Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 * Generic pwmlib implementation
   3 *
   4 * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de>
   5 * Copyright (C) 2011-2012 Avionic Design GmbH
   6 *
   7 *  This program is free software; you can redistribute it and/or modify
   8 *  it under the terms of the GNU General Public License as published by
   9 *  the Free Software Foundation; either version 2, or (at your option)
  10 *  any later version.
  11 *
  12 *  This program is distributed in the hope that it will be useful,
  13 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 *  GNU General Public License for more details.
  16 *
  17 *  You should have received a copy of the GNU General Public License
  18 *  along with this program; see the file COPYING.  If not, write to
  19 *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
  20 */
  21
 
  22#include <linux/module.h>
  23#include <linux/pwm.h>
  24#include <linux/radix-tree.h>
  25#include <linux/list.h>
  26#include <linux/mutex.h>
  27#include <linux/err.h>
  28#include <linux/slab.h>
  29#include <linux/device.h>
  30#include <linux/debugfs.h>
  31#include <linux/seq_file.h>
  32
  33#include <dt-bindings/pwm/pwm.h>
  34
 
 
 
  35#define MAX_PWMS 1024
  36
  37static DEFINE_MUTEX(pwm_lookup_lock);
  38static LIST_HEAD(pwm_lookup_list);
  39static DEFINE_MUTEX(pwm_lock);
  40static LIST_HEAD(pwm_chips);
  41static DECLARE_BITMAP(allocated_pwms, MAX_PWMS);
  42static RADIX_TREE(pwm_tree, GFP_KERNEL);
  43
  44static struct pwm_device *pwm_to_device(unsigned int pwm)
  45{
  46	return radix_tree_lookup(&pwm_tree, pwm);
  47}
  48
  49static int alloc_pwms(int pwm, unsigned int count)
  50{
  51	unsigned int from = 0;
  52	unsigned int start;
  53
  54	if (pwm >= MAX_PWMS)
  55		return -EINVAL;
  56
  57	if (pwm >= 0)
  58		from = pwm;
  59
  60	start = bitmap_find_next_zero_area(allocated_pwms, MAX_PWMS, from,
  61					   count, 0);
  62
  63	if (pwm >= 0 && start != pwm)
  64		return -EEXIST;
  65
  66	if (start + count > MAX_PWMS)
  67		return -ENOSPC;
  68
  69	return start;
  70}
  71
  72static void free_pwms(struct pwm_chip *chip)
  73{
  74	unsigned int i;
  75
  76	for (i = 0; i < chip->npwm; i++) {
  77		struct pwm_device *pwm = &chip->pwms[i];
  78
  79		radix_tree_delete(&pwm_tree, pwm->pwm);
  80	}
  81
  82	bitmap_clear(allocated_pwms, chip->base, chip->npwm);
  83
  84	kfree(chip->pwms);
  85	chip->pwms = NULL;
  86}
  87
  88static struct pwm_chip *pwmchip_find_by_name(const char *name)
  89{
  90	struct pwm_chip *chip;
  91
  92	if (!name)
  93		return NULL;
  94
  95	mutex_lock(&pwm_lock);
  96
  97	list_for_each_entry(chip, &pwm_chips, list) {
  98		const char *chip_name = dev_name(chip->dev);
  99
 100		if (chip_name && strcmp(chip_name, name) == 0) {
 101			mutex_unlock(&pwm_lock);
 102			return chip;
 103		}
 104	}
 105
 106	mutex_unlock(&pwm_lock);
 107
 108	return NULL;
 109}
 110
 111static int pwm_device_request(struct pwm_device *pwm, const char *label)
 112{
 113	int err;
 114
 115	if (test_bit(PWMF_REQUESTED, &pwm->flags))
 116		return -EBUSY;
 117
 118	if (!try_module_get(pwm->chip->ops->owner))
 119		return -ENODEV;
 120
 121	if (pwm->chip->ops->request) {
 122		err = pwm->chip->ops->request(pwm->chip, pwm);
 123		if (err) {
 124			module_put(pwm->chip->ops->owner);
 125			return err;
 126		}
 127	}
 128
 
 
 
 
 
 
 
 
 129	set_bit(PWMF_REQUESTED, &pwm->flags);
 130	pwm->label = label;
 131
 132	return 0;
 133}
 134
 135struct pwm_device *
 136of_pwm_xlate_with_flags(struct pwm_chip *pc, const struct of_phandle_args *args)
 137{
 138	struct pwm_device *pwm;
 139
 140	/* check, whether the driver supports a third cell for flags */
 141	if (pc->of_pwm_n_cells < 3)
 142		return ERR_PTR(-EINVAL);
 143
 144	/* flags in the third cell are optional */
 145	if (args->args_count < 2)
 146		return ERR_PTR(-EINVAL);
 147
 148	if (args->args[0] >= pc->npwm)
 149		return ERR_PTR(-EINVAL);
 150
 151	pwm = pwm_request_from_chip(pc, args->args[0], NULL);
 152	if (IS_ERR(pwm))
 153		return pwm;
 154
 155	pwm->args.period = args->args[1];
 156	pwm->args.polarity = PWM_POLARITY_NORMAL;
 157
 158	if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED)
 159		pwm->args.polarity = PWM_POLARITY_INVERSED;
 
 
 160
 161	return pwm;
 162}
 163EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags);
 164
 165static struct pwm_device *
 166of_pwm_simple_xlate(struct pwm_chip *pc, const struct of_phandle_args *args)
 167{
 168	struct pwm_device *pwm;
 169
 170	/* sanity check driver support */
 171	if (pc->of_pwm_n_cells < 2)
 172		return ERR_PTR(-EINVAL);
 173
 174	/* all cells are required */
 175	if (args->args_count != pc->of_pwm_n_cells)
 176		return ERR_PTR(-EINVAL);
 177
 178	if (args->args[0] >= pc->npwm)
 179		return ERR_PTR(-EINVAL);
 180
 181	pwm = pwm_request_from_chip(pc, args->args[0], NULL);
 182	if (IS_ERR(pwm))
 183		return pwm;
 184
 185	pwm->args.period = args->args[1];
 186
 187	return pwm;
 188}
 189
 190static void of_pwmchip_add(struct pwm_chip *chip)
 191{
 192	if (!chip->dev || !chip->dev->of_node)
 193		return;
 194
 195	if (!chip->of_xlate) {
 196		chip->of_xlate = of_pwm_simple_xlate;
 197		chip->of_pwm_n_cells = 2;
 
 
 
 
 
 
 198	}
 199
 200	of_node_get(chip->dev->of_node);
 201}
 202
 203static void of_pwmchip_remove(struct pwm_chip *chip)
 204{
 205	if (chip->dev)
 206		of_node_put(chip->dev->of_node);
 207}
 208
 209/**
 210 * pwm_set_chip_data() - set private chip data for a PWM
 211 * @pwm: PWM device
 212 * @data: pointer to chip-specific data
 213 *
 214 * Returns: 0 on success or a negative error code on failure.
 215 */
 216int pwm_set_chip_data(struct pwm_device *pwm, void *data)
 217{
 218	if (!pwm)
 219		return -EINVAL;
 220
 221	pwm->chip_data = data;
 222
 223	return 0;
 224}
 225EXPORT_SYMBOL_GPL(pwm_set_chip_data);
 226
 227/**
 228 * pwm_get_chip_data() - get private chip data for a PWM
 229 * @pwm: PWM device
 230 *
 231 * Returns: A pointer to the chip-private data for the PWM device.
 232 */
 233void *pwm_get_chip_data(struct pwm_device *pwm)
 234{
 235	return pwm ? pwm->chip_data : NULL;
 236}
 237EXPORT_SYMBOL_GPL(pwm_get_chip_data);
 238
 239static bool pwm_ops_check(const struct pwm_ops *ops)
 240{
 
 
 
 241	/* driver supports legacy, non-atomic operation */
 242	if (ops->config && ops->enable && ops->disable)
 243		return true;
 
 
 244
 245	/* driver supports atomic operation */
 246	if (ops->apply)
 247		return true;
 
 
 
 
 248
 249	return false;
 
 
 
 
 250}
 251
 252/**
 253 * pwmchip_add_with_polarity() - register a new PWM chip
 254 * @chip: the PWM chip to add
 255 * @polarity: initial polarity of PWM channels
 256 *
 257 * Register a new PWM chip. If chip->base < 0 then a dynamically assigned base
 258 * will be used. The initial polarity for all channels is specified by the
 259 * @polarity parameter.
 260 *
 261 * Returns: 0 on success or a negative error code on failure.
 262 */
 263int pwmchip_add_with_polarity(struct pwm_chip *chip,
 264			      enum pwm_polarity polarity)
 265{
 266	struct pwm_device *pwm;
 267	unsigned int i;
 268	int ret;
 269
 270	if (!chip || !chip->dev || !chip->ops || !chip->npwm)
 271		return -EINVAL;
 272
 273	if (!pwm_ops_check(chip->ops))
 274		return -EINVAL;
 275
 276	mutex_lock(&pwm_lock);
 277
 278	ret = alloc_pwms(chip->base, chip->npwm);
 279	if (ret < 0)
 280		goto out;
 281
 
 
 282	chip->pwms = kcalloc(chip->npwm, sizeof(*pwm), GFP_KERNEL);
 283	if (!chip->pwms) {
 284		ret = -ENOMEM;
 285		goto out;
 286	}
 287
 288	chip->base = ret;
 289
 290	for (i = 0; i < chip->npwm; i++) {
 291		pwm = &chip->pwms[i];
 292
 293		pwm->chip = chip;
 294		pwm->pwm = chip->base + i;
 295		pwm->hwpwm = i;
 296		pwm->state.polarity = polarity;
 297
 298		if (chip->ops->get_state)
 299			chip->ops->get_state(chip, pwm, &pwm->state);
 300
 301		radix_tree_insert(&pwm_tree, pwm->pwm, pwm);
 302	}
 303
 304	bitmap_set(allocated_pwms, chip->base, chip->npwm);
 305
 306	INIT_LIST_HEAD(&chip->list);
 307	list_add(&chip->list, &pwm_chips);
 308
 309	ret = 0;
 310
 311	if (IS_ENABLED(CONFIG_OF))
 312		of_pwmchip_add(chip);
 313
 314	pwmchip_sysfs_export(chip);
 315
 316out:
 317	mutex_unlock(&pwm_lock);
 318	return ret;
 319}
 320EXPORT_SYMBOL_GPL(pwmchip_add_with_polarity);
 321
 322/**
 323 * pwmchip_add() - register a new PWM chip
 324 * @chip: the PWM chip to add
 325 *
 326 * Register a new PWM chip. If chip->base < 0 then a dynamically assigned base
 327 * will be used. The initial polarity for all channels is normal.
 328 *
 329 * Returns: 0 on success or a negative error code on failure.
 330 */
 331int pwmchip_add(struct pwm_chip *chip)
 332{
 333	return pwmchip_add_with_polarity(chip, PWM_POLARITY_NORMAL);
 334}
 335EXPORT_SYMBOL_GPL(pwmchip_add);
 336
 337/**
 338 * pwmchip_remove() - remove a PWM chip
 339 * @chip: the PWM chip to remove
 340 *
 341 * Removes a PWM chip. This function may return busy if the PWM chip provides
 342 * a PWM device that is still requested.
 343 *
 344 * Returns: 0 on success or a negative error code on failure.
 345 */
 346int pwmchip_remove(struct pwm_chip *chip)
 347{
 348	unsigned int i;
 349	int ret = 0;
 350
 351	pwmchip_sysfs_unexport_children(chip);
 352
 353	mutex_lock(&pwm_lock);
 354
 355	for (i = 0; i < chip->npwm; i++) {
 356		struct pwm_device *pwm = &chip->pwms[i];
 357
 358		if (test_bit(PWMF_REQUESTED, &pwm->flags)) {
 359			ret = -EBUSY;
 360			goto out;
 361		}
 362	}
 363
 364	list_del_init(&chip->list);
 365
 366	if (IS_ENABLED(CONFIG_OF))
 367		of_pwmchip_remove(chip);
 368
 369	free_pwms(chip);
 370
 371	pwmchip_sysfs_unexport(chip);
 372
 373out:
 374	mutex_unlock(&pwm_lock);
 375	return ret;
 
 376}
 377EXPORT_SYMBOL_GPL(pwmchip_remove);
 378
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 379/**
 380 * pwm_request() - request a PWM device
 381 * @pwm: global PWM device index
 382 * @label: PWM device label
 383 *
 384 * This function is deprecated, use pwm_get() instead.
 385 *
 386 * Returns: A pointer to a PWM device or an ERR_PTR()-encoded error code on
 387 * failure.
 388 */
 389struct pwm_device *pwm_request(int pwm, const char *label)
 390{
 391	struct pwm_device *dev;
 392	int err;
 393
 394	if (pwm < 0 || pwm >= MAX_PWMS)
 395		return ERR_PTR(-EINVAL);
 396
 397	mutex_lock(&pwm_lock);
 398
 399	dev = pwm_to_device(pwm);
 400	if (!dev) {
 401		dev = ERR_PTR(-EPROBE_DEFER);
 402		goto out;
 403	}
 404
 405	err = pwm_device_request(dev, label);
 406	if (err < 0)
 407		dev = ERR_PTR(err);
 408
 409out:
 410	mutex_unlock(&pwm_lock);
 411
 412	return dev;
 413}
 414EXPORT_SYMBOL_GPL(pwm_request);
 415
 416/**
 417 * pwm_request_from_chip() - request a PWM device relative to a PWM chip
 418 * @chip: PWM chip
 419 * @index: per-chip index of the PWM to request
 420 * @label: a literal description string of this PWM
 421 *
 422 * Returns: A pointer to the PWM device at the given index of the given PWM
 423 * chip. A negative error code is returned if the index is not valid for the
 424 * specified PWM chip or if the PWM device cannot be requested.
 425 */
 426struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip,
 427					 unsigned int index,
 428					 const char *label)
 429{
 430	struct pwm_device *pwm;
 431	int err;
 432
 433	if (!chip || index >= chip->npwm)
 434		return ERR_PTR(-EINVAL);
 435
 436	mutex_lock(&pwm_lock);
 437	pwm = &chip->pwms[index];
 438
 439	err = pwm_device_request(pwm, label);
 440	if (err < 0)
 441		pwm = ERR_PTR(err);
 442
 443	mutex_unlock(&pwm_lock);
 444	return pwm;
 445}
 446EXPORT_SYMBOL_GPL(pwm_request_from_chip);
 447
 448/**
 449 * pwm_free() - free a PWM device
 450 * @pwm: PWM device
 451 *
 452 * This function is deprecated, use pwm_put() instead.
 453 */
 454void pwm_free(struct pwm_device *pwm)
 455{
 456	pwm_put(pwm);
 457}
 458EXPORT_SYMBOL_GPL(pwm_free);
 459
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 460/**
 461 * pwm_apply_state() - atomically apply a new state to a PWM device
 462 * @pwm: PWM device
 463 * @state: new state to apply. This can be adjusted by the PWM driver
 464 *	   if the requested config is not achievable, for example,
 465 *	   ->duty_cycle and ->period might be approximated.
 466 */
 467int pwm_apply_state(struct pwm_device *pwm, struct pwm_state *state)
 468{
 
 469	int err;
 470
 471	if (!pwm || !state || !state->period ||
 472	    state->duty_cycle > state->period)
 473		return -EINVAL;
 474
 475	if (!memcmp(state, &pwm->state, sizeof(*state)))
 
 
 
 
 
 
 476		return 0;
 477
 478	if (pwm->chip->ops->apply) {
 479		err = pwm->chip->ops->apply(pwm->chip, pwm, state);
 480		if (err)
 481			return err;
 482
 
 
 483		pwm->state = *state;
 
 
 
 
 
 
 484	} else {
 485		/*
 486		 * FIXME: restore the initial state in case of error.
 487		 */
 488		if (state->polarity != pwm->state.polarity) {
 489			if (!pwm->chip->ops->set_polarity)
 490				return -ENOTSUPP;
 491
 492			/*
 493			 * Changing the polarity of a running PWM is
 494			 * only allowed when the PWM driver implements
 495			 * ->apply().
 496			 */
 497			if (pwm->state.enabled) {
 498				pwm->chip->ops->disable(pwm->chip, pwm);
 499				pwm->state.enabled = false;
 500			}
 501
 502			err = pwm->chip->ops->set_polarity(pwm->chip, pwm,
 503							   state->polarity);
 504			if (err)
 505				return err;
 506
 507			pwm->state.polarity = state->polarity;
 508		}
 509
 510		if (state->period != pwm->state.period ||
 511		    state->duty_cycle != pwm->state.duty_cycle) {
 512			err = pwm->chip->ops->config(pwm->chip, pwm,
 513						     state->duty_cycle,
 514						     state->period);
 515			if (err)
 516				return err;
 517
 518			pwm->state.duty_cycle = state->duty_cycle;
 519			pwm->state.period = state->period;
 520		}
 521
 522		if (state->enabled != pwm->state.enabled) {
 523			if (state->enabled) {
 524				err = pwm->chip->ops->enable(pwm->chip, pwm);
 525				if (err)
 526					return err;
 527			} else {
 528				pwm->chip->ops->disable(pwm->chip, pwm);
 529			}
 530
 531			pwm->state.enabled = state->enabled;
 532		}
 533	}
 534
 535	return 0;
 536}
 537EXPORT_SYMBOL_GPL(pwm_apply_state);
 538
 539/**
 540 * pwm_capture() - capture and report a PWM signal
 541 * @pwm: PWM device
 542 * @result: structure to fill with capture result
 543 * @timeout: time to wait, in milliseconds, before giving up on capture
 544 *
 545 * Returns: 0 on success or a negative error code on failure.
 546 */
 547int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result,
 548		unsigned long timeout)
 549{
 550	int err;
 551
 552	if (!pwm || !pwm->chip->ops)
 553		return -EINVAL;
 554
 555	if (!pwm->chip->ops->capture)
 556		return -ENOSYS;
 557
 558	mutex_lock(&pwm_lock);
 559	err = pwm->chip->ops->capture(pwm->chip, pwm, result, timeout);
 560	mutex_unlock(&pwm_lock);
 561
 562	return err;
 563}
 564EXPORT_SYMBOL_GPL(pwm_capture);
 565
 566/**
 567 * pwm_adjust_config() - adjust the current PWM config to the PWM arguments
 568 * @pwm: PWM device
 569 *
 570 * This function will adjust the PWM config to the PWM arguments provided
 571 * by the DT or PWM lookup table. This is particularly useful to adapt
 572 * the bootloader config to the Linux one.
 573 */
 574int pwm_adjust_config(struct pwm_device *pwm)
 575{
 576	struct pwm_state state;
 577	struct pwm_args pargs;
 578
 579	pwm_get_args(pwm, &pargs);
 580	pwm_get_state(pwm, &state);
 581
 582	/*
 583	 * If the current period is zero it means that either the PWM driver
 584	 * does not support initial state retrieval or the PWM has not yet
 585	 * been configured.
 586	 *
 587	 * In either case, we setup the new period and polarity, and assign a
 588	 * duty cycle of 0.
 589	 */
 590	if (!state.period) {
 591		state.duty_cycle = 0;
 592		state.period = pargs.period;
 593		state.polarity = pargs.polarity;
 594
 595		return pwm_apply_state(pwm, &state);
 596	}
 597
 598	/*
 599	 * Adjust the PWM duty cycle/period based on the period value provided
 600	 * in PWM args.
 601	 */
 602	if (pargs.period != state.period) {
 603		u64 dutycycle = (u64)state.duty_cycle * pargs.period;
 604
 605		do_div(dutycycle, state.period);
 606		state.duty_cycle = dutycycle;
 607		state.period = pargs.period;
 608	}
 609
 610	/*
 611	 * If the polarity changed, we should also change the duty cycle.
 612	 */
 613	if (pargs.polarity != state.polarity) {
 614		state.polarity = pargs.polarity;
 615		state.duty_cycle = state.period - state.duty_cycle;
 616	}
 617
 618	return pwm_apply_state(pwm, &state);
 619}
 620EXPORT_SYMBOL_GPL(pwm_adjust_config);
 621
 622static struct pwm_chip *of_node_to_pwmchip(struct device_node *np)
 623{
 624	struct pwm_chip *chip;
 625
 626	mutex_lock(&pwm_lock);
 627
 628	list_for_each_entry(chip, &pwm_chips, list)
 629		if (chip->dev && chip->dev->of_node == np) {
 630			mutex_unlock(&pwm_lock);
 631			return chip;
 632		}
 633
 634	mutex_unlock(&pwm_lock);
 635
 636	return ERR_PTR(-EPROBE_DEFER);
 637}
 638
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 639/**
 640 * of_pwm_get() - request a PWM via the PWM framework
 
 641 * @np: device node to get the PWM from
 642 * @con_id: consumer name
 643 *
 644 * Returns the PWM device parsed from the phandle and index specified in the
 645 * "pwms" property of a device tree node or a negative error-code on failure.
 646 * Values parsed from the device tree are stored in the returned PWM device
 647 * object.
 648 *
 649 * If con_id is NULL, the first PWM device listed in the "pwms" property will
 650 * be requested. Otherwise the "pwm-names" property is used to do a reverse
 651 * lookup of the PWM index. This also means that the "pwm-names" property
 652 * becomes mandatory for devices that look up the PWM device via the con_id
 653 * parameter.
 654 *
 655 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
 656 * error code on failure.
 657 */
 658struct pwm_device *of_pwm_get(struct device_node *np, const char *con_id)
 
 659{
 660	struct pwm_device *pwm = NULL;
 661	struct of_phandle_args args;
 
 662	struct pwm_chip *pc;
 663	int index = 0;
 664	int err;
 665
 666	if (con_id) {
 667		index = of_property_match_string(np, "pwm-names", con_id);
 668		if (index < 0)
 669			return ERR_PTR(index);
 670	}
 671
 672	err = of_parse_phandle_with_args(np, "pwms", "#pwm-cells", index,
 673					 &args);
 674	if (err) {
 675		pr_err("%s(): can't parse \"pwms\" property\n", __func__);
 676		return ERR_PTR(err);
 677	}
 678
 679	pc = of_node_to_pwmchip(args.np);
 680	if (IS_ERR(pc)) {
 681		if (PTR_ERR(pc) != -EPROBE_DEFER)
 682			pr_err("%s(): PWM chip not found\n", __func__);
 683
 684		pwm = ERR_CAST(pc);
 685		goto put;
 686	}
 687
 688	pwm = pc->of_xlate(pc, &args);
 689	if (IS_ERR(pwm))
 690		goto put;
 691
 
 
 
 
 
 
 
 
 692	/*
 693	 * If a consumer name was not given, try to look it up from the
 694	 * "pwm-names" property if it exists. Otherwise use the name of
 695	 * the user device node.
 696	 */
 697	if (!con_id) {
 698		err = of_property_read_string_index(np, "pwm-names", index,
 699						    &con_id);
 700		if (err < 0)
 701			con_id = np->name;
 702	}
 703
 704	pwm->label = con_id;
 705
 706put:
 707	of_node_put(args.np);
 708
 709	return pwm;
 710}
 711EXPORT_SYMBOL_GPL(of_pwm_get);
 712
 713/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 714 * pwm_add_table() - register PWM device consumers
 715 * @table: array of consumers to register
 716 * @num: number of consumers in table
 717 */
 718void pwm_add_table(struct pwm_lookup *table, size_t num)
 719{
 720	mutex_lock(&pwm_lookup_lock);
 721
 722	while (num--) {
 723		list_add_tail(&table->list, &pwm_lookup_list);
 724		table++;
 725	}
 726
 727	mutex_unlock(&pwm_lookup_lock);
 728}
 729
 730/**
 731 * pwm_remove_table() - unregister PWM device consumers
 732 * @table: array of consumers to unregister
 733 * @num: number of consumers in table
 734 */
 735void pwm_remove_table(struct pwm_lookup *table, size_t num)
 736{
 737	mutex_lock(&pwm_lookup_lock);
 738
 739	while (num--) {
 740		list_del(&table->list);
 741		table++;
 742	}
 743
 744	mutex_unlock(&pwm_lookup_lock);
 745}
 746
 747/**
 748 * pwm_get() - look up and request a PWM device
 749 * @dev: device for PWM consumer
 750 * @con_id: consumer name
 751 *
 752 * Lookup is first attempted using DT. If the device was not instantiated from
 753 * a device tree, a PWM chip and a relative index is looked up via a table
 754 * supplied by board setup code (see pwm_add_table()).
 755 *
 756 * Once a PWM chip has been found the specified PWM device will be requested
 757 * and is ready to be used.
 758 *
 759 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
 760 * error code on failure.
 761 */
 762struct pwm_device *pwm_get(struct device *dev, const char *con_id)
 763{
 
 764	const char *dev_id = dev ? dev_name(dev) : NULL;
 765	struct pwm_device *pwm;
 766	struct pwm_chip *chip;
 
 767	unsigned int best = 0;
 768	struct pwm_lookup *p, *chosen = NULL;
 769	unsigned int match;
 770	int err;
 771
 772	/* look up via DT first */
 773	if (IS_ENABLED(CONFIG_OF) && dev && dev->of_node)
 774		return of_pwm_get(dev->of_node, con_id);
 
 
 
 
 
 
 
 775
 776	/*
 777	 * We look up the provider in the static table typically provided by
 778	 * board setup code. We first try to lookup the consumer device by
 779	 * name. If the consumer device was passed in as NULL or if no match
 780	 * was found, we try to find the consumer by directly looking it up
 781	 * by name.
 782	 *
 783	 * If a match is found, the provider PWM chip is looked up by name
 784	 * and a PWM device is requested using the PWM device per-chip index.
 785	 *
 786	 * The lookup algorithm was shamelessly taken from the clock
 787	 * framework:
 788	 *
 789	 * We do slightly fuzzy matching here:
 790	 *  An entry with a NULL ID is assumed to be a wildcard.
 791	 *  If an entry has a device ID, it must match
 792	 *  If an entry has a connection ID, it must match
 793	 * Then we take the most specific entry - with the following order
 794	 * of precedence: dev+con > dev only > con only.
 795	 */
 796	mutex_lock(&pwm_lookup_lock);
 797
 798	list_for_each_entry(p, &pwm_lookup_list, list) {
 799		match = 0;
 800
 801		if (p->dev_id) {
 802			if (!dev_id || strcmp(p->dev_id, dev_id))
 803				continue;
 804
 805			match += 2;
 806		}
 807
 808		if (p->con_id) {
 809			if (!con_id || strcmp(p->con_id, con_id))
 810				continue;
 811
 812			match += 1;
 813		}
 814
 815		if (match > best) {
 816			chosen = p;
 817
 818			if (match != 3)
 819				best = match;
 820			else
 821				break;
 822		}
 823	}
 824
 825	mutex_unlock(&pwm_lookup_lock);
 826
 827	if (!chosen)
 828		return ERR_PTR(-ENODEV);
 829
 830	chip = pwmchip_find_by_name(chosen->provider);
 831
 832	/*
 833	 * If the lookup entry specifies a module, load the module and retry
 834	 * the PWM chip lookup. This can be used to work around driver load
 835	 * ordering issues if driver's can't be made to properly support the
 836	 * deferred probe mechanism.
 837	 */
 838	if (!chip && chosen->module) {
 839		err = request_module(chosen->module);
 840		if (err == 0)
 841			chip = pwmchip_find_by_name(chosen->provider);
 842	}
 843
 844	if (!chip)
 845		return ERR_PTR(-EPROBE_DEFER);
 846
 847	pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id);
 848	if (IS_ERR(pwm))
 849		return pwm;
 850
 
 
 
 
 
 
 851	pwm->args.period = chosen->period;
 852	pwm->args.polarity = chosen->polarity;
 853
 854	return pwm;
 855}
 856EXPORT_SYMBOL_GPL(pwm_get);
 857
 858/**
 859 * pwm_put() - release a PWM device
 860 * @pwm: PWM device
 861 */
 862void pwm_put(struct pwm_device *pwm)
 863{
 864	if (!pwm)
 865		return;
 866
 867	mutex_lock(&pwm_lock);
 868
 869	if (!test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
 870		pr_warn("PWM device already freed\n");
 871		goto out;
 872	}
 873
 874	if (pwm->chip->ops->free)
 875		pwm->chip->ops->free(pwm->chip, pwm);
 876
 
 877	pwm->label = NULL;
 878
 879	module_put(pwm->chip->ops->owner);
 880out:
 881	mutex_unlock(&pwm_lock);
 882}
 883EXPORT_SYMBOL_GPL(pwm_put);
 884
 885static void devm_pwm_release(struct device *dev, void *res)
 886{
 887	pwm_put(*(struct pwm_device **)res);
 888}
 889
 890/**
 891 * devm_pwm_get() - resource managed pwm_get()
 892 * @dev: device for PWM consumer
 893 * @con_id: consumer name
 894 *
 895 * This function performs like pwm_get() but the acquired PWM device will
 896 * automatically be released on driver detach.
 897 *
 898 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
 899 * error code on failure.
 900 */
 901struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id)
 902{
 903	struct pwm_device **ptr, *pwm;
 904
 905	ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL);
 906	if (!ptr)
 907		return ERR_PTR(-ENOMEM);
 908
 909	pwm = pwm_get(dev, con_id);
 910	if (!IS_ERR(pwm)) {
 911		*ptr = pwm;
 912		devres_add(dev, ptr);
 913	} else {
 914		devres_free(ptr);
 915	}
 916
 917	return pwm;
 918}
 919EXPORT_SYMBOL_GPL(devm_pwm_get);
 920
 921/**
 922 * devm_of_pwm_get() - resource managed of_pwm_get()
 923 * @dev: device for PWM consumer
 924 * @np: device node to get the PWM from
 925 * @con_id: consumer name
 926 *
 927 * This function performs like of_pwm_get() but the acquired PWM device will
 928 * automatically be released on driver detach.
 929 *
 930 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
 931 * error code on failure.
 932 */
 933struct pwm_device *devm_of_pwm_get(struct device *dev, struct device_node *np,
 934				   const char *con_id)
 935{
 936	struct pwm_device **ptr, *pwm;
 
 937
 938	ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL);
 939	if (!ptr)
 940		return ERR_PTR(-ENOMEM);
 941
 942	pwm = of_pwm_get(np, con_id);
 943	if (!IS_ERR(pwm)) {
 944		*ptr = pwm;
 945		devres_add(dev, ptr);
 946	} else {
 947		devres_free(ptr);
 948	}
 949
 950	return pwm;
 951}
 952EXPORT_SYMBOL_GPL(devm_of_pwm_get);
 953
 954static int devm_pwm_match(struct device *dev, void *res, void *data)
 955{
 956	struct pwm_device **p = res;
 957
 958	if (WARN_ON(!p || !*p))
 959		return 0;
 960
 961	return *p == data;
 962}
 963
 964/**
 965 * devm_pwm_put() - resource managed pwm_put()
 966 * @dev: device for PWM consumer
 967 * @pwm: PWM device
 
 968 *
 969 * Release a PWM previously allocated using devm_pwm_get(). Calling this
 970 * function is usually not needed because devm-allocated resources are
 971 * automatically released on driver detach.
 
 
 972 */
 973void devm_pwm_put(struct device *dev, struct pwm_device *pwm)
 
 
 974{
 975	WARN_ON(devres_release(dev, devm_pwm_release, devm_pwm_match, pwm));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 976}
 977EXPORT_SYMBOL_GPL(devm_pwm_put);
 978
 979#ifdef CONFIG_DEBUG_FS
 980static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s)
 981{
 982	unsigned int i;
 983
 984	for (i = 0; i < chip->npwm; i++) {
 985		struct pwm_device *pwm = &chip->pwms[i];
 986		struct pwm_state state;
 987
 988		pwm_get_state(pwm, &state);
 989
 990		seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label);
 991
 992		if (test_bit(PWMF_REQUESTED, &pwm->flags))
 993			seq_puts(s, " requested");
 994
 995		if (state.enabled)
 996			seq_puts(s, " enabled");
 997
 998		seq_printf(s, " period: %u ns", state.period);
 999		seq_printf(s, " duty: %u ns", state.duty_cycle);
1000		seq_printf(s, " polarity: %s",
1001			   state.polarity ? "inverse" : "normal");
1002
 
 
 
1003		seq_puts(s, "\n");
1004	}
1005}
1006
1007static void *pwm_seq_start(struct seq_file *s, loff_t *pos)
1008{
1009	mutex_lock(&pwm_lock);
1010	s->private = "";
1011
1012	return seq_list_start(&pwm_chips, *pos);
1013}
1014
1015static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos)
1016{
1017	s->private = "\n";
1018
1019	return seq_list_next(v, &pwm_chips, pos);
1020}
1021
1022static void pwm_seq_stop(struct seq_file *s, void *v)
1023{
1024	mutex_unlock(&pwm_lock);
1025}
1026
1027static int pwm_seq_show(struct seq_file *s, void *v)
1028{
1029	struct pwm_chip *chip = list_entry(v, struct pwm_chip, list);
1030
1031	seq_printf(s, "%s%s/%s, %d PWM device%s\n", (char *)s->private,
1032		   chip->dev->bus ? chip->dev->bus->name : "no-bus",
1033		   dev_name(chip->dev), chip->npwm,
1034		   (chip->npwm != 1) ? "s" : "");
1035
1036	if (chip->ops->dbg_show)
1037		chip->ops->dbg_show(chip, s);
1038	else
1039		pwm_dbg_show(chip, s);
1040
1041	return 0;
1042}
1043
1044static const struct seq_operations pwm_seq_ops = {
1045	.start = pwm_seq_start,
1046	.next = pwm_seq_next,
1047	.stop = pwm_seq_stop,
1048	.show = pwm_seq_show,
1049};
1050
1051static int pwm_seq_open(struct inode *inode, struct file *file)
1052{
1053	return seq_open(file, &pwm_seq_ops);
1054}
1055
1056static const struct file_operations pwm_debugfs_ops = {
1057	.owner = THIS_MODULE,
1058	.open = pwm_seq_open,
1059	.read = seq_read,
1060	.llseek = seq_lseek,
1061	.release = seq_release,
1062};
1063
1064static int __init pwm_debugfs_init(void)
1065{
1066	debugfs_create_file("pwm", S_IFREG | S_IRUGO, NULL, NULL,
1067			    &pwm_debugfs_ops);
1068
1069	return 0;
1070}
1071subsys_initcall(pwm_debugfs_init);
1072#endif /* CONFIG_DEBUG_FS */
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Generic pwmlib implementation
   4 *
   5 * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de>
   6 * Copyright (C) 2011-2012 Avionic Design GmbH
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   7 */
   8
   9#include <linux/acpi.h>
  10#include <linux/module.h>
  11#include <linux/pwm.h>
  12#include <linux/radix-tree.h>
  13#include <linux/list.h>
  14#include <linux/mutex.h>
  15#include <linux/err.h>
  16#include <linux/slab.h>
  17#include <linux/device.h>
  18#include <linux/debugfs.h>
  19#include <linux/seq_file.h>
  20
  21#include <dt-bindings/pwm/pwm.h>
  22
  23#define CREATE_TRACE_POINTS
  24#include <trace/events/pwm.h>
  25
  26#define MAX_PWMS 1024
  27
  28static DEFINE_MUTEX(pwm_lookup_lock);
  29static LIST_HEAD(pwm_lookup_list);
  30static DEFINE_MUTEX(pwm_lock);
  31static LIST_HEAD(pwm_chips);
  32static DECLARE_BITMAP(allocated_pwms, MAX_PWMS);
  33static RADIX_TREE(pwm_tree, GFP_KERNEL);
  34
  35static struct pwm_device *pwm_to_device(unsigned int pwm)
  36{
  37	return radix_tree_lookup(&pwm_tree, pwm);
  38}
  39
  40static int alloc_pwms(unsigned int count)
  41{
 
  42	unsigned int start;
  43
  44	start = bitmap_find_next_zero_area(allocated_pwms, MAX_PWMS, 0,
 
 
 
 
 
 
  45					   count, 0);
  46
 
 
 
  47	if (start + count > MAX_PWMS)
  48		return -ENOSPC;
  49
  50	return start;
  51}
  52
  53static void free_pwms(struct pwm_chip *chip)
  54{
  55	unsigned int i;
  56
  57	for (i = 0; i < chip->npwm; i++) {
  58		struct pwm_device *pwm = &chip->pwms[i];
  59
  60		radix_tree_delete(&pwm_tree, pwm->pwm);
  61	}
  62
  63	bitmap_clear(allocated_pwms, chip->base, chip->npwm);
  64
  65	kfree(chip->pwms);
  66	chip->pwms = NULL;
  67}
  68
  69static struct pwm_chip *pwmchip_find_by_name(const char *name)
  70{
  71	struct pwm_chip *chip;
  72
  73	if (!name)
  74		return NULL;
  75
  76	mutex_lock(&pwm_lock);
  77
  78	list_for_each_entry(chip, &pwm_chips, list) {
  79		const char *chip_name = dev_name(chip->dev);
  80
  81		if (chip_name && strcmp(chip_name, name) == 0) {
  82			mutex_unlock(&pwm_lock);
  83			return chip;
  84		}
  85	}
  86
  87	mutex_unlock(&pwm_lock);
  88
  89	return NULL;
  90}
  91
  92static int pwm_device_request(struct pwm_device *pwm, const char *label)
  93{
  94	int err;
  95
  96	if (test_bit(PWMF_REQUESTED, &pwm->flags))
  97		return -EBUSY;
  98
  99	if (!try_module_get(pwm->chip->ops->owner))
 100		return -ENODEV;
 101
 102	if (pwm->chip->ops->request) {
 103		err = pwm->chip->ops->request(pwm->chip, pwm);
 104		if (err) {
 105			module_put(pwm->chip->ops->owner);
 106			return err;
 107		}
 108	}
 109
 110	if (pwm->chip->ops->get_state) {
 111		pwm->chip->ops->get_state(pwm->chip, pwm, &pwm->state);
 112		trace_pwm_get(pwm, &pwm->state);
 113
 114		if (IS_ENABLED(CONFIG_PWM_DEBUG))
 115			pwm->last = pwm->state;
 116	}
 117
 118	set_bit(PWMF_REQUESTED, &pwm->flags);
 119	pwm->label = label;
 120
 121	return 0;
 122}
 123
 124struct pwm_device *
 125of_pwm_xlate_with_flags(struct pwm_chip *pc, const struct of_phandle_args *args)
 126{
 127	struct pwm_device *pwm;
 128
 129	if (pc->of_pwm_n_cells < 2)
 
 130		return ERR_PTR(-EINVAL);
 131
 132	/* flags in the third cell are optional */
 133	if (args->args_count < 2)
 134		return ERR_PTR(-EINVAL);
 135
 136	if (args->args[0] >= pc->npwm)
 137		return ERR_PTR(-EINVAL);
 138
 139	pwm = pwm_request_from_chip(pc, args->args[0], NULL);
 140	if (IS_ERR(pwm))
 141		return pwm;
 142
 143	pwm->args.period = args->args[1];
 144	pwm->args.polarity = PWM_POLARITY_NORMAL;
 145
 146	if (pc->of_pwm_n_cells >= 3) {
 147		if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED)
 148			pwm->args.polarity = PWM_POLARITY_INVERSED;
 149	}
 150
 151	return pwm;
 152}
 153EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags);
 154
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 155static void of_pwmchip_add(struct pwm_chip *chip)
 156{
 157	if (!chip->dev || !chip->dev->of_node)
 158		return;
 159
 160	if (!chip->of_xlate) {
 161		u32 pwm_cells;
 162
 163		if (of_property_read_u32(chip->dev->of_node, "#pwm-cells",
 164					 &pwm_cells))
 165			pwm_cells = 2;
 166
 167		chip->of_xlate = of_pwm_xlate_with_flags;
 168		chip->of_pwm_n_cells = pwm_cells;
 169	}
 170
 171	of_node_get(chip->dev->of_node);
 172}
 173
 174static void of_pwmchip_remove(struct pwm_chip *chip)
 175{
 176	if (chip->dev)
 177		of_node_put(chip->dev->of_node);
 178}
 179
 180/**
 181 * pwm_set_chip_data() - set private chip data for a PWM
 182 * @pwm: PWM device
 183 * @data: pointer to chip-specific data
 184 *
 185 * Returns: 0 on success or a negative error code on failure.
 186 */
 187int pwm_set_chip_data(struct pwm_device *pwm, void *data)
 188{
 189	if (!pwm)
 190		return -EINVAL;
 191
 192	pwm->chip_data = data;
 193
 194	return 0;
 195}
 196EXPORT_SYMBOL_GPL(pwm_set_chip_data);
 197
 198/**
 199 * pwm_get_chip_data() - get private chip data for a PWM
 200 * @pwm: PWM device
 201 *
 202 * Returns: A pointer to the chip-private data for the PWM device.
 203 */
 204void *pwm_get_chip_data(struct pwm_device *pwm)
 205{
 206	return pwm ? pwm->chip_data : NULL;
 207}
 208EXPORT_SYMBOL_GPL(pwm_get_chip_data);
 209
 210static bool pwm_ops_check(const struct pwm_chip *chip)
 211{
 212
 213	const struct pwm_ops *ops = chip->ops;
 214
 215	/* driver supports legacy, non-atomic operation */
 216	if (ops->config && ops->enable && ops->disable) {
 217		if (IS_ENABLED(CONFIG_PWM_DEBUG))
 218			dev_warn(chip->dev,
 219				 "Driver needs updating to atomic API\n");
 220
 
 
 221		return true;
 222	}
 223
 224	if (!ops->apply)
 225		return false;
 226
 227	if (IS_ENABLED(CONFIG_PWM_DEBUG) && !ops->get_state)
 228		dev_warn(chip->dev,
 229			 "Please implement the .get_state() callback\n");
 230
 231	return true;
 232}
 233
 234/**
 235 * pwmchip_add() - register a new PWM chip
 236 * @chip: the PWM chip to add
 
 237 *
 238 * Register a new PWM chip.
 
 
 239 *
 240 * Returns: 0 on success or a negative error code on failure.
 241 */
 242int pwmchip_add(struct pwm_chip *chip)
 
 243{
 244	struct pwm_device *pwm;
 245	unsigned int i;
 246	int ret;
 247
 248	if (!chip || !chip->dev || !chip->ops || !chip->npwm)
 249		return -EINVAL;
 250
 251	if (!pwm_ops_check(chip))
 252		return -EINVAL;
 253
 254	mutex_lock(&pwm_lock);
 255
 256	ret = alloc_pwms(chip->npwm);
 257	if (ret < 0)
 258		goto out;
 259
 260	chip->base = ret;
 261
 262	chip->pwms = kcalloc(chip->npwm, sizeof(*pwm), GFP_KERNEL);
 263	if (!chip->pwms) {
 264		ret = -ENOMEM;
 265		goto out;
 266	}
 267
 
 
 268	for (i = 0; i < chip->npwm; i++) {
 269		pwm = &chip->pwms[i];
 270
 271		pwm->chip = chip;
 272		pwm->pwm = chip->base + i;
 273		pwm->hwpwm = i;
 
 
 
 
 274
 275		radix_tree_insert(&pwm_tree, pwm->pwm, pwm);
 276	}
 277
 278	bitmap_set(allocated_pwms, chip->base, chip->npwm);
 279
 280	INIT_LIST_HEAD(&chip->list);
 281	list_add(&chip->list, &pwm_chips);
 282
 283	ret = 0;
 284
 285	if (IS_ENABLED(CONFIG_OF))
 286		of_pwmchip_add(chip);
 287
 
 
 288out:
 289	mutex_unlock(&pwm_lock);
 
 
 
 290
 291	if (!ret)
 292		pwmchip_sysfs_export(chip);
 293
 294	return ret;
 
 
 
 
 
 
 
 
 295}
 296EXPORT_SYMBOL_GPL(pwmchip_add);
 297
 298/**
 299 * pwmchip_remove() - remove a PWM chip
 300 * @chip: the PWM chip to remove
 301 *
 302 * Removes a PWM chip. This function may return busy if the PWM chip provides
 303 * a PWM device that is still requested.
 304 *
 305 * Returns: 0 on success or a negative error code on failure.
 306 */
 307int pwmchip_remove(struct pwm_chip *chip)
 308{
 309	pwmchip_sysfs_unexport(chip);
 
 
 
 310
 311	mutex_lock(&pwm_lock);
 312
 
 
 
 
 
 
 
 
 
 313	list_del_init(&chip->list);
 314
 315	if (IS_ENABLED(CONFIG_OF))
 316		of_pwmchip_remove(chip);
 317
 318	free_pwms(chip);
 319
 
 
 
 320	mutex_unlock(&pwm_lock);
 321
 322	return 0;
 323}
 324EXPORT_SYMBOL_GPL(pwmchip_remove);
 325
 326static void devm_pwmchip_remove(void *data)
 327{
 328	struct pwm_chip *chip = data;
 329
 330	pwmchip_remove(chip);
 331}
 332
 333int devm_pwmchip_add(struct device *dev, struct pwm_chip *chip)
 334{
 335	int ret;
 336
 337	ret = pwmchip_add(chip);
 338	if (ret)
 339		return ret;
 340
 341	return devm_add_action_or_reset(dev, devm_pwmchip_remove, chip);
 342}
 343EXPORT_SYMBOL_GPL(devm_pwmchip_add);
 344
 345/**
 346 * pwm_request() - request a PWM device
 347 * @pwm: global PWM device index
 348 * @label: PWM device label
 349 *
 350 * This function is deprecated, use pwm_get() instead.
 351 *
 352 * Returns: A pointer to a PWM device or an ERR_PTR()-encoded error code on
 353 * failure.
 354 */
 355struct pwm_device *pwm_request(int pwm, const char *label)
 356{
 357	struct pwm_device *dev;
 358	int err;
 359
 360	if (pwm < 0 || pwm >= MAX_PWMS)
 361		return ERR_PTR(-EINVAL);
 362
 363	mutex_lock(&pwm_lock);
 364
 365	dev = pwm_to_device(pwm);
 366	if (!dev) {
 367		dev = ERR_PTR(-EPROBE_DEFER);
 368		goto out;
 369	}
 370
 371	err = pwm_device_request(dev, label);
 372	if (err < 0)
 373		dev = ERR_PTR(err);
 374
 375out:
 376	mutex_unlock(&pwm_lock);
 377
 378	return dev;
 379}
 380EXPORT_SYMBOL_GPL(pwm_request);
 381
 382/**
 383 * pwm_request_from_chip() - request a PWM device relative to a PWM chip
 384 * @chip: PWM chip
 385 * @index: per-chip index of the PWM to request
 386 * @label: a literal description string of this PWM
 387 *
 388 * Returns: A pointer to the PWM device at the given index of the given PWM
 389 * chip. A negative error code is returned if the index is not valid for the
 390 * specified PWM chip or if the PWM device cannot be requested.
 391 */
 392struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip,
 393					 unsigned int index,
 394					 const char *label)
 395{
 396	struct pwm_device *pwm;
 397	int err;
 398
 399	if (!chip || index >= chip->npwm)
 400		return ERR_PTR(-EINVAL);
 401
 402	mutex_lock(&pwm_lock);
 403	pwm = &chip->pwms[index];
 404
 405	err = pwm_device_request(pwm, label);
 406	if (err < 0)
 407		pwm = ERR_PTR(err);
 408
 409	mutex_unlock(&pwm_lock);
 410	return pwm;
 411}
 412EXPORT_SYMBOL_GPL(pwm_request_from_chip);
 413
 414/**
 415 * pwm_free() - free a PWM device
 416 * @pwm: PWM device
 417 *
 418 * This function is deprecated, use pwm_put() instead.
 419 */
 420void pwm_free(struct pwm_device *pwm)
 421{
 422	pwm_put(pwm);
 423}
 424EXPORT_SYMBOL_GPL(pwm_free);
 425
 426static void pwm_apply_state_debug(struct pwm_device *pwm,
 427				  const struct pwm_state *state)
 428{
 429	struct pwm_state *last = &pwm->last;
 430	struct pwm_chip *chip = pwm->chip;
 431	struct pwm_state s1, s2;
 432	int err;
 433
 434	if (!IS_ENABLED(CONFIG_PWM_DEBUG))
 435		return;
 436
 437	/* No reasonable diagnosis possible without .get_state() */
 438	if (!chip->ops->get_state)
 439		return;
 440
 441	/*
 442	 * *state was just applied. Read out the hardware state and do some
 443	 * checks.
 444	 */
 445
 446	chip->ops->get_state(chip, pwm, &s1);
 447	trace_pwm_get(pwm, &s1);
 448
 449	/*
 450	 * The lowlevel driver either ignored .polarity (which is a bug) or as
 451	 * best effort inverted .polarity and fixed .duty_cycle respectively.
 452	 * Undo this inversion and fixup for further tests.
 453	 */
 454	if (s1.enabled && s1.polarity != state->polarity) {
 455		s2.polarity = state->polarity;
 456		s2.duty_cycle = s1.period - s1.duty_cycle;
 457		s2.period = s1.period;
 458		s2.enabled = s1.enabled;
 459	} else {
 460		s2 = s1;
 461	}
 462
 463	if (s2.polarity != state->polarity &&
 464	    state->duty_cycle < state->period)
 465		dev_warn(chip->dev, ".apply ignored .polarity\n");
 466
 467	if (state->enabled &&
 468	    last->polarity == state->polarity &&
 469	    last->period > s2.period &&
 470	    last->period <= state->period)
 471		dev_warn(chip->dev,
 472			 ".apply didn't pick the best available period (requested: %llu, applied: %llu, possible: %llu)\n",
 473			 state->period, s2.period, last->period);
 474
 475	if (state->enabled && state->period < s2.period)
 476		dev_warn(chip->dev,
 477			 ".apply is supposed to round down period (requested: %llu, applied: %llu)\n",
 478			 state->period, s2.period);
 479
 480	if (state->enabled &&
 481	    last->polarity == state->polarity &&
 482	    last->period == s2.period &&
 483	    last->duty_cycle > s2.duty_cycle &&
 484	    last->duty_cycle <= state->duty_cycle)
 485		dev_warn(chip->dev,
 486			 ".apply didn't pick the best available duty cycle (requested: %llu/%llu, applied: %llu/%llu, possible: %llu/%llu)\n",
 487			 state->duty_cycle, state->period,
 488			 s2.duty_cycle, s2.period,
 489			 last->duty_cycle, last->period);
 490
 491	if (state->enabled && state->duty_cycle < s2.duty_cycle)
 492		dev_warn(chip->dev,
 493			 ".apply is supposed to round down duty_cycle (requested: %llu/%llu, applied: %llu/%llu)\n",
 494			 state->duty_cycle, state->period,
 495			 s2.duty_cycle, s2.period);
 496
 497	if (!state->enabled && s2.enabled && s2.duty_cycle > 0)
 498		dev_warn(chip->dev,
 499			 "requested disabled, but yielded enabled with duty > 0\n");
 500
 501	/* reapply the state that the driver reported being configured. */
 502	err = chip->ops->apply(chip, pwm, &s1);
 503	if (err) {
 504		*last = s1;
 505		dev_err(chip->dev, "failed to reapply current setting\n");
 506		return;
 507	}
 508
 509	trace_pwm_apply(pwm, &s1);
 510
 511	chip->ops->get_state(chip, pwm, last);
 512	trace_pwm_get(pwm, last);
 513
 514	/* reapplication of the current state should give an exact match */
 515	if (s1.enabled != last->enabled ||
 516	    s1.polarity != last->polarity ||
 517	    (s1.enabled && s1.period != last->period) ||
 518	    (s1.enabled && s1.duty_cycle != last->duty_cycle)) {
 519		dev_err(chip->dev,
 520			".apply is not idempotent (ena=%d pol=%d %llu/%llu) -> (ena=%d pol=%d %llu/%llu)\n",
 521			s1.enabled, s1.polarity, s1.duty_cycle, s1.period,
 522			last->enabled, last->polarity, last->duty_cycle,
 523			last->period);
 524	}
 525}
 526
 527/**
 528 * pwm_apply_state() - atomically apply a new state to a PWM device
 529 * @pwm: PWM device
 530 * @state: new state to apply
 
 
 531 */
 532int pwm_apply_state(struct pwm_device *pwm, const struct pwm_state *state)
 533{
 534	struct pwm_chip *chip;
 535	int err;
 536
 537	if (!pwm || !state || !state->period ||
 538	    state->duty_cycle > state->period)
 539		return -EINVAL;
 540
 541	chip = pwm->chip;
 542
 543	if (state->period == pwm->state.period &&
 544	    state->duty_cycle == pwm->state.duty_cycle &&
 545	    state->polarity == pwm->state.polarity &&
 546	    state->enabled == pwm->state.enabled &&
 547	    state->usage_power == pwm->state.usage_power)
 548		return 0;
 549
 550	if (chip->ops->apply) {
 551		err = chip->ops->apply(chip, pwm, state);
 552		if (err)
 553			return err;
 554
 555		trace_pwm_apply(pwm, state);
 556
 557		pwm->state = *state;
 558
 559		/*
 560		 * only do this after pwm->state was applied as some
 561		 * implementations of .get_state depend on this
 562		 */
 563		pwm_apply_state_debug(pwm, state);
 564	} else {
 565		/*
 566		 * FIXME: restore the initial state in case of error.
 567		 */
 568		if (state->polarity != pwm->state.polarity) {
 569			if (!chip->ops->set_polarity)
 570				return -EINVAL;
 571
 572			/*
 573			 * Changing the polarity of a running PWM is
 574			 * only allowed when the PWM driver implements
 575			 * ->apply().
 576			 */
 577			if (pwm->state.enabled) {
 578				chip->ops->disable(chip, pwm);
 579				pwm->state.enabled = false;
 580			}
 581
 582			err = chip->ops->set_polarity(chip, pwm,
 583						      state->polarity);
 584			if (err)
 585				return err;
 586
 587			pwm->state.polarity = state->polarity;
 588		}
 589
 590		if (state->period != pwm->state.period ||
 591		    state->duty_cycle != pwm->state.duty_cycle) {
 592			err = chip->ops->config(pwm->chip, pwm,
 593						state->duty_cycle,
 594						state->period);
 595			if (err)
 596				return err;
 597
 598			pwm->state.duty_cycle = state->duty_cycle;
 599			pwm->state.period = state->period;
 600		}
 601
 602		if (state->enabled != pwm->state.enabled) {
 603			if (state->enabled) {
 604				err = chip->ops->enable(chip, pwm);
 605				if (err)
 606					return err;
 607			} else {
 608				chip->ops->disable(chip, pwm);
 609			}
 610
 611			pwm->state.enabled = state->enabled;
 612		}
 613	}
 614
 615	return 0;
 616}
 617EXPORT_SYMBOL_GPL(pwm_apply_state);
 618
 619/**
 620 * pwm_capture() - capture and report a PWM signal
 621 * @pwm: PWM device
 622 * @result: structure to fill with capture result
 623 * @timeout: time to wait, in milliseconds, before giving up on capture
 624 *
 625 * Returns: 0 on success or a negative error code on failure.
 626 */
 627int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result,
 628		unsigned long timeout)
 629{
 630	int err;
 631
 632	if (!pwm || !pwm->chip->ops)
 633		return -EINVAL;
 634
 635	if (!pwm->chip->ops->capture)
 636		return -ENOSYS;
 637
 638	mutex_lock(&pwm_lock);
 639	err = pwm->chip->ops->capture(pwm->chip, pwm, result, timeout);
 640	mutex_unlock(&pwm_lock);
 641
 642	return err;
 643}
 644EXPORT_SYMBOL_GPL(pwm_capture);
 645
 646/**
 647 * pwm_adjust_config() - adjust the current PWM config to the PWM arguments
 648 * @pwm: PWM device
 649 *
 650 * This function will adjust the PWM config to the PWM arguments provided
 651 * by the DT or PWM lookup table. This is particularly useful to adapt
 652 * the bootloader config to the Linux one.
 653 */
 654int pwm_adjust_config(struct pwm_device *pwm)
 655{
 656	struct pwm_state state;
 657	struct pwm_args pargs;
 658
 659	pwm_get_args(pwm, &pargs);
 660	pwm_get_state(pwm, &state);
 661
 662	/*
 663	 * If the current period is zero it means that either the PWM driver
 664	 * does not support initial state retrieval or the PWM has not yet
 665	 * been configured.
 666	 *
 667	 * In either case, we setup the new period and polarity, and assign a
 668	 * duty cycle of 0.
 669	 */
 670	if (!state.period) {
 671		state.duty_cycle = 0;
 672		state.period = pargs.period;
 673		state.polarity = pargs.polarity;
 674
 675		return pwm_apply_state(pwm, &state);
 676	}
 677
 678	/*
 679	 * Adjust the PWM duty cycle/period based on the period value provided
 680	 * in PWM args.
 681	 */
 682	if (pargs.period != state.period) {
 683		u64 dutycycle = (u64)state.duty_cycle * pargs.period;
 684
 685		do_div(dutycycle, state.period);
 686		state.duty_cycle = dutycycle;
 687		state.period = pargs.period;
 688	}
 689
 690	/*
 691	 * If the polarity changed, we should also change the duty cycle.
 692	 */
 693	if (pargs.polarity != state.polarity) {
 694		state.polarity = pargs.polarity;
 695		state.duty_cycle = state.period - state.duty_cycle;
 696	}
 697
 698	return pwm_apply_state(pwm, &state);
 699}
 700EXPORT_SYMBOL_GPL(pwm_adjust_config);
 701
 702static struct pwm_chip *fwnode_to_pwmchip(struct fwnode_handle *fwnode)
 703{
 704	struct pwm_chip *chip;
 705
 706	mutex_lock(&pwm_lock);
 707
 708	list_for_each_entry(chip, &pwm_chips, list)
 709		if (chip->dev && dev_fwnode(chip->dev) == fwnode) {
 710			mutex_unlock(&pwm_lock);
 711			return chip;
 712		}
 713
 714	mutex_unlock(&pwm_lock);
 715
 716	return ERR_PTR(-EPROBE_DEFER);
 717}
 718
 719static struct device_link *pwm_device_link_add(struct device *dev,
 720					       struct pwm_device *pwm)
 721{
 722	struct device_link *dl;
 723
 724	if (!dev) {
 725		/*
 726		 * No device for the PWM consumer has been provided. It may
 727		 * impact the PM sequence ordering: the PWM supplier may get
 728		 * suspended before the consumer.
 729		 */
 730		dev_warn(pwm->chip->dev,
 731			 "No consumer device specified to create a link to\n");
 732		return NULL;
 733	}
 734
 735	dl = device_link_add(dev, pwm->chip->dev, DL_FLAG_AUTOREMOVE_CONSUMER);
 736	if (!dl) {
 737		dev_err(dev, "failed to create device link to %s\n",
 738			dev_name(pwm->chip->dev));
 739		return ERR_PTR(-EINVAL);
 740	}
 741
 742	return dl;
 743}
 744
 745/**
 746 * of_pwm_get() - request a PWM via the PWM framework
 747 * @dev: device for PWM consumer
 748 * @np: device node to get the PWM from
 749 * @con_id: consumer name
 750 *
 751 * Returns the PWM device parsed from the phandle and index specified in the
 752 * "pwms" property of a device tree node or a negative error-code on failure.
 753 * Values parsed from the device tree are stored in the returned PWM device
 754 * object.
 755 *
 756 * If con_id is NULL, the first PWM device listed in the "pwms" property will
 757 * be requested. Otherwise the "pwm-names" property is used to do a reverse
 758 * lookup of the PWM index. This also means that the "pwm-names" property
 759 * becomes mandatory for devices that look up the PWM device via the con_id
 760 * parameter.
 761 *
 762 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
 763 * error code on failure.
 764 */
 765struct pwm_device *of_pwm_get(struct device *dev, struct device_node *np,
 766			      const char *con_id)
 767{
 768	struct pwm_device *pwm = NULL;
 769	struct of_phandle_args args;
 770	struct device_link *dl;
 771	struct pwm_chip *pc;
 772	int index = 0;
 773	int err;
 774
 775	if (con_id) {
 776		index = of_property_match_string(np, "pwm-names", con_id);
 777		if (index < 0)
 778			return ERR_PTR(index);
 779	}
 780
 781	err = of_parse_phandle_with_args(np, "pwms", "#pwm-cells", index,
 782					 &args);
 783	if (err) {
 784		pr_err("%s(): can't parse \"pwms\" property\n", __func__);
 785		return ERR_PTR(err);
 786	}
 787
 788	pc = fwnode_to_pwmchip(of_fwnode_handle(args.np));
 789	if (IS_ERR(pc)) {
 790		if (PTR_ERR(pc) != -EPROBE_DEFER)
 791			pr_err("%s(): PWM chip not found\n", __func__);
 792
 793		pwm = ERR_CAST(pc);
 794		goto put;
 795	}
 796
 797	pwm = pc->of_xlate(pc, &args);
 798	if (IS_ERR(pwm))
 799		goto put;
 800
 801	dl = pwm_device_link_add(dev, pwm);
 802	if (IS_ERR(dl)) {
 803		/* of_xlate ended up calling pwm_request_from_chip() */
 804		pwm_free(pwm);
 805		pwm = ERR_CAST(dl);
 806		goto put;
 807	}
 808
 809	/*
 810	 * If a consumer name was not given, try to look it up from the
 811	 * "pwm-names" property if it exists. Otherwise use the name of
 812	 * the user device node.
 813	 */
 814	if (!con_id) {
 815		err = of_property_read_string_index(np, "pwm-names", index,
 816						    &con_id);
 817		if (err < 0)
 818			con_id = np->name;
 819	}
 820
 821	pwm->label = con_id;
 822
 823put:
 824	of_node_put(args.np);
 825
 826	return pwm;
 827}
 828EXPORT_SYMBOL_GPL(of_pwm_get);
 829
 830/**
 831 * acpi_pwm_get() - request a PWM via parsing "pwms" property in ACPI
 832 * @fwnode: firmware node to get the "pwms" property from
 833 *
 834 * Returns the PWM device parsed from the fwnode and index specified in the
 835 * "pwms" property or a negative error-code on failure.
 836 * Values parsed from the device tree are stored in the returned PWM device
 837 * object.
 838 *
 839 * This is analogous to of_pwm_get() except con_id is not yet supported.
 840 * ACPI entries must look like
 841 * Package () {"pwms", Package ()
 842 *     { <PWM device reference>, <PWM index>, <PWM period> [, <PWM flags>]}}
 843 *
 844 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
 845 * error code on failure.
 846 */
 847static struct pwm_device *acpi_pwm_get(const struct fwnode_handle *fwnode)
 848{
 849	struct pwm_device *pwm;
 850	struct fwnode_reference_args args;
 851	struct pwm_chip *chip;
 852	int ret;
 853
 854	memset(&args, 0, sizeof(args));
 855
 856	ret = __acpi_node_get_property_reference(fwnode, "pwms", 0, 3, &args);
 857	if (ret < 0)
 858		return ERR_PTR(ret);
 859
 860	if (args.nargs < 2)
 861		return ERR_PTR(-EPROTO);
 862
 863	chip = fwnode_to_pwmchip(args.fwnode);
 864	if (IS_ERR(chip))
 865		return ERR_CAST(chip);
 866
 867	pwm = pwm_request_from_chip(chip, args.args[0], NULL);
 868	if (IS_ERR(pwm))
 869		return pwm;
 870
 871	pwm->args.period = args.args[1];
 872	pwm->args.polarity = PWM_POLARITY_NORMAL;
 873
 874	if (args.nargs > 2 && args.args[2] & PWM_POLARITY_INVERTED)
 875		pwm->args.polarity = PWM_POLARITY_INVERSED;
 876
 877	return pwm;
 878}
 879
 880/**
 881 * pwm_add_table() - register PWM device consumers
 882 * @table: array of consumers to register
 883 * @num: number of consumers in table
 884 */
 885void pwm_add_table(struct pwm_lookup *table, size_t num)
 886{
 887	mutex_lock(&pwm_lookup_lock);
 888
 889	while (num--) {
 890		list_add_tail(&table->list, &pwm_lookup_list);
 891		table++;
 892	}
 893
 894	mutex_unlock(&pwm_lookup_lock);
 895}
 896
 897/**
 898 * pwm_remove_table() - unregister PWM device consumers
 899 * @table: array of consumers to unregister
 900 * @num: number of consumers in table
 901 */
 902void pwm_remove_table(struct pwm_lookup *table, size_t num)
 903{
 904	mutex_lock(&pwm_lookup_lock);
 905
 906	while (num--) {
 907		list_del(&table->list);
 908		table++;
 909	}
 910
 911	mutex_unlock(&pwm_lookup_lock);
 912}
 913
 914/**
 915 * pwm_get() - look up and request a PWM device
 916 * @dev: device for PWM consumer
 917 * @con_id: consumer name
 918 *
 919 * Lookup is first attempted using DT. If the device was not instantiated from
 920 * a device tree, a PWM chip and a relative index is looked up via a table
 921 * supplied by board setup code (see pwm_add_table()).
 922 *
 923 * Once a PWM chip has been found the specified PWM device will be requested
 924 * and is ready to be used.
 925 *
 926 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
 927 * error code on failure.
 928 */
 929struct pwm_device *pwm_get(struct device *dev, const char *con_id)
 930{
 931	const struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
 932	const char *dev_id = dev ? dev_name(dev) : NULL;
 933	struct pwm_device *pwm;
 934	struct pwm_chip *chip;
 935	struct device_link *dl;
 936	unsigned int best = 0;
 937	struct pwm_lookup *p, *chosen = NULL;
 938	unsigned int match;
 939	int err;
 940
 941	/* look up via DT first */
 942	if (is_of_node(fwnode))
 943		return of_pwm_get(dev, to_of_node(fwnode), con_id);
 944
 945	/* then lookup via ACPI */
 946	if (is_acpi_node(fwnode)) {
 947		pwm = acpi_pwm_get(fwnode);
 948		if (!IS_ERR(pwm) || PTR_ERR(pwm) != -ENOENT)
 949			return pwm;
 950	}
 951
 952	/*
 953	 * We look up the provider in the static table typically provided by
 954	 * board setup code. We first try to lookup the consumer device by
 955	 * name. If the consumer device was passed in as NULL or if no match
 956	 * was found, we try to find the consumer by directly looking it up
 957	 * by name.
 958	 *
 959	 * If a match is found, the provider PWM chip is looked up by name
 960	 * and a PWM device is requested using the PWM device per-chip index.
 961	 *
 962	 * The lookup algorithm was shamelessly taken from the clock
 963	 * framework:
 964	 *
 965	 * We do slightly fuzzy matching here:
 966	 *  An entry with a NULL ID is assumed to be a wildcard.
 967	 *  If an entry has a device ID, it must match
 968	 *  If an entry has a connection ID, it must match
 969	 * Then we take the most specific entry - with the following order
 970	 * of precedence: dev+con > dev only > con only.
 971	 */
 972	mutex_lock(&pwm_lookup_lock);
 973
 974	list_for_each_entry(p, &pwm_lookup_list, list) {
 975		match = 0;
 976
 977		if (p->dev_id) {
 978			if (!dev_id || strcmp(p->dev_id, dev_id))
 979				continue;
 980
 981			match += 2;
 982		}
 983
 984		if (p->con_id) {
 985			if (!con_id || strcmp(p->con_id, con_id))
 986				continue;
 987
 988			match += 1;
 989		}
 990
 991		if (match > best) {
 992			chosen = p;
 993
 994			if (match != 3)
 995				best = match;
 996			else
 997				break;
 998		}
 999	}
1000
1001	mutex_unlock(&pwm_lookup_lock);
1002
1003	if (!chosen)
1004		return ERR_PTR(-ENODEV);
1005
1006	chip = pwmchip_find_by_name(chosen->provider);
1007
1008	/*
1009	 * If the lookup entry specifies a module, load the module and retry
1010	 * the PWM chip lookup. This can be used to work around driver load
1011	 * ordering issues if driver's can't be made to properly support the
1012	 * deferred probe mechanism.
1013	 */
1014	if (!chip && chosen->module) {
1015		err = request_module(chosen->module);
1016		if (err == 0)
1017			chip = pwmchip_find_by_name(chosen->provider);
1018	}
1019
1020	if (!chip)
1021		return ERR_PTR(-EPROBE_DEFER);
1022
1023	pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id);
1024	if (IS_ERR(pwm))
1025		return pwm;
1026
1027	dl = pwm_device_link_add(dev, pwm);
1028	if (IS_ERR(dl)) {
1029		pwm_free(pwm);
1030		return ERR_CAST(dl);
1031	}
1032
1033	pwm->args.period = chosen->period;
1034	pwm->args.polarity = chosen->polarity;
1035
1036	return pwm;
1037}
1038EXPORT_SYMBOL_GPL(pwm_get);
1039
1040/**
1041 * pwm_put() - release a PWM device
1042 * @pwm: PWM device
1043 */
1044void pwm_put(struct pwm_device *pwm)
1045{
1046	if (!pwm)
1047		return;
1048
1049	mutex_lock(&pwm_lock);
1050
1051	if (!test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
1052		pr_warn("PWM device already freed\n");
1053		goto out;
1054	}
1055
1056	if (pwm->chip->ops->free)
1057		pwm->chip->ops->free(pwm->chip, pwm);
1058
1059	pwm_set_chip_data(pwm, NULL);
1060	pwm->label = NULL;
1061
1062	module_put(pwm->chip->ops->owner);
1063out:
1064	mutex_unlock(&pwm_lock);
1065}
1066EXPORT_SYMBOL_GPL(pwm_put);
1067
1068static void devm_pwm_release(void *pwm)
1069{
1070	pwm_put(pwm);
1071}
1072
1073/**
1074 * devm_pwm_get() - resource managed pwm_get()
1075 * @dev: device for PWM consumer
1076 * @con_id: consumer name
1077 *
1078 * This function performs like pwm_get() but the acquired PWM device will
1079 * automatically be released on driver detach.
1080 *
1081 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1082 * error code on failure.
1083 */
1084struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id)
1085{
1086	struct pwm_device *pwm;
1087	int ret;
 
 
 
1088
1089	pwm = pwm_get(dev, con_id);
1090	if (IS_ERR(pwm))
1091		return pwm;
1092
1093	ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
1094	if (ret)
1095		return ERR_PTR(ret);
1096
1097	return pwm;
1098}
1099EXPORT_SYMBOL_GPL(devm_pwm_get);
1100
1101/**
1102 * devm_of_pwm_get() - resource managed of_pwm_get()
1103 * @dev: device for PWM consumer
1104 * @np: device node to get the PWM from
1105 * @con_id: consumer name
1106 *
1107 * This function performs like of_pwm_get() but the acquired PWM device will
1108 * automatically be released on driver detach.
1109 *
1110 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1111 * error code on failure.
1112 */
1113struct pwm_device *devm_of_pwm_get(struct device *dev, struct device_node *np,
1114				   const char *con_id)
1115{
1116	struct pwm_device *pwm;
1117	int ret;
1118
1119	pwm = of_pwm_get(dev, np, con_id);
1120	if (IS_ERR(pwm))
1121		return pwm;
1122
1123	ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
1124	if (ret)
1125		return ERR_PTR(ret);
 
 
 
 
1126
1127	return pwm;
1128}
1129EXPORT_SYMBOL_GPL(devm_of_pwm_get);
1130
 
 
 
 
 
 
 
 
 
 
1131/**
1132 * devm_fwnode_pwm_get() - request a resource managed PWM from firmware node
1133 * @dev: device for PWM consumer
1134 * @fwnode: firmware node to get the PWM from
1135 * @con_id: consumer name
1136 *
1137 * Returns the PWM device parsed from the firmware node. See of_pwm_get() and
1138 * acpi_pwm_get() for a detailed description.
1139 *
1140 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1141 * error code on failure.
1142 */
1143struct pwm_device *devm_fwnode_pwm_get(struct device *dev,
1144				       struct fwnode_handle *fwnode,
1145				       const char *con_id)
1146{
1147	struct pwm_device *pwm = ERR_PTR(-ENODEV);
1148	int ret;
1149
1150	if (is_of_node(fwnode))
1151		pwm = of_pwm_get(dev, to_of_node(fwnode), con_id);
1152	else if (is_acpi_node(fwnode))
1153		pwm = acpi_pwm_get(fwnode);
1154	if (IS_ERR(pwm))
1155		return pwm;
1156
1157	ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
1158	if (ret)
1159		return ERR_PTR(ret);
1160
1161	return pwm;
1162}
1163EXPORT_SYMBOL_GPL(devm_fwnode_pwm_get);
1164
1165#ifdef CONFIG_DEBUG_FS
1166static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s)
1167{
1168	unsigned int i;
1169
1170	for (i = 0; i < chip->npwm; i++) {
1171		struct pwm_device *pwm = &chip->pwms[i];
1172		struct pwm_state state;
1173
1174		pwm_get_state(pwm, &state);
1175
1176		seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label);
1177
1178		if (test_bit(PWMF_REQUESTED, &pwm->flags))
1179			seq_puts(s, " requested");
1180
1181		if (state.enabled)
1182			seq_puts(s, " enabled");
1183
1184		seq_printf(s, " period: %llu ns", state.period);
1185		seq_printf(s, " duty: %llu ns", state.duty_cycle);
1186		seq_printf(s, " polarity: %s",
1187			   state.polarity ? "inverse" : "normal");
1188
1189		if (state.usage_power)
1190			seq_puts(s, " usage_power");
1191
1192		seq_puts(s, "\n");
1193	}
1194}
1195
1196static void *pwm_seq_start(struct seq_file *s, loff_t *pos)
1197{
1198	mutex_lock(&pwm_lock);
1199	s->private = "";
1200
1201	return seq_list_start(&pwm_chips, *pos);
1202}
1203
1204static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos)
1205{
1206	s->private = "\n";
1207
1208	return seq_list_next(v, &pwm_chips, pos);
1209}
1210
1211static void pwm_seq_stop(struct seq_file *s, void *v)
1212{
1213	mutex_unlock(&pwm_lock);
1214}
1215
1216static int pwm_seq_show(struct seq_file *s, void *v)
1217{
1218	struct pwm_chip *chip = list_entry(v, struct pwm_chip, list);
1219
1220	seq_printf(s, "%s%s/%s, %d PWM device%s\n", (char *)s->private,
1221		   chip->dev->bus ? chip->dev->bus->name : "no-bus",
1222		   dev_name(chip->dev), chip->npwm,
1223		   (chip->npwm != 1) ? "s" : "");
1224
1225	pwm_dbg_show(chip, s);
 
 
 
1226
1227	return 0;
1228}
1229
1230static const struct seq_operations pwm_debugfs_sops = {
1231	.start = pwm_seq_start,
1232	.next = pwm_seq_next,
1233	.stop = pwm_seq_stop,
1234	.show = pwm_seq_show,
1235};
1236
1237DEFINE_SEQ_ATTRIBUTE(pwm_debugfs);
 
 
 
 
 
 
 
 
 
 
 
1238
1239static int __init pwm_debugfs_init(void)
1240{
1241	debugfs_create_file("pwm", S_IFREG | 0444, NULL, NULL,
1242			    &pwm_debugfs_fops);
1243
1244	return 0;
1245}
1246subsys_initcall(pwm_debugfs_init);
1247#endif /* CONFIG_DEBUG_FS */