Linux Audio

Check our new training course

Loading...
v4.17
  1/*
  2 *  Copyright (C) 1991, 1992  Linus Torvalds
  3 *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
  4 *
  5 *  Pentium III FXSR, SSE support
  6 *	Gareth Hughes <gareth@valinux.com>, May 2000
  7 */
  8
  9/*
 10 * Handle hardware traps and faults.
 11 */
 12
 13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 14
 15#include <linux/context_tracking.h>
 16#include <linux/interrupt.h>
 17#include <linux/kallsyms.h>
 
 18#include <linux/spinlock.h>
 19#include <linux/kprobes.h>
 20#include <linux/uaccess.h>
 21#include <linux/kdebug.h>
 22#include <linux/kgdb.h>
 23#include <linux/kernel.h>
 24#include <linux/export.h>
 25#include <linux/ptrace.h>
 26#include <linux/uprobes.h>
 27#include <linux/string.h>
 28#include <linux/delay.h>
 29#include <linux/errno.h>
 30#include <linux/kexec.h>
 31#include <linux/sched.h>
 32#include <linux/sched/task_stack.h>
 33#include <linux/timer.h>
 34#include <linux/init.h>
 35#include <linux/bug.h>
 36#include <linux/nmi.h>
 37#include <linux/mm.h>
 38#include <linux/smp.h>
 
 39#include <linux/io.h>
 40
 41#if defined(CONFIG_EDAC)
 42#include <linux/edac.h>
 43#endif
 44
 45#include <asm/stacktrace.h>
 46#include <asm/processor.h>
 47#include <asm/debugreg.h>
 48#include <linux/atomic.h>
 49#include <asm/text-patching.h>
 50#include <asm/ftrace.h>
 51#include <asm/traps.h>
 52#include <asm/desc.h>
 53#include <asm/fpu/internal.h>
 
 
 54#include <asm/cpu_entry_area.h>
 55#include <asm/mce.h>
 56#include <asm/fixmap.h>
 57#include <asm/mach_traps.h>
 58#include <asm/alternative.h>
 59#include <asm/fpu/xstate.h>
 60#include <asm/trace/mpx.h>
 61#include <asm/mpx.h>
 62#include <asm/vm86.h>
 63#include <asm/umip.h>
 
 
 
 
 
 64
 65#ifdef CONFIG_X86_64
 66#include <asm/x86_init.h>
 67#include <asm/pgalloc.h>
 68#include <asm/proto.h>
 69#else
 70#include <asm/processor-flags.h>
 71#include <asm/setup.h>
 72#include <asm/proto.h>
 73#endif
 74
 75DECLARE_BITMAP(system_vectors, NR_VECTORS);
 76
 77static inline void cond_local_irq_enable(struct pt_regs *regs)
 78{
 79	if (regs->flags & X86_EFLAGS_IF)
 80		local_irq_enable();
 81}
 82
 83static inline void cond_local_irq_disable(struct pt_regs *regs)
 84{
 85	if (regs->flags & X86_EFLAGS_IF)
 86		local_irq_disable();
 87}
 88
 89/*
 90 * In IST context, we explicitly disable preemption.  This serves two
 91 * purposes: it makes it much less likely that we would accidentally
 92 * schedule in IST context and it will force a warning if we somehow
 93 * manage to schedule by accident.
 94 */
 95void ist_enter(struct pt_regs *regs)
 96{
 97	if (user_mode(regs)) {
 98		RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
 99	} else {
100		/*
101		 * We might have interrupted pretty much anything.  In
102		 * fact, if we're a machine check, we can even interrupt
103		 * NMI processing.  We don't want in_nmi() to return true,
104		 * but we need to notify RCU.
105		 */
106		rcu_nmi_enter();
107	}
108
109	preempt_disable();
110
111	/* This code is a bit fragile.  Test it. */
112	RCU_LOCKDEP_WARN(!rcu_is_watching(), "ist_enter didn't work");
113}
114
115void ist_exit(struct pt_regs *regs)
116{
117	preempt_enable_no_resched();
118
119	if (!user_mode(regs))
120		rcu_nmi_exit();
121}
122
123/**
124 * ist_begin_non_atomic() - begin a non-atomic section in an IST exception
125 * @regs:	regs passed to the IST exception handler
126 *
127 * IST exception handlers normally cannot schedule.  As a special
128 * exception, if the exception interrupted userspace code (i.e.
129 * user_mode(regs) would return true) and the exception was not
130 * a double fault, it can be safe to schedule.  ist_begin_non_atomic()
131 * begins a non-atomic section within an ist_enter()/ist_exit() region.
132 * Callers are responsible for enabling interrupts themselves inside
133 * the non-atomic section, and callers must call ist_end_non_atomic()
134 * before ist_exit().
135 */
136void ist_begin_non_atomic(struct pt_regs *regs)
137{
138	BUG_ON(!user_mode(regs));
139
140	/*
141	 * Sanity check: we need to be on the normal thread stack.  This
142	 * will catch asm bugs and any attempt to use ist_preempt_enable
143	 * from double_fault.
144	 */
145	BUG_ON(!on_thread_stack());
146
147	preempt_enable_no_resched();
148}
149
150/**
151 * ist_end_non_atomic() - begin a non-atomic section in an IST exception
152 *
153 * Ends a non-atomic section started with ist_begin_non_atomic().
154 */
155void ist_end_non_atomic(void)
156{
157	preempt_disable();
158}
159
160int is_valid_bugaddr(unsigned long addr)
161{
162	unsigned short ud;
163
164	if (addr < TASK_SIZE_MAX)
165		return 0;
166
167	if (probe_kernel_address((unsigned short *)addr, ud))
168		return 0;
169
170	return ud == INSN_UD0 || ud == INSN_UD2;
171}
172
173int fixup_bug(struct pt_regs *regs, int trapnr)
174{
175	if (trapnr != X86_TRAP_UD)
176		return 0;
177
178	switch (report_bug(regs->ip, regs)) {
179	case BUG_TRAP_TYPE_NONE:
180	case BUG_TRAP_TYPE_BUG:
181		break;
182
183	case BUG_TRAP_TYPE_WARN:
184		regs->ip += LEN_UD2;
185		return 1;
186	}
187
188	return 0;
189}
190
191static nokprobe_inline int
192do_trap_no_signal(struct task_struct *tsk, int trapnr, char *str,
193		  struct pt_regs *regs,	long error_code)
194{
195	if (v8086_mode(regs)) {
196		/*
197		 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
198		 * On nmi (interrupt 2), do_trap should not be called.
199		 */
200		if (trapnr < X86_TRAP_UD) {
201			if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
202						error_code, trapnr))
203				return 0;
204		}
205		return -1;
206	}
207
208	if (!user_mode(regs)) {
209		if (fixup_exception(regs, trapnr))
210			return 0;
211
212		tsk->thread.error_code = error_code;
213		tsk->thread.trap_nr = trapnr;
214		die(str, regs, error_code);
 
 
 
215	}
216
217	return -1;
218}
219
220static siginfo_t *fill_trap_info(struct pt_regs *regs, int signr, int trapnr,
221				siginfo_t *info)
222{
223	unsigned long siaddr;
224	int sicode;
225
226	switch (trapnr) {
227	default:
228		return SEND_SIG_PRIV;
229
230	case X86_TRAP_DE:
231		sicode = FPE_INTDIV;
232		siaddr = uprobe_get_trap_addr(regs);
233		break;
234	case X86_TRAP_UD:
235		sicode = ILL_ILLOPN;
236		siaddr = uprobe_get_trap_addr(regs);
237		break;
238	case X86_TRAP_AC:
239		sicode = BUS_ADRALN;
240		siaddr = 0;
241		break;
242	}
243
244	info->si_signo = signr;
245	info->si_errno = 0;
246	info->si_code = sicode;
247	info->si_addr = (void __user *)siaddr;
248	return info;
249}
250
251static void
252do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
253	long error_code, siginfo_t *info)
254{
255	struct task_struct *tsk = current;
256
257
258	if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
259		return;
260	/*
261	 * We want error_code and trap_nr set for userspace faults and
262	 * kernelspace faults which result in die(), but not
263	 * kernelspace faults which are fixed up.  die() gives the
264	 * process no chance to handle the signal and notice the
265	 * kernel fault information, so that won't result in polluting
266	 * the information about previously queued, but not yet
267	 * delivered, faults.  See also do_general_protection below.
268	 */
269	tsk->thread.error_code = error_code;
270	tsk->thread.trap_nr = trapnr;
271
 
 
 
 
 
 
 
272	if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
273	    printk_ratelimit()) {
274		pr_info("%s[%d] trap %s ip:%lx sp:%lx error:%lx",
275			tsk->comm, tsk->pid, str,
276			regs->ip, regs->sp, error_code);
277		print_vma_addr(KERN_CONT " in ", regs->ip);
278		pr_cont("\n");
279	}
 
 
 
 
 
 
 
 
 
 
 
 
280
281	force_sig_info(signr, info ?: SEND_SIG_PRIV, tsk);
 
 
 
282}
283NOKPROBE_SYMBOL(do_trap);
284
285static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
286			  unsigned long trapnr, int signr)
287{
288	siginfo_t info;
289
290	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
291
292	/*
293	 * WARN*()s end up here; fix them up before we call the
294	 * notifier chain.
295	 */
296	if (!user_mode(regs) && fixup_bug(regs, trapnr))
297		return;
298
299	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
300			NOTIFY_STOP) {
301		cond_local_irq_enable(regs);
302		do_trap(trapnr, signr, str, regs, error_code,
303			fill_trap_info(regs, signr, trapnr, &info));
304	}
305}
306
307#define DO_ERROR(trapnr, signr, str, name)				\
308dotraplinkage void do_##name(struct pt_regs *regs, long error_code)	\
309{									\
310	do_error_trap(regs, error_code, str, trapnr, signr);		\
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
311}
312
313DO_ERROR(X86_TRAP_DE,     SIGFPE,  "divide error",		divide_error)
314DO_ERROR(X86_TRAP_OF,     SIGSEGV, "overflow",			overflow)
315DO_ERROR(X86_TRAP_UD,     SIGILL,  "invalid opcode",		invalid_op)
316DO_ERROR(X86_TRAP_OLD_MF, SIGFPE,  "coprocessor segment overrun",coprocessor_segment_overrun)
317DO_ERROR(X86_TRAP_TS,     SIGSEGV, "invalid TSS",		invalid_TSS)
318DO_ERROR(X86_TRAP_NP,     SIGBUS,  "segment not present",	segment_not_present)
319DO_ERROR(X86_TRAP_SS,     SIGBUS,  "stack segment",		stack_segment)
320DO_ERROR(X86_TRAP_AC,     SIGBUS,  "alignment check",		alignment_check)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
321
322#ifdef CONFIG_VMAP_STACK
323__visible void __noreturn handle_stack_overflow(const char *message,
324						struct pt_regs *regs,
325						unsigned long fault_address)
326{
327	printk(KERN_EMERG "BUG: stack guard page was hit at %p (stack is %p..%p)\n",
328		 (void *)fault_address, current->stack,
329		 (char *)current->stack + THREAD_SIZE - 1);
330	die(message, regs, 0);
 
 
331
332	/* Be absolutely certain we don't return. */
333	panic(message);
334}
335#endif
336
337#ifdef CONFIG_X86_64
338/* Runs on IST stack */
339dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
340{
341	static const char str[] = "double fault";
342	struct task_struct *tsk = current;
 
343#ifdef CONFIG_VMAP_STACK
344	unsigned long cr2;
 
345#endif
346
347#ifdef CONFIG_X86_ESPFIX64
348	extern unsigned char native_irq_return_iret[];
349
350	/*
351	 * If IRET takes a non-IST fault on the espfix64 stack, then we
352	 * end up promoting it to a doublefault.  In that case, take
353	 * advantage of the fact that we're not using the normal (TSS.sp0)
354	 * stack right now.  We can write a fake #GP(0) frame at TSS.sp0
355	 * and then modify our own IRET frame so that, when we return,
356	 * we land directly at the #GP(0) vector with the stack already
357	 * set up according to its expectations.
358	 *
359	 * The net result is that our #GP handler will think that we
360	 * entered from usermode with the bad user context.
361	 *
362	 * No need for ist_enter here because we don't use RCU.
363	 */
364	if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY &&
365		regs->cs == __KERNEL_CS &&
366		regs->ip == (unsigned long)native_irq_return_iret)
367	{
368		struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
 
369
370		/*
371		 * regs->sp points to the failing IRET frame on the
372		 * ESPFIX64 stack.  Copy it to the entry stack.  This fills
373		 * in gpregs->ss through gpregs->ip.
374		 *
375		 */
376		memmove(&gpregs->ip, (void *)regs->sp, 5*8);
 
 
 
 
377		gpregs->orig_ax = 0;  /* Missing (lost) #GP error code */
378
379		/*
380		 * Adjust our frame so that we return straight to the #GP
381		 * vector with the expected RSP value.  This is safe because
382		 * we won't enable interupts or schedule before we invoke
383		 * general_protection, so nothing will clobber the stack
384		 * frame we just set up.
 
 
 
 
385		 */
386		regs->ip = (unsigned long)general_protection;
387		regs->sp = (unsigned long)&gpregs->orig_ax;
388
389		return;
390	}
391#endif
392
393	ist_enter(regs);
 
394	notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
395
396	tsk->thread.error_code = error_code;
397	tsk->thread.trap_nr = X86_TRAP_DF;
398
399#ifdef CONFIG_VMAP_STACK
400	/*
401	 * If we overflow the stack into a guard page, the CPU will fail
402	 * to deliver #PF and will send #DF instead.  Similarly, if we
403	 * take any non-IST exception while too close to the bottom of
404	 * the stack, the processor will get a page fault while
405	 * delivering the exception and will generate a double fault.
406	 *
407	 * According to the SDM (footnote in 6.15 under "Interrupt 14 -
408	 * Page-Fault Exception (#PF):
409	 *
410	 *   Processors update CR2 whenever a page fault is detected. If a
411	 *   second page fault occurs while an earlier page fault is being
412	 *   delivered, the faulting linear address of the second fault will
413	 *   overwrite the contents of CR2 (replacing the previous
414	 *   address). These updates to CR2 occur even if the page fault
415	 *   results in a double fault or occurs during the delivery of a
416	 *   double fault.
417	 *
418	 * The logic below has a small possibility of incorrectly diagnosing
419	 * some errors as stack overflows.  For example, if the IDT or GDT
420	 * gets corrupted such that #GP delivery fails due to a bad descriptor
421	 * causing #GP and we hit this condition while CR2 coincidentally
422	 * points to the stack guard page, we'll think we overflowed the
423	 * stack.  Given that we're going to panic one way or another
424	 * if this happens, this isn't necessarily worth fixing.
425	 *
426	 * If necessary, we could improve the test by only diagnosing
427	 * a stack overflow if the saved RSP points within 47 bytes of
428	 * the bottom of the stack: if RSP == tsk_stack + 48 and we
429	 * take an exception, the stack is already aligned and there
430	 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
431	 * possible error code, so a stack overflow would *not* double
432	 * fault.  With any less space left, exception delivery could
433	 * fail, and, as a practical matter, we've overflowed the
434	 * stack even if the actual trigger for the double fault was
435	 * something else.
436	 */
437	cr2 = read_cr2();
438	if ((unsigned long)task_stack_page(tsk) - 1 - cr2 < PAGE_SIZE)
439		handle_stack_overflow("kernel stack overflow (double-fault)", regs, cr2);
440#endif
441
442#ifdef CONFIG_DOUBLEFAULT
443	df_debug(regs, error_code);
444#endif
445	/*
446	 * This is always a kernel trap and never fixable (and thus must
447	 * never return).
448	 */
449	for (;;)
450		die(str, regs, error_code);
451}
452#endif
453
454dotraplinkage void do_bounds(struct pt_regs *regs, long error_code)
455{
456	const struct mpx_bndcsr *bndcsr;
457	siginfo_t *info;
458
459	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
460	if (notify_die(DIE_TRAP, "bounds", regs, error_code,
461			X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
462		return;
463	cond_local_irq_enable(regs);
464
465	if (!user_mode(regs))
466		die("bounds", regs, error_code);
467
468	if (!cpu_feature_enabled(X86_FEATURE_MPX)) {
469		/* The exception is not from Intel MPX */
470		goto exit_trap;
471	}
472
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
473	/*
474	 * We need to look at BNDSTATUS to resolve this exception.
475	 * A NULL here might mean that it is in its 'init state',
476	 * which is all zeros which indicates MPX was not
477	 * responsible for the exception.
478	 */
479	bndcsr = get_xsave_field_ptr(XFEATURE_MASK_BNDCSR);
480	if (!bndcsr)
481		goto exit_trap;
482
483	trace_bounds_exception_mpx(bndcsr);
484	/*
485	 * The error code field of the BNDSTATUS register communicates status
486	 * information of a bound range exception #BR or operation involving
487	 * bound directory.
488	 */
489	switch (bndcsr->bndstatus & MPX_BNDSTA_ERROR_CODE) {
490	case 2:	/* Bound directory has invalid entry. */
491		if (mpx_handle_bd_fault())
492			goto exit_trap;
493		break; /* Success, it was handled */
494	case 1: /* Bound violation. */
495		info = mpx_generate_siginfo(regs);
496		if (IS_ERR(info)) {
497			/*
498			 * We failed to decode the MPX instruction.  Act as if
499			 * the exception was not caused by MPX.
500			 */
501			goto exit_trap;
502		}
503		/*
504		 * Success, we decoded the instruction and retrieved
505		 * an 'info' containing the address being accessed
506		 * which caused the exception.  This information
507		 * allows and application to possibly handle the
508		 * #BR exception itself.
509		 */
510		do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, info);
511		kfree(info);
512		break;
513	case 0: /* No exception caused by Intel MPX operations. */
514		goto exit_trap;
515	default:
516		die("bounds", regs, error_code);
517	}
518
519	return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
520
521exit_trap:
522	/*
523	 * This path out is for all the cases where we could not
524	 * handle the exception in some way (like allocating a
525	 * table or telling userspace about it.  We will also end
526	 * up here if the kernel has MPX turned off at compile
527	 * time..
528	 */
529	do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
530}
531
532dotraplinkage void
533do_general_protection(struct pt_regs *regs, long error_code)
 
534{
535	struct task_struct *tsk;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
536
537	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
538	cond_local_irq_enable(regs);
539
540	if (static_cpu_has(X86_FEATURE_UMIP)) {
541		if (user_mode(regs) && fixup_umip_exception(regs))
542			return;
543	}
544
545	if (v8086_mode(regs)) {
546		local_irq_enable();
547		handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
 
548		return;
549	}
550
551	tsk = current;
552	if (!user_mode(regs)) {
553		if (fixup_exception(regs, X86_TRAP_GP))
554			return;
555
556		tsk->thread.error_code = error_code;
557		tsk->thread.trap_nr = X86_TRAP_GP;
558		if (notify_die(DIE_GPF, "general protection fault", regs, error_code,
559			       X86_TRAP_GP, SIGSEGV) != NOTIFY_STOP)
560			die("general protection fault", regs, error_code);
561		return;
562	}
563
564	tsk->thread.error_code = error_code;
565	tsk->thread.trap_nr = X86_TRAP_GP;
566
567	if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
568			printk_ratelimit()) {
569		pr_info("%s[%d] general protection ip:%lx sp:%lx error:%lx",
570			tsk->comm, task_pid_nr(tsk),
571			regs->ip, regs->sp, error_code);
572		print_vma_addr(KERN_CONT " in ", regs->ip);
573		pr_cont("\n");
574	}
 
 
 
 
 
 
 
 
 
575
576	force_sig_info(SIGSEGV, SEND_SIG_PRIV, tsk);
 
 
 
577}
578NOKPROBE_SYMBOL(do_general_protection);
579
580dotraplinkage void notrace do_int3(struct pt_regs *regs, long error_code)
581{
582#ifdef CONFIG_DYNAMIC_FTRACE
583	/*
584	 * ftrace must be first, everything else may cause a recursive crash.
585	 * See note by declaration of modifying_ftrace_code in ftrace.c
586	 */
587	if (unlikely(atomic_read(&modifying_ftrace_code)) &&
588	    ftrace_int3_handler(regs))
589		return;
590#endif
591	if (poke_int3_handler(regs))
592		return;
593
594	/*
595	 * Use ist_enter despite the fact that we don't use an IST stack.
596	 * We can be called from a kprobe in non-CONTEXT_KERNEL kernel
597	 * mode or even during context tracking state changes.
598	 *
599	 * This means that we can't schedule.  That's okay.
600	 */
601	ist_enter(regs);
602	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
603#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
604	if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
605				SIGTRAP) == NOTIFY_STOP)
606		goto exit;
607#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
608
609#ifdef CONFIG_KPROBES
610	if (kprobe_int3_handler(regs))
611		goto exit;
612#endif
 
613
614	if (notify_die(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
615			SIGTRAP) == NOTIFY_STOP)
616		goto exit;
 
 
 
 
 
617
618	cond_local_irq_enable(regs);
619	do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, error_code, NULL);
620	cond_local_irq_disable(regs);
 
621
622exit:
623	ist_exit(regs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
624}
625NOKPROBE_SYMBOL(do_int3);
626
627#ifdef CONFIG_X86_64
628/*
629 * Help handler running on a per-cpu (IST or entry trampoline) stack
630 * to switch to the normal thread stack if the interrupted code was in
631 * user mode. The actual stack switch is done in entry_64.S
632 */
633asmlinkage __visible notrace struct pt_regs *sync_regs(struct pt_regs *eregs)
634{
635	struct pt_regs *regs = (struct pt_regs *)this_cpu_read(cpu_current_top_of_stack) - 1;
636	if (regs != eregs)
637		*regs = *eregs;
638	return regs;
639}
640NOKPROBE_SYMBOL(sync_regs);
641
642struct bad_iret_stack {
643	void *error_entry_ret;
644	struct pt_regs regs;
645};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
646
647asmlinkage __visible notrace
648struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s)
649{
 
 
650	/*
651	 * This is called from entry_64.S early in handling a fault
652	 * caused by a bad iret to user mode.  To handle the fault
653	 * correctly, we want to move our stack frame to where it would
654	 * be had we entered directly on the entry stack (rather than
655	 * just below the IRET frame) and we want to pretend that the
656	 * exception came from the IRET target.
657	 */
658	struct bad_iret_stack *new_stack =
659		(struct bad_iret_stack *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
660
661	/* Copy the IRET target to the new stack. */
662	memmove(&new_stack->regs.ip, (void *)s->regs.sp, 5*8);
663
664	/* Copy the remainder of the stack from the current stack. */
665	memmove(new_stack, s, offsetof(struct bad_iret_stack, regs.ip));
 
 
 
666
667	BUG_ON(!user_mode(&new_stack->regs));
668	return new_stack;
669}
670NOKPROBE_SYMBOL(fixup_bad_iret);
671#endif
672
673static bool is_sysenter_singlestep(struct pt_regs *regs)
674{
675	/*
676	 * We don't try for precision here.  If we're anywhere in the region of
677	 * code that can be single-stepped in the SYSENTER entry path, then
678	 * assume that this is a useless single-step trap due to SYSENTER
679	 * being invoked with TF set.  (We don't know in advance exactly
680	 * which instructions will be hit because BTF could plausibly
681	 * be set.)
682	 */
683#ifdef CONFIG_X86_32
684	return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
685		(unsigned long)__end_SYSENTER_singlestep_region -
686		(unsigned long)__begin_SYSENTER_singlestep_region;
687#elif defined(CONFIG_IA32_EMULATION)
688	return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
689		(unsigned long)__end_entry_SYSENTER_compat -
690		(unsigned long)entry_SYSENTER_compat;
691#else
692	return false;
693#endif
694}
695
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
696/*
697 * Our handling of the processor debug registers is non-trivial.
698 * We do not clear them on entry and exit from the kernel. Therefore
699 * it is possible to get a watchpoint trap here from inside the kernel.
700 * However, the code in ./ptrace.c has ensured that the user can
701 * only set watchpoints on userspace addresses. Therefore the in-kernel
702 * watchpoint trap can only occur in code which is reading/writing
703 * from user space. Such code must not hold kernel locks (since it
704 * can equally take a page fault), therefore it is safe to call
705 * force_sig_info even though that claims and releases locks.
706 *
707 * Code in ./signal.c ensures that the debug control register
708 * is restored before we deliver any signal, and therefore that
709 * user code runs with the correct debug control register even though
710 * we clear it here.
711 *
712 * Being careful here means that we don't have to be as careful in a
713 * lot of more complicated places (task switching can be a bit lazy
714 * about restoring all the debug state, and ptrace doesn't have to
715 * find every occurrence of the TF bit that could be saved away even
716 * by user code)
717 *
718 * May run on IST stack.
719 */
720dotraplinkage void do_debug(struct pt_regs *regs, long error_code)
 
721{
722	struct task_struct *tsk = current;
723	int user_icebp = 0;
724	unsigned long dr6;
725	int si_code;
 
 
 
 
 
726
727	ist_enter(regs);
 
728
729	get_debugreg(dr6, 6);
 
730	/*
731	 * The Intel SDM says:
 
732	 *
733	 *   Certain debug exceptions may clear bits 0-3. The remaining
734	 *   contents of the DR6 register are never cleared by the
735	 *   processor. To avoid confusion in identifying debug
736	 *   exceptions, debug handlers should clear the register before
737	 *   returning to the interrupted task.
738	 *
739	 * Keep it simple: clear DR6 immediately.
 
 
 
 
 
 
740	 */
741	set_debugreg(0, 6);
742
743	/* Filter out all the reserved bits which are preset to 1 */
744	dr6 &= ~DR6_RESERVED;
745
746	/*
747	 * The SDM says "The processor clears the BTF flag when it
748	 * generates a debug exception."  Clear TIF_BLOCKSTEP to keep
749	 * TIF_BLOCKSTEP in sync with the hardware BTF flag.
750	 */
751	clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP);
752
753	if (unlikely(!user_mode(regs) && (dr6 & DR_STEP) &&
754		     is_sysenter_singlestep(regs))) {
755		dr6 &= ~DR_STEP;
756		if (!dr6)
757			goto exit;
758		/*
759		 * else we might have gotten a single-step trap and hit a
760		 * watchpoint at the same time, in which case we should fall
761		 * through and handle the watchpoint.
 
762		 */
 
 
 
 
 
763	}
764
765	/*
766	 * If dr6 has no reason to give us about the origin of this trap,
767	 * then it's very likely the result of an icebp/int01 trap.
768	 * User wants a sigtrap for that.
 
 
 
 
 
 
769	 */
770	if (!dr6 && user_mode(regs))
771		user_icebp = 1;
772
773	/* Store the virtualized DR6 value */
774	tsk->thread.debugreg6 = dr6;
775
776#ifdef CONFIG_KPROBES
777	if (kprobe_debug_handler(regs))
778		goto exit;
779#endif
 
 
 
 
 
 
 
 
 
 
 
 
780
781	if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, error_code,
782							SIGTRAP) == NOTIFY_STOP)
783		goto exit;
 
 
 
 
 
 
 
 
 
784
785	/*
786	 * Let others (NMI) know that the debug stack is in use
787	 * as we may switch to the interrupt stack.
 
 
 
 
788	 */
789	debug_stack_usage_inc();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
790
791	/* It's safe to allow irq's after DR6 has been saved */
792	cond_local_irq_enable(regs);
793
794	if (v8086_mode(regs)) {
795		handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code,
796					X86_TRAP_DB);
797		cond_local_irq_disable(regs);
798		debug_stack_usage_dec();
799		goto exit;
800	}
801
802	if (WARN_ON_ONCE((dr6 & DR_STEP) && !user_mode(regs))) {
803		/*
804		 * Historical junk that used to handle SYSENTER single-stepping.
805		 * This should be unreachable now.  If we survive for a while
806		 * without anyone hitting this warning, we'll turn this into
807		 * an oops.
808		 */
809		tsk->thread.debugreg6 &= ~DR_STEP;
810		set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
811		regs->flags &= ~X86_EFLAGS_TF;
812	}
813	si_code = get_si_code(tsk->thread.debugreg6);
814	if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp)
815		send_sigtrap(tsk, regs, error_code, si_code);
816	cond_local_irq_disable(regs);
817	debug_stack_usage_dec();
818
819exit:
820	ist_exit(regs);
 
 
 
 
 
 
 
 
 
821}
822NOKPROBE_SYMBOL(do_debug);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
823
824/*
825 * Note that we play around with the 'TS' bit in an attempt to get
826 * the correct behaviour even in the presence of the asynchronous
827 * IRQ13 behaviour
828 */
829static void math_error(struct pt_regs *regs, int error_code, int trapnr)
830{
831	struct task_struct *task = current;
832	struct fpu *fpu = &task->thread.fpu;
833	siginfo_t info;
834	char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
835						"simd exception";
836
837	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, SIGFPE) == NOTIFY_STOP)
838		return;
839	cond_local_irq_enable(regs);
840
841	if (!user_mode(regs)) {
842		if (!fixup_exception(regs, trapnr)) {
843			task->thread.error_code = error_code;
844			task->thread.trap_nr = trapnr;
845			die(str, regs, error_code);
846		}
847		return;
 
 
 
 
848	}
849
850	/*
851	 * Save the info for the exception handler and clear the error.
 
852	 */
853	fpu__save(fpu);
854
855	task->thread.trap_nr	= trapnr;
856	task->thread.error_code = error_code;
857	info.si_signo		= SIGFPE;
858	info.si_errno		= 0;
859	info.si_addr		= (void __user *)uprobe_get_trap_addr(regs);
860
861	info.si_code = fpu__exception_code(fpu, trapnr);
862
 
863	/* Retry when we get spurious exceptions: */
864	if (!info.si_code)
865		return;
 
 
 
866
867	force_sig_info(SIGFPE, &info, task);
 
 
 
868}
869
870dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code)
871{
872	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
873	math_error(regs, error_code, X86_TRAP_MF);
874}
875
876dotraplinkage void
877do_simd_coprocessor_error(struct pt_regs *regs, long error_code)
878{
879	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
880	math_error(regs, error_code, X86_TRAP_XF);
 
 
 
 
 
 
881}
882
883dotraplinkage void
884do_spurious_interrupt_bug(struct pt_regs *regs, long error_code)
885{
886	cond_local_irq_enable(regs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
887}
888
889dotraplinkage void
890do_device_not_available(struct pt_regs *regs, long error_code)
891{
892	unsigned long cr0;
 
893
894	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
895
896#ifdef CONFIG_MATH_EMULATION
897	if (!boot_cpu_has(X86_FEATURE_FPU) && (read_cr0() & X86_CR0_EM)) {
898		struct math_emu_info info = { };
899
900		cond_local_irq_enable(regs);
901
902		info.regs = regs;
903		math_emulate(&info);
 
 
904		return;
905	}
906#endif
907
908	/* This should not happen. */
909	cr0 = read_cr0();
910	if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
911		/* Try to fix it up and carry on. */
912		write_cr0(cr0 & ~X86_CR0_TS);
913	} else {
914		/*
915		 * Something terrible happened, and we're better off trying
916		 * to kill the task than getting stuck in a never-ending
917		 * loop of #NM faults.
918		 */
919		die("unexpected #NM exception", regs, error_code);
920	}
921}
922NOKPROBE_SYMBOL(do_device_not_available);
923
924#ifdef CONFIG_X86_32
925dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code)
 
 
 
 
926{
927	siginfo_t info;
 
 
 
928
929	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
930	local_irq_enable();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
931
932	info.si_signo = SIGILL;
933	info.si_errno = 0;
934	info.si_code = ILL_BADSTK;
935	info.si_addr = NULL;
936	if (notify_die(DIE_TRAP, "iret exception", regs, error_code,
 
 
 
 
 
937			X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
938		do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, error_code,
939			&info);
940	}
 
941}
942#endif
943
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
944void __init trap_init(void)
945{
 
 
 
946	/* Init cpu_entry_area before IST entries are set up */
947	setup_cpu_entry_areas();
948
949	idt_setup_traps();
950
951	/*
952	 * Set the IDT descriptor to a fixed read-only location, so that the
953	 * "sidt" instruction will not leak the location of the kernel, and
954	 * to defend the IDT against arbitrary memory write vulnerabilities.
955	 * It will be reloaded in cpu_init() */
956	cea_set_pte(CPU_ENTRY_AREA_RO_IDT_VADDR, __pa_symbol(idt_table),
957		    PAGE_KERNEL_RO);
958	idt_descr.address = CPU_ENTRY_AREA_RO_IDT;
959
960	/*
961	 * Should be a barrier for any external CPU state:
962	 */
963	cpu_init();
964
965	idt_setup_ist_traps();
 
966
967	x86_init.irqs.trap_init();
 
 
968
969	idt_setup_debugidt_traps();
970}
v6.9.4
   1/*
   2 *  Copyright (C) 1991, 1992  Linus Torvalds
   3 *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
   4 *
   5 *  Pentium III FXSR, SSE support
   6 *	Gareth Hughes <gareth@valinux.com>, May 2000
   7 */
   8
   9/*
  10 * Handle hardware traps and faults.
  11 */
  12
  13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  14
  15#include <linux/context_tracking.h>
  16#include <linux/interrupt.h>
  17#include <linux/kallsyms.h>
  18#include <linux/kmsan.h>
  19#include <linux/spinlock.h>
  20#include <linux/kprobes.h>
  21#include <linux/uaccess.h>
  22#include <linux/kdebug.h>
  23#include <linux/kgdb.h>
  24#include <linux/kernel.h>
  25#include <linux/export.h>
  26#include <linux/ptrace.h>
  27#include <linux/uprobes.h>
  28#include <linux/string.h>
  29#include <linux/delay.h>
  30#include <linux/errno.h>
  31#include <linux/kexec.h>
  32#include <linux/sched.h>
  33#include <linux/sched/task_stack.h>
  34#include <linux/timer.h>
  35#include <linux/init.h>
  36#include <linux/bug.h>
  37#include <linux/nmi.h>
  38#include <linux/mm.h>
  39#include <linux/smp.h>
  40#include <linux/cpu.h>
  41#include <linux/io.h>
  42#include <linux/hardirq.h>
  43#include <linux/atomic.h>
  44#include <linux/iommu.h>
 
  45
  46#include <asm/stacktrace.h>
  47#include <asm/processor.h>
  48#include <asm/debugreg.h>
  49#include <asm/realmode.h>
  50#include <asm/text-patching.h>
  51#include <asm/ftrace.h>
  52#include <asm/traps.h>
  53#include <asm/desc.h>
  54#include <asm/fred.h>
  55#include <asm/fpu/api.h>
  56#include <asm/cpu.h>
  57#include <asm/cpu_entry_area.h>
  58#include <asm/mce.h>
  59#include <asm/fixmap.h>
  60#include <asm/mach_traps.h>
  61#include <asm/alternative.h>
  62#include <asm/fpu/xstate.h>
 
 
  63#include <asm/vm86.h>
  64#include <asm/umip.h>
  65#include <asm/insn.h>
  66#include <asm/insn-eval.h>
  67#include <asm/vdso.h>
  68#include <asm/tdx.h>
  69#include <asm/cfi.h>
  70
  71#ifdef CONFIG_X86_64
  72#include <asm/x86_init.h>
 
 
  73#else
  74#include <asm/processor-flags.h>
  75#include <asm/setup.h>
 
  76#endif
  77
  78#include <asm/proto.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  79
  80DECLARE_BITMAP(system_vectors, NR_VECTORS);
 
 
 
 
 
 
 
 
  81
  82__always_inline int is_valid_bugaddr(unsigned long addr)
  83{
 
 
  84	if (addr < TASK_SIZE_MAX)
  85		return 0;
  86
  87	/*
  88	 * We got #UD, if the text isn't readable we'd have gotten
  89	 * a different exception.
  90	 */
  91	return *(unsigned short *)addr == INSN_UD2;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  92}
  93
  94static nokprobe_inline int
  95do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str,
  96		  struct pt_regs *regs,	long error_code)
  97{
  98	if (v8086_mode(regs)) {
  99		/*
 100		 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
 101		 * On nmi (interrupt 2), do_trap should not be called.
 102		 */
 103		if (trapnr < X86_TRAP_UD) {
 104			if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
 105						error_code, trapnr))
 106				return 0;
 107		}
 108	} else if (!user_mode(regs)) {
 109		if (fixup_exception(regs, trapnr, error_code, 0))
 
 
 
 110			return 0;
 111
 112		tsk->thread.error_code = error_code;
 113		tsk->thread.trap_nr = trapnr;
 114		die(str, regs, error_code);
 115	} else {
 116		if (fixup_vdso_exception(regs, trapnr, error_code, 0))
 117			return 0;
 118	}
 119
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 120	/*
 121	 * We want error_code and trap_nr set for userspace faults and
 122	 * kernelspace faults which result in die(), but not
 123	 * kernelspace faults which are fixed up.  die() gives the
 124	 * process no chance to handle the signal and notice the
 125	 * kernel fault information, so that won't result in polluting
 126	 * the information about previously queued, but not yet
 127	 * delivered, faults.  See also exc_general_protection below.
 128	 */
 129	tsk->thread.error_code = error_code;
 130	tsk->thread.trap_nr = trapnr;
 131
 132	return -1;
 133}
 134
 135static void show_signal(struct task_struct *tsk, int signr,
 136			const char *type, const char *desc,
 137			struct pt_regs *regs, long error_code)
 138{
 139	if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
 140	    printk_ratelimit()) {
 141		pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx",
 142			tsk->comm, task_pid_nr(tsk), type, desc,
 143			regs->ip, regs->sp, error_code);
 144		print_vma_addr(KERN_CONT " in ", regs->ip);
 145		pr_cont("\n");
 146	}
 147}
 148
 149static void
 150do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
 151	long error_code, int sicode, void __user *addr)
 152{
 153	struct task_struct *tsk = current;
 154
 155	if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
 156		return;
 157
 158	show_signal(tsk, signr, "trap ", str, regs, error_code);
 159
 160	if (!sicode)
 161		force_sig(signr);
 162	else
 163		force_sig_fault(signr, sicode, addr);
 164}
 165NOKPROBE_SYMBOL(do_trap);
 166
 167static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
 168	unsigned long trapnr, int signr, int sicode, void __user *addr)
 169{
 
 
 170	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
 171
 
 
 
 
 
 
 
 172	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
 173			NOTIFY_STOP) {
 174		cond_local_irq_enable(regs);
 175		do_trap(trapnr, signr, str, regs, error_code, sicode, addr);
 176		cond_local_irq_disable(regs);
 177	}
 178}
 179
 180/*
 181 * Posix requires to provide the address of the faulting instruction for
 182 * SIGILL (#UD) and SIGFPE (#DE) in the si_addr member of siginfo_t.
 183 *
 184 * This address is usually regs->ip, but when an uprobe moved the code out
 185 * of line then regs->ip points to the XOL code which would confuse
 186 * anything which analyzes the fault address vs. the unmodified binary. If
 187 * a trap happened in XOL code then uprobe maps regs->ip back to the
 188 * original instruction address.
 189 */
 190static __always_inline void __user *error_get_trap_addr(struct pt_regs *regs)
 191{
 192	return (void __user *)uprobe_get_trap_addr(regs);
 193}
 194
 195DEFINE_IDTENTRY(exc_divide_error)
 196{
 197	do_error_trap(regs, 0, "divide error", X86_TRAP_DE, SIGFPE,
 198		      FPE_INTDIV, error_get_trap_addr(regs));
 199}
 200
 201DEFINE_IDTENTRY(exc_overflow)
 202{
 203	do_error_trap(regs, 0, "overflow", X86_TRAP_OF, SIGSEGV, 0, NULL);
 204}
 205
 206#ifdef CONFIG_X86_F00F_BUG
 207void handle_invalid_op(struct pt_regs *regs)
 208#else
 209static inline void handle_invalid_op(struct pt_regs *regs)
 210#endif
 211{
 212	do_error_trap(regs, 0, "invalid opcode", X86_TRAP_UD, SIGILL,
 213		      ILL_ILLOPN, error_get_trap_addr(regs));
 214}
 215
 216static noinstr bool handle_bug(struct pt_regs *regs)
 217{
 218	bool handled = false;
 219
 220	/*
 221	 * Normally @regs are unpoisoned by irqentry_enter(), but handle_bug()
 222	 * is a rare case that uses @regs without passing them to
 223	 * irqentry_enter().
 224	 */
 225	kmsan_unpoison_entry_regs(regs);
 226	if (!is_valid_bugaddr(regs->ip))
 227		return handled;
 228
 229	/*
 230	 * All lies, just get the WARN/BUG out.
 231	 */
 232	instrumentation_begin();
 233	/*
 234	 * Since we're emulating a CALL with exceptions, restore the interrupt
 235	 * state to what it was at the exception site.
 236	 */
 237	if (regs->flags & X86_EFLAGS_IF)
 238		raw_local_irq_enable();
 239	if (report_bug(regs->ip, regs) == BUG_TRAP_TYPE_WARN ||
 240	    handle_cfi_failure(regs) == BUG_TRAP_TYPE_WARN) {
 241		regs->ip += LEN_UD2;
 242		handled = true;
 243	}
 244	if (regs->flags & X86_EFLAGS_IF)
 245		raw_local_irq_disable();
 246	instrumentation_end();
 247
 248	return handled;
 249}
 250
 251DEFINE_IDTENTRY_RAW(exc_invalid_op)
 252{
 253	irqentry_state_t state;
 254
 255	/*
 256	 * We use UD2 as a short encoding for 'CALL __WARN', as such
 257	 * handle it before exception entry to avoid recursive WARN
 258	 * in case exception entry is the one triggering WARNs.
 259	 */
 260	if (!user_mode(regs) && handle_bug(regs))
 261		return;
 262
 263	state = irqentry_enter(regs);
 264	instrumentation_begin();
 265	handle_invalid_op(regs);
 266	instrumentation_end();
 267	irqentry_exit(regs, state);
 268}
 269
 270DEFINE_IDTENTRY(exc_coproc_segment_overrun)
 271{
 272	do_error_trap(regs, 0, "coprocessor segment overrun",
 273		      X86_TRAP_OLD_MF, SIGFPE, 0, NULL);
 274}
 275
 276DEFINE_IDTENTRY_ERRORCODE(exc_invalid_tss)
 277{
 278	do_error_trap(regs, error_code, "invalid TSS", X86_TRAP_TS, SIGSEGV,
 279		      0, NULL);
 280}
 281
 282DEFINE_IDTENTRY_ERRORCODE(exc_segment_not_present)
 283{
 284	do_error_trap(regs, error_code, "segment not present", X86_TRAP_NP,
 285		      SIGBUS, 0, NULL);
 286}
 287
 288DEFINE_IDTENTRY_ERRORCODE(exc_stack_segment)
 289{
 290	do_error_trap(regs, error_code, "stack segment", X86_TRAP_SS, SIGBUS,
 291		      0, NULL);
 292}
 293
 294DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check)
 295{
 296	char *str = "alignment check";
 297
 298	if (notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_AC, SIGBUS) == NOTIFY_STOP)
 299		return;
 300
 301	if (!user_mode(regs))
 302		die("Split lock detected\n", regs, error_code);
 303
 304	local_irq_enable();
 305
 306	if (handle_user_split_lock(regs, error_code))
 307		goto out;
 308
 309	do_trap(X86_TRAP_AC, SIGBUS, "alignment check", regs,
 310		error_code, BUS_ADRALN, NULL);
 311
 312out:
 313	local_irq_disable();
 314}
 315
 316#ifdef CONFIG_VMAP_STACK
 317__visible void __noreturn handle_stack_overflow(struct pt_regs *regs,
 318						unsigned long fault_address,
 319						struct stack_info *info)
 320{
 321	const char *name = stack_type_name(info->type);
 322
 323	printk(KERN_EMERG "BUG: %s stack guard page was hit at %p (stack is %p..%p)\n",
 324	       name, (void *)fault_address, info->begin, info->end);
 325
 326	die("stack guard page", regs, 0);
 327
 328	/* Be absolutely certain we don't return. */
 329	panic("%s stack guard hit", name);
 330}
 331#endif
 332
 333/*
 334 * Runs on an IST stack for x86_64 and on a special task stack for x86_32.
 335 *
 336 * On x86_64, this is more or less a normal kernel entry.  Notwithstanding the
 337 * SDM's warnings about double faults being unrecoverable, returning works as
 338 * expected.  Presumably what the SDM actually means is that the CPU may get
 339 * the register state wrong on entry, so returning could be a bad idea.
 340 *
 341 * Various CPU engineers have promised that double faults due to an IRET fault
 342 * while the stack is read-only are, in fact, recoverable.
 343 *
 344 * On x86_32, this is entered through a task gate, and regs are synthesized
 345 * from the TSS.  Returning is, in principle, okay, but changes to regs will
 346 * be lost.  If, for some reason, we need to return to a context with modified
 347 * regs, the shim code could be adjusted to synchronize the registers.
 348 *
 349 * The 32bit #DF shim provides CR2 already as an argument. On 64bit it needs
 350 * to be read before doing anything else.
 351 */
 352DEFINE_IDTENTRY_DF(exc_double_fault)
 353{
 354	static const char str[] = "double fault";
 355	struct task_struct *tsk = current;
 356
 357#ifdef CONFIG_VMAP_STACK
 358	unsigned long address = read_cr2();
 359	struct stack_info info;
 360#endif
 361
 362#ifdef CONFIG_X86_ESPFIX64
 363	extern unsigned char native_irq_return_iret[];
 364
 365	/*
 366	 * If IRET takes a non-IST fault on the espfix64 stack, then we
 367	 * end up promoting it to a doublefault.  In that case, take
 368	 * advantage of the fact that we're not using the normal (TSS.sp0)
 369	 * stack right now.  We can write a fake #GP(0) frame at TSS.sp0
 370	 * and then modify our own IRET frame so that, when we return,
 371	 * we land directly at the #GP(0) vector with the stack already
 372	 * set up according to its expectations.
 373	 *
 374	 * The net result is that our #GP handler will think that we
 375	 * entered from usermode with the bad user context.
 376	 *
 377	 * No need for nmi_enter() here because we don't use RCU.
 378	 */
 379	if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY &&
 380		regs->cs == __KERNEL_CS &&
 381		regs->ip == (unsigned long)native_irq_return_iret)
 382	{
 383		struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
 384		unsigned long *p = (unsigned long *)regs->sp;
 385
 386		/*
 387		 * regs->sp points to the failing IRET frame on the
 388		 * ESPFIX64 stack.  Copy it to the entry stack.  This fills
 389		 * in gpregs->ss through gpregs->ip.
 390		 *
 391		 */
 392		gpregs->ip	= p[0];
 393		gpregs->cs	= p[1];
 394		gpregs->flags	= p[2];
 395		gpregs->sp	= p[3];
 396		gpregs->ss	= p[4];
 397		gpregs->orig_ax = 0;  /* Missing (lost) #GP error code */
 398
 399		/*
 400		 * Adjust our frame so that we return straight to the #GP
 401		 * vector with the expected RSP value.  This is safe because
 402		 * we won't enable interrupts or schedule before we invoke
 403		 * general_protection, so nothing will clobber the stack
 404		 * frame we just set up.
 405		 *
 406		 * We will enter general_protection with kernel GSBASE,
 407		 * which is what the stub expects, given that the faulting
 408		 * RIP will be the IRET instruction.
 409		 */
 410		regs->ip = (unsigned long)asm_exc_general_protection;
 411		regs->sp = (unsigned long)&gpregs->orig_ax;
 412
 413		return;
 414	}
 415#endif
 416
 417	irqentry_nmi_enter(regs);
 418	instrumentation_begin();
 419	notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
 420
 421	tsk->thread.error_code = error_code;
 422	tsk->thread.trap_nr = X86_TRAP_DF;
 423
 424#ifdef CONFIG_VMAP_STACK
 425	/*
 426	 * If we overflow the stack into a guard page, the CPU will fail
 427	 * to deliver #PF and will send #DF instead.  Similarly, if we
 428	 * take any non-IST exception while too close to the bottom of
 429	 * the stack, the processor will get a page fault while
 430	 * delivering the exception and will generate a double fault.
 431	 *
 432	 * According to the SDM (footnote in 6.15 under "Interrupt 14 -
 433	 * Page-Fault Exception (#PF):
 434	 *
 435	 *   Processors update CR2 whenever a page fault is detected. If a
 436	 *   second page fault occurs while an earlier page fault is being
 437	 *   delivered, the faulting linear address of the second fault will
 438	 *   overwrite the contents of CR2 (replacing the previous
 439	 *   address). These updates to CR2 occur even if the page fault
 440	 *   results in a double fault or occurs during the delivery of a
 441	 *   double fault.
 442	 *
 443	 * The logic below has a small possibility of incorrectly diagnosing
 444	 * some errors as stack overflows.  For example, if the IDT or GDT
 445	 * gets corrupted such that #GP delivery fails due to a bad descriptor
 446	 * causing #GP and we hit this condition while CR2 coincidentally
 447	 * points to the stack guard page, we'll think we overflowed the
 448	 * stack.  Given that we're going to panic one way or another
 449	 * if this happens, this isn't necessarily worth fixing.
 450	 *
 451	 * If necessary, we could improve the test by only diagnosing
 452	 * a stack overflow if the saved RSP points within 47 bytes of
 453	 * the bottom of the stack: if RSP == tsk_stack + 48 and we
 454	 * take an exception, the stack is already aligned and there
 455	 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
 456	 * possible error code, so a stack overflow would *not* double
 457	 * fault.  With any less space left, exception delivery could
 458	 * fail, and, as a practical matter, we've overflowed the
 459	 * stack even if the actual trigger for the double fault was
 460	 * something else.
 461	 */
 462	if (get_stack_guard_info((void *)address, &info))
 463		handle_stack_overflow(regs, address, &info);
 
 464#endif
 465
 466	pr_emerg("PANIC: double fault, error_code: 0x%lx\n", error_code);
 467	die("double fault", regs, error_code);
 468	panic("Machine halted.");
 469	instrumentation_end();
 
 
 
 
 
 470}
 
 471
 472DEFINE_IDTENTRY(exc_bounds)
 473{
 474	if (notify_die(DIE_TRAP, "bounds", regs, 0,
 
 
 
 
 475			X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
 476		return;
 477	cond_local_irq_enable(regs);
 478
 479	if (!user_mode(regs))
 480		die("bounds", regs, 0);
 481
 482	do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, 0, 0, NULL);
 
 
 
 483
 484	cond_local_irq_disable(regs);
 485}
 486
 487enum kernel_gp_hint {
 488	GP_NO_HINT,
 489	GP_NON_CANONICAL,
 490	GP_CANONICAL
 491};
 492
 493/*
 494 * When an uncaught #GP occurs, try to determine the memory address accessed by
 495 * the instruction and return that address to the caller. Also, try to figure
 496 * out whether any part of the access to that address was non-canonical.
 497 */
 498static enum kernel_gp_hint get_kernel_gp_address(struct pt_regs *regs,
 499						 unsigned long *addr)
 500{
 501	u8 insn_buf[MAX_INSN_SIZE];
 502	struct insn insn;
 503	int ret;
 504
 505	if (copy_from_kernel_nofault(insn_buf, (void *)regs->ip,
 506			MAX_INSN_SIZE))
 507		return GP_NO_HINT;
 508
 509	ret = insn_decode_kernel(&insn, insn_buf);
 510	if (ret < 0)
 511		return GP_NO_HINT;
 512
 513	*addr = (unsigned long)insn_get_addr_ref(&insn, regs);
 514	if (*addr == -1UL)
 515		return GP_NO_HINT;
 516
 517#ifdef CONFIG_X86_64
 518	/*
 519	 * Check that:
 520	 *  - the operand is not in the kernel half
 521	 *  - the last byte of the operand is not in the user canonical half
 522	 */
 523	if (*addr < ~__VIRTUAL_MASK &&
 524	    *addr + insn.opnd_bytes - 1 > __VIRTUAL_MASK)
 525		return GP_NON_CANONICAL;
 526#endif
 527
 528	return GP_CANONICAL;
 529}
 530
 531#define GPFSTR "general protection fault"
 532
 533static bool fixup_iopl_exception(struct pt_regs *regs)
 534{
 535	struct thread_struct *t = &current->thread;
 536	unsigned char byte;
 537	unsigned long ip;
 538
 539	if (!IS_ENABLED(CONFIG_X86_IOPL_IOPERM) || t->iopl_emul != 3)
 540		return false;
 541
 542	if (insn_get_effective_ip(regs, &ip))
 543		return false;
 544
 545	if (get_user(byte, (const char __user *)ip))
 546		return false;
 547
 548	if (byte != 0xfa && byte != 0xfb)
 549		return false;
 550
 551	if (!t->iopl_warn && printk_ratelimit()) {
 552		pr_err("%s[%d] attempts to use CLI/STI, pretending it's a NOP, ip:%lx",
 553		       current->comm, task_pid_nr(current), ip);
 554		print_vma_addr(KERN_CONT " in ", ip);
 555		pr_cont("\n");
 556		t->iopl_warn = 1;
 
 
 
 
 
 557	}
 558
 559	regs->ip += 1;
 560	return true;
 561}
 562
 563/*
 564 * The unprivileged ENQCMD instruction generates #GPs if the
 565 * IA32_PASID MSR has not been populated.  If possible, populate
 566 * the MSR from a PASID previously allocated to the mm.
 567 */
 568static bool try_fixup_enqcmd_gp(void)
 569{
 570#ifdef CONFIG_ARCH_HAS_CPU_PASID
 571	u32 pasid;
 572
 573	/*
 574	 * MSR_IA32_PASID is managed using XSAVE.  Directly
 575	 * writing to the MSR is only possible when fpregs
 576	 * are valid and the fpstate is not.  This is
 577	 * guaranteed when handling a userspace exception
 578	 * in *before* interrupts are re-enabled.
 579	 */
 580	lockdep_assert_irqs_disabled();
 581
 
 582	/*
 583	 * Hardware without ENQCMD will not generate
 584	 * #GPs that can be fixed up here.
 
 
 
 585	 */
 586	if (!cpu_feature_enabled(X86_FEATURE_ENQCMD))
 587		return false;
 588
 589	/*
 590	 * If the mm has not been allocated a
 591	 * PASID, the #GP can not be fixed up.
 592	 */
 593	if (!mm_valid_pasid(current->mm))
 594		return false;
 595
 596	pasid = mm_get_enqcmd_pasid(current->mm);
 597
 598	/*
 599	 * Did this thread already have its PASID activated?
 600	 * If so, the #GP must be from something else.
 601	 */
 602	if (current->pasid_activated)
 603		return false;
 604
 605	wrmsrl(MSR_IA32_PASID, pasid | MSR_IA32_PASID_VALID);
 606	current->pasid_activated = 1;
 607
 608	return true;
 609#else
 610	return false;
 611#endif
 612}
 613
 614static bool gp_try_fixup_and_notify(struct pt_regs *regs, int trapnr,
 615				    unsigned long error_code, const char *str,
 616				    unsigned long address)
 617{
 618	if (fixup_exception(regs, trapnr, error_code, address))
 619		return true;
 620
 621	current->thread.error_code = error_code;
 622	current->thread.trap_nr = trapnr;
 623
 624	/*
 625	 * To be potentially processing a kprobe fault and to trust the result
 626	 * from kprobe_running(), we have to be non-preemptible.
 627	 */
 628	if (!preemptible() && kprobe_running() &&
 629	    kprobe_fault_handler(regs, trapnr))
 630		return true;
 631
 632	return notify_die(DIE_GPF, str, regs, error_code, trapnr, SIGSEGV) == NOTIFY_STOP;
 633}
 634
 635static void gp_user_force_sig_segv(struct pt_regs *regs, int trapnr,
 636				   unsigned long error_code, const char *str)
 637{
 638	current->thread.error_code = error_code;
 639	current->thread.trap_nr = trapnr;
 640	show_signal(current, SIGSEGV, "", str, regs, error_code);
 641	force_sig(SIGSEGV);
 642}
 643
 644DEFINE_IDTENTRY_ERRORCODE(exc_general_protection)
 645{
 646	char desc[sizeof(GPFSTR) + 50 + 2*sizeof(unsigned long) + 1] = GPFSTR;
 647	enum kernel_gp_hint hint = GP_NO_HINT;
 648	unsigned long gp_addr;
 649
 650	if (user_mode(regs) && try_fixup_enqcmd_gp())
 651		return;
 652
 
 653	cond_local_irq_enable(regs);
 654
 655	if (static_cpu_has(X86_FEATURE_UMIP)) {
 656		if (user_mode(regs) && fixup_umip_exception(regs))
 657			goto exit;
 658	}
 659
 660	if (v8086_mode(regs)) {
 661		local_irq_enable();
 662		handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
 663		local_irq_disable();
 664		return;
 665	}
 666
 667	if (user_mode(regs)) {
 668		if (fixup_iopl_exception(regs))
 669			goto exit;
 
 670
 671		if (fixup_vdso_exception(regs, X86_TRAP_GP, error_code, 0))
 672			goto exit;
 673
 674		gp_user_force_sig_segv(regs, X86_TRAP_GP, error_code, desc);
 675		goto exit;
 
 676	}
 677
 678	if (gp_try_fixup_and_notify(regs, X86_TRAP_GP, error_code, desc, 0))
 679		goto exit;
 680
 681	if (error_code)
 682		snprintf(desc, sizeof(desc), "segment-related " GPFSTR);
 683	else
 684		hint = get_kernel_gp_address(regs, &gp_addr);
 685
 686	if (hint != GP_NO_HINT)
 687		snprintf(desc, sizeof(desc), GPFSTR ", %s 0x%lx",
 688			 (hint == GP_NON_CANONICAL) ? "probably for non-canonical address"
 689						    : "maybe for address",
 690			 gp_addr);
 691
 692	/*
 693	 * KASAN is interested only in the non-canonical case, clear it
 694	 * otherwise.
 695	 */
 696	if (hint != GP_NON_CANONICAL)
 697		gp_addr = 0;
 698
 699	die_addr(desc, regs, error_code, gp_addr);
 700
 701exit:
 702	cond_local_irq_disable(regs);
 703}
 
 704
 705static bool do_int3(struct pt_regs *regs)
 706{
 707	int res;
 
 
 
 
 
 
 
 
 
 
 708
 
 
 
 
 
 
 
 
 
 709#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
 710	if (kgdb_ll_trap(DIE_INT3, "int3", regs, 0, X86_TRAP_BP,
 711			 SIGTRAP) == NOTIFY_STOP)
 712		return true;
 713#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
 714
 715#ifdef CONFIG_KPROBES
 716	if (kprobe_int3_handler(regs))
 717		return true;
 718#endif
 719	res = notify_die(DIE_INT3, "int3", regs, 0, X86_TRAP_BP, SIGTRAP);
 720
 721	return res == NOTIFY_STOP;
 722}
 723NOKPROBE_SYMBOL(do_int3);
 724
 725static void do_int3_user(struct pt_regs *regs)
 726{
 727	if (do_int3(regs))
 728		return;
 729
 730	cond_local_irq_enable(regs);
 731	do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, 0, 0, NULL);
 732	cond_local_irq_disable(regs);
 733}
 734
 735DEFINE_IDTENTRY_RAW(exc_int3)
 736{
 737	/*
 738	 * poke_int3_handler() is completely self contained code; it does (and
 739	 * must) *NOT* call out to anything, lest it hits upon yet another
 740	 * INT3.
 741	 */
 742	if (poke_int3_handler(regs))
 743		return;
 744
 745	/*
 746	 * irqentry_enter_from_user_mode() uses static_branch_{,un}likely()
 747	 * and therefore can trigger INT3, hence poke_int3_handler() must
 748	 * be done before. If the entry came from kernel mode, then use
 749	 * nmi_enter() because the INT3 could have been hit in any context
 750	 * including NMI.
 751	 */
 752	if (user_mode(regs)) {
 753		irqentry_enter_from_user_mode(regs);
 754		instrumentation_begin();
 755		do_int3_user(regs);
 756		instrumentation_end();
 757		irqentry_exit_to_user_mode(regs);
 758	} else {
 759		irqentry_state_t irq_state = irqentry_nmi_enter(regs);
 760
 761		instrumentation_begin();
 762		if (!do_int3(regs))
 763			die("int3", regs, 0);
 764		instrumentation_end();
 765		irqentry_nmi_exit(regs, irq_state);
 766	}
 767}
 
 768
 769#ifdef CONFIG_X86_64
 770/*
 771 * Help handler running on a per-cpu (IST or entry trampoline) stack
 772 * to switch to the normal thread stack if the interrupted code was in
 773 * user mode. The actual stack switch is done in entry_64.S
 774 */
 775asmlinkage __visible noinstr struct pt_regs *sync_regs(struct pt_regs *eregs)
 776{
 777	struct pt_regs *regs = (struct pt_regs *)current_top_of_stack() - 1;
 778	if (regs != eregs)
 779		*regs = *eregs;
 780	return regs;
 781}
 
 782
 783#ifdef CONFIG_AMD_MEM_ENCRYPT
 784asmlinkage __visible noinstr struct pt_regs *vc_switch_off_ist(struct pt_regs *regs)
 785{
 786	unsigned long sp, *stack;
 787	struct stack_info info;
 788	struct pt_regs *regs_ret;
 789
 790	/*
 791	 * In the SYSCALL entry path the RSP value comes from user-space - don't
 792	 * trust it and switch to the current kernel stack
 793	 */
 794	if (ip_within_syscall_gap(regs)) {
 795		sp = current_top_of_stack();
 796		goto sync;
 797	}
 798
 799	/*
 800	 * From here on the RSP value is trusted. Now check whether entry
 801	 * happened from a safe stack. Not safe are the entry or unknown stacks,
 802	 * use the fall-back stack instead in this case.
 803	 */
 804	sp    = regs->sp;
 805	stack = (unsigned long *)sp;
 806
 807	if (!get_stack_info_noinstr(stack, current, &info) || info.type == STACK_TYPE_ENTRY ||
 808	    info.type > STACK_TYPE_EXCEPTION_LAST)
 809		sp = __this_cpu_ist_top_va(VC2);
 810
 811sync:
 812	/*
 813	 * Found a safe stack - switch to it as if the entry didn't happen via
 814	 * IST stack. The code below only copies pt_regs, the real switch happens
 815	 * in assembly code.
 816	 */
 817	sp = ALIGN_DOWN(sp, 8) - sizeof(*regs_ret);
 818
 819	regs_ret = (struct pt_regs *)sp;
 820	*regs_ret = *regs;
 821
 822	return regs_ret;
 823}
 824#endif
 825
 826asmlinkage __visible noinstr struct pt_regs *fixup_bad_iret(struct pt_regs *bad_regs)
 
 827{
 828	struct pt_regs tmp, *new_stack;
 829
 830	/*
 831	 * This is called from entry_64.S early in handling a fault
 832	 * caused by a bad iret to user mode.  To handle the fault
 833	 * correctly, we want to move our stack frame to where it would
 834	 * be had we entered directly on the entry stack (rather than
 835	 * just below the IRET frame) and we want to pretend that the
 836	 * exception came from the IRET target.
 837	 */
 838	new_stack = (struct pt_regs *)__this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
 
 839
 840	/* Copy the IRET target to the temporary storage. */
 841	__memcpy(&tmp.ip, (void *)bad_regs->sp, 5*8);
 842
 843	/* Copy the remainder of the stack from the current stack. */
 844	__memcpy(&tmp, bad_regs, offsetof(struct pt_regs, ip));
 845
 846	/* Update the entry stack */
 847	__memcpy(new_stack, &tmp, sizeof(tmp));
 848
 849	BUG_ON(!user_mode(new_stack));
 850	return new_stack;
 851}
 
 852#endif
 853
 854static bool is_sysenter_singlestep(struct pt_regs *regs)
 855{
 856	/*
 857	 * We don't try for precision here.  If we're anywhere in the region of
 858	 * code that can be single-stepped in the SYSENTER entry path, then
 859	 * assume that this is a useless single-step trap due to SYSENTER
 860	 * being invoked with TF set.  (We don't know in advance exactly
 861	 * which instructions will be hit because BTF could plausibly
 862	 * be set.)
 863	 */
 864#ifdef CONFIG_X86_32
 865	return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
 866		(unsigned long)__end_SYSENTER_singlestep_region -
 867		(unsigned long)__begin_SYSENTER_singlestep_region;
 868#elif defined(CONFIG_IA32_EMULATION)
 869	return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
 870		(unsigned long)__end_entry_SYSENTER_compat -
 871		(unsigned long)entry_SYSENTER_compat;
 872#else
 873	return false;
 874#endif
 875}
 876
 877static __always_inline unsigned long debug_read_clear_dr6(void)
 878{
 879	unsigned long dr6;
 880
 881	/*
 882	 * The Intel SDM says:
 883	 *
 884	 *   Certain debug exceptions may clear bits 0-3. The remaining
 885	 *   contents of the DR6 register are never cleared by the
 886	 *   processor. To avoid confusion in identifying debug
 887	 *   exceptions, debug handlers should clear the register before
 888	 *   returning to the interrupted task.
 889	 *
 890	 * Keep it simple: clear DR6 immediately.
 891	 */
 892	get_debugreg(dr6, 6);
 893	set_debugreg(DR6_RESERVED, 6);
 894	dr6 ^= DR6_RESERVED; /* Flip to positive polarity */
 895
 896	return dr6;
 897}
 898
 899/*
 900 * Our handling of the processor debug registers is non-trivial.
 901 * We do not clear them on entry and exit from the kernel. Therefore
 902 * it is possible to get a watchpoint trap here from inside the kernel.
 903 * However, the code in ./ptrace.c has ensured that the user can
 904 * only set watchpoints on userspace addresses. Therefore the in-kernel
 905 * watchpoint trap can only occur in code which is reading/writing
 906 * from user space. Such code must not hold kernel locks (since it
 907 * can equally take a page fault), therefore it is safe to call
 908 * force_sig_info even though that claims and releases locks.
 909 *
 910 * Code in ./signal.c ensures that the debug control register
 911 * is restored before we deliver any signal, and therefore that
 912 * user code runs with the correct debug control register even though
 913 * we clear it here.
 914 *
 915 * Being careful here means that we don't have to be as careful in a
 916 * lot of more complicated places (task switching can be a bit lazy
 917 * about restoring all the debug state, and ptrace doesn't have to
 918 * find every occurrence of the TF bit that could be saved away even
 919 * by user code)
 920 *
 921 * May run on IST stack.
 922 */
 923
 924static bool notify_debug(struct pt_regs *regs, unsigned long *dr6)
 925{
 926	/*
 927	 * Notifiers will clear bits in @dr6 to indicate the event has been
 928	 * consumed - hw_breakpoint_handler(), single_stop_cont().
 929	 *
 930	 * Notifiers will set bits in @virtual_dr6 to indicate the desire
 931	 * for signals - ptrace_triggered(), kgdb_hw_overflow_handler().
 932	 */
 933	if (notify_die(DIE_DEBUG, "debug", regs, (long)dr6, 0, SIGTRAP) == NOTIFY_STOP)
 934		return true;
 935
 936	return false;
 937}
 938
 939static noinstr void exc_debug_kernel(struct pt_regs *regs, unsigned long dr6)
 940{
 941	/*
 942	 * Disable breakpoints during exception handling; recursive exceptions
 943	 * are exceedingly 'fun'.
 944	 *
 945	 * Since this function is NOKPROBE, and that also applies to
 946	 * HW_BREAKPOINT_X, we can't hit a breakpoint before this (XXX except a
 947	 * HW_BREAKPOINT_W on our stack)
 
 
 948	 *
 949	 * Entry text is excluded for HW_BP_X and cpu_entry_area, which
 950	 * includes the entry stack is excluded for everything.
 951	 *
 952	 * For FRED, nested #DB should just work fine. But when a watchpoint or
 953	 * breakpoint is set in the code path which is executed by #DB handler,
 954	 * it results in an endless recursion and stack overflow. Thus we stay
 955	 * with the IDT approach, i.e., save DR7 and disable #DB.
 956	 */
 957	unsigned long dr7 = local_db_save();
 958	irqentry_state_t irq_state = irqentry_nmi_enter(regs);
 959	instrumentation_begin();
 
 960
 961	/*
 962	 * If something gets miswired and we end up here for a user mode
 963	 * #DB, we will malfunction.
 
 964	 */
 965	WARN_ON_ONCE(user_mode(regs));
 966
 967	if (test_thread_flag(TIF_BLOCKSTEP)) {
 
 
 
 
 968		/*
 969		 * The SDM says "The processor clears the BTF flag when it
 970		 * generates a debug exception." but PTRACE_BLOCKSTEP requested
 971		 * it for userspace, but we just took a kernel #DB, so re-set
 972		 * BTF.
 973		 */
 974		unsigned long debugctl;
 975
 976		rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
 977		debugctl |= DEBUGCTLMSR_BTF;
 978		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
 979	}
 980
 981	/*
 982	 * Catch SYSENTER with TF set and clear DR_STEP. If this hit a
 983	 * watchpoint at the same time then that will still be handled.
 984	 */
 985	if (!cpu_feature_enabled(X86_FEATURE_FRED) &&
 986	    (dr6 & DR_STEP) && is_sysenter_singlestep(regs))
 987		dr6 &= ~DR_STEP;
 988
 989	/*
 990	 * The kernel doesn't use INT1
 991	 */
 992	if (!dr6)
 993		goto out;
 994
 995	if (notify_debug(regs, &dr6))
 996		goto out;
 997
 998	/*
 999	 * The kernel doesn't use TF single-step outside of:
1000	 *
1001	 *  - Kprobes, consumed through kprobe_debug_handler()
1002	 *  - KGDB, consumed through notify_debug()
1003	 *
1004	 * So if we get here with DR_STEP set, something is wonky.
1005	 *
1006	 * A known way to trigger this is through QEMU's GDB stub,
1007	 * which leaks #DB into the guest and causes IST recursion.
1008	 */
1009	if (WARN_ON_ONCE(dr6 & DR_STEP))
1010		regs->flags &= ~X86_EFLAGS_TF;
1011out:
1012	instrumentation_end();
1013	irqentry_nmi_exit(regs, irq_state);
1014
1015	local_db_restore(dr7);
1016}
1017
1018static noinstr void exc_debug_user(struct pt_regs *regs, unsigned long dr6)
1019{
1020	bool icebp;
1021
1022	/*
1023	 * If something gets miswired and we end up here for a kernel mode
1024	 * #DB, we will malfunction.
1025	 */
1026	WARN_ON_ONCE(!user_mode(regs));
1027
1028	/*
1029	 * NB: We can't easily clear DR7 here because
1030	 * irqentry_exit_to_usermode() can invoke ptrace, schedule, access
1031	 * user memory, etc.  This means that a recursive #DB is possible.  If
1032	 * this happens, that #DB will hit exc_debug_kernel() and clear DR7.
1033	 * Since we're not on the IST stack right now, everything will be
1034	 * fine.
1035	 */
1036
1037	irqentry_enter_from_user_mode(regs);
1038	instrumentation_begin();
1039
1040	/*
1041	 * Start the virtual/ptrace DR6 value with just the DR_STEP mask
1042	 * of the real DR6. ptrace_triggered() will set the DR_TRAPn bits.
1043	 *
1044	 * Userspace expects DR_STEP to be visible in ptrace_get_debugreg(6)
1045	 * even if it is not the result of PTRACE_SINGLESTEP.
1046	 */
1047	current->thread.virtual_dr6 = (dr6 & DR_STEP);
1048
1049	/*
1050	 * The SDM says "The processor clears the BTF flag when it
1051	 * generates a debug exception."  Clear TIF_BLOCKSTEP to keep
1052	 * TIF_BLOCKSTEP in sync with the hardware BTF flag.
1053	 */
1054	clear_thread_flag(TIF_BLOCKSTEP);
1055
1056	/*
1057	 * If dr6 has no reason to give us about the origin of this trap,
1058	 * then it's very likely the result of an icebp/int01 trap.
1059	 * User wants a sigtrap for that.
1060	 */
1061	icebp = !dr6;
1062
1063	if (notify_debug(regs, &dr6))
1064		goto out;
1065
1066	/* It's safe to allow irq's after DR6 has been saved */
1067	local_irq_enable();
1068
1069	if (v8086_mode(regs)) {
1070		handle_vm86_trap((struct kernel_vm86_regs *)regs, 0, X86_TRAP_DB);
1071		goto out_irq;
 
 
 
1072	}
1073
1074	/* #DB for bus lock can only be triggered from userspace. */
1075	if (dr6 & DR_BUS_LOCK)
1076		handle_bus_lock(regs);
1077
1078	/* Add the virtual_dr6 bits for signals. */
1079	dr6 |= current->thread.virtual_dr6;
1080	if (dr6 & (DR_STEP | DR_TRAP_BITS) || icebp)
1081		send_sigtrap(regs, 0, get_si_code(dr6));
1082
1083out_irq:
1084	local_irq_disable();
1085out:
1086	instrumentation_end();
1087	irqentry_exit_to_user_mode(regs);
1088}
 
1089
1090#ifdef CONFIG_X86_64
1091/* IST stack entry */
1092DEFINE_IDTENTRY_DEBUG(exc_debug)
1093{
1094	exc_debug_kernel(regs, debug_read_clear_dr6());
1095}
1096
1097/* User entry, runs on regular task stack */
1098DEFINE_IDTENTRY_DEBUG_USER(exc_debug)
1099{
1100	exc_debug_user(regs, debug_read_clear_dr6());
1101}
1102
1103#ifdef CONFIG_X86_FRED
1104/*
1105 * When occurred on different ring level, i.e., from user or kernel
1106 * context, #DB needs to be handled on different stack: User #DB on
1107 * current task stack, while kernel #DB on a dedicated stack.
1108 *
1109 * This is exactly how FRED event delivery invokes an exception
1110 * handler: ring 3 event on level 0 stack, i.e., current task stack;
1111 * ring 0 event on the #DB dedicated stack specified in the
1112 * IA32_FRED_STKLVLS MSR. So unlike IDT, the FRED debug exception
1113 * entry stub doesn't do stack switch.
1114 */
1115DEFINE_FREDENTRY_DEBUG(exc_debug)
1116{
1117	/*
1118	 * FRED #DB stores DR6 on the stack in the format which
1119	 * debug_read_clear_dr6() returns for the IDT entry points.
1120	 */
1121	unsigned long dr6 = fred_event_data(regs);
1122
1123	if (user_mode(regs))
1124		exc_debug_user(regs, dr6);
1125	else
1126		exc_debug_kernel(regs, dr6);
1127}
1128#endif /* CONFIG_X86_FRED */
1129
1130#else
1131/* 32 bit does not have separate entry points. */
1132DEFINE_IDTENTRY_RAW(exc_debug)
1133{
1134	unsigned long dr6 = debug_read_clear_dr6();
1135
1136	if (user_mode(regs))
1137		exc_debug_user(regs, dr6);
1138	else
1139		exc_debug_kernel(regs, dr6);
1140}
1141#endif
1142
1143/*
1144 * Note that we play around with the 'TS' bit in an attempt to get
1145 * the correct behaviour even in the presence of the asynchronous
1146 * IRQ13 behaviour
1147 */
1148static void math_error(struct pt_regs *regs, int trapnr)
1149{
1150	struct task_struct *task = current;
1151	struct fpu *fpu = &task->thread.fpu;
1152	int si_code;
1153	char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
1154						"simd exception";
1155
 
 
1156	cond_local_irq_enable(regs);
1157
1158	if (!user_mode(regs)) {
1159		if (fixup_exception(regs, trapnr, 0, 0))
1160			goto exit;
1161
1162		task->thread.error_code = 0;
1163		task->thread.trap_nr = trapnr;
1164
1165		if (notify_die(DIE_TRAP, str, regs, 0, trapnr,
1166			       SIGFPE) != NOTIFY_STOP)
1167			die(str, regs, 0);
1168		goto exit;
1169	}
1170
1171	/*
1172	 * Synchronize the FPU register state to the memory register state
1173	 * if necessary. This allows the exception handler to inspect it.
1174	 */
1175	fpu_sync_fpstate(fpu);
1176
1177	task->thread.trap_nr	= trapnr;
1178	task->thread.error_code = 0;
 
 
 
 
 
1179
1180	si_code = fpu__exception_code(fpu, trapnr);
1181	/* Retry when we get spurious exceptions: */
1182	if (!si_code)
1183		goto exit;
1184
1185	if (fixup_vdso_exception(regs, trapnr, 0, 0))
1186		goto exit;
1187
1188	force_sig_fault(SIGFPE, si_code,
1189			(void __user *)uprobe_get_trap_addr(regs));
1190exit:
1191	cond_local_irq_disable(regs);
1192}
1193
1194DEFINE_IDTENTRY(exc_coprocessor_error)
1195{
1196	math_error(regs, X86_TRAP_MF);
 
1197}
1198
1199DEFINE_IDTENTRY(exc_simd_coprocessor_error)
 
1200{
1201	if (IS_ENABLED(CONFIG_X86_INVD_BUG)) {
1202		/* AMD 486 bug: INVD in CPL 0 raises #XF instead of #GP */
1203		if (!static_cpu_has(X86_FEATURE_XMM)) {
1204			__exc_general_protection(regs, 0);
1205			return;
1206		}
1207	}
1208	math_error(regs, X86_TRAP_XF);
1209}
1210
1211DEFINE_IDTENTRY(exc_spurious_interrupt_bug)
 
1212{
1213	/*
1214	 * This addresses a Pentium Pro Erratum:
1215	 *
1216	 * PROBLEM: If the APIC subsystem is configured in mixed mode with
1217	 * Virtual Wire mode implemented through the local APIC, an
1218	 * interrupt vector of 0Fh (Intel reserved encoding) may be
1219	 * generated by the local APIC (Int 15).  This vector may be
1220	 * generated upon receipt of a spurious interrupt (an interrupt
1221	 * which is removed before the system receives the INTA sequence)
1222	 * instead of the programmed 8259 spurious interrupt vector.
1223	 *
1224	 * IMPLICATION: The spurious interrupt vector programmed in the
1225	 * 8259 is normally handled by an operating system's spurious
1226	 * interrupt handler. However, a vector of 0Fh is unknown to some
1227	 * operating systems, which would crash if this erratum occurred.
1228	 *
1229	 * In theory this could be limited to 32bit, but the handler is not
1230	 * hurting and who knows which other CPUs suffer from this.
1231	 */
1232}
1233
1234static bool handle_xfd_event(struct pt_regs *regs)
 
1235{
1236	u64 xfd_err;
1237	int err;
1238
1239	if (!IS_ENABLED(CONFIG_X86_64) || !cpu_feature_enabled(X86_FEATURE_XFD))
1240		return false;
1241
1242	rdmsrl(MSR_IA32_XFD_ERR, xfd_err);
1243	if (!xfd_err)
1244		return false;
1245
1246	wrmsrl(MSR_IA32_XFD_ERR, 0);
1247
1248	/* Die if that happens in kernel space */
1249	if (WARN_ON(!user_mode(regs)))
1250		return false;
1251
1252	local_irq_enable();
1253
1254	err = xfd_enable_feature(xfd_err);
1255
1256	switch (err) {
1257	case -EPERM:
1258		force_sig_fault(SIGILL, ILL_ILLOPC, error_get_trap_addr(regs));
1259		break;
1260	case -EFAULT:
1261		force_sig(SIGSEGV);
1262		break;
1263	}
1264
1265	local_irq_disable();
1266	return true;
1267}
1268
1269DEFINE_IDTENTRY(exc_device_not_available)
1270{
1271	unsigned long cr0 = read_cr0();
1272
1273	if (handle_xfd_event(regs))
1274		return;
1275
1276#ifdef CONFIG_MATH_EMULATION
1277	if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) {
1278		struct math_emu_info info = { };
1279
1280		cond_local_irq_enable(regs);
1281
1282		info.regs = regs;
1283		math_emulate(&info);
1284
1285		cond_local_irq_disable(regs);
1286		return;
1287	}
1288#endif
1289
1290	/* This should not happen. */
 
1291	if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
1292		/* Try to fix it up and carry on. */
1293		write_cr0(cr0 & ~X86_CR0_TS);
1294	} else {
1295		/*
1296		 * Something terrible happened, and we're better off trying
1297		 * to kill the task than getting stuck in a never-ending
1298		 * loop of #NM faults.
1299		 */
1300		die("unexpected #NM exception", regs, 0);
1301	}
1302}
 
1303
1304#ifdef CONFIG_INTEL_TDX_GUEST
1305
1306#define VE_FAULT_STR "VE fault"
1307
1308static void ve_raise_fault(struct pt_regs *regs, long error_code,
1309			   unsigned long address)
1310{
1311	if (user_mode(regs)) {
1312		gp_user_force_sig_segv(regs, X86_TRAP_VE, error_code, VE_FAULT_STR);
1313		return;
1314	}
1315
1316	if (gp_try_fixup_and_notify(regs, X86_TRAP_VE, error_code,
1317				    VE_FAULT_STR, address)) {
1318		return;
1319	}
1320
1321	die_addr(VE_FAULT_STR, regs, error_code, address);
1322}
1323
1324/*
1325 * Virtualization Exceptions (#VE) are delivered to TDX guests due to
1326 * specific guest actions which may happen in either user space or the
1327 * kernel:
1328 *
1329 *  * Specific instructions (WBINVD, for example)
1330 *  * Specific MSR accesses
1331 *  * Specific CPUID leaf accesses
1332 *  * Access to specific guest physical addresses
1333 *
1334 * In the settings that Linux will run in, virtualization exceptions are
1335 * never generated on accesses to normal, TD-private memory that has been
1336 * accepted (by BIOS or with tdx_enc_status_changed()).
1337 *
1338 * Syscall entry code has a critical window where the kernel stack is not
1339 * yet set up. Any exception in this window leads to hard to debug issues
1340 * and can be exploited for privilege escalation. Exceptions in the NMI
1341 * entry code also cause issues. Returning from the exception handler with
1342 * IRET will re-enable NMIs and nested NMI will corrupt the NMI stack.
1343 *
1344 * For these reasons, the kernel avoids #VEs during the syscall gap and
1345 * the NMI entry code. Entry code paths do not access TD-shared memory,
1346 * MMIO regions, use #VE triggering MSRs, instructions, or CPUID leaves
1347 * that might generate #VE. VMM can remove memory from TD at any point,
1348 * but access to unaccepted (or missing) private memory leads to VM
1349 * termination, not to #VE.
1350 *
1351 * Similarly to page faults and breakpoints, #VEs are allowed in NMI
1352 * handlers once the kernel is ready to deal with nested NMIs.
1353 *
1354 * During #VE delivery, all interrupts, including NMIs, are blocked until
1355 * TDGETVEINFO is called. It prevents #VE nesting until the kernel reads
1356 * the VE info.
1357 *
1358 * If a guest kernel action which would normally cause a #VE occurs in
1359 * the interrupt-disabled region before TDGETVEINFO, a #DF (fault
1360 * exception) is delivered to the guest which will result in an oops.
1361 *
1362 * The entry code has been audited carefully for following these expectations.
1363 * Changes in the entry code have to be audited for correctness vs. this
1364 * aspect. Similarly to #PF, #VE in these places will expose kernel to
1365 * privilege escalation or may lead to random crashes.
1366 */
1367DEFINE_IDTENTRY(exc_virtualization_exception)
1368{
1369	struct ve_info ve;
1370
1371	/*
1372	 * NMIs/Machine-checks/Interrupts will be in a disabled state
1373	 * till TDGETVEINFO TDCALL is executed. This ensures that VE
1374	 * info cannot be overwritten by a nested #VE.
1375	 */
1376	tdx_get_ve_info(&ve);
1377
1378	cond_local_irq_enable(regs);
1379
1380	/*
1381	 * If tdx_handle_virt_exception() could not process
1382	 * it successfully, treat it as #GP(0) and handle it.
1383	 */
1384	if (!tdx_handle_virt_exception(regs, &ve))
1385		ve_raise_fault(regs, 0, ve.gla);
1386
1387	cond_local_irq_disable(regs);
1388}
1389
1390#endif
1391
1392#ifdef CONFIG_X86_32
1393DEFINE_IDTENTRY_SW(iret_error)
1394{
1395	local_irq_enable();
1396	if (notify_die(DIE_TRAP, "iret exception", regs, 0,
1397			X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
1398		do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, 0,
1399			ILL_BADSTK, (void __user *)NULL);
1400	}
1401	local_irq_disable();
1402}
1403#endif
1404
1405/* Do not enable FRED by default yet. */
1406static bool enable_fred __ro_after_init = false;
1407
1408#ifdef CONFIG_X86_FRED
1409static int __init fred_setup(char *str)
1410{
1411	if (!str)
1412		return -EINVAL;
1413
1414	if (!cpu_feature_enabled(X86_FEATURE_FRED))
1415		return 0;
1416
1417	if (!strcmp(str, "on"))
1418		enable_fred = true;
1419	else if (!strcmp(str, "off"))
1420		enable_fred = false;
1421	else
1422		pr_warn("invalid FRED option: 'fred=%s'\n", str);
1423	return 0;
1424}
1425early_param("fred", fred_setup);
1426#endif
1427
1428void __init trap_init(void)
1429{
1430	if (cpu_feature_enabled(X86_FEATURE_FRED) && !enable_fred)
1431		setup_clear_cpu_cap(X86_FEATURE_FRED);
1432
1433	/* Init cpu_entry_area before IST entries are set up */
1434	setup_cpu_entry_areas();
1435
1436	/* Init GHCB memory pages when running as an SEV-ES guest */
1437	sev_es_init_vc_handling();
 
 
 
 
 
 
 
 
 
 
 
 
 
1438
1439	/* Initialize TSS before setting up traps so ISTs work */
1440	cpu_init_exception_handling();
1441
1442	/* Setup traps as cpu_init() might #GP */
1443	if (!cpu_feature_enabled(X86_FEATURE_FRED))
1444		idt_setup_traps();
1445
1446	cpu_init();
1447}