Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 *  linux/mm/memory_hotplug.c
   3 *
   4 *  Copyright (C)
   5 */
   6
   7#include <linux/stddef.h>
   8#include <linux/mm.h>
   9#include <linux/sched/signal.h>
  10#include <linux/swap.h>
  11#include <linux/interrupt.h>
  12#include <linux/pagemap.h>
  13#include <linux/compiler.h>
  14#include <linux/export.h>
  15#include <linux/pagevec.h>
  16#include <linux/writeback.h>
  17#include <linux/slab.h>
  18#include <linux/sysctl.h>
  19#include <linux/cpu.h>
  20#include <linux/memory.h>
  21#include <linux/memremap.h>
  22#include <linux/memory_hotplug.h>
  23#include <linux/highmem.h>
  24#include <linux/vmalloc.h>
  25#include <linux/ioport.h>
  26#include <linux/delay.h>
  27#include <linux/migrate.h>
  28#include <linux/page-isolation.h>
  29#include <linux/pfn.h>
  30#include <linux/suspend.h>
  31#include <linux/mm_inline.h>
  32#include <linux/firmware-map.h>
  33#include <linux/stop_machine.h>
  34#include <linux/hugetlb.h>
  35#include <linux/memblock.h>
  36#include <linux/bootmem.h>
  37#include <linux/compaction.h>
 
 
  38
  39#include <asm/tlbflush.h>
  40
  41#include "internal.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  42
  43/*
  44 * online_page_callback contains pointer to current page onlining function.
  45 * Initially it is generic_online_page(). If it is required it could be
  46 * changed by calling set_online_page_callback() for callback registration
  47 * and restore_online_page_callback() for generic callback restore.
  48 */
  49
  50static void generic_online_page(struct page *page);
  51
  52static online_page_callback_t online_page_callback = generic_online_page;
  53static DEFINE_MUTEX(online_page_callback_lock);
  54
  55DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
  56
  57void get_online_mems(void)
  58{
  59	percpu_down_read(&mem_hotplug_lock);
  60}
  61
  62void put_online_mems(void)
  63{
  64	percpu_up_read(&mem_hotplug_lock);
  65}
  66
  67bool movable_node_enabled = false;
  68
  69#ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
  70bool memhp_auto_online;
  71#else
  72bool memhp_auto_online = true;
  73#endif
  74EXPORT_SYMBOL_GPL(memhp_auto_online);
  75
  76static int __init setup_memhp_default_state(char *str)
  77{
  78	if (!strcmp(str, "online"))
  79		memhp_auto_online = true;
  80	else if (!strcmp(str, "offline"))
  81		memhp_auto_online = false;
  82
  83	return 1;
  84}
  85__setup("memhp_default_state=", setup_memhp_default_state);
  86
  87void mem_hotplug_begin(void)
  88{
  89	cpus_read_lock();
  90	percpu_down_write(&mem_hotplug_lock);
  91}
  92
  93void mem_hotplug_done(void)
  94{
  95	percpu_up_write(&mem_hotplug_lock);
  96	cpus_read_unlock();
  97}
  98
 
 
  99/* add this memory to iomem resource */
 100static struct resource *register_memory_resource(u64 start, u64 size)
 
 101{
 102	struct resource *res, *conflict;
 103	res = kzalloc(sizeof(struct resource), GFP_KERNEL);
 104	if (!res)
 105		return ERR_PTR(-ENOMEM);
 106
 107	res->name = "System RAM";
 108	res->start = start;
 109	res->end = start + size - 1;
 110	res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
 111	conflict =  request_resource_conflict(&iomem_resource, res);
 112	if (conflict) {
 113		if (conflict->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY) {
 114			pr_debug("Device unaddressable memory block "
 115				 "memory hotplug at %#010llx !\n",
 116				 (unsigned long long)start);
 117		}
 118		pr_debug("System RAM resource %pR cannot be added\n", res);
 119		kfree(res);
 
 
 
 
 
 
 
 
 
 
 
 
 
 120		return ERR_PTR(-EEXIST);
 121	}
 122	return res;
 123}
 124
 125static void release_memory_resource(struct resource *res)
 126{
 127	if (!res)
 128		return;
 129	release_resource(res);
 130	kfree(res);
 131	return;
 132}
 133
 134#ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
 135void get_page_bootmem(unsigned long info,  struct page *page,
 136		      unsigned long type)
 137{
 138	page->freelist = (void *)type;
 139	SetPagePrivate(page);
 140	set_page_private(page, info);
 141	page_ref_inc(page);
 142}
 143
 144void put_page_bootmem(struct page *page)
 145{
 146	unsigned long type;
 147
 148	type = (unsigned long) page->freelist;
 149	BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
 150	       type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
 
 
 
 
 
 151
 152	if (page_ref_dec_return(page) == 1) {
 153		page->freelist = NULL;
 154		ClearPagePrivate(page);
 155		set_page_private(page, 0);
 156		INIT_LIST_HEAD(&page->lru);
 157		free_reserved_page(page);
 158	}
 159}
 160
 161#ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
 162#ifndef CONFIG_SPARSEMEM_VMEMMAP
 163static void register_page_bootmem_info_section(unsigned long start_pfn)
 
 
 
 164{
 165	unsigned long *usemap, mapsize, section_nr, i;
 
 166	struct mem_section *ms;
 167	struct page *page, *memmap;
 168
 169	section_nr = pfn_to_section_nr(start_pfn);
 170	ms = __nr_to_section(section_nr);
 171
 172	/* Get section's memmap address */
 173	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
 
 174
 175	/*
 176	 * Get page for the memmap's phys address
 177	 * XXX: need more consideration for sparse_vmemmap...
 178	 */
 179	page = virt_to_page(memmap);
 180	mapsize = sizeof(struct page) * PAGES_PER_SECTION;
 181	mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
 182
 183	/* remember memmap's page */
 184	for (i = 0; i < mapsize; i++, page++)
 185		get_page_bootmem(section_nr, page, SECTION_INFO);
 186
 187	usemap = ms->pageblock_flags;
 188	page = virt_to_page(usemap);
 189
 190	mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
 191
 192	for (i = 0; i < mapsize; i++, page++)
 193		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
 194
 195}
 196#else /* CONFIG_SPARSEMEM_VMEMMAP */
 197static void register_page_bootmem_info_section(unsigned long start_pfn)
 198{
 199	unsigned long *usemap, mapsize, section_nr, i;
 200	struct mem_section *ms;
 201	struct page *page, *memmap;
 202
 203	section_nr = pfn_to_section_nr(start_pfn);
 204	ms = __nr_to_section(section_nr);
 205
 206	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
 207
 208	register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
 209
 210	usemap = ms->pageblock_flags;
 211	page = virt_to_page(usemap);
 212
 213	mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
 214
 215	for (i = 0; i < mapsize; i++, page++)
 216		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
 217}
 218#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
 219
 220void __init register_page_bootmem_info_node(struct pglist_data *pgdat)
 221{
 222	unsigned long i, pfn, end_pfn, nr_pages;
 223	int node = pgdat->node_id;
 224	struct page *page;
 225
 226	nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
 227	page = virt_to_page(pgdat);
 228
 229	for (i = 0; i < nr_pages; i++, page++)
 230		get_page_bootmem(node, page, NODE_INFO);
 
 
 
 
 
 
 231
 232	pfn = pgdat->node_start_pfn;
 233	end_pfn = pgdat_end_pfn(pgdat);
 
 234
 235	/* register section info */
 236	for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
 237		/*
 238		 * Some platforms can assign the same pfn to multiple nodes - on
 239		 * node0 as well as nodeN.  To avoid registering a pfn against
 240		 * multiple nodes we check that this pfn does not already
 241		 * reside in some other nodes.
 242		 */
 243		if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node))
 244			register_page_bootmem_info_section(pfn);
 245	}
 246}
 247#endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
 248
 249static int __meminit __add_section(int nid, unsigned long phys_start_pfn,
 250		struct vmem_altmap *altmap, bool want_memblock)
 251{
 252	int ret;
 253
 254	if (pfn_valid(phys_start_pfn))
 255		return -EEXIST;
 256
 257	ret = sparse_add_one_section(NODE_DATA(nid), phys_start_pfn, altmap);
 258	if (ret < 0)
 259		return ret;
 260
 261	if (!want_memblock)
 262		return 0;
 263
 264	return hotplug_memory_register(nid, __pfn_to_section(phys_start_pfn));
 265}
 266
 267/*
 268 * Reasonably generic function for adding memory.  It is
 269 * expected that archs that support memory hotplug will
 270 * call this function after deciding the zone to which to
 271 * add the new pages.
 272 */
 273int __ref __add_pages(int nid, unsigned long phys_start_pfn,
 274		unsigned long nr_pages, struct vmem_altmap *altmap,
 275		bool want_memblock)
 276{
 277	unsigned long i;
 278	int err = 0;
 279	int start_sec, end_sec;
 280
 281	/* during initialize mem_map, align hot-added range to section */
 282	start_sec = pfn_to_section_nr(phys_start_pfn);
 283	end_sec = pfn_to_section_nr(phys_start_pfn + nr_pages - 1);
 284
 285	if (altmap) {
 286		/*
 287		 * Validate altmap is within bounds of the total request
 288		 */
 289		if (altmap->base_pfn != phys_start_pfn
 290				|| vmem_altmap_offset(altmap) > nr_pages) {
 291			pr_warn_once("memory add fail, invalid altmap\n");
 292			err = -EINVAL;
 293			goto out;
 294		}
 295		altmap->alloc = 0;
 296	}
 297
 298	for (i = start_sec; i <= end_sec; i++) {
 299		err = __add_section(nid, section_nr_to_pfn(i), altmap,
 300				want_memblock);
 
 301
 302		/*
 303		 * EEXIST is finally dealt with by ioresource collision
 304		 * check. see add_memory() => register_memory_resource()
 305		 * Warning will be printed if there is collision.
 306		 */
 307		if (err && (err != -EEXIST))
 
 308			break;
 309		err = 0;
 310		cond_resched();
 311	}
 312	vmemmap_populate_print_last();
 313out:
 314	return err;
 315}
 316
 317#ifdef CONFIG_MEMORY_HOTREMOVE
 318/* find the smallest valid pfn in the range [start_pfn, end_pfn) */
 319static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
 320				     unsigned long start_pfn,
 321				     unsigned long end_pfn)
 322{
 323	struct mem_section *ms;
 324
 325	for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SECTION) {
 326		ms = __pfn_to_section(start_pfn);
 327
 328		if (unlikely(!valid_section(ms)))
 329			continue;
 330
 331		if (unlikely(pfn_to_nid(start_pfn) != nid))
 332			continue;
 333
 334		if (zone && zone != page_zone(pfn_to_page(start_pfn)))
 335			continue;
 336
 337		return start_pfn;
 338	}
 339
 340	return 0;
 341}
 342
 343/* find the biggest valid pfn in the range [start_pfn, end_pfn). */
 344static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
 345				    unsigned long start_pfn,
 346				    unsigned long end_pfn)
 347{
 348	struct mem_section *ms;
 349	unsigned long pfn;
 350
 351	/* pfn is the end pfn of a memory section. */
 352	pfn = end_pfn - 1;
 353	for (; pfn >= start_pfn; pfn -= PAGES_PER_SECTION) {
 354		ms = __pfn_to_section(pfn);
 355
 356		if (unlikely(!valid_section(ms)))
 357			continue;
 358
 359		if (unlikely(pfn_to_nid(pfn) != nid))
 360			continue;
 361
 362		if (zone && zone != page_zone(pfn_to_page(pfn)))
 363			continue;
 364
 365		return pfn;
 366	}
 367
 368	return 0;
 369}
 370
 371static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
 372			     unsigned long end_pfn)
 373{
 374	unsigned long zone_start_pfn = zone->zone_start_pfn;
 375	unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */
 376	unsigned long zone_end_pfn = z;
 377	unsigned long pfn;
 378	struct mem_section *ms;
 379	int nid = zone_to_nid(zone);
 380
 381	zone_span_writelock(zone);
 382	if (zone_start_pfn == start_pfn) {
 383		/*
 384		 * If the section is smallest section in the zone, it need
 385		 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
 386		 * In this case, we find second smallest valid mem_section
 387		 * for shrinking zone.
 388		 */
 389		pfn = find_smallest_section_pfn(nid, zone, end_pfn,
 390						zone_end_pfn);
 391		if (pfn) {
 
 392			zone->zone_start_pfn = pfn;
 393			zone->spanned_pages = zone_end_pfn - pfn;
 
 
 394		}
 395	} else if (zone_end_pfn == end_pfn) {
 396		/*
 397		 * If the section is biggest section in the zone, it need
 398		 * shrink zone->spanned_pages.
 399		 * In this case, we find second biggest valid mem_section for
 400		 * shrinking zone.
 401		 */
 402		pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn,
 403					       start_pfn);
 404		if (pfn)
 405			zone->spanned_pages = pfn - zone_start_pfn + 1;
 
 
 
 
 406	}
 
 407
 408	/*
 409	 * The section is not biggest or smallest mem_section in the zone, it
 410	 * only creates a hole in the zone. So in this case, we need not
 411	 * change the zone. But perhaps, the zone has only hole data. Thus
 412	 * it check the zone has only hole or not.
 413	 */
 414	pfn = zone_start_pfn;
 415	for (; pfn < zone_end_pfn; pfn += PAGES_PER_SECTION) {
 416		ms = __pfn_to_section(pfn);
 417
 418		if (unlikely(!valid_section(ms)))
 419			continue;
 
 420
 421		if (page_zone(pfn_to_page(pfn)) != zone)
 
 422			continue;
 423
 424		 /* If the section is current section, it continues the loop */
 425		if (start_pfn == pfn)
 426			continue;
 
 427
 428		/* If we find valid section, we have nothing to do */
 429		zone_span_writeunlock(zone);
 430		return;
 
 431	}
 432
 433	/* The zone has no valid section */
 434	zone->zone_start_pfn = 0;
 435	zone->spanned_pages = 0;
 436	zone_span_writeunlock(zone);
 437}
 438
 439static void shrink_pgdat_span(struct pglist_data *pgdat,
 440			      unsigned long start_pfn, unsigned long end_pfn)
 441{
 442	unsigned long pgdat_start_pfn = pgdat->node_start_pfn;
 443	unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */
 444	unsigned long pgdat_end_pfn = p;
 445	unsigned long pfn;
 446	struct mem_section *ms;
 447	int nid = pgdat->node_id;
 448
 449	if (pgdat_start_pfn == start_pfn) {
 450		/*
 451		 * If the section is smallest section in the pgdat, it need
 452		 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages.
 453		 * In this case, we find second smallest valid mem_section
 454		 * for shrinking zone.
 455		 */
 456		pfn = find_smallest_section_pfn(nid, NULL, end_pfn,
 457						pgdat_end_pfn);
 458		if (pfn) {
 459			pgdat->node_start_pfn = pfn;
 460			pgdat->node_spanned_pages = pgdat_end_pfn - pfn;
 461		}
 462	} else if (pgdat_end_pfn == end_pfn) {
 463		/*
 464		 * If the section is biggest section in the pgdat, it need
 465		 * shrink pgdat->node_spanned_pages.
 466		 * In this case, we find second biggest valid mem_section for
 467		 * shrinking zone.
 468		 */
 469		pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn,
 470					       start_pfn);
 471		if (pfn)
 472			pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1;
 473	}
 474
 475	/*
 476	 * If the section is not biggest or smallest mem_section in the pgdat,
 477	 * it only creates a hole in the pgdat. So in this case, we need not
 478	 * change the pgdat.
 479	 * But perhaps, the pgdat has only hole data. Thus it check the pgdat
 480	 * has only hole or not.
 481	 */
 482	pfn = pgdat_start_pfn;
 483	for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SECTION) {
 484		ms = __pfn_to_section(pfn);
 485
 486		if (unlikely(!valid_section(ms)))
 487			continue;
 488
 489		if (pfn_to_nid(pfn) != nid)
 490			continue;
 491
 492		 /* If the section is current section, it continues the loop */
 493		if (start_pfn == pfn)
 494			continue;
 495
 496		/* If we find valid section, we have nothing to do */
 497		return;
 498	}
 499
 500	/* The pgdat has no valid section */
 501	pgdat->node_start_pfn = 0;
 502	pgdat->node_spanned_pages = 0;
 503}
 504
 505static void __remove_zone(struct zone *zone, unsigned long start_pfn)
 506{
 507	struct pglist_data *pgdat = zone->zone_pgdat;
 508	int nr_pages = PAGES_PER_SECTION;
 509	unsigned long flags;
 510
 511	pgdat_resize_lock(zone->zone_pgdat, &flags);
 512	shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
 513	shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages);
 514	pgdat_resize_unlock(zone->zone_pgdat, &flags);
 
 515}
 516
 517static int __remove_section(struct zone *zone, struct mem_section *ms,
 518		unsigned long map_offset, struct vmem_altmap *altmap)
 
 519{
 520	unsigned long start_pfn;
 521	int scn_nr;
 522	int ret = -EINVAL;
 523
 524	if (!valid_section(ms))
 525		return ret;
 526
 527	ret = unregister_memory_section(ms);
 528	if (ret)
 529		return ret;
 530
 531	scn_nr = __section_nr(ms);
 532	start_pfn = section_nr_to_pfn((unsigned long)scn_nr);
 533	__remove_zone(zone, start_pfn);
 534
 535	sparse_remove_one_section(zone, ms, map_offset, altmap);
 536	return 0;
 537}
 538
 539/**
 540 * __remove_pages() - remove sections of pages from a zone
 541 * @zone: zone from which pages need to be removed
 542 * @phys_start_pfn: starting pageframe (must be aligned to start of a section)
 543 * @nr_pages: number of pages to remove (must be multiple of section size)
 544 * @altmap: alternative device page map or %NULL if default memmap is used
 545 *
 546 * Generic helper function to remove section mappings and sysfs entries
 547 * for the section of the memory we are removing. Caller needs to make
 548 * sure that pages are marked reserved and zones are adjust properly by
 549 * calling offline_pages().
 550 */
 551int __remove_pages(struct zone *zone, unsigned long phys_start_pfn,
 552		 unsigned long nr_pages, struct vmem_altmap *altmap)
 553{
 554	unsigned long i;
 
 555	unsigned long map_offset = 0;
 556	int sections_to_remove, ret = 0;
 557
 558	/* In the ZONE_DEVICE case device driver owns the memory region */
 559	if (is_dev_zone(zone)) {
 560		if (altmap)
 561			map_offset = vmem_altmap_offset(altmap);
 562	} else {
 563		resource_size_t start, size;
 564
 565		start = phys_start_pfn << PAGE_SHIFT;
 566		size = nr_pages * PAGE_SIZE;
 567
 568		ret = release_mem_region_adjustable(&iomem_resource, start,
 569					size);
 570		if (ret) {
 571			resource_size_t endres = start + size - 1;
 572
 573			pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
 574					&start, &endres, ret);
 575		}
 576	}
 577
 578	clear_zone_contiguous(zone);
 579
 580	/*
 581	 * We can only remove entire sections
 582	 */
 583	BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK);
 584	BUG_ON(nr_pages % PAGES_PER_SECTION);
 585
 586	sections_to_remove = nr_pages / PAGES_PER_SECTION;
 587	for (i = 0; i < sections_to_remove; i++) {
 588		unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION;
 589
 590		ret = __remove_section(zone, __pfn_to_section(pfn), map_offset,
 591				altmap);
 592		map_offset = 0;
 593		if (ret)
 594			break;
 595	}
 596
 597	set_zone_contiguous(zone);
 598
 599	return ret;
 600}
 601#endif /* CONFIG_MEMORY_HOTREMOVE */
 602
 603int set_online_page_callback(online_page_callback_t callback)
 604{
 605	int rc = -EINVAL;
 606
 607	get_online_mems();
 608	mutex_lock(&online_page_callback_lock);
 609
 610	if (online_page_callback == generic_online_page) {
 611		online_page_callback = callback;
 612		rc = 0;
 613	}
 614
 615	mutex_unlock(&online_page_callback_lock);
 616	put_online_mems();
 617
 618	return rc;
 619}
 620EXPORT_SYMBOL_GPL(set_online_page_callback);
 621
 622int restore_online_page_callback(online_page_callback_t callback)
 623{
 624	int rc = -EINVAL;
 625
 626	get_online_mems();
 627	mutex_lock(&online_page_callback_lock);
 628
 629	if (online_page_callback == callback) {
 630		online_page_callback = generic_online_page;
 631		rc = 0;
 632	}
 633
 634	mutex_unlock(&online_page_callback_lock);
 635	put_online_mems();
 636
 637	return rc;
 638}
 639EXPORT_SYMBOL_GPL(restore_online_page_callback);
 640
 641void __online_page_set_limits(struct page *page)
 642{
 643}
 644EXPORT_SYMBOL_GPL(__online_page_set_limits);
 645
 646void __online_page_increment_counters(struct page *page)
 647{
 648	adjust_managed_page_count(page, 1);
 649}
 650EXPORT_SYMBOL_GPL(__online_page_increment_counters);
 651
 652void __online_page_free(struct page *page)
 653{
 654	__free_reserved_page(page);
 655}
 656EXPORT_SYMBOL_GPL(__online_page_free);
 657
 658static void generic_online_page(struct page *page)
 659{
 660	__online_page_set_limits(page);
 661	__online_page_increment_counters(page);
 662	__online_page_free(page);
 663}
 
 664
 665static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages,
 666			void *arg)
 667{
 668	unsigned long i;
 669	unsigned long onlined_pages = *(unsigned long *)arg;
 670	struct page *page;
 671
 672	if (PageReserved(pfn_to_page(start_pfn)))
 673		for (i = 0; i < nr_pages; i++) {
 674			page = pfn_to_page(start_pfn + i);
 675			(*online_page_callback)(page);
 676			onlined_pages++;
 677		}
 
 
 
 
 
 678
 679	online_mem_sections(start_pfn, start_pfn + nr_pages);
 
 
 680
 681	*(unsigned long *)arg = onlined_pages;
 682	return 0;
 683}
 684
 685/* check which state of node_states will be changed when online memory */
 686static void node_states_check_changes_online(unsigned long nr_pages,
 687	struct zone *zone, struct memory_notify *arg)
 688{
 689	int nid = zone_to_nid(zone);
 690	enum zone_type zone_last = ZONE_NORMAL;
 691
 692	/*
 693	 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
 694	 * contains nodes which have zones of 0...ZONE_NORMAL,
 695	 * set zone_last to ZONE_NORMAL.
 696	 *
 697	 * If we don't have HIGHMEM nor movable node,
 698	 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
 699	 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
 700	 */
 701	if (N_MEMORY == N_NORMAL_MEMORY)
 702		zone_last = ZONE_MOVABLE;
 703
 704	/*
 705	 * if the memory to be online is in a zone of 0...zone_last, and
 706	 * the zones of 0...zone_last don't have memory before online, we will
 707	 * need to set the node to node_states[N_NORMAL_MEMORY] after
 708	 * the memory is online.
 709	 */
 710	if (zone_idx(zone) <= zone_last && !node_state(nid, N_NORMAL_MEMORY))
 711		arg->status_change_nid_normal = nid;
 712	else
 713		arg->status_change_nid_normal = -1;
 714
 715#ifdef CONFIG_HIGHMEM
 716	/*
 717	 * If we have movable node, node_states[N_HIGH_MEMORY]
 718	 * contains nodes which have zones of 0...ZONE_HIGHMEM,
 719	 * set zone_last to ZONE_HIGHMEM.
 720	 *
 721	 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
 722	 * contains nodes which have zones of 0...ZONE_MOVABLE,
 723	 * set zone_last to ZONE_MOVABLE.
 724	 */
 725	zone_last = ZONE_HIGHMEM;
 726	if (N_MEMORY == N_HIGH_MEMORY)
 727		zone_last = ZONE_MOVABLE;
 728
 729	if (zone_idx(zone) <= zone_last && !node_state(nid, N_HIGH_MEMORY))
 730		arg->status_change_nid_high = nid;
 731	else
 732		arg->status_change_nid_high = -1;
 733#else
 734	arg->status_change_nid_high = arg->status_change_nid_normal;
 735#endif
 736
 737	/*
 738	 * if the node don't have memory befor online, we will need to
 739	 * set the node to node_states[N_MEMORY] after the memory
 740	 * is online.
 741	 */
 742	if (!node_state(nid, N_MEMORY))
 743		arg->status_change_nid = nid;
 744	else
 745		arg->status_change_nid = -1;
 746}
 747
 748static void node_states_set_node(int node, struct memory_notify *arg)
 749{
 750	if (arg->status_change_nid_normal >= 0)
 751		node_set_state(node, N_NORMAL_MEMORY);
 752
 753	if (arg->status_change_nid_high >= 0)
 754		node_set_state(node, N_HIGH_MEMORY);
 755
 756	node_set_state(node, N_MEMORY);
 757}
 758
 759static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
 760		unsigned long nr_pages)
 761{
 762	unsigned long old_end_pfn = zone_end_pfn(zone);
 763
 764	if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
 765		zone->zone_start_pfn = start_pfn;
 766
 767	zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
 768}
 769
 770static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
 771                                     unsigned long nr_pages)
 772{
 773	unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
 774
 775	if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
 776		pgdat->node_start_pfn = start_pfn;
 777
 778	pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
 
 
 
 
 
 
 
 
 
 
 
 
 
 779}
 
 780
 
 
 
 
 
 
 
 
 
 781void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
 782		unsigned long nr_pages, struct vmem_altmap *altmap)
 
 783{
 784	struct pglist_data *pgdat = zone->zone_pgdat;
 785	int nid = pgdat->node_id;
 786	unsigned long flags;
 787
 788	if (zone_is_empty(zone))
 789		init_currently_empty_zone(zone, start_pfn, nr_pages);
 790
 791	clear_zone_contiguous(zone);
 792
 793	/* TODO Huh pgdat is irqsave while zone is not. It used to be like that before */
 794	pgdat_resize_lock(pgdat, &flags);
 795	zone_span_writelock(zone);
 796	resize_zone_range(zone, start_pfn, nr_pages);
 797	zone_span_writeunlock(zone);
 798	resize_pgdat_range(pgdat, start_pfn, nr_pages);
 799	pgdat_resize_unlock(pgdat, &flags);
 
 
 
 
 
 
 
 
 
 
 
 
 800
 801	/*
 802	 * TODO now we have a visible range of pages which are not associated
 803	 * with their zone properly. Not nice but set_pfnblock_flags_mask
 804	 * expects the zone spans the pfn range. All the pages in the range
 805	 * are reserved so nobody should be touching them so we should be safe
 806	 */
 807	memmap_init_zone(nr_pages, nid, zone_idx(zone), start_pfn,
 808			MEMMAP_HOTPLUG, altmap);
 809
 810	set_zone_contiguous(zone);
 811}
 812
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 813/*
 814 * Returns a default kernel memory zone for the given pfn range.
 815 * If no kernel zone covers this pfn range it will automatically go
 816 * to the ZONE_NORMAL.
 817 */
 818static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
 819		unsigned long nr_pages)
 820{
 821	struct pglist_data *pgdat = NODE_DATA(nid);
 822	int zid;
 823
 824	for (zid = 0; zid <= ZONE_NORMAL; zid++) {
 825		struct zone *zone = &pgdat->node_zones[zid];
 826
 827		if (zone_intersects(zone, start_pfn, nr_pages))
 828			return zone;
 829	}
 830
 831	return &pgdat->node_zones[ZONE_NORMAL];
 832}
 833
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 834static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
 835		unsigned long nr_pages)
 836{
 837	struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
 838			nr_pages);
 839	struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
 840	bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
 841	bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
 842
 843	/*
 844	 * We inherit the existing zone in a simple case where zones do not
 845	 * overlap in the given range
 846	 */
 847	if (in_kernel ^ in_movable)
 848		return (in_kernel) ? kernel_zone : movable_zone;
 849
 850	/*
 851	 * If the range doesn't belong to any zone or two zones overlap in the
 852	 * given range then we use movable zone only if movable_node is
 853	 * enabled because we always online to a kernel zone by default.
 854	 */
 855	return movable_node_enabled ? movable_zone : kernel_zone;
 856}
 857
 858struct zone * zone_for_pfn_range(int online_type, int nid, unsigned start_pfn,
 
 859		unsigned long nr_pages)
 860{
 861	if (online_type == MMOP_ONLINE_KERNEL)
 862		return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
 863
 864	if (online_type == MMOP_ONLINE_MOVABLE)
 865		return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
 866
 
 
 
 867	return default_zone_for_pfn(nid, start_pfn, nr_pages);
 868}
 869
 870/*
 871 * Associates the given pfn range with the given node and the zone appropriate
 872 * for the given online type.
 873 */
 874static struct zone * __meminit move_pfn_range(int online_type, int nid,
 875		unsigned long start_pfn, unsigned long nr_pages)
 876{
 877	struct zone *zone;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 878
 879	zone = zone_for_pfn_range(online_type, nid, start_pfn, nr_pages);
 880	move_pfn_range_to_zone(zone, start_pfn, nr_pages, NULL);
 881	return zone;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 882}
 883
 884/* Must be protected by mem_hotplug_begin() or a device_lock */
 885int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type)
 886{
 887	unsigned long flags;
 888	unsigned long onlined_pages = 0;
 889	struct zone *zone;
 890	int need_zonelists_rebuild = 0;
 891	int nid;
 892	int ret;
 893	struct memory_notify arg;
 894	struct memory_block *mem;
 895
 896	/*
 897	 * We can't use pfn_to_nid() because nid might be stored in struct page
 898	 * which is not yet initialized. Instead, we find nid from memory block.
 
 
 
 899	 */
 900	mem = find_memory_block(__pfn_to_section(pfn));
 901	nid = mem->nid;
 
 
 
 902
 903	/* associate pfn range with the zone */
 904	zone = move_pfn_range(online_type, nid, pfn, nr_pages);
 905
 906	arg.start_pfn = pfn;
 907	arg.nr_pages = nr_pages;
 908	node_states_check_changes_online(nr_pages, zone, &arg);
 909
 910	ret = memory_notify(MEM_GOING_ONLINE, &arg);
 911	ret = notifier_to_errno(ret);
 912	if (ret)
 913		goto failed_addition;
 914
 915	/*
 
 
 
 
 
 
 
 
 916	 * If this zone is not populated, then it is not in zonelist.
 917	 * This means the page allocator ignores this zone.
 918	 * So, zonelist must be updated after online.
 919	 */
 920	if (!populated_zone(zone)) {
 921		need_zonelists_rebuild = 1;
 922		setup_zone_pageset(zone);
 923	}
 924
 925	ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages,
 926		online_pages_range);
 927	if (ret) {
 928		if (need_zonelists_rebuild)
 929			zone_pcp_reset(zone);
 930		goto failed_addition;
 931	}
 932
 933	zone->present_pages += onlined_pages;
 
 
 934
 935	pgdat_resize_lock(zone->zone_pgdat, &flags);
 936	zone->zone_pgdat->node_present_pages += onlined_pages;
 937	pgdat_resize_unlock(zone->zone_pgdat, &flags);
 938
 939	if (onlined_pages) {
 940		node_states_set_node(nid, &arg);
 941		if (need_zonelists_rebuild)
 942			build_all_zonelists(NULL);
 943		else
 944			zone_pcp_update(zone);
 945	}
 946
 947	init_per_zone_wmark_min();
 
 
 
 
 
 
 948
 949	if (onlined_pages) {
 950		kswapd_run(nid);
 951		kcompactd_run(nid);
 952	}
 953
 954	vm_total_pages = nr_free_pagecache_pages();
 
 955
 956	writeback_set_ratelimit();
 957
 958	if (onlined_pages)
 959		memory_notify(MEM_ONLINE, &arg);
 960	return 0;
 961
 962failed_addition:
 963	pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
 964		 (unsigned long long) pfn << PAGE_SHIFT,
 965		 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
 966	memory_notify(MEM_CANCEL_ONLINE, &arg);
 
 
 967	return ret;
 968}
 969#endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
 970
 971static void reset_node_present_pages(pg_data_t *pgdat)
 972{
 973	struct zone *z;
 974
 975	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
 976		z->present_pages = 0;
 977
 978	pgdat->node_present_pages = 0;
 979}
 980
 981/* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
 982static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start)
 983{
 984	struct pglist_data *pgdat;
 985	unsigned long zones_size[MAX_NR_ZONES] = {0};
 986	unsigned long zholes_size[MAX_NR_ZONES] = {0};
 987	unsigned long start_pfn = PFN_DOWN(start);
 988
 
 
 
 
 
 
 989	pgdat = NODE_DATA(nid);
 990	if (!pgdat) {
 991		pgdat = arch_alloc_nodedata(nid);
 992		if (!pgdat)
 993			return NULL;
 994
 995		arch_refresh_nodedata(nid, pgdat);
 996	} else {
 997		/*
 998		 * Reset the nr_zones, order and classzone_idx before reuse.
 999		 * Note that kswapd will init kswapd_classzone_idx properly
1000		 * when it starts in the near future.
1001		 */
1002		pgdat->nr_zones = 0;
1003		pgdat->kswapd_order = 0;
1004		pgdat->kswapd_classzone_idx = 0;
1005	}
1006
1007	/* we can use NODE_DATA(nid) from here */
1008
1009	/* init node's zones as empty zones, we don't have any present pages.*/
1010	free_area_init_node(nid, zones_size, start_pfn, zholes_size);
1011	pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
1012
1013	/*
1014	 * The node we allocated has no zone fallback lists. For avoiding
1015	 * to access not-initialized zonelist, build here.
1016	 */
1017	build_all_zonelists(pgdat);
1018
1019	/*
1020	 * zone->managed_pages is set to an approximate value in
1021	 * free_area_init_core(), which will cause
1022	 * /sys/device/system/node/nodeX/meminfo has wrong data.
1023	 * So reset it to 0 before any memory is onlined.
1024	 */
1025	reset_node_managed_pages(pgdat);
1026
1027	/*
1028	 * When memory is hot-added, all the memory is in offline state. So
1029	 * clear all zones' present_pages because they will be updated in
1030	 * online_pages() and offline_pages().
 
1031	 */
 
1032	reset_node_present_pages(pgdat);
1033
1034	return pgdat;
1035}
1036
1037static void rollback_node_hotadd(int nid, pg_data_t *pgdat)
1038{
1039	arch_refresh_nodedata(nid, NULL);
1040	free_percpu(pgdat->per_cpu_nodestats);
1041	arch_free_nodedata(pgdat);
1042	return;
1043}
1044
1045
1046/**
1047 * try_online_node - online a node if offlined
1048 * @nid: the node ID
1049 *
1050 * called by cpu_up() to online a node without onlined memory.
 
 
 
 
 
1051 */
1052int try_online_node(int nid)
1053{
1054	pg_data_t	*pgdat;
1055	int	ret;
1056
1057	if (node_online(nid))
1058		return 0;
1059
1060	mem_hotplug_begin();
1061	pgdat = hotadd_new_pgdat(nid, 0);
1062	if (!pgdat) {
1063		pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1064		ret = -ENOMEM;
1065		goto out;
1066	}
1067	node_set_online(nid);
1068	ret = register_one_node(nid);
1069	BUG_ON(ret);
 
 
 
1070out:
 
 
 
 
 
 
 
 
 
 
 
 
1071	mem_hotplug_done();
1072	return ret;
1073}
1074
1075static int check_hotplug_memory_range(u64 start, u64 size)
1076{
1077	unsigned long block_sz = memory_block_size_bytes();
1078	u64 block_nr_pages = block_sz >> PAGE_SHIFT;
1079	u64 nr_pages = size >> PAGE_SHIFT;
1080	u64 start_pfn = PFN_DOWN(start);
1081
1082	/* memory range must be block size aligned */
1083	if (!nr_pages || !IS_ALIGNED(start_pfn, block_nr_pages) ||
1084	    !IS_ALIGNED(nr_pages, block_nr_pages)) {
1085		pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
1086		       block_sz, start, size);
1087		return -EINVAL;
1088	}
1089
1090	return 0;
1091}
1092
1093static int online_memory_block(struct memory_block *mem, void *arg)
1094{
 
1095	return device_online(&mem->dev);
1096}
1097
1098/* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1099int __ref add_memory_resource(int nid, struct resource *res, bool online)
1100{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1101	u64 start, size;
1102	pg_data_t *pgdat = NULL;
1103	bool new_pgdat;
1104	bool new_node;
1105	int ret;
1106
1107	start = res->start;
1108	size = resource_size(res);
1109
1110	ret = check_hotplug_memory_range(start, size);
1111	if (ret)
1112		return ret;
1113
1114	{	/* Stupid hack to suppress address-never-null warning */
1115		void *p = NODE_DATA(nid);
1116		new_pgdat = !p;
 
 
 
 
 
 
 
1117	}
1118
1119	mem_hotplug_begin();
1120
 
 
 
 
 
 
 
 
 
 
 
 
 
1121	/*
1122	 * Add new range to memblock so that when hotadd_new_pgdat() is called
1123	 * to allocate new pgdat, get_pfn_range_for_nid() will be able to find
1124	 * this new range and calculate total pages correctly.  The range will
1125	 * be removed at hot-remove time.
1126	 */
1127	memblock_add_node(start, size, nid);
1128
1129	new_node = !node_online(nid);
1130	if (new_node) {
1131		pgdat = hotadd_new_pgdat(nid, start);
1132		ret = -ENOMEM;
1133		if (!pgdat)
1134			goto error;
 
 
 
 
1135	}
1136
1137	/* call arch's memory hotadd */
1138	ret = arch_add_memory(nid, start, size, NULL, true);
1139
1140	if (ret < 0)
1141		goto error;
1142
1143	/* we online node here. we can't roll back from here. */
1144	node_set_online(nid);
 
 
 
 
 
1145
1146	if (new_node) {
1147		unsigned long start_pfn = start >> PAGE_SHIFT;
1148		unsigned long nr_pages = size >> PAGE_SHIFT;
1149
1150		ret = __register_one_node(nid);
1151		if (ret)
1152			goto register_fail;
1153
1154		/*
1155		 * link memory sections under this node. This is already
1156		 * done when creatig memory section in register_new_memory
1157		 * but that depends to have the node registered so offline
1158		 * nodes have to go through register_node.
1159		 * TODO clean up this mess.
1160		 */
1161		ret = link_mem_sections(nid, start_pfn, nr_pages, false);
1162register_fail:
1163		/*
1164		 * If sysfs file of new node can't create, cpu on the node
1165		 * can't be hot-added. There is no rollback way now.
1166		 * So, check by BUG_ON() to catch it reluctantly..
 
1167		 */
 
 
1168		BUG_ON(ret);
1169	}
1170
 
 
 
 
1171	/* create new memmap entry */
1172	firmware_map_add_hotplug(start, start + size, "System RAM");
 
1173
1174	/* online pages if requested */
1175	if (online)
1176		walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1),
1177				  NULL, online_memory_block);
 
 
 
 
 
1178
1179	goto out;
 
 
1180
 
1181error:
1182	/* rollback pgdat allocation and others */
1183	if (new_pgdat && pgdat)
1184		rollback_node_hotadd(nid, pgdat);
1185	memblock_remove(start, size);
1186
1187out:
1188	mem_hotplug_done();
1189	return ret;
1190}
1191EXPORT_SYMBOL_GPL(add_memory_resource);
1192
1193int __ref add_memory(int nid, u64 start, u64 size)
 
1194{
1195	struct resource *res;
1196	int ret;
1197
1198	res = register_memory_resource(start, size);
1199	if (IS_ERR(res))
1200		return PTR_ERR(res);
1201
1202	ret = add_memory_resource(nid, res, memhp_auto_online);
1203	if (ret < 0)
1204		release_memory_resource(res);
1205	return ret;
1206}
1207EXPORT_SYMBOL_GPL(add_memory);
1208
1209#ifdef CONFIG_MEMORY_HOTREMOVE
1210/*
1211 * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy
1212 * set and the size of the free page is given by page_order(). Using this,
1213 * the function determines if the pageblock contains only free pages.
1214 * Due to buddy contraints, a free page at least the size of a pageblock will
1215 * be located at the start of the pageblock
1216 */
1217static inline int pageblock_free(struct page *page)
1218{
1219	return PageBuddy(page) && page_order(page) >= pageblock_order;
1220}
1221
1222/* Return the start of the next active pageblock after a given page */
1223static struct page *next_active_pageblock(struct page *page)
1224{
1225	/* Ensure the starting page is pageblock-aligned */
1226	BUG_ON(page_to_pfn(page) & (pageblock_nr_pages - 1));
1227
1228	/* If the entire pageblock is free, move to the end of free page */
1229	if (pageblock_free(page)) {
1230		int order;
1231		/* be careful. we don't have locks, page_order can be changed.*/
1232		order = page_order(page);
1233		if ((order < MAX_ORDER) && (order >= pageblock_order))
1234			return page + (1 << order);
1235	}
1236
1237	return page + pageblock_nr_pages;
1238}
 
1239
1240/* Checks if this range of memory is likely to be hot-removable. */
1241bool is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1242{
1243	struct page *page = pfn_to_page(start_pfn);
1244	struct page *end_page = page + nr_pages;
1245
1246	/* Check the starting page of each pageblock within the range */
1247	for (; page < end_page; page = next_active_pageblock(page)) {
1248		if (!is_pageblock_removable_nolock(page))
1249			return false;
1250		cond_resched();
 
 
 
 
 
 
1251	}
1252
1253	/* All pageblocks in the memory block are likely to be hot-removable */
1254	return true;
 
 
 
 
 
1255}
 
1256
1257/*
1258 * Confirm all pages in a range [start, end) belong to the same zone.
1259 * When true, return its valid [start, end).
 
 
 
 
 
 
 
 
 
1260 */
1261int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn,
1262			 unsigned long *valid_start, unsigned long *valid_end)
1263{
1264	unsigned long pfn, sec_end_pfn;
1265	unsigned long start, end;
1266	struct zone *zone = NULL;
1267	struct page *page;
1268	int i;
1269	for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1);
1270	     pfn < end_pfn;
1271	     pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) {
1272		/* Make sure the memory section is present first */
1273		if (!present_section_nr(pfn_to_section_nr(pfn)))
1274			continue;
1275		for (; pfn < sec_end_pfn && pfn < end_pfn;
1276		     pfn += MAX_ORDER_NR_PAGES) {
1277			i = 0;
1278			/* This is just a CONFIG_HOLES_IN_ZONE check.*/
1279			while ((i < MAX_ORDER_NR_PAGES) &&
1280				!pfn_valid_within(pfn + i))
1281				i++;
1282			if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn)
1283				continue;
1284			page = pfn_to_page(pfn + i);
1285			if (zone && page_zone(page) != zone)
1286				return 0;
1287			if (!zone)
1288				start = pfn + i;
1289			zone = page_zone(page);
1290			end = pfn + MAX_ORDER_NR_PAGES;
1291		}
1292	}
1293
1294	if (zone) {
1295		*valid_start = start;
1296		*valid_end = min(end, end_pfn);
1297		return 1;
 
 
 
1298	} else {
1299		return 0;
 
1300	}
 
1301}
 
1302
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1303/*
1304 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1305 * non-lru movable pages and hugepages). We scan pfn because it's much
1306 * easier than scanning over linked list. This function returns the pfn
1307 * of the first found movable page if it's found, otherwise 0.
 
 
 
 
 
1308 */
1309static unsigned long scan_movable_pages(unsigned long start, unsigned long end)
 
1310{
1311	unsigned long pfn;
1312	struct page *page;
1313	for (pfn = start; pfn < end; pfn++) {
1314		if (pfn_valid(pfn)) {
1315			page = pfn_to_page(pfn);
1316			if (PageLRU(page))
1317				return pfn;
1318			if (__PageMovable(page))
1319				return pfn;
1320			if (PageHuge(page)) {
1321				if (page_huge_active(page))
1322					return pfn;
1323				else
1324					pfn = round_up(pfn + 1,
1325						1 << compound_order(page)) - 1;
1326			}
1327		}
1328	}
1329	return 0;
1330}
1331
1332static struct page *new_node_page(struct page *page, unsigned long private)
1333{
1334	int nid = page_to_nid(page);
1335	nodemask_t nmask = node_states[N_MEMORY];
 
 
 
1336
1337	/*
1338	 * try to allocate from a different node but reuse this node if there
1339	 * are no other online nodes to be used (e.g. we are offlining a part
1340	 * of the only existing node)
1341	 */
1342	node_clear(nid, nmask);
1343	if (nodes_empty(nmask))
1344		node_set(nid, nmask);
1345
1346	return new_page_nodemask(page, nid, &nmask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1347}
1348
1349#define NR_OFFLINE_AT_ONCE_PAGES	(256)
1350static int
1351do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1352{
1353	unsigned long pfn;
1354	struct page *page;
1355	int move_pages = NR_OFFLINE_AT_ONCE_PAGES;
1356	int not_managed = 0;
1357	int ret = 0;
1358	LIST_HEAD(source);
 
 
 
 
 
1359
1360	for (pfn = start_pfn; pfn < end_pfn && move_pages > 0; pfn++) {
1361		if (!pfn_valid(pfn))
1362			continue;
1363		page = pfn_to_page(pfn);
 
 
1364
1365		if (PageHuge(page)) {
1366			struct page *head = compound_head(page);
1367			pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1;
1368			if (compound_order(head) > PFN_SECTION_SHIFT) {
1369				ret = -EBUSY;
1370				break;
1371			}
1372			if (isolate_huge_page(page, &source))
1373				move_pages -= 1 << compound_order(head);
1374			continue;
1375		} else if (PageTransHuge(page))
1376			pfn = page_to_pfn(compound_head(page))
1377				+ hpage_nr_pages(page) - 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1378
1379		if (!get_page_unless_zero(page))
1380			continue;
1381		/*
1382		 * We can skip free pages. And we can deal with pages on
1383		 * LRU and non-lru movable pages.
1384		 */
1385		if (PageLRU(page))
1386			ret = isolate_lru_page(page);
1387		else
1388			ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1389		if (!ret) { /* Success */
1390			put_page(page);
1391			list_add_tail(&page->lru, &source);
1392			move_pages--;
1393			if (!__PageMovable(page))
1394				inc_node_page_state(page, NR_ISOLATED_ANON +
1395						    page_is_file_cache(page));
1396
1397		} else {
1398#ifdef CONFIG_DEBUG_VM
1399			pr_alert("failed to isolate pfn %lx\n", pfn);
1400			dump_page(page, "isolation failed");
1401#endif
1402			put_page(page);
1403			/* Because we don't have big zone->lock. we should
1404			   check this again here. */
1405			if (page_count(page)) {
1406				not_managed++;
1407				ret = -EBUSY;
1408				break;
1409			}
1410		}
 
1411	}
1412	if (!list_empty(&source)) {
1413		if (not_managed) {
1414			putback_movable_pages(&source);
1415			goto out;
1416		}
 
1417
1418		/* Allocate a new page from the nearest neighbor node */
1419		ret = migrate_pages(&source, new_node_page, NULL, 0,
1420					MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1421		if (ret)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1422			putback_movable_pages(&source);
 
1423	}
1424out:
1425	return ret;
1426}
1427
1428/*
1429 * remove from free_area[] and mark all as Reserved.
1430 */
1431static int
1432offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages,
1433			void *data)
1434{
1435	__offline_isolated_pages(start, start + nr_pages);
1436	return 0;
1437}
1438
1439static void
1440offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
1441{
1442	walk_system_ram_range(start_pfn, end_pfn - start_pfn, NULL,
1443				offline_isolated_pages_cb);
1444}
1445
1446/*
1447 * Check all pages in range, recoreded as memory resource, are isolated.
1448 */
1449static int
1450check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages,
1451			void *data)
1452{
1453	int ret;
1454	long offlined = *(long *)data;
1455	ret = test_pages_isolated(start_pfn, start_pfn + nr_pages, true);
1456	offlined = nr_pages;
1457	if (!ret)
1458		*(long *)data += offlined;
1459	return ret;
1460}
1461
1462static long
1463check_pages_isolated(unsigned long start_pfn, unsigned long end_pfn)
1464{
1465	long offlined = 0;
1466	int ret;
1467
1468	ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, &offlined,
1469			check_pages_isolated_cb);
1470	if (ret < 0)
1471		offlined = (long)ret;
1472	return offlined;
1473}
1474
1475static int __init cmdline_parse_movable_node(char *p)
1476{
1477#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1478	movable_node_enabled = true;
1479#else
1480	pr_warn("movable_node parameter depends on CONFIG_HAVE_MEMBLOCK_NODE_MAP to work properly\n");
1481#endif
1482	return 0;
1483}
1484early_param("movable_node", cmdline_parse_movable_node);
1485
1486/* check which state of node_states will be changed when offline memory */
1487static void node_states_check_changes_offline(unsigned long nr_pages,
1488		struct zone *zone, struct memory_notify *arg)
1489{
1490	struct pglist_data *pgdat = zone->zone_pgdat;
1491	unsigned long present_pages = 0;
1492	enum zone_type zt, zone_last = ZONE_NORMAL;
1493
1494	/*
1495	 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
1496	 * contains nodes which have zones of 0...ZONE_NORMAL,
1497	 * set zone_last to ZONE_NORMAL.
1498	 *
1499	 * If we don't have HIGHMEM nor movable node,
1500	 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
1501	 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
1502	 */
1503	if (N_MEMORY == N_NORMAL_MEMORY)
1504		zone_last = ZONE_MOVABLE;
1505
1506	/*
1507	 * check whether node_states[N_NORMAL_MEMORY] will be changed.
1508	 * If the memory to be offline is in a zone of 0...zone_last,
1509	 * and it is the last present memory, 0...zone_last will
1510	 * become empty after offline , thus we can determind we will
1511	 * need to clear the node from node_states[N_NORMAL_MEMORY].
 
1512	 */
1513	for (zt = 0; zt <= zone_last; zt++)
1514		present_pages += pgdat->node_zones[zt].present_pages;
1515	if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
1516		arg->status_change_nid_normal = zone_to_nid(zone);
1517	else
1518		arg->status_change_nid_normal = -1;
1519
1520#ifdef CONFIG_HIGHMEM
1521	/*
1522	 * If we have movable node, node_states[N_HIGH_MEMORY]
1523	 * contains nodes which have zones of 0...ZONE_HIGHMEM,
1524	 * set zone_last to ZONE_HIGHMEM.
1525	 *
1526	 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
1527	 * contains nodes which have zones of 0...ZONE_MOVABLE,
1528	 * set zone_last to ZONE_MOVABLE.
1529	 */
1530	zone_last = ZONE_HIGHMEM;
1531	if (N_MEMORY == N_HIGH_MEMORY)
1532		zone_last = ZONE_MOVABLE;
1533
1534	for (; zt <= zone_last; zt++)
1535		present_pages += pgdat->node_zones[zt].present_pages;
1536	if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
1537		arg->status_change_nid_high = zone_to_nid(zone);
1538	else
1539		arg->status_change_nid_high = -1;
1540#else
1541	arg->status_change_nid_high = arg->status_change_nid_normal;
1542#endif
1543
1544	/*
1545	 * node_states[N_HIGH_MEMORY] contains nodes which have 0...ZONE_MOVABLE
1546	 */
1547	zone_last = ZONE_MOVABLE;
1548
1549	/*
1550	 * check whether node_states[N_HIGH_MEMORY] will be changed
1551	 * If we try to offline the last present @nr_pages from the node,
1552	 * we can determind we will need to clear the node from
1553	 * node_states[N_HIGH_MEMORY].
1554	 */
1555	for (; zt <= zone_last; zt++)
1556		present_pages += pgdat->node_zones[zt].present_pages;
1557	if (nr_pages >= present_pages)
1558		arg->status_change_nid = zone_to_nid(zone);
1559	else
1560		arg->status_change_nid = -1;
1561}
1562
1563static void node_states_clear_node(int node, struct memory_notify *arg)
1564{
1565	if (arg->status_change_nid_normal >= 0)
1566		node_clear_state(node, N_NORMAL_MEMORY);
1567
1568	if ((N_MEMORY != N_NORMAL_MEMORY) &&
1569	    (arg->status_change_nid_high >= 0))
1570		node_clear_state(node, N_HIGH_MEMORY);
1571
1572	if ((N_MEMORY != N_HIGH_MEMORY) &&
1573	    (arg->status_change_nid >= 0))
1574		node_clear_state(node, N_MEMORY);
1575}
1576
1577static int __ref __offline_pages(unsigned long start_pfn,
1578		  unsigned long end_pfn)
 
 
 
 
 
 
 
 
 
1579{
1580	unsigned long pfn, nr_pages;
1581	long offlined_pages;
1582	int ret, node;
1583	unsigned long flags;
1584	unsigned long valid_start, valid_end;
1585	struct zone *zone;
1586	struct memory_notify arg;
 
 
1587
1588	/* at least, alignment against pageblock is necessary */
1589	if (!IS_ALIGNED(start_pfn, pageblock_nr_pages))
1590		return -EINVAL;
1591	if (!IS_ALIGNED(end_pfn, pageblock_nr_pages))
1592		return -EINVAL;
1593	/* This makes hotplug much easier...and readable.
1594	   we assume this for now. .*/
1595	if (!test_pages_in_a_zone(start_pfn, end_pfn, &valid_start, &valid_end))
 
1596		return -EINVAL;
1597
1598	zone = page_zone(pfn_to_page(valid_start));
1599	node = zone_to_nid(zone);
1600	nr_pages = end_pfn - start_pfn;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1601
1602	/* set above range as isolated */
1603	ret = start_isolate_page_range(start_pfn, end_pfn,
1604				       MIGRATE_MOVABLE, true);
1605	if (ret)
1606		return ret;
 
 
 
 
1607
1608	arg.start_pfn = start_pfn;
1609	arg.nr_pages = nr_pages;
1610	node_states_check_changes_offline(nr_pages, zone, &arg);
1611
1612	ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1613	ret = notifier_to_errno(ret);
1614	if (ret)
1615		goto failed_removal;
 
 
1616
1617	pfn = start_pfn;
1618repeat:
1619	/* start memory hot removal */
1620	ret = -EINTR;
1621	if (signal_pending(current))
1622		goto failed_removal;
 
 
1623
1624	cond_resched();
1625	lru_add_drain_all();
1626	drain_all_pages(zone);
1627
1628	pfn = scan_movable_pages(start_pfn, end_pfn);
1629	if (pfn) { /* We have movable pages */
1630		ret = do_migrate_range(pfn, end_pfn);
1631		goto repeat;
1632	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1633
1634	/*
1635	 * dissolve free hugepages in the memory block before doing offlining
1636	 * actually in order to make hugetlbfs's object counting consistent.
 
1637	 */
1638	ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1639	if (ret)
1640		goto failed_removal;
1641	/* check again */
1642	offlined_pages = check_pages_isolated(start_pfn, end_pfn);
1643	if (offlined_pages < 0)
1644		goto repeat;
1645	pr_info("Offlined Pages %ld\n", offlined_pages);
1646	/* Ok, all of our target is isolated.
1647	   We cannot do rollback at this point. */
1648	offline_isolated_pages(start_pfn, end_pfn);
1649	/* reset pagetype flags and makes migrate type to be MOVABLE */
1650	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1651	/* removal success */
1652	adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages);
1653	zone->present_pages -= offlined_pages;
1654
1655	pgdat_resize_lock(zone->zone_pgdat, &flags);
1656	zone->zone_pgdat->node_present_pages -= offlined_pages;
1657	pgdat_resize_unlock(zone->zone_pgdat, &flags);
1658
 
 
 
 
 
1659	init_per_zone_wmark_min();
1660
1661	if (!populated_zone(zone)) {
1662		zone_pcp_reset(zone);
1663		build_all_zonelists(NULL);
1664	} else
1665		zone_pcp_update(zone);
1666
1667	node_states_clear_node(node, &arg);
1668	if (arg.status_change_nid >= 0) {
1669		kswapd_stop(node);
1670		kcompactd_stop(node);
 
1671	}
1672
1673	vm_total_pages = nr_free_pagecache_pages();
1674	writeback_set_ratelimit();
1675
1676	memory_notify(MEM_OFFLINE, &arg);
 
 
1677	return 0;
1678
1679failed_removal:
1680	pr_debug("memory offlining [mem %#010llx-%#010llx] failed\n",
1681		 (unsigned long long) start_pfn << PAGE_SHIFT,
1682		 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
1683	memory_notify(MEM_CANCEL_OFFLINE, &arg);
1684	/* pushback to free area */
1685	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
 
 
 
 
 
 
 
 
 
 
1686	return ret;
1687}
1688
1689/* Must be protected by mem_hotplug_begin() or a device_lock */
1690int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1691{
1692	return __offline_pages(start_pfn, start_pfn + nr_pages);
1693}
1694#endif /* CONFIG_MEMORY_HOTREMOVE */
1695
1696/**
1697 * walk_memory_range - walks through all mem sections in [start_pfn, end_pfn)
1698 * @start_pfn: start pfn of the memory range
1699 * @end_pfn: end pfn of the memory range
1700 * @arg: argument passed to func
1701 * @func: callback for each memory section walked
1702 *
1703 * This function walks through all present mem sections in range
1704 * [start_pfn, end_pfn) and call func on each mem section.
1705 *
1706 * Returns the return value of func.
1707 */
1708int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn,
1709		void *arg, int (*func)(struct memory_block *, void *))
1710{
1711	struct memory_block *mem = NULL;
1712	struct mem_section *section;
1713	unsigned long pfn, section_nr;
1714	int ret;
1715
1716	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1717		section_nr = pfn_to_section_nr(pfn);
1718		if (!present_section_nr(section_nr))
1719			continue;
1720
1721		section = __nr_to_section(section_nr);
1722		/* same memblock? */
1723		if (mem)
1724			if ((section_nr >= mem->start_section_nr) &&
1725			    (section_nr <= mem->end_section_nr))
1726				continue;
1727
1728		mem = find_memory_block_hinted(section, mem);
1729		if (!mem)
1730			continue;
1731
1732		ret = func(mem, arg);
1733		if (ret) {
1734			kobject_put(&mem->dev.kobj);
1735			return ret;
1736		}
1737	}
1738
1739	if (mem)
1740		kobject_put(&mem->dev.kobj);
1741
1742	return 0;
1743}
1744
1745#ifdef CONFIG_MEMORY_HOTREMOVE
1746static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1747{
1748	int ret = !is_memblock_offlined(mem);
1749
1750	if (unlikely(ret)) {
 
1751		phys_addr_t beginpa, endpa;
1752
1753		beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1754		endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1;
1755		pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
1756			&beginpa, &endpa);
 
 
1757	}
 
 
1758
1759	return ret;
 
 
 
 
 
1760}
1761
1762static int check_cpu_on_node(pg_data_t *pgdat)
1763{
1764	int cpu;
1765
1766	for_each_present_cpu(cpu) {
1767		if (cpu_to_node(cpu) == pgdat->node_id)
1768			/*
1769			 * the cpu on this node isn't removed, and we can't
1770			 * offline this node.
1771			 */
1772			return -EBUSY;
1773	}
1774
1775	return 0;
1776}
1777
1778static void unmap_cpu_on_node(pg_data_t *pgdat)
1779{
1780#ifdef CONFIG_ACPI_NUMA
1781	int cpu;
1782
1783	for_each_possible_cpu(cpu)
1784		if (cpu_to_node(cpu) == pgdat->node_id)
1785			numa_clear_node(cpu);
1786#endif
1787}
1788
1789static int check_and_unmap_cpu_on_node(pg_data_t *pgdat)
1790{
1791	int ret;
1792
1793	ret = check_cpu_on_node(pgdat);
1794	if (ret)
1795		return ret;
1796
1797	/*
1798	 * the node will be offlined when we come here, so we can clear
1799	 * the cpu_to_node() now.
 
1800	 */
1801
1802	unmap_cpu_on_node(pgdat);
1803	return 0;
1804}
1805
1806/**
1807 * try_offline_node
1808 * @nid: the node ID
1809 *
1810 * Offline a node if all memory sections and cpus of the node are removed.
1811 *
1812 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1813 * and online/offline operations before this call.
1814 */
1815void try_offline_node(int nid)
1816{
1817	pg_data_t *pgdat = NODE_DATA(nid);
1818	unsigned long start_pfn = pgdat->node_start_pfn;
1819	unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
1820	unsigned long pfn;
1821
1822	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1823		unsigned long section_nr = pfn_to_section_nr(pfn);
1824
1825		if (!present_section_nr(section_nr))
1826			continue;
1827
1828		if (pfn_to_nid(pfn) != nid)
1829			continue;
 
 
1830
1831		/*
1832		 * some memory sections of this node are not removed, and we
1833		 * can't offline node now.
1834		 */
 
 
 
1835		return;
1836	}
1837
1838	if (check_and_unmap_cpu_on_node(pgdat))
1839		return;
1840
1841	/*
1842	 * all memory/cpu of this node are removed, we can offline this
1843	 * node now.
1844	 */
1845	node_set_offline(nid);
1846	unregister_one_node(nid);
1847}
1848EXPORT_SYMBOL(try_offline_node);
1849
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1850/**
1851 * remove_memory
1852 * @nid: the node ID
1853 * @start: physical address of the region to remove
1854 * @size: size of the region to remove
1855 *
1856 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1857 * and online/offline operations before this call, as required by
1858 * try_offline_node().
1859 */
1860void __ref remove_memory(int nid, u64 start, u64 size)
1861{
1862	int ret;
1863
1864	BUG_ON(check_hotplug_memory_range(start, size));
 
 
 
 
 
 
1865
1866	mem_hotplug_begin();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1867
1868	/*
1869	 * All memory blocks must be offlined before removing memory.  Check
1870	 * whether all memory blocks in question are offline and trigger a BUG()
1871	 * if this is not the case.
1872	 */
1873	ret = walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), NULL,
1874				check_memblock_offlined_cb);
1875	if (ret)
1876		BUG();
1877
1878	/* remove memmap entry */
1879	firmware_map_remove(start, start + size, "System RAM");
1880	memblock_free(start, size);
1881	memblock_remove(start, size);
 
 
 
 
 
 
 
 
1882
1883	arch_remove_memory(start, size, NULL);
 
 
 
1884
1885	try_offline_node(nid);
 
 
 
 
 
 
1886
1887	mem_hotplug_done();
 
 
1888}
1889EXPORT_SYMBOL_GPL(remove_memory);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1890#endif /* CONFIG_MEMORY_HOTREMOVE */
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/memory_hotplug.c
   4 *
   5 *  Copyright (C)
   6 */
   7
   8#include <linux/stddef.h>
   9#include <linux/mm.h>
  10#include <linux/sched/signal.h>
  11#include <linux/swap.h>
  12#include <linux/interrupt.h>
  13#include <linux/pagemap.h>
  14#include <linux/compiler.h>
  15#include <linux/export.h>
  16#include <linux/pagevec.h>
  17#include <linux/writeback.h>
  18#include <linux/slab.h>
  19#include <linux/sysctl.h>
  20#include <linux/cpu.h>
  21#include <linux/memory.h>
  22#include <linux/memremap.h>
  23#include <linux/memory_hotplug.h>
 
  24#include <linux/vmalloc.h>
  25#include <linux/ioport.h>
  26#include <linux/delay.h>
  27#include <linux/migrate.h>
  28#include <linux/page-isolation.h>
  29#include <linux/pfn.h>
  30#include <linux/suspend.h>
  31#include <linux/mm_inline.h>
  32#include <linux/firmware-map.h>
  33#include <linux/stop_machine.h>
  34#include <linux/hugetlb.h>
  35#include <linux/memblock.h>
 
  36#include <linux/compaction.h>
  37#include <linux/rmap.h>
  38#include <linux/module.h>
  39
  40#include <asm/tlbflush.h>
  41
  42#include "internal.h"
  43#include "shuffle.h"
  44
  45#ifdef CONFIG_MHP_MEMMAP_ON_MEMORY
  46/*
  47 * memory_hotplug.memmap_on_memory parameter
  48 */
  49static bool memmap_on_memory __ro_after_init;
  50module_param(memmap_on_memory, bool, 0444);
  51MODULE_PARM_DESC(memmap_on_memory, "Enable memmap on memory for memory hotplug");
  52
  53static inline bool mhp_memmap_on_memory(void)
  54{
  55	return memmap_on_memory;
  56}
  57#else
  58static inline bool mhp_memmap_on_memory(void)
  59{
  60	return false;
  61}
  62#endif
  63
  64enum {
  65	ONLINE_POLICY_CONTIG_ZONES = 0,
  66	ONLINE_POLICY_AUTO_MOVABLE,
  67};
  68
  69static const char * const online_policy_to_str[] = {
  70	[ONLINE_POLICY_CONTIG_ZONES] = "contig-zones",
  71	[ONLINE_POLICY_AUTO_MOVABLE] = "auto-movable",
  72};
  73
  74static int set_online_policy(const char *val, const struct kernel_param *kp)
  75{
  76	int ret = sysfs_match_string(online_policy_to_str, val);
  77
  78	if (ret < 0)
  79		return ret;
  80	*((int *)kp->arg) = ret;
  81	return 0;
  82}
  83
  84static int get_online_policy(char *buffer, const struct kernel_param *kp)
  85{
  86	return sprintf(buffer, "%s\n", online_policy_to_str[*((int *)kp->arg)]);
  87}
  88
  89/*
  90 * memory_hotplug.online_policy: configure online behavior when onlining without
  91 * specifying a zone (MMOP_ONLINE)
  92 *
  93 * "contig-zones": keep zone contiguous
  94 * "auto-movable": online memory to ZONE_MOVABLE if the configuration
  95 *                 (auto_movable_ratio, auto_movable_numa_aware) allows for it
  96 */
  97static int online_policy __read_mostly = ONLINE_POLICY_CONTIG_ZONES;
  98static const struct kernel_param_ops online_policy_ops = {
  99	.set = set_online_policy,
 100	.get = get_online_policy,
 101};
 102module_param_cb(online_policy, &online_policy_ops, &online_policy, 0644);
 103MODULE_PARM_DESC(online_policy,
 104		"Set the online policy (\"contig-zones\", \"auto-movable\") "
 105		"Default: \"contig-zones\"");
 106
 107/*
 108 * memory_hotplug.auto_movable_ratio: specify maximum MOVABLE:KERNEL ratio
 109 *
 110 * The ratio represent an upper limit and the kernel might decide to not
 111 * online some memory to ZONE_MOVABLE -- e.g., because hotplugged KERNEL memory
 112 * doesn't allow for more MOVABLE memory.
 113 */
 114static unsigned int auto_movable_ratio __read_mostly = 301;
 115module_param(auto_movable_ratio, uint, 0644);
 116MODULE_PARM_DESC(auto_movable_ratio,
 117		"Set the maximum ratio of MOVABLE:KERNEL memory in the system "
 118		"in percent for \"auto-movable\" online policy. Default: 301");
 119
 120/*
 121 * memory_hotplug.auto_movable_numa_aware: consider numa node stats
 122 */
 123#ifdef CONFIG_NUMA
 124static bool auto_movable_numa_aware __read_mostly = true;
 125module_param(auto_movable_numa_aware, bool, 0644);
 126MODULE_PARM_DESC(auto_movable_numa_aware,
 127		"Consider numa node stats in addition to global stats in "
 128		"\"auto-movable\" online policy. Default: true");
 129#endif /* CONFIG_NUMA */
 130
 131/*
 132 * online_page_callback contains pointer to current page onlining function.
 133 * Initially it is generic_online_page(). If it is required it could be
 134 * changed by calling set_online_page_callback() for callback registration
 135 * and restore_online_page_callback() for generic callback restore.
 136 */
 137
 
 
 138static online_page_callback_t online_page_callback = generic_online_page;
 139static DEFINE_MUTEX(online_page_callback_lock);
 140
 141DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
 142
 143void get_online_mems(void)
 144{
 145	percpu_down_read(&mem_hotplug_lock);
 146}
 147
 148void put_online_mems(void)
 149{
 150	percpu_up_read(&mem_hotplug_lock);
 151}
 152
 153bool movable_node_enabled = false;
 154
 155#ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
 156int mhp_default_online_type = MMOP_OFFLINE;
 157#else
 158int mhp_default_online_type = MMOP_ONLINE;
 159#endif
 
 160
 161static int __init setup_memhp_default_state(char *str)
 162{
 163	const int online_type = mhp_online_type_from_str(str);
 164
 165	if (online_type >= 0)
 166		mhp_default_online_type = online_type;
 167
 168	return 1;
 169}
 170__setup("memhp_default_state=", setup_memhp_default_state);
 171
 172void mem_hotplug_begin(void)
 173{
 174	cpus_read_lock();
 175	percpu_down_write(&mem_hotplug_lock);
 176}
 177
 178void mem_hotplug_done(void)
 179{
 180	percpu_up_write(&mem_hotplug_lock);
 181	cpus_read_unlock();
 182}
 183
 184u64 max_mem_size = U64_MAX;
 185
 186/* add this memory to iomem resource */
 187static struct resource *register_memory_resource(u64 start, u64 size,
 188						 const char *resource_name)
 189{
 190	struct resource *res;
 191	unsigned long flags =  IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
 
 
 192
 193	if (strcmp(resource_name, "System RAM"))
 194		flags |= IORESOURCE_SYSRAM_DRIVER_MANAGED;
 195
 196	if (!mhp_range_allowed(start, size, true))
 197		return ERR_PTR(-E2BIG);
 198
 199	/*
 200	 * Make sure value parsed from 'mem=' only restricts memory adding
 201	 * while booting, so that memory hotplug won't be impacted. Please
 202	 * refer to document of 'mem=' in kernel-parameters.txt for more
 203	 * details.
 204	 */
 205	if (start + size > max_mem_size && system_state < SYSTEM_RUNNING)
 206		return ERR_PTR(-E2BIG);
 207
 208	/*
 209	 * Request ownership of the new memory range.  This might be
 210	 * a child of an existing resource that was present but
 211	 * not marked as busy.
 212	 */
 213	res = __request_region(&iomem_resource, start, size,
 214			       resource_name, flags);
 215
 216	if (!res) {
 217		pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
 218				start, start + size);
 219		return ERR_PTR(-EEXIST);
 220	}
 221	return res;
 222}
 223
 224static void release_memory_resource(struct resource *res)
 225{
 226	if (!res)
 227		return;
 228	release_resource(res);
 229	kfree(res);
 
 
 
 
 
 
 
 
 
 
 
 230}
 231
 232static int check_pfn_span(unsigned long pfn, unsigned long nr_pages)
 233{
 234	/*
 235	 * Disallow all operations smaller than a sub-section and only
 236	 * allow operations smaller than a section for
 237	 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range()
 238	 * enforces a larger memory_block_size_bytes() granularity for
 239	 * memory that will be marked online, so this check should only
 240	 * fire for direct arch_{add,remove}_memory() users outside of
 241	 * add_memory_resource().
 242	 */
 243	unsigned long min_align;
 244
 245	if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
 246		min_align = PAGES_PER_SUBSECTION;
 247	else
 248		min_align = PAGES_PER_SECTION;
 249	if (!IS_ALIGNED(pfn | nr_pages, min_align))
 250		return -EINVAL;
 251	return 0;
 252}
 253
 254/*
 255 * Return page for the valid pfn only if the page is online. All pfn
 256 * walkers which rely on the fully initialized page->flags and others
 257 * should use this rather than pfn_valid && pfn_to_page
 258 */
 259struct page *pfn_to_online_page(unsigned long pfn)
 260{
 261	unsigned long nr = pfn_to_section_nr(pfn);
 262	struct dev_pagemap *pgmap;
 263	struct mem_section *ms;
 
 264
 265	if (nr >= NR_MEM_SECTIONS)
 266		return NULL;
 267
 268	ms = __nr_to_section(nr);
 269	if (!online_section(ms))
 270		return NULL;
 271
 272	/*
 273	 * Save some code text when online_section() +
 274	 * pfn_section_valid() are sufficient.
 275	 */
 276	if (IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) && !pfn_valid(pfn))
 277		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 278
 279	if (!pfn_section_valid(ms, pfn))
 280		return NULL;
 
 
 
 281
 282	if (!online_device_section(ms))
 283		return pfn_to_page(pfn);
 284
 285	/*
 286	 * Slowpath: when ZONE_DEVICE collides with
 287	 * ZONE_{NORMAL,MOVABLE} within the same section some pfns in
 288	 * the section may be 'offline' but 'valid'. Only
 289	 * get_dev_pagemap() can determine sub-section online status.
 290	 */
 291	pgmap = get_dev_pagemap(pfn, NULL);
 292	put_dev_pagemap(pgmap);
 293
 294	/* The presence of a pgmap indicates ZONE_DEVICE offline pfn */
 295	if (pgmap)
 296		return NULL;
 297
 298	return pfn_to_page(pfn);
 
 
 
 
 
 
 
 
 
 
 299}
 300EXPORT_SYMBOL_GPL(pfn_to_online_page);
 301
 302int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages,
 303		struct mhp_params *params)
 304{
 305	const unsigned long end_pfn = pfn + nr_pages;
 306	unsigned long cur_nr_pages;
 307	int err;
 308	struct vmem_altmap *altmap = params->altmap;
 
 
 
 
 
 
 
 309
 310	if (WARN_ON_ONCE(!pgprot_val(params->pgprot)))
 311		return -EINVAL;
 312
 313	VM_BUG_ON(!mhp_range_allowed(PFN_PHYS(pfn), nr_pages * PAGE_SIZE, false));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 314
 315	if (altmap) {
 316		/*
 317		 * Validate altmap is within bounds of the total request
 318		 */
 319		if (altmap->base_pfn != pfn
 320				|| vmem_altmap_offset(altmap) > nr_pages) {
 321			pr_warn_once("memory add fail, invalid altmap\n");
 322			return -EINVAL;
 
 323		}
 324		altmap->alloc = 0;
 325	}
 326
 327	if (check_pfn_span(pfn, nr_pages)) {
 328		WARN(1, "Misaligned %s start: %#lx end: #%lx\n", __func__, pfn, pfn + nr_pages - 1);
 329		return -EINVAL;
 330	}
 331
 332	for (; pfn < end_pfn; pfn += cur_nr_pages) {
 333		/* Select all remaining pages up to the next section boundary */
 334		cur_nr_pages = min(end_pfn - pfn,
 335				   SECTION_ALIGN_UP(pfn + 1) - pfn);
 336		err = sparse_add_section(nid, pfn, cur_nr_pages, altmap,
 337					 params->pgmap);
 338		if (err)
 339			break;
 
 340		cond_resched();
 341	}
 342	vmemmap_populate_print_last();
 
 343	return err;
 344}
 345
 
 346/* find the smallest valid pfn in the range [start_pfn, end_pfn) */
 347static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
 348				     unsigned long start_pfn,
 349				     unsigned long end_pfn)
 350{
 351	for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) {
 352		if (unlikely(!pfn_to_online_page(start_pfn)))
 
 
 
 
 353			continue;
 354
 355		if (unlikely(pfn_to_nid(start_pfn) != nid))
 356			continue;
 357
 358		if (zone != page_zone(pfn_to_page(start_pfn)))
 359			continue;
 360
 361		return start_pfn;
 362	}
 363
 364	return 0;
 365}
 366
 367/* find the biggest valid pfn in the range [start_pfn, end_pfn). */
 368static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
 369				    unsigned long start_pfn,
 370				    unsigned long end_pfn)
 371{
 
 372	unsigned long pfn;
 373
 374	/* pfn is the end pfn of a memory section. */
 375	pfn = end_pfn - 1;
 376	for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) {
 377		if (unlikely(!pfn_to_online_page(pfn)))
 
 
 378			continue;
 379
 380		if (unlikely(pfn_to_nid(pfn) != nid))
 381			continue;
 382
 383		if (zone != page_zone(pfn_to_page(pfn)))
 384			continue;
 385
 386		return pfn;
 387	}
 388
 389	return 0;
 390}
 391
 392static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
 393			     unsigned long end_pfn)
 394{
 
 
 
 395	unsigned long pfn;
 
 396	int nid = zone_to_nid(zone);
 397
 398	if (zone->zone_start_pfn == start_pfn) {
 
 399		/*
 400		 * If the section is smallest section in the zone, it need
 401		 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
 402		 * In this case, we find second smallest valid mem_section
 403		 * for shrinking zone.
 404		 */
 405		pfn = find_smallest_section_pfn(nid, zone, end_pfn,
 406						zone_end_pfn(zone));
 407		if (pfn) {
 408			zone->spanned_pages = zone_end_pfn(zone) - pfn;
 409			zone->zone_start_pfn = pfn;
 410		} else {
 411			zone->zone_start_pfn = 0;
 412			zone->spanned_pages = 0;
 413		}
 414	} else if (zone_end_pfn(zone) == end_pfn) {
 415		/*
 416		 * If the section is biggest section in the zone, it need
 417		 * shrink zone->spanned_pages.
 418		 * In this case, we find second biggest valid mem_section for
 419		 * shrinking zone.
 420		 */
 421		pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn,
 422					       start_pfn);
 423		if (pfn)
 424			zone->spanned_pages = pfn - zone->zone_start_pfn + 1;
 425		else {
 426			zone->zone_start_pfn = 0;
 427			zone->spanned_pages = 0;
 428		}
 429	}
 430}
 431
 432static void update_pgdat_span(struct pglist_data *pgdat)
 433{
 434	unsigned long node_start_pfn = 0, node_end_pfn = 0;
 435	struct zone *zone;
 
 
 
 
 
 436
 437	for (zone = pgdat->node_zones;
 438	     zone < pgdat->node_zones + MAX_NR_ZONES; zone++) {
 439		unsigned long end_pfn = zone_end_pfn(zone);
 440
 441		/* No need to lock the zones, they can't change. */
 442		if (!zone->spanned_pages)
 443			continue;
 444		if (!node_end_pfn) {
 445			node_start_pfn = zone->zone_start_pfn;
 446			node_end_pfn = end_pfn;
 447			continue;
 448		}
 449
 450		if (end_pfn > node_end_pfn)
 451			node_end_pfn = end_pfn;
 452		if (zone->zone_start_pfn < node_start_pfn)
 453			node_start_pfn = zone->zone_start_pfn;
 454	}
 455
 456	pgdat->node_start_pfn = node_start_pfn;
 457	pgdat->node_spanned_pages = node_end_pfn - node_start_pfn;
 
 
 458}
 459
 460void __ref remove_pfn_range_from_zone(struct zone *zone,
 461				      unsigned long start_pfn,
 462				      unsigned long nr_pages)
 463{
 464	const unsigned long end_pfn = start_pfn + nr_pages;
 465	struct pglist_data *pgdat = zone->zone_pgdat;
 466	unsigned long pfn, cur_nr_pages;
 
 
 467
 468	/* Poison struct pages because they are now uninitialized again. */
 469	for (pfn = start_pfn; pfn < end_pfn; pfn += cur_nr_pages) {
 470		cond_resched();
 471
 472		/* Select all remaining pages up to the next section boundary */
 473		cur_nr_pages =
 474			min(end_pfn - pfn, SECTION_ALIGN_UP(pfn + 1) - pfn);
 475		page_init_poison(pfn_to_page(pfn),
 476				 sizeof(struct page) * cur_nr_pages);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 477	}
 478
 479	/*
 480	 * Zone shrinking code cannot properly deal with ZONE_DEVICE. So
 481	 * we will not try to shrink the zones - which is okay as
 482	 * set_zone_contiguous() cannot deal with ZONE_DEVICE either way.
 
 
 483	 */
 484	if (zone_is_zone_device(zone))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 485		return;
 
 
 
 
 
 
 486
 487	clear_zone_contiguous(zone);
 
 
 
 
 488
 
 489	shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
 490	update_pgdat_span(pgdat);
 491
 492	set_zone_contiguous(zone);
 493}
 494
 495static void __remove_section(unsigned long pfn, unsigned long nr_pages,
 496			     unsigned long map_offset,
 497			     struct vmem_altmap *altmap)
 498{
 499	struct mem_section *ms = __pfn_to_section(pfn);
 
 
 
 
 
 500
 501	if (WARN_ON_ONCE(!valid_section(ms)))
 502		return;
 
 
 
 
 
 503
 504	sparse_remove_section(ms, pfn, nr_pages, map_offset, altmap);
 
 505}
 506
 507/**
 508 * __remove_pages() - remove sections of pages
 509 * @pfn: starting pageframe (must be aligned to start of a section)
 
 510 * @nr_pages: number of pages to remove (must be multiple of section size)
 511 * @altmap: alternative device page map or %NULL if default memmap is used
 512 *
 513 * Generic helper function to remove section mappings and sysfs entries
 514 * for the section of the memory we are removing. Caller needs to make
 515 * sure that pages are marked reserved and zones are adjust properly by
 516 * calling offline_pages().
 517 */
 518void __remove_pages(unsigned long pfn, unsigned long nr_pages,
 519		    struct vmem_altmap *altmap)
 520{
 521	const unsigned long end_pfn = pfn + nr_pages;
 522	unsigned long cur_nr_pages;
 523	unsigned long map_offset = 0;
 
 
 
 
 
 
 
 
 
 
 
 524
 525	map_offset = vmem_altmap_offset(altmap);
 
 
 
 526
 527	if (check_pfn_span(pfn, nr_pages)) {
 528		WARN(1, "Misaligned %s start: %#lx end: #%lx\n", __func__, pfn, pfn + nr_pages - 1);
 529		return;
 530	}
 531
 532	for (; pfn < end_pfn; pfn += cur_nr_pages) {
 533		cond_resched();
 534		/* Select all remaining pages up to the next section boundary */
 535		cur_nr_pages = min(end_pfn - pfn,
 536				   SECTION_ALIGN_UP(pfn + 1) - pfn);
 537		__remove_section(pfn, cur_nr_pages, map_offset, altmap);
 
 
 
 
 
 
 
 
 538		map_offset = 0;
 
 
 539	}
 
 
 
 
 540}
 
 541
 542int set_online_page_callback(online_page_callback_t callback)
 543{
 544	int rc = -EINVAL;
 545
 546	get_online_mems();
 547	mutex_lock(&online_page_callback_lock);
 548
 549	if (online_page_callback == generic_online_page) {
 550		online_page_callback = callback;
 551		rc = 0;
 552	}
 553
 554	mutex_unlock(&online_page_callback_lock);
 555	put_online_mems();
 556
 557	return rc;
 558}
 559EXPORT_SYMBOL_GPL(set_online_page_callback);
 560
 561int restore_online_page_callback(online_page_callback_t callback)
 562{
 563	int rc = -EINVAL;
 564
 565	get_online_mems();
 566	mutex_lock(&online_page_callback_lock);
 567
 568	if (online_page_callback == callback) {
 569		online_page_callback = generic_online_page;
 570		rc = 0;
 571	}
 572
 573	mutex_unlock(&online_page_callback_lock);
 574	put_online_mems();
 575
 576	return rc;
 577}
 578EXPORT_SYMBOL_GPL(restore_online_page_callback);
 579
 580void generic_online_page(struct page *page, unsigned int order)
 
 
 
 
 
 
 
 
 
 
 
 581{
 582	/*
 583	 * Freeing the page with debug_pagealloc enabled will try to unmap it,
 584	 * so we should map it first. This is better than introducing a special
 585	 * case in page freeing fast path.
 586	 */
 587	debug_pagealloc_map_pages(page, 1 << order);
 588	__free_pages_core(page, order);
 589	totalram_pages_add(1UL << order);
 
 590}
 591EXPORT_SYMBOL_GPL(generic_online_page);
 592
 593static void online_pages_range(unsigned long start_pfn, unsigned long nr_pages)
 
 594{
 595	const unsigned long end_pfn = start_pfn + nr_pages;
 596	unsigned long pfn;
 
 597
 598	/*
 599	 * Online the pages in MAX_ORDER - 1 aligned chunks. The callback might
 600	 * decide to not expose all pages to the buddy (e.g., expose them
 601	 * later). We account all pages as being online and belonging to this
 602	 * zone ("present").
 603	 * When using memmap_on_memory, the range might not be aligned to
 604	 * MAX_ORDER_NR_PAGES - 1, but pageblock aligned. __ffs() will detect
 605	 * this and the first chunk to online will be pageblock_nr_pages.
 606	 */
 607	for (pfn = start_pfn; pfn < end_pfn;) {
 608		int order = min(MAX_ORDER - 1UL, __ffs(pfn));
 609
 610		(*online_page_callback)(pfn_to_page(pfn), order);
 611		pfn += (1UL << order);
 612	}
 613
 614	/* mark all involved sections as online */
 615	online_mem_sections(start_pfn, end_pfn);
 616}
 617
 618/* check which state of node_states will be changed when online memory */
 619static void node_states_check_changes_online(unsigned long nr_pages,
 620	struct zone *zone, struct memory_notify *arg)
 621{
 622	int nid = zone_to_nid(zone);
 
 623
 624	arg->status_change_nid = NUMA_NO_NODE;
 625	arg->status_change_nid_normal = NUMA_NO_NODE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 626
 
 
 
 
 
 627	if (!node_state(nid, N_MEMORY))
 628		arg->status_change_nid = nid;
 629	if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
 630		arg->status_change_nid_normal = nid;
 631}
 632
 633static void node_states_set_node(int node, struct memory_notify *arg)
 634{
 635	if (arg->status_change_nid_normal >= 0)
 636		node_set_state(node, N_NORMAL_MEMORY);
 637
 638	if (arg->status_change_nid >= 0)
 639		node_set_state(node, N_MEMORY);
 
 
 640}
 641
 642static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
 643		unsigned long nr_pages)
 644{
 645	unsigned long old_end_pfn = zone_end_pfn(zone);
 646
 647	if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
 648		zone->zone_start_pfn = start_pfn;
 649
 650	zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
 651}
 652
 653static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
 654                                     unsigned long nr_pages)
 655{
 656	unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
 657
 658	if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
 659		pgdat->node_start_pfn = start_pfn;
 660
 661	pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
 662
 663}
 664
 665#ifdef CONFIG_ZONE_DEVICE
 666static void section_taint_zone_device(unsigned long pfn)
 667{
 668	struct mem_section *ms = __pfn_to_section(pfn);
 669
 670	ms->section_mem_map |= SECTION_TAINT_ZONE_DEVICE;
 671}
 672#else
 673static inline void section_taint_zone_device(unsigned long pfn)
 674{
 675}
 676#endif
 677
 678/*
 679 * Associate the pfn range with the given zone, initializing the memmaps
 680 * and resizing the pgdat/zone data to span the added pages. After this
 681 * call, all affected pages are PG_reserved.
 682 *
 683 * All aligned pageblocks are initialized to the specified migratetype
 684 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
 685 * zone stats (e.g., nr_isolate_pageblock) are touched.
 686 */
 687void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
 688				  unsigned long nr_pages,
 689				  struct vmem_altmap *altmap, int migratetype)
 690{
 691	struct pglist_data *pgdat = zone->zone_pgdat;
 692	int nid = pgdat->node_id;
 
 
 
 
 693
 694	clear_zone_contiguous(zone);
 695
 696	if (zone_is_empty(zone))
 697		init_currently_empty_zone(zone, start_pfn, nr_pages);
 
 698	resize_zone_range(zone, start_pfn, nr_pages);
 
 699	resize_pgdat_range(pgdat, start_pfn, nr_pages);
 700
 701	/*
 702	 * Subsection population requires care in pfn_to_online_page().
 703	 * Set the taint to enable the slow path detection of
 704	 * ZONE_DEVICE pages in an otherwise  ZONE_{NORMAL,MOVABLE}
 705	 * section.
 706	 */
 707	if (zone_is_zone_device(zone)) {
 708		if (!IS_ALIGNED(start_pfn, PAGES_PER_SECTION))
 709			section_taint_zone_device(start_pfn);
 710		if (!IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION))
 711			section_taint_zone_device(start_pfn + nr_pages);
 712	}
 713
 714	/*
 715	 * TODO now we have a visible range of pages which are not associated
 716	 * with their zone properly. Not nice but set_pfnblock_flags_mask
 717	 * expects the zone spans the pfn range. All the pages in the range
 718	 * are reserved so nobody should be touching them so we should be safe
 719	 */
 720	memmap_init_range(nr_pages, nid, zone_idx(zone), start_pfn, 0,
 721			 MEMINIT_HOTPLUG, altmap, migratetype);
 722
 723	set_zone_contiguous(zone);
 724}
 725
 726struct auto_movable_stats {
 727	unsigned long kernel_early_pages;
 728	unsigned long movable_pages;
 729};
 730
 731static void auto_movable_stats_account_zone(struct auto_movable_stats *stats,
 732					    struct zone *zone)
 733{
 734	if (zone_idx(zone) == ZONE_MOVABLE) {
 735		stats->movable_pages += zone->present_pages;
 736	} else {
 737		stats->kernel_early_pages += zone->present_early_pages;
 738#ifdef CONFIG_CMA
 739		/*
 740		 * CMA pages (never on hotplugged memory) behave like
 741		 * ZONE_MOVABLE.
 742		 */
 743		stats->movable_pages += zone->cma_pages;
 744		stats->kernel_early_pages -= zone->cma_pages;
 745#endif /* CONFIG_CMA */
 746	}
 747}
 748struct auto_movable_group_stats {
 749	unsigned long movable_pages;
 750	unsigned long req_kernel_early_pages;
 751};
 752
 753static int auto_movable_stats_account_group(struct memory_group *group,
 754					   void *arg)
 755{
 756	const int ratio = READ_ONCE(auto_movable_ratio);
 757	struct auto_movable_group_stats *stats = arg;
 758	long pages;
 759
 760	/*
 761	 * We don't support modifying the config while the auto-movable online
 762	 * policy is already enabled. Just avoid the division by zero below.
 763	 */
 764	if (!ratio)
 765		return 0;
 766
 767	/*
 768	 * Calculate how many early kernel pages this group requires to
 769	 * satisfy the configured zone ratio.
 770	 */
 771	pages = group->present_movable_pages * 100 / ratio;
 772	pages -= group->present_kernel_pages;
 773
 774	if (pages > 0)
 775		stats->req_kernel_early_pages += pages;
 776	stats->movable_pages += group->present_movable_pages;
 777	return 0;
 778}
 779
 780static bool auto_movable_can_online_movable(int nid, struct memory_group *group,
 781					    unsigned long nr_pages)
 782{
 783	unsigned long kernel_early_pages, movable_pages;
 784	struct auto_movable_group_stats group_stats = {};
 785	struct auto_movable_stats stats = {};
 786	pg_data_t *pgdat = NODE_DATA(nid);
 787	struct zone *zone;
 788	int i;
 789
 790	/* Walk all relevant zones and collect MOVABLE vs. KERNEL stats. */
 791	if (nid == NUMA_NO_NODE) {
 792		/* TODO: cache values */
 793		for_each_populated_zone(zone)
 794			auto_movable_stats_account_zone(&stats, zone);
 795	} else {
 796		for (i = 0; i < MAX_NR_ZONES; i++) {
 797			zone = pgdat->node_zones + i;
 798			if (populated_zone(zone))
 799				auto_movable_stats_account_zone(&stats, zone);
 800		}
 801	}
 802
 803	kernel_early_pages = stats.kernel_early_pages;
 804	movable_pages = stats.movable_pages;
 805
 806	/*
 807	 * Kernel memory inside dynamic memory group allows for more MOVABLE
 808	 * memory within the same group. Remove the effect of all but the
 809	 * current group from the stats.
 810	 */
 811	walk_dynamic_memory_groups(nid, auto_movable_stats_account_group,
 812				   group, &group_stats);
 813	if (kernel_early_pages <= group_stats.req_kernel_early_pages)
 814		return false;
 815	kernel_early_pages -= group_stats.req_kernel_early_pages;
 816	movable_pages -= group_stats.movable_pages;
 817
 818	if (group && group->is_dynamic)
 819		kernel_early_pages += group->present_kernel_pages;
 820
 821	/*
 822	 * Test if we could online the given number of pages to ZONE_MOVABLE
 823	 * and still stay in the configured ratio.
 824	 */
 825	movable_pages += nr_pages;
 826	return movable_pages <= (auto_movable_ratio * kernel_early_pages) / 100;
 827}
 828
 829/*
 830 * Returns a default kernel memory zone for the given pfn range.
 831 * If no kernel zone covers this pfn range it will automatically go
 832 * to the ZONE_NORMAL.
 833 */
 834static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
 835		unsigned long nr_pages)
 836{
 837	struct pglist_data *pgdat = NODE_DATA(nid);
 838	int zid;
 839
 840	for (zid = 0; zid < ZONE_NORMAL; zid++) {
 841		struct zone *zone = &pgdat->node_zones[zid];
 842
 843		if (zone_intersects(zone, start_pfn, nr_pages))
 844			return zone;
 845	}
 846
 847	return &pgdat->node_zones[ZONE_NORMAL];
 848}
 849
 850/*
 851 * Determine to which zone to online memory dynamically based on user
 852 * configuration and system stats. We care about the following ratio:
 853 *
 854 *   MOVABLE : KERNEL
 855 *
 856 * Whereby MOVABLE is memory in ZONE_MOVABLE and KERNEL is memory in
 857 * one of the kernel zones. CMA pages inside one of the kernel zones really
 858 * behaves like ZONE_MOVABLE, so we treat them accordingly.
 859 *
 860 * We don't allow for hotplugged memory in a KERNEL zone to increase the
 861 * amount of MOVABLE memory we can have, so we end up with:
 862 *
 863 *   MOVABLE : KERNEL_EARLY
 864 *
 865 * Whereby KERNEL_EARLY is memory in one of the kernel zones, available sinze
 866 * boot. We base our calculation on KERNEL_EARLY internally, because:
 867 *
 868 * a) Hotplugged memory in one of the kernel zones can sometimes still get
 869 *    hotunplugged, especially when hot(un)plugging individual memory blocks.
 870 *    There is no coordination across memory devices, therefore "automatic"
 871 *    hotunplugging, as implemented in hypervisors, could result in zone
 872 *    imbalances.
 873 * b) Early/boot memory in one of the kernel zones can usually not get
 874 *    hotunplugged again (e.g., no firmware interface to unplug, fragmented
 875 *    with unmovable allocations). While there are corner cases where it might
 876 *    still work, it is barely relevant in practice.
 877 *
 878 * Exceptions are dynamic memory groups, which allow for more MOVABLE
 879 * memory within the same memory group -- because in that case, there is
 880 * coordination within the single memory device managed by a single driver.
 881 *
 882 * We rely on "present pages" instead of "managed pages", as the latter is
 883 * highly unreliable and dynamic in virtualized environments, and does not
 884 * consider boot time allocations. For example, memory ballooning adjusts the
 885 * managed pages when inflating/deflating the balloon, and balloon compaction
 886 * can even migrate inflated pages between zones.
 887 *
 888 * Using "present pages" is better but some things to keep in mind are:
 889 *
 890 * a) Some memblock allocations, such as for the crashkernel area, are
 891 *    effectively unused by the kernel, yet they account to "present pages".
 892 *    Fortunately, these allocations are comparatively small in relevant setups
 893 *    (e.g., fraction of system memory).
 894 * b) Some hotplugged memory blocks in virtualized environments, esecially
 895 *    hotplugged by virtio-mem, look like they are completely present, however,
 896 *    only parts of the memory block are actually currently usable.
 897 *    "present pages" is an upper limit that can get reached at runtime. As
 898 *    we base our calculations on KERNEL_EARLY, this is not an issue.
 899 */
 900static struct zone *auto_movable_zone_for_pfn(int nid,
 901					      struct memory_group *group,
 902					      unsigned long pfn,
 903					      unsigned long nr_pages)
 904{
 905	unsigned long online_pages = 0, max_pages, end_pfn;
 906	struct page *page;
 907
 908	if (!auto_movable_ratio)
 909		goto kernel_zone;
 910
 911	if (group && !group->is_dynamic) {
 912		max_pages = group->s.max_pages;
 913		online_pages = group->present_movable_pages;
 914
 915		/* If anything is !MOVABLE online the rest !MOVABLE. */
 916		if (group->present_kernel_pages)
 917			goto kernel_zone;
 918	} else if (!group || group->d.unit_pages == nr_pages) {
 919		max_pages = nr_pages;
 920	} else {
 921		max_pages = group->d.unit_pages;
 922		/*
 923		 * Take a look at all online sections in the current unit.
 924		 * We can safely assume that all pages within a section belong
 925		 * to the same zone, because dynamic memory groups only deal
 926		 * with hotplugged memory.
 927		 */
 928		pfn = ALIGN_DOWN(pfn, group->d.unit_pages);
 929		end_pfn = pfn + group->d.unit_pages;
 930		for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
 931			page = pfn_to_online_page(pfn);
 932			if (!page)
 933				continue;
 934			/* If anything is !MOVABLE online the rest !MOVABLE. */
 935			if (!is_zone_movable_page(page))
 936				goto kernel_zone;
 937			online_pages += PAGES_PER_SECTION;
 938		}
 939	}
 940
 941	/*
 942	 * Online MOVABLE if we could *currently* online all remaining parts
 943	 * MOVABLE. We expect to (add+) online them immediately next, so if
 944	 * nobody interferes, all will be MOVABLE if possible.
 945	 */
 946	nr_pages = max_pages - online_pages;
 947	if (!auto_movable_can_online_movable(NUMA_NO_NODE, group, nr_pages))
 948		goto kernel_zone;
 949
 950#ifdef CONFIG_NUMA
 951	if (auto_movable_numa_aware &&
 952	    !auto_movable_can_online_movable(nid, group, nr_pages))
 953		goto kernel_zone;
 954#endif /* CONFIG_NUMA */
 955
 956	return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
 957kernel_zone:
 958	return default_kernel_zone_for_pfn(nid, pfn, nr_pages);
 959}
 960
 961static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
 962		unsigned long nr_pages)
 963{
 964	struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
 965			nr_pages);
 966	struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
 967	bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
 968	bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
 969
 970	/*
 971	 * We inherit the existing zone in a simple case where zones do not
 972	 * overlap in the given range
 973	 */
 974	if (in_kernel ^ in_movable)
 975		return (in_kernel) ? kernel_zone : movable_zone;
 976
 977	/*
 978	 * If the range doesn't belong to any zone or two zones overlap in the
 979	 * given range then we use movable zone only if movable_node is
 980	 * enabled because we always online to a kernel zone by default.
 981	 */
 982	return movable_node_enabled ? movable_zone : kernel_zone;
 983}
 984
 985struct zone *zone_for_pfn_range(int online_type, int nid,
 986		struct memory_group *group, unsigned long start_pfn,
 987		unsigned long nr_pages)
 988{
 989	if (online_type == MMOP_ONLINE_KERNEL)
 990		return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
 991
 992	if (online_type == MMOP_ONLINE_MOVABLE)
 993		return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
 994
 995	if (online_policy == ONLINE_POLICY_AUTO_MOVABLE)
 996		return auto_movable_zone_for_pfn(nid, group, start_pfn, nr_pages);
 997
 998	return default_zone_for_pfn(nid, start_pfn, nr_pages);
 999}
1000
1001/*
1002 * This function should only be called by memory_block_{online,offline},
1003 * and {online,offline}_pages.
1004 */
1005void adjust_present_page_count(struct page *page, struct memory_group *group,
1006			       long nr_pages)
1007{
1008	struct zone *zone = page_zone(page);
1009	const bool movable = zone_idx(zone) == ZONE_MOVABLE;
1010
1011	/*
1012	 * We only support onlining/offlining/adding/removing of complete
1013	 * memory blocks; therefore, either all is either early or hotplugged.
1014	 */
1015	if (early_section(__pfn_to_section(page_to_pfn(page))))
1016		zone->present_early_pages += nr_pages;
1017	zone->present_pages += nr_pages;
1018	zone->zone_pgdat->node_present_pages += nr_pages;
1019
1020	if (group && movable)
1021		group->present_movable_pages += nr_pages;
1022	else if (group && !movable)
1023		group->present_kernel_pages += nr_pages;
1024}
1025
1026int mhp_init_memmap_on_memory(unsigned long pfn, unsigned long nr_pages,
1027			      struct zone *zone)
1028{
1029	unsigned long end_pfn = pfn + nr_pages;
1030	int ret, i;
1031
1032	ret = kasan_add_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
1033	if (ret)
1034		return ret;
1035
1036	move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_UNMOVABLE);
1037
1038	for (i = 0; i < nr_pages; i++)
1039		SetPageVmemmapSelfHosted(pfn_to_page(pfn + i));
1040
1041	/*
1042	 * It might be that the vmemmap_pages fully span sections. If that is
1043	 * the case, mark those sections online here as otherwise they will be
1044	 * left offline.
1045	 */
1046	if (nr_pages >= PAGES_PER_SECTION)
1047	        online_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
1048
1049	return ret;
1050}
1051
1052void mhp_deinit_memmap_on_memory(unsigned long pfn, unsigned long nr_pages)
1053{
1054	unsigned long end_pfn = pfn + nr_pages;
1055
1056	/*
1057	 * It might be that the vmemmap_pages fully span sections. If that is
1058	 * the case, mark those sections offline here as otherwise they will be
1059	 * left online.
1060	 */
1061	if (nr_pages >= PAGES_PER_SECTION)
1062		offline_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
1063
1064        /*
1065	 * The pages associated with this vmemmap have been offlined, so
1066	 * we can reset its state here.
1067	 */
1068	remove_pfn_range_from_zone(page_zone(pfn_to_page(pfn)), pfn, nr_pages);
1069	kasan_remove_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
1070}
1071
1072int __ref online_pages(unsigned long pfn, unsigned long nr_pages,
1073		       struct zone *zone, struct memory_group *group)
1074{
1075	unsigned long flags;
 
 
1076	int need_zonelists_rebuild = 0;
1077	const int nid = zone_to_nid(zone);
1078	int ret;
1079	struct memory_notify arg;
 
1080
1081	/*
1082	 * {on,off}lining is constrained to full memory sections (or more
1083	 * precisely to memory blocks from the user space POV).
1084	 * memmap_on_memory is an exception because it reserves initial part
1085	 * of the physical memory space for vmemmaps. That space is pageblock
1086	 * aligned.
1087	 */
1088	if (WARN_ON_ONCE(!nr_pages || !pageblock_aligned(pfn) ||
1089			 !IS_ALIGNED(pfn + nr_pages, PAGES_PER_SECTION)))
1090		return -EINVAL;
1091
1092	mem_hotplug_begin();
1093
1094	/* associate pfn range with the zone */
1095	move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_ISOLATE);
1096
1097	arg.start_pfn = pfn;
1098	arg.nr_pages = nr_pages;
1099	node_states_check_changes_online(nr_pages, zone, &arg);
1100
1101	ret = memory_notify(MEM_GOING_ONLINE, &arg);
1102	ret = notifier_to_errno(ret);
1103	if (ret)
1104		goto failed_addition;
1105
1106	/*
1107	 * Fixup the number of isolated pageblocks before marking the sections
1108	 * onlining, such that undo_isolate_page_range() works correctly.
1109	 */
1110	spin_lock_irqsave(&zone->lock, flags);
1111	zone->nr_isolate_pageblock += nr_pages / pageblock_nr_pages;
1112	spin_unlock_irqrestore(&zone->lock, flags);
1113
1114	/*
1115	 * If this zone is not populated, then it is not in zonelist.
1116	 * This means the page allocator ignores this zone.
1117	 * So, zonelist must be updated after online.
1118	 */
1119	if (!populated_zone(zone)) {
1120		need_zonelists_rebuild = 1;
1121		setup_zone_pageset(zone);
1122	}
1123
1124	online_pages_range(pfn, nr_pages);
1125	adjust_present_page_count(pfn_to_page(pfn), group, nr_pages);
 
 
 
 
 
1126
1127	node_states_set_node(nid, &arg);
1128	if (need_zonelists_rebuild)
1129		build_all_zonelists(NULL);
1130
1131	/* Basic onlining is complete, allow allocation of onlined pages. */
1132	undo_isolate_page_range(pfn, pfn + nr_pages, MIGRATE_MOVABLE);
 
 
 
 
 
 
 
 
 
1133
1134	/*
1135	 * Freshly onlined pages aren't shuffled (e.g., all pages are placed to
1136	 * the tail of the freelist when undoing isolation). Shuffle the whole
1137	 * zone to make sure the just onlined pages are properly distributed
1138	 * across the whole freelist - to create an initial shuffle.
1139	 */
1140	shuffle_zone(zone);
1141
1142	/* reinitialise watermarks and update pcp limits */
1143	init_per_zone_wmark_min();
 
 
1144
1145	kswapd_run(nid);
1146	kcompactd_run(nid);
1147
1148	writeback_set_ratelimit();
1149
1150	memory_notify(MEM_ONLINE, &arg);
1151	mem_hotplug_done();
1152	return 0;
1153
1154failed_addition:
1155	pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
1156		 (unsigned long long) pfn << PAGE_SHIFT,
1157		 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
1158	memory_notify(MEM_CANCEL_ONLINE, &arg);
1159	remove_pfn_range_from_zone(zone, pfn, nr_pages);
1160	mem_hotplug_done();
1161	return ret;
1162}
 
1163
1164static void reset_node_present_pages(pg_data_t *pgdat)
1165{
1166	struct zone *z;
1167
1168	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
1169		z->present_pages = 0;
1170
1171	pgdat->node_present_pages = 0;
1172}
1173
1174/* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1175static pg_data_t __ref *hotadd_init_pgdat(int nid)
1176{
1177	struct pglist_data *pgdat;
 
 
 
1178
1179	/*
1180	 * NODE_DATA is preallocated (free_area_init) but its internal
1181	 * state is not allocated completely. Add missing pieces.
1182	 * Completely offline nodes stay around and they just need
1183	 * reintialization.
1184	 */
1185	pgdat = NODE_DATA(nid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1186
1187	/* init node's zones as empty zones, we don't have any present pages.*/
1188	free_area_init_core_hotplug(pgdat);
 
1189
1190	/*
1191	 * The node we allocated has no zone fallback lists. For avoiding
1192	 * to access not-initialized zonelist, build here.
1193	 */
1194	build_all_zonelists(pgdat);
1195
1196	/*
 
 
 
 
 
 
 
 
1197	 * When memory is hot-added, all the memory is in offline state. So
1198	 * clear all zones' present_pages because they will be updated in
1199	 * online_pages() and offline_pages().
1200	 * TODO: should be in free_area_init_core_hotplug?
1201	 */
1202	reset_node_managed_pages(pgdat);
1203	reset_node_present_pages(pgdat);
1204
1205	return pgdat;
1206}
1207
1208/*
1209 * __try_online_node - online a node if offlined
 
 
 
 
 
 
 
 
 
1210 * @nid: the node ID
1211 * @set_node_online: Whether we want to online the node
1212 * called by cpu_up() to online a node without onlined memory.
1213 *
1214 * Returns:
1215 * 1 -> a new node has been allocated
1216 * 0 -> the node is already online
1217 * -ENOMEM -> the node could not be allocated
1218 */
1219static int __try_online_node(int nid, bool set_node_online)
1220{
1221	pg_data_t *pgdat;
1222	int ret = 1;
1223
1224	if (node_online(nid))
1225		return 0;
1226
1227	pgdat = hotadd_init_pgdat(nid);
 
1228	if (!pgdat) {
1229		pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1230		ret = -ENOMEM;
1231		goto out;
1232	}
1233
1234	if (set_node_online) {
1235		node_set_online(nid);
1236		ret = register_one_node(nid);
1237		BUG_ON(ret);
1238	}
1239out:
1240	return ret;
1241}
1242
1243/*
1244 * Users of this function always want to online/register the node
1245 */
1246int try_online_node(int nid)
1247{
1248	int ret;
1249
1250	mem_hotplug_begin();
1251	ret =  __try_online_node(nid, true);
1252	mem_hotplug_done();
1253	return ret;
1254}
1255
1256static int check_hotplug_memory_range(u64 start, u64 size)
1257{
 
 
 
 
 
1258	/* memory range must be block size aligned */
1259	if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) ||
1260	    !IS_ALIGNED(size, memory_block_size_bytes())) {
1261		pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
1262		       memory_block_size_bytes(), start, size);
1263		return -EINVAL;
1264	}
1265
1266	return 0;
1267}
1268
1269static int online_memory_block(struct memory_block *mem, void *arg)
1270{
1271	mem->online_type = mhp_default_online_type;
1272	return device_online(&mem->dev);
1273}
1274
1275bool mhp_supports_memmap_on_memory(unsigned long size)
 
1276{
1277	unsigned long nr_vmemmap_pages = size / PAGE_SIZE;
1278	unsigned long vmemmap_size = nr_vmemmap_pages * sizeof(struct page);
1279	unsigned long remaining_size = size - vmemmap_size;
1280
1281	/*
1282	 * Besides having arch support and the feature enabled at runtime, we
1283	 * need a few more assumptions to hold true:
1284	 *
1285	 * a) We span a single memory block: memory onlining/offlinin;g happens
1286	 *    in memory block granularity. We don't want the vmemmap of online
1287	 *    memory blocks to reside on offline memory blocks. In the future,
1288	 *    we might want to support variable-sized memory blocks to make the
1289	 *    feature more versatile.
1290	 *
1291	 * b) The vmemmap pages span complete PMDs: We don't want vmemmap code
1292	 *    to populate memory from the altmap for unrelated parts (i.e.,
1293	 *    other memory blocks)
1294	 *
1295	 * c) The vmemmap pages (and thereby the pages that will be exposed to
1296	 *    the buddy) have to cover full pageblocks: memory onlining/offlining
1297	 *    code requires applicable ranges to be page-aligned, for example, to
1298	 *    set the migratetypes properly.
1299	 *
1300	 * TODO: Although we have a check here to make sure that vmemmap pages
1301	 *       fully populate a PMD, it is not the right place to check for
1302	 *       this. A much better solution involves improving vmemmap code
1303	 *       to fallback to base pages when trying to populate vmemmap using
1304	 *       altmap as an alternative source of memory, and we do not exactly
1305	 *       populate a single PMD.
1306	 */
1307	return mhp_memmap_on_memory() &&
1308	       size == memory_block_size_bytes() &&
1309	       IS_ALIGNED(vmemmap_size, PMD_SIZE) &&
1310	       IS_ALIGNED(remaining_size, (pageblock_nr_pages << PAGE_SHIFT));
1311}
1312
1313/*
1314 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1315 * and online/offline operations (triggered e.g. by sysfs).
1316 *
1317 * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1318 */
1319int __ref add_memory_resource(int nid, struct resource *res, mhp_t mhp_flags)
1320{
1321	struct mhp_params params = { .pgprot = pgprot_mhp(PAGE_KERNEL) };
1322	enum memblock_flags memblock_flags = MEMBLOCK_NONE;
1323	struct vmem_altmap mhp_altmap = {};
1324	struct memory_group *group = NULL;
1325	u64 start, size;
1326	bool new_node = false;
 
 
1327	int ret;
1328
1329	start = res->start;
1330	size = resource_size(res);
1331
1332	ret = check_hotplug_memory_range(start, size);
1333	if (ret)
1334		return ret;
1335
1336	if (mhp_flags & MHP_NID_IS_MGID) {
1337		group = memory_group_find_by_id(nid);
1338		if (!group)
1339			return -EINVAL;
1340		nid = group->nid;
1341	}
1342
1343	if (!node_possible(nid)) {
1344		WARN(1, "node %d was absent from the node_possible_map\n", nid);
1345		return -EINVAL;
1346	}
1347
1348	mem_hotplug_begin();
1349
1350	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
1351		if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED)
1352			memblock_flags = MEMBLOCK_DRIVER_MANAGED;
1353		ret = memblock_add_node(start, size, nid, memblock_flags);
1354		if (ret)
1355			goto error_mem_hotplug_end;
1356	}
1357
1358	ret = __try_online_node(nid, false);
1359	if (ret < 0)
1360		goto error;
1361	new_node = ret;
1362
1363	/*
1364	 * Self hosted memmap array
 
 
 
1365	 */
1366	if (mhp_flags & MHP_MEMMAP_ON_MEMORY) {
1367		if (!mhp_supports_memmap_on_memory(size)) {
1368			ret = -EINVAL;
 
 
 
 
1369			goto error;
1370		}
1371		mhp_altmap.free = PHYS_PFN(size);
1372		mhp_altmap.base_pfn = PHYS_PFN(start);
1373		params.altmap = &mhp_altmap;
1374	}
1375
1376	/* call arch's memory hotadd */
1377	ret = arch_add_memory(nid, start, size, &params);
 
1378	if (ret < 0)
1379		goto error;
1380
1381	/* create memory block devices after memory was added */
1382	ret = create_memory_block_devices(start, size, mhp_altmap.alloc,
1383					  group);
1384	if (ret) {
1385		arch_remove_memory(start, size, NULL);
1386		goto error;
1387	}
1388
1389	if (new_node) {
1390		/* If sysfs file of new node can't be created, cpu on the node
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1391		 * can't be hot-added. There is no rollback way now.
1392		 * So, check by BUG_ON() to catch it reluctantly..
1393		 * We online node here. We can't roll back from here.
1394		 */
1395		node_set_online(nid);
1396		ret = __register_one_node(nid);
1397		BUG_ON(ret);
1398	}
1399
1400	register_memory_blocks_under_node(nid, PFN_DOWN(start),
1401					  PFN_UP(start + size - 1),
1402					  MEMINIT_HOTPLUG);
1403
1404	/* create new memmap entry */
1405	if (!strcmp(res->name, "System RAM"))
1406		firmware_map_add_hotplug(start, start + size, "System RAM");
1407
1408	/* device_online() will take the lock when calling online_pages() */
1409	mem_hotplug_done();
1410
1411	/*
1412	 * In case we're allowed to merge the resource, flag it and trigger
1413	 * merging now that adding succeeded.
1414	 */
1415	if (mhp_flags & MHP_MERGE_RESOURCE)
1416		merge_system_ram_resource(res);
1417
1418	/* online pages if requested */
1419	if (mhp_default_online_type != MMOP_OFFLINE)
1420		walk_memory_blocks(start, size, NULL, online_memory_block);
1421
1422	return ret;
1423error:
1424	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1425		memblock_remove(start, size);
1426error_mem_hotplug_end:
 
 
 
1427	mem_hotplug_done();
1428	return ret;
1429}
 
1430
1431/* requires device_hotplug_lock, see add_memory_resource() */
1432int __ref __add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1433{
1434	struct resource *res;
1435	int ret;
1436
1437	res = register_memory_resource(start, size, "System RAM");
1438	if (IS_ERR(res))
1439		return PTR_ERR(res);
1440
1441	ret = add_memory_resource(nid, res, mhp_flags);
1442	if (ret < 0)
1443		release_memory_resource(res);
1444	return ret;
1445}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1446
1447int add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
 
1448{
1449	int rc;
 
1450
1451	lock_device_hotplug();
1452	rc = __add_memory(nid, start, size, mhp_flags);
1453	unlock_device_hotplug();
 
 
 
 
 
1454
1455	return rc;
1456}
1457EXPORT_SYMBOL_GPL(add_memory);
1458
1459/*
1460 * Add special, driver-managed memory to the system as system RAM. Such
1461 * memory is not exposed via the raw firmware-provided memmap as system
1462 * RAM, instead, it is detected and added by a driver - during cold boot,
1463 * after a reboot, and after kexec.
1464 *
1465 * Reasons why this memory should not be used for the initial memmap of a
1466 * kexec kernel or for placing kexec images:
1467 * - The booting kernel is in charge of determining how this memory will be
1468 *   used (e.g., use persistent memory as system RAM)
1469 * - Coordination with a hypervisor is required before this memory
1470 *   can be used (e.g., inaccessible parts).
1471 *
1472 * For this memory, no entries in /sys/firmware/memmap ("raw firmware-provided
1473 * memory map") are created. Also, the created memory resource is flagged
1474 * with IORESOURCE_SYSRAM_DRIVER_MANAGED, so in-kernel users can special-case
1475 * this memory as well (esp., not place kexec images onto it).
1476 *
1477 * The resource_name (visible via /proc/iomem) has to have the format
1478 * "System RAM ($DRIVER)".
1479 */
1480int add_memory_driver_managed(int nid, u64 start, u64 size,
1481			      const char *resource_name, mhp_t mhp_flags)
1482{
1483	struct resource *res;
1484	int rc;
1485
1486	if (!resource_name ||
1487	    strstr(resource_name, "System RAM (") != resource_name ||
1488	    resource_name[strlen(resource_name) - 1] != ')')
1489		return -EINVAL;
1490
1491	lock_device_hotplug();
1492
1493	res = register_memory_resource(start, size, resource_name);
1494	if (IS_ERR(res)) {
1495		rc = PTR_ERR(res);
1496		goto out_unlock;
1497	}
1498
1499	rc = add_memory_resource(nid, res, mhp_flags);
1500	if (rc < 0)
1501		release_memory_resource(res);
1502
1503out_unlock:
1504	unlock_device_hotplug();
1505	return rc;
1506}
1507EXPORT_SYMBOL_GPL(add_memory_driver_managed);
1508
1509/*
1510 * Platforms should define arch_get_mappable_range() that provides
1511 * maximum possible addressable physical memory range for which the
1512 * linear mapping could be created. The platform returned address
1513 * range must adhere to these following semantics.
1514 *
1515 * - range.start <= range.end
1516 * - Range includes both end points [range.start..range.end]
1517 *
1518 * There is also a fallback definition provided here, allowing the
1519 * entire possible physical address range in case any platform does
1520 * not define arch_get_mappable_range().
1521 */
1522struct range __weak arch_get_mappable_range(void)
 
1523{
1524	struct range mhp_range = {
1525		.start = 0UL,
1526		.end = -1ULL,
1527	};
1528	return mhp_range;
1529}
1530
1531struct range mhp_get_pluggable_range(bool need_mapping)
1532{
1533	const u64 max_phys = (1ULL << MAX_PHYSMEM_BITS) - 1;
1534	struct range mhp_range;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1535
1536	if (need_mapping) {
1537		mhp_range = arch_get_mappable_range();
1538		if (mhp_range.start > max_phys) {
1539			mhp_range.start = 0;
1540			mhp_range.end = 0;
1541		}
1542		mhp_range.end = min_t(u64, mhp_range.end, max_phys);
1543	} else {
1544		mhp_range.start = 0;
1545		mhp_range.end = max_phys;
1546	}
1547	return mhp_range;
1548}
1549EXPORT_SYMBOL_GPL(mhp_get_pluggable_range);
1550
1551bool mhp_range_allowed(u64 start, u64 size, bool need_mapping)
1552{
1553	struct range mhp_range = mhp_get_pluggable_range(need_mapping);
1554	u64 end = start + size;
1555
1556	if (start < end && start >= mhp_range.start && (end - 1) <= mhp_range.end)
1557		return true;
1558
1559	pr_warn("Hotplug memory [%#llx-%#llx] exceeds maximum addressable range [%#llx-%#llx]\n",
1560		start, end, mhp_range.start, mhp_range.end);
1561	return false;
1562}
1563
1564#ifdef CONFIG_MEMORY_HOTREMOVE
1565/*
1566 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1567 * non-lru movable pages and hugepages). Will skip over most unmovable
1568 * pages (esp., pages that can be skipped when offlining), but bail out on
1569 * definitely unmovable pages.
1570 *
1571 * Returns:
1572 *	0 in case a movable page is found and movable_pfn was updated.
1573 *	-ENOENT in case no movable page was found.
1574 *	-EBUSY in case a definitely unmovable page was found.
1575 */
1576static int scan_movable_pages(unsigned long start, unsigned long end,
1577			      unsigned long *movable_pfn)
1578{
1579	unsigned long pfn;
1580
1581	for (pfn = start; pfn < end; pfn++) {
1582		struct page *page, *head;
1583		unsigned long skip;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1584
1585		if (!pfn_valid(pfn))
1586			continue;
1587		page = pfn_to_page(pfn);
1588		if (PageLRU(page))
1589			goto found;
1590		if (__PageMovable(page))
1591			goto found;
1592
1593		/*
1594		 * PageOffline() pages that are not marked __PageMovable() and
1595		 * have a reference count > 0 (after MEM_GOING_OFFLINE) are
1596		 * definitely unmovable. If their reference count would be 0,
1597		 * they could at least be skipped when offlining memory.
1598		 */
1599		if (PageOffline(page) && page_count(page))
1600			return -EBUSY;
1601
1602		if (!PageHuge(page))
1603			continue;
1604		head = compound_head(page);
1605		/*
1606		 * This test is racy as we hold no reference or lock.  The
1607		 * hugetlb page could have been free'ed and head is no longer
1608		 * a hugetlb page before the following check.  In such unlikely
1609		 * cases false positives and negatives are possible.  Calling
1610		 * code must deal with these scenarios.
1611		 */
1612		if (HPageMigratable(head))
1613			goto found;
1614		skip = compound_nr(head) - (page - head);
1615		pfn += skip - 1;
1616	}
1617	return -ENOENT;
1618found:
1619	*movable_pfn = pfn;
1620	return 0;
1621}
1622
 
1623static int
1624do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1625{
1626	unsigned long pfn;
1627	struct page *page, *head;
 
 
1628	int ret = 0;
1629	LIST_HEAD(source);
1630	static DEFINE_RATELIMIT_STATE(migrate_rs, DEFAULT_RATELIMIT_INTERVAL,
1631				      DEFAULT_RATELIMIT_BURST);
1632
1633	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1634		struct folio *folio;
1635
 
1636		if (!pfn_valid(pfn))
1637			continue;
1638		page = pfn_to_page(pfn);
1639		folio = page_folio(page);
1640		head = &folio->page;
1641
1642		if (PageHuge(page)) {
1643			pfn = page_to_pfn(head) + compound_nr(head) - 1;
1644			isolate_hugetlb(head, &source);
 
 
 
 
 
 
1645			continue;
1646		} else if (PageTransHuge(page))
1647			pfn = page_to_pfn(head) + thp_nr_pages(page) - 1;
1648
1649		/*
1650		 * HWPoison pages have elevated reference counts so the migration would
1651		 * fail on them. It also doesn't make any sense to migrate them in the
1652		 * first place. Still try to unmap such a page in case it is still mapped
1653		 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
1654		 * the unmap as the catch all safety net).
1655		 */
1656		if (PageHWPoison(page)) {
1657			if (WARN_ON(folio_test_lru(folio)))
1658				folio_isolate_lru(folio);
1659			if (folio_mapped(folio))
1660				try_to_unmap(folio, TTU_IGNORE_MLOCK);
1661			continue;
1662		}
1663
1664		if (!get_page_unless_zero(page))
1665			continue;
1666		/*
1667		 * We can skip free pages. And we can deal with pages on
1668		 * LRU and non-lru movable pages.
1669		 */
1670		if (PageLRU(page))
1671			ret = isolate_lru_page(page);
1672		else
1673			ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1674		if (!ret) { /* Success */
 
1675			list_add_tail(&page->lru, &source);
 
1676			if (!__PageMovable(page))
1677				inc_node_page_state(page, NR_ISOLATED_ANON +
1678						    page_is_file_lru(page));
1679
1680		} else {
1681			if (__ratelimit(&migrate_rs)) {
1682				pr_warn("failed to isolate pfn %lx\n", pfn);
1683				dump_page(page, "isolation failed");
 
 
 
 
 
 
 
 
1684			}
1685		}
1686		put_page(page);
1687	}
1688	if (!list_empty(&source)) {
1689		nodemask_t nmask = node_states[N_MEMORY];
1690		struct migration_target_control mtc = {
1691			.nmask = &nmask,
1692			.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
1693		};
1694
1695		/*
1696		 * We have checked that migration range is on a single zone so
1697		 * we can use the nid of the first page to all the others.
1698		 */
1699		mtc.nid = page_to_nid(list_first_entry(&source, struct page, lru));
1700
1701		/*
1702		 * try to allocate from a different node but reuse this node
1703		 * if there are no other online nodes to be used (e.g. we are
1704		 * offlining a part of the only existing node)
1705		 */
1706		node_clear(mtc.nid, nmask);
1707		if (nodes_empty(nmask))
1708			node_set(mtc.nid, nmask);
1709		ret = migrate_pages(&source, alloc_migration_target, NULL,
1710			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_HOTPLUG, NULL);
1711		if (ret) {
1712			list_for_each_entry(page, &source, lru) {
1713				if (__ratelimit(&migrate_rs)) {
1714					pr_warn("migrating pfn %lx failed ret:%d\n",
1715						page_to_pfn(page), ret);
1716					dump_page(page, "migration failure");
1717				}
1718			}
1719			putback_movable_pages(&source);
1720		}
1721	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1722
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1723	return ret;
1724}
1725
 
 
 
 
 
 
 
 
 
 
 
 
 
1726static int __init cmdline_parse_movable_node(char *p)
1727{
 
1728	movable_node_enabled = true;
 
 
 
1729	return 0;
1730}
1731early_param("movable_node", cmdline_parse_movable_node);
1732
1733/* check which state of node_states will be changed when offline memory */
1734static void node_states_check_changes_offline(unsigned long nr_pages,
1735		struct zone *zone, struct memory_notify *arg)
1736{
1737	struct pglist_data *pgdat = zone->zone_pgdat;
1738	unsigned long present_pages = 0;
1739	enum zone_type zt;
1740
1741	arg->status_change_nid = NUMA_NO_NODE;
1742	arg->status_change_nid_normal = NUMA_NO_NODE;
 
 
 
 
 
 
 
 
 
1743
1744	/*
1745	 * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1746	 * If the memory to be offline is within the range
1747	 * [0..ZONE_NORMAL], and it is the last present memory there,
1748	 * the zones in that range will become empty after the offlining,
1749	 * thus we can determine that we need to clear the node from
1750	 * node_states[N_NORMAL_MEMORY].
1751	 */
1752	for (zt = 0; zt <= ZONE_NORMAL; zt++)
1753		present_pages += pgdat->node_zones[zt].present_pages;
1754	if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1755		arg->status_change_nid_normal = zone_to_nid(zone);
 
 
1756
 
1757	/*
1758	 * We have accounted the pages from [0..ZONE_NORMAL); ZONE_HIGHMEM
1759	 * does not apply as we don't support 32bit.
1760	 * Here we count the possible pages from ZONE_MOVABLE.
1761	 * If after having accounted all the pages, we see that the nr_pages
1762	 * to be offlined is over or equal to the accounted pages,
1763	 * we know that the node will become empty, and so, we can clear
1764	 * it for N_MEMORY as well.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1765	 */
1766	present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1767
 
 
 
 
 
 
 
 
1768	if (nr_pages >= present_pages)
1769		arg->status_change_nid = zone_to_nid(zone);
 
 
1770}
1771
1772static void node_states_clear_node(int node, struct memory_notify *arg)
1773{
1774	if (arg->status_change_nid_normal >= 0)
1775		node_clear_state(node, N_NORMAL_MEMORY);
1776
1777	if (arg->status_change_nid >= 0)
 
 
 
 
 
1778		node_clear_state(node, N_MEMORY);
1779}
1780
1781static int count_system_ram_pages_cb(unsigned long start_pfn,
1782				     unsigned long nr_pages, void *data)
1783{
1784	unsigned long *nr_system_ram_pages = data;
1785
1786	*nr_system_ram_pages += nr_pages;
1787	return 0;
1788}
1789
1790int __ref offline_pages(unsigned long start_pfn, unsigned long nr_pages,
1791			struct zone *zone, struct memory_group *group)
1792{
1793	const unsigned long end_pfn = start_pfn + nr_pages;
1794	unsigned long pfn, system_ram_pages = 0;
1795	const int node = zone_to_nid(zone);
1796	unsigned long flags;
 
 
1797	struct memory_notify arg;
1798	char *reason;
1799	int ret;
1800
1801	/*
1802	 * {on,off}lining is constrained to full memory sections (or more
1803	 * precisely to memory blocks from the user space POV).
1804	 * memmap_on_memory is an exception because it reserves initial part
1805	 * of the physical memory space for vmemmaps. That space is pageblock
1806	 * aligned.
1807	 */
1808	if (WARN_ON_ONCE(!nr_pages || !pageblock_aligned(start_pfn) ||
1809			 !IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION)))
1810		return -EINVAL;
1811
1812	mem_hotplug_begin();
1813
1814	/*
1815	 * Don't allow to offline memory blocks that contain holes.
1816	 * Consequently, memory blocks with holes can never get onlined
1817	 * via the hotplug path - online_pages() - as hotplugged memory has
1818	 * no holes. This way, we e.g., don't have to worry about marking
1819	 * memory holes PG_reserved, don't need pfn_valid() checks, and can
1820	 * avoid using walk_system_ram_range() later.
1821	 */
1822	walk_system_ram_range(start_pfn, nr_pages, &system_ram_pages,
1823			      count_system_ram_pages_cb);
1824	if (system_ram_pages != nr_pages) {
1825		ret = -EINVAL;
1826		reason = "memory holes";
1827		goto failed_removal;
1828	}
1829
1830	/*
1831	 * We only support offlining of memory blocks managed by a single zone,
1832	 * checked by calling code. This is just a sanity check that we might
1833	 * want to remove in the future.
1834	 */
1835	if (WARN_ON_ONCE(page_zone(pfn_to_page(start_pfn)) != zone ||
1836			 page_zone(pfn_to_page(end_pfn - 1)) != zone)) {
1837		ret = -EINVAL;
1838		reason = "multizone range";
1839		goto failed_removal;
1840	}
1841
1842	/*
1843	 * Disable pcplists so that page isolation cannot race with freeing
1844	 * in a way that pages from isolated pageblock are left on pcplists.
1845	 */
1846	zone_pcp_disable(zone);
1847	lru_cache_disable();
1848
1849	/* set above range as isolated */
1850	ret = start_isolate_page_range(start_pfn, end_pfn,
1851				       MIGRATE_MOVABLE,
1852				       MEMORY_OFFLINE | REPORT_FAILURE,
1853				       GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL);
1854	if (ret) {
1855		reason = "failure to isolate range";
1856		goto failed_removal_pcplists_disabled;
1857	}
1858
1859	arg.start_pfn = start_pfn;
1860	arg.nr_pages = nr_pages;
1861	node_states_check_changes_offline(nr_pages, zone, &arg);
1862
1863	ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1864	ret = notifier_to_errno(ret);
1865	if (ret) {
1866		reason = "notifier failure";
1867		goto failed_removal_isolated;
1868	}
1869
1870	do {
1871		pfn = start_pfn;
1872		do {
1873			if (signal_pending(current)) {
1874				ret = -EINTR;
1875				reason = "signal backoff";
1876				goto failed_removal_isolated;
1877			}
1878
1879			cond_resched();
 
 
1880
1881			ret = scan_movable_pages(pfn, end_pfn, &pfn);
1882			if (!ret) {
1883				/*
1884				 * TODO: fatal migration failures should bail
1885				 * out
1886				 */
1887				do_migrate_range(pfn, end_pfn);
1888			}
1889		} while (!ret);
1890
1891		if (ret != -ENOENT) {
1892			reason = "unmovable page";
1893			goto failed_removal_isolated;
1894		}
1895
1896		/*
1897		 * Dissolve free hugepages in the memory block before doing
1898		 * offlining actually in order to make hugetlbfs's object
1899		 * counting consistent.
1900		 */
1901		ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1902		if (ret) {
1903			reason = "failure to dissolve huge pages";
1904			goto failed_removal_isolated;
1905		}
1906
1907		ret = test_pages_isolated(start_pfn, end_pfn, MEMORY_OFFLINE);
1908
1909	} while (ret);
1910
1911	/* Mark all sections offline and remove free pages from the buddy. */
1912	__offline_isolated_pages(start_pfn, end_pfn);
1913	pr_debug("Offlined Pages %ld\n", nr_pages);
1914
1915	/*
1916	 * The memory sections are marked offline, and the pageblock flags
1917	 * effectively stale; nobody should be touching them. Fixup the number
1918	 * of isolated pageblocks, memory onlining will properly revert this.
1919	 */
1920	spin_lock_irqsave(&zone->lock, flags);
1921	zone->nr_isolate_pageblock -= nr_pages / pageblock_nr_pages;
1922	spin_unlock_irqrestore(&zone->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
1923
1924	lru_cache_enable();
1925	zone_pcp_enable(zone);
 
1926
1927	/* removal success */
1928	adjust_managed_page_count(pfn_to_page(start_pfn), -nr_pages);
1929	adjust_present_page_count(pfn_to_page(start_pfn), group, -nr_pages);
1930
1931	/* reinitialise watermarks and update pcp limits */
1932	init_per_zone_wmark_min();
1933
1934	if (!populated_zone(zone)) {
1935		zone_pcp_reset(zone);
1936		build_all_zonelists(NULL);
1937	}
 
1938
1939	node_states_clear_node(node, &arg);
1940	if (arg.status_change_nid >= 0) {
 
1941		kcompactd_stop(node);
1942		kswapd_stop(node);
1943	}
1944
 
1945	writeback_set_ratelimit();
1946
1947	memory_notify(MEM_OFFLINE, &arg);
1948	remove_pfn_range_from_zone(zone, start_pfn, nr_pages);
1949	mem_hotplug_done();
1950	return 0;
1951
1952failed_removal_isolated:
 
 
 
 
1953	/* pushback to free area */
1954	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1955	memory_notify(MEM_CANCEL_OFFLINE, &arg);
1956failed_removal_pcplists_disabled:
1957	lru_cache_enable();
1958	zone_pcp_enable(zone);
1959failed_removal:
1960	pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
1961		 (unsigned long long) start_pfn << PAGE_SHIFT,
1962		 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
1963		 reason);
1964	mem_hotplug_done();
1965	return ret;
1966}
1967
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1968static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1969{
1970	int *nid = arg;
1971
1972	*nid = mem->nid;
1973	if (unlikely(mem->state != MEM_OFFLINE)) {
1974		phys_addr_t beginpa, endpa;
1975
1976		beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1977		endpa = beginpa + memory_block_size_bytes() - 1;
1978		pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
1979			&beginpa, &endpa);
1980
1981		return -EBUSY;
1982	}
1983	return 0;
1984}
1985
1986static int get_nr_vmemmap_pages_cb(struct memory_block *mem, void *arg)
1987{
1988	/*
1989	 * If not set, continue with the next block.
1990	 */
1991	return mem->nr_vmemmap_pages;
1992}
1993
1994static int check_cpu_on_node(int nid)
1995{
1996	int cpu;
1997
1998	for_each_present_cpu(cpu) {
1999		if (cpu_to_node(cpu) == nid)
2000			/*
2001			 * the cpu on this node isn't removed, and we can't
2002			 * offline this node.
2003			 */
2004			return -EBUSY;
2005	}
2006
2007	return 0;
2008}
2009
2010static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg)
 
 
 
 
 
 
 
 
 
 
 
2011{
2012	int nid = *(int *)arg;
 
 
 
 
2013
2014	/*
2015	 * If a memory block belongs to multiple nodes, the stored nid is not
2016	 * reliable. However, such blocks are always online (e.g., cannot get
2017	 * offlined) and, therefore, are still spanned by the node.
2018	 */
2019	return mem->nid == nid ? -EEXIST : 0;
 
 
2020}
2021
2022/**
2023 * try_offline_node
2024 * @nid: the node ID
2025 *
2026 * Offline a node if all memory sections and cpus of the node are removed.
2027 *
2028 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2029 * and online/offline operations before this call.
2030 */
2031void try_offline_node(int nid)
2032{
2033	int rc;
 
 
 
 
 
 
2034
2035	/*
2036	 * If the node still spans pages (especially ZONE_DEVICE), don't
2037	 * offline it. A node spans memory after move_pfn_range_to_zone(),
2038	 * e.g., after the memory block was onlined.
2039	 */
2040	if (node_spanned_pages(nid))
2041		return;
2042
2043	/*
2044	 * Especially offline memory blocks might not be spanned by the
2045	 * node. They will get spanned by the node once they get onlined.
2046	 * However, they link to the node in sysfs and can get onlined later.
2047	 */
2048	rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb);
2049	if (rc)
2050		return;
 
2051
2052	if (check_cpu_on_node(nid))
2053		return;
2054
2055	/*
2056	 * all memory/cpu of this node are removed, we can offline this
2057	 * node now.
2058	 */
2059	node_set_offline(nid);
2060	unregister_one_node(nid);
2061}
2062EXPORT_SYMBOL(try_offline_node);
2063
2064static int __ref try_remove_memory(u64 start, u64 size)
2065{
2066	struct vmem_altmap mhp_altmap = {};
2067	struct vmem_altmap *altmap = NULL;
2068	unsigned long nr_vmemmap_pages;
2069	int rc = 0, nid = NUMA_NO_NODE;
2070
2071	BUG_ON(check_hotplug_memory_range(start, size));
2072
2073	/*
2074	 * All memory blocks must be offlined before removing memory.  Check
2075	 * whether all memory blocks in question are offline and return error
2076	 * if this is not the case.
2077	 *
2078	 * While at it, determine the nid. Note that if we'd have mixed nodes,
2079	 * we'd only try to offline the last determined one -- which is good
2080	 * enough for the cases we care about.
2081	 */
2082	rc = walk_memory_blocks(start, size, &nid, check_memblock_offlined_cb);
2083	if (rc)
2084		return rc;
2085
2086	/*
2087	 * We only support removing memory added with MHP_MEMMAP_ON_MEMORY in
2088	 * the same granularity it was added - a single memory block.
2089	 */
2090	if (mhp_memmap_on_memory()) {
2091		nr_vmemmap_pages = walk_memory_blocks(start, size, NULL,
2092						      get_nr_vmemmap_pages_cb);
2093		if (nr_vmemmap_pages) {
2094			if (size != memory_block_size_bytes()) {
2095				pr_warn("Refuse to remove %#llx - %#llx,"
2096					"wrong granularity\n",
2097					start, start + size);
2098				return -EINVAL;
2099			}
2100
2101			/*
2102			 * Let remove_pmd_table->free_hugepage_table do the
2103			 * right thing if we used vmem_altmap when hot-adding
2104			 * the range.
2105			 */
2106			mhp_altmap.alloc = nr_vmemmap_pages;
2107			altmap = &mhp_altmap;
2108		}
2109	}
2110
2111	/* remove memmap entry */
2112	firmware_map_remove(start, start + size, "System RAM");
2113
2114	/*
2115	 * Memory block device removal under the device_hotplug_lock is
2116	 * a barrier against racing online attempts.
2117	 */
2118	remove_memory_block_devices(start, size);
2119
2120	mem_hotplug_begin();
2121
2122	arch_remove_memory(start, size, altmap);
2123
2124	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
2125		memblock_phys_free(start, size);
2126		memblock_remove(start, size);
2127	}
2128
2129	release_mem_region_adjustable(start, size);
2130
2131	if (nid != NUMA_NO_NODE)
2132		try_offline_node(nid);
2133
2134	mem_hotplug_done();
2135	return 0;
2136}
2137
2138/**
2139 * __remove_memory - Remove memory if every memory block is offline
 
2140 * @start: physical address of the region to remove
2141 * @size: size of the region to remove
2142 *
2143 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2144 * and online/offline operations before this call, as required by
2145 * try_offline_node().
2146 */
2147void __remove_memory(u64 start, u64 size)
2148{
 
2149
2150	/*
2151	 * trigger BUG() if some memory is not offlined prior to calling this
2152	 * function
2153	 */
2154	if (try_remove_memory(start, size))
2155		BUG();
2156}
2157
2158/*
2159 * Remove memory if every memory block is offline, otherwise return -EBUSY is
2160 * some memory is not offline
2161 */
2162int remove_memory(u64 start, u64 size)
2163{
2164	int rc;
2165
2166	lock_device_hotplug();
2167	rc = try_remove_memory(start, size);
2168	unlock_device_hotplug();
2169
2170	return rc;
2171}
2172EXPORT_SYMBOL_GPL(remove_memory);
2173
2174static int try_offline_memory_block(struct memory_block *mem, void *arg)
2175{
2176	uint8_t online_type = MMOP_ONLINE_KERNEL;
2177	uint8_t **online_types = arg;
2178	struct page *page;
2179	int rc;
2180
2181	/*
2182	 * Sense the online_type via the zone of the memory block. Offlining
2183	 * with multiple zones within one memory block will be rejected
2184	 * by offlining code ... so we don't care about that.
2185	 */
2186	page = pfn_to_online_page(section_nr_to_pfn(mem->start_section_nr));
2187	if (page && zone_idx(page_zone(page)) == ZONE_MOVABLE)
2188		online_type = MMOP_ONLINE_MOVABLE;
 
2189
2190	rc = device_offline(&mem->dev);
2191	/*
2192	 * Default is MMOP_OFFLINE - change it only if offlining succeeded,
2193	 * so try_reonline_memory_block() can do the right thing.
2194	 */
2195	if (!rc)
2196		**online_types = online_type;
2197
2198	(*online_types)++;
2199	/* Ignore if already offline. */
2200	return rc < 0 ? rc : 0;
2201}
2202
2203static int try_reonline_memory_block(struct memory_block *mem, void *arg)
2204{
2205	uint8_t **online_types = arg;
2206	int rc;
2207
2208	if (**online_types != MMOP_OFFLINE) {
2209		mem->online_type = **online_types;
2210		rc = device_online(&mem->dev);
2211		if (rc < 0)
2212			pr_warn("%s: Failed to re-online memory: %d",
2213				__func__, rc);
2214	}
2215
2216	/* Continue processing all remaining memory blocks. */
2217	(*online_types)++;
2218	return 0;
2219}
2220
2221/*
2222 * Try to offline and remove memory. Might take a long time to finish in case
2223 * memory is still in use. Primarily useful for memory devices that logically
2224 * unplugged all memory (so it's no longer in use) and want to offline + remove
2225 * that memory.
2226 */
2227int offline_and_remove_memory(u64 start, u64 size)
2228{
2229	const unsigned long mb_count = size / memory_block_size_bytes();
2230	uint8_t *online_types, *tmp;
2231	int rc;
2232
2233	if (!IS_ALIGNED(start, memory_block_size_bytes()) ||
2234	    !IS_ALIGNED(size, memory_block_size_bytes()) || !size)
2235		return -EINVAL;
2236
2237	/*
2238	 * We'll remember the old online type of each memory block, so we can
2239	 * try to revert whatever we did when offlining one memory block fails
2240	 * after offlining some others succeeded.
2241	 */
2242	online_types = kmalloc_array(mb_count, sizeof(*online_types),
2243				     GFP_KERNEL);
2244	if (!online_types)
2245		return -ENOMEM;
2246	/*
2247	 * Initialize all states to MMOP_OFFLINE, so when we abort processing in
2248	 * try_offline_memory_block(), we'll skip all unprocessed blocks in
2249	 * try_reonline_memory_block().
2250	 */
2251	memset(online_types, MMOP_OFFLINE, mb_count);
2252
2253	lock_device_hotplug();
2254
2255	tmp = online_types;
2256	rc = walk_memory_blocks(start, size, &tmp, try_offline_memory_block);
2257
2258	/*
2259	 * In case we succeeded to offline all memory, remove it.
2260	 * This cannot fail as it cannot get onlined in the meantime.
2261	 */
2262	if (!rc) {
2263		rc = try_remove_memory(start, size);
2264		if (rc)
2265			pr_err("%s: Failed to remove memory: %d", __func__, rc);
2266	}
2267
2268	/*
2269	 * Rollback what we did. While memory onlining might theoretically fail
2270	 * (nacked by a notifier), it barely ever happens.
2271	 */
2272	if (rc) {
2273		tmp = online_types;
2274		walk_memory_blocks(start, size, &tmp,
2275				   try_reonline_memory_block);
2276	}
2277	unlock_device_hotplug();
2278
2279	kfree(online_types);
2280	return rc;
2281}
2282EXPORT_SYMBOL_GPL(offline_and_remove_memory);
2283#endif /* CONFIG_MEMORY_HOTREMOVE */