Linux Audio

Check our new training course

Loading...
v4.17
  1/*
  2 *  Copyright (C) 1991, 1992  Linus Torvalds
  3 *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
  4 *
  5 *  Pentium III FXSR, SSE support
  6 *	Gareth Hughes <gareth@valinux.com>, May 2000
  7 */
  8
  9/*
 10 * Handle hardware traps and faults.
 11 */
 12
 13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 14
 15#include <linux/context_tracking.h>
 16#include <linux/interrupt.h>
 17#include <linux/kallsyms.h>
 
 18#include <linux/spinlock.h>
 19#include <linux/kprobes.h>
 20#include <linux/uaccess.h>
 21#include <linux/kdebug.h>
 22#include <linux/kgdb.h>
 23#include <linux/kernel.h>
 24#include <linux/export.h>
 25#include <linux/ptrace.h>
 26#include <linux/uprobes.h>
 27#include <linux/string.h>
 28#include <linux/delay.h>
 29#include <linux/errno.h>
 30#include <linux/kexec.h>
 31#include <linux/sched.h>
 32#include <linux/sched/task_stack.h>
 33#include <linux/timer.h>
 34#include <linux/init.h>
 35#include <linux/bug.h>
 36#include <linux/nmi.h>
 37#include <linux/mm.h>
 38#include <linux/smp.h>
 39#include <linux/io.h>
 40
 41#if defined(CONFIG_EDAC)
 42#include <linux/edac.h>
 43#endif
 44
 45#include <asm/stacktrace.h>
 46#include <asm/processor.h>
 47#include <asm/debugreg.h>
 48#include <linux/atomic.h>
 49#include <asm/text-patching.h>
 50#include <asm/ftrace.h>
 51#include <asm/traps.h>
 52#include <asm/desc.h>
 53#include <asm/fpu/internal.h>
 
 54#include <asm/cpu_entry_area.h>
 55#include <asm/mce.h>
 56#include <asm/fixmap.h>
 57#include <asm/mach_traps.h>
 58#include <asm/alternative.h>
 59#include <asm/fpu/xstate.h>
 60#include <asm/trace/mpx.h>
 61#include <asm/mpx.h>
 62#include <asm/vm86.h>
 63#include <asm/umip.h>
 
 
 
 
 
 64
 65#ifdef CONFIG_X86_64
 66#include <asm/x86_init.h>
 67#include <asm/pgalloc.h>
 68#include <asm/proto.h>
 69#else
 70#include <asm/processor-flags.h>
 71#include <asm/setup.h>
 72#include <asm/proto.h>
 73#endif
 74
 
 
 75DECLARE_BITMAP(system_vectors, NR_VECTORS);
 76
 77static inline void cond_local_irq_enable(struct pt_regs *regs)
 78{
 79	if (regs->flags & X86_EFLAGS_IF)
 80		local_irq_enable();
 81}
 82
 83static inline void cond_local_irq_disable(struct pt_regs *regs)
 84{
 85	if (regs->flags & X86_EFLAGS_IF)
 86		local_irq_disable();
 87}
 88
 89/*
 90 * In IST context, we explicitly disable preemption.  This serves two
 91 * purposes: it makes it much less likely that we would accidentally
 92 * schedule in IST context and it will force a warning if we somehow
 93 * manage to schedule by accident.
 94 */
 95void ist_enter(struct pt_regs *regs)
 96{
 97	if (user_mode(regs)) {
 98		RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
 99	} else {
 
 
 
 
 
 
 
 
 
 
 
 
100		/*
101		 * We might have interrupted pretty much anything.  In
102		 * fact, if we're a machine check, we can even interrupt
103		 * NMI processing.  We don't want in_nmi() to return true,
104		 * but we need to notify RCU.
105		 */
106		rcu_nmi_enter();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
107	}
108
109	preempt_disable();
 
 
 
 
 
 
 
 
 
 
110
111	/* This code is a bit fragile.  Test it. */
112	RCU_LOCKDEP_WARN(!rcu_is_watching(), "ist_enter didn't work");
113}
114
115void ist_exit(struct pt_regs *regs)
 
 
116{
117	preempt_enable_no_resched();
118
119	if (!user_mode(regs))
120		rcu_nmi_exit();
 
 
 
 
121}
122
123/**
124 * ist_begin_non_atomic() - begin a non-atomic section in an IST exception
125 * @regs:	regs passed to the IST exception handler
126 *
127 * IST exception handlers normally cannot schedule.  As a special
128 * exception, if the exception interrupted userspace code (i.e.
129 * user_mode(regs) would return true) and the exception was not
130 * a double fault, it can be safe to schedule.  ist_begin_non_atomic()
131 * begins a non-atomic section within an ist_enter()/ist_exit() region.
132 * Callers are responsible for enabling interrupts themselves inside
133 * the non-atomic section, and callers must call ist_end_non_atomic()
134 * before ist_exit().
135 */
136void ist_begin_non_atomic(struct pt_regs *regs)
137{
138	BUG_ON(!user_mode(regs));
139
140	/*
141	 * Sanity check: we need to be on the normal thread stack.  This
142	 * will catch asm bugs and any attempt to use ist_preempt_enable
143	 * from double_fault.
144	 */
145	BUG_ON(!on_thread_stack());
146
147	preempt_enable_no_resched();
 
 
 
 
 
148}
 
149
150/**
151 * ist_end_non_atomic() - begin a non-atomic section in an IST exception
 
 
 
 
 
 
 
 
 
 
 
 
 
 
152 *
153 * Ends a non-atomic section started with ist_begin_non_atomic().
 
 
 
 
154 */
155void ist_end_non_atomic(void)
156{
157	preempt_disable();
158}
159
160int is_valid_bugaddr(unsigned long addr)
161{
162	unsigned short ud;
 
 
163
164	if (addr < TASK_SIZE_MAX)
165		return 0;
 
 
166
167	if (probe_kernel_address((unsigned short *)addr, ud))
168		return 0;
169
170	return ud == INSN_UD0 || ud == INSN_UD2;
171}
172
173int fixup_bug(struct pt_regs *regs, int trapnr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
174{
175	if (trapnr != X86_TRAP_UD)
176		return 0;
 
 
177
178	switch (report_bug(regs->ip, regs)) {
179	case BUG_TRAP_TYPE_NONE:
180	case BUG_TRAP_TYPE_BUG:
181		break;
182
183	case BUG_TRAP_TYPE_WARN:
184		regs->ip += LEN_UD2;
185		return 1;
186	}
187
188	return 0;
 
 
 
 
 
 
189}
190
191static nokprobe_inline int
192do_trap_no_signal(struct task_struct *tsk, int trapnr, char *str,
193		  struct pt_regs *regs,	long error_code)
194{
195	if (v8086_mode(regs)) {
196		/*
197		 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
198		 * On nmi (interrupt 2), do_trap should not be called.
199		 */
200		if (trapnr < X86_TRAP_UD) {
201			if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
202						error_code, trapnr))
203				return 0;
204		}
205		return -1;
206	}
207
208	if (!user_mode(regs)) {
209		if (fixup_exception(regs, trapnr))
210			return 0;
 
 
 
 
211
212		tsk->thread.error_code = error_code;
213		tsk->thread.trap_nr = trapnr;
214		die(str, regs, error_code);
215	}
216
217	return -1;
218}
219
220static siginfo_t *fill_trap_info(struct pt_regs *regs, int signr, int trapnr,
221				siginfo_t *info)
222{
223	unsigned long siaddr;
224	int sicode;
225
226	switch (trapnr) {
227	default:
228		return SEND_SIG_PRIV;
229
230	case X86_TRAP_DE:
231		sicode = FPE_INTDIV;
232		siaddr = uprobe_get_trap_addr(regs);
233		break;
234	case X86_TRAP_UD:
235		sicode = ILL_ILLOPN;
236		siaddr = uprobe_get_trap_addr(regs);
237		break;
238	case X86_TRAP_AC:
239		sicode = BUS_ADRALN;
240		siaddr = 0;
241		break;
242	}
243
244	info->si_signo = signr;
245	info->si_errno = 0;
246	info->si_code = sicode;
247	info->si_addr = (void __user *)siaddr;
248	return info;
249}
250
251static void
252do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
253	long error_code, siginfo_t *info)
 
 
 
 
 
 
254{
255	struct task_struct *tsk = current;
 
 
256
 
 
 
257
258	if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
259		return;
260	/*
261	 * We want error_code and trap_nr set for userspace faults and
262	 * kernelspace faults which result in die(), but not
263	 * kernelspace faults which are fixed up.  die() gives the
264	 * process no chance to handle the signal and notice the
265	 * kernel fault information, so that won't result in polluting
266	 * the information about previously queued, but not yet
267	 * delivered, faults.  See also do_general_protection below.
268	 */
269	tsk->thread.error_code = error_code;
270	tsk->thread.trap_nr = trapnr;
 
271
272	if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
273	    printk_ratelimit()) {
274		pr_info("%s[%d] trap %s ip:%lx sp:%lx error:%lx",
275			tsk->comm, tsk->pid, str,
276			regs->ip, regs->sp, error_code);
277		print_vma_addr(KERN_CONT " in ", regs->ip);
278		pr_cont("\n");
 
 
 
 
 
 
 
279	}
 
 
 
280
281	force_sig_info(signr, info ?: SEND_SIG_PRIV, tsk);
282}
283NOKPROBE_SYMBOL(do_trap);
284
285static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
286			  unsigned long trapnr, int signr)
287{
288	siginfo_t info;
289
290	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
291
292	/*
293	 * WARN*()s end up here; fix them up before we call the
294	 * notifier chain.
 
295	 */
296	if (!user_mode(regs) && fixup_bug(regs, trapnr))
297		return;
298
299	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
300			NOTIFY_STOP) {
301		cond_local_irq_enable(regs);
302		do_trap(trapnr, signr, str, regs, error_code,
303			fill_trap_info(regs, signr, trapnr, &info));
304	}
305}
306
307#define DO_ERROR(trapnr, signr, str, name)				\
308dotraplinkage void do_##name(struct pt_regs *regs, long error_code)	\
309{									\
310	do_error_trap(regs, error_code, str, trapnr, signr);		\
 
 
 
 
 
 
311}
312
313DO_ERROR(X86_TRAP_DE,     SIGFPE,  "divide error",		divide_error)
314DO_ERROR(X86_TRAP_OF,     SIGSEGV, "overflow",			overflow)
315DO_ERROR(X86_TRAP_UD,     SIGILL,  "invalid opcode",		invalid_op)
316DO_ERROR(X86_TRAP_OLD_MF, SIGFPE,  "coprocessor segment overrun",coprocessor_segment_overrun)
317DO_ERROR(X86_TRAP_TS,     SIGSEGV, "invalid TSS",		invalid_TSS)
318DO_ERROR(X86_TRAP_NP,     SIGBUS,  "segment not present",	segment_not_present)
319DO_ERROR(X86_TRAP_SS,     SIGBUS,  "stack segment",		stack_segment)
320DO_ERROR(X86_TRAP_AC,     SIGBUS,  "alignment check",		alignment_check)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
321
322#ifdef CONFIG_VMAP_STACK
323__visible void __noreturn handle_stack_overflow(const char *message,
324						struct pt_regs *regs,
325						unsigned long fault_address)
326{
327	printk(KERN_EMERG "BUG: stack guard page was hit at %p (stack is %p..%p)\n",
328		 (void *)fault_address, current->stack,
329		 (char *)current->stack + THREAD_SIZE - 1);
330	die(message, regs, 0);
 
 
331
332	/* Be absolutely certain we don't return. */
333	panic(message);
334}
335#endif
336
337#ifdef CONFIG_X86_64
338/* Runs on IST stack */
339dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
340{
341	static const char str[] = "double fault";
342	struct task_struct *tsk = current;
 
343#ifdef CONFIG_VMAP_STACK
344	unsigned long cr2;
 
345#endif
346
347#ifdef CONFIG_X86_ESPFIX64
348	extern unsigned char native_irq_return_iret[];
349
350	/*
351	 * If IRET takes a non-IST fault on the espfix64 stack, then we
352	 * end up promoting it to a doublefault.  In that case, take
353	 * advantage of the fact that we're not using the normal (TSS.sp0)
354	 * stack right now.  We can write a fake #GP(0) frame at TSS.sp0
355	 * and then modify our own IRET frame so that, when we return,
356	 * we land directly at the #GP(0) vector with the stack already
357	 * set up according to its expectations.
358	 *
359	 * The net result is that our #GP handler will think that we
360	 * entered from usermode with the bad user context.
361	 *
362	 * No need for ist_enter here because we don't use RCU.
363	 */
364	if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY &&
365		regs->cs == __KERNEL_CS &&
366		regs->ip == (unsigned long)native_irq_return_iret)
367	{
368		struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
 
369
370		/*
371		 * regs->sp points to the failing IRET frame on the
372		 * ESPFIX64 stack.  Copy it to the entry stack.  This fills
373		 * in gpregs->ss through gpregs->ip.
374		 *
375		 */
376		memmove(&gpregs->ip, (void *)regs->sp, 5*8);
 
 
 
 
377		gpregs->orig_ax = 0;  /* Missing (lost) #GP error code */
378
379		/*
380		 * Adjust our frame so that we return straight to the #GP
381		 * vector with the expected RSP value.  This is safe because
382		 * we won't enable interupts or schedule before we invoke
383		 * general_protection, so nothing will clobber the stack
384		 * frame we just set up.
 
 
 
 
385		 */
386		regs->ip = (unsigned long)general_protection;
387		regs->sp = (unsigned long)&gpregs->orig_ax;
388
389		return;
390	}
391#endif
392
393	ist_enter(regs);
 
394	notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
395
396	tsk->thread.error_code = error_code;
397	tsk->thread.trap_nr = X86_TRAP_DF;
398
399#ifdef CONFIG_VMAP_STACK
400	/*
401	 * If we overflow the stack into a guard page, the CPU will fail
402	 * to deliver #PF and will send #DF instead.  Similarly, if we
403	 * take any non-IST exception while too close to the bottom of
404	 * the stack, the processor will get a page fault while
405	 * delivering the exception and will generate a double fault.
406	 *
407	 * According to the SDM (footnote in 6.15 under "Interrupt 14 -
408	 * Page-Fault Exception (#PF):
409	 *
410	 *   Processors update CR2 whenever a page fault is detected. If a
411	 *   second page fault occurs while an earlier page fault is being
412	 *   delivered, the faulting linear address of the second fault will
413	 *   overwrite the contents of CR2 (replacing the previous
414	 *   address). These updates to CR2 occur even if the page fault
415	 *   results in a double fault or occurs during the delivery of a
416	 *   double fault.
417	 *
418	 * The logic below has a small possibility of incorrectly diagnosing
419	 * some errors as stack overflows.  For example, if the IDT or GDT
420	 * gets corrupted such that #GP delivery fails due to a bad descriptor
421	 * causing #GP and we hit this condition while CR2 coincidentally
422	 * points to the stack guard page, we'll think we overflowed the
423	 * stack.  Given that we're going to panic one way or another
424	 * if this happens, this isn't necessarily worth fixing.
425	 *
426	 * If necessary, we could improve the test by only diagnosing
427	 * a stack overflow if the saved RSP points within 47 bytes of
428	 * the bottom of the stack: if RSP == tsk_stack + 48 and we
429	 * take an exception, the stack is already aligned and there
430	 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
431	 * possible error code, so a stack overflow would *not* double
432	 * fault.  With any less space left, exception delivery could
433	 * fail, and, as a practical matter, we've overflowed the
434	 * stack even if the actual trigger for the double fault was
435	 * something else.
436	 */
437	cr2 = read_cr2();
438	if ((unsigned long)task_stack_page(tsk) - 1 - cr2 < PAGE_SIZE)
439		handle_stack_overflow("kernel stack overflow (double-fault)", regs, cr2);
440#endif
441
442#ifdef CONFIG_DOUBLEFAULT
443	df_debug(regs, error_code);
444#endif
445	/*
446	 * This is always a kernel trap and never fixable (and thus must
447	 * never return).
448	 */
449	for (;;)
450		die(str, regs, error_code);
451}
452#endif
453
454dotraplinkage void do_bounds(struct pt_regs *regs, long error_code)
455{
456	const struct mpx_bndcsr *bndcsr;
457	siginfo_t *info;
458
459	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
460	if (notify_die(DIE_TRAP, "bounds", regs, error_code,
461			X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
462		return;
463	cond_local_irq_enable(regs);
464
465	if (!user_mode(regs))
466		die("bounds", regs, error_code);
467
468	if (!cpu_feature_enabled(X86_FEATURE_MPX)) {
469		/* The exception is not from Intel MPX */
470		goto exit_trap;
471	}
472
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
473	/*
474	 * We need to look at BNDSTATUS to resolve this exception.
475	 * A NULL here might mean that it is in its 'init state',
476	 * which is all zeros which indicates MPX was not
477	 * responsible for the exception.
478	 */
479	bndcsr = get_xsave_field_ptr(XFEATURE_MASK_BNDCSR);
480	if (!bndcsr)
481		goto exit_trap;
482
483	trace_bounds_exception_mpx(bndcsr);
484	/*
485	 * The error code field of the BNDSTATUS register communicates status
486	 * information of a bound range exception #BR or operation involving
487	 * bound directory.
488	 */
489	switch (bndcsr->bndstatus & MPX_BNDSTA_ERROR_CODE) {
490	case 2:	/* Bound directory has invalid entry. */
491		if (mpx_handle_bd_fault())
492			goto exit_trap;
493		break; /* Success, it was handled */
494	case 1: /* Bound violation. */
495		info = mpx_generate_siginfo(regs);
496		if (IS_ERR(info)) {
497			/*
498			 * We failed to decode the MPX instruction.  Act as if
499			 * the exception was not caused by MPX.
500			 */
501			goto exit_trap;
502		}
503		/*
504		 * Success, we decoded the instruction and retrieved
505		 * an 'info' containing the address being accessed
506		 * which caused the exception.  This information
507		 * allows and application to possibly handle the
508		 * #BR exception itself.
509		 */
510		do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, info);
511		kfree(info);
512		break;
513	case 0: /* No exception caused by Intel MPX operations. */
514		goto exit_trap;
515	default:
516		die("bounds", regs, error_code);
517	}
518
519	return;
 
 
 
 
 
 
 
 
 
 
 
 
520
521exit_trap:
522	/*
523	 * This path out is for all the cases where we could not
524	 * handle the exception in some way (like allocating a
525	 * table or telling userspace about it.  We will also end
526	 * up here if the kernel has MPX turned off at compile
527	 * time..
528	 */
529	do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
530}
531
532dotraplinkage void
533do_general_protection(struct pt_regs *regs, long error_code)
534{
535	struct task_struct *tsk;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
536
537	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
538	cond_local_irq_enable(regs);
539
540	if (static_cpu_has(X86_FEATURE_UMIP)) {
541		if (user_mode(regs) && fixup_umip_exception(regs))
542			return;
543	}
544
545	if (v8086_mode(regs)) {
546		local_irq_enable();
547		handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
 
548		return;
549	}
550
551	tsk = current;
552	if (!user_mode(regs)) {
553		if (fixup_exception(regs, X86_TRAP_GP))
554			return;
555
556		tsk->thread.error_code = error_code;
557		tsk->thread.trap_nr = X86_TRAP_GP;
558		if (notify_die(DIE_GPF, "general protection fault", regs, error_code,
559			       X86_TRAP_GP, SIGSEGV) != NOTIFY_STOP)
560			die("general protection fault", regs, error_code);
561		return;
562	}
563
564	tsk->thread.error_code = error_code;
565	tsk->thread.trap_nr = X86_TRAP_GP;
566
567	if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
568			printk_ratelimit()) {
569		pr_info("%s[%d] general protection ip:%lx sp:%lx error:%lx",
570			tsk->comm, task_pid_nr(tsk),
571			regs->ip, regs->sp, error_code);
572		print_vma_addr(KERN_CONT " in ", regs->ip);
573		pr_cont("\n");
574	}
 
 
 
 
 
 
 
 
 
575
576	force_sig_info(SIGSEGV, SEND_SIG_PRIV, tsk);
 
 
 
577}
578NOKPROBE_SYMBOL(do_general_protection);
579
580dotraplinkage void notrace do_int3(struct pt_regs *regs, long error_code)
581{
582#ifdef CONFIG_DYNAMIC_FTRACE
583	/*
584	 * ftrace must be first, everything else may cause a recursive crash.
585	 * See note by declaration of modifying_ftrace_code in ftrace.c
586	 */
587	if (unlikely(atomic_read(&modifying_ftrace_code)) &&
588	    ftrace_int3_handler(regs))
589		return;
590#endif
591	if (poke_int3_handler(regs))
592		return;
593
594	/*
595	 * Use ist_enter despite the fact that we don't use an IST stack.
596	 * We can be called from a kprobe in non-CONTEXT_KERNEL kernel
597	 * mode or even during context tracking state changes.
598	 *
599	 * This means that we can't schedule.  That's okay.
600	 */
601	ist_enter(regs);
602	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
603#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
604	if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
605				SIGTRAP) == NOTIFY_STOP)
606		goto exit;
607#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
608
609#ifdef CONFIG_KPROBES
610	if (kprobe_int3_handler(regs))
611		goto exit;
612#endif
 
613
614	if (notify_die(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
615			SIGTRAP) == NOTIFY_STOP)
616		goto exit;
 
 
 
 
 
617
618	cond_local_irq_enable(regs);
619	do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, error_code, NULL);
620	cond_local_irq_disable(regs);
 
621
622exit:
623	ist_exit(regs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
624}
625NOKPROBE_SYMBOL(do_int3);
626
627#ifdef CONFIG_X86_64
628/*
629 * Help handler running on a per-cpu (IST or entry trampoline) stack
630 * to switch to the normal thread stack if the interrupted code was in
631 * user mode. The actual stack switch is done in entry_64.S
632 */
633asmlinkage __visible notrace struct pt_regs *sync_regs(struct pt_regs *eregs)
634{
635	struct pt_regs *regs = (struct pt_regs *)this_cpu_read(cpu_current_top_of_stack) - 1;
636	if (regs != eregs)
637		*regs = *eregs;
638	return regs;
639}
640NOKPROBE_SYMBOL(sync_regs);
641
642struct bad_iret_stack {
643	void *error_entry_ret;
644	struct pt_regs regs;
645};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
646
647asmlinkage __visible notrace
648struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s)
649{
 
 
650	/*
651	 * This is called from entry_64.S early in handling a fault
652	 * caused by a bad iret to user mode.  To handle the fault
653	 * correctly, we want to move our stack frame to where it would
654	 * be had we entered directly on the entry stack (rather than
655	 * just below the IRET frame) and we want to pretend that the
656	 * exception came from the IRET target.
657	 */
658	struct bad_iret_stack *new_stack =
659		(struct bad_iret_stack *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
660
661	/* Copy the IRET target to the new stack. */
662	memmove(&new_stack->regs.ip, (void *)s->regs.sp, 5*8);
663
664	/* Copy the remainder of the stack from the current stack. */
665	memmove(new_stack, s, offsetof(struct bad_iret_stack, regs.ip));
 
 
 
666
667	BUG_ON(!user_mode(&new_stack->regs));
668	return new_stack;
669}
670NOKPROBE_SYMBOL(fixup_bad_iret);
671#endif
672
673static bool is_sysenter_singlestep(struct pt_regs *regs)
674{
675	/*
676	 * We don't try for precision here.  If we're anywhere in the region of
677	 * code that can be single-stepped in the SYSENTER entry path, then
678	 * assume that this is a useless single-step trap due to SYSENTER
679	 * being invoked with TF set.  (We don't know in advance exactly
680	 * which instructions will be hit because BTF could plausibly
681	 * be set.)
682	 */
683#ifdef CONFIG_X86_32
684	return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
685		(unsigned long)__end_SYSENTER_singlestep_region -
686		(unsigned long)__begin_SYSENTER_singlestep_region;
687#elif defined(CONFIG_IA32_EMULATION)
688	return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
689		(unsigned long)__end_entry_SYSENTER_compat -
690		(unsigned long)entry_SYSENTER_compat;
691#else
692	return false;
693#endif
694}
695
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
696/*
697 * Our handling of the processor debug registers is non-trivial.
698 * We do not clear them on entry and exit from the kernel. Therefore
699 * it is possible to get a watchpoint trap here from inside the kernel.
700 * However, the code in ./ptrace.c has ensured that the user can
701 * only set watchpoints on userspace addresses. Therefore the in-kernel
702 * watchpoint trap can only occur in code which is reading/writing
703 * from user space. Such code must not hold kernel locks (since it
704 * can equally take a page fault), therefore it is safe to call
705 * force_sig_info even though that claims and releases locks.
706 *
707 * Code in ./signal.c ensures that the debug control register
708 * is restored before we deliver any signal, and therefore that
709 * user code runs with the correct debug control register even though
710 * we clear it here.
711 *
712 * Being careful here means that we don't have to be as careful in a
713 * lot of more complicated places (task switching can be a bit lazy
714 * about restoring all the debug state, and ptrace doesn't have to
715 * find every occurrence of the TF bit that could be saved away even
716 * by user code)
717 *
718 * May run on IST stack.
719 */
720dotraplinkage void do_debug(struct pt_regs *regs, long error_code)
 
721{
722	struct task_struct *tsk = current;
723	int user_icebp = 0;
724	unsigned long dr6;
725	int si_code;
 
 
 
 
 
726
727	ist_enter(regs);
 
728
729	get_debugreg(dr6, 6);
 
 
730	/*
731	 * The Intel SDM says:
 
732	 *
733	 *   Certain debug exceptions may clear bits 0-3. The remaining
734	 *   contents of the DR6 register are never cleared by the
735	 *   processor. To avoid confusion in identifying debug
736	 *   exceptions, debug handlers should clear the register before
737	 *   returning to the interrupted task.
738	 *
739	 * Keep it simple: clear DR6 immediately.
 
740	 */
741	set_debugreg(0, 6);
742
743	/* Filter out all the reserved bits which are preset to 1 */
744	dr6 &= ~DR6_RESERVED;
745
746	/*
747	 * The SDM says "The processor clears the BTF flag when it
748	 * generates a debug exception."  Clear TIF_BLOCKSTEP to keep
749	 * TIF_BLOCKSTEP in sync with the hardware BTF flag.
750	 */
751	clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP);
752
753	if (unlikely(!user_mode(regs) && (dr6 & DR_STEP) &&
754		     is_sysenter_singlestep(regs))) {
755		dr6 &= ~DR_STEP;
756		if (!dr6)
757			goto exit;
758		/*
759		 * else we might have gotten a single-step trap and hit a
760		 * watchpoint at the same time, in which case we should fall
761		 * through and handle the watchpoint.
 
762		 */
 
 
 
 
 
763	}
764
765	/*
766	 * If dr6 has no reason to give us about the origin of this trap,
767	 * then it's very likely the result of an icebp/int01 trap.
768	 * User wants a sigtrap for that.
769	 */
770	if (!dr6 && user_mode(regs))
771		user_icebp = 1;
772
773	/* Store the virtualized DR6 value */
774	tsk->thread.debugreg6 = dr6;
 
 
 
775
776#ifdef CONFIG_KPROBES
777	if (kprobe_debug_handler(regs))
778		goto exit;
779#endif
780
781	if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, error_code,
782							SIGTRAP) == NOTIFY_STOP)
783		goto exit;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
784
785	/*
786	 * Let others (NMI) know that the debug stack is in use
787	 * as we may switch to the interrupt stack.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
788	 */
789	debug_stack_usage_inc();
 
 
 
790
791	/* It's safe to allow irq's after DR6 has been saved */
792	cond_local_irq_enable(regs);
793
794	if (v8086_mode(regs)) {
795		handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code,
796					X86_TRAP_DB);
797		cond_local_irq_disable(regs);
798		debug_stack_usage_dec();
799		goto exit;
800	}
801
802	if (WARN_ON_ONCE((dr6 & DR_STEP) && !user_mode(regs))) {
803		/*
804		 * Historical junk that used to handle SYSENTER single-stepping.
805		 * This should be unreachable now.  If we survive for a while
806		 * without anyone hitting this warning, we'll turn this into
807		 * an oops.
808		 */
809		tsk->thread.debugreg6 &= ~DR_STEP;
810		set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
811		regs->flags &= ~X86_EFLAGS_TF;
812	}
813	si_code = get_si_code(tsk->thread.debugreg6);
814	if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp)
815		send_sigtrap(tsk, regs, error_code, si_code);
816	cond_local_irq_disable(regs);
817	debug_stack_usage_dec();
818
819exit:
820	ist_exit(regs);
 
 
 
821}
822NOKPROBE_SYMBOL(do_debug);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
823
824/*
825 * Note that we play around with the 'TS' bit in an attempt to get
826 * the correct behaviour even in the presence of the asynchronous
827 * IRQ13 behaviour
828 */
829static void math_error(struct pt_regs *regs, int error_code, int trapnr)
830{
831	struct task_struct *task = current;
832	struct fpu *fpu = &task->thread.fpu;
833	siginfo_t info;
834	char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
835						"simd exception";
836
837	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, SIGFPE) == NOTIFY_STOP)
838		return;
839	cond_local_irq_enable(regs);
840
841	if (!user_mode(regs)) {
842		if (!fixup_exception(regs, trapnr)) {
843			task->thread.error_code = error_code;
844			task->thread.trap_nr = trapnr;
845			die(str, regs, error_code);
846		}
847		return;
 
 
 
 
848	}
849
850	/*
851	 * Save the info for the exception handler and clear the error.
 
852	 */
853	fpu__save(fpu);
854
855	task->thread.trap_nr	= trapnr;
856	task->thread.error_code = error_code;
857	info.si_signo		= SIGFPE;
858	info.si_errno		= 0;
859	info.si_addr		= (void __user *)uprobe_get_trap_addr(regs);
860
861	info.si_code = fpu__exception_code(fpu, trapnr);
862
 
863	/* Retry when we get spurious exceptions: */
864	if (!info.si_code)
865		return;
 
 
 
866
867	force_sig_info(SIGFPE, &info, task);
 
 
 
868}
869
870dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code)
871{
872	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
873	math_error(regs, error_code, X86_TRAP_MF);
874}
875
876dotraplinkage void
877do_simd_coprocessor_error(struct pt_regs *regs, long error_code)
878{
879	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
880	math_error(regs, error_code, X86_TRAP_XF);
 
 
 
 
 
 
881}
882
883dotraplinkage void
884do_spurious_interrupt_bug(struct pt_regs *regs, long error_code)
885{
886	cond_local_irq_enable(regs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
887}
888
889dotraplinkage void
890do_device_not_available(struct pt_regs *regs, long error_code)
891{
892	unsigned long cr0;
 
893
894	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
895
896#ifdef CONFIG_MATH_EMULATION
897	if (!boot_cpu_has(X86_FEATURE_FPU) && (read_cr0() & X86_CR0_EM)) {
898		struct math_emu_info info = { };
899
900		cond_local_irq_enable(regs);
901
902		info.regs = regs;
903		math_emulate(&info);
 
 
904		return;
905	}
906#endif
907
908	/* This should not happen. */
909	cr0 = read_cr0();
910	if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
911		/* Try to fix it up and carry on. */
912		write_cr0(cr0 & ~X86_CR0_TS);
913	} else {
914		/*
915		 * Something terrible happened, and we're better off trying
916		 * to kill the task than getting stuck in a never-ending
917		 * loop of #NM faults.
918		 */
919		die("unexpected #NM exception", regs, error_code);
920	}
921}
922NOKPROBE_SYMBOL(do_device_not_available);
923
924#ifdef CONFIG_X86_32
925dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code)
 
 
 
926{
927	siginfo_t info;
 
 
 
928
929	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
930	local_irq_enable();
 
 
 
931
932	info.si_signo = SIGILL;
933	info.si_errno = 0;
934	info.si_code = ILL_BADSTK;
935	info.si_addr = NULL;
936	if (notify_die(DIE_TRAP, "iret exception", regs, error_code,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
937			X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
938		do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, error_code,
939			&info);
940	}
 
941}
942#endif
943
944void __init trap_init(void)
945{
946	/* Init cpu_entry_area before IST entries are set up */
947	setup_cpu_entry_areas();
948
949	idt_setup_traps();
950
951	/*
952	 * Set the IDT descriptor to a fixed read-only location, so that the
953	 * "sidt" instruction will not leak the location of the kernel, and
954	 * to defend the IDT against arbitrary memory write vulnerabilities.
955	 * It will be reloaded in cpu_init() */
956	cea_set_pte(CPU_ENTRY_AREA_RO_IDT_VADDR, __pa_symbol(idt_table),
957		    PAGE_KERNEL_RO);
958	idt_descr.address = CPU_ENTRY_AREA_RO_IDT;
959
960	/*
961	 * Should be a barrier for any external CPU state:
962	 */
 
963	cpu_init();
964
965	idt_setup_ist_traps();
966
967	x86_init.irqs.trap_init();
968
969	idt_setup_debugidt_traps();
970}
v6.2
   1/*
   2 *  Copyright (C) 1991, 1992  Linus Torvalds
   3 *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
   4 *
   5 *  Pentium III FXSR, SSE support
   6 *	Gareth Hughes <gareth@valinux.com>, May 2000
   7 */
   8
   9/*
  10 * Handle hardware traps and faults.
  11 */
  12
  13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  14
  15#include <linux/context_tracking.h>
  16#include <linux/interrupt.h>
  17#include <linux/kallsyms.h>
  18#include <linux/kmsan.h>
  19#include <linux/spinlock.h>
  20#include <linux/kprobes.h>
  21#include <linux/uaccess.h>
  22#include <linux/kdebug.h>
  23#include <linux/kgdb.h>
  24#include <linux/kernel.h>
  25#include <linux/export.h>
  26#include <linux/ptrace.h>
  27#include <linux/uprobes.h>
  28#include <linux/string.h>
  29#include <linux/delay.h>
  30#include <linux/errno.h>
  31#include <linux/kexec.h>
  32#include <linux/sched.h>
  33#include <linux/sched/task_stack.h>
  34#include <linux/timer.h>
  35#include <linux/init.h>
  36#include <linux/bug.h>
  37#include <linux/nmi.h>
  38#include <linux/mm.h>
  39#include <linux/smp.h>
  40#include <linux/io.h>
  41#include <linux/hardirq.h>
  42#include <linux/atomic.h>
  43#include <linux/ioasid.h>
 
  44
  45#include <asm/stacktrace.h>
  46#include <asm/processor.h>
  47#include <asm/debugreg.h>
  48#include <asm/realmode.h>
  49#include <asm/text-patching.h>
  50#include <asm/ftrace.h>
  51#include <asm/traps.h>
  52#include <asm/desc.h>
  53#include <asm/fpu/api.h>
  54#include <asm/cpu.h>
  55#include <asm/cpu_entry_area.h>
  56#include <asm/mce.h>
  57#include <asm/fixmap.h>
  58#include <asm/mach_traps.h>
  59#include <asm/alternative.h>
  60#include <asm/fpu/xstate.h>
 
 
  61#include <asm/vm86.h>
  62#include <asm/umip.h>
  63#include <asm/insn.h>
  64#include <asm/insn-eval.h>
  65#include <asm/vdso.h>
  66#include <asm/tdx.h>
  67#include <asm/cfi.h>
  68
  69#ifdef CONFIG_X86_64
  70#include <asm/x86_init.h>
 
 
  71#else
  72#include <asm/processor-flags.h>
  73#include <asm/setup.h>
 
  74#endif
  75
  76#include <asm/proto.h>
  77
  78DECLARE_BITMAP(system_vectors, NR_VECTORS);
  79
  80static inline void cond_local_irq_enable(struct pt_regs *regs)
  81{
  82	if (regs->flags & X86_EFLAGS_IF)
  83		local_irq_enable();
  84}
  85
  86static inline void cond_local_irq_disable(struct pt_regs *regs)
  87{
  88	if (regs->flags & X86_EFLAGS_IF)
  89		local_irq_disable();
  90}
  91
  92__always_inline int is_valid_bugaddr(unsigned long addr)
 
 
 
 
 
 
  93{
  94	if (addr < TASK_SIZE_MAX)
  95		return 0;
  96
  97	/*
  98	 * We got #UD, if the text isn't readable we'd have gotten
  99	 * a different exception.
 100	 */
 101	return *(unsigned short *)addr == INSN_UD2;
 102}
 103
 104static nokprobe_inline int
 105do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str,
 106		  struct pt_regs *regs,	long error_code)
 107{
 108	if (v8086_mode(regs)) {
 109		/*
 110		 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
 111		 * On nmi (interrupt 2), do_trap should not be called.
 
 
 112		 */
 113		if (trapnr < X86_TRAP_UD) {
 114			if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
 115						error_code, trapnr))
 116				return 0;
 117		}
 118	} else if (!user_mode(regs)) {
 119		if (fixup_exception(regs, trapnr, error_code, 0))
 120			return 0;
 121
 122		tsk->thread.error_code = error_code;
 123		tsk->thread.trap_nr = trapnr;
 124		die(str, regs, error_code);
 125	} else {
 126		if (fixup_vdso_exception(regs, trapnr, error_code, 0))
 127			return 0;
 128	}
 129
 130	/*
 131	 * We want error_code and trap_nr set for userspace faults and
 132	 * kernelspace faults which result in die(), but not
 133	 * kernelspace faults which are fixed up.  die() gives the
 134	 * process no chance to handle the signal and notice the
 135	 * kernel fault information, so that won't result in polluting
 136	 * the information about previously queued, but not yet
 137	 * delivered, faults.  See also exc_general_protection below.
 138	 */
 139	tsk->thread.error_code = error_code;
 140	tsk->thread.trap_nr = trapnr;
 141
 142	return -1;
 
 143}
 144
 145static void show_signal(struct task_struct *tsk, int signr,
 146			const char *type, const char *desc,
 147			struct pt_regs *regs, long error_code)
 148{
 149	if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
 150	    printk_ratelimit()) {
 151		pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx",
 152			tsk->comm, task_pid_nr(tsk), type, desc,
 153			regs->ip, regs->sp, error_code);
 154		print_vma_addr(KERN_CONT " in ", regs->ip);
 155		pr_cont("\n");
 156	}
 157}
 158
 159static void
 160do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
 161	long error_code, int sicode, void __user *addr)
 
 
 
 
 
 
 
 
 
 
 
 162{
 163	struct task_struct *tsk = current;
 164
 165	if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
 166		return;
 
 
 
 
 167
 168	show_signal(tsk, signr, "trap ", str, regs, error_code);
 169
 170	if (!sicode)
 171		force_sig(signr);
 172	else
 173		force_sig_fault(signr, sicode, addr);
 174}
 175NOKPROBE_SYMBOL(do_trap);
 176
 177static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
 178	unsigned long trapnr, int signr, int sicode, void __user *addr)
 179{
 180	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
 181
 182	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
 183			NOTIFY_STOP) {
 184		cond_local_irq_enable(regs);
 185		do_trap(trapnr, signr, str, regs, error_code, sicode, addr);
 186		cond_local_irq_disable(regs);
 187	}
 188}
 189
 190/*
 191 * Posix requires to provide the address of the faulting instruction for
 192 * SIGILL (#UD) and SIGFPE (#DE) in the si_addr member of siginfo_t.
 193 *
 194 * This address is usually regs->ip, but when an uprobe moved the code out
 195 * of line then regs->ip points to the XOL code which would confuse
 196 * anything which analyzes the fault address vs. the unmodified binary. If
 197 * a trap happened in XOL code then uprobe maps regs->ip back to the
 198 * original instruction address.
 199 */
 200static __always_inline void __user *error_get_trap_addr(struct pt_regs *regs)
 201{
 202	return (void __user *)uprobe_get_trap_addr(regs);
 203}
 204
 205DEFINE_IDTENTRY(exc_divide_error)
 206{
 207	do_error_trap(regs, 0, "divide error", X86_TRAP_DE, SIGFPE,
 208		      FPE_INTDIV, error_get_trap_addr(regs));
 209}
 210
 211DEFINE_IDTENTRY(exc_overflow)
 212{
 213	do_error_trap(regs, 0, "overflow", X86_TRAP_OF, SIGSEGV, 0, NULL);
 214}
 215
 216#ifdef CONFIG_X86_KERNEL_IBT
 
 217
 218static __ro_after_init bool ibt_fatal = true;
 
 219
 220extern void ibt_selftest_ip(void); /* code label defined in asm below */
 221
 222enum cp_error_code {
 223	CP_EC        = (1 << 15) - 1,
 224
 225	CP_RET       = 1,
 226	CP_IRET      = 2,
 227	CP_ENDBR     = 3,
 228	CP_RSTRORSSP = 4,
 229	CP_SETSSBSY  = 5,
 230
 231	CP_ENCL	     = 1 << 15,
 232};
 233
 234DEFINE_IDTENTRY_ERRORCODE(exc_control_protection)
 235{
 236	if (!cpu_feature_enabled(X86_FEATURE_IBT)) {
 237		pr_err("Unexpected #CP\n");
 238		BUG();
 239	}
 240
 241	if (WARN_ON_ONCE(user_mode(regs) || (error_code & CP_EC) != CP_ENDBR))
 242		return;
 
 
 243
 244	if (unlikely(regs->ip == (unsigned long)&ibt_selftest_ip)) {
 245		regs->ax = 0;
 246		return;
 247	}
 248
 249	pr_err("Missing ENDBR: %pS\n", (void *)instruction_pointer(regs));
 250	if (!ibt_fatal) {
 251		printk(KERN_DEFAULT CUT_HERE);
 252		__warn(__FILE__, __LINE__, (void *)regs->ip, TAINT_WARN, regs, NULL);
 253		return;
 254	}
 255	BUG();
 256}
 257
 258/* Must be noinline to ensure uniqueness of ibt_selftest_ip. */
 259noinline bool ibt_selftest(void)
 
 260{
 261	unsigned long ret;
 
 
 
 
 
 
 
 
 
 
 
 262
 263	asm ("	lea ibt_selftest_ip(%%rip), %%rax\n\t"
 264	     ANNOTATE_RETPOLINE_SAFE
 265	     "	jmp *%%rax\n\t"
 266	     "ibt_selftest_ip:\n\t"
 267	     UNWIND_HINT_FUNC
 268	     ANNOTATE_NOENDBR
 269	     "	nop\n\t"
 270
 271	     : "=a" (ret) : : "memory");
 
 
 
 272
 273	return !ret;
 274}
 275
 276static int __init ibt_setup(char *str)
 
 277{
 278	if (!strcmp(str, "off"))
 279		setup_clear_cpu_cap(X86_FEATURE_IBT);
 280
 281	if (!strcmp(str, "warn"))
 282		ibt_fatal = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 283
 284	return 1;
 
 
 
 
 285}
 286
 287__setup("ibt=", ibt_setup);
 288
 289#endif /* CONFIG_X86_KERNEL_IBT */
 290
 291#ifdef CONFIG_X86_F00F_BUG
 292void handle_invalid_op(struct pt_regs *regs)
 293#else
 294static inline void handle_invalid_op(struct pt_regs *regs)
 295#endif
 296{
 297	do_error_trap(regs, 0, "invalid opcode", X86_TRAP_UD, SIGILL,
 298		      ILL_ILLOPN, error_get_trap_addr(regs));
 299}
 300
 301static noinstr bool handle_bug(struct pt_regs *regs)
 302{
 303	bool handled = false;
 304
 
 
 305	/*
 306	 * Normally @regs are unpoisoned by irqentry_enter(), but handle_bug()
 307	 * is a rare case that uses @regs without passing them to
 308	 * irqentry_enter().
 
 
 
 
 309	 */
 310	kmsan_unpoison_entry_regs(regs);
 311	if (!is_valid_bugaddr(regs->ip))
 312		return handled;
 313
 314	/*
 315	 * All lies, just get the WARN/BUG out.
 316	 */
 317	instrumentation_begin();
 318	/*
 319	 * Since we're emulating a CALL with exceptions, restore the interrupt
 320	 * state to what it was at the exception site.
 321	 */
 322	if (regs->flags & X86_EFLAGS_IF)
 323		raw_local_irq_enable();
 324	if (report_bug(regs->ip, regs) == BUG_TRAP_TYPE_WARN ||
 325	    handle_cfi_failure(regs) == BUG_TRAP_TYPE_WARN) {
 326		regs->ip += LEN_UD2;
 327		handled = true;
 328	}
 329	if (regs->flags & X86_EFLAGS_IF)
 330		raw_local_irq_disable();
 331	instrumentation_end();
 332
 333	return handled;
 334}
 
 335
 336DEFINE_IDTENTRY_RAW(exc_invalid_op)
 
 337{
 338	irqentry_state_t state;
 
 
 339
 340	/*
 341	 * We use UD2 as a short encoding for 'CALL __WARN', as such
 342	 * handle it before exception entry to avoid recursive WARN
 343	 * in case exception entry is the one triggering WARNs.
 344	 */
 345	if (!user_mode(regs) && handle_bug(regs))
 346		return;
 347
 348	state = irqentry_enter(regs);
 349	instrumentation_begin();
 350	handle_invalid_op(regs);
 351	instrumentation_end();
 352	irqentry_exit(regs, state);
 
 353}
 354
 355DEFINE_IDTENTRY(exc_coproc_segment_overrun)
 356{
 357	do_error_trap(regs, 0, "coprocessor segment overrun",
 358		      X86_TRAP_OLD_MF, SIGFPE, 0, NULL);
 359}
 360
 361DEFINE_IDTENTRY_ERRORCODE(exc_invalid_tss)
 362{
 363	do_error_trap(regs, error_code, "invalid TSS", X86_TRAP_TS, SIGSEGV,
 364		      0, NULL);
 365}
 366
 367DEFINE_IDTENTRY_ERRORCODE(exc_segment_not_present)
 368{
 369	do_error_trap(regs, error_code, "segment not present", X86_TRAP_NP,
 370		      SIGBUS, 0, NULL);
 371}
 372
 373DEFINE_IDTENTRY_ERRORCODE(exc_stack_segment)
 374{
 375	do_error_trap(regs, error_code, "stack segment", X86_TRAP_SS, SIGBUS,
 376		      0, NULL);
 377}
 378
 379DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check)
 380{
 381	char *str = "alignment check";
 382
 383	if (notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_AC, SIGBUS) == NOTIFY_STOP)
 384		return;
 385
 386	if (!user_mode(regs))
 387		die("Split lock detected\n", regs, error_code);
 388
 389	local_irq_enable();
 390
 391	if (handle_user_split_lock(regs, error_code))
 392		goto out;
 393
 394	do_trap(X86_TRAP_AC, SIGBUS, "alignment check", regs,
 395		error_code, BUS_ADRALN, NULL);
 396
 397out:
 398	local_irq_disable();
 399}
 400
 401#ifdef CONFIG_VMAP_STACK
 402__visible void __noreturn handle_stack_overflow(struct pt_regs *regs,
 403						unsigned long fault_address,
 404						struct stack_info *info)
 405{
 406	const char *name = stack_type_name(info->type);
 407
 408	printk(KERN_EMERG "BUG: %s stack guard page was hit at %p (stack is %p..%p)\n",
 409	       name, (void *)fault_address, info->begin, info->end);
 410
 411	die("stack guard page", regs, 0);
 412
 413	/* Be absolutely certain we don't return. */
 414	panic("%s stack guard hit", name);
 415}
 416#endif
 417
 418/*
 419 * Runs on an IST stack for x86_64 and on a special task stack for x86_32.
 420 *
 421 * On x86_64, this is more or less a normal kernel entry.  Notwithstanding the
 422 * SDM's warnings about double faults being unrecoverable, returning works as
 423 * expected.  Presumably what the SDM actually means is that the CPU may get
 424 * the register state wrong on entry, so returning could be a bad idea.
 425 *
 426 * Various CPU engineers have promised that double faults due to an IRET fault
 427 * while the stack is read-only are, in fact, recoverable.
 428 *
 429 * On x86_32, this is entered through a task gate, and regs are synthesized
 430 * from the TSS.  Returning is, in principle, okay, but changes to regs will
 431 * be lost.  If, for some reason, we need to return to a context with modified
 432 * regs, the shim code could be adjusted to synchronize the registers.
 433 *
 434 * The 32bit #DF shim provides CR2 already as an argument. On 64bit it needs
 435 * to be read before doing anything else.
 436 */
 437DEFINE_IDTENTRY_DF(exc_double_fault)
 438{
 439	static const char str[] = "double fault";
 440	struct task_struct *tsk = current;
 441
 442#ifdef CONFIG_VMAP_STACK
 443	unsigned long address = read_cr2();
 444	struct stack_info info;
 445#endif
 446
 447#ifdef CONFIG_X86_ESPFIX64
 448	extern unsigned char native_irq_return_iret[];
 449
 450	/*
 451	 * If IRET takes a non-IST fault on the espfix64 stack, then we
 452	 * end up promoting it to a doublefault.  In that case, take
 453	 * advantage of the fact that we're not using the normal (TSS.sp0)
 454	 * stack right now.  We can write a fake #GP(0) frame at TSS.sp0
 455	 * and then modify our own IRET frame so that, when we return,
 456	 * we land directly at the #GP(0) vector with the stack already
 457	 * set up according to its expectations.
 458	 *
 459	 * The net result is that our #GP handler will think that we
 460	 * entered from usermode with the bad user context.
 461	 *
 462	 * No need for nmi_enter() here because we don't use RCU.
 463	 */
 464	if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY &&
 465		regs->cs == __KERNEL_CS &&
 466		regs->ip == (unsigned long)native_irq_return_iret)
 467	{
 468		struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
 469		unsigned long *p = (unsigned long *)regs->sp;
 470
 471		/*
 472		 * regs->sp points to the failing IRET frame on the
 473		 * ESPFIX64 stack.  Copy it to the entry stack.  This fills
 474		 * in gpregs->ss through gpregs->ip.
 475		 *
 476		 */
 477		gpregs->ip	= p[0];
 478		gpregs->cs	= p[1];
 479		gpregs->flags	= p[2];
 480		gpregs->sp	= p[3];
 481		gpregs->ss	= p[4];
 482		gpregs->orig_ax = 0;  /* Missing (lost) #GP error code */
 483
 484		/*
 485		 * Adjust our frame so that we return straight to the #GP
 486		 * vector with the expected RSP value.  This is safe because
 487		 * we won't enable interrupts or schedule before we invoke
 488		 * general_protection, so nothing will clobber the stack
 489		 * frame we just set up.
 490		 *
 491		 * We will enter general_protection with kernel GSBASE,
 492		 * which is what the stub expects, given that the faulting
 493		 * RIP will be the IRET instruction.
 494		 */
 495		regs->ip = (unsigned long)asm_exc_general_protection;
 496		regs->sp = (unsigned long)&gpregs->orig_ax;
 497
 498		return;
 499	}
 500#endif
 501
 502	irqentry_nmi_enter(regs);
 503	instrumentation_begin();
 504	notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
 505
 506	tsk->thread.error_code = error_code;
 507	tsk->thread.trap_nr = X86_TRAP_DF;
 508
 509#ifdef CONFIG_VMAP_STACK
 510	/*
 511	 * If we overflow the stack into a guard page, the CPU will fail
 512	 * to deliver #PF and will send #DF instead.  Similarly, if we
 513	 * take any non-IST exception while too close to the bottom of
 514	 * the stack, the processor will get a page fault while
 515	 * delivering the exception and will generate a double fault.
 516	 *
 517	 * According to the SDM (footnote in 6.15 under "Interrupt 14 -
 518	 * Page-Fault Exception (#PF):
 519	 *
 520	 *   Processors update CR2 whenever a page fault is detected. If a
 521	 *   second page fault occurs while an earlier page fault is being
 522	 *   delivered, the faulting linear address of the second fault will
 523	 *   overwrite the contents of CR2 (replacing the previous
 524	 *   address). These updates to CR2 occur even if the page fault
 525	 *   results in a double fault or occurs during the delivery of a
 526	 *   double fault.
 527	 *
 528	 * The logic below has a small possibility of incorrectly diagnosing
 529	 * some errors as stack overflows.  For example, if the IDT or GDT
 530	 * gets corrupted such that #GP delivery fails due to a bad descriptor
 531	 * causing #GP and we hit this condition while CR2 coincidentally
 532	 * points to the stack guard page, we'll think we overflowed the
 533	 * stack.  Given that we're going to panic one way or another
 534	 * if this happens, this isn't necessarily worth fixing.
 535	 *
 536	 * If necessary, we could improve the test by only diagnosing
 537	 * a stack overflow if the saved RSP points within 47 bytes of
 538	 * the bottom of the stack: if RSP == tsk_stack + 48 and we
 539	 * take an exception, the stack is already aligned and there
 540	 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
 541	 * possible error code, so a stack overflow would *not* double
 542	 * fault.  With any less space left, exception delivery could
 543	 * fail, and, as a practical matter, we've overflowed the
 544	 * stack even if the actual trigger for the double fault was
 545	 * something else.
 546	 */
 547	if (get_stack_guard_info((void *)address, &info))
 548		handle_stack_overflow(regs, address, &info);
 
 549#endif
 550
 551	pr_emerg("PANIC: double fault, error_code: 0x%lx\n", error_code);
 552	die("double fault", regs, error_code);
 553	panic("Machine halted.");
 554	instrumentation_end();
 
 
 
 
 
 555}
 
 556
 557DEFINE_IDTENTRY(exc_bounds)
 558{
 559	if (notify_die(DIE_TRAP, "bounds", regs, 0,
 
 
 
 
 560			X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
 561		return;
 562	cond_local_irq_enable(regs);
 563
 564	if (!user_mode(regs))
 565		die("bounds", regs, 0);
 566
 567	do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, 0, 0, NULL);
 
 
 
 568
 569	cond_local_irq_disable(regs);
 570}
 571
 572enum kernel_gp_hint {
 573	GP_NO_HINT,
 574	GP_NON_CANONICAL,
 575	GP_CANONICAL
 576};
 577
 578/*
 579 * When an uncaught #GP occurs, try to determine the memory address accessed by
 580 * the instruction and return that address to the caller. Also, try to figure
 581 * out whether any part of the access to that address was non-canonical.
 582 */
 583static enum kernel_gp_hint get_kernel_gp_address(struct pt_regs *regs,
 584						 unsigned long *addr)
 585{
 586	u8 insn_buf[MAX_INSN_SIZE];
 587	struct insn insn;
 588	int ret;
 589
 590	if (copy_from_kernel_nofault(insn_buf, (void *)regs->ip,
 591			MAX_INSN_SIZE))
 592		return GP_NO_HINT;
 593
 594	ret = insn_decode_kernel(&insn, insn_buf);
 595	if (ret < 0)
 596		return GP_NO_HINT;
 597
 598	*addr = (unsigned long)insn_get_addr_ref(&insn, regs);
 599	if (*addr == -1UL)
 600		return GP_NO_HINT;
 601
 602#ifdef CONFIG_X86_64
 603	/*
 604	 * Check that:
 605	 *  - the operand is not in the kernel half
 606	 *  - the last byte of the operand is not in the user canonical half
 607	 */
 608	if (*addr < ~__VIRTUAL_MASK &&
 609	    *addr + insn.opnd_bytes - 1 > __VIRTUAL_MASK)
 610		return GP_NON_CANONICAL;
 611#endif
 612
 613	return GP_CANONICAL;
 614}
 615
 616#define GPFSTR "general protection fault"
 617
 618static bool fixup_iopl_exception(struct pt_regs *regs)
 619{
 620	struct thread_struct *t = &current->thread;
 621	unsigned char byte;
 622	unsigned long ip;
 623
 624	if (!IS_ENABLED(CONFIG_X86_IOPL_IOPERM) || t->iopl_emul != 3)
 625		return false;
 626
 627	if (insn_get_effective_ip(regs, &ip))
 628		return false;
 629
 630	if (get_user(byte, (const char __user *)ip))
 631		return false;
 632
 633	if (byte != 0xfa && byte != 0xfb)
 634		return false;
 635
 636	if (!t->iopl_warn && printk_ratelimit()) {
 637		pr_err("%s[%d] attempts to use CLI/STI, pretending it's a NOP, ip:%lx",
 638		       current->comm, task_pid_nr(current), ip);
 639		print_vma_addr(KERN_CONT " in ", ip);
 640		pr_cont("\n");
 641		t->iopl_warn = 1;
 
 
 
 
 
 642	}
 643
 644	regs->ip += 1;
 645	return true;
 646}
 647
 648/*
 649 * The unprivileged ENQCMD instruction generates #GPs if the
 650 * IA32_PASID MSR has not been populated.  If possible, populate
 651 * the MSR from a PASID previously allocated to the mm.
 652 */
 653static bool try_fixup_enqcmd_gp(void)
 654{
 655#ifdef CONFIG_IOMMU_SVA
 656	u32 pasid;
 657
 
 658	/*
 659	 * MSR_IA32_PASID is managed using XSAVE.  Directly
 660	 * writing to the MSR is only possible when fpregs
 661	 * are valid and the fpstate is not.  This is
 662	 * guaranteed when handling a userspace exception
 663	 * in *before* interrupts are re-enabled.
 664	 */
 665	lockdep_assert_irqs_disabled();
 666
 667	/*
 668	 * Hardware without ENQCMD will not generate
 669	 * #GPs that can be fixed up here.
 670	 */
 671	if (!cpu_feature_enabled(X86_FEATURE_ENQCMD))
 672		return false;
 673
 674	pasid = current->mm->pasid;
 675
 676	/*
 677	 * If the mm has not been allocated a
 678	 * PASID, the #GP can not be fixed up.
 679	 */
 680	if (!pasid_valid(pasid))
 681		return false;
 682
 683	/*
 684	 * Did this thread already have its PASID activated?
 685	 * If so, the #GP must be from something else.
 686	 */
 687	if (current->pasid_activated)
 688		return false;
 689
 690	wrmsrl(MSR_IA32_PASID, pasid | MSR_IA32_PASID_VALID);
 691	current->pasid_activated = 1;
 692
 693	return true;
 694#else
 695	return false;
 696#endif
 697}
 698
 699static bool gp_try_fixup_and_notify(struct pt_regs *regs, int trapnr,
 700				    unsigned long error_code, const char *str)
 701{
 702	if (fixup_exception(regs, trapnr, error_code, 0))
 703		return true;
 704
 705	current->thread.error_code = error_code;
 706	current->thread.trap_nr = trapnr;
 707
 708	/*
 709	 * To be potentially processing a kprobe fault and to trust the result
 710	 * from kprobe_running(), we have to be non-preemptible.
 711	 */
 712	if (!preemptible() && kprobe_running() &&
 713	    kprobe_fault_handler(regs, trapnr))
 714		return true;
 715
 716	return notify_die(DIE_GPF, str, regs, error_code, trapnr, SIGSEGV) == NOTIFY_STOP;
 717}
 718
 719static void gp_user_force_sig_segv(struct pt_regs *regs, int trapnr,
 720				   unsigned long error_code, const char *str)
 721{
 722	current->thread.error_code = error_code;
 723	current->thread.trap_nr = trapnr;
 724	show_signal(current, SIGSEGV, "", str, regs, error_code);
 725	force_sig(SIGSEGV);
 726}
 727
 728DEFINE_IDTENTRY_ERRORCODE(exc_general_protection)
 729{
 730	char desc[sizeof(GPFSTR) + 50 + 2*sizeof(unsigned long) + 1] = GPFSTR;
 731	enum kernel_gp_hint hint = GP_NO_HINT;
 732	unsigned long gp_addr;
 733
 734	if (user_mode(regs) && try_fixup_enqcmd_gp())
 735		return;
 736
 
 737	cond_local_irq_enable(regs);
 738
 739	if (static_cpu_has(X86_FEATURE_UMIP)) {
 740		if (user_mode(regs) && fixup_umip_exception(regs))
 741			goto exit;
 742	}
 743
 744	if (v8086_mode(regs)) {
 745		local_irq_enable();
 746		handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
 747		local_irq_disable();
 748		return;
 749	}
 750
 751	if (user_mode(regs)) {
 752		if (fixup_iopl_exception(regs))
 753			goto exit;
 
 754
 755		if (fixup_vdso_exception(regs, X86_TRAP_GP, error_code, 0))
 756			goto exit;
 757
 758		gp_user_force_sig_segv(regs, X86_TRAP_GP, error_code, desc);
 759		goto exit;
 
 760	}
 761
 762	if (gp_try_fixup_and_notify(regs, X86_TRAP_GP, error_code, desc))
 763		goto exit;
 764
 765	if (error_code)
 766		snprintf(desc, sizeof(desc), "segment-related " GPFSTR);
 767	else
 768		hint = get_kernel_gp_address(regs, &gp_addr);
 769
 770	if (hint != GP_NO_HINT)
 771		snprintf(desc, sizeof(desc), GPFSTR ", %s 0x%lx",
 772			 (hint == GP_NON_CANONICAL) ? "probably for non-canonical address"
 773						    : "maybe for address",
 774			 gp_addr);
 775
 776	/*
 777	 * KASAN is interested only in the non-canonical case, clear it
 778	 * otherwise.
 779	 */
 780	if (hint != GP_NON_CANONICAL)
 781		gp_addr = 0;
 782
 783	die_addr(desc, regs, error_code, gp_addr);
 784
 785exit:
 786	cond_local_irq_disable(regs);
 787}
 
 788
 789static bool do_int3(struct pt_regs *regs)
 790{
 791	int res;
 
 
 
 
 
 
 
 
 
 
 792
 
 
 
 
 
 
 
 
 
 793#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
 794	if (kgdb_ll_trap(DIE_INT3, "int3", regs, 0, X86_TRAP_BP,
 795			 SIGTRAP) == NOTIFY_STOP)
 796		return true;
 797#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
 798
 799#ifdef CONFIG_KPROBES
 800	if (kprobe_int3_handler(regs))
 801		return true;
 802#endif
 803	res = notify_die(DIE_INT3, "int3", regs, 0, X86_TRAP_BP, SIGTRAP);
 804
 805	return res == NOTIFY_STOP;
 806}
 807NOKPROBE_SYMBOL(do_int3);
 808
 809static void do_int3_user(struct pt_regs *regs)
 810{
 811	if (do_int3(regs))
 812		return;
 813
 814	cond_local_irq_enable(regs);
 815	do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, 0, 0, NULL);
 816	cond_local_irq_disable(regs);
 817}
 818
 819DEFINE_IDTENTRY_RAW(exc_int3)
 820{
 821	/*
 822	 * poke_int3_handler() is completely self contained code; it does (and
 823	 * must) *NOT* call out to anything, lest it hits upon yet another
 824	 * INT3.
 825	 */
 826	if (poke_int3_handler(regs))
 827		return;
 828
 829	/*
 830	 * irqentry_enter_from_user_mode() uses static_branch_{,un}likely()
 831	 * and therefore can trigger INT3, hence poke_int3_handler() must
 832	 * be done before. If the entry came from kernel mode, then use
 833	 * nmi_enter() because the INT3 could have been hit in any context
 834	 * including NMI.
 835	 */
 836	if (user_mode(regs)) {
 837		irqentry_enter_from_user_mode(regs);
 838		instrumentation_begin();
 839		do_int3_user(regs);
 840		instrumentation_end();
 841		irqentry_exit_to_user_mode(regs);
 842	} else {
 843		irqentry_state_t irq_state = irqentry_nmi_enter(regs);
 844
 845		instrumentation_begin();
 846		if (!do_int3(regs))
 847			die("int3", regs, 0);
 848		instrumentation_end();
 849		irqentry_nmi_exit(regs, irq_state);
 850	}
 851}
 
 852
 853#ifdef CONFIG_X86_64
 854/*
 855 * Help handler running on a per-cpu (IST or entry trampoline) stack
 856 * to switch to the normal thread stack if the interrupted code was in
 857 * user mode. The actual stack switch is done in entry_64.S
 858 */
 859asmlinkage __visible noinstr struct pt_regs *sync_regs(struct pt_regs *eregs)
 860{
 861	struct pt_regs *regs = (struct pt_regs *)this_cpu_read(pcpu_hot.top_of_stack) - 1;
 862	if (regs != eregs)
 863		*regs = *eregs;
 864	return regs;
 865}
 
 866
 867#ifdef CONFIG_AMD_MEM_ENCRYPT
 868asmlinkage __visible noinstr struct pt_regs *vc_switch_off_ist(struct pt_regs *regs)
 869{
 870	unsigned long sp, *stack;
 871	struct stack_info info;
 872	struct pt_regs *regs_ret;
 873
 874	/*
 875	 * In the SYSCALL entry path the RSP value comes from user-space - don't
 876	 * trust it and switch to the current kernel stack
 877	 */
 878	if (ip_within_syscall_gap(regs)) {
 879		sp = this_cpu_read(pcpu_hot.top_of_stack);
 880		goto sync;
 881	}
 882
 883	/*
 884	 * From here on the RSP value is trusted. Now check whether entry
 885	 * happened from a safe stack. Not safe are the entry or unknown stacks,
 886	 * use the fall-back stack instead in this case.
 887	 */
 888	sp    = regs->sp;
 889	stack = (unsigned long *)sp;
 890
 891	if (!get_stack_info_noinstr(stack, current, &info) || info.type == STACK_TYPE_ENTRY ||
 892	    info.type > STACK_TYPE_EXCEPTION_LAST)
 893		sp = __this_cpu_ist_top_va(VC2);
 894
 895sync:
 896	/*
 897	 * Found a safe stack - switch to it as if the entry didn't happen via
 898	 * IST stack. The code below only copies pt_regs, the real switch happens
 899	 * in assembly code.
 900	 */
 901	sp = ALIGN_DOWN(sp, 8) - sizeof(*regs_ret);
 902
 903	regs_ret = (struct pt_regs *)sp;
 904	*regs_ret = *regs;
 905
 906	return regs_ret;
 907}
 908#endif
 909
 910asmlinkage __visible noinstr struct pt_regs *fixup_bad_iret(struct pt_regs *bad_regs)
 
 911{
 912	struct pt_regs tmp, *new_stack;
 913
 914	/*
 915	 * This is called from entry_64.S early in handling a fault
 916	 * caused by a bad iret to user mode.  To handle the fault
 917	 * correctly, we want to move our stack frame to where it would
 918	 * be had we entered directly on the entry stack (rather than
 919	 * just below the IRET frame) and we want to pretend that the
 920	 * exception came from the IRET target.
 921	 */
 922	new_stack = (struct pt_regs *)__this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
 
 923
 924	/* Copy the IRET target to the temporary storage. */
 925	__memcpy(&tmp.ip, (void *)bad_regs->sp, 5*8);
 926
 927	/* Copy the remainder of the stack from the current stack. */
 928	__memcpy(&tmp, bad_regs, offsetof(struct pt_regs, ip));
 929
 930	/* Update the entry stack */
 931	__memcpy(new_stack, &tmp, sizeof(tmp));
 932
 933	BUG_ON(!user_mode(new_stack));
 934	return new_stack;
 935}
 
 936#endif
 937
 938static bool is_sysenter_singlestep(struct pt_regs *regs)
 939{
 940	/*
 941	 * We don't try for precision here.  If we're anywhere in the region of
 942	 * code that can be single-stepped in the SYSENTER entry path, then
 943	 * assume that this is a useless single-step trap due to SYSENTER
 944	 * being invoked with TF set.  (We don't know in advance exactly
 945	 * which instructions will be hit because BTF could plausibly
 946	 * be set.)
 947	 */
 948#ifdef CONFIG_X86_32
 949	return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
 950		(unsigned long)__end_SYSENTER_singlestep_region -
 951		(unsigned long)__begin_SYSENTER_singlestep_region;
 952#elif defined(CONFIG_IA32_EMULATION)
 953	return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
 954		(unsigned long)__end_entry_SYSENTER_compat -
 955		(unsigned long)entry_SYSENTER_compat;
 956#else
 957	return false;
 958#endif
 959}
 960
 961static __always_inline unsigned long debug_read_clear_dr6(void)
 962{
 963	unsigned long dr6;
 964
 965	/*
 966	 * The Intel SDM says:
 967	 *
 968	 *   Certain debug exceptions may clear bits 0-3. The remaining
 969	 *   contents of the DR6 register are never cleared by the
 970	 *   processor. To avoid confusion in identifying debug
 971	 *   exceptions, debug handlers should clear the register before
 972	 *   returning to the interrupted task.
 973	 *
 974	 * Keep it simple: clear DR6 immediately.
 975	 */
 976	get_debugreg(dr6, 6);
 977	set_debugreg(DR6_RESERVED, 6);
 978	dr6 ^= DR6_RESERVED; /* Flip to positive polarity */
 979
 980	return dr6;
 981}
 982
 983/*
 984 * Our handling of the processor debug registers is non-trivial.
 985 * We do not clear them on entry and exit from the kernel. Therefore
 986 * it is possible to get a watchpoint trap here from inside the kernel.
 987 * However, the code in ./ptrace.c has ensured that the user can
 988 * only set watchpoints on userspace addresses. Therefore the in-kernel
 989 * watchpoint trap can only occur in code which is reading/writing
 990 * from user space. Such code must not hold kernel locks (since it
 991 * can equally take a page fault), therefore it is safe to call
 992 * force_sig_info even though that claims and releases locks.
 993 *
 994 * Code in ./signal.c ensures that the debug control register
 995 * is restored before we deliver any signal, and therefore that
 996 * user code runs with the correct debug control register even though
 997 * we clear it here.
 998 *
 999 * Being careful here means that we don't have to be as careful in a
1000 * lot of more complicated places (task switching can be a bit lazy
1001 * about restoring all the debug state, and ptrace doesn't have to
1002 * find every occurrence of the TF bit that could be saved away even
1003 * by user code)
1004 *
1005 * May run on IST stack.
1006 */
1007
1008static bool notify_debug(struct pt_regs *regs, unsigned long *dr6)
1009{
1010	/*
1011	 * Notifiers will clear bits in @dr6 to indicate the event has been
1012	 * consumed - hw_breakpoint_handler(), single_stop_cont().
1013	 *
1014	 * Notifiers will set bits in @virtual_dr6 to indicate the desire
1015	 * for signals - ptrace_triggered(), kgdb_hw_overflow_handler().
1016	 */
1017	if (notify_die(DIE_DEBUG, "debug", regs, (long)dr6, 0, SIGTRAP) == NOTIFY_STOP)
1018		return true;
1019
1020	return false;
1021}
1022
1023static __always_inline void exc_debug_kernel(struct pt_regs *regs,
1024					     unsigned long dr6)
1025{
1026	/*
1027	 * Disable breakpoints during exception handling; recursive exceptions
1028	 * are exceedingly 'fun'.
1029	 *
1030	 * Since this function is NOKPROBE, and that also applies to
1031	 * HW_BREAKPOINT_X, we can't hit a breakpoint before this (XXX except a
1032	 * HW_BREAKPOINT_W on our stack)
 
 
1033	 *
1034	 * Entry text is excluded for HW_BP_X and cpu_entry_area, which
1035	 * includes the entry stack is excluded for everything.
1036	 */
1037	unsigned long dr7 = local_db_save();
1038	irqentry_state_t irq_state = irqentry_nmi_enter(regs);
1039	instrumentation_begin();
 
1040
1041	/*
1042	 * If something gets miswired and we end up here for a user mode
1043	 * #DB, we will malfunction.
 
1044	 */
1045	WARN_ON_ONCE(user_mode(regs));
1046
1047	if (test_thread_flag(TIF_BLOCKSTEP)) {
 
 
 
 
1048		/*
1049		 * The SDM says "The processor clears the BTF flag when it
1050		 * generates a debug exception." but PTRACE_BLOCKSTEP requested
1051		 * it for userspace, but we just took a kernel #DB, so re-set
1052		 * BTF.
1053		 */
1054		unsigned long debugctl;
1055
1056		rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1057		debugctl |= DEBUGCTLMSR_BTF;
1058		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1059	}
1060
1061	/*
1062	 * Catch SYSENTER with TF set and clear DR_STEP. If this hit a
1063	 * watchpoint at the same time then that will still be handled.
 
1064	 */
1065	if ((dr6 & DR_STEP) && is_sysenter_singlestep(regs))
1066		dr6 &= ~DR_STEP;
1067
1068	/*
1069	 * The kernel doesn't use INT1
1070	 */
1071	if (!dr6)
1072		goto out;
1073
1074	if (notify_debug(regs, &dr6))
1075		goto out;
 
 
1076
1077	/*
1078	 * The kernel doesn't use TF single-step outside of:
1079	 *
1080	 *  - Kprobes, consumed through kprobe_debug_handler()
1081	 *  - KGDB, consumed through notify_debug()
1082	 *
1083	 * So if we get here with DR_STEP set, something is wonky.
1084	 *
1085	 * A known way to trigger this is through QEMU's GDB stub,
1086	 * which leaks #DB into the guest and causes IST recursion.
1087	 */
1088	if (WARN_ON_ONCE(dr6 & DR_STEP))
1089		regs->flags &= ~X86_EFLAGS_TF;
1090out:
1091	instrumentation_end();
1092	irqentry_nmi_exit(regs, irq_state);
1093
1094	local_db_restore(dr7);
1095}
1096
1097static __always_inline void exc_debug_user(struct pt_regs *regs,
1098					   unsigned long dr6)
1099{
1100	bool icebp;
1101
1102	/*
1103	 * If something gets miswired and we end up here for a kernel mode
1104	 * #DB, we will malfunction.
1105	 */
1106	WARN_ON_ONCE(!user_mode(regs));
1107
1108	/*
1109	 * NB: We can't easily clear DR7 here because
1110	 * irqentry_exit_to_usermode() can invoke ptrace, schedule, access
1111	 * user memory, etc.  This means that a recursive #DB is possible.  If
1112	 * this happens, that #DB will hit exc_debug_kernel() and clear DR7.
1113	 * Since we're not on the IST stack right now, everything will be
1114	 * fine.
1115	 */
1116
1117	irqentry_enter_from_user_mode(regs);
1118	instrumentation_begin();
1119
1120	/*
1121	 * Start the virtual/ptrace DR6 value with just the DR_STEP mask
1122	 * of the real DR6. ptrace_triggered() will set the DR_TRAPn bits.
1123	 *
1124	 * Userspace expects DR_STEP to be visible in ptrace_get_debugreg(6)
1125	 * even if it is not the result of PTRACE_SINGLESTEP.
1126	 */
1127	current->thread.virtual_dr6 = (dr6 & DR_STEP);
1128
1129	/*
1130	 * The SDM says "The processor clears the BTF flag when it
1131	 * generates a debug exception."  Clear TIF_BLOCKSTEP to keep
1132	 * TIF_BLOCKSTEP in sync with the hardware BTF flag.
1133	 */
1134	clear_thread_flag(TIF_BLOCKSTEP);
1135
1136	/*
1137	 * If dr6 has no reason to give us about the origin of this trap,
1138	 * then it's very likely the result of an icebp/int01 trap.
1139	 * User wants a sigtrap for that.
1140	 */
1141	icebp = !dr6;
1142
1143	if (notify_debug(regs, &dr6))
1144		goto out;
1145
1146	/* It's safe to allow irq's after DR6 has been saved */
1147	local_irq_enable();
1148
1149	if (v8086_mode(regs)) {
1150		handle_vm86_trap((struct kernel_vm86_regs *)regs, 0, X86_TRAP_DB);
1151		goto out_irq;
 
 
 
1152	}
1153
1154	/* #DB for bus lock can only be triggered from userspace. */
1155	if (dr6 & DR_BUS_LOCK)
1156		handle_bus_lock(regs);
1157
1158	/* Add the virtual_dr6 bits for signals. */
1159	dr6 |= current->thread.virtual_dr6;
1160	if (dr6 & (DR_STEP | DR_TRAP_BITS) || icebp)
1161		send_sigtrap(regs, 0, get_si_code(dr6));
1162
1163out_irq:
1164	local_irq_disable();
1165out:
1166	instrumentation_end();
1167	irqentry_exit_to_user_mode(regs);
1168}
 
1169
1170#ifdef CONFIG_X86_64
1171/* IST stack entry */
1172DEFINE_IDTENTRY_DEBUG(exc_debug)
1173{
1174	exc_debug_kernel(regs, debug_read_clear_dr6());
1175}
1176
1177/* User entry, runs on regular task stack */
1178DEFINE_IDTENTRY_DEBUG_USER(exc_debug)
1179{
1180	exc_debug_user(regs, debug_read_clear_dr6());
1181}
1182#else
1183/* 32 bit does not have separate entry points. */
1184DEFINE_IDTENTRY_RAW(exc_debug)
1185{
1186	unsigned long dr6 = debug_read_clear_dr6();
1187
1188	if (user_mode(regs))
1189		exc_debug_user(regs, dr6);
1190	else
1191		exc_debug_kernel(regs, dr6);
1192}
1193#endif
1194
1195/*
1196 * Note that we play around with the 'TS' bit in an attempt to get
1197 * the correct behaviour even in the presence of the asynchronous
1198 * IRQ13 behaviour
1199 */
1200static void math_error(struct pt_regs *regs, int trapnr)
1201{
1202	struct task_struct *task = current;
1203	struct fpu *fpu = &task->thread.fpu;
1204	int si_code;
1205	char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
1206						"simd exception";
1207
 
 
1208	cond_local_irq_enable(regs);
1209
1210	if (!user_mode(regs)) {
1211		if (fixup_exception(regs, trapnr, 0, 0))
1212			goto exit;
1213
1214		task->thread.error_code = 0;
1215		task->thread.trap_nr = trapnr;
1216
1217		if (notify_die(DIE_TRAP, str, regs, 0, trapnr,
1218			       SIGFPE) != NOTIFY_STOP)
1219			die(str, regs, 0);
1220		goto exit;
1221	}
1222
1223	/*
1224	 * Synchronize the FPU register state to the memory register state
1225	 * if necessary. This allows the exception handler to inspect it.
1226	 */
1227	fpu_sync_fpstate(fpu);
1228
1229	task->thread.trap_nr	= trapnr;
1230	task->thread.error_code = 0;
 
 
 
 
 
1231
1232	si_code = fpu__exception_code(fpu, trapnr);
1233	/* Retry when we get spurious exceptions: */
1234	if (!si_code)
1235		goto exit;
1236
1237	if (fixup_vdso_exception(regs, trapnr, 0, 0))
1238		goto exit;
1239
1240	force_sig_fault(SIGFPE, si_code,
1241			(void __user *)uprobe_get_trap_addr(regs));
1242exit:
1243	cond_local_irq_disable(regs);
1244}
1245
1246DEFINE_IDTENTRY(exc_coprocessor_error)
1247{
1248	math_error(regs, X86_TRAP_MF);
 
1249}
1250
1251DEFINE_IDTENTRY(exc_simd_coprocessor_error)
 
1252{
1253	if (IS_ENABLED(CONFIG_X86_INVD_BUG)) {
1254		/* AMD 486 bug: INVD in CPL 0 raises #XF instead of #GP */
1255		if (!static_cpu_has(X86_FEATURE_XMM)) {
1256			__exc_general_protection(regs, 0);
1257			return;
1258		}
1259	}
1260	math_error(regs, X86_TRAP_XF);
1261}
1262
1263DEFINE_IDTENTRY(exc_spurious_interrupt_bug)
 
1264{
1265	/*
1266	 * This addresses a Pentium Pro Erratum:
1267	 *
1268	 * PROBLEM: If the APIC subsystem is configured in mixed mode with
1269	 * Virtual Wire mode implemented through the local APIC, an
1270	 * interrupt vector of 0Fh (Intel reserved encoding) may be
1271	 * generated by the local APIC (Int 15).  This vector may be
1272	 * generated upon receipt of a spurious interrupt (an interrupt
1273	 * which is removed before the system receives the INTA sequence)
1274	 * instead of the programmed 8259 spurious interrupt vector.
1275	 *
1276	 * IMPLICATION: The spurious interrupt vector programmed in the
1277	 * 8259 is normally handled by an operating system's spurious
1278	 * interrupt handler. However, a vector of 0Fh is unknown to some
1279	 * operating systems, which would crash if this erratum occurred.
1280	 *
1281	 * In theory this could be limited to 32bit, but the handler is not
1282	 * hurting and who knows which other CPUs suffer from this.
1283	 */
1284}
1285
1286static bool handle_xfd_event(struct pt_regs *regs)
 
1287{
1288	u64 xfd_err;
1289	int err;
1290
1291	if (!IS_ENABLED(CONFIG_X86_64) || !cpu_feature_enabled(X86_FEATURE_XFD))
1292		return false;
1293
1294	rdmsrl(MSR_IA32_XFD_ERR, xfd_err);
1295	if (!xfd_err)
1296		return false;
1297
1298	wrmsrl(MSR_IA32_XFD_ERR, 0);
1299
1300	/* Die if that happens in kernel space */
1301	if (WARN_ON(!user_mode(regs)))
1302		return false;
1303
1304	local_irq_enable();
1305
1306	err = xfd_enable_feature(xfd_err);
1307
1308	switch (err) {
1309	case -EPERM:
1310		force_sig_fault(SIGILL, ILL_ILLOPC, error_get_trap_addr(regs));
1311		break;
1312	case -EFAULT:
1313		force_sig(SIGSEGV);
1314		break;
1315	}
1316
1317	local_irq_disable();
1318	return true;
1319}
1320
1321DEFINE_IDTENTRY(exc_device_not_available)
1322{
1323	unsigned long cr0 = read_cr0();
1324
1325	if (handle_xfd_event(regs))
1326		return;
1327
1328#ifdef CONFIG_MATH_EMULATION
1329	if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) {
1330		struct math_emu_info info = { };
1331
1332		cond_local_irq_enable(regs);
1333
1334		info.regs = regs;
1335		math_emulate(&info);
1336
1337		cond_local_irq_disable(regs);
1338		return;
1339	}
1340#endif
1341
1342	/* This should not happen. */
 
1343	if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
1344		/* Try to fix it up and carry on. */
1345		write_cr0(cr0 & ~X86_CR0_TS);
1346	} else {
1347		/*
1348		 * Something terrible happened, and we're better off trying
1349		 * to kill the task than getting stuck in a never-ending
1350		 * loop of #NM faults.
1351		 */
1352		die("unexpected #NM exception", regs, 0);
1353	}
1354}
 
1355
1356#ifdef CONFIG_INTEL_TDX_GUEST
1357
1358#define VE_FAULT_STR "VE fault"
1359
1360static void ve_raise_fault(struct pt_regs *regs, long error_code)
1361{
1362	if (user_mode(regs)) {
1363		gp_user_force_sig_segv(regs, X86_TRAP_VE, error_code, VE_FAULT_STR);
1364		return;
1365	}
1366
1367	if (gp_try_fixup_and_notify(regs, X86_TRAP_VE, error_code, VE_FAULT_STR))
1368		return;
1369
1370	die_addr(VE_FAULT_STR, regs, error_code, 0);
1371}
1372
1373/*
1374 * Virtualization Exceptions (#VE) are delivered to TDX guests due to
1375 * specific guest actions which may happen in either user space or the
1376 * kernel:
1377 *
1378 *  * Specific instructions (WBINVD, for example)
1379 *  * Specific MSR accesses
1380 *  * Specific CPUID leaf accesses
1381 *  * Access to specific guest physical addresses
1382 *
1383 * In the settings that Linux will run in, virtualization exceptions are
1384 * never generated on accesses to normal, TD-private memory that has been
1385 * accepted (by BIOS or with tdx_enc_status_changed()).
1386 *
1387 * Syscall entry code has a critical window where the kernel stack is not
1388 * yet set up. Any exception in this window leads to hard to debug issues
1389 * and can be exploited for privilege escalation. Exceptions in the NMI
1390 * entry code also cause issues. Returning from the exception handler with
1391 * IRET will re-enable NMIs and nested NMI will corrupt the NMI stack.
1392 *
1393 * For these reasons, the kernel avoids #VEs during the syscall gap and
1394 * the NMI entry code. Entry code paths do not access TD-shared memory,
1395 * MMIO regions, use #VE triggering MSRs, instructions, or CPUID leaves
1396 * that might generate #VE. VMM can remove memory from TD at any point,
1397 * but access to unaccepted (or missing) private memory leads to VM
1398 * termination, not to #VE.
1399 *
1400 * Similarly to page faults and breakpoints, #VEs are allowed in NMI
1401 * handlers once the kernel is ready to deal with nested NMIs.
1402 *
1403 * During #VE delivery, all interrupts, including NMIs, are blocked until
1404 * TDGETVEINFO is called. It prevents #VE nesting until the kernel reads
1405 * the VE info.
1406 *
1407 * If a guest kernel action which would normally cause a #VE occurs in
1408 * the interrupt-disabled region before TDGETVEINFO, a #DF (fault
1409 * exception) is delivered to the guest which will result in an oops.
1410 *
1411 * The entry code has been audited carefully for following these expectations.
1412 * Changes in the entry code have to be audited for correctness vs. this
1413 * aspect. Similarly to #PF, #VE in these places will expose kernel to
1414 * privilege escalation or may lead to random crashes.
1415 */
1416DEFINE_IDTENTRY(exc_virtualization_exception)
1417{
1418	struct ve_info ve;
1419
1420	/*
1421	 * NMIs/Machine-checks/Interrupts will be in a disabled state
1422	 * till TDGETVEINFO TDCALL is executed. This ensures that VE
1423	 * info cannot be overwritten by a nested #VE.
1424	 */
1425	tdx_get_ve_info(&ve);
1426
1427	cond_local_irq_enable(regs);
1428
1429	/*
1430	 * If tdx_handle_virt_exception() could not process
1431	 * it successfully, treat it as #GP(0) and handle it.
1432	 */
1433	if (!tdx_handle_virt_exception(regs, &ve))
1434		ve_raise_fault(regs, 0);
1435
1436	cond_local_irq_disable(regs);
1437}
1438
1439#endif
1440
1441#ifdef CONFIG_X86_32
1442DEFINE_IDTENTRY_SW(iret_error)
1443{
1444	local_irq_enable();
1445	if (notify_die(DIE_TRAP, "iret exception", regs, 0,
1446			X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
1447		do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, 0,
1448			ILL_BADSTK, (void __user *)NULL);
1449	}
1450	local_irq_disable();
1451}
1452#endif
1453
1454void __init trap_init(void)
1455{
1456	/* Init cpu_entry_area before IST entries are set up */
1457	setup_cpu_entry_areas();
1458
1459	/* Init GHCB memory pages when running as an SEV-ES guest */
1460	sev_es_init_vc_handling();
 
 
 
 
 
 
 
 
1461
1462	/* Initialize TSS before setting up traps so ISTs work */
1463	cpu_init_exception_handling();
1464	/* Setup traps as cpu_init() might #GP */
1465	idt_setup_traps();
1466	cpu_init();
 
 
 
 
 
 
1467}