux/firmware-map.h>
33#include <linux/stop_machine.h>
34#include <linux/hugetlb.h>
35#include <linux/memblock.h>
36#include <linux/bootmem.h>
37#include <linux/compaction.h>
38
39#include <asm/tlbflush.h>
40
41#include "internal.h"
42
43/*
44 * online_page_callback contains pointer to current page onlining function.
45 * Initially it is generic_online_page(). If it is required it could be
46 * changed by calling set_online_page_callback() for callback registration
47 * and restore_online_page_callback() for generic callback restore.
48 */
49
50static void generic_online_page(struct page *page);
51
52static online_page_callback_t online_page_callback = generic_online_page;
53static DEFINE_MUTEX(online_page_callback_lock);
54
55DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
56
57void get_online_mems(void)
58{
59 percpu_down_read(&mem_hotplug_lock);
60}
61
62void put_online_mems(void)
63{
64 percpu_up_read(&mem_hotplug_lock);
65}
66
67bool movable_node_enabled = false;
68
69#ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
70bool memhp_auto_online;
71#else
72bool memhp_auto_online = true;
73#endif
74EXPORT_SYMBOL_GPL(memhp_auto_online);
75
76static int __init setup_memhp_default_state(char *str)
77{
78 if (!strcmp(str, "online"))
79 memhp_auto_online = true;
80 else if (!strcmp(str, "offline"))
81 memhp_auto_online = false;
82
83 return 1;
84}
85__setup("memhp_default_state=", setup_memhp_default_state);
86
87void mem_hotplug_begin(void)
88{
89 cpus_read_lock();
90 percpu_down_write(&mem_hotplug_lock);
91}
92
93void mem_hotplug_done(void)
94{
95 percpu_up_write(&mem_hotplug_lock);
96 cpus_read_unlock();
97}
98
99/* add this memory to iomem resource */
100static struct resource *register_memory_resource(u64 start, u64 size)
101{
102 struct resource *res, *conflict;
103 res = kzalloc(sizeof(struct resource), GFP_KERNEL);
104 if (!res)
105 return ERR_PTR(-ENOMEM);
106
107 res->name = "System RAM";
108 res->start = start;
109 res->end = start + size - 1;
110 res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
111 conflict = request_resource_conflict(&iomem_resource, res);
112 if (conflict) {
113 if (conflict->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY) {
114 pr_debug("Device unaddressable memory block "
115 "memory hotplug at %#010llx !\n",
116 (unsigned long long)start);
117 }
118 pr_debug("System RAM resource %pR cannot be added\n", res);
119 kfree(res);
120 return ERR_PTR(-EEXIST);
121 }
122 return res;
123}
124
125static void release_memory_resource(struct resource *res)
126{
127 if (!res)
128 return;
129 release_resource(res);
130 kfree(res);
131 return;
132}
133
134#ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
135void get_page_bootmem(unsigned long info, struct page *page,
136 unsigned long type)
137{
138 page->freelist = (void *)type;
139 SetPagePrivate(page);
140 set_page_private(page, info);
141 page_ref_inc(page);
142}
143
144void put_page_bootmem(struct page *page)
145{
146 unsigned long type;
147
148 type = (unsigned long) page->freelist;
149 BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
150 type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
151
152 if (page_ref_dec_return(page) == 1) {
153 page->freelist = NULL;
154 ClearPagePrivate(page);
155 set_page_private(page, 0);
156 INIT_LIST_HEAD(&page->lru);
157 free_reserved_page(page);
158 }
159}
160
161#ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
162#ifndef CONFIG_SPARSEMEM_VMEMMAP
163static void register_page_bootmem_info_section(unsigned long start_pfn)
164{
165 unsigned long *usemap, mapsize, section_nr, i;
166 struct mem_section *ms;
167 struct page *page, *memmap;
168
169 section_nr = pfn_to_section_nr(start_pfn);
170 ms = __nr_to_section(section_nr);
171
172 /* Get section's memmap address */
173 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
174
175 /*
176 * Get page for the memmap's phys address
177 * XXX: need more consideration for sparse_vmemmap...
178 */
179 page = virt_to_page(memmap);
180 mapsize = sizeof(struct page) * PAGES_PER_SECTION;
181 mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
182
183 /* remember memmap's page */
184 for (i = 0; i < mapsize; i++, page++)
185 get_page_bootmem(section_nr, page, SECTION_INFO);
186
187 usemap = ms->pageblock_flags;
188 page = virt_to_page(usemap);
189
190 mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
191
192 for (i = 0; i < mapsize; i++, page++)
193 get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
194
195}
196#else /* CONFIG_SPARSEMEM_VMEMMAP */
197static void register_page_bootmem_info_section(unsigned long start_pfn)
198{
199 unsigned long *usemap, mapsize, section_nr, i;
200 struct mem_section *ms;
201 struct page *page, *memmap;
202
203 section_nr = pfn_to_section_nr(start_pfn);
204 ms = __nr_to_section(section_nr);
205
206 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
207
208 register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
209
210 usemap = ms->pageblock_flags;
211 page = virt_to_page(usemap);
212
213 mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
214
215 for (i = 0; i < mapsize; i++, page++)
216 get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
217}
218#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
219
220void __init register_page_bootmem_info_node(struct pglist_data *pgdat)
221{
222 unsigned long i, pfn, end_pfn, nr_pages;
223 int node = pgdat->node_id;
224 struct page *page;
225
226 nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
227 page = virt_to_page(pgdat);
228
229 for (i = 0; i < nr_pages; i++, page++)
230 get_page_bootmem(node, page, NODE_INFO);
231
232 pfn = pgdat->node_start_pfn;
233 end_pfn = pgdat_end_pfn(pgdat);
234
235 /* register section info */
236 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
237 /*
238 * Some platforms can assign the same pfn to multiple nodes - on
239 * node0 as well as nodeN. To avoid registering a pfn against
240 * multiple nodes we check that this pfn does not already
241 * reside in some other nodes.
242 */
243 if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node))
244 register_page_bootmem_info_section(pfn);
245 }
246}
247#endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
248
249static int __meminit __add_section(int nid, unsigned long phys_start_pfn,
250 struct vmem_altmap *altmap, bool want_memblock)
251{
252 int ret;
253
254 if (pfn_valid(phys_start_pfn))
255 return -EEXIST;
256
257 ret = sparse_add_one_section(NODE_DATA(nid), phys_start_pfn, altmap);
258 if (ret < 0)
259 return ret;
260
261 if (!want_memblock)
262 return 0;
263
264 return hotplug_memory_register(nid, __pfn_to_section(phys_start_pfn));
265}
266
267/*
268 * Reasonably generic function for adding memory. It is
269 * expected that archs that support memory hotplug will
270 * call this function after deciding the zone to which to
271 * add the new pages.
272 */
273int __ref __add_pages(int nid, unsigned long phys_start_pfn,
274 unsigned long nr_pages, struct vmem_altmap *altmap,
275 bool want_memblock)
276{
277 unsigned long i;
278 int err = 0;
279 int start_sec, end_sec;
280
281 /* during initialize mem_map, align hot-added range to section */
282 start_sec = pfn_to_section_nr(phys_start_pfn);
283 end_sec = pfn_to_section_nr(phys_start_pfn + nr_pages - 1);
284
285 if (altmap) {
286 /*
287 * Validate altmap is within bounds of the total request
288 */
289 if (altmap->base_pfn != phys_start_pfn
290 || vmem_altmap_offset(altmap) > nr_pages) {
291 pr_warn_once("memory add fail, invalid altmap\n");
292 err = -EINVAL;
293 goto out;
294 }
295 altmap->alloc = 0;
296 }
297
298 for (i = start_sec; i <= end_sec; i++) {
299 err = __add_section(nid, section_nr_to_pfn(i), altmap,
300 want_memblock);
301
302 /*
303 * EEXIST is finally dealt with by ioresource collision
304 * check. see add_memory() => register_memory_resource()
305 * Warning will be printed if there is collision.
306 */
307 if (err && (err != -EEXIST))
308 break;
309 err = 0;
310 cond_resched();
311 }
312 vmemmap_populate_print_last();
313out:
314 return err;
315}
316
317#ifdef CONFIG_MEMORY_HOTREMOVE
318/* find the smallest valid pfn in the range [start_pfn, end_pfn) */
319static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
320 unsigned long start_pfn,
321 unsigned long end_pfn)
322{
323 struct mem_section *ms;
324
325 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SECTION) {
326 ms = __pfn_to_section(start_pfn);
327
328 if (unlikely(!valid_section(ms)))
329 continue;
330
331 if (unlikely(pfn_to_nid(start_pfn) != nid))
332 continue;
333
334 if (zone && zone != page_zone(pfn_to_page(start_pfn)))
335 continue;
336
337 return start_pfn;
338 }
339
340 return 0;
341}
342
343/* find the biggest valid pfn in the range [start_pfn, end_pfn). */
344static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
345 unsigned long start_pfn,
346 unsigned long end_pfn)
347{
348 struct mem_section *ms;
349 unsigned long pfn;
350
351 /* pfn is the end pfn of a memory section. */
352 pfn = end_pfn - 1;
353 for (; pfn >= start_pfn; pfn -= PAGES_PER_SECTION) {
354 ms = __pfn_to_section(pfn);
355
356 if (unlikely(!valid_section(ms)))
357 continue;
358
359 if (unlikely(pfn_to_nid(pfn) != nid))
360 continue;
361
362 if (zone && zone != page_zone(pfn_to_page(pfn)))
363 continue;
364
365 return pfn;
366 }
367
368 return 0;
369}
370
371static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
372 unsigned long end_pfn)
373{
374 unsigned long zone_start_pfn = zone->zone_start_pfn;
375 unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */
376 unsigned long zone_end_pfn = z;
377 unsigned long pfn;
378 struct mem_section *ms;
379 int nid = zone_to_nid(zone);
380
381 zone_span_writelock(zone);
382 if (zone_start_pfn == start_pfn) {
383 /*
384 * If the section is smallest section in the zone, it need
385 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
386 * In this case, we find second smallest valid mem_section
387 * for shrinking zone.
388 */
389 pfn = find_smallest_section_pfn(nid, zone, end_pfn,
390 zone_end_pfn);
391 if (pfn) {
392 zone->zone_start_pfn = pfn;
393 zone->spanned_pages = zone_end_pfn - pfn;
394 }
395 } else if (zone_end_pfn == end_pfn) {
396 /*
397 * If the section is biggest section in the zone, it need
398 * shrink zone->spanned_pages.
399 * In this case, we find second biggest valid mem_section for
400 * shrinking zone.
401 */
402 pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn,
403 start_pfn);
404 if (pfn)
405 zone->spanned_pages = pfn - zone_start_pfn + 1;
406 }
407
408 /*
409 * The section is not biggest or smallest mem_section in the zone, it
410 * only creates a hole in the zone. So in this case, we need not
411 * change the zone. But perhaps, the zone has only hole data. Thus
412 * it check the zone has only hole or not.
413 */
414 pfn = zone_start_pfn;
415 for (; pfn < zone_end_pfn; pfn += PAGES_PER_SECTION) {
416 ms = __pfn_to_section(pfn);
417
418 if (unlikely(!valid_section(ms)))
419 continue;
420
421 if (page_zone(pfn_to_page(pfn)) != zone)
422 continue;
423
424 /* If the section is current section, it continues the loop */
425 if (start_pfn == pfn)
426 continue;
427
428 /* If we find valid section, we have nothing to do */
429 zone_span_writeunlock(zone);
430 return;
431 }
432
433 /* The zone has no valid section */
434 zone->zone_start_pfn = 0;
435 zone->spanned_pages = 0;
436 zone_span_writeunlock(zone);
437}
438
439static void shrink_pgdat_span(struct pglist_data *pgdat,
440 unsigned long start_pfn, unsigned long end_pfn)
441{
442 unsigned long pgdat_start_pfn = pgdat->node_start_pfn;
443 unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */
444 unsigned long pgdat_end_pfn = p;
445 unsigned long pfn;
446 struct mem_section *ms;
447 int nid = pgdat->node_id;
448
449 if (pgdat_start_pfn == start_pfn) {
450 /*
451 * If the section is smallest section in the pgdat, it need
452 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages.
453 * In this case, we find second smallest valid mem_section
454 * for shrinking zone.
455 */
456 pfn = find_smallest_section_pfn(nid, NULL, end_pfn,
457 pgdat_end_pfn);
458 if (pfn) {
459 pgdat->node_start_pfn = pfn;
460 pgdat->node_spanned_pages = pgdat_end_pfn - pfn;
461 }
462 } else if (pgdat_end_pfn == end_pfn) {
463 /*
464 * If the section is biggest section in the pgdat, it need
465 * shrink pgdat->node_spanned_pages.
466 * In this case, we find second biggest valid mem_section for
467 * shrinking zone.
468 */
469 pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn,
470 start_pfn);
471 if (pfn)
472 pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1;
473 }
474
475 /*
476 * If the section is not biggest or smallest mem_section in the pgdat,
477 * it only creates a hole in the pgdat. So in this case, we need not
478 * change the pgdat.
479 * But perhaps, the pgdat has only hole data. Thus it check the pgdat
480 * has only hole or not.
481 */
482 pfn = pgdat_start_pfn;
483 for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SECTION) {
484 ms = __pfn_to_section(pfn);
485
486 if (unlikely(!valid_section(ms)))
487 continue;
488
489 if (pfn_to_nid(pfn) != nid)
490 continue;
491
492 /* If the section is current section, it continues the loop */
493 if (start_pfn == pfn)
494 continue;
495
496 /* If we find valid section, we have nothing to do */
497 return;
498 }
499
500 /* The pgdat has no valid section */
501 pgdat->node_start_pfn = 0;
502 pgdat->node_spanned_pages = 0;
503}
504
505static void __remove_zone(struct zone *zone, unsigned long start_pfn)
506{
507 struct pglist_data *pgdat = zone->zone_pgdat;
508 int nr_pages = PAGES_PER_SECTION;
509 unsigned long flags;
510
511 pgdat_resize_lock(zone->zone_pgdat, &flags);
512 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
513 shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages);
514 pgdat_resize_unlock(zone->zone_pgdat, &flags);
515}
516
517static int __remove_section(struct zone *zone, struct mem_section *ms,
518 unsigned long map_offset, struct vmem_altmap *altmap)
519{
520 unsigned long start_pfn;
521 int scn_nr;
522 int ret = -EINVAL;
523
524 if (!valid_section(ms))
525 return ret;
526
527 ret = unregister_memory_section(ms);
528 if (ret)
529 return ret;
530
531 scn_nr = __section_nr(ms);
532 start_pfn = section_nr_to_pfn((unsigned long)scn_nr);
533 __remove_zone(zone, start_pfn);
534
535 sparse_remove_one_section(zone, ms, map_offset, altmap);
536 return 0;
537}
538
539/**
540 * __remove_pages() - remove sections of pages from a zone
541 * @zone: zone from which pages need to be removed
542 * @phys_start_pfn: starting pageframe (must be aligned to start of a section)
543 * @nr_pages: number of pages to remove (must be multiple of section size)
544 * @altmap: alternative device page map or %NULL if default memmap is used
545 *
546 * Generic helper function to remove section mappings and sysfs entries
547 * for the section of the memory we are removing. Caller needs to make
548 * sure that pages are marked reserved and zones are adjust properly by
549 * calling offline_pages().
550 */
551int __remove_pages(struct zone *zone, unsigned long phys_start_pfn,
552 unsigned long nr_pages, struct vmem_altmap *altmap)
553{
554 unsigned long i;
555 unsigned long map_offset = 0;
556 int sections_to_remove, ret = 0;
557
558 /* In the ZONE_DEVICE case device driver owns the memory region */
559 if (is_dev_zone(zone)) {
560 if (altmap)
561 map_offset = vmem_altmap_offset(altmap);
562 } else {
563 resource_size_t start, size;
564
565 start = phys_start_pfn << PAGE_SHIFT;
566 size = nr_pages * PAGE_SIZE;
567
568 ret = release_mem_region_adjustable(&iomem_resource, start,
569 size);
570 if (ret) {
571 resource_size_t endres = start + size - 1;
572
573 pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
574 &start, &endres, ret);
575 }
576 }
577
578 clear_zone_contiguous(zone);
579
580 /*
581 * We can only remove entire sections
582 */
583 BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK);
584 BUG_ON(nr_pages % PAGES_PER_SECTION);
585
586 sections_to_remove = nr_pages / PAGES_PER_SECTION;
587 for (i = 0; i < sections_to_remove; i++) {
588 unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION;
589
590 ret = __remove_section(zone, __pfn_to_section(pfn), map_offset,
591 altmap);
592 map_offset = 0;
593 if (ret)
594 break;
595 }
596
597 set_zone_contiguous(zone);
598
599 return ret;
600}
601#endif /* CONFIG_MEMORY_HOTREMOVE */
602
603int set_online_page_callback(online_page_callback_t callback)
604{
605 int rc = -EINVAL;
606
607 get_online_mems();
608 mutex_lock(&online_page_callback_lock);
609
610 if (online_page_callback == generic_online_page) {
611 online_page_callback = callback;
612 rc = 0;
613 }
614
615 mutex_unlock(&online_page_callback_lock);
616 put_online_mems();
617
618 return rc;
619}
620EXPORT_SYMBOL_GPL(set_online_page_callback);
621
622int restore_online_page_callback(online_page_callback_t callback)
623{
624 int rc = -EINVAL;
625
626 get_online_mems();
627 mutex_lock(&online_page_callback_lock);
628
629 if (online_page_callback == callback) {
630 online_page_callback = generic_online_page;
631 rc = 0;
632 }
633
634 mutex_unlock(&online_page_callback_lock);
635 put_online_mems();
636
637 return rc;
638}
639EXPORT_SYMBOL_GPL(restore_online_page_callback);
640
641void __online_page_set_limits(struct page *page)
642{
643}
644EXPORT_SYMBOL_GPL(__online_page_set_limits);
645
646void __online_page_increment_counters(struct page *page)
647{
648 adjust_managed_page_count(page, 1);
649}
650EXPORT_SYMBOL_GPL(__online_page_increment_counters);
651
652void __online_page_free(struct page *page)
653{
654 __free_reserved_page(page);
655}
656EXPORT_SYMBOL_GPL(__online_page_free);
657
658static void generic_online_page(struct page *page)
659{
660 __online_page_set_limits(page);
661 __online_page_increment_counters(page);
662 __online_page_free(page);
663}
664
665static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages,
666 void *arg)
667{
668 unsigned long i;
669 unsigned long onlined_pages = *(unsigned long *)arg;
670 struct page *page;
671
672 if (PageReserved(pfn_to_page(start_pfn)))
673 for (i = 0; i < nr_pages; i++) {
674 page = pfn_to_page(start_pfn + i);
675 (*online_page_callback)(page);
676 onlined_pages++;
677 }
678
679 online_mem_sections(start_pfn, start_pfn + nr_pages);
680
681 *(unsigned long *)arg = onlined_pages;
682 return 0;
683}
684
685/* check which state of node_states will be changed when online memory */
686static void node_states_check_changes_online(unsigned long nr_pages,
687 struct zone *zone, struct memory_notify *arg)
688{
689 int nid = zone_to_nid(zone);
690 enum zone_type zone_last = ZONE_NORMAL;
691
692 /*
693 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
694 * contains nodes which have zones of 0...ZONE_NORMAL,
695 * set zone_last to ZONE_NORMAL.
696 *
697 * If we don't have HIGHMEM nor movable node,
698 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
699 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
700 */
701 if (N_MEMORY == N_NORMAL_MEMORY)
702 zone_last = ZONE_MOVABLE;
703
704 /*
705 * if the memory to be online is in a zone of 0...zone_last, and
706 * the zones of 0...zone_last don't have memory before online, we will
707 * need to set the node to node_states[N_NORMAL_MEMORY] after
708 * the memory is online.
709 */
710 if (zone_idx(zone) <= zone_last && !node_state(nid, N_NORMAL_MEMORY))
711 arg->status_change_nid_normal = nid;
712 else
713 arg->status_change_nid_normal = -1;
714
715#ifdef CONFIG_HIGHMEM
716 /*
717 * If we have movable node, node_states[N_HIGH_MEMORY]
718 * contains nodes which have zones of 0...ZONE_HIGHMEM,
719 * set zone_last to ZONE_HIGHMEM.
720 *
721 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
722 * contains nodes which have zones of 0...ZONE_MOVABLE,
723 * set zone_last to ZONE_MOVABLE.
724 */
725 zone_last = ZONE_HIGHMEM;
726 if (N_MEMORY == N_HIGH_MEMORY)
727 zone_last = ZONE_MOVABLE;
728
729 if (zone_idx(zone) <= zone_last && !node_state(nid, N_HIGH_MEMORY))
730 arg->status_change_nid_high = nid;
731 else
732 arg->status_change_nid_high = -1;
733#else
734 arg->status_change_nid_high = arg->status_change_nid_normal;
735#endif
736
737 /*
738 * if the node don't have memory befor online, we will need to
739 * set the node to node_states[N_MEMORY] after the memory
740 * is online.
741 */
742 if (!node_state(nid, N_MEMORY))
743 arg->status_change_nid = nid;
744 else
745 arg->status_change_nid = -1;
746}
747
748static void node_states_set_node(int node, struct memory_notify *arg)
749{
750 if (arg->status_change_nid_normal >= 0)
751 node_set_state(node, N_NORMAL_MEMORY);
752
753 if (arg->status_change_nid_high >= 0)
754 node_set_state(node, N_HIGH_MEMORY);
755
756 node_set_state(node, N_MEMORY);
757}
758
759static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
760 unsigned long nr_pages)
761{
762 unsigned long old_end_pfn = zone_end_pfn(zone);
763
764 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
765 zone->zone_start_pfn = start_pfn;
766
767 zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
768}
769
770static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
771 unsigned long nr_pages)
772{
773 unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
774
775 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
776 pgdat->node_start_pfn = start_pfn;
777
778 pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
779}
780
781void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
782 unsigned long nr_pages, struct vmem_altmap *altmap)
783{
784 struct pglist_data *pgdat = zone->zone_pgdat;
785 int nid = pgdat->node_id;
786 unsigned long flags;
787
788 if (zone_is_empty(zone))
789 init_currently_empty_zone(zone, start_pfn, nr_pages);
790
791 clear_zone_contiguous(zone);
792
793 /* TODO Huh pgdat is irqsave while zone is not. It used to be like that before */
794 pgdat_resize_lock(pgdat, &flags);
795 zone_span_writelock(zone);
796 resize_zone_range(zone, start_pfn, nr_pages);
797 zone_span_writeunlock(zone);
798 resize_pgdat_range(pgdat, start_pfn, nr_pages);
799 pgdat_resize_unlock(pgdat, &flags);
800
801 /*
802 * TODO now we have a visible range of pages which are not associated
803 * with their zone properly. Not nice but set_pfnblock_flags_mask
804 * expects the zone spans the pfn range. All the pages in the range
805 * are reserved so nobody should be touching them so we should be safe
806 */
807 memmap_init_zone(nr_pages, nid, zone_idx(zone), start_pfn,
808 MEMMAP_HOTPLUG, altmap);
809
810 set_zone_contiguous(zone);
811}
812
813/*
814 * Returns a default kernel memory zone for the given pfn range.
815 * If no kernel zone covers this pfn range it will automatically go
816 * to the ZONE_NORMAL.
817 */
818static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
819 unsigned long nr_pages)
820{
821 struct pglist_data *pgdat = NODE_DATA(nid);
822 int zid;
823
824 for (zid = 0; zid <= ZONE_NORMAL; zid++) {
825 struct zone *zone = &pgdat->node_zones[zid];
826
827 if (zone_intersects(zone, start_pfn, nr_pages))
828 return zone;
829 }
830
831 return &pgdat->node_zones[ZONE_NORMAL];
832}
833
834static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
835 unsigned long nr_pages)
836{
837 struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
838 nr_pages);
839 struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
840 bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
841 bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
842
843 /*
844 * We inherit the existing zone in a simple case where zones do not
845 * overlap in the given range
846 */
847 if (in_kernel ^ in_movable)
848 return (in_kernel) ? kernel_zone : movable_zone;
849
850 /*
851 * If the range doesn't belong to any zone or two zones overlap in the
852 * given range then we use movable zone only if movable_node is
853 * enabled because we always online to a kernel zone by default.
854 */
855 return movable_node_enabled ? movable_zone : kernel_zone;
856}
857
858struct zone * zone_for_pfn_range(int online_type, int nid, unsigned start_pfn,
859 unsigned long nr_pages)
860{
861 if (online_type == MMOP_ONLINE_KERNEL)
862 return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
863
864 if (online_type == MMOP_ONLINE_MOVABLE)
865 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
866
867 return default_zone_for_pfn(nid, start_pfn, nr_pages);
868}
869
870/*
871 * Associates the given pfn range with the given node and the zone appropriate
872 * for the given online type.
873 */
874static struct zone * __meminit move_pfn_range(int online_type, int nid,
875 unsigned long start_pfn, unsigned long nr_pages)
876{
877 struct zone *zone;
878
879 zone = zone_for_pfn_range(online_type, nid, start_pfn, nr_pages);
880 move_pfn_range_to_zone(zone, start_pfn, nr_pages, NULL);
881 return zone;
882}
883
884/* Must be protected by mem_hotplug_begin() or a device_lock */
885int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type)
886{
887 unsigned long flags;
888 unsigned long onlined_pages = 0;
889 struct zone *zone;
890 int need_zonelists_rebuild = 0;
891 int nid;
892 int ret;
893 struct memory_notify arg;
894 struct memory_block *mem;
895
896 /*
897 * We can't use pfn_to_nid() because nid might be stored in struct page
898 * which is not yet initialized. Instead, we find nid from memory block.
899 */
900 mem = find_memory_block(__pfn_to_section(pfn));
901 nid = mem->nid;
902
903 /* associate pfn range with the zone */
904 zone = move_pfn_range(online_type, nid, pfn, nr_pages);
905
906 arg.start_pfn = pfn;
907 arg.nr_pages = nr_pages;
908 node_states_check_changes_online(nr_pages, zone, &arg);
909
910 ret = memory_notify(MEM_GOING_ONLINE, &arg);
911 ret = notifier_to_errno(ret);
912 if (ret)
913 goto failed_addition;
914
915 /*
916 * If this zone is not populated, then it is not in zonelist.
917 * This means the page allocator ignores this zone.
918 * So, zonelist must be updated after online.
919 */
920 if (!populated_zone(zone)) {
921 need_zonelists_rebuild = 1;
922 setup_zone_pageset(zone);
923 }
924
925 ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages,
926 online_pages_range);
927 if (ret) {
928 if (need_zonelists_rebuild)
929 zone_pcp_reset(zone);
930 goto failed_addition;
931 }
932
933 zone->present_pages += onlined_pages;
934
935 pgdat_resize_lock(zone->zone_pgdat, &flags);
936 zone->zone_pgdat->node_present_pages += onlined_pages;
937 pgdat_resize_unlock(zone->zone_pgdat, &flags);
938
939 if (onlined_pages) {
940 node_states_set_node(nid, &arg);
941 if (need_zonelists_rebuild)
942 build_all_zonelists(NULL);
943 else
944 zone_pcp_update(zone);
945 }
946
947 init_per_zone_wmark_min();
948
949 if (onlined_pages) {
950 kswapd_run(nid);
951 kcompactd_run(nid);
952 }
953
954 vm_total_pages = nr_free_pagecache_pages();
955
956 writeback_set_ratelimit();
957
958 if (onlined_pages)
959 memory_notify(MEM_ONLINE, &arg);
960 return 0;
961
962failed_addition:
963 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
964 (unsigned long long) pfn << PAGE_SHIFT,
965 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
966 memory_notify(MEM_CANCEL_ONLINE, &arg);
967 return ret;
968}
969#endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
970
971static void reset_node_present_pages(pg_data_t *pgdat)
972{
973 struct zone *z;
974
975 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
976 z->present_pages = 0;
977
978 pgdat->node_present_pages = 0;
979}
980
981/* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
982static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start)
983{
984 struct pglist_data *pgdat;
985 unsigned long zones_size[MAX_NR_ZONES] = {0};
986 unsigned long zholes_size[MAX_NR_ZONES] = {0};
987 unsigned long start_pfn = PFN_DOWN(start);
988
989 pgdat = NODE_DATA(nid);
990 if (!pgdat) {
991 pgdat = arch_alloc_nodedata(nid);
992 if (!pgdat)
993 return NULL;
994
995 arch_refresh_nodedata(nid, pgdat);
996 } else {
997 /*
998 * Reset the nr_zones, order and classzone_idx before reuse.
999 * Note that kswapd will init kswapd_classzone_idx properly
1000 * when it starts in the near future.
1001 */
1002 pgdat->nr_zones = 0;
1003 pgdat->kswapd_order = 0;
1004 pgdat->kswapd_classzone_idx = 0;
1005 }
1006
1007 /* we can use NODE_DATA(nid) from here */
1008
1009 /* init node's zones as empty zones, we don't have any present pages.*/
1010 free_area_init_node(nid, zones_size, start_pfn, zholes_size);
1011 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
1012
1013 /*
1014 * The node we allocated has no zone fallback lists. For avoiding
1015 * to access not-initialized zonelist, build here.
1016 */
1017 build_all_zonelists(pgdat);
1018
1019 /*
1020 * zone->managed_pages is set to an approximate value in
1021 * free_area_init_core(), which will cause
1022 * /sys/device/system/node/nodeX/meminfo has wrong data.
1023 * So reset it to 0 before any memory is onlined.
1024 */
1025 reset_node_managed_pages(pgdat);
1026
1027 /*
1028 * When memory is hot-added, all the memory is in offline state. So
1029 * clear all zones' present_pages because they will be updated in
1030 * online_pages() and offline_pages().
1031 */
1032 reset_node_present_pages(pgdat);
1033
1034 return pgdat;
1035}
1036
1037static void rollback_node_hotadd(int nid, pg_data_t *pgdat)
1038{
1039 arch_refresh_nodedata(nid, NULL);
1040 free_percpu(pgdat->per_cpu_nodestats);
1041 arch_free_nodedata(pgdat);
1042 return;
1043}
1044
1045
1046/**
1047 * try_online_node - online a node if offlined
1048 * @nid: the node ID
1049 *
1050 * called by cpu_up() to online a node without onlined memory.
1051 */
1052int try_online_node(int nid)
1053{
1054 pg_data_t *pgdat;
1055 int ret;
1056
1057 if (node_online(nid))
1058 return 0;
1059
1060 mem_hotplug_begin();
1061 pgdat = hotadd_new_pgdat(nid, 0);
1062 if (!pgdat) {
1063 pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1064 ret = -ENOMEM;
1065 goto out;
1066 }
1067 node_set_online(nid);
1068 ret = register_one_node(nid);
1069 BUG_ON(ret);
1070out:
1071 mem_hotplug_done();
1072 return ret;
1073}
1074
1075static int check_hotplug_memory_range(u64 start, u64 size)
1076{
1077 unsigned long block_sz = memory_block_size_bytes();
1078 u64 block_nr_pages = block_sz >> PAGE_SHIFT;
1079 u64 nr_pages = size >> PAGE_SHIFT;
1080 u64 start_pfn = PFN_DOWN(start);
1081
1082 /* memory range must be block size aligned */
1083 if (!nr_pages || !IS_ALIGNED(start_pfn, block_nr_pages) ||
1084 !IS_ALIGNED(nr_pages, block_nr_pages)) {
1085 pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
1086 block_sz, start, size);
1087 return -EINVAL;
1088 }
1089
1090 return 0;
1091}
1092
1093static int online_memory_block(struct memory_block *mem, void *arg)
1094{
1095 return device_online(&mem->dev);
1096}
1097
1098/* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1099int __ref add_memory_resource(int nid, struct resource *res, bool online)
1100{
1101 u64 start, size;
1102 pg_data_t *pgdat = NULL;
1103 bool new_pgdat;
1104 bool new_node;
1105 int ret;
1106
1107 start = res->start;
1108 size = resource_size(res);
1109
1110 ret = check_hotplug_memory_range(start, size);
1111 if (ret)
1112 return ret;
1113
1114 { /* Stupid hack to suppress address-never-null warning */
1115 void *p = NODE_DATA(nid);
1116 new_pgdat = !p;
1117 }
1118
1119 mem_hotplug_begin();
1120
1121 /*
1122 * Add new range to memblock so that when hotadd_new_pgdat() is called
1123 * to allocate new pgdat, get_pfn_range_for_nid() will be able to find
1124 * this new range and calculate total pages correctly. The range will
1125 * be removed at hot-remove time.
1126 */
1127 memblock_add_node(start, size, nid);
1128
1129 new_node = !node_online(nid);
1130 if (new_node) {
1131 pgdat = hotadd_new_pgdat(nid, start);
1132 ret = -ENOMEM;
1133 if (!pgdat)
1134 goto error;
1135 }
1136
1137 /* call arch's memory hotadd */
1138 ret = arch_add_memory(nid, start, size, NULL, true);
1139
1140 if (ret < 0)
1141 goto error;
1142
1143 /* we online node here. we can't roll back from here. */
1144 node_set_online(nid);
1145
1146 if (new_node) {
1147 unsigned long start_pfn = start >> PAGE_SHIFT;
1148 unsigned long nr_pages = size >> PAGE_SHIFT;
1149
1150 ret = __register_one_node(nid);
1151 if (ret)
1152 goto register_fail;
1153
1154 /*
1155 * link memory sections under this node. This is already
1156 * done when creatig memory section in register_new_memory
1157 * but that depends to have the node registered so offline
1158 * nodes have to go through register_node.
1159 * TODO clean up this mess.
1160 */
1161 ret = link_mem_sections(nid, start_pfn, nr_pages, false);
1162register_fail:
1163 /*
1164 * If sysfs file of new node can't create, cpu on the node
1165 * can't be hot-added. There is no rollback way now.
1166 * So, check by BUG_ON() to catch it reluctantly..
1167 */
1168 BUG_ON(ret);
1169 }
1170
1171 /* create new memmap entry */
1172 firmware_map_add_hotplug(start, start + size, "System RAM");
1173
1174 /* online pages if requested */
1175 if (online)
1176 walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1),
1177 NULL, online_memory_block);
1178
1179 goto out;
1180
1181error:
1182 /* rollback pgdat allocation and others */
1183 if (new_pgdat && pgdat)
1184 rollback_node_hotadd(nid, pgdat);
1185 memblock_remove(start, size);
1186
1187out:
1188 mem_hotplug_done();
1189 return ret;
1190}
1191EXPORT_SYMBOL_GPL(add_memory_resource);
1192
1193int __ref add_memory(int nid, u64 start, u64 size)
1194{
1195 struct resource *res;
1196 int ret;
1197
1198 res = register_memory_resource(start, size);
1199 if (IS_ERR(res))
1200 return PTR_ERR(res);
1201
1202 ret = add_memory_resource(nid, res, memhp_auto_online);
1203 if (ret < 0)
1204 release_memory_resource(res);
1205 return ret;
1206}
1207EXPORT_SYMBOL_GPL(add_memory);
1208
1209#ifdef CONFIG_MEMORY_HOTREMOVE
1210/*
1211 * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy
1212 * set and the size of the free page is given by page_order(). Using this,
1213 * the function determines if the pageblock contains only free pages.
1214 * Due to buddy contraints, a free page at least the size of a pageblock will
1215 * be located at the start of the pageblock
1216 */
1217static inline int pageblock_free(struct page *page)
1218{
1219 return PageBuddy(page) && page_order(page) >= pageblock_order;
1220}
1221
1222/* Return the start of the next active pageblock after a given page */
1223static struct page *next_active_pageblock(struct page *page)
1224{
1225 /* Ensure the starting page is pageblock-aligned */
1226 BUG_ON(page_to_pfn(page) & (pageblock_nr_pages - 1));
1227
1228 /* If the entire pageblock is free, move to the end of free page */
1229 if (pageblock_free(page)) {
1230 int order;
1231 /* be careful. we don't have locks, page_order can be changed.*/
1232 order = page_order(page);
1233 if ((order < MAX_ORDER) && (order >= pageblock_order))
1234 return page + (1 << order);
1235 }
1236
1237 return page + pageblock_nr_pages;
1238}
1239
1240/* Checks if this range of memory is likely to be hot-removable. */
1241bool is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages)
1242{
1243 struct page *page = pfn_to_page(start_pfn);
1244 struct page *end_page = page + nr_pages;
1245
1246 /* Check the starting page of each pageblock within the range */
1247 for (; page < end_page; page = next_active_pageblock(page)) {
1248 if (!is_pageblock_removable_nolock(page))
1249 return false;
1250 cond_resched();
1251 }
1252
1253 /* All pageblocks in the memory block are likely to be hot-removable */
1254 return true;
1255}
1256
1257/*
1258 * Confirm all pages in a range [start, end) belong to the same zone.
1259 * When true, return its valid [start, end).
1260 */
1261int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn,
1262 unsigned long *valid_start, unsigned long *valid_end)
1263{
1264 unsigned long pfn, sec_end_pfn;
1265 unsigned long start, end;
1266 struct zone *zone = NULL;
1267 struct page *page;
1268 int i;
1269 for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1);
1270 pfn < end_pfn;
1271 pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) {
1272 /* Make sure the memory section is present first */
1273 if (!present_section_nr(pfn_to_section_nr(pfn)))
1274 continue;
1275 for (; pfn < sec_end_pfn && pfn < end_pfn;
1276 pfn += MAX_ORDER_NR_PAGES) {
1277 i = 0;
1278 /* This is just a CONFIG_HOLES_IN_ZONE check.*/
1279 while ((i < MAX_ORDER_NR_PAGES) &&
1280 !pfn_valid_within(pfn + i))
1281 i++;
1282 if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn)
1283 continue;
1284 page = pfn_to_page(pfn + i);
1285 if (zone && page_zone(page) != zone)
1286 return 0;
1287 if (!zone)
1288 start = pfn + i;
1289 zone = page_zone(page);
1290 end = pfn + MAX_ORDER_NR_PAGES;
1291 }
1292 }
1293
1294 if (zone) {
1295 *valid_start = start;
1296 *valid_end = min(end, end_pfn);
1297 return 1;
1298 } else {
1299 return 0;
1300 }
1301}
1302
1303/*
1304 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1305 * non-lru movable pages and hugepages). We scan pfn because it's much
1306 * easier than scanning over linked list. This function returns the pfn
1307 * of the first found movable page if it's found, otherwise 0.
1308 */
1309static unsigned long scan_movable_pages(unsigned long start, unsigned long end)
1310{
1311 unsigned long pfn;
1312 struct page *page;
1313 for (pfn = start; pfn < end; pfn++) {
1314 if (pfn_valid(pfn)) {
1315 page = pfn_to_page(pfn);
1316 if (PageLRU(page))
1317 return pfn;
1318 if (__PageMovable(page))
1319 return pfn;
1320 if (PageHuge(page)) {
1321 if (page_huge_active(page))
1322 return pfn;
1323 else
1324 pfn = round_up(pfn + 1,
1325 1 << compound_order(page)) - 1;
1326 }
1327 }
1328 }
1329 return 0;
1330}
1331
1332static struct page *new_node_page(struct page *page, unsigned long private)
1333{
1334 int nid = page_to_nid(page);
1335 nodemask_t nmask = node_states[N_MEMORY];
1336
1337 /*
1338 * try to allocate from a different node but reuse this node if there
1339 * are no other online nodes to be used (e.g. we are offlining a part
1340 * of the only existing node)
1341 */
1342 node_clear(nid, nmask);
1343 if (nodes_empty(nmask))
1344 node_set(nid, nmask);
1345
1346 return new_page_nodemask(page, nid, &nmask);
1347}
1348
1349#define NR_OFFLINE_AT_ONCE_PAGES (256)
1350static int
1351do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1352{
1353 unsigned long pfn;
1354 struct page *page;
1355 int move_pages = NR_OFFLINE_AT_ONCE_PAGES;
1356 int not_managed = 0;
1357 int ret = 0;
1358 LIST_HEAD(source);
1359
1360 for (pfn = start_pfn; pfn < end_pfn && move_pages > 0; pfn++) {
1361 if (!pfn_valid(pfn))
1362 continue;
1363 page = pfn_to_page(pfn);
1364
1365 if (PageHuge(page)) {
1366 struct page *head = compound_head(page);
1367 pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1;
1368 if (compound_order(head) > PFN_SECTION_SHIFT) {
1369 ret = -EBUSY;
1370 break;
1371 }
1372 if (isolate_huge_page(page, &source))
1373 move_pages -= 1 << compound_order(head);
1374 continue;
1375 } else if (PageTransHuge(page))
1376 pfn = page_to_pfn(compound_head(page))
1377 + hpage_nr_pages(page) - 1;
1378
1379 if (!get_page_unless_zero(page))
1380 continue;
1381 /*
1382 * We can skip free pages. And we can deal with pages on
1383 * LRU and non-lru movable pages.
1384 */
1385 if (PageLRU(page))
1386 ret = isolate_lru_page(page);
1387 else
1388 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1389 if (!ret) { /* Success */
1390 put_page(page);
1391 list_add_tail(&page->lru, &source);
1392 move_pages--;
1393 if (!__PageMovable(page))
1394 inc_node_page_state(page, NR_ISOLATED_ANON +
1395 page_is_file_cache(page));
1396
1397 } else {
1398#ifdef CONFIG_DEBUG_VM
1399 pr_alert("failed to isolate pfn %lx\n", pfn);
1400 dump_page(page, "isolation failed");
1401#endif
1402 put_page(page);
1403 /* Because we don't have big zone->lock. we should
1404 check this again here. */
1405 if (page_count(page)) {
1406 not_managed++;
1407 ret = -EBUSY;
1408 break;
1409 }
1410 }
1411 }
1412 if (!list_empty(&source)) {
1413 if (not_managed) {
1414 putback_movable_pages(&source);
1415 goto out;
1416 }
1417
1418 /* Allocate a new page from the nearest neighbor node */
1419 ret = migrate_pages(&source, new_node_page, NULL, 0,
1420 MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1421 if (ret)
1422 putback_movable_pages(&source);
1423 }
1424out:
1425 return ret;
1426}
1427
1428/*
1429 * remove from free_area[] and mark all as Reserved.
1430 */
1431static int
1432offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages,
1433 void *data)
1434{
1435 __offline_isolated_pages(start, start + nr_pages);
1436 return 0;
1437}
1438
1439static void
1440offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
1441{
1442 walk_system_ram_range(start_pfn, end_pfn - start_pfn, NULL,
1443 offline_isolated_pages_cb);
1444}
1445
1446/*
1447 * Check all pages in range, recoreded as memory resource, are isolated.
1448 */
1449static int
1450check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages,
1451 void *data)
1452{
1453 int ret;
1454 long offlined = *(long *)data;
1455 ret = test_pages_isolated(start_pfn, start_pfn + nr_pages, true);
1456 offlined = nr_pages;
1457 if (!ret)
1458 *(long *)data += offlined;
1459 return ret;
1460}
1461
1462static long
1463check_pages_isolated(unsigned long start_pfn, unsigned long end_pfn)
1464{
1465 long offlined = 0;
1466 int ret;
1467
1468 ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, &offlined,
1469 check_pages_isolated_cb);
1470 if (ret < 0)
1471 offlined = (long)ret;
1472 return offlined;
1473}
1474
1475static int __init cmdline_parse_movable_node(char *p)
1476{
1477#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1478 movable_node_enabled = true;
1479#else
1480 pr_warn("movable_node parameter depends on CONFIG_HAVE_MEMBLOCK_NODE_MAP to work properly\n");
1481#endif
1482 return 0;
1483}
1484early_param("movable_node", cmdline_parse_movable_node);
1485
1486/* check which state of node_states will be changed when offline memory */
1487static void node_states_check_changes_offline(unsigned long nr_pages,
1488 struct zone *zone, struct memory_notify *arg)
1489{
1490 struct pglist_data *pgdat = zone->zone_pgdat;
1491 unsigned long present_pages = 0;
1492 enum zone_type zt, zone_last = ZONE_NORMAL;
1493
1494 /*
1495 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
1496 * contains nodes which have zones of 0...ZONE_NORMAL,
1497 * set zone_last to ZONE_NORMAL.
1498 *
1499 * If we don't have HIGHMEM nor movable node,
1500 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
1501 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
1502 */
1503 if (N_MEMORY == N_NORMAL_MEMORY)
1504 zone_last = ZONE_MOVABLE;
1505
1506 /*
1507 * check whether node_states[N_NORMAL_MEMORY] will be changed.
1508 * If the memory to be offline is in a zone of 0...zone_last,
1509 * and it is the last present memory, 0...zone_last will
1510 * become empty after offline , thus we can determind we will
1511 * need to clear the node from node_states[N_NORMAL_MEMORY].
1512 */
1513 for (zt = 0; zt <= zone_last; zt++)
1514 present_pages += pgdat->node_zones[zt].present_pages;
1515 if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
1516 arg->status_change_nid_normal = zone_to_nid(zone);
1517 else
1518 arg->status_change_nid_normal = -1;
1519
1520#ifdef CONFIG_HIGHMEM
1521 /*
1522 * If we have movable node, node_states[N_HIGH_MEMORY]
1523 * contains nodes which have zones of 0...ZONE_HIGHMEM,
1524 * set zone_last to ZONE_HIGHMEM.
1525 *
1526 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
1527 * contains nodes which have zones of 0...ZONE_MOVABLE,
1528 * set zone_last to ZONE_MOVABLE.
1529 */
1530 zone_last = ZONE_HIGHMEM;
1531 if (N_MEMORY == N_HIGH_MEMORY)
1532 zone_last = ZONE_MOVABLE;
1533
1534 for (; zt <= zone_last; zt++)
1535 present_pages += pgdat->node_zones[zt].present_pages;
1536 if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
1537 arg->status_change_nid_high = zone_to_nid(zone);
1538 else
1539 arg->status_change_nid_high = -1;
1540#else
1541 arg->status_change_nid_high = arg->status_change_nid_normal;
1542#endif
1543
1544 /*
1545 * node_states[N_HIGH_MEMORY] contains nodes which have 0...ZONE_MOVABLE
1546 */
1547 zone_last = ZONE_MOVABLE;
1548
1549 /*
1550 * check whether node_states[N_HIGH_MEMORY] will be changed
1551 * If we try to offline the last present @nr_pages from the node,
1552 * we can determind we will need to clear the node from
1553 * node_states[N_HIGH_MEMORY].
1554 */
1555 for (; zt <= zone_last; zt++)
1556 present_pages += pgdat->node_zones[zt].present_pages;
1557 if (nr_pages >= present_pages)
1558 arg->status_change_nid = zone_to_nid(zone);
1559 else
1560 arg->status_change_nid = -1;
1561}
1562
1563static void node_states_clear_node(int node, struct memory_notify *arg)
1564{
1565 if (arg->status_change_nid_normal >= 0)
1566 node_clear_state(node, N_NORMAL_MEMORY);
1567
1568 if ((N_MEMORY != N_NORMAL_MEMORY) &&
1569 (arg->status_change_nid_high >= 0))
1570 node_clear_state(node, N_HIGH_MEMORY);
1571
1572 if ((N_MEMORY != N_HIGH_MEMORY) &&
1573 (arg->status_change_nid >= 0))
1574 node_clear_state(node, N_MEMORY);
1575}
1576
1577static int __ref __offline_pages(unsigned long start_pfn,
1578 unsigned long end_pfn)
1579{
1580 unsigned long pfn, nr_pages;
1581 long offlined_pages;
1582 int ret, node;
1583 unsigned long flags;
1584 unsigned long valid_start, valid_end;
1585 struct zone *zone;
1586 struct memory_notify arg;
1587
1588 /* at least, alignment against pageblock is necessary */
1589 if (!IS_ALIGNED(start_pfn, pageblock_nr_pages))
1590 return -EINVAL;
1591 if (!IS_ALIGNED(end_pfn, pageblock_nr_pages))
1592 return -EINVAL;
1593 /* This makes hotplug much easier...and readable.
1594 we assume this for now. .*/
1595 if (!test_pages_in_a_zone(start_pfn, end_pfn, &valid_start, &valid_end))
1596 return -EINVAL;
1597
1598 zone = page_zone(pfn_to_page(valid_start));
1599 node = zone_to_nid(zone);
1600 nr_pages = end_pfn - start_pfn;
1601
1602 /* set above range as isolated */
1603 ret = start_isolate_page_range(start_pfn, end_pfn,
1604 MIGRATE_MOVABLE, true);
1605 if (ret)
1606 return ret;
1607
1608 arg.start_pfn = start_pfn;
1609 arg.nr_pages = nr_pages;
1610 node_states_check_changes_offline(nr_pages, zone, &arg);
1611
1612 ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1613 ret = notifier_to_errno(ret);
1614 if (ret)
1615 goto failed_removal;
1616
1617 pfn = start_pfn;
1618repeat:
1619 /* start memory hot removal */
1620 ret = -EINTR;
1621 if (signal_pending(current))
1622 goto failed_removal;
1623
1624 cond_resched();
1625 lru_add_drain_all();
1626 drain_all_pages(zone);
1627
1628 pfn = scan_movable_pages(start_pfn, end_pfn);
1629 if (pfn) { /* We have movable pages */
1630 ret = do_migrate_range(pfn, end_pfn);
1631 goto repeat;
1632 }
1633
1634 /*
1635 * dissolve free hugepages in the memory block before doing offlining
1636 * actually in order to make hugetlbfs's object counting consistent.
1637 */
1638 ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1639 if (ret)
1640 goto failed_removal;
1641 /* check again */
1642 offlined_pages = check_pages_isolated(start_pfn, end_pfn);
1643 if (offlined_pages < 0)
1644 goto repeat;
1645 pr_info("Offlined Pages %ld\n", offlined_pages);
1646 /* Ok, all of our target is isolated.
1647 We cannot do rollback at this point. */
1648 offline_isolated_pages(start_pfn, end_pfn);
1649 /* reset pagetype flags and makes migrate type to be MOVABLE */
1650 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1651 /* removal success */
1652 adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages);
1653 zone->present_pages -= offlined_pages;
1654
1655 pgdat_resize_lock(zone->zone_pgdat, &flags);
1656 zone->zone_pgdat->node_present_pages -= offlined_pages;
1657 pgdat_resize_unlock(zone->zone_pgdat, &flags);
1658
1659 init_per_zone_wmark_min();
1660
1661 if (!populated_zone(zone)) {
1662 zone_pcp_reset(zone);
1663 build_all_zonelists(NULL);
1664 } else
1665 zone_pcp_update(zone);
1666
1667 node_states_clear_node(node, &arg);
1668 if (arg.status_change_nid >= 0) {
1669 kswapd_stop(node);
1670 kcompactd_stop(node);
1671 }
1672
1673 vm_total_pages = nr_free_pagecache_pages();
1674 writeback_set_ratelimit();
1675
1676 memory_notify(MEM_OFFLINE, &arg);
1677 return 0;
1678
1679failed_removal:
1680 pr_debug("memory offlining [mem %#010llx-%#010llx] failed\n",
1681 (unsigned long long) start_pfn << PAGE_SHIFT,
1682 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
1683 memory_notify(MEM_CANCEL_OFFLINE, &arg);
1684 /* pushback to free area */
1685 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1686 return ret;
1687}
1688
1689/* Must be protected by mem_hotplug_begin() or a device_lock */
1690int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1691{
1692 return __offline_pages(start_pfn, start_pfn + nr_pages);
1693}
1694#endif /* CONFIG_MEMORY_HOTREMOVE */
1695
1696/**
1697 * walk_memory_range - walks through all mem sections in [start_pfn, end_pfn)
1698 * @start_pfn: start pfn of the memory range
1699 * @end_pfn: end pfn of the memory range
1700 * @arg: argument passed to func
1701 * @func: callback for each memory section walked
1702 *
1703 * This function walks through all present mem sections in range
1704 * [start_pfn, end_pfn) and call func on each mem section.
1705 *
1706 * Returns the return value of func.
1707 */
1708int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn,
1709 void *arg, int (*func)(struct memory_block *, void *))
1710{
1711 struct memory_block *mem = NULL;
1712 struct mem_section *section;
1713 unsigned long pfn, section_nr;
1714 int ret;
1715
1716 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1717 section_nr = pfn_to_section_nr(pfn);
1718 if (!present_section_nr(section_nr))
1719 continue;
1720
1721 section = __nr_to_section(section_nr);
1722 /* same memblock? */
1723 if (mem)
1724 if ((section_nr >= mem->start_section_nr) &&
1725 (section_nr <= mem->end_section_nr))
1726 continue;
1727
1728 mem = find_memory_block_hinted(section, mem);
1729 if (!mem)
1730 continue;
1731
1732 ret = func(mem, arg);
1733 if (ret) {
1734 kobject_put(&mem->dev.kobj);
1735 return ret;
1736 }
1737 }
1738
1739 if (mem)
1740 kobject_put(&mem->dev.kobj);
1741
1742 return 0;
1743}
1744
1745#ifdef CONFIG_MEMORY_HOTREMOVE
1746static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1747{
1748 int ret = !is_memblock_offlined(mem);
1749
1750 if (unlikely(ret)) {
1751 phys_addr_t beginpa, endpa;
1752
1753 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1754 endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1;
1755 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
1756 &beginpa, &endpa);
1757 }
1758
1759 return ret;
1760}
1761
1762static int check_cpu_on_node(pg_data_t *pgdat)
1763{
1764 int cpu;
1765
1766 for_each_present_cpu(cpu) {
1767 if (cpu_to_node(cpu) == pgdat->node_id)
1768 /*
1769 * the cpu on this node isn't removed, and we can't
1770 * offline this node.
1771 */
1772 return -EBUSY;
1773 }
1774
1775 return 0;
1776}
1777
1778static void unmap_cpu_on_node(pg_data_t *pgdat)
1779{
1780#ifdef CONFIG_ACPI_NUMA
1781 int cpu;
1782
1783 for_each_possible_cpu(cpu)
1784 if (cpu_to_node(cpu) == pgdat->node_id)
1785 numa_clear_node(cpu);
1786#endif
1787}
1788
1789static int check_and_unmap_cpu_on_node(pg_data_t *pgdat)
1790{
1791 int ret;
1792
1793 ret = check_cpu_on_node(pgdat);
1794 if (ret)
1795 return ret;
1796
1797 /*
1798 * the node will be offlined when we come here, so we can clear
1799 * the cpu_to_node() now.
1800 */
1801
1802 unmap_cpu_on_node(pgdat);
1803 return 0;
1804}
1805
1806/**
1807 * try_offline_node
1808 * @nid: the node ID
1809 *
1810 * Offline a node if all memory sections and cpus of the node are removed.
1811 *
1812 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1813 * and online/offline operations before this call.
1814 */
1815void try_offline_node(int nid)
1816{
1817 pg_data_t *pgdat = NODE_DATA(nid);
1818 unsigned long start_pfn = pgdat->node_start_pfn;
1819 unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
1820 unsigned long pfn;
1821
1822 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1823 unsigned long section_nr = pfn_to_section_nr(pfn);
1824
1825 if (!present_section_nr(section_nr))
1826 continue;
1827
1828 if (pfn_to_nid(pfn) != nid)
1829 continue;
1830
1831 /*
1832 * some memory sections of this node are not removed, and we
1833 * can't offline node now.
1834 */
1835 return;
1836 }
1837
1838 if (check_and_unmap_cpu_on_node(pgdat))
1839 return;
1840
1841 /*
1842 * all memory/cpu of this node are removed, we can offline this
1843 * node now.
1844 */
1845 node_set_offline(nid);
1846 unregister_one_node(nid);
1847}
1848EXPORT_SYMBOL(try_offline_node);
1849
1850/**
1851 * remove_memory
1852 * @nid: the node ID
1853 * @start: physical address of the region to remove
1854 * @size: size of the region to remove
1855 *
1856 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1857 * and online/offline operations before this call, as required by
1858 * try_offline_node().
1859 */
1860void __ref remove_memory(int nid, u64 start, u64 size)
1861{
1862 int ret;
1863
1864 BUG_ON(check_hotplug_memory_range(start, size));
1865
1866 mem_hotplug_begin();
1867
1868 /*
1869 * All memory blocks must be offlined before removing memory. Check
1870 * whether all memory blocks in question are offline and trigger a BUG()
1871 * if this is not the case.
1872 */
1873 ret = walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), NULL,
1874 check_memblock_offlined_cb);
1875 if (ret)
1876 BUG();
1877
1878 /* remove memmap entry */
1879 firmware_map_remove(start, start + size, "System RAM");
1880 memblock_free(start, size);
1881 memblock_remove(start, size);
1882
1883 arch_remove_memory(start, size, NULL);
1884
1885 try_offline_node(nid);
1886
1887 mem_hotplug_done();
1888}
1889EXPORT_SYMBOL_GPL(remove_memory);
1890#endif /* CONFIG_MEMORY_HOTREMOVE */
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/mm/memory_hotplug.c
4 *
5 * Copyright (C)
6 */
7
8#include <linux/stddef.h>
9#include <linux/mm.h>
10#include <linux/sched/signal.h>
11#include <linux/swap.h>
12#include <linux/interrupt.h>
13#include <linux/pagemap.h>
14#include <linux/compiler.h>
15#include <linux/export.h>
16#include <linux/writeback.h>
17#include <linux/slab.h>
18#include <linux/sysctl.h>
19#include <linux/cpu.h>
20#include <linux/memory.h>
21#include <linux/memremap.h>
22#include <linux/memory_hotplug.h>
23#include <linux/vmalloc.h>
24#include <linux/ioport.h>
25#include <linux/delay.h>
26#include <linux/migrate.h>
27#include <linux/page-isolation.h>
28#include <linux/pfn.h>
29#include <linux/suspend.h>
30#include <linux/mm_inline.h>
31#include <linux/firmware-map.h>
32#include <linux/stop_machine.h>
33#include <linux/hugetlb.h>
34#include <linux/memblock.h>
35#include <linux/compaction.h>
36#include <linux/rmap.h>
37#include <linux/module.h>
38
39#include <asm/tlbflush.h>
40
41#include "internal.h"
42#include "shuffle.h"
43
44enum {
45 MEMMAP_ON_MEMORY_DISABLE = 0,
46 MEMMAP_ON_MEMORY_ENABLE,
47 MEMMAP_ON_MEMORY_FORCE,
48};
49
50static int memmap_mode __read_mostly = MEMMAP_ON_MEMORY_DISABLE;
51
52static inline unsigned long memory_block_memmap_size(void)
53{
54 return PHYS_PFN(memory_block_size_bytes()) * sizeof(struct page);
55}
56
57static inline unsigned long memory_block_memmap_on_memory_pages(void)
58{
59 unsigned long nr_pages = PFN_UP(memory_block_memmap_size());
60
61 /*
62 * In "forced" memmap_on_memory mode, we add extra pages to align the
63 * vmemmap size to cover full pageblocks. That way, we can add memory
64 * even if the vmemmap size is not properly aligned, however, we might waste
65 * memory.
66 */
67 if (memmap_mode == MEMMAP_ON_MEMORY_FORCE)
68 return pageblock_align(nr_pages);
69 return nr_pages;
70}
71
72#ifdef CONFIG_MHP_MEMMAP_ON_MEMORY
73/*
74 * memory_hotplug.memmap_on_memory parameter
75 */
76static int set_memmap_mode(const char *val, const struct kernel_param *kp)
77{
78 int ret, mode;
79 bool enabled;
80
81 if (sysfs_streq(val, "force") || sysfs_streq(val, "FORCE")) {
82 mode = MEMMAP_ON_MEMORY_FORCE;
83 } else {
84 ret = kstrtobool(val, &enabled);
85 if (ret < 0)
86 return ret;
87 if (enabled)
88 mode = MEMMAP_ON_MEMORY_ENABLE;
89 else
90 mode = MEMMAP_ON_MEMORY_DISABLE;
91 }
92 *((int *)kp->arg) = mode;
93 if (mode == MEMMAP_ON_MEMORY_FORCE) {
94 unsigned long memmap_pages = memory_block_memmap_on_memory_pages();
95
96 pr_info_once("Memory hotplug will waste %ld pages in each memory block\n",
97 memmap_pages - PFN_UP(memory_block_memmap_size()));
98 }
99 return 0;
100}
101
102static int get_memmap_mode(char *buffer, const struct kernel_param *kp)
103{
104 int mode = *((int *)kp->arg);
105
106 if (mode == MEMMAP_ON_MEMORY_FORCE)
107 return sprintf(buffer, "force\n");
108 return sprintf(buffer, "%c\n", mode ? 'Y' : 'N');
109}
110
111static const struct kernel_param_ops memmap_mode_ops = {
112 .set = set_memmap_mode,
113 .get = get_memmap_mode,
114};
115module_param_cb(memmap_on_memory, &memmap_mode_ops, &memmap_mode, 0444);
116MODULE_PARM_DESC(memmap_on_memory, "Enable memmap on memory for memory hotplug\n"
117 "With value \"force\" it could result in memory wastage due "
118 "to memmap size limitations (Y/N/force)");
119
120static inline bool mhp_memmap_on_memory(void)
121{
122 return memmap_mode != MEMMAP_ON_MEMORY_DISABLE;
123}
124#else
125static inline bool mhp_memmap_on_memory(void)
126{
127 return false;
128}
129#endif
130
131enum {
132 ONLINE_POLICY_CONTIG_ZONES = 0,
133 ONLINE_POLICY_AUTO_MOVABLE,
134};
135
136static const char * const online_policy_to_str[] = {
137 [ONLINE_POLICY_CONTIG_ZONES] = "contig-zones",
138 [ONLINE_POLICY_AUTO_MOVABLE] = "auto-movable",
139};
140
141static int set_online_policy(const char *val, const struct kernel_param *kp)
142{
143 int ret = sysfs_match_string(online_policy_to_str, val);
144
145 if (ret < 0)
146 return ret;
147 *((int *)kp->arg) = ret;
148 return 0;
149}
150
151static int get_online_policy(char *buffer, const struct kernel_param *kp)
152{
153 return sprintf(buffer, "%s\n", online_policy_to_str[*((int *)kp->arg)]);
154}
155
156/*
157 * memory_hotplug.online_policy: configure online behavior when onlining without
158 * specifying a zone (MMOP_ONLINE)
159 *
160 * "contig-zones": keep zone contiguous
161 * "auto-movable": online memory to ZONE_MOVABLE if the configuration
162 * (auto_movable_ratio, auto_movable_numa_aware) allows for it
163 */
164static int online_policy __read_mostly = ONLINE_POLICY_CONTIG_ZONES;
165static const struct kernel_param_ops online_policy_ops = {
166 .set = set_online_policy,
167 .get = get_online_policy,
168};
169module_param_cb(online_policy, &online_policy_ops, &online_policy, 0644);
170MODULE_PARM_DESC(online_policy,
171 "Set the online policy (\"contig-zones\", \"auto-movable\") "
172 "Default: \"contig-zones\"");
173
174/*
175 * memory_hotplug.auto_movable_ratio: specify maximum MOVABLE:KERNEL ratio
176 *
177 * The ratio represent an upper limit and the kernel might decide to not
178 * online some memory to ZONE_MOVABLE -- e.g., because hotplugged KERNEL memory
179 * doesn't allow for more MOVABLE memory.
180 */
181static unsigned int auto_movable_ratio __read_mostly = 301;
182module_param(auto_movable_ratio, uint, 0644);
183MODULE_PARM_DESC(auto_movable_ratio,
184 "Set the maximum ratio of MOVABLE:KERNEL memory in the system "
185 "in percent for \"auto-movable\" online policy. Default: 301");
186
187/*
188 * memory_hotplug.auto_movable_numa_aware: consider numa node stats
189 */
190#ifdef CONFIG_NUMA
191static bool auto_movable_numa_aware __read_mostly = true;
192module_param(auto_movable_numa_aware, bool, 0644);
193MODULE_PARM_DESC(auto_movable_numa_aware,
194 "Consider numa node stats in addition to global stats in "
195 "\"auto-movable\" online policy. Default: true");
196#endif /* CONFIG_NUMA */
197
198/*
199 * online_page_callback contains pointer to current page onlining function.
200 * Initially it is generic_online_page(). If it is required it could be
201 * changed by calling set_online_page_callback() for callback registration
202 * and restore_online_page_callback() for generic callback restore.
203 */
204
205static online_page_callback_t online_page_callback = generic_online_page;
206static DEFINE_MUTEX(online_page_callback_lock);
207
208DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
209
210void get_online_mems(void)
211{
212 percpu_down_read(&mem_hotplug_lock);
213}
214
215void put_online_mems(void)
216{
217 percpu_up_read(&mem_hotplug_lock);
218}
219
220bool movable_node_enabled = false;
221
222#ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
223int mhp_default_online_type = MMOP_OFFLINE;
224#else
225int mhp_default_online_type = MMOP_ONLINE;
226#endif
227
228static int __init setup_memhp_default_state(char *str)
229{
230 const int online_type = mhp_online_type_from_str(str);
231
232 if (online_type >= 0)
233 mhp_default_online_type = online_type;
234
235 return 1;
236}
237__setup("memhp_default_state=", setup_memhp_default_state);
238
239void mem_hotplug_begin(void)
240{
241 cpus_read_lock();
242 percpu_down_write(&mem_hotplug_lock);
243}
244
245void mem_hotplug_done(void)
246{
247 percpu_up_write(&mem_hotplug_lock);
248 cpus_read_unlock();
249}
250
251u64 max_mem_size = U64_MAX;
252
253/* add this memory to iomem resource */
254static struct resource *register_memory_resource(u64 start, u64 size,
255 const char *resource_name)
256{
257 struct resource *res;
258 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
259
260 if (strcmp(resource_name, "System RAM"))
261 flags |= IORESOURCE_SYSRAM_DRIVER_MANAGED;
262
263 if (!mhp_range_allowed(start, size, true))
264 return ERR_PTR(-E2BIG);
265
266 /*
267 * Make sure value parsed from 'mem=' only restricts memory adding
268 * while booting, so that memory hotplug won't be impacted. Please
269 * refer to document of 'mem=' in kernel-parameters.txt for more
270 * details.
271 */
272 if (start + size > max_mem_size && system_state < SYSTEM_RUNNING)
273 return ERR_PTR(-E2BIG);
274
275 /*
276 * Request ownership of the new memory range. This might be
277 * a child of an existing resource that was present but
278 * not marked as busy.
279 */
280 res = __request_region(&iomem_resource, start, size,
281 resource_name, flags);
282
283 if (!res) {
284 pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
285 start, start + size);
286 return ERR_PTR(-EEXIST);
287 }
288 return res;
289}
290
291static void release_memory_resource(struct resource *res)
292{
293 if (!res)
294 return;
295 release_resource(res);
296 kfree(res);
297}
298
299static int check_pfn_span(unsigned long pfn, unsigned long nr_pages)
300{
301 /*
302 * Disallow all operations smaller than a sub-section and only
303 * allow operations smaller than a section for
304 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range()
305 * enforces a larger memory_block_size_bytes() granularity for
306 * memory that will be marked online, so this check should only
307 * fire for direct arch_{add,remove}_memory() users outside of
308 * add_memory_resource().
309 */
310 unsigned long min_align;
311
312 if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
313 min_align = PAGES_PER_SUBSECTION;
314 else
315 min_align = PAGES_PER_SECTION;
316 if (!IS_ALIGNED(pfn | nr_pages, min_align))
317 return -EINVAL;
318 return 0;
319}
320
321/*
322 * Return page for the valid pfn only if the page is online. All pfn
323 * walkers which rely on the fully initialized page->flags and others
324 * should use this rather than pfn_valid && pfn_to_page
325 */
326struct page *pfn_to_online_page(unsigned long pfn)
327{
328 unsigned long nr = pfn_to_section_nr(pfn);
329 struct dev_pagemap *pgmap;
330 struct mem_section *ms;
331
332 if (nr >= NR_MEM_SECTIONS)
333 return NULL;
334
335 ms = __nr_to_section(nr);
336 if (!online_section(ms))
337 return NULL;
338
339 /*
340 * Save some code text when online_section() +
341 * pfn_section_valid() are sufficient.
342 */
343 if (IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) && !pfn_valid(pfn))
344 return NULL;
345
346 if (!pfn_section_valid(ms, pfn))
347 return NULL;
348
349 if (!online_device_section(ms))
350 return pfn_to_page(pfn);
351
352 /*
353 * Slowpath: when ZONE_DEVICE collides with
354 * ZONE_{NORMAL,MOVABLE} within the same section some pfns in
355 * the section may be 'offline' but 'valid'. Only
356 * get_dev_pagemap() can determine sub-section online status.
357 */
358 pgmap = get_dev_pagemap(pfn, NULL);
359 put_dev_pagemap(pgmap);
360
361 /* The presence of a pgmap indicates ZONE_DEVICE offline pfn */
362 if (pgmap)
363 return NULL;
364
365 return pfn_to_page(pfn);
366}
367EXPORT_SYMBOL_GPL(pfn_to_online_page);
368
369int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages,
370 struct mhp_params *params)
371{
372 const unsigned long end_pfn = pfn + nr_pages;
373 unsigned long cur_nr_pages;
374 int err;
375 struct vmem_altmap *altmap = params->altmap;
376
377 if (WARN_ON_ONCE(!pgprot_val(params->pgprot)))
378 return -EINVAL;
379
380 VM_BUG_ON(!mhp_range_allowed(PFN_PHYS(pfn), nr_pages * PAGE_SIZE, false));
381
382 if (altmap) {
383 /*
384 * Validate altmap is within bounds of the total request
385 */
386 if (altmap->base_pfn != pfn
387 || vmem_altmap_offset(altmap) > nr_pages) {
388 pr_warn_once("memory add fail, invalid altmap\n");
389 return -EINVAL;
390 }
391 altmap->alloc = 0;
392 }
393
394 if (check_pfn_span(pfn, nr_pages)) {
395 WARN(1, "Misaligned %s start: %#lx end: %#lx\n", __func__, pfn, pfn + nr_pages - 1);
396 return -EINVAL;
397 }
398
399 for (; pfn < end_pfn; pfn += cur_nr_pages) {
400 /* Select all remaining pages up to the next section boundary */
401 cur_nr_pages = min(end_pfn - pfn,
402 SECTION_ALIGN_UP(pfn + 1) - pfn);
403 err = sparse_add_section(nid, pfn, cur_nr_pages, altmap,
404 params->pgmap);
405 if (err)
406 break;
407 cond_resched();
408 }
409 vmemmap_populate_print_last();
410 return err;
411}
412
413/* find the smallest valid pfn in the range [start_pfn, end_pfn) */
414static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
415 unsigned long start_pfn,
416 unsigned long end_pfn)
417{
418 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) {
419 if (unlikely(!pfn_to_online_page(start_pfn)))
420 continue;
421
422 if (unlikely(pfn_to_nid(start_pfn) != nid))
423 continue;
424
425 if (zone != page_zone(pfn_to_page(start_pfn)))
426 continue;
427
428 return start_pfn;
429 }
430
431 return 0;
432}
433
434/* find the biggest valid pfn in the range [start_pfn, end_pfn). */
435static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
436 unsigned long start_pfn,
437 unsigned long end_pfn)
438{
439 unsigned long pfn;
440
441 /* pfn is the end pfn of a memory section. */
442 pfn = end_pfn - 1;
443 for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) {
444 if (unlikely(!pfn_to_online_page(pfn)))
445 continue;
446
447 if (unlikely(pfn_to_nid(pfn) != nid))
448 continue;
449
450 if (zone != page_zone(pfn_to_page(pfn)))
451 continue;
452
453 return pfn;
454 }
455
456 return 0;
457}
458
459static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
460 unsigned long end_pfn)
461{
462 unsigned long pfn;
463 int nid = zone_to_nid(zone);
464
465 if (zone->zone_start_pfn == start_pfn) {
466 /*
467 * If the section is smallest section in the zone, it need
468 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
469 * In this case, we find second smallest valid mem_section
470 * for shrinking zone.
471 */
472 pfn = find_smallest_section_pfn(nid, zone, end_pfn,
473 zone_end_pfn(zone));
474 if (pfn) {
475 zone->spanned_pages = zone_end_pfn(zone) - pfn;
476 zone->zone_start_pfn = pfn;
477 } else {
478 zone->zone_start_pfn = 0;
479 zone->spanned_pages = 0;
480 }
481 } else if (zone_end_pfn(zone) == end_pfn) {
482 /*
483 * If the section is biggest section in the zone, it need
484 * shrink zone->spanned_pages.
485 * In this case, we find second biggest valid mem_section for
486 * shrinking zone.
487 */
488 pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn,
489 start_pfn);
490 if (pfn)
491 zone->spanned_pages = pfn - zone->zone_start_pfn + 1;
492 else {
493 zone->zone_start_pfn = 0;
494 zone->spanned_pages = 0;
495 }
496 }
497}
498
499static void update_pgdat_span(struct pglist_data *pgdat)
500{
501 unsigned long node_start_pfn = 0, node_end_pfn = 0;
502 struct zone *zone;
503
504 for (zone = pgdat->node_zones;
505 zone < pgdat->node_zones + MAX_NR_ZONES; zone++) {
506 unsigned long end_pfn = zone_end_pfn(zone);
507
508 /* No need to lock the zones, they can't change. */
509 if (!zone->spanned_pages)
510 continue;
511 if (!node_end_pfn) {
512 node_start_pfn = zone->zone_start_pfn;
513 node_end_pfn = end_pfn;
514 continue;
515 }
516
517 if (end_pfn > node_end_pfn)
518 node_end_pfn = end_pfn;
519 if (zone->zone_start_pfn < node_start_pfn)
520 node_start_pfn = zone->zone_start_pfn;
521 }
522
523 pgdat->node_start_pfn = node_start_pfn;
524 pgdat->node_spanned_pages = node_end_pfn - node_start_pfn;
525}
526
527void __ref remove_pfn_range_from_zone(struct zone *zone,
528 unsigned long start_pfn,
529 unsigned long nr_pages)
530{
531 const unsigned long end_pfn = start_pfn + nr_pages;
532 struct pglist_data *pgdat = zone->zone_pgdat;
533 unsigned long pfn, cur_nr_pages;
534
535 /* Poison struct pages because they are now uninitialized again. */
536 for (pfn = start_pfn; pfn < end_pfn; pfn += cur_nr_pages) {
537 cond_resched();
538
539 /* Select all remaining pages up to the next section boundary */
540 cur_nr_pages =
541 min(end_pfn - pfn, SECTION_ALIGN_UP(pfn + 1) - pfn);
542 page_init_poison(pfn_to_page(pfn),
543 sizeof(struct page) * cur_nr_pages);
544 }
545
546 /*
547 * Zone shrinking code cannot properly deal with ZONE_DEVICE. So
548 * we will not try to shrink the zones - which is okay as
549 * set_zone_contiguous() cannot deal with ZONE_DEVICE either way.
550 */
551 if (zone_is_zone_device(zone))
552 return;
553
554 clear_zone_contiguous(zone);
555
556 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
557 update_pgdat_span(pgdat);
558
559 set_zone_contiguous(zone);
560}
561
562/**
563 * __remove_pages() - remove sections of pages
564 * @pfn: starting pageframe (must be aligned to start of a section)
565 * @nr_pages: number of pages to remove (must be multiple of section size)
566 * @altmap: alternative device page map or %NULL if default memmap is used
567 *
568 * Generic helper function to remove section mappings and sysfs entries
569 * for the section of the memory we are removing. Caller needs to make
570 * sure that pages are marked reserved and zones are adjust properly by
571 * calling offline_pages().
572 */
573void __remove_pages(unsigned long pfn, unsigned long nr_pages,
574 struct vmem_altmap *altmap)
575{
576 const unsigned long end_pfn = pfn + nr_pages;
577 unsigned long cur_nr_pages;
578
579 if (check_pfn_span(pfn, nr_pages)) {
580 WARN(1, "Misaligned %s start: %#lx end: %#lx\n", __func__, pfn, pfn + nr_pages - 1);
581 return;
582 }
583
584 for (; pfn < end_pfn; pfn += cur_nr_pages) {
585 cond_resched();
586 /* Select all remaining pages up to the next section boundary */
587 cur_nr_pages = min(end_pfn - pfn,
588 SECTION_ALIGN_UP(pfn + 1) - pfn);
589 sparse_remove_section(pfn, cur_nr_pages, altmap);
590 }
591}
592
593int set_online_page_callback(online_page_callback_t callback)
594{
595 int rc = -EINVAL;
596
597 get_online_mems();
598 mutex_lock(&online_page_callback_lock);
599
600 if (online_page_callback == generic_online_page) {
601 online_page_callback = callback;
602 rc = 0;
603 }
604
605 mutex_unlock(&online_page_callback_lock);
606 put_online_mems();
607
608 return rc;
609}
610EXPORT_SYMBOL_GPL(set_online_page_callback);
611
612int restore_online_page_callback(online_page_callback_t callback)
613{
614 int rc = -EINVAL;
615
616 get_online_mems();
617 mutex_lock(&online_page_callback_lock);
618
619 if (online_page_callback == callback) {
620 online_page_callback = generic_online_page;
621 rc = 0;
622 }
623
624 mutex_unlock(&online_page_callback_lock);
625 put_online_mems();
626
627 return rc;
628}
629EXPORT_SYMBOL_GPL(restore_online_page_callback);
630
631void generic_online_page(struct page *page, unsigned int order)
632{
633 /*
634 * Freeing the page with debug_pagealloc enabled will try to unmap it,
635 * so we should map it first. This is better than introducing a special
636 * case in page freeing fast path.
637 */
638 debug_pagealloc_map_pages(page, 1 << order);
639 __free_pages_core(page, order);
640 totalram_pages_add(1UL << order);
641}
642EXPORT_SYMBOL_GPL(generic_online_page);
643
644static void online_pages_range(unsigned long start_pfn, unsigned long nr_pages)
645{
646 const unsigned long end_pfn = start_pfn + nr_pages;
647 unsigned long pfn;
648
649 /*
650 * Online the pages in MAX_PAGE_ORDER aligned chunks. The callback might
651 * decide to not expose all pages to the buddy (e.g., expose them
652 * later). We account all pages as being online and belonging to this
653 * zone ("present").
654 * When using memmap_on_memory, the range might not be aligned to
655 * MAX_ORDER_NR_PAGES - 1, but pageblock aligned. __ffs() will detect
656 * this and the first chunk to online will be pageblock_nr_pages.
657 */
658 for (pfn = start_pfn; pfn < end_pfn;) {
659 int order;
660
661 /*
662 * Free to online pages in the largest chunks alignment allows.
663 *
664 * __ffs() behaviour is undefined for 0. start == 0 is
665 * MAX_PAGE_ORDER-aligned, Set order to MAX_PAGE_ORDER for
666 * the case.
667 */
668 if (pfn)
669 order = min_t(int, MAX_PAGE_ORDER, __ffs(pfn));
670 else
671 order = MAX_PAGE_ORDER;
672
673 (*online_page_callback)(pfn_to_page(pfn), order);
674 pfn += (1UL << order);
675 }
676
677 /* mark all involved sections as online */
678 online_mem_sections(start_pfn, end_pfn);
679}
680
681/* check which state of node_states will be changed when online memory */
682static void node_states_check_changes_online(unsigned long nr_pages,
683 struct zone *zone, struct memory_notify *arg)
684{
685 int nid = zone_to_nid(zone);
686
687 arg->status_change_nid = NUMA_NO_NODE;
688 arg->status_change_nid_normal = NUMA_NO_NODE;
689
690 if (!node_state(nid, N_MEMORY))
691 arg->status_change_nid = nid;
692 if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
693 arg->status_change_nid_normal = nid;
694}
695
696static void node_states_set_node(int node, struct memory_notify *arg)
697{
698 if (arg->status_change_nid_normal >= 0)
699 node_set_state(node, N_NORMAL_MEMORY);
700
701 if (arg->status_change_nid >= 0)
702 node_set_state(node, N_MEMORY);
703}
704
705static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
706 unsigned long nr_pages)
707{
708 unsigned long old_end_pfn = zone_end_pfn(zone);
709
710 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
711 zone->zone_start_pfn = start_pfn;
712
713 zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
714}
715
716static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
717 unsigned long nr_pages)
718{
719 unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
720
721 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
722 pgdat->node_start_pfn = start_pfn;
723
724 pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
725
726}
727
728#ifdef CONFIG_ZONE_DEVICE
729static void section_taint_zone_device(unsigned long pfn)
730{
731 struct mem_section *ms = __pfn_to_section(pfn);
732
733 ms->section_mem_map |= SECTION_TAINT_ZONE_DEVICE;
734}
735#else
736static inline void section_taint_zone_device(unsigned long pfn)
737{
738}
739#endif
740
741/*
742 * Associate the pfn range with the given zone, initializing the memmaps
743 * and resizing the pgdat/zone data to span the added pages. After this
744 * call, all affected pages are PG_reserved.
745 *
746 * All aligned pageblocks are initialized to the specified migratetype
747 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
748 * zone stats (e.g., nr_isolate_pageblock) are touched.
749 */
750void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
751 unsigned long nr_pages,
752 struct vmem_altmap *altmap, int migratetype)
753{
754 struct pglist_data *pgdat = zone->zone_pgdat;
755 int nid = pgdat->node_id;
756
757 clear_zone_contiguous(zone);
758
759 if (zone_is_empty(zone))
760 init_currently_empty_zone(zone, start_pfn, nr_pages);
761 resize_zone_range(zone, start_pfn, nr_pages);
762 resize_pgdat_range(pgdat, start_pfn, nr_pages);
763
764 /*
765 * Subsection population requires care in pfn_to_online_page().
766 * Set the taint to enable the slow path detection of
767 * ZONE_DEVICE pages in an otherwise ZONE_{NORMAL,MOVABLE}
768 * section.
769 */
770 if (zone_is_zone_device(zone)) {
771 if (!IS_ALIGNED(start_pfn, PAGES_PER_SECTION))
772 section_taint_zone_device(start_pfn);
773 if (!IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION))
774 section_taint_zone_device(start_pfn + nr_pages);
775 }
776
777 /*
778 * TODO now we have a visible range of pages which are not associated
779 * with their zone properly. Not nice but set_pfnblock_flags_mask
780 * expects the zone spans the pfn range. All the pages in the range
781 * are reserved so nobody should be touching them so we should be safe
782 */
783 memmap_init_range(nr_pages, nid, zone_idx(zone), start_pfn, 0,
784 MEMINIT_HOTPLUG, altmap, migratetype);
785
786 set_zone_contiguous(zone);
787}
788
789struct auto_movable_stats {
790 unsigned long kernel_early_pages;
791 unsigned long movable_pages;
792};
793
794static void auto_movable_stats_account_zone(struct auto_movable_stats *stats,
795 struct zone *zone)
796{
797 if (zone_idx(zone) == ZONE_MOVABLE) {
798 stats->movable_pages += zone->present_pages;
799 } else {
800 stats->kernel_early_pages += zone->present_early_pages;
801#ifdef CONFIG_CMA
802 /*
803 * CMA pages (never on hotplugged memory) behave like
804 * ZONE_MOVABLE.
805 */
806 stats->movable_pages += zone->cma_pages;
807 stats->kernel_early_pages -= zone->cma_pages;
808#endif /* CONFIG_CMA */
809 }
810}
811struct auto_movable_group_stats {
812 unsigned long movable_pages;
813 unsigned long req_kernel_early_pages;
814};
815
816static int auto_movable_stats_account_group(struct memory_group *group,
817 void *arg)
818{
819 const int ratio = READ_ONCE(auto_movable_ratio);
820 struct auto_movable_group_stats *stats = arg;
821 long pages;
822
823 /*
824 * We don't support modifying the config while the auto-movable online
825 * policy is already enabled. Just avoid the division by zero below.
826 */
827 if (!ratio)
828 return 0;
829
830 /*
831 * Calculate how many early kernel pages this group requires to
832 * satisfy the configured zone ratio.
833 */
834 pages = group->present_movable_pages * 100 / ratio;
835 pages -= group->present_kernel_pages;
836
837 if (pages > 0)
838 stats->req_kernel_early_pages += pages;
839 stats->movable_pages += group->present_movable_pages;
840 return 0;
841}
842
843static bool auto_movable_can_online_movable(int nid, struct memory_group *group,
844 unsigned long nr_pages)
845{
846 unsigned long kernel_early_pages, movable_pages;
847 struct auto_movable_group_stats group_stats = {};
848 struct auto_movable_stats stats = {};
849 pg_data_t *pgdat = NODE_DATA(nid);
850 struct zone *zone;
851 int i;
852
853 /* Walk all relevant zones and collect MOVABLE vs. KERNEL stats. */
854 if (nid == NUMA_NO_NODE) {
855 /* TODO: cache values */
856 for_each_populated_zone(zone)
857 auto_movable_stats_account_zone(&stats, zone);
858 } else {
859 for (i = 0; i < MAX_NR_ZONES; i++) {
860 zone = pgdat->node_zones + i;
861 if (populated_zone(zone))
862 auto_movable_stats_account_zone(&stats, zone);
863 }
864 }
865
866 kernel_early_pages = stats.kernel_early_pages;
867 movable_pages = stats.movable_pages;
868
869 /*
870 * Kernel memory inside dynamic memory group allows for more MOVABLE
871 * memory within the same group. Remove the effect of all but the
872 * current group from the stats.
873 */
874 walk_dynamic_memory_groups(nid, auto_movable_stats_account_group,
875 group, &group_stats);
876 if (kernel_early_pages <= group_stats.req_kernel_early_pages)
877 return false;
878 kernel_early_pages -= group_stats.req_kernel_early_pages;
879 movable_pages -= group_stats.movable_pages;
880
881 if (group && group->is_dynamic)
882 kernel_early_pages += group->present_kernel_pages;
883
884 /*
885 * Test if we could online the given number of pages to ZONE_MOVABLE
886 * and still stay in the configured ratio.
887 */
888 movable_pages += nr_pages;
889 return movable_pages <= (auto_movable_ratio * kernel_early_pages) / 100;
890}
891
892/*
893 * Returns a default kernel memory zone for the given pfn range.
894 * If no kernel zone covers this pfn range it will automatically go
895 * to the ZONE_NORMAL.
896 */
897static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
898 unsigned long nr_pages)
899{
900 struct pglist_data *pgdat = NODE_DATA(nid);
901 int zid;
902
903 for (zid = 0; zid < ZONE_NORMAL; zid++) {
904 struct zone *zone = &pgdat->node_zones[zid];
905
906 if (zone_intersects(zone, start_pfn, nr_pages))
907 return zone;
908 }
909
910 return &pgdat->node_zones[ZONE_NORMAL];
911}
912
913/*
914 * Determine to which zone to online memory dynamically based on user
915 * configuration and system stats. We care about the following ratio:
916 *
917 * MOVABLE : KERNEL
918 *
919 * Whereby MOVABLE is memory in ZONE_MOVABLE and KERNEL is memory in
920 * one of the kernel zones. CMA pages inside one of the kernel zones really
921 * behaves like ZONE_MOVABLE, so we treat them accordingly.
922 *
923 * We don't allow for hotplugged memory in a KERNEL zone to increase the
924 * amount of MOVABLE memory we can have, so we end up with:
925 *
926 * MOVABLE : KERNEL_EARLY
927 *
928 * Whereby KERNEL_EARLY is memory in one of the kernel zones, available sinze
929 * boot. We base our calculation on KERNEL_EARLY internally, because:
930 *
931 * a) Hotplugged memory in one of the kernel zones can sometimes still get
932 * hotunplugged, especially when hot(un)plugging individual memory blocks.
933 * There is no coordination across memory devices, therefore "automatic"
934 * hotunplugging, as implemented in hypervisors, could result in zone
935 * imbalances.
936 * b) Early/boot memory in one of the kernel zones can usually not get
937 * hotunplugged again (e.g., no firmware interface to unplug, fragmented
938 * with unmovable allocations). While there are corner cases where it might
939 * still work, it is barely relevant in practice.
940 *
941 * Exceptions are dynamic memory groups, which allow for more MOVABLE
942 * memory within the same memory group -- because in that case, there is
943 * coordination within the single memory device managed by a single driver.
944 *
945 * We rely on "present pages" instead of "managed pages", as the latter is
946 * highly unreliable and dynamic in virtualized environments, and does not
947 * consider boot time allocations. For example, memory ballooning adjusts the
948 * managed pages when inflating/deflating the balloon, and balloon compaction
949 * can even migrate inflated pages between zones.
950 *
951 * Using "present pages" is better but some things to keep in mind are:
952 *
953 * a) Some memblock allocations, such as for the crashkernel area, are
954 * effectively unused by the kernel, yet they account to "present pages".
955 * Fortunately, these allocations are comparatively small in relevant setups
956 * (e.g., fraction of system memory).
957 * b) Some hotplugged memory blocks in virtualized environments, esecially
958 * hotplugged by virtio-mem, look like they are completely present, however,
959 * only parts of the memory block are actually currently usable.
960 * "present pages" is an upper limit that can get reached at runtime. As
961 * we base our calculations on KERNEL_EARLY, this is not an issue.
962 */
963static struct zone *auto_movable_zone_for_pfn(int nid,
964 struct memory_group *group,
965 unsigned long pfn,
966 unsigned long nr_pages)
967{
968 unsigned long online_pages = 0, max_pages, end_pfn;
969 struct page *page;
970
971 if (!auto_movable_ratio)
972 goto kernel_zone;
973
974 if (group && !group->is_dynamic) {
975 max_pages = group->s.max_pages;
976 online_pages = group->present_movable_pages;
977
978 /* If anything is !MOVABLE online the rest !MOVABLE. */
979 if (group->present_kernel_pages)
980 goto kernel_zone;
981 } else if (!group || group->d.unit_pages == nr_pages) {
982 max_pages = nr_pages;
983 } else {
984 max_pages = group->d.unit_pages;
985 /*
986 * Take a look at all online sections in the current unit.
987 * We can safely assume that all pages within a section belong
988 * to the same zone, because dynamic memory groups only deal
989 * with hotplugged memory.
990 */
991 pfn = ALIGN_DOWN(pfn, group->d.unit_pages);
992 end_pfn = pfn + group->d.unit_pages;
993 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
994 page = pfn_to_online_page(pfn);
995 if (!page)
996 continue;
997 /* If anything is !MOVABLE online the rest !MOVABLE. */
998 if (!is_zone_movable_page(page))
999 goto kernel_zone;
1000 online_pages += PAGES_PER_SECTION;
1001 }
1002 }
1003
1004 /*
1005 * Online MOVABLE if we could *currently* online all remaining parts
1006 * MOVABLE. We expect to (add+) online them immediately next, so if
1007 * nobody interferes, all will be MOVABLE if possible.
1008 */
1009 nr_pages = max_pages - online_pages;
1010 if (!auto_movable_can_online_movable(NUMA_NO_NODE, group, nr_pages))
1011 goto kernel_zone;
1012
1013#ifdef CONFIG_NUMA
1014 if (auto_movable_numa_aware &&
1015 !auto_movable_can_online_movable(nid, group, nr_pages))
1016 goto kernel_zone;
1017#endif /* CONFIG_NUMA */
1018
1019 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
1020kernel_zone:
1021 return default_kernel_zone_for_pfn(nid, pfn, nr_pages);
1022}
1023
1024static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
1025 unsigned long nr_pages)
1026{
1027 struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
1028 nr_pages);
1029 struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
1030 bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
1031 bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
1032
1033 /*
1034 * We inherit the existing zone in a simple case where zones do not
1035 * overlap in the given range
1036 */
1037 if (in_kernel ^ in_movable)
1038 return (in_kernel) ? kernel_zone : movable_zone;
1039
1040 /*
1041 * If the range doesn't belong to any zone or two zones overlap in the
1042 * given range then we use movable zone only if movable_node is
1043 * enabled because we always online to a kernel zone by default.
1044 */
1045 return movable_node_enabled ? movable_zone : kernel_zone;
1046}
1047
1048struct zone *zone_for_pfn_range(int online_type, int nid,
1049 struct memory_group *group, unsigned long start_pfn,
1050 unsigned long nr_pages)
1051{
1052 if (online_type == MMOP_ONLINE_KERNEL)
1053 return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
1054
1055 if (online_type == MMOP_ONLINE_MOVABLE)
1056 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
1057
1058 if (online_policy == ONLINE_POLICY_AUTO_MOVABLE)
1059 return auto_movable_zone_for_pfn(nid, group, start_pfn, nr_pages);
1060
1061 return default_zone_for_pfn(nid, start_pfn, nr_pages);
1062}
1063
1064/*
1065 * This function should only be called by memory_block_{online,offline},
1066 * and {online,offline}_pages.
1067 */
1068void adjust_present_page_count(struct page *page, struct memory_group *group,
1069 long nr_pages)
1070{
1071 struct zone *zone = page_zone(page);
1072 const bool movable = zone_idx(zone) == ZONE_MOVABLE;
1073
1074 /*
1075 * We only support onlining/offlining/adding/removing of complete
1076 * memory blocks; therefore, either all is either early or hotplugged.
1077 */
1078 if (early_section(__pfn_to_section(page_to_pfn(page))))
1079 zone->present_early_pages += nr_pages;
1080 zone->present_pages += nr_pages;
1081 zone->zone_pgdat->node_present_pages += nr_pages;
1082
1083 if (group && movable)
1084 group->present_movable_pages += nr_pages;
1085 else if (group && !movable)
1086 group->present_kernel_pages += nr_pages;
1087}
1088
1089int mhp_init_memmap_on_memory(unsigned long pfn, unsigned long nr_pages,
1090 struct zone *zone, bool mhp_off_inaccessible)
1091{
1092 unsigned long end_pfn = pfn + nr_pages;
1093 int ret, i;
1094
1095 ret = kasan_add_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
1096 if (ret)
1097 return ret;
1098
1099 /*
1100 * Memory block is accessible at this stage and hence poison the struct
1101 * pages now. If the memory block is accessible during memory hotplug
1102 * addition phase, then page poisining is already performed in
1103 * sparse_add_section().
1104 */
1105 if (mhp_off_inaccessible)
1106 page_init_poison(pfn_to_page(pfn), sizeof(struct page) * nr_pages);
1107
1108 move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_UNMOVABLE);
1109
1110 for (i = 0; i < nr_pages; i++)
1111 SetPageVmemmapSelfHosted(pfn_to_page(pfn + i));
1112
1113 /*
1114 * It might be that the vmemmap_pages fully span sections. If that is
1115 * the case, mark those sections online here as otherwise they will be
1116 * left offline.
1117 */
1118 if (nr_pages >= PAGES_PER_SECTION)
1119 online_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
1120
1121 return ret;
1122}
1123
1124void mhp_deinit_memmap_on_memory(unsigned long pfn, unsigned long nr_pages)
1125{
1126 unsigned long end_pfn = pfn + nr_pages;
1127
1128 /*
1129 * It might be that the vmemmap_pages fully span sections. If that is
1130 * the case, mark those sections offline here as otherwise they will be
1131 * left online.
1132 */
1133 if (nr_pages >= PAGES_PER_SECTION)
1134 offline_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
1135
1136 /*
1137 * The pages associated with this vmemmap have been offlined, so
1138 * we can reset its state here.
1139 */
1140 remove_pfn_range_from_zone(page_zone(pfn_to_page(pfn)), pfn, nr_pages);
1141 kasan_remove_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
1142}
1143
1144/*
1145 * Must be called with mem_hotplug_lock in write mode.
1146 */
1147int __ref online_pages(unsigned long pfn, unsigned long nr_pages,
1148 struct zone *zone, struct memory_group *group)
1149{
1150 unsigned long flags;
1151 int need_zonelists_rebuild = 0;
1152 const int nid = zone_to_nid(zone);
1153 int ret;
1154 struct memory_notify arg;
1155
1156 /*
1157 * {on,off}lining is constrained to full memory sections (or more
1158 * precisely to memory blocks from the user space POV).
1159 * memmap_on_memory is an exception because it reserves initial part
1160 * of the physical memory space for vmemmaps. That space is pageblock
1161 * aligned.
1162 */
1163 if (WARN_ON_ONCE(!nr_pages || !pageblock_aligned(pfn) ||
1164 !IS_ALIGNED(pfn + nr_pages, PAGES_PER_SECTION)))
1165 return -EINVAL;
1166
1167
1168 /* associate pfn range with the zone */
1169 move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_ISOLATE);
1170
1171 arg.start_pfn = pfn;
1172 arg.nr_pages = nr_pages;
1173 node_states_check_changes_online(nr_pages, zone, &arg);
1174
1175 ret = memory_notify(MEM_GOING_ONLINE, &arg);
1176 ret = notifier_to_errno(ret);
1177 if (ret)
1178 goto failed_addition;
1179
1180 /*
1181 * Fixup the number of isolated pageblocks before marking the sections
1182 * onlining, such that undo_isolate_page_range() works correctly.
1183 */
1184 spin_lock_irqsave(&zone->lock, flags);
1185 zone->nr_isolate_pageblock += nr_pages / pageblock_nr_pages;
1186 spin_unlock_irqrestore(&zone->lock, flags);
1187
1188 /*
1189 * If this zone is not populated, then it is not in zonelist.
1190 * This means the page allocator ignores this zone.
1191 * So, zonelist must be updated after online.
1192 */
1193 if (!populated_zone(zone)) {
1194 need_zonelists_rebuild = 1;
1195 setup_zone_pageset(zone);
1196 }
1197
1198 online_pages_range(pfn, nr_pages);
1199 adjust_present_page_count(pfn_to_page(pfn), group, nr_pages);
1200
1201 node_states_set_node(nid, &arg);
1202 if (need_zonelists_rebuild)
1203 build_all_zonelists(NULL);
1204
1205 /* Basic onlining is complete, allow allocation of onlined pages. */
1206 undo_isolate_page_range(pfn, pfn + nr_pages, MIGRATE_MOVABLE);
1207
1208 /*
1209 * Freshly onlined pages aren't shuffled (e.g., all pages are placed to
1210 * the tail of the freelist when undoing isolation). Shuffle the whole
1211 * zone to make sure the just onlined pages are properly distributed
1212 * across the whole freelist - to create an initial shuffle.
1213 */
1214 shuffle_zone(zone);
1215
1216 /* reinitialise watermarks and update pcp limits */
1217 init_per_zone_wmark_min();
1218
1219 kswapd_run(nid);
1220 kcompactd_run(nid);
1221
1222 writeback_set_ratelimit();
1223
1224 memory_notify(MEM_ONLINE, &arg);
1225 return 0;
1226
1227failed_addition:
1228 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
1229 (unsigned long long) pfn << PAGE_SHIFT,
1230 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
1231 memory_notify(MEM_CANCEL_ONLINE, &arg);
1232 remove_pfn_range_from_zone(zone, pfn, nr_pages);
1233 return ret;
1234}
1235
1236/* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1237static pg_data_t __ref *hotadd_init_pgdat(int nid)
1238{
1239 struct pglist_data *pgdat;
1240
1241 /*
1242 * NODE_DATA is preallocated (free_area_init) but its internal
1243 * state is not allocated completely. Add missing pieces.
1244 * Completely offline nodes stay around and they just need
1245 * reintialization.
1246 */
1247 pgdat = NODE_DATA(nid);
1248
1249 /* init node's zones as empty zones, we don't have any present pages.*/
1250 free_area_init_core_hotplug(pgdat);
1251
1252 /*
1253 * The node we allocated has no zone fallback lists. For avoiding
1254 * to access not-initialized zonelist, build here.
1255 */
1256 build_all_zonelists(pgdat);
1257
1258 return pgdat;
1259}
1260
1261/*
1262 * __try_online_node - online a node if offlined
1263 * @nid: the node ID
1264 * @set_node_online: Whether we want to online the node
1265 * called by cpu_up() to online a node without onlined memory.
1266 *
1267 * Returns:
1268 * 1 -> a new node has been allocated
1269 * 0 -> the node is already online
1270 * -ENOMEM -> the node could not be allocated
1271 */
1272static int __try_online_node(int nid, bool set_node_online)
1273{
1274 pg_data_t *pgdat;
1275 int ret = 1;
1276
1277 if (node_online(nid))
1278 return 0;
1279
1280 pgdat = hotadd_init_pgdat(nid);
1281 if (!pgdat) {
1282 pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1283 ret = -ENOMEM;
1284 goto out;
1285 }
1286
1287 if (set_node_online) {
1288 node_set_online(nid);
1289 ret = register_one_node(nid);
1290 BUG_ON(ret);
1291 }
1292out:
1293 return ret;
1294}
1295
1296/*
1297 * Users of this function always want to online/register the node
1298 */
1299int try_online_node(int nid)
1300{
1301 int ret;
1302
1303 mem_hotplug_begin();
1304 ret = __try_online_node(nid, true);
1305 mem_hotplug_done();
1306 return ret;
1307}
1308
1309static int check_hotplug_memory_range(u64 start, u64 size)
1310{
1311 /* memory range must be block size aligned */
1312 if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) ||
1313 !IS_ALIGNED(size, memory_block_size_bytes())) {
1314 pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
1315 memory_block_size_bytes(), start, size);
1316 return -EINVAL;
1317 }
1318
1319 return 0;
1320}
1321
1322static int online_memory_block(struct memory_block *mem, void *arg)
1323{
1324 mem->online_type = mhp_default_online_type;
1325 return device_online(&mem->dev);
1326}
1327
1328#ifndef arch_supports_memmap_on_memory
1329static inline bool arch_supports_memmap_on_memory(unsigned long vmemmap_size)
1330{
1331 /*
1332 * As default, we want the vmemmap to span a complete PMD such that we
1333 * can map the vmemmap using a single PMD if supported by the
1334 * architecture.
1335 */
1336 return IS_ALIGNED(vmemmap_size, PMD_SIZE);
1337}
1338#endif
1339
1340bool mhp_supports_memmap_on_memory(void)
1341{
1342 unsigned long vmemmap_size = memory_block_memmap_size();
1343 unsigned long memmap_pages = memory_block_memmap_on_memory_pages();
1344
1345 /*
1346 * Besides having arch support and the feature enabled at runtime, we
1347 * need a few more assumptions to hold true:
1348 *
1349 * a) The vmemmap pages span complete PMDs: We don't want vmemmap code
1350 * to populate memory from the altmap for unrelated parts (i.e.,
1351 * other memory blocks)
1352 *
1353 * b) The vmemmap pages (and thereby the pages that will be exposed to
1354 * the buddy) have to cover full pageblocks: memory onlining/offlining
1355 * code requires applicable ranges to be page-aligned, for example, to
1356 * set the migratetypes properly.
1357 *
1358 * TODO: Although we have a check here to make sure that vmemmap pages
1359 * fully populate a PMD, it is not the right place to check for
1360 * this. A much better solution involves improving vmemmap code
1361 * to fallback to base pages when trying to populate vmemmap using
1362 * altmap as an alternative source of memory, and we do not exactly
1363 * populate a single PMD.
1364 */
1365 if (!mhp_memmap_on_memory())
1366 return false;
1367
1368 /*
1369 * Make sure the vmemmap allocation is fully contained
1370 * so that we always allocate vmemmap memory from altmap area.
1371 */
1372 if (!IS_ALIGNED(vmemmap_size, PAGE_SIZE))
1373 return false;
1374
1375 /*
1376 * start pfn should be pageblock_nr_pages aligned for correctly
1377 * setting migrate types
1378 */
1379 if (!pageblock_aligned(memmap_pages))
1380 return false;
1381
1382 if (memmap_pages == PHYS_PFN(memory_block_size_bytes()))
1383 /* No effective hotplugged memory doesn't make sense. */
1384 return false;
1385
1386 return arch_supports_memmap_on_memory(vmemmap_size);
1387}
1388EXPORT_SYMBOL_GPL(mhp_supports_memmap_on_memory);
1389
1390static void __ref remove_memory_blocks_and_altmaps(u64 start, u64 size)
1391{
1392 unsigned long memblock_size = memory_block_size_bytes();
1393 u64 cur_start;
1394
1395 /*
1396 * For memmap_on_memory, the altmaps were added on a per-memblock
1397 * basis; we have to process each individual memory block.
1398 */
1399 for (cur_start = start; cur_start < start + size;
1400 cur_start += memblock_size) {
1401 struct vmem_altmap *altmap = NULL;
1402 struct memory_block *mem;
1403
1404 mem = find_memory_block(pfn_to_section_nr(PFN_DOWN(cur_start)));
1405 if (WARN_ON_ONCE(!mem))
1406 continue;
1407
1408 altmap = mem->altmap;
1409 mem->altmap = NULL;
1410
1411 remove_memory_block_devices(cur_start, memblock_size);
1412
1413 arch_remove_memory(cur_start, memblock_size, altmap);
1414
1415 /* Verify that all vmemmap pages have actually been freed. */
1416 WARN(altmap->alloc, "Altmap not fully unmapped");
1417 kfree(altmap);
1418 }
1419}
1420
1421static int create_altmaps_and_memory_blocks(int nid, struct memory_group *group,
1422 u64 start, u64 size, mhp_t mhp_flags)
1423{
1424 unsigned long memblock_size = memory_block_size_bytes();
1425 u64 cur_start;
1426 int ret;
1427
1428 for (cur_start = start; cur_start < start + size;
1429 cur_start += memblock_size) {
1430 struct mhp_params params = { .pgprot =
1431 pgprot_mhp(PAGE_KERNEL) };
1432 struct vmem_altmap mhp_altmap = {
1433 .base_pfn = PHYS_PFN(cur_start),
1434 .end_pfn = PHYS_PFN(cur_start + memblock_size - 1),
1435 };
1436
1437 mhp_altmap.free = memory_block_memmap_on_memory_pages();
1438 if (mhp_flags & MHP_OFFLINE_INACCESSIBLE)
1439 mhp_altmap.inaccessible = true;
1440 params.altmap = kmemdup(&mhp_altmap, sizeof(struct vmem_altmap),
1441 GFP_KERNEL);
1442 if (!params.altmap) {
1443 ret = -ENOMEM;
1444 goto out;
1445 }
1446
1447 /* call arch's memory hotadd */
1448 ret = arch_add_memory(nid, cur_start, memblock_size, ¶ms);
1449 if (ret < 0) {
1450 kfree(params.altmap);
1451 goto out;
1452 }
1453
1454 /* create memory block devices after memory was added */
1455 ret = create_memory_block_devices(cur_start, memblock_size,
1456 params.altmap, group);
1457 if (ret) {
1458 arch_remove_memory(cur_start, memblock_size, NULL);
1459 kfree(params.altmap);
1460 goto out;
1461 }
1462 }
1463
1464 return 0;
1465out:
1466 if (ret && cur_start != start)
1467 remove_memory_blocks_and_altmaps(start, cur_start - start);
1468 return ret;
1469}
1470
1471/*
1472 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1473 * and online/offline operations (triggered e.g. by sysfs).
1474 *
1475 * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1476 */
1477int __ref add_memory_resource(int nid, struct resource *res, mhp_t mhp_flags)
1478{
1479 struct mhp_params params = { .pgprot = pgprot_mhp(PAGE_KERNEL) };
1480 enum memblock_flags memblock_flags = MEMBLOCK_NONE;
1481 struct memory_group *group = NULL;
1482 u64 start, size;
1483 bool new_node = false;
1484 int ret;
1485
1486 start = res->start;
1487 size = resource_size(res);
1488
1489 ret = check_hotplug_memory_range(start, size);
1490 if (ret)
1491 return ret;
1492
1493 if (mhp_flags & MHP_NID_IS_MGID) {
1494 group = memory_group_find_by_id(nid);
1495 if (!group)
1496 return -EINVAL;
1497 nid = group->nid;
1498 }
1499
1500 if (!node_possible(nid)) {
1501 WARN(1, "node %d was absent from the node_possible_map\n", nid);
1502 return -EINVAL;
1503 }
1504
1505 mem_hotplug_begin();
1506
1507 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
1508 if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED)
1509 memblock_flags = MEMBLOCK_DRIVER_MANAGED;
1510 ret = memblock_add_node(start, size, nid, memblock_flags);
1511 if (ret)
1512 goto error_mem_hotplug_end;
1513 }
1514
1515 ret = __try_online_node(nid, false);
1516 if (ret < 0)
1517 goto error;
1518 new_node = ret;
1519
1520 /*
1521 * Self hosted memmap array
1522 */
1523 if ((mhp_flags & MHP_MEMMAP_ON_MEMORY) &&
1524 mhp_supports_memmap_on_memory()) {
1525 ret = create_altmaps_and_memory_blocks(nid, group, start, size, mhp_flags);
1526 if (ret)
1527 goto error;
1528 } else {
1529 ret = arch_add_memory(nid, start, size, ¶ms);
1530 if (ret < 0)
1531 goto error;
1532
1533 /* create memory block devices after memory was added */
1534 ret = create_memory_block_devices(start, size, NULL, group);
1535 if (ret) {
1536 arch_remove_memory(start, size, params.altmap);
1537 goto error;
1538 }
1539 }
1540
1541 if (new_node) {
1542 /* If sysfs file of new node can't be created, cpu on the node
1543 * can't be hot-added. There is no rollback way now.
1544 * So, check by BUG_ON() to catch it reluctantly..
1545 * We online node here. We can't roll back from here.
1546 */
1547 node_set_online(nid);
1548 ret = __register_one_node(nid);
1549 BUG_ON(ret);
1550 }
1551
1552 register_memory_blocks_under_node(nid, PFN_DOWN(start),
1553 PFN_UP(start + size - 1),
1554 MEMINIT_HOTPLUG);
1555
1556 /* create new memmap entry */
1557 if (!strcmp(res->name, "System RAM"))
1558 firmware_map_add_hotplug(start, start + size, "System RAM");
1559
1560 /* device_online() will take the lock when calling online_pages() */
1561 mem_hotplug_done();
1562
1563 /*
1564 * In case we're allowed to merge the resource, flag it and trigger
1565 * merging now that adding succeeded.
1566 */
1567 if (mhp_flags & MHP_MERGE_RESOURCE)
1568 merge_system_ram_resource(res);
1569
1570 /* online pages if requested */
1571 if (mhp_default_online_type != MMOP_OFFLINE)
1572 walk_memory_blocks(start, size, NULL, online_memory_block);
1573
1574 return ret;
1575error:
1576 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1577 memblock_remove(start, size);
1578error_mem_hotplug_end:
1579 mem_hotplug_done();
1580 return ret;
1581}
1582
1583/* requires device_hotplug_lock, see add_memory_resource() */
1584int __ref __add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1585{
1586 struct resource *res;
1587 int ret;
1588
1589 res = register_memory_resource(start, size, "System RAM");
1590 if (IS_ERR(res))
1591 return PTR_ERR(res);
1592
1593 ret = add_memory_resource(nid, res, mhp_flags);
1594 if (ret < 0)
1595 release_memory_resource(res);
1596 return ret;
1597}
1598
1599int add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1600{
1601 int rc;
1602
1603 lock_device_hotplug();
1604 rc = __add_memory(nid, start, size, mhp_flags);
1605 unlock_device_hotplug();
1606
1607 return rc;
1608}
1609EXPORT_SYMBOL_GPL(add_memory);
1610
1611/*
1612 * Add special, driver-managed memory to the system as system RAM. Such
1613 * memory is not exposed via the raw firmware-provided memmap as system
1614 * RAM, instead, it is detected and added by a driver - during cold boot,
1615 * after a reboot, and after kexec.
1616 *
1617 * Reasons why this memory should not be used for the initial memmap of a
1618 * kexec kernel or for placing kexec images:
1619 * - The booting kernel is in charge of determining how this memory will be
1620 * used (e.g., use persistent memory as system RAM)
1621 * - Coordination with a hypervisor is required before this memory
1622 * can be used (e.g., inaccessible parts).
1623 *
1624 * For this memory, no entries in /sys/firmware/memmap ("raw firmware-provided
1625 * memory map") are created. Also, the created memory resource is flagged
1626 * with IORESOURCE_SYSRAM_DRIVER_MANAGED, so in-kernel users can special-case
1627 * this memory as well (esp., not place kexec images onto it).
1628 *
1629 * The resource_name (visible via /proc/iomem) has to have the format
1630 * "System RAM ($DRIVER)".
1631 */
1632int add_memory_driver_managed(int nid, u64 start, u64 size,
1633 const char *resource_name, mhp_t mhp_flags)
1634{
1635 struct resource *res;
1636 int rc;
1637
1638 if (!resource_name ||
1639 strstr(resource_name, "System RAM (") != resource_name ||
1640 resource_name[strlen(resource_name) - 1] != ')')
1641 return -EINVAL;
1642
1643 lock_device_hotplug();
1644
1645 res = register_memory_resource(start, size, resource_name);
1646 if (IS_ERR(res)) {
1647 rc = PTR_ERR(res);
1648 goto out_unlock;
1649 }
1650
1651 rc = add_memory_resource(nid, res, mhp_flags);
1652 if (rc < 0)
1653 release_memory_resource(res);
1654
1655out_unlock:
1656 unlock_device_hotplug();
1657 return rc;
1658}
1659EXPORT_SYMBOL_GPL(add_memory_driver_managed);
1660
1661/*
1662 * Platforms should define arch_get_mappable_range() that provides
1663 * maximum possible addressable physical memory range for which the
1664 * linear mapping could be created. The platform returned address
1665 * range must adhere to these following semantics.
1666 *
1667 * - range.start <= range.end
1668 * - Range includes both end points [range.start..range.end]
1669 *
1670 * There is also a fallback definition provided here, allowing the
1671 * entire possible physical address range in case any platform does
1672 * not define arch_get_mappable_range().
1673 */
1674struct range __weak arch_get_mappable_range(void)
1675{
1676 struct range mhp_range = {
1677 .start = 0UL,
1678 .end = -1ULL,
1679 };
1680 return mhp_range;
1681}
1682
1683struct range mhp_get_pluggable_range(bool need_mapping)
1684{
1685 const u64 max_phys = (1ULL << MAX_PHYSMEM_BITS) - 1;
1686 struct range mhp_range;
1687
1688 if (need_mapping) {
1689 mhp_range = arch_get_mappable_range();
1690 if (mhp_range.start > max_phys) {
1691 mhp_range.start = 0;
1692 mhp_range.end = 0;
1693 }
1694 mhp_range.end = min_t(u64, mhp_range.end, max_phys);
1695 } else {
1696 mhp_range.start = 0;
1697 mhp_range.end = max_phys;
1698 }
1699 return mhp_range;
1700}
1701EXPORT_SYMBOL_GPL(mhp_get_pluggable_range);
1702
1703bool mhp_range_allowed(u64 start, u64 size, bool need_mapping)
1704{
1705 struct range mhp_range = mhp_get_pluggable_range(need_mapping);
1706 u64 end = start + size;
1707
1708 if (start < end && start >= mhp_range.start && (end - 1) <= mhp_range.end)
1709 return true;
1710
1711 pr_warn("Hotplug memory [%#llx-%#llx] exceeds maximum addressable range [%#llx-%#llx]\n",
1712 start, end, mhp_range.start, mhp_range.end);
1713 return false;
1714}
1715
1716#ifdef CONFIG_MEMORY_HOTREMOVE
1717/*
1718 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1719 * non-lru movable pages and hugepages). Will skip over most unmovable
1720 * pages (esp., pages that can be skipped when offlining), but bail out on
1721 * definitely unmovable pages.
1722 *
1723 * Returns:
1724 * 0 in case a movable page is found and movable_pfn was updated.
1725 * -ENOENT in case no movable page was found.
1726 * -EBUSY in case a definitely unmovable page was found.
1727 */
1728static int scan_movable_pages(unsigned long start, unsigned long end,
1729 unsigned long *movable_pfn)
1730{
1731 unsigned long pfn;
1732
1733 for (pfn = start; pfn < end; pfn++) {
1734 struct page *page, *head;
1735 unsigned long skip;
1736
1737 if (!pfn_valid(pfn))
1738 continue;
1739 page = pfn_to_page(pfn);
1740 if (PageLRU(page))
1741 goto found;
1742 if (__PageMovable(page))
1743 goto found;
1744
1745 /*
1746 * PageOffline() pages that are not marked __PageMovable() and
1747 * have a reference count > 0 (after MEM_GOING_OFFLINE) are
1748 * definitely unmovable. If their reference count would be 0,
1749 * they could at least be skipped when offlining memory.
1750 */
1751 if (PageOffline(page) && page_count(page))
1752 return -EBUSY;
1753
1754 if (!PageHuge(page))
1755 continue;
1756 head = compound_head(page);
1757 /*
1758 * This test is racy as we hold no reference or lock. The
1759 * hugetlb page could have been free'ed and head is no longer
1760 * a hugetlb page before the following check. In such unlikely
1761 * cases false positives and negatives are possible. Calling
1762 * code must deal with these scenarios.
1763 */
1764 if (HPageMigratable(head))
1765 goto found;
1766 skip = compound_nr(head) - (pfn - page_to_pfn(head));
1767 pfn += skip - 1;
1768 }
1769 return -ENOENT;
1770found:
1771 *movable_pfn = pfn;
1772 return 0;
1773}
1774
1775static void do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1776{
1777 unsigned long pfn;
1778 struct page *page, *head;
1779 LIST_HEAD(source);
1780 static DEFINE_RATELIMIT_STATE(migrate_rs, DEFAULT_RATELIMIT_INTERVAL,
1781 DEFAULT_RATELIMIT_BURST);
1782
1783 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1784 struct folio *folio;
1785 bool isolated;
1786
1787 if (!pfn_valid(pfn))
1788 continue;
1789 page = pfn_to_page(pfn);
1790 folio = page_folio(page);
1791 head = &folio->page;
1792
1793 if (PageHuge(page)) {
1794 pfn = page_to_pfn(head) + compound_nr(head) - 1;
1795 isolate_hugetlb(folio, &source);
1796 continue;
1797 } else if (PageTransHuge(page))
1798 pfn = page_to_pfn(head) + thp_nr_pages(page) - 1;
1799
1800 /*
1801 * HWPoison pages have elevated reference counts so the migration would
1802 * fail on them. It also doesn't make any sense to migrate them in the
1803 * first place. Still try to unmap such a page in case it is still mapped
1804 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
1805 * the unmap as the catch all safety net).
1806 */
1807 if (PageHWPoison(page)) {
1808 if (WARN_ON(folio_test_lru(folio)))
1809 folio_isolate_lru(folio);
1810 if (folio_mapped(folio))
1811 try_to_unmap(folio, TTU_IGNORE_MLOCK);
1812 continue;
1813 }
1814
1815 if (!get_page_unless_zero(page))
1816 continue;
1817 /*
1818 * We can skip free pages. And we can deal with pages on
1819 * LRU and non-lru movable pages.
1820 */
1821 if (PageLRU(page))
1822 isolated = isolate_lru_page(page);
1823 else
1824 isolated = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1825 if (isolated) {
1826 list_add_tail(&page->lru, &source);
1827 if (!__PageMovable(page))
1828 inc_node_page_state(page, NR_ISOLATED_ANON +
1829 page_is_file_lru(page));
1830
1831 } else {
1832 if (__ratelimit(&migrate_rs)) {
1833 pr_warn("failed to isolate pfn %lx\n", pfn);
1834 dump_page(page, "isolation failed");
1835 }
1836 }
1837 put_page(page);
1838 }
1839 if (!list_empty(&source)) {
1840 nodemask_t nmask = node_states[N_MEMORY];
1841 struct migration_target_control mtc = {
1842 .nmask = &nmask,
1843 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
1844 };
1845 int ret;
1846
1847 /*
1848 * We have checked that migration range is on a single zone so
1849 * we can use the nid of the first page to all the others.
1850 */
1851 mtc.nid = page_to_nid(list_first_entry(&source, struct page, lru));
1852
1853 /*
1854 * try to allocate from a different node but reuse this node
1855 * if there are no other online nodes to be used (e.g. we are
1856 * offlining a part of the only existing node)
1857 */
1858 node_clear(mtc.nid, nmask);
1859 if (nodes_empty(nmask))
1860 node_set(mtc.nid, nmask);
1861 ret = migrate_pages(&source, alloc_migration_target, NULL,
1862 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_HOTPLUG, NULL);
1863 if (ret) {
1864 list_for_each_entry(page, &source, lru) {
1865 if (__ratelimit(&migrate_rs)) {
1866 pr_warn("migrating pfn %lx failed ret:%d\n",
1867 page_to_pfn(page), ret);
1868 dump_page(page, "migration failure");
1869 }
1870 }
1871 putback_movable_pages(&source);
1872 }
1873 }
1874}
1875
1876static int __init cmdline_parse_movable_node(char *p)
1877{
1878 movable_node_enabled = true;
1879 return 0;
1880}
1881early_param("movable_node", cmdline_parse_movable_node);
1882
1883/* check which state of node_states will be changed when offline memory */
1884static void node_states_check_changes_offline(unsigned long nr_pages,
1885 struct zone *zone, struct memory_notify *arg)
1886{
1887 struct pglist_data *pgdat = zone->zone_pgdat;
1888 unsigned long present_pages = 0;
1889 enum zone_type zt;
1890
1891 arg->status_change_nid = NUMA_NO_NODE;
1892 arg->status_change_nid_normal = NUMA_NO_NODE;
1893
1894 /*
1895 * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1896 * If the memory to be offline is within the range
1897 * [0..ZONE_NORMAL], and it is the last present memory there,
1898 * the zones in that range will become empty after the offlining,
1899 * thus we can determine that we need to clear the node from
1900 * node_states[N_NORMAL_MEMORY].
1901 */
1902 for (zt = 0; zt <= ZONE_NORMAL; zt++)
1903 present_pages += pgdat->node_zones[zt].present_pages;
1904 if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1905 arg->status_change_nid_normal = zone_to_nid(zone);
1906
1907 /*
1908 * We have accounted the pages from [0..ZONE_NORMAL); ZONE_HIGHMEM
1909 * does not apply as we don't support 32bit.
1910 * Here we count the possible pages from ZONE_MOVABLE.
1911 * If after having accounted all the pages, we see that the nr_pages
1912 * to be offlined is over or equal to the accounted pages,
1913 * we know that the node will become empty, and so, we can clear
1914 * it for N_MEMORY as well.
1915 */
1916 present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1917
1918 if (nr_pages >= present_pages)
1919 arg->status_change_nid = zone_to_nid(zone);
1920}
1921
1922static void node_states_clear_node(int node, struct memory_notify *arg)
1923{
1924 if (arg->status_change_nid_normal >= 0)
1925 node_clear_state(node, N_NORMAL_MEMORY);
1926
1927 if (arg->status_change_nid >= 0)
1928 node_clear_state(node, N_MEMORY);
1929}
1930
1931static int count_system_ram_pages_cb(unsigned long start_pfn,
1932 unsigned long nr_pages, void *data)
1933{
1934 unsigned long *nr_system_ram_pages = data;
1935
1936 *nr_system_ram_pages += nr_pages;
1937 return 0;
1938}
1939
1940/*
1941 * Must be called with mem_hotplug_lock in write mode.
1942 */
1943int __ref offline_pages(unsigned long start_pfn, unsigned long nr_pages,
1944 struct zone *zone, struct memory_group *group)
1945{
1946 const unsigned long end_pfn = start_pfn + nr_pages;
1947 unsigned long pfn, system_ram_pages = 0;
1948 const int node = zone_to_nid(zone);
1949 unsigned long flags;
1950 struct memory_notify arg;
1951 char *reason;
1952 int ret;
1953
1954 /*
1955 * {on,off}lining is constrained to full memory sections (or more
1956 * precisely to memory blocks from the user space POV).
1957 * memmap_on_memory is an exception because it reserves initial part
1958 * of the physical memory space for vmemmaps. That space is pageblock
1959 * aligned.
1960 */
1961 if (WARN_ON_ONCE(!nr_pages || !pageblock_aligned(start_pfn) ||
1962 !IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION)))
1963 return -EINVAL;
1964
1965 /*
1966 * Don't allow to offline memory blocks that contain holes.
1967 * Consequently, memory blocks with holes can never get onlined
1968 * via the hotplug path - online_pages() - as hotplugged memory has
1969 * no holes. This way, we e.g., don't have to worry about marking
1970 * memory holes PG_reserved, don't need pfn_valid() checks, and can
1971 * avoid using walk_system_ram_range() later.
1972 */
1973 walk_system_ram_range(start_pfn, nr_pages, &system_ram_pages,
1974 count_system_ram_pages_cb);
1975 if (system_ram_pages != nr_pages) {
1976 ret = -EINVAL;
1977 reason = "memory holes";
1978 goto failed_removal;
1979 }
1980
1981 /*
1982 * We only support offlining of memory blocks managed by a single zone,
1983 * checked by calling code. This is just a sanity check that we might
1984 * want to remove in the future.
1985 */
1986 if (WARN_ON_ONCE(page_zone(pfn_to_page(start_pfn)) != zone ||
1987 page_zone(pfn_to_page(end_pfn - 1)) != zone)) {
1988 ret = -EINVAL;
1989 reason = "multizone range";
1990 goto failed_removal;
1991 }
1992
1993 /*
1994 * Disable pcplists so that page isolation cannot race with freeing
1995 * in a way that pages from isolated pageblock are left on pcplists.
1996 */
1997 zone_pcp_disable(zone);
1998 lru_cache_disable();
1999
2000 /* set above range as isolated */
2001 ret = start_isolate_page_range(start_pfn, end_pfn,
2002 MIGRATE_MOVABLE,
2003 MEMORY_OFFLINE | REPORT_FAILURE,
2004 GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL);
2005 if (ret) {
2006 reason = "failure to isolate range";
2007 goto failed_removal_pcplists_disabled;
2008 }
2009
2010 arg.start_pfn = start_pfn;
2011 arg.nr_pages = nr_pages;
2012 node_states_check_changes_offline(nr_pages, zone, &arg);
2013
2014 ret = memory_notify(MEM_GOING_OFFLINE, &arg);
2015 ret = notifier_to_errno(ret);
2016 if (ret) {
2017 reason = "notifier failure";
2018 goto failed_removal_isolated;
2019 }
2020
2021 do {
2022 pfn = start_pfn;
2023 do {
2024 /*
2025 * Historically we always checked for any signal and
2026 * can't limit it to fatal signals without eventually
2027 * breaking user space.
2028 */
2029 if (signal_pending(current)) {
2030 ret = -EINTR;
2031 reason = "signal backoff";
2032 goto failed_removal_isolated;
2033 }
2034
2035 cond_resched();
2036
2037 ret = scan_movable_pages(pfn, end_pfn, &pfn);
2038 if (!ret) {
2039 /*
2040 * TODO: fatal migration failures should bail
2041 * out
2042 */
2043 do_migrate_range(pfn, end_pfn);
2044 }
2045 } while (!ret);
2046
2047 if (ret != -ENOENT) {
2048 reason = "unmovable page";
2049 goto failed_removal_isolated;
2050 }
2051
2052 /*
2053 * Dissolve free hugepages in the memory block before doing
2054 * offlining actually in order to make hugetlbfs's object
2055 * counting consistent.
2056 */
2057 ret = dissolve_free_huge_pages(start_pfn, end_pfn);
2058 if (ret) {
2059 reason = "failure to dissolve huge pages";
2060 goto failed_removal_isolated;
2061 }
2062
2063 ret = test_pages_isolated(start_pfn, end_pfn, MEMORY_OFFLINE);
2064
2065 } while (ret);
2066
2067 /* Mark all sections offline and remove free pages from the buddy. */
2068 __offline_isolated_pages(start_pfn, end_pfn);
2069 pr_debug("Offlined Pages %ld\n", nr_pages);
2070
2071 /*
2072 * The memory sections are marked offline, and the pageblock flags
2073 * effectively stale; nobody should be touching them. Fixup the number
2074 * of isolated pageblocks, memory onlining will properly revert this.
2075 */
2076 spin_lock_irqsave(&zone->lock, flags);
2077 zone->nr_isolate_pageblock -= nr_pages / pageblock_nr_pages;
2078 spin_unlock_irqrestore(&zone->lock, flags);
2079
2080 lru_cache_enable();
2081 zone_pcp_enable(zone);
2082
2083 /* removal success */
2084 adjust_managed_page_count(pfn_to_page(start_pfn), -nr_pages);
2085 adjust_present_page_count(pfn_to_page(start_pfn), group, -nr_pages);
2086
2087 /* reinitialise watermarks and update pcp limits */
2088 init_per_zone_wmark_min();
2089
2090 /*
2091 * Make sure to mark the node as memory-less before rebuilding the zone
2092 * list. Otherwise this node would still appear in the fallback lists.
2093 */
2094 node_states_clear_node(node, &arg);
2095 if (!populated_zone(zone)) {
2096 zone_pcp_reset(zone);
2097 build_all_zonelists(NULL);
2098 }
2099
2100 if (arg.status_change_nid >= 0) {
2101 kcompactd_stop(node);
2102 kswapd_stop(node);
2103 }
2104
2105 writeback_set_ratelimit();
2106
2107 memory_notify(MEM_OFFLINE, &arg);
2108 remove_pfn_range_from_zone(zone, start_pfn, nr_pages);
2109 return 0;
2110
2111failed_removal_isolated:
2112 /* pushback to free area */
2113 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
2114 memory_notify(MEM_CANCEL_OFFLINE, &arg);
2115failed_removal_pcplists_disabled:
2116 lru_cache_enable();
2117 zone_pcp_enable(zone);
2118failed_removal:
2119 pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
2120 (unsigned long long) start_pfn << PAGE_SHIFT,
2121 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
2122 reason);
2123 return ret;
2124}
2125
2126static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
2127{
2128 int *nid = arg;
2129
2130 *nid = mem->nid;
2131 if (unlikely(mem->state != MEM_OFFLINE)) {
2132 phys_addr_t beginpa, endpa;
2133
2134 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
2135 endpa = beginpa + memory_block_size_bytes() - 1;
2136 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
2137 &beginpa, &endpa);
2138
2139 return -EBUSY;
2140 }
2141 return 0;
2142}
2143
2144static int count_memory_range_altmaps_cb(struct memory_block *mem, void *arg)
2145{
2146 u64 *num_altmaps = (u64 *)arg;
2147
2148 if (mem->altmap)
2149 *num_altmaps += 1;
2150
2151 return 0;
2152}
2153
2154static int check_cpu_on_node(int nid)
2155{
2156 int cpu;
2157
2158 for_each_present_cpu(cpu) {
2159 if (cpu_to_node(cpu) == nid)
2160 /*
2161 * the cpu on this node isn't removed, and we can't
2162 * offline this node.
2163 */
2164 return -EBUSY;
2165 }
2166
2167 return 0;
2168}
2169
2170static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg)
2171{
2172 int nid = *(int *)arg;
2173
2174 /*
2175 * If a memory block belongs to multiple nodes, the stored nid is not
2176 * reliable. However, such blocks are always online (e.g., cannot get
2177 * offlined) and, therefore, are still spanned by the node.
2178 */
2179 return mem->nid == nid ? -EEXIST : 0;
2180}
2181
2182/**
2183 * try_offline_node
2184 * @nid: the node ID
2185 *
2186 * Offline a node if all memory sections and cpus of the node are removed.
2187 *
2188 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2189 * and online/offline operations before this call.
2190 */
2191void try_offline_node(int nid)
2192{
2193 int rc;
2194
2195 /*
2196 * If the node still spans pages (especially ZONE_DEVICE), don't
2197 * offline it. A node spans memory after move_pfn_range_to_zone(),
2198 * e.g., after the memory block was onlined.
2199 */
2200 if (node_spanned_pages(nid))
2201 return;
2202
2203 /*
2204 * Especially offline memory blocks might not be spanned by the
2205 * node. They will get spanned by the node once they get onlined.
2206 * However, they link to the node in sysfs and can get onlined later.
2207 */
2208 rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb);
2209 if (rc)
2210 return;
2211
2212 if (check_cpu_on_node(nid))
2213 return;
2214
2215 /*
2216 * all memory/cpu of this node are removed, we can offline this
2217 * node now.
2218 */
2219 node_set_offline(nid);
2220 unregister_one_node(nid);
2221}
2222EXPORT_SYMBOL(try_offline_node);
2223
2224static int memory_blocks_have_altmaps(u64 start, u64 size)
2225{
2226 u64 num_memblocks = size / memory_block_size_bytes();
2227 u64 num_altmaps = 0;
2228
2229 if (!mhp_memmap_on_memory())
2230 return 0;
2231
2232 walk_memory_blocks(start, size, &num_altmaps,
2233 count_memory_range_altmaps_cb);
2234
2235 if (num_altmaps == 0)
2236 return 0;
2237
2238 if (WARN_ON_ONCE(num_memblocks != num_altmaps))
2239 return -EINVAL;
2240
2241 return 1;
2242}
2243
2244static int __ref try_remove_memory(u64 start, u64 size)
2245{
2246 int rc, nid = NUMA_NO_NODE;
2247
2248 BUG_ON(check_hotplug_memory_range(start, size));
2249
2250 /*
2251 * All memory blocks must be offlined before removing memory. Check
2252 * whether all memory blocks in question are offline and return error
2253 * if this is not the case.
2254 *
2255 * While at it, determine the nid. Note that if we'd have mixed nodes,
2256 * we'd only try to offline the last determined one -- which is good
2257 * enough for the cases we care about.
2258 */
2259 rc = walk_memory_blocks(start, size, &nid, check_memblock_offlined_cb);
2260 if (rc)
2261 return rc;
2262
2263 /* remove memmap entry */
2264 firmware_map_remove(start, start + size, "System RAM");
2265
2266 mem_hotplug_begin();
2267
2268 rc = memory_blocks_have_altmaps(start, size);
2269 if (rc < 0) {
2270 mem_hotplug_done();
2271 return rc;
2272 } else if (!rc) {
2273 /*
2274 * Memory block device removal under the device_hotplug_lock is
2275 * a barrier against racing online attempts.
2276 * No altmaps present, do the removal directly
2277 */
2278 remove_memory_block_devices(start, size);
2279 arch_remove_memory(start, size, NULL);
2280 } else {
2281 /* all memblocks in the range have altmaps */
2282 remove_memory_blocks_and_altmaps(start, size);
2283 }
2284
2285 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
2286 memblock_phys_free(start, size);
2287 memblock_remove(start, size);
2288 }
2289
2290 release_mem_region_adjustable(start, size);
2291
2292 if (nid != NUMA_NO_NODE)
2293 try_offline_node(nid);
2294
2295 mem_hotplug_done();
2296 return 0;
2297}
2298
2299/**
2300 * __remove_memory - Remove memory if every memory block is offline
2301 * @start: physical address of the region to remove
2302 * @size: size of the region to remove
2303 *
2304 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2305 * and online/offline operations before this call, as required by
2306 * try_offline_node().
2307 */
2308void __remove_memory(u64 start, u64 size)
2309{
2310
2311 /*
2312 * trigger BUG() if some memory is not offlined prior to calling this
2313 * function
2314 */
2315 if (try_remove_memory(start, size))
2316 BUG();
2317}
2318
2319/*
2320 * Remove memory if every memory block is offline, otherwise return -EBUSY is
2321 * some memory is not offline
2322 */
2323int remove_memory(u64 start, u64 size)
2324{
2325 int rc;
2326
2327 lock_device_hotplug();
2328 rc = try_remove_memory(start, size);
2329 unlock_device_hotplug();
2330
2331 return rc;
2332}
2333EXPORT_SYMBOL_GPL(remove_memory);
2334
2335static int try_offline_memory_block(struct memory_block *mem, void *arg)
2336{
2337 uint8_t online_type = MMOP_ONLINE_KERNEL;
2338 uint8_t **online_types = arg;
2339 struct page *page;
2340 int rc;
2341
2342 /*
2343 * Sense the online_type via the zone of the memory block. Offlining
2344 * with multiple zones within one memory block will be rejected
2345 * by offlining code ... so we don't care about that.
2346 */
2347 page = pfn_to_online_page(section_nr_to_pfn(mem->start_section_nr));
2348 if (page && zone_idx(page_zone(page)) == ZONE_MOVABLE)
2349 online_type = MMOP_ONLINE_MOVABLE;
2350
2351 rc = device_offline(&mem->dev);
2352 /*
2353 * Default is MMOP_OFFLINE - change it only if offlining succeeded,
2354 * so try_reonline_memory_block() can do the right thing.
2355 */
2356 if (!rc)
2357 **online_types = online_type;
2358
2359 (*online_types)++;
2360 /* Ignore if already offline. */
2361 return rc < 0 ? rc : 0;
2362}
2363
2364static int try_reonline_memory_block(struct memory_block *mem, void *arg)
2365{
2366 uint8_t **online_types = arg;
2367 int rc;
2368
2369 if (**online_types != MMOP_OFFLINE) {
2370 mem->online_type = **online_types;
2371 rc = device_online(&mem->dev);
2372 if (rc < 0)
2373 pr_warn("%s: Failed to re-online memory: %d",
2374 __func__, rc);
2375 }
2376
2377 /* Continue processing all remaining memory blocks. */
2378 (*online_types)++;
2379 return 0;
2380}
2381
2382/*
2383 * Try to offline and remove memory. Might take a long time to finish in case
2384 * memory is still in use. Primarily useful for memory devices that logically
2385 * unplugged all memory (so it's no longer in use) and want to offline + remove
2386 * that memory.
2387 */
2388int offline_and_remove_memory(u64 start, u64 size)
2389{
2390 const unsigned long mb_count = size / memory_block_size_bytes();
2391 uint8_t *online_types, *tmp;
2392 int rc;
2393
2394 if (!IS_ALIGNED(start, memory_block_size_bytes()) ||
2395 !IS_ALIGNED(size, memory_block_size_bytes()) || !size)
2396 return -EINVAL;
2397
2398 /*
2399 * We'll remember the old online type of each memory block, so we can
2400 * try to revert whatever we did when offlining one memory block fails
2401 * after offlining some others succeeded.
2402 */
2403 online_types = kmalloc_array(mb_count, sizeof(*online_types),
2404 GFP_KERNEL);
2405 if (!online_types)
2406 return -ENOMEM;
2407 /*
2408 * Initialize all states to MMOP_OFFLINE, so when we abort processing in
2409 * try_offline_memory_block(), we'll skip all unprocessed blocks in
2410 * try_reonline_memory_block().
2411 */
2412 memset(online_types, MMOP_OFFLINE, mb_count);
2413
2414 lock_device_hotplug();
2415
2416 tmp = online_types;
2417 rc = walk_memory_blocks(start, size, &tmp, try_offline_memory_block);
2418
2419 /*
2420 * In case we succeeded to offline all memory, remove it.
2421 * This cannot fail as it cannot get onlined in the meantime.
2422 */
2423 if (!rc) {
2424 rc = try_remove_memory(start, size);
2425 if (rc)
2426 pr_err("%s: Failed to remove memory: %d", __func__, rc);
2427 }
2428
2429 /*
2430 * Rollback what we did. While memory onlining might theoretically fail
2431 * (nacked by a notifier), it barely ever happens.
2432 */
2433 if (rc) {
2434 tmp = online_types;
2435 walk_memory_blocks(start, size, &tmp,
2436 try_reonline_memory_block);
2437 }
2438 unlock_device_hotplug();
2439
2440 kfree(online_types);
2441 return rc;
2442}
2443EXPORT_SYMBOL_GPL(offline_and_remove_memory);
2444#endif /* CONFIG_MEMORY_HOTREMOVE */