Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 * Generic pwmlib implementation
   3 *
   4 * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de>
   5 * Copyright (C) 2011-2012 Avionic Design GmbH
   6 *
   7 *  This program is free software; you can redistribute it and/or modify
   8 *  it under the terms of the GNU General Public License as published by
   9 *  the Free Software Foundation; either version 2, or (at your option)
  10 *  any later version.
  11 *
  12 *  This program is distributed in the hope that it will be useful,
  13 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 *  GNU General Public License for more details.
  16 *
  17 *  You should have received a copy of the GNU General Public License
  18 *  along with this program; see the file COPYING.  If not, write to
  19 *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
  20 */
  21
 
  22#include <linux/module.h>
 
 
  23#include <linux/pwm.h>
  24#include <linux/radix-tree.h>
  25#include <linux/list.h>
  26#include <linux/mutex.h>
  27#include <linux/err.h>
  28#include <linux/slab.h>
  29#include <linux/device.h>
  30#include <linux/debugfs.h>
  31#include <linux/seq_file.h>
  32
  33#include <dt-bindings/pwm/pwm.h>
  34
  35#define MAX_PWMS 1024
 
  36
  37static DEFINE_MUTEX(pwm_lookup_lock);
  38static LIST_HEAD(pwm_lookup_list);
  39static DEFINE_MUTEX(pwm_lock);
  40static LIST_HEAD(pwm_chips);
  41static DECLARE_BITMAP(allocated_pwms, MAX_PWMS);
  42static RADIX_TREE(pwm_tree, GFP_KERNEL);
  43
  44static struct pwm_device *pwm_to_device(unsigned int pwm)
 
 
 
  45{
  46	return radix_tree_lookup(&pwm_tree, pwm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  47}
  48
  49static int alloc_pwms(int pwm, unsigned int count)
 
 
 
 
 
  50{
  51	unsigned int from = 0;
  52	unsigned int start;
  53
  54	if (pwm >= MAX_PWMS)
 
  55		return -EINVAL;
  56
  57	if (pwm >= 0)
  58		from = pwm;
  59
  60	start = bitmap_find_next_zero_area(allocated_pwms, MAX_PWMS, from,
  61					   count, 0);
 
 
 
 
  62
  63	if (pwm >= 0 && start != pwm)
  64		return -EEXIST;
 
 
  65
  66	if (start + count > MAX_PWMS)
  67		return -ENOSPC;
  68
  69	return start;
 
 
 
 
 
 
  70}
  71
  72static void free_pwms(struct pwm_chip *chip)
 
 
 
 
 
 
  73{
  74	unsigned int i;
  75
  76	for (i = 0; i < chip->npwm; i++) {
  77		struct pwm_device *pwm = &chip->pwms[i];
 
 
 
 
 
 
  78
  79		radix_tree_delete(&pwm_tree, pwm->pwm);
 
 
 
 
 
 
 
 
 
  80	}
  81
  82	bitmap_clear(allocated_pwms, chip->base, chip->npwm);
 
 
  83
  84	kfree(chip->pwms);
  85	chip->pwms = NULL;
 
 
 
 
 
 
 
 
 
 
  86}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  87
  88static struct pwm_chip *pwmchip_find_by_name(const char *name)
  89{
  90	struct pwm_chip *chip;
 
  91
  92	if (!name)
  93		return NULL;
  94
  95	mutex_lock(&pwm_lock);
  96
  97	list_for_each_entry(chip, &pwm_chips, list) {
  98		const char *chip_name = dev_name(chip->dev);
  99
 100		if (chip_name && strcmp(chip_name, name) == 0) {
 101			mutex_unlock(&pwm_lock);
 102			return chip;
 103		}
 104	}
 105
 106	mutex_unlock(&pwm_lock);
 107
 108	return NULL;
 109}
 110
 111static int pwm_device_request(struct pwm_device *pwm, const char *label)
 112{
 113	int err;
 
 
 114
 115	if (test_bit(PWMF_REQUESTED, &pwm->flags))
 116		return -EBUSY;
 117
 118	if (!try_module_get(pwm->chip->ops->owner))
 119		return -ENODEV;
 120
 121	if (pwm->chip->ops->request) {
 122		err = pwm->chip->ops->request(pwm->chip, pwm);
 123		if (err) {
 124			module_put(pwm->chip->ops->owner);
 125			return err;
 126		}
 127	}
 128
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 129	set_bit(PWMF_REQUESTED, &pwm->flags);
 130	pwm->label = label;
 131
 132	return 0;
 133}
 134
 135struct pwm_device *
 136of_pwm_xlate_with_flags(struct pwm_chip *pc, const struct of_phandle_args *args)
 
 
 
 
 
 
 
 
 
 
 
 137{
 138	struct pwm_device *pwm;
 
 139
 140	/* check, whether the driver supports a third cell for flags */
 141	if (pc->of_pwm_n_cells < 3)
 142		return ERR_PTR(-EINVAL);
 143
 144	/* flags in the third cell are optional */
 145	if (args->args_count < 2)
 146		return ERR_PTR(-EINVAL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 147
 148	if (args->args[0] >= pc->npwm)
 
 149		return ERR_PTR(-EINVAL);
 150
 151	pwm = pwm_request_from_chip(pc, args->args[0], NULL);
 152	if (IS_ERR(pwm))
 153		return pwm;
 154
 155	pwm->args.period = args->args[1];
 156	pwm->args.polarity = PWM_POLARITY_NORMAL;
 157
 
 158	if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED)
 159		pwm->args.polarity = PWM_POLARITY_INVERSED;
 160
 161	return pwm;
 162}
 163EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags);
 164
 165static struct pwm_device *
 166of_pwm_simple_xlate(struct pwm_chip *pc, const struct of_phandle_args *args)
 167{
 168	struct pwm_device *pwm;
 169
 170	/* sanity check driver support */
 171	if (pc->of_pwm_n_cells < 2)
 172		return ERR_PTR(-EINVAL);
 173
 174	/* all cells are required */
 175	if (args->args_count != pc->of_pwm_n_cells)
 176		return ERR_PTR(-EINVAL);
 177
 178	if (args->args[0] >= pc->npwm)
 179		return ERR_PTR(-EINVAL);
 180
 181	pwm = pwm_request_from_chip(pc, args->args[0], NULL);
 182	if (IS_ERR(pwm))
 183		return pwm;
 184
 185	pwm->args.period = args->args[1];
 
 
 
 
 
 186
 187	return pwm;
 188}
 
 189
 190static void of_pwmchip_add(struct pwm_chip *chip)
 
 
 191{
 192	if (!chip->dev || !chip->dev->of_node)
 193		return;
 194
 195	if (!chip->of_xlate) {
 196		chip->of_xlate = of_pwm_simple_xlate;
 197		chip->of_pwm_n_cells = 2;
 198	}
 
 
 
 
 
 
 
 
 
 199
 200	of_node_get(chip->dev->of_node);
 
 
 
 
 
 
 
 
 
 201}
 
 202
 203static void of_pwmchip_remove(struct pwm_chip *chip)
 204{
 205	if (chip->dev)
 206		of_node_put(chip->dev->of_node);
 
 207}
 208
 209/**
 210 * pwm_set_chip_data() - set private chip data for a PWM
 211 * @pwm: PWM device
 212 * @data: pointer to chip-specific data
 213 *
 214 * Returns: 0 on success or a negative error code on failure.
 215 */
 216int pwm_set_chip_data(struct pwm_device *pwm, void *data)
 217{
 218	if (!pwm)
 219		return -EINVAL;
 220
 221	pwm->chip_data = data;
 
 
 222
 223	return 0;
 
 
 
 
 224}
 225EXPORT_SYMBOL_GPL(pwm_set_chip_data);
 226
 227/**
 228 * pwm_get_chip_data() - get private chip data for a PWM
 229 * @pwm: PWM device
 230 *
 231 * Returns: A pointer to the chip-private data for the PWM device.
 232 */
 233void *pwm_get_chip_data(struct pwm_device *pwm)
 234{
 235	return pwm ? pwm->chip_data : NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 236}
 237EXPORT_SYMBOL_GPL(pwm_get_chip_data);
 238
 239static bool pwm_ops_check(const struct pwm_ops *ops)
 240{
 241	/* driver supports legacy, non-atomic operation */
 242	if (ops->config && ops->enable && ops->disable)
 243		return true;
 244
 245	/* driver supports atomic operation */
 246	if (ops->apply)
 247		return true;
 248
 249	return false;
 
 
 
 
 250}
 251
 252/**
 253 * pwmchip_add_with_polarity() - register a new PWM chip
 254 * @chip: the PWM chip to add
 255 * @polarity: initial polarity of PWM channels
 256 *
 257 * Register a new PWM chip. If chip->base < 0 then a dynamically assigned base
 258 * will be used. The initial polarity for all channels is specified by the
 259 * @polarity parameter.
 260 *
 261 * Returns: 0 on success or a negative error code on failure.
 262 */
 263int pwmchip_add_with_polarity(struct pwm_chip *chip,
 264			      enum pwm_polarity polarity)
 265{
 266	struct pwm_device *pwm;
 267	unsigned int i;
 268	int ret;
 269
 270	if (!chip || !chip->dev || !chip->ops || !chip->npwm)
 271		return -EINVAL;
 272
 273	if (!pwm_ops_check(chip->ops))
 274		return -EINVAL;
 275
 276	mutex_lock(&pwm_lock);
 277
 278	ret = alloc_pwms(chip->base, chip->npwm);
 279	if (ret < 0)
 280		goto out;
 281
 282	chip->pwms = kcalloc(chip->npwm, sizeof(*pwm), GFP_KERNEL);
 283	if (!chip->pwms) {
 284		ret = -ENOMEM;
 285		goto out;
 
 
 
 286	}
 287
 288	chip->base = ret;
 289
 290	for (i = 0; i < chip->npwm; i++) {
 291		pwm = &chip->pwms[i];
 292
 293		pwm->chip = chip;
 294		pwm->pwm = chip->base + i;
 295		pwm->hwpwm = i;
 296		pwm->state.polarity = polarity;
 297
 298		if (chip->ops->get_state)
 299			chip->ops->get_state(chip, pwm, &pwm->state);
 300
 301		radix_tree_insert(&pwm_tree, pwm->pwm, pwm);
 302	}
 303
 304	bitmap_set(allocated_pwms, chip->base, chip->npwm);
 305
 306	INIT_LIST_HEAD(&chip->list);
 307	list_add(&chip->list, &pwm_chips);
 308
 309	ret = 0;
 310
 311	if (IS_ENABLED(CONFIG_OF))
 312		of_pwmchip_add(chip);
 313
 314	pwmchip_sysfs_export(chip);
 315
 316out:
 317	mutex_unlock(&pwm_lock);
 318	return ret;
 319}
 320EXPORT_SYMBOL_GPL(pwmchip_add_with_polarity);
 321
 322/**
 323 * pwmchip_add() - register a new PWM chip
 324 * @chip: the PWM chip to add
 325 *
 326 * Register a new PWM chip. If chip->base < 0 then a dynamically assigned base
 327 * will be used. The initial polarity for all channels is normal.
 328 *
 329 * Returns: 0 on success or a negative error code on failure.
 330 */
 331int pwmchip_add(struct pwm_chip *chip)
 332{
 333	return pwmchip_add_with_polarity(chip, PWM_POLARITY_NORMAL);
 334}
 335EXPORT_SYMBOL_GPL(pwmchip_add);
 336
 337/**
 338 * pwmchip_remove() - remove a PWM chip
 339 * @chip: the PWM chip to remove
 340 *
 341 * Removes a PWM chip. This function may return busy if the PWM chip provides
 342 * a PWM device that is still requested.
 343 *
 344 * Returns: 0 on success or a negative error code on failure.
 345 */
 346int pwmchip_remove(struct pwm_chip *chip)
 347{
 348	unsigned int i;
 349	int ret = 0;
 350
 351	pwmchip_sysfs_unexport_children(chip);
 352
 353	mutex_lock(&pwm_lock);
 354
 355	for (i = 0; i < chip->npwm; i++) {
 356		struct pwm_device *pwm = &chip->pwms[i];
 357
 358		if (test_bit(PWMF_REQUESTED, &pwm->flags)) {
 359			ret = -EBUSY;
 360			goto out;
 361		}
 362	}
 363
 364	list_del_init(&chip->list);
 365
 366	if (IS_ENABLED(CONFIG_OF))
 367		of_pwmchip_remove(chip);
 368
 369	free_pwms(chip);
 370
 371	pwmchip_sysfs_unexport(chip);
 372
 373out:
 374	mutex_unlock(&pwm_lock);
 375	return ret;
 
 376}
 377EXPORT_SYMBOL_GPL(pwmchip_remove);
 378
 379/**
 380 * pwm_request() - request a PWM device
 381 * @pwm: global PWM device index
 382 * @label: PWM device label
 383 *
 384 * This function is deprecated, use pwm_get() instead.
 385 *
 386 * Returns: A pointer to a PWM device or an ERR_PTR()-encoded error code on
 387 * failure.
 388 */
 389struct pwm_device *pwm_request(int pwm, const char *label)
 390{
 391	struct pwm_device *dev;
 392	int err;
 393
 394	if (pwm < 0 || pwm >= MAX_PWMS)
 395		return ERR_PTR(-EINVAL);
 396
 397	mutex_lock(&pwm_lock);
 398
 399	dev = pwm_to_device(pwm);
 400	if (!dev) {
 401		dev = ERR_PTR(-EPROBE_DEFER);
 402		goto out;
 403	}
 404
 405	err = pwm_device_request(dev, label);
 406	if (err < 0)
 407		dev = ERR_PTR(err);
 408
 409out:
 410	mutex_unlock(&pwm_lock);
 411
 412	return dev;
 413}
 414EXPORT_SYMBOL_GPL(pwm_request);
 415
 416/**
 417 * pwm_request_from_chip() - request a PWM device relative to a PWM chip
 418 * @chip: PWM chip
 419 * @index: per-chip index of the PWM to request
 420 * @label: a literal description string of this PWM
 421 *
 422 * Returns: A pointer to the PWM device at the given index of the given PWM
 423 * chip. A negative error code is returned if the index is not valid for the
 424 * specified PWM chip or if the PWM device cannot be requested.
 425 */
 426struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip,
 427					 unsigned int index,
 428					 const char *label)
 429{
 430	struct pwm_device *pwm;
 431	int err;
 432
 433	if (!chip || index >= chip->npwm)
 434		return ERR_PTR(-EINVAL);
 435
 436	mutex_lock(&pwm_lock);
 437	pwm = &chip->pwms[index];
 438
 439	err = pwm_device_request(pwm, label);
 440	if (err < 0)
 441		pwm = ERR_PTR(err);
 442
 443	mutex_unlock(&pwm_lock);
 444	return pwm;
 445}
 446EXPORT_SYMBOL_GPL(pwm_request_from_chip);
 447
 448/**
 449 * pwm_free() - free a PWM device
 450 * @pwm: PWM device
 451 *
 452 * This function is deprecated, use pwm_put() instead.
 453 */
 454void pwm_free(struct pwm_device *pwm)
 455{
 456	pwm_put(pwm);
 457}
 458EXPORT_SYMBOL_GPL(pwm_free);
 459
 460/**
 461 * pwm_apply_state() - atomically apply a new state to a PWM device
 462 * @pwm: PWM device
 463 * @state: new state to apply. This can be adjusted by the PWM driver
 464 *	   if the requested config is not achievable, for example,
 465 *	   ->duty_cycle and ->period might be approximated.
 466 */
 467int pwm_apply_state(struct pwm_device *pwm, struct pwm_state *state)
 468{
 469	int err;
 470
 471	if (!pwm || !state || !state->period ||
 472	    state->duty_cycle > state->period)
 473		return -EINVAL;
 474
 475	if (!memcmp(state, &pwm->state, sizeof(*state)))
 476		return 0;
 477
 478	if (pwm->chip->ops->apply) {
 479		err = pwm->chip->ops->apply(pwm->chip, pwm, state);
 480		if (err)
 481			return err;
 482
 483		pwm->state = *state;
 484	} else {
 485		/*
 486		 * FIXME: restore the initial state in case of error.
 
 
 487		 */
 488		if (state->polarity != pwm->state.polarity) {
 489			if (!pwm->chip->ops->set_polarity)
 490				return -ENOTSUPP;
 491
 492			/*
 493			 * Changing the polarity of a running PWM is
 494			 * only allowed when the PWM driver implements
 495			 * ->apply().
 496			 */
 497			if (pwm->state.enabled) {
 498				pwm->chip->ops->disable(pwm->chip, pwm);
 499				pwm->state.enabled = false;
 500			}
 501
 502			err = pwm->chip->ops->set_polarity(pwm->chip, pwm,
 503							   state->polarity);
 504			if (err)
 505				return err;
 506
 507			pwm->state.polarity = state->polarity;
 508		}
 509
 510		if (state->period != pwm->state.period ||
 511		    state->duty_cycle != pwm->state.duty_cycle) {
 512			err = pwm->chip->ops->config(pwm->chip, pwm,
 513						     state->duty_cycle,
 514						     state->period);
 515			if (err)
 516				return err;
 517
 518			pwm->state.duty_cycle = state->duty_cycle;
 519			pwm->state.period = state->period;
 520		}
 521
 522		if (state->enabled != pwm->state.enabled) {
 523			if (state->enabled) {
 524				err = pwm->chip->ops->enable(pwm->chip, pwm);
 525				if (err)
 526					return err;
 527			} else {
 528				pwm->chip->ops->disable(pwm->chip, pwm);
 529			}
 530
 531			pwm->state.enabled = state->enabled;
 532		}
 533	}
 534
 535	return 0;
 536}
 537EXPORT_SYMBOL_GPL(pwm_apply_state);
 538
 539/**
 540 * pwm_capture() - capture and report a PWM signal
 541 * @pwm: PWM device
 542 * @result: structure to fill with capture result
 543 * @timeout: time to wait, in milliseconds, before giving up on capture
 544 *
 545 * Returns: 0 on success or a negative error code on failure.
 546 */
 547int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result,
 548		unsigned long timeout)
 549{
 550	int err;
 551
 552	if (!pwm || !pwm->chip->ops)
 553		return -EINVAL;
 554
 555	if (!pwm->chip->ops->capture)
 556		return -ENOSYS;
 557
 558	mutex_lock(&pwm_lock);
 559	err = pwm->chip->ops->capture(pwm->chip, pwm, result, timeout);
 560	mutex_unlock(&pwm_lock);
 561
 562	return err;
 563}
 564EXPORT_SYMBOL_GPL(pwm_capture);
 565
 566/**
 567 * pwm_adjust_config() - adjust the current PWM config to the PWM arguments
 568 * @pwm: PWM device
 569 *
 570 * This function will adjust the PWM config to the PWM arguments provided
 571 * by the DT or PWM lookup table. This is particularly useful to adapt
 572 * the bootloader config to the Linux one.
 573 */
 574int pwm_adjust_config(struct pwm_device *pwm)
 575{
 576	struct pwm_state state;
 577	struct pwm_args pargs;
 578
 579	pwm_get_args(pwm, &pargs);
 580	pwm_get_state(pwm, &state);
 581
 582	/*
 583	 * If the current period is zero it means that either the PWM driver
 584	 * does not support initial state retrieval or the PWM has not yet
 585	 * been configured.
 586	 *
 587	 * In either case, we setup the new period and polarity, and assign a
 588	 * duty cycle of 0.
 589	 */
 590	if (!state.period) {
 591		state.duty_cycle = 0;
 592		state.period = pargs.period;
 593		state.polarity = pargs.polarity;
 594
 595		return pwm_apply_state(pwm, &state);
 596	}
 597
 598	/*
 599	 * Adjust the PWM duty cycle/period based on the period value provided
 600	 * in PWM args.
 601	 */
 602	if (pargs.period != state.period) {
 603		u64 dutycycle = (u64)state.duty_cycle * pargs.period;
 604
 605		do_div(dutycycle, state.period);
 606		state.duty_cycle = dutycycle;
 607		state.period = pargs.period;
 608	}
 609
 610	/*
 611	 * If the polarity changed, we should also change the duty cycle.
 612	 */
 613	if (pargs.polarity != state.polarity) {
 614		state.polarity = pargs.polarity;
 615		state.duty_cycle = state.period - state.duty_cycle;
 616	}
 617
 618	return pwm_apply_state(pwm, &state);
 619}
 620EXPORT_SYMBOL_GPL(pwm_adjust_config);
 621
 622static struct pwm_chip *of_node_to_pwmchip(struct device_node *np)
 623{
 624	struct pwm_chip *chip;
 
 625
 626	mutex_lock(&pwm_lock);
 627
 628	list_for_each_entry(chip, &pwm_chips, list)
 629		if (chip->dev && chip->dev->of_node == np) {
 630			mutex_unlock(&pwm_lock);
 631			return chip;
 632		}
 633
 634	mutex_unlock(&pwm_lock);
 635
 636	return ERR_PTR(-EPROBE_DEFER);
 637}
 638
 639/**
 640 * of_pwm_get() - request a PWM via the PWM framework
 
 641 * @np: device node to get the PWM from
 642 * @con_id: consumer name
 643 *
 644 * Returns the PWM device parsed from the phandle and index specified in the
 645 * "pwms" property of a device tree node or a negative error-code on failure.
 646 * Values parsed from the device tree are stored in the returned PWM device
 647 * object.
 648 *
 649 * If con_id is NULL, the first PWM device listed in the "pwms" property will
 650 * be requested. Otherwise the "pwm-names" property is used to do a reverse
 651 * lookup of the PWM index. This also means that the "pwm-names" property
 652 * becomes mandatory for devices that look up the PWM device via the con_id
 653 * parameter.
 654 *
 655 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
 656 * error code on failure.
 657 */
 658struct pwm_device *of_pwm_get(struct device_node *np, const char *con_id)
 
 659{
 660	struct pwm_device *pwm = NULL;
 661	struct of_phandle_args args;
 662	struct pwm_chip *pc;
 
 663	int index = 0;
 664	int err;
 665
 666	if (con_id) {
 667		index = of_property_match_string(np, "pwm-names", con_id);
 668		if (index < 0)
 669			return ERR_PTR(index);
 670	}
 671
 672	err = of_parse_phandle_with_args(np, "pwms", "#pwm-cells", index,
 673					 &args);
 674	if (err) {
 675		pr_err("%s(): can't parse \"pwms\" property\n", __func__);
 676		return ERR_PTR(err);
 677	}
 678
 679	pc = of_node_to_pwmchip(args.np);
 680	if (IS_ERR(pc)) {
 681		if (PTR_ERR(pc) != -EPROBE_DEFER)
 682			pr_err("%s(): PWM chip not found\n", __func__);
 683
 684		pwm = ERR_CAST(pc);
 685		goto put;
 686	}
 687
 688	pwm = pc->of_xlate(pc, &args);
 689	if (IS_ERR(pwm))
 690		goto put;
 691
 
 
 
 
 
 
 
 
 692	/*
 693	 * If a consumer name was not given, try to look it up from the
 694	 * "pwm-names" property if it exists. Otherwise use the name of
 695	 * the user device node.
 696	 */
 697	if (!con_id) {
 698		err = of_property_read_string_index(np, "pwm-names", index,
 699						    &con_id);
 700		if (err < 0)
 701			con_id = np->name;
 702	}
 703
 704	pwm->label = con_id;
 705
 706put:
 707	of_node_put(args.np);
 708
 709	return pwm;
 710}
 711EXPORT_SYMBOL_GPL(of_pwm_get);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 712
 713/**
 714 * pwm_add_table() - register PWM device consumers
 715 * @table: array of consumers to register
 716 * @num: number of consumers in table
 717 */
 718void pwm_add_table(struct pwm_lookup *table, size_t num)
 719{
 720	mutex_lock(&pwm_lookup_lock);
 721
 722	while (num--) {
 723		list_add_tail(&table->list, &pwm_lookup_list);
 724		table++;
 725	}
 726
 727	mutex_unlock(&pwm_lookup_lock);
 728}
 729
 730/**
 731 * pwm_remove_table() - unregister PWM device consumers
 732 * @table: array of consumers to unregister
 733 * @num: number of consumers in table
 734 */
 735void pwm_remove_table(struct pwm_lookup *table, size_t num)
 736{
 737	mutex_lock(&pwm_lookup_lock);
 738
 739	while (num--) {
 740		list_del(&table->list);
 741		table++;
 742	}
 743
 744	mutex_unlock(&pwm_lookup_lock);
 745}
 746
 747/**
 748 * pwm_get() - look up and request a PWM device
 749 * @dev: device for PWM consumer
 750 * @con_id: consumer name
 751 *
 752 * Lookup is first attempted using DT. If the device was not instantiated from
 753 * a device tree, a PWM chip and a relative index is looked up via a table
 754 * supplied by board setup code (see pwm_add_table()).
 755 *
 756 * Once a PWM chip has been found the specified PWM device will be requested
 757 * and is ready to be used.
 758 *
 759 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
 760 * error code on failure.
 761 */
 762struct pwm_device *pwm_get(struct device *dev, const char *con_id)
 763{
 
 764	const char *dev_id = dev ? dev_name(dev) : NULL;
 765	struct pwm_device *pwm;
 766	struct pwm_chip *chip;
 
 767	unsigned int best = 0;
 768	struct pwm_lookup *p, *chosen = NULL;
 769	unsigned int match;
 770	int err;
 771
 772	/* look up via DT first */
 773	if (IS_ENABLED(CONFIG_OF) && dev && dev->of_node)
 774		return of_pwm_get(dev->of_node, con_id);
 
 
 
 
 
 
 
 775
 776	/*
 777	 * We look up the provider in the static table typically provided by
 778	 * board setup code. We first try to lookup the consumer device by
 779	 * name. If the consumer device was passed in as NULL or if no match
 780	 * was found, we try to find the consumer by directly looking it up
 781	 * by name.
 782	 *
 783	 * If a match is found, the provider PWM chip is looked up by name
 784	 * and a PWM device is requested using the PWM device per-chip index.
 785	 *
 786	 * The lookup algorithm was shamelessly taken from the clock
 787	 * framework:
 788	 *
 789	 * We do slightly fuzzy matching here:
 790	 *  An entry with a NULL ID is assumed to be a wildcard.
 791	 *  If an entry has a device ID, it must match
 792	 *  If an entry has a connection ID, it must match
 793	 * Then we take the most specific entry - with the following order
 794	 * of precedence: dev+con > dev only > con only.
 795	 */
 796	mutex_lock(&pwm_lookup_lock);
 797
 798	list_for_each_entry(p, &pwm_lookup_list, list) {
 799		match = 0;
 800
 801		if (p->dev_id) {
 802			if (!dev_id || strcmp(p->dev_id, dev_id))
 803				continue;
 804
 805			match += 2;
 806		}
 807
 808		if (p->con_id) {
 809			if (!con_id || strcmp(p->con_id, con_id))
 810				continue;
 811
 812			match += 1;
 813		}
 814
 815		if (match > best) {
 816			chosen = p;
 817
 818			if (match != 3)
 819				best = match;
 820			else
 821				break;
 822		}
 823	}
 824
 825	mutex_unlock(&pwm_lookup_lock);
 826
 827	if (!chosen)
 828		return ERR_PTR(-ENODEV);
 829
 830	chip = pwmchip_find_by_name(chosen->provider);
 831
 832	/*
 833	 * If the lookup entry specifies a module, load the module and retry
 834	 * the PWM chip lookup. This can be used to work around driver load
 835	 * ordering issues if driver's can't be made to properly support the
 836	 * deferred probe mechanism.
 837	 */
 838	if (!chip && chosen->module) {
 839		err = request_module(chosen->module);
 840		if (err == 0)
 841			chip = pwmchip_find_by_name(chosen->provider);
 842	}
 843
 844	if (!chip)
 845		return ERR_PTR(-EPROBE_DEFER);
 846
 847	pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id);
 848	if (IS_ERR(pwm))
 849		return pwm;
 850
 
 
 
 
 
 
 851	pwm->args.period = chosen->period;
 852	pwm->args.polarity = chosen->polarity;
 853
 854	return pwm;
 855}
 856EXPORT_SYMBOL_GPL(pwm_get);
 857
 858/**
 859 * pwm_put() - release a PWM device
 860 * @pwm: PWM device
 861 */
 862void pwm_put(struct pwm_device *pwm)
 863{
 864	if (!pwm)
 865		return;
 866
 867	mutex_lock(&pwm_lock);
 868
 869	if (!test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
 870		pr_warn("PWM device already freed\n");
 871		goto out;
 872	}
 873
 874	if (pwm->chip->ops->free)
 875		pwm->chip->ops->free(pwm->chip, pwm);
 876
 877	pwm->label = NULL;
 878
 879	module_put(pwm->chip->ops->owner);
 880out:
 881	mutex_unlock(&pwm_lock);
 882}
 883EXPORT_SYMBOL_GPL(pwm_put);
 884
 885static void devm_pwm_release(struct device *dev, void *res)
 886{
 887	pwm_put(*(struct pwm_device **)res);
 888}
 889
 890/**
 891 * devm_pwm_get() - resource managed pwm_get()
 892 * @dev: device for PWM consumer
 893 * @con_id: consumer name
 894 *
 895 * This function performs like pwm_get() but the acquired PWM device will
 896 * automatically be released on driver detach.
 897 *
 898 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
 899 * error code on failure.
 900 */
 901struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id)
 902{
 903	struct pwm_device **ptr, *pwm;
 904
 905	ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL);
 906	if (!ptr)
 907		return ERR_PTR(-ENOMEM);
 908
 909	pwm = pwm_get(dev, con_id);
 910	if (!IS_ERR(pwm)) {
 911		*ptr = pwm;
 912		devres_add(dev, ptr);
 913	} else {
 914		devres_free(ptr);
 915	}
 916
 917	return pwm;
 918}
 919EXPORT_SYMBOL_GPL(devm_pwm_get);
 920
 921/**
 922 * devm_of_pwm_get() - resource managed of_pwm_get()
 923 * @dev: device for PWM consumer
 924 * @np: device node to get the PWM from
 925 * @con_id: consumer name
 926 *
 927 * This function performs like of_pwm_get() but the acquired PWM device will
 928 * automatically be released on driver detach.
 929 *
 930 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
 931 * error code on failure.
 932 */
 933struct pwm_device *devm_of_pwm_get(struct device *dev, struct device_node *np,
 934				   const char *con_id)
 
 935{
 936	struct pwm_device **ptr, *pwm;
 
 937
 938	ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL);
 939	if (!ptr)
 940		return ERR_PTR(-ENOMEM);
 
 
 
 941
 942	pwm = of_pwm_get(np, con_id);
 943	if (!IS_ERR(pwm)) {
 944		*ptr = pwm;
 945		devres_add(dev, ptr);
 946	} else {
 947		devres_free(ptr);
 948	}
 949
 950	return pwm;
 951}
 952EXPORT_SYMBOL_GPL(devm_of_pwm_get);
 953
 954static int devm_pwm_match(struct device *dev, void *res, void *data)
 955{
 956	struct pwm_device **p = res;
 957
 958	if (WARN_ON(!p || !*p))
 959		return 0;
 960
 961	return *p == data;
 962}
 963
 964/**
 965 * devm_pwm_put() - resource managed pwm_put()
 966 * @dev: device for PWM consumer
 967 * @pwm: PWM device
 968 *
 969 * Release a PWM previously allocated using devm_pwm_get(). Calling this
 970 * function is usually not needed because devm-allocated resources are
 971 * automatically released on driver detach.
 972 */
 973void devm_pwm_put(struct device *dev, struct pwm_device *pwm)
 974{
 975	WARN_ON(devres_release(dev, devm_pwm_release, devm_pwm_match, pwm));
 976}
 977EXPORT_SYMBOL_GPL(devm_pwm_put);
 978
 979#ifdef CONFIG_DEBUG_FS
 980static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s)
 981{
 982	unsigned int i;
 983
 984	for (i = 0; i < chip->npwm; i++) {
 985		struct pwm_device *pwm = &chip->pwms[i];
 986		struct pwm_state state;
 987
 988		pwm_get_state(pwm, &state);
 989
 990		seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label);
 991
 992		if (test_bit(PWMF_REQUESTED, &pwm->flags))
 993			seq_puts(s, " requested");
 994
 995		if (state.enabled)
 996			seq_puts(s, " enabled");
 997
 998		seq_printf(s, " period: %u ns", state.period);
 999		seq_printf(s, " duty: %u ns", state.duty_cycle);
1000		seq_printf(s, " polarity: %s",
1001			   state.polarity ? "inverse" : "normal");
1002
 
 
 
1003		seq_puts(s, "\n");
1004	}
1005}
1006
1007static void *pwm_seq_start(struct seq_file *s, loff_t *pos)
1008{
 
 
 
1009	mutex_lock(&pwm_lock);
1010	s->private = "";
1011
1012	return seq_list_start(&pwm_chips, *pos);
 
 
1013}
1014
1015static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos)
1016{
 
 
 
1017	s->private = "\n";
1018
1019	return seq_list_next(v, &pwm_chips, pos);
 
 
1020}
1021
1022static void pwm_seq_stop(struct seq_file *s, void *v)
1023{
1024	mutex_unlock(&pwm_lock);
1025}
1026
1027static int pwm_seq_show(struct seq_file *s, void *v)
1028{
1029	struct pwm_chip *chip = list_entry(v, struct pwm_chip, list);
1030
1031	seq_printf(s, "%s%s/%s, %d PWM device%s\n", (char *)s->private,
1032		   chip->dev->bus ? chip->dev->bus->name : "no-bus",
1033		   dev_name(chip->dev), chip->npwm,
 
1034		   (chip->npwm != 1) ? "s" : "");
1035
1036	if (chip->ops->dbg_show)
1037		chip->ops->dbg_show(chip, s);
1038	else
1039		pwm_dbg_show(chip, s);
1040
1041	return 0;
1042}
1043
1044static const struct seq_operations pwm_seq_ops = {
1045	.start = pwm_seq_start,
1046	.next = pwm_seq_next,
1047	.stop = pwm_seq_stop,
1048	.show = pwm_seq_show,
1049};
1050
1051static int pwm_seq_open(struct inode *inode, struct file *file)
1052{
1053	return seq_open(file, &pwm_seq_ops);
1054}
1055
1056static const struct file_operations pwm_debugfs_ops = {
1057	.owner = THIS_MODULE,
1058	.open = pwm_seq_open,
1059	.read = seq_read,
1060	.llseek = seq_lseek,
1061	.release = seq_release,
1062};
1063
1064static int __init pwm_debugfs_init(void)
1065{
1066	debugfs_create_file("pwm", S_IFREG | S_IRUGO, NULL, NULL,
1067			    &pwm_debugfs_ops);
1068
1069	return 0;
1070}
1071subsys_initcall(pwm_debugfs_init);
1072#endif /* CONFIG_DEBUG_FS */
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Generic pwmlib implementation
   4 *
   5 * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de>
   6 * Copyright (C) 2011-2012 Avionic Design GmbH
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   7 */
   8
   9#include <linux/acpi.h>
  10#include <linux/module.h>
  11#include <linux/idr.h>
  12#include <linux/of.h>
  13#include <linux/pwm.h>
 
  14#include <linux/list.h>
  15#include <linux/mutex.h>
  16#include <linux/err.h>
  17#include <linux/slab.h>
  18#include <linux/device.h>
  19#include <linux/debugfs.h>
  20#include <linux/seq_file.h>
  21
  22#include <dt-bindings/pwm/pwm.h>
  23
  24#define CREATE_TRACE_POINTS
  25#include <trace/events/pwm.h>
  26
  27/* protects access to pwm_chips */
 
  28static DEFINE_MUTEX(pwm_lock);
 
 
 
  29
  30static DEFINE_IDR(pwm_chips);
  31
  32static void pwm_apply_debug(struct pwm_device *pwm,
  33			    const struct pwm_state *state)
  34{
  35	struct pwm_state *last = &pwm->last;
  36	struct pwm_chip *chip = pwm->chip;
  37	struct pwm_state s1 = { 0 }, s2 = { 0 };
  38	int err;
  39
  40	if (!IS_ENABLED(CONFIG_PWM_DEBUG))
  41		return;
  42
  43	/* No reasonable diagnosis possible without .get_state() */
  44	if (!chip->ops->get_state)
  45		return;
  46
  47	/*
  48	 * *state was just applied. Read out the hardware state and do some
  49	 * checks.
  50	 */
  51
  52	err = chip->ops->get_state(chip, pwm, &s1);
  53	trace_pwm_get(pwm, &s1, err);
  54	if (err)
  55		/* If that failed there isn't much to debug */
  56		return;
  57
  58	/*
  59	 * The lowlevel driver either ignored .polarity (which is a bug) or as
  60	 * best effort inverted .polarity and fixed .duty_cycle respectively.
  61	 * Undo this inversion and fixup for further tests.
  62	 */
  63	if (s1.enabled && s1.polarity != state->polarity) {
  64		s2.polarity = state->polarity;
  65		s2.duty_cycle = s1.period - s1.duty_cycle;
  66		s2.period = s1.period;
  67		s2.enabled = s1.enabled;
  68	} else {
  69		s2 = s1;
  70	}
  71
  72	if (s2.polarity != state->polarity &&
  73	    state->duty_cycle < state->period)
  74		dev_warn(pwmchip_parent(chip), ".apply ignored .polarity\n");
  75
  76	if (state->enabled &&
  77	    last->polarity == state->polarity &&
  78	    last->period > s2.period &&
  79	    last->period <= state->period)
  80		dev_warn(pwmchip_parent(chip),
  81			 ".apply didn't pick the best available period (requested: %llu, applied: %llu, possible: %llu)\n",
  82			 state->period, s2.period, last->period);
  83
  84	if (state->enabled && state->period < s2.period)
  85		dev_warn(pwmchip_parent(chip),
  86			 ".apply is supposed to round down period (requested: %llu, applied: %llu)\n",
  87			 state->period, s2.period);
  88
  89	if (state->enabled &&
  90	    last->polarity == state->polarity &&
  91	    last->period == s2.period &&
  92	    last->duty_cycle > s2.duty_cycle &&
  93	    last->duty_cycle <= state->duty_cycle)
  94		dev_warn(pwmchip_parent(chip),
  95			 ".apply didn't pick the best available duty cycle (requested: %llu/%llu, applied: %llu/%llu, possible: %llu/%llu)\n",
  96			 state->duty_cycle, state->period,
  97			 s2.duty_cycle, s2.period,
  98			 last->duty_cycle, last->period);
  99
 100	if (state->enabled && state->duty_cycle < s2.duty_cycle)
 101		dev_warn(pwmchip_parent(chip),
 102			 ".apply is supposed to round down duty_cycle (requested: %llu/%llu, applied: %llu/%llu)\n",
 103			 state->duty_cycle, state->period,
 104			 s2.duty_cycle, s2.period);
 105
 106	if (!state->enabled && s2.enabled && s2.duty_cycle > 0)
 107		dev_warn(pwmchip_parent(chip),
 108			 "requested disabled, but yielded enabled with duty > 0\n");
 109
 110	/* reapply the state that the driver reported being configured. */
 111	err = chip->ops->apply(chip, pwm, &s1);
 112	trace_pwm_apply(pwm, &s1, err);
 113	if (err) {
 114		*last = s1;
 115		dev_err(pwmchip_parent(chip), "failed to reapply current setting\n");
 116		return;
 117	}
 118
 119	*last = (struct pwm_state){ 0 };
 120	err = chip->ops->get_state(chip, pwm, last);
 121	trace_pwm_get(pwm, last, err);
 122	if (err)
 123		return;
 124
 125	/* reapplication of the current state should give an exact match */
 126	if (s1.enabled != last->enabled ||
 127	    s1.polarity != last->polarity ||
 128	    (s1.enabled && s1.period != last->period) ||
 129	    (s1.enabled && s1.duty_cycle != last->duty_cycle)) {
 130		dev_err(pwmchip_parent(chip),
 131			".apply is not idempotent (ena=%d pol=%d %llu/%llu) -> (ena=%d pol=%d %llu/%llu)\n",
 132			s1.enabled, s1.polarity, s1.duty_cycle, s1.period,
 133			last->enabled, last->polarity, last->duty_cycle,
 134			last->period);
 135	}
 136}
 137
 138/**
 139 * __pwm_apply() - atomically apply a new state to a PWM device
 140 * @pwm: PWM device
 141 * @state: new state to apply
 142 */
 143static int __pwm_apply(struct pwm_device *pwm, const struct pwm_state *state)
 144{
 145	struct pwm_chip *chip;
 146	int err;
 147
 148	if (!pwm || !state || !state->period ||
 149	    state->duty_cycle > state->period)
 150		return -EINVAL;
 151
 152	chip = pwm->chip;
 
 153
 154	if (state->period == pwm->state.period &&
 155	    state->duty_cycle == pwm->state.duty_cycle &&
 156	    state->polarity == pwm->state.polarity &&
 157	    state->enabled == pwm->state.enabled &&
 158	    state->usage_power == pwm->state.usage_power)
 159		return 0;
 160
 161	err = chip->ops->apply(chip, pwm, state);
 162	trace_pwm_apply(pwm, state, err);
 163	if (err)
 164		return err;
 165
 166	pwm->state = *state;
 
 167
 168	/*
 169	 * only do this after pwm->state was applied as some
 170	 * implementations of .get_state depend on this
 171	 */
 172	pwm_apply_debug(pwm, state);
 173
 174	return 0;
 175}
 176
 177/**
 178 * pwm_apply_might_sleep() - atomically apply a new state to a PWM device
 179 * Cannot be used in atomic context.
 180 * @pwm: PWM device
 181 * @state: new state to apply
 182 */
 183int pwm_apply_might_sleep(struct pwm_device *pwm, const struct pwm_state *state)
 184{
 185	int err;
 186
 187	/*
 188	 * Some lowlevel driver's implementations of .apply() make use of
 189	 * mutexes, also with some drivers only returning when the new
 190	 * configuration is active calling pwm_apply_might_sleep() from atomic context
 191	 * is a bad idea. So make it explicit that calling this function might
 192	 * sleep.
 193	 */
 194	might_sleep();
 195
 196	if (IS_ENABLED(CONFIG_PWM_DEBUG) && pwm->chip->atomic) {
 197		/*
 198		 * Catch any drivers that have been marked as atomic but
 199		 * that will sleep anyway.
 200		 */
 201		non_block_start();
 202		err = __pwm_apply(pwm, state);
 203		non_block_end();
 204	} else {
 205		err = __pwm_apply(pwm, state);
 206	}
 207
 208	return err;
 209}
 210EXPORT_SYMBOL_GPL(pwm_apply_might_sleep);
 211
 212/**
 213 * pwm_apply_atomic() - apply a new state to a PWM device from atomic context
 214 * Not all PWM devices support this function, check with pwm_might_sleep().
 215 * @pwm: PWM device
 216 * @state: new state to apply
 217 */
 218int pwm_apply_atomic(struct pwm_device *pwm, const struct pwm_state *state)
 219{
 220	WARN_ONCE(!pwm->chip->atomic,
 221		  "sleeping PWM driver used in atomic context\n");
 222
 223	return __pwm_apply(pwm, state);
 224}
 225EXPORT_SYMBOL_GPL(pwm_apply_atomic);
 226
 227/**
 228 * pwm_adjust_config() - adjust the current PWM config to the PWM arguments
 229 * @pwm: PWM device
 230 *
 231 * This function will adjust the PWM config to the PWM arguments provided
 232 * by the DT or PWM lookup table. This is particularly useful to adapt
 233 * the bootloader config to the Linux one.
 234 */
 235int pwm_adjust_config(struct pwm_device *pwm)
 236{
 237	struct pwm_state state;
 238	struct pwm_args pargs;
 239
 240	pwm_get_args(pwm, &pargs);
 241	pwm_get_state(pwm, &state);
 242
 243	/*
 244	 * If the current period is zero it means that either the PWM driver
 245	 * does not support initial state retrieval or the PWM has not yet
 246	 * been configured.
 247	 *
 248	 * In either case, we setup the new period and polarity, and assign a
 249	 * duty cycle of 0.
 250	 */
 251	if (!state.period) {
 252		state.duty_cycle = 0;
 253		state.period = pargs.period;
 254		state.polarity = pargs.polarity;
 255
 256		return pwm_apply_might_sleep(pwm, &state);
 257	}
 258
 259	/*
 260	 * Adjust the PWM duty cycle/period based on the period value provided
 261	 * in PWM args.
 262	 */
 263	if (pargs.period != state.period) {
 264		u64 dutycycle = (u64)state.duty_cycle * pargs.period;
 265
 266		do_div(dutycycle, state.period);
 267		state.duty_cycle = dutycycle;
 268		state.period = pargs.period;
 269	}
 270
 271	/*
 272	 * If the polarity changed, we should also change the duty cycle.
 273	 */
 274	if (pargs.polarity != state.polarity) {
 275		state.polarity = pargs.polarity;
 276		state.duty_cycle = state.period - state.duty_cycle;
 277	}
 278
 279	return pwm_apply_might_sleep(pwm, &state);
 280}
 281EXPORT_SYMBOL_GPL(pwm_adjust_config);
 282
 283/**
 284 * pwm_capture() - capture and report a PWM signal
 285 * @pwm: PWM device
 286 * @result: structure to fill with capture result
 287 * @timeout: time to wait, in milliseconds, before giving up on capture
 288 *
 289 * Returns: 0 on success or a negative error code on failure.
 290 */
 291int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result,
 292		unsigned long timeout)
 293{
 294	int err;
 295
 296	if (!pwm || !pwm->chip->ops)
 297		return -EINVAL;
 298
 299	if (!pwm->chip->ops->capture)
 300		return -ENOSYS;
 301
 302	mutex_lock(&pwm_lock);
 303	err = pwm->chip->ops->capture(pwm->chip, pwm, result, timeout);
 304	mutex_unlock(&pwm_lock);
 305
 306	return err;
 307}
 308EXPORT_SYMBOL_GPL(pwm_capture);
 309
 310static struct pwm_chip *pwmchip_find_by_name(const char *name)
 311{
 312	struct pwm_chip *chip;
 313	unsigned long id, tmp;
 314
 315	if (!name)
 316		return NULL;
 317
 318	mutex_lock(&pwm_lock);
 319
 320	idr_for_each_entry_ul(&pwm_chips, chip, tmp, id) {
 321		const char *chip_name = dev_name(pwmchip_parent(chip));
 322
 323		if (chip_name && strcmp(chip_name, name) == 0) {
 324			mutex_unlock(&pwm_lock);
 325			return chip;
 326		}
 327	}
 328
 329	mutex_unlock(&pwm_lock);
 330
 331	return NULL;
 332}
 333
 334static int pwm_device_request(struct pwm_device *pwm, const char *label)
 335{
 336	int err;
 337	struct pwm_chip *chip = pwm->chip;
 338	const struct pwm_ops *ops = chip->ops;
 339
 340	if (test_bit(PWMF_REQUESTED, &pwm->flags))
 341		return -EBUSY;
 342
 343	if (!try_module_get(chip->owner))
 344		return -ENODEV;
 345
 346	if (ops->request) {
 347		err = ops->request(chip, pwm);
 348		if (err) {
 349			module_put(chip->owner);
 350			return err;
 351		}
 352	}
 353
 354	if (ops->get_state) {
 355		/*
 356		 * Zero-initialize state because most drivers are unaware of
 357		 * .usage_power. The other members of state are supposed to be
 358		 * set by lowlevel drivers. We still initialize the whole
 359		 * structure for simplicity even though this might paper over
 360		 * faulty implementations of .get_state().
 361		 */
 362		struct pwm_state state = { 0, };
 363
 364		err = ops->get_state(chip, pwm, &state);
 365		trace_pwm_get(pwm, &state, err);
 366
 367		if (!err)
 368			pwm->state = state;
 369
 370		if (IS_ENABLED(CONFIG_PWM_DEBUG))
 371			pwm->last = pwm->state;
 372	}
 373
 374	set_bit(PWMF_REQUESTED, &pwm->flags);
 375	pwm->label = label;
 376
 377	return 0;
 378}
 379
 380/**
 381 * pwm_request_from_chip() - request a PWM device relative to a PWM chip
 382 * @chip: PWM chip
 383 * @index: per-chip index of the PWM to request
 384 * @label: a literal description string of this PWM
 385 *
 386 * Returns: A pointer to the PWM device at the given index of the given PWM
 387 * chip. A negative error code is returned if the index is not valid for the
 388 * specified PWM chip or if the PWM device cannot be requested.
 389 */
 390struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip,
 391					 unsigned int index,
 392					 const char *label)
 393{
 394	struct pwm_device *pwm;
 395	int err;
 396
 397	if (!chip || index >= chip->npwm)
 
 398		return ERR_PTR(-EINVAL);
 399
 400	mutex_lock(&pwm_lock);
 401	pwm = &chip->pwms[index];
 402
 403	err = pwm_device_request(pwm, label);
 404	if (err < 0)
 405		pwm = ERR_PTR(err);
 406
 407	mutex_unlock(&pwm_lock);
 408	return pwm;
 409}
 410EXPORT_SYMBOL_GPL(pwm_request_from_chip);
 411
 412
 413struct pwm_device *
 414of_pwm_xlate_with_flags(struct pwm_chip *chip, const struct of_phandle_args *args)
 415{
 416	struct pwm_device *pwm;
 417
 418	/* period in the second cell and flags in the third cell are optional */
 419	if (args->args_count < 1)
 420		return ERR_PTR(-EINVAL);
 421
 422	pwm = pwm_request_from_chip(chip, args->args[0], NULL);
 423	if (IS_ERR(pwm))
 424		return pwm;
 425
 426	if (args->args_count > 1)
 427		pwm->args.period = args->args[1];
 428
 429	pwm->args.polarity = PWM_POLARITY_NORMAL;
 430	if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED)
 431		pwm->args.polarity = PWM_POLARITY_INVERSED;
 432
 433	return pwm;
 434}
 435EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags);
 436
 437struct pwm_device *
 438of_pwm_single_xlate(struct pwm_chip *chip, const struct of_phandle_args *args)
 439{
 440	struct pwm_device *pwm;
 441
 442	pwm = pwm_request_from_chip(chip, 0, NULL);
 
 
 
 
 
 
 
 
 
 
 
 443	if (IS_ERR(pwm))
 444		return pwm;
 445
 446	if (args->args_count > 0)
 447		pwm->args.period = args->args[0];
 448
 449	pwm->args.polarity = PWM_POLARITY_NORMAL;
 450	if (args->args_count > 1 && args->args[1] & PWM_POLARITY_INVERTED)
 451		pwm->args.polarity = PWM_POLARITY_INVERSED;
 452
 453	return pwm;
 454}
 455EXPORT_SYMBOL_GPL(of_pwm_single_xlate);
 456
 457#define PWMCHIP_ALIGN ARCH_DMA_MINALIGN
 458
 459static void *pwmchip_priv(struct pwm_chip *chip)
 460{
 461	return (void *)chip + ALIGN(sizeof(*chip), PWMCHIP_ALIGN);
 462}
 463
 464/* This is the counterpart to pwmchip_alloc() */
 465void pwmchip_put(struct pwm_chip *chip)
 466{
 467	kfree(chip);
 468}
 469EXPORT_SYMBOL_GPL(pwmchip_put);
 470
 471struct pwm_chip *pwmchip_alloc(struct device *parent, unsigned int npwm, size_t sizeof_priv)
 472{
 473	struct pwm_chip *chip;
 474	size_t alloc_size;
 475
 476	alloc_size = size_add(ALIGN(sizeof(*chip), PWMCHIP_ALIGN), sizeof_priv);
 477
 478	chip = kzalloc(alloc_size, GFP_KERNEL);
 479	if (!chip)
 480		return ERR_PTR(-ENOMEM);
 481
 482	chip->dev = parent;
 483	chip->npwm = npwm;
 484
 485	pwmchip_set_drvdata(chip, pwmchip_priv(chip));
 486
 487	return chip;
 488}
 489EXPORT_SYMBOL_GPL(pwmchip_alloc);
 490
 491static void devm_pwmchip_put(void *data)
 492{
 493	struct pwm_chip *chip = data;
 494
 495	pwmchip_put(chip);
 496}
 497
 498struct pwm_chip *devm_pwmchip_alloc(struct device *parent, unsigned int npwm, size_t sizeof_priv)
 
 
 
 
 
 
 
 499{
 500	struct pwm_chip *chip;
 501	int ret;
 502
 503	chip = pwmchip_alloc(parent, npwm, sizeof_priv);
 504	if (IS_ERR(chip))
 505		return chip;
 506
 507	ret = devm_add_action_or_reset(parent, devm_pwmchip_put, chip);
 508	if (ret)
 509		return ERR_PTR(ret);
 510
 511	return chip;
 512}
 513EXPORT_SYMBOL_GPL(devm_pwmchip_alloc);
 514
 515static void of_pwmchip_add(struct pwm_chip *chip)
 
 
 
 
 
 
 516{
 517	if (!pwmchip_parent(chip) || !pwmchip_parent(chip)->of_node)
 518		return;
 519
 520	if (!chip->of_xlate)
 521		chip->of_xlate = of_pwm_xlate_with_flags;
 522
 523	of_node_get(pwmchip_parent(chip)->of_node);
 524}
 525
 526static void of_pwmchip_remove(struct pwm_chip *chip)
 527{
 528	if (pwmchip_parent(chip))
 529		of_node_put(pwmchip_parent(chip)->of_node);
 530}
 
 531
 532static bool pwm_ops_check(const struct pwm_chip *chip)
 533{
 534	const struct pwm_ops *ops = chip->ops;
 
 
 535
 536	if (!ops->apply)
 537		return false;
 
 538
 539	if (IS_ENABLED(CONFIG_PWM_DEBUG) && !ops->get_state)
 540		dev_warn(pwmchip_parent(chip),
 541			 "Please implement the .get_state() callback\n");
 542
 543	return true;
 544}
 545
 546/**
 547 * __pwmchip_add() - register a new PWM chip
 548 * @chip: the PWM chip to add
 549 * @owner: reference to the module providing the chip.
 550 *
 551 * Register a new PWM chip. @owner is supposed to be THIS_MODULE, use the
 552 * pwmchip_add wrapper to do this right.
 
 553 *
 554 * Returns: 0 on success or a negative error code on failure.
 555 */
 556int __pwmchip_add(struct pwm_chip *chip, struct module *owner)
 
 557{
 
 558	unsigned int i;
 559	int ret;
 560
 561	if (!chip || !pwmchip_parent(chip) || !chip->ops || !chip->npwm)
 562		return -EINVAL;
 563
 564	if (!pwm_ops_check(chip))
 565		return -EINVAL;
 566
 567	chip->owner = owner;
 568
 569	chip->pwms = kcalloc(chip->npwm, sizeof(*chip->pwms), GFP_KERNEL);
 570	if (!chip->pwms)
 571		return -ENOMEM;
 572
 573	mutex_lock(&pwm_lock);
 574
 575	ret = idr_alloc(&pwm_chips, chip, 0, 0, GFP_KERNEL);
 576	if (ret < 0) {
 577		mutex_unlock(&pwm_lock);
 578		kfree(chip->pwms);
 579		return ret;
 580	}
 581
 582	chip->id = ret;
 583
 584	for (i = 0; i < chip->npwm; i++) {
 585		struct pwm_device *pwm = &chip->pwms[i];
 586
 587		pwm->chip = chip;
 
 588		pwm->hwpwm = i;
 
 
 
 
 
 
 589	}
 590
 591	mutex_unlock(&pwm_lock);
 
 
 
 
 
 592
 593	if (IS_ENABLED(CONFIG_OF))
 594		of_pwmchip_add(chip);
 595
 596	pwmchip_sysfs_export(chip);
 597
 598	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 599}
 600EXPORT_SYMBOL_GPL(__pwmchip_add);
 601
 602/**
 603 * pwmchip_remove() - remove a PWM chip
 604 * @chip: the PWM chip to remove
 605 *
 606 * Removes a PWM chip.
 
 
 
 607 */
 608void pwmchip_remove(struct pwm_chip *chip)
 609{
 610	pwmchip_sysfs_unexport(chip);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 611
 612	if (IS_ENABLED(CONFIG_OF))
 613		of_pwmchip_remove(chip);
 614
 615	mutex_lock(&pwm_lock);
 616
 617	idr_remove(&pwm_chips, chip->id);
 618
 
 619	mutex_unlock(&pwm_lock);
 620
 621	kfree(chip->pwms);
 622}
 623EXPORT_SYMBOL_GPL(pwmchip_remove);
 624
 625static void devm_pwmchip_remove(void *data)
 
 
 
 
 
 
 
 
 
 
 626{
 627	struct pwm_chip *chip = data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 628
 629	pwmchip_remove(chip);
 
 
 
 630}
 
 631
 632int __devm_pwmchip_add(struct device *dev, struct pwm_chip *chip, struct module *owner)
 
 
 
 
 
 
 
 
 
 
 
 
 633{
 634	int ret;
 
 
 
 
 
 
 
 635
 636	ret = __pwmchip_add(chip, owner);
 637	if (ret)
 638		return ret;
 639
 640	return devm_add_action_or_reset(dev, devm_pwmchip_remove, chip);
 
 641}
 642EXPORT_SYMBOL_GPL(__devm_pwmchip_add);
 643
 644static struct device_link *pwm_device_link_add(struct device *dev,
 645					       struct pwm_device *pwm)
 
 
 
 
 
 646{
 647	struct device_link *dl;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 648
 649	if (!dev) {
 
 
 
 
 
 
 
 
 
 650		/*
 651		 * No device for the PWM consumer has been provided. It may
 652		 * impact the PM sequence ordering: the PWM supplier may get
 653		 * suspended before the consumer.
 654		 */
 655		dev_warn(pwmchip_parent(pwm->chip),
 656			 "No consumer device specified to create a link to\n");
 657		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 658	}
 659
 660	dl = device_link_add(dev, pwmchip_parent(pwm->chip), DL_FLAG_AUTOREMOVE_CONSUMER);
 661	if (!dl) {
 662		dev_err(dev, "failed to create device link to %s\n",
 663			dev_name(pwmchip_parent(pwm->chip)));
 664		return ERR_PTR(-EINVAL);
 
 665	}
 666
 667	return dl;
 668}
 
 669
 670static struct pwm_chip *fwnode_to_pwmchip(struct fwnode_handle *fwnode)
 671{
 672	struct pwm_chip *chip;
 673	unsigned long id, tmp;
 674
 675	mutex_lock(&pwm_lock);
 676
 677	idr_for_each_entry_ul(&pwm_chips, chip, tmp, id)
 678		if (pwmchip_parent(chip) && device_match_fwnode(pwmchip_parent(chip), fwnode)) {
 679			mutex_unlock(&pwm_lock);
 680			return chip;
 681		}
 682
 683	mutex_unlock(&pwm_lock);
 684
 685	return ERR_PTR(-EPROBE_DEFER);
 686}
 687
 688/**
 689 * of_pwm_get() - request a PWM via the PWM framework
 690 * @dev: device for PWM consumer
 691 * @np: device node to get the PWM from
 692 * @con_id: consumer name
 693 *
 694 * Returns the PWM device parsed from the phandle and index specified in the
 695 * "pwms" property of a device tree node or a negative error-code on failure.
 696 * Values parsed from the device tree are stored in the returned PWM device
 697 * object.
 698 *
 699 * If con_id is NULL, the first PWM device listed in the "pwms" property will
 700 * be requested. Otherwise the "pwm-names" property is used to do a reverse
 701 * lookup of the PWM index. This also means that the "pwm-names" property
 702 * becomes mandatory for devices that look up the PWM device via the con_id
 703 * parameter.
 704 *
 705 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
 706 * error code on failure.
 707 */
 708static struct pwm_device *of_pwm_get(struct device *dev, struct device_node *np,
 709				     const char *con_id)
 710{
 711	struct pwm_device *pwm = NULL;
 712	struct of_phandle_args args;
 713	struct device_link *dl;
 714	struct pwm_chip *chip;
 715	int index = 0;
 716	int err;
 717
 718	if (con_id) {
 719		index = of_property_match_string(np, "pwm-names", con_id);
 720		if (index < 0)
 721			return ERR_PTR(index);
 722	}
 723
 724	err = of_parse_phandle_with_args(np, "pwms", "#pwm-cells", index,
 725					 &args);
 726	if (err) {
 727		pr_err("%s(): can't parse \"pwms\" property\n", __func__);
 728		return ERR_PTR(err);
 729	}
 730
 731	chip = fwnode_to_pwmchip(of_fwnode_handle(args.np));
 732	if (IS_ERR(chip)) {
 733		if (PTR_ERR(chip) != -EPROBE_DEFER)
 734			pr_err("%s(): PWM chip not found\n", __func__);
 735
 736		pwm = ERR_CAST(chip);
 737		goto put;
 738	}
 739
 740	pwm = chip->of_xlate(chip, &args);
 741	if (IS_ERR(pwm))
 742		goto put;
 743
 744	dl = pwm_device_link_add(dev, pwm);
 745	if (IS_ERR(dl)) {
 746		/* of_xlate ended up calling pwm_request_from_chip() */
 747		pwm_put(pwm);
 748		pwm = ERR_CAST(dl);
 749		goto put;
 750	}
 751
 752	/*
 753	 * If a consumer name was not given, try to look it up from the
 754	 * "pwm-names" property if it exists. Otherwise use the name of
 755	 * the user device node.
 756	 */
 757	if (!con_id) {
 758		err = of_property_read_string_index(np, "pwm-names", index,
 759						    &con_id);
 760		if (err < 0)
 761			con_id = np->name;
 762	}
 763
 764	pwm->label = con_id;
 765
 766put:
 767	of_node_put(args.np);
 768
 769	return pwm;
 770}
 771
 772/**
 773 * acpi_pwm_get() - request a PWM via parsing "pwms" property in ACPI
 774 * @fwnode: firmware node to get the "pwms" property from
 775 *
 776 * Returns the PWM device parsed from the fwnode and index specified in the
 777 * "pwms" property or a negative error-code on failure.
 778 * Values parsed from the device tree are stored in the returned PWM device
 779 * object.
 780 *
 781 * This is analogous to of_pwm_get() except con_id is not yet supported.
 782 * ACPI entries must look like
 783 * Package () {"pwms", Package ()
 784 *     { <PWM device reference>, <PWM index>, <PWM period> [, <PWM flags>]}}
 785 *
 786 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
 787 * error code on failure.
 788 */
 789static struct pwm_device *acpi_pwm_get(const struct fwnode_handle *fwnode)
 790{
 791	struct pwm_device *pwm;
 792	struct fwnode_reference_args args;
 793	struct pwm_chip *chip;
 794	int ret;
 795
 796	memset(&args, 0, sizeof(args));
 797
 798	ret = __acpi_node_get_property_reference(fwnode, "pwms", 0, 3, &args);
 799	if (ret < 0)
 800		return ERR_PTR(ret);
 801
 802	if (args.nargs < 2)
 803		return ERR_PTR(-EPROTO);
 804
 805	chip = fwnode_to_pwmchip(args.fwnode);
 806	if (IS_ERR(chip))
 807		return ERR_CAST(chip);
 808
 809	pwm = pwm_request_from_chip(chip, args.args[0], NULL);
 810	if (IS_ERR(pwm))
 811		return pwm;
 812
 813	pwm->args.period = args.args[1];
 814	pwm->args.polarity = PWM_POLARITY_NORMAL;
 815
 816	if (args.nargs > 2 && args.args[2] & PWM_POLARITY_INVERTED)
 817		pwm->args.polarity = PWM_POLARITY_INVERSED;
 818
 819	return pwm;
 820}
 821
 822static DEFINE_MUTEX(pwm_lookup_lock);
 823static LIST_HEAD(pwm_lookup_list);
 824
 825/**
 826 * pwm_add_table() - register PWM device consumers
 827 * @table: array of consumers to register
 828 * @num: number of consumers in table
 829 */
 830void pwm_add_table(struct pwm_lookup *table, size_t num)
 831{
 832	mutex_lock(&pwm_lookup_lock);
 833
 834	while (num--) {
 835		list_add_tail(&table->list, &pwm_lookup_list);
 836		table++;
 837	}
 838
 839	mutex_unlock(&pwm_lookup_lock);
 840}
 841
 842/**
 843 * pwm_remove_table() - unregister PWM device consumers
 844 * @table: array of consumers to unregister
 845 * @num: number of consumers in table
 846 */
 847void pwm_remove_table(struct pwm_lookup *table, size_t num)
 848{
 849	mutex_lock(&pwm_lookup_lock);
 850
 851	while (num--) {
 852		list_del(&table->list);
 853		table++;
 854	}
 855
 856	mutex_unlock(&pwm_lookup_lock);
 857}
 858
 859/**
 860 * pwm_get() - look up and request a PWM device
 861 * @dev: device for PWM consumer
 862 * @con_id: consumer name
 863 *
 864 * Lookup is first attempted using DT. If the device was not instantiated from
 865 * a device tree, a PWM chip and a relative index is looked up via a table
 866 * supplied by board setup code (see pwm_add_table()).
 867 *
 868 * Once a PWM chip has been found the specified PWM device will be requested
 869 * and is ready to be used.
 870 *
 871 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
 872 * error code on failure.
 873 */
 874struct pwm_device *pwm_get(struct device *dev, const char *con_id)
 875{
 876	const struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
 877	const char *dev_id = dev ? dev_name(dev) : NULL;
 878	struct pwm_device *pwm;
 879	struct pwm_chip *chip;
 880	struct device_link *dl;
 881	unsigned int best = 0;
 882	struct pwm_lookup *p, *chosen = NULL;
 883	unsigned int match;
 884	int err;
 885
 886	/* look up via DT first */
 887	if (is_of_node(fwnode))
 888		return of_pwm_get(dev, to_of_node(fwnode), con_id);
 889
 890	/* then lookup via ACPI */
 891	if (is_acpi_node(fwnode)) {
 892		pwm = acpi_pwm_get(fwnode);
 893		if (!IS_ERR(pwm) || PTR_ERR(pwm) != -ENOENT)
 894			return pwm;
 895	}
 896
 897	/*
 898	 * We look up the provider in the static table typically provided by
 899	 * board setup code. We first try to lookup the consumer device by
 900	 * name. If the consumer device was passed in as NULL or if no match
 901	 * was found, we try to find the consumer by directly looking it up
 902	 * by name.
 903	 *
 904	 * If a match is found, the provider PWM chip is looked up by name
 905	 * and a PWM device is requested using the PWM device per-chip index.
 906	 *
 907	 * The lookup algorithm was shamelessly taken from the clock
 908	 * framework:
 909	 *
 910	 * We do slightly fuzzy matching here:
 911	 *  An entry with a NULL ID is assumed to be a wildcard.
 912	 *  If an entry has a device ID, it must match
 913	 *  If an entry has a connection ID, it must match
 914	 * Then we take the most specific entry - with the following order
 915	 * of precedence: dev+con > dev only > con only.
 916	 */
 917	mutex_lock(&pwm_lookup_lock);
 918
 919	list_for_each_entry(p, &pwm_lookup_list, list) {
 920		match = 0;
 921
 922		if (p->dev_id) {
 923			if (!dev_id || strcmp(p->dev_id, dev_id))
 924				continue;
 925
 926			match += 2;
 927		}
 928
 929		if (p->con_id) {
 930			if (!con_id || strcmp(p->con_id, con_id))
 931				continue;
 932
 933			match += 1;
 934		}
 935
 936		if (match > best) {
 937			chosen = p;
 938
 939			if (match != 3)
 940				best = match;
 941			else
 942				break;
 943		}
 944	}
 945
 946	mutex_unlock(&pwm_lookup_lock);
 947
 948	if (!chosen)
 949		return ERR_PTR(-ENODEV);
 950
 951	chip = pwmchip_find_by_name(chosen->provider);
 952
 953	/*
 954	 * If the lookup entry specifies a module, load the module and retry
 955	 * the PWM chip lookup. This can be used to work around driver load
 956	 * ordering issues if driver's can't be made to properly support the
 957	 * deferred probe mechanism.
 958	 */
 959	if (!chip && chosen->module) {
 960		err = request_module(chosen->module);
 961		if (err == 0)
 962			chip = pwmchip_find_by_name(chosen->provider);
 963	}
 964
 965	if (!chip)
 966		return ERR_PTR(-EPROBE_DEFER);
 967
 968	pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id);
 969	if (IS_ERR(pwm))
 970		return pwm;
 971
 972	dl = pwm_device_link_add(dev, pwm);
 973	if (IS_ERR(dl)) {
 974		pwm_put(pwm);
 975		return ERR_CAST(dl);
 976	}
 977
 978	pwm->args.period = chosen->period;
 979	pwm->args.polarity = chosen->polarity;
 980
 981	return pwm;
 982}
 983EXPORT_SYMBOL_GPL(pwm_get);
 984
 985/**
 986 * pwm_put() - release a PWM device
 987 * @pwm: PWM device
 988 */
 989void pwm_put(struct pwm_device *pwm)
 990{
 991	if (!pwm)
 992		return;
 993
 994	mutex_lock(&pwm_lock);
 995
 996	if (!test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
 997		pr_warn("PWM device already freed\n");
 998		goto out;
 999	}
1000
1001	if (pwm->chip->ops->free)
1002		pwm->chip->ops->free(pwm->chip, pwm);
1003
1004	pwm->label = NULL;
1005
1006	module_put(pwm->chip->owner);
1007out:
1008	mutex_unlock(&pwm_lock);
1009}
1010EXPORT_SYMBOL_GPL(pwm_put);
1011
1012static void devm_pwm_release(void *pwm)
1013{
1014	pwm_put(pwm);
1015}
1016
1017/**
1018 * devm_pwm_get() - resource managed pwm_get()
1019 * @dev: device for PWM consumer
1020 * @con_id: consumer name
1021 *
1022 * This function performs like pwm_get() but the acquired PWM device will
1023 * automatically be released on driver detach.
1024 *
1025 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1026 * error code on failure.
1027 */
1028struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id)
1029{
1030	struct pwm_device *pwm;
1031	int ret;
 
 
 
1032
1033	pwm = pwm_get(dev, con_id);
1034	if (IS_ERR(pwm))
1035		return pwm;
1036
1037	ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
1038	if (ret)
1039		return ERR_PTR(ret);
1040
1041	return pwm;
1042}
1043EXPORT_SYMBOL_GPL(devm_pwm_get);
1044
1045/**
1046 * devm_fwnode_pwm_get() - request a resource managed PWM from firmware node
1047 * @dev: device for PWM consumer
1048 * @fwnode: firmware node to get the PWM from
1049 * @con_id: consumer name
1050 *
1051 * Returns the PWM device parsed from the firmware node. See of_pwm_get() and
1052 * acpi_pwm_get() for a detailed description.
1053 *
1054 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1055 * error code on failure.
1056 */
1057struct pwm_device *devm_fwnode_pwm_get(struct device *dev,
1058				       struct fwnode_handle *fwnode,
1059				       const char *con_id)
1060{
1061	struct pwm_device *pwm = ERR_PTR(-ENODEV);
1062	int ret;
1063
1064	if (is_of_node(fwnode))
1065		pwm = of_pwm_get(dev, to_of_node(fwnode), con_id);
1066	else if (is_acpi_node(fwnode))
1067		pwm = acpi_pwm_get(fwnode);
1068	if (IS_ERR(pwm))
1069		return pwm;
1070
1071	ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
1072	if (ret)
1073		return ERR_PTR(ret);
 
 
 
 
1074
1075	return pwm;
1076}
1077EXPORT_SYMBOL_GPL(devm_fwnode_pwm_get);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1078
1079#ifdef CONFIG_DEBUG_FS
1080static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s)
1081{
1082	unsigned int i;
1083
1084	for (i = 0; i < chip->npwm; i++) {
1085		struct pwm_device *pwm = &chip->pwms[i];
1086		struct pwm_state state;
1087
1088		pwm_get_state(pwm, &state);
1089
1090		seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label);
1091
1092		if (test_bit(PWMF_REQUESTED, &pwm->flags))
1093			seq_puts(s, " requested");
1094
1095		if (state.enabled)
1096			seq_puts(s, " enabled");
1097
1098		seq_printf(s, " period: %llu ns", state.period);
1099		seq_printf(s, " duty: %llu ns", state.duty_cycle);
1100		seq_printf(s, " polarity: %s",
1101			   state.polarity ? "inverse" : "normal");
1102
1103		if (state.usage_power)
1104			seq_puts(s, " usage_power");
1105
1106		seq_puts(s, "\n");
1107	}
1108}
1109
1110static void *pwm_seq_start(struct seq_file *s, loff_t *pos)
1111{
1112	unsigned long id = *pos;
1113	void *ret;
1114
1115	mutex_lock(&pwm_lock);
1116	s->private = "";
1117
1118	ret = idr_get_next_ul(&pwm_chips, &id);
1119	*pos = id;
1120	return ret;
1121}
1122
1123static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos)
1124{
1125	unsigned long id = *pos + 1;
1126	void *ret;
1127
1128	s->private = "\n";
1129
1130	ret = idr_get_next_ul(&pwm_chips, &id);
1131	*pos = id;
1132	return ret;
1133}
1134
1135static void pwm_seq_stop(struct seq_file *s, void *v)
1136{
1137	mutex_unlock(&pwm_lock);
1138}
1139
1140static int pwm_seq_show(struct seq_file *s, void *v)
1141{
1142	struct pwm_chip *chip = v;
1143
1144	seq_printf(s, "%s%d: %s/%s, %d PWM device%s\n",
1145		   (char *)s->private, chip->id,
1146		   pwmchip_parent(chip)->bus ? pwmchip_parent(chip)->bus->name : "no-bus",
1147		   dev_name(pwmchip_parent(chip)), chip->npwm,
1148		   (chip->npwm != 1) ? "s" : "");
1149
1150	pwm_dbg_show(chip, s);
 
 
 
1151
1152	return 0;
1153}
1154
1155static const struct seq_operations pwm_debugfs_sops = {
1156	.start = pwm_seq_start,
1157	.next = pwm_seq_next,
1158	.stop = pwm_seq_stop,
1159	.show = pwm_seq_show,
1160};
1161
1162DEFINE_SEQ_ATTRIBUTE(pwm_debugfs);
 
 
 
 
 
 
 
 
 
 
 
1163
1164static int __init pwm_debugfs_init(void)
1165{
1166	debugfs_create_file("pwm", 0444, NULL, NULL, &pwm_debugfs_fops);
 
1167
1168	return 0;
1169}
1170subsys_initcall(pwm_debugfs_init);
1171#endif /* CONFIG_DEBUG_FS */