Linux Audio

Check our new training course

Loading...
v4.17
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 *  linux/mm/swap_state.c
  4 *
  5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
  6 *  Swap reorganised 29.12.95, Stephen Tweedie
  7 *
  8 *  Rewritten to use page cache, (C) 1998 Stephen Tweedie
  9 */
 10#include <linux/mm.h>
 11#include <linux/gfp.h>
 12#include <linux/kernel_stat.h>
 
 13#include <linux/swap.h>
 14#include <linux/swapops.h>
 15#include <linux/init.h>
 16#include <linux/pagemap.h>
 
 17#include <linux/backing-dev.h>
 18#include <linux/blkdev.h>
 19#include <linux/pagevec.h>
 20#include <linux/migrate.h>
 21#include <linux/vmalloc.h>
 22#include <linux/swap_slots.h>
 23#include <linux/huge_mm.h>
 24
 25#include <asm/pgtable.h>
 
 26
 27/*
 28 * swapper_space is a fiction, retained to simplify the path through
 29 * vmscan's shrink_page_list.
 30 */
 31static const struct address_space_operations swap_aops = {
 32	.writepage	= swap_writepage,
 33	.set_page_dirty	= swap_set_page_dirty,
 34#ifdef CONFIG_MIGRATION
 35	.migratepage	= migrate_page,
 36#endif
 37};
 38
 39struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly;
 40static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly;
 41static bool enable_vma_readahead __read_mostly = true;
 42
 43#define SWAP_RA_WIN_SHIFT	(PAGE_SHIFT / 2)
 44#define SWAP_RA_HITS_MASK	((1UL << SWAP_RA_WIN_SHIFT) - 1)
 45#define SWAP_RA_HITS_MAX	SWAP_RA_HITS_MASK
 46#define SWAP_RA_WIN_MASK	(~PAGE_MASK & ~SWAP_RA_HITS_MASK)
 47
 48#define SWAP_RA_HITS(v)		((v) & SWAP_RA_HITS_MASK)
 49#define SWAP_RA_WIN(v)		(((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
 50#define SWAP_RA_ADDR(v)		((v) & PAGE_MASK)
 51
 52#define SWAP_RA_VAL(addr, win, hits)				\
 53	(((addr) & PAGE_MASK) |					\
 54	 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) |	\
 55	 ((hits) & SWAP_RA_HITS_MASK))
 56
 57/* Initial readahead hits is 4 to start up with a small window */
 58#define GET_SWAP_RA_VAL(vma)					\
 59	(atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
 60
 61#define INC_CACHE_INFO(x)	do { swap_cache_info.x++; } while (0)
 62#define ADD_CACHE_INFO(x, nr)	do { swap_cache_info.x += (nr); } while (0)
 63
 64static struct {
 65	unsigned long add_total;
 66	unsigned long del_total;
 67	unsigned long find_success;
 68	unsigned long find_total;
 69} swap_cache_info;
 70
 71unsigned long total_swapcache_pages(void)
 72{
 73	unsigned int i, j, nr;
 74	unsigned long ret = 0;
 75	struct address_space *spaces;
 76
 77	rcu_read_lock();
 78	for (i = 0; i < MAX_SWAPFILES; i++) {
 79		/*
 80		 * The corresponding entries in nr_swapper_spaces and
 81		 * swapper_spaces will be reused only after at least
 82		 * one grace period.  So it is impossible for them
 83		 * belongs to different usage.
 84		 */
 85		nr = nr_swapper_spaces[i];
 86		spaces = rcu_dereference(swapper_spaces[i]);
 87		if (!nr || !spaces)
 88			continue;
 89		for (j = 0; j < nr; j++)
 90			ret += spaces[j].nrpages;
 91	}
 92	rcu_read_unlock();
 93	return ret;
 94}
 95
 96static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
 97
 98void show_swap_cache_info(void)
 99{
100	printk("%lu pages in swap cache\n", total_swapcache_pages());
101	printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
102		swap_cache_info.add_total, swap_cache_info.del_total,
103		swap_cache_info.find_success, swap_cache_info.find_total);
104	printk("Free swap  = %ldkB\n",
105		get_nr_swap_pages() << (PAGE_SHIFT - 10));
106	printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
 
 
 
 
 
 
 
 
107}
108
109/*
110 * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
111 * but sets SwapCache flag and private instead of mapping and index.
112 */
113int __add_to_swap_cache(struct page *page, swp_entry_t entry)
 
114{
115	int error, i, nr = hpage_nr_pages(page);
116	struct address_space *address_space;
117	pgoff_t idx = swp_offset(entry);
 
 
 
 
 
 
 
 
 
 
 
 
 
118
119	VM_BUG_ON_PAGE(!PageLocked(page), page);
120	VM_BUG_ON_PAGE(PageSwapCache(page), page);
121	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
122
123	page_ref_add(page, nr);
124	SetPageSwapCache(page);
125
126	address_space = swap_address_space(entry);
127	xa_lock_irq(&address_space->i_pages);
128	for (i = 0; i < nr; i++) {
129		set_page_private(page + i, entry.val + i);
130		error = radix_tree_insert(&address_space->i_pages,
131					  idx + i, page + i);
132		if (unlikely(error))
133			break;
134	}
135	if (likely(!error)) {
136		address_space->nrpages += nr;
137		__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
138		ADD_CACHE_INFO(add_total, nr);
139	} else {
140		/*
141		 * Only the context which have set SWAP_HAS_CACHE flag
142		 * would call add_to_swap_cache().
143		 * So add_to_swap_cache() doesn't returns -EEXIST.
144		 */
145		VM_BUG_ON(error == -EEXIST);
146		set_page_private(page + i, 0UL);
147		while (i--) {
148			radix_tree_delete(&address_space->i_pages, idx + i);
149			set_page_private(page + i, 0UL);
150		}
151		ClearPageSwapCache(page);
152		page_ref_sub(page, nr);
153	}
154	xa_unlock_irq(&address_space->i_pages);
155
156	return error;
157}
158
159
160int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
161{
162	int error;
163
164	error = radix_tree_maybe_preload_order(gfp_mask, compound_order(page));
165	if (!error) {
166		error = __add_to_swap_cache(page, entry);
167		radix_tree_preload_end();
168	}
169	return error;
170}
171
172/*
173 * This must be called only on pages that have
174 * been verified to be in the swap cache.
175 */
176void __delete_from_swap_cache(struct page *page)
 
177{
178	struct address_space *address_space;
179	int i, nr = hpage_nr_pages(page);
180	swp_entry_t entry;
181	pgoff_t idx;
 
 
 
 
 
 
 
182
183	VM_BUG_ON_PAGE(!PageLocked(page), page);
184	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
185	VM_BUG_ON_PAGE(PageWriteback(page), page);
186
187	entry.val = page_private(page);
188	address_space = swap_address_space(entry);
189	idx = swp_offset(entry);
190	for (i = 0; i < nr; i++) {
191		radix_tree_delete(&address_space->i_pages, idx + i);
192		set_page_private(page + i, 0);
 
193	}
194	ClearPageSwapCache(page);
 
195	address_space->nrpages -= nr;
196	__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
197	ADD_CACHE_INFO(del_total, nr);
198}
199
200/**
201 * add_to_swap - allocate swap space for a page
202 * @page: page we want to move to swap
 
 
 
203 *
204 * Allocate swap space for the page and add the page to the
205 * swap cache.  Caller needs to hold the page lock. 
206 */
207int add_to_swap(struct page *page)
208{
209	swp_entry_t entry;
210	int err;
211
212	VM_BUG_ON_PAGE(!PageLocked(page), page);
213	VM_BUG_ON_PAGE(!PageUptodate(page), page);
214
215	entry = get_swap_page(page);
216	if (!entry.val)
217		return 0;
218
219	if (mem_cgroup_try_charge_swap(page, entry))
220		goto fail;
221
222	/*
223	 * Radix-tree node allocations from PF_MEMALLOC contexts could
224	 * completely exhaust the page allocator. __GFP_NOMEMALLOC
225	 * stops emergency reserves from being allocated.
226	 *
227	 * TODO: this could cause a theoretical memory reclaim
228	 * deadlock in the swap out path.
229	 */
230	/*
231	 * Add it to the swap cache.
232	 */
233	err = add_to_swap_cache(page, entry,
234			__GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
235	/* -ENOMEM radix-tree allocation failure */
236	if (err)
237		/*
238		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
239		 * clear SWAP_HAS_CACHE flag.
240		 */
241		goto fail;
242	/*
243	 * Normally the page will be dirtied in unmap because its pte should be
244	 * dirty. A special case is MADV_FREE page. The page'e pte could have
245	 * dirty bit cleared but the page's SwapBacked bit is still set because
246	 * clearing the dirty bit and SwapBacked bit has no lock protected. For
247	 * such page, unmap will not set dirty bit for it, so page reclaim will
248	 * not write the page out. This can cause data corruption when the page
249	 * is swap in later. Always setting the dirty bit for the page solves
250	 * the problem.
 
251	 */
252	set_page_dirty(page);
253
254	return 1;
255
256fail:
257	put_swap_page(page, entry);
258	return 0;
259}
260
261/*
262 * This must be called only on pages that have
263 * been verified to be in the swap cache and locked.
264 * It will never put the page into the free list,
265 * the caller has a reference on the page.
266 */
267void delete_from_swap_cache(struct page *page)
268{
269	swp_entry_t entry;
270	struct address_space *address_space;
271
272	entry.val = page_private(page);
273
274	address_space = swap_address_space(entry);
275	xa_lock_irq(&address_space->i_pages);
276	__delete_from_swap_cache(page);
277	xa_unlock_irq(&address_space->i_pages);
278
279	put_swap_page(page, entry);
280	page_ref_sub(page, hpage_nr_pages(page));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
281}
282
283/* 
284 * If we are the only user, then try to free up the swap cache. 
285 * 
286 * Its ok to check for PageSwapCache without the page lock
287 * here because we are going to recheck again inside
288 * try_to_free_swap() _with_ the lock.
289 * 					- Marcelo
290 */
291static inline void free_swap_cache(struct page *page)
292{
293	if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
294		try_to_free_swap(page);
295		unlock_page(page);
 
296	}
297}
298
299/* 
300 * Perform a free_page(), also freeing any swap cache associated with
301 * this page if it is the last user of the page.
302 */
303void free_page_and_swap_cache(struct page *page)
304{
305	free_swap_cache(page);
 
 
306	if (!is_huge_zero_page(page))
307		put_page(page);
308}
309
310/*
311 * Passed an array of pages, drop them all from swapcache and then release
312 * them.  They are removed from the LRU and freed if this is their last use.
313 */
314void free_pages_and_swap_cache(struct page **pages, int nr)
315{
316	struct page **pagep = pages;
317	int i;
318
319	lru_add_drain();
320	for (i = 0; i < nr; i++)
321		free_swap_cache(pagep[i]);
322	release_pages(pagep, nr);
 
 
 
 
 
 
 
 
 
 
 
 
323}
324
325static inline bool swap_use_vma_readahead(void)
326{
327	return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap);
328}
329
330/*
331 * Lookup a swap entry in the swap cache. A found page will be returned
332 * unlocked and with its refcount incremented - we rely on the kernel
333 * lock getting page table operations atomic even if we drop the page
334 * lock before returning.
 
 
335 */
336struct page *lookup_swap_cache(swp_entry_t entry, struct vm_area_struct *vma,
337			       unsigned long addr)
338{
339	struct page *page;
340
341	page = find_get_page(swap_address_space(entry), swp_offset(entry));
342
343	INC_CACHE_INFO(find_total);
344	if (page) {
345		bool vma_ra = swap_use_vma_readahead();
346		bool readahead;
347
348		INC_CACHE_INFO(find_success);
349		/*
350		 * At the moment, we don't support PG_readahead for anon THP
351		 * so let's bail out rather than confusing the readahead stat.
352		 */
353		if (unlikely(PageTransCompound(page)))
354			return page;
355
356		readahead = TestClearPageReadahead(page);
357		if (vma && vma_ra) {
358			unsigned long ra_val;
359			int win, hits;
360
361			ra_val = GET_SWAP_RA_VAL(vma);
362			win = SWAP_RA_WIN(ra_val);
363			hits = SWAP_RA_HITS(ra_val);
364			if (readahead)
365				hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX);
366			atomic_long_set(&vma->swap_readahead_info,
367					SWAP_RA_VAL(addr, win, hits));
368		}
369
370		if (readahead) {
371			count_vm_event(SWAP_RA_HIT);
372			if (!vma || !vma_ra)
373				atomic_inc(&swapin_readahead_hits);
374		}
 
 
375	}
376
377	return page;
378}
379
380struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
381			struct vm_area_struct *vma, unsigned long addr,
382			bool *new_page_allocated)
 
 
 
 
 
 
 
 
 
383{
384	struct page *found_page, *new_page = NULL;
385	struct address_space *swapper_space = swap_address_space(entry);
386	int err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
387	*new_page_allocated = false;
 
 
 
388
389	do {
 
390		/*
391		 * First check the swap cache.  Since this is normally
392		 * called after lookup_swap_cache() failed, re-calling
393		 * that would confuse statistics.
394		 */
395		found_page = find_get_page(swapper_space, swp_offset(entry));
396		if (found_page)
397			break;
 
398
399		/*
400		 * Just skip read ahead for unused swap slot.
401		 * During swap_off when swap_slot_cache is disabled,
402		 * we have to handle the race between putting
403		 * swap entry in swap cache and marking swap slot
404		 * as SWAP_HAS_CACHE.  That's done in later part of code or
405		 * else swap_off will be aborted if we return NULL.
406		 */
407		if (!__swp_swapcount(entry) && swap_slot_cache_enabled)
408			break;
409
410		/*
411		 * Get a new page to read into from swap.
412		 */
413		if (!new_page) {
414			new_page = alloc_page_vma(gfp_mask, vma, addr);
415			if (!new_page)
416				break;		/* Out of memory */
417		}
 
418
419		/*
420		 * call radix_tree_preload() while we can wait.
421		 */
422		err = radix_tree_maybe_preload(gfp_mask & GFP_KERNEL);
423		if (err)
424			break;
425
 
 
 
 
426		/*
427		 * Swap entry may have been freed since our caller observed it.
 
 
 
 
 
428		 */
429		err = swapcache_prepare(entry);
430		if (err == -EEXIST) {
431			radix_tree_preload_end();
432			/*
433			 * We might race against get_swap_page() and stumble
434			 * across a SWAP_HAS_CACHE swap_map entry whose page
435			 * has not been brought into the swapcache yet.
436			 */
437			cond_resched();
438			continue;
439		}
440		if (err) {		/* swp entry is obsolete ? */
441			radix_tree_preload_end();
442			break;
443		}
444
445		/* May fail (-ENOMEM) if radix-tree node allocation failed. */
446		__SetPageLocked(new_page);
447		__SetPageSwapBacked(new_page);
448		err = __add_to_swap_cache(new_page, entry);
449		if (likely(!err)) {
450			radix_tree_preload_end();
451			/*
452			 * Initiate read into locked page and return.
453			 */
454			lru_cache_add_anon(new_page);
455			*new_page_allocated = true;
456			return new_page;
457		}
458		radix_tree_preload_end();
459		__ClearPageLocked(new_page);
460		/*
461		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
462		 * clear SWAP_HAS_CACHE flag.
 
 
 
463		 */
464		put_swap_page(new_page, entry);
465	} while (err != -ENOMEM);
466
467	if (new_page)
468		put_page(new_page);
469	return found_page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
470}
471
472/*
473 * Locate a page of swap in physical memory, reserving swap cache space
474 * and reading the disk if it is not already cached.
475 * A failure return means that either the page allocation failed or that
476 * the swap entry is no longer in use.
477 */
478struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
479		struct vm_area_struct *vma, unsigned long addr, bool do_poll)
 
 
 
 
 
480{
481	bool page_was_allocated;
482	struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
483			vma, addr, &page_was_allocated);
484
485	if (page_was_allocated)
486		swap_readpage(retpage, do_poll);
487
488	return retpage;
 
 
 
 
 
489}
490
491static unsigned int __swapin_nr_pages(unsigned long prev_offset,
492				      unsigned long offset,
493				      int hits,
494				      int max_pages,
495				      int prev_win)
496{
497	unsigned int pages, last_ra;
498
499	/*
500	 * This heuristic has been found to work well on both sequential and
501	 * random loads, swapping to hard disk or to SSD: please don't ask
502	 * what the "+ 2" means, it just happens to work well, that's all.
503	 */
504	pages = hits + 2;
505	if (pages == 2) {
506		/*
507		 * We can have no readahead hits to judge by: but must not get
508		 * stuck here forever, so check for an adjacent offset instead
509		 * (and don't even bother to check whether swap type is same).
510		 */
511		if (offset != prev_offset + 1 && offset != prev_offset - 1)
512			pages = 1;
513	} else {
514		unsigned int roundup = 4;
515		while (roundup < pages)
516			roundup <<= 1;
517		pages = roundup;
518	}
519
520	if (pages > max_pages)
521		pages = max_pages;
522
523	/* Don't shrink readahead too fast */
524	last_ra = prev_win / 2;
525	if (pages < last_ra)
526		pages = last_ra;
527
528	return pages;
529}
530
531static unsigned long swapin_nr_pages(unsigned long offset)
532{
533	static unsigned long prev_offset;
534	unsigned int hits, pages, max_pages;
535	static atomic_t last_readahead_pages;
536
537	max_pages = 1 << READ_ONCE(page_cluster);
538	if (max_pages <= 1)
539		return 1;
540
541	hits = atomic_xchg(&swapin_readahead_hits, 0);
542	pages = __swapin_nr_pages(prev_offset, offset, hits, max_pages,
 
543				  atomic_read(&last_readahead_pages));
544	if (!hits)
545		prev_offset = offset;
546	atomic_set(&last_readahead_pages, pages);
547
548	return pages;
549}
550
551/**
552 * swap_cluster_readahead - swap in pages in hope we need them soon
553 * @entry: swap entry of this memory
554 * @gfp_mask: memory allocation flags
555 * @vmf: fault information
 
556 *
557 * Returns the struct page for entry and addr, after queueing swapin.
558 *
559 * Primitive swap readahead code. We simply read an aligned block of
560 * (1 << page_cluster) entries in the swap area. This method is chosen
561 * because it doesn't cost us any seek time.  We also make sure to queue
562 * the 'original' request together with the readahead ones...
563 *
564 * This has been extended to use the NUMA policies from the mm triggering
565 * the readahead.
566 *
567 * Caller must hold down_read on the vma->vm_mm if vmf->vma is not NULL.
568 */
569struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask,
570				struct vm_fault *vmf)
571{
572	struct page *page;
573	unsigned long entry_offset = swp_offset(entry);
574	unsigned long offset = entry_offset;
575	unsigned long start_offset, end_offset;
576	unsigned long mask;
577	struct swap_info_struct *si = swp_swap_info(entry);
578	struct blk_plug plug;
579	bool do_poll = true, page_allocated;
580	struct vm_area_struct *vma = vmf->vma;
581	unsigned long addr = vmf->address;
582
583	mask = swapin_nr_pages(offset) - 1;
584	if (!mask)
585		goto skip;
586
587	do_poll = false;
588	/* Read a page_cluster sized and aligned cluster around offset. */
589	start_offset = offset & ~mask;
590	end_offset = offset | mask;
591	if (!start_offset)	/* First page is swap header. */
592		start_offset++;
593	if (end_offset >= si->max)
594		end_offset = si->max - 1;
595
596	blk_start_plug(&plug);
597	for (offset = start_offset; offset <= end_offset ; offset++) {
598		/* Ok, do the async read-ahead now */
599		page = __read_swap_cache_async(
600			swp_entry(swp_type(entry), offset),
601			gfp_mask, vma, addr, &page_allocated);
602		if (!page)
603			continue;
604		if (page_allocated) {
605			swap_readpage(page, false);
606			if (offset != entry_offset) {
607				SetPageReadahead(page);
608				count_vm_event(SWAP_RA);
609			}
610		}
611		put_page(page);
612	}
613	blk_finish_plug(&plug);
614
615	lru_add_drain();	/* Push any new pages onto the LRU now */
616skip:
617	return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll);
 
 
 
 
 
 
 
618}
619
620int init_swap_address_space(unsigned int type, unsigned long nr_pages)
621{
622	struct address_space *spaces, *space;
623	unsigned int i, nr;
624
625	nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
626	spaces = kvzalloc(sizeof(struct address_space) * nr, GFP_KERNEL);
627	if (!spaces)
628		return -ENOMEM;
629	for (i = 0; i < nr; i++) {
630		space = spaces + i;
631		INIT_RADIX_TREE(&space->i_pages, GFP_ATOMIC|__GFP_NOWARN);
632		atomic_set(&space->i_mmap_writable, 0);
633		space->a_ops = &swap_aops;
634		/* swap cache doesn't use writeback related tags */
635		mapping_set_no_writeback_tags(space);
636	}
637	nr_swapper_spaces[type] = nr;
638	rcu_assign_pointer(swapper_spaces[type], spaces);
639
640	return 0;
641}
642
643void exit_swap_address_space(unsigned int type)
644{
645	struct address_space *spaces;
 
646
647	spaces = swapper_spaces[type];
648	nr_swapper_spaces[type] = 0;
649	rcu_assign_pointer(swapper_spaces[type], NULL);
650	synchronize_rcu();
651	kvfree(spaces);
 
 
652}
653
654static inline void swap_ra_clamp_pfn(struct vm_area_struct *vma,
655				     unsigned long faddr,
656				     unsigned long lpfn,
657				     unsigned long rpfn,
658				     unsigned long *start,
659				     unsigned long *end)
660{
661	*start = max3(lpfn, PFN_DOWN(vma->vm_start),
662		      PFN_DOWN(faddr & PMD_MASK));
663	*end = min3(rpfn, PFN_DOWN(vma->vm_end),
664		    PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE));
665}
666
667static void swap_ra_info(struct vm_fault *vmf,
668			struct vma_swap_readahead *ra_info)
669{
670	struct vm_area_struct *vma = vmf->vma;
671	unsigned long ra_val;
672	swp_entry_t entry;
673	unsigned long faddr, pfn, fpfn;
674	unsigned long start, end;
675	pte_t *pte, *orig_pte;
676	unsigned int max_win, hits, prev_win, win, left;
677#ifndef CONFIG_64BIT
678	pte_t *tpte;
679#endif
680
681	max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster),
682			     SWAP_RA_ORDER_CEILING);
683	if (max_win == 1) {
684		ra_info->win = 1;
685		return;
686	}
687
688	faddr = vmf->address;
689	orig_pte = pte = pte_offset_map(vmf->pmd, faddr);
690	entry = pte_to_swp_entry(*pte);
691	if ((unlikely(non_swap_entry(entry)))) {
692		pte_unmap(orig_pte);
693		return;
694	}
695
696	fpfn = PFN_DOWN(faddr);
697	ra_val = GET_SWAP_RA_VAL(vma);
698	pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val));
699	prev_win = SWAP_RA_WIN(ra_val);
700	hits = SWAP_RA_HITS(ra_val);
701	ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits,
702					       max_win, prev_win);
703	atomic_long_set(&vma->swap_readahead_info,
704			SWAP_RA_VAL(faddr, win, 0));
705
706	if (win == 1) {
707		pte_unmap(orig_pte);
708		return;
709	}
710
711	/* Copy the PTEs because the page table may be unmapped */
712	if (fpfn == pfn + 1)
713		swap_ra_clamp_pfn(vma, faddr, fpfn, fpfn + win, &start, &end);
714	else if (pfn == fpfn + 1)
715		swap_ra_clamp_pfn(vma, faddr, fpfn - win + 1, fpfn + 1,
716				  &start, &end);
717	else {
718		left = (win - 1) / 2;
719		swap_ra_clamp_pfn(vma, faddr, fpfn - left, fpfn + win - left,
720				  &start, &end);
 
721	}
 
 
 
 
 
722	ra_info->nr_pte = end - start;
723	ra_info->offset = fpfn - start;
724	pte -= ra_info->offset;
725#ifdef CONFIG_64BIT
726	ra_info->ptes = pte;
727#else
728	tpte = ra_info->ptes;
729	for (pfn = start; pfn != end; pfn++)
730		*tpte++ = *pte++;
731#endif
732	pte_unmap(orig_pte);
733}
734
735static struct page *swap_vma_readahead(swp_entry_t fentry, gfp_t gfp_mask,
736				       struct vm_fault *vmf)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
737{
738	struct blk_plug plug;
739	struct vm_area_struct *vma = vmf->vma;
740	struct page *page;
741	pte_t *pte, pentry;
 
742	swp_entry_t entry;
 
743	unsigned int i;
744	bool page_allocated;
745	struct vma_swap_readahead ra_info = {0,};
 
 
746
747	swap_ra_info(vmf, &ra_info);
748	if (ra_info.win == 1)
749		goto skip;
750
 
 
 
751	blk_start_plug(&plug);
752	for (i = 0, pte = ra_info.ptes; i < ra_info.nr_pte;
753	     i++, pte++) {
754		pentry = *pte;
755		if (pte_none(pentry))
756			continue;
757		if (pte_present(pentry))
 
 
758			continue;
759		entry = pte_to_swp_entry(pentry);
760		if (unlikely(non_swap_entry(entry)))
761			continue;
762		page = __read_swap_cache_async(entry, gfp_mask, vma,
763					       vmf->address, &page_allocated);
764		if (!page)
 
 
765			continue;
766		if (page_allocated) {
767			swap_readpage(page, false);
768			if (i != ra_info.offset) {
769				SetPageReadahead(page);
770				count_vm_event(SWAP_RA);
771			}
772		}
773		put_page(page);
774	}
 
 
775	blk_finish_plug(&plug);
 
776	lru_add_drain();
777skip:
778	return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address,
779				     ra_info.win == 1);
 
 
 
 
 
 
780}
781
782/**
783 * swapin_readahead - swap in pages in hope we need them soon
784 * @entry: swap entry of this memory
785 * @gfp_mask: memory allocation flags
786 * @vmf: fault information
787 *
788 * Returns the struct page for entry and addr, after queueing swapin.
789 *
790 * It's a main entry function for swap readahead. By the configuration,
791 * it will read ahead blocks by cluster-based(ie, physical disk based)
792 * or vma-based(ie, virtual address based on faulty address) readahead.
793 */
794struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
795				struct vm_fault *vmf)
796{
797	return swap_use_vma_readahead() ?
798			swap_vma_readahead(entry, gfp_mask, vmf) :
799			swap_cluster_readahead(entry, gfp_mask, vmf);
 
 
 
 
 
 
 
 
 
 
800}
801
802#ifdef CONFIG_SYSFS
803static ssize_t vma_ra_enabled_show(struct kobject *kobj,
804				     struct kobj_attribute *attr, char *buf)
805{
806	return sprintf(buf, "%s\n", enable_vma_readahead ? "true" : "false");
 
807}
808static ssize_t vma_ra_enabled_store(struct kobject *kobj,
809				      struct kobj_attribute *attr,
810				      const char *buf, size_t count)
811{
812	if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1))
813		enable_vma_readahead = true;
814	else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1))
815		enable_vma_readahead = false;
816	else
817		return -EINVAL;
818
819	return count;
820}
821static struct kobj_attribute vma_ra_enabled_attr =
822	__ATTR(vma_ra_enabled, 0644, vma_ra_enabled_show,
823	       vma_ra_enabled_store);
824
825static struct attribute *swap_attrs[] = {
826	&vma_ra_enabled_attr.attr,
827	NULL,
828};
829
830static struct attribute_group swap_attr_group = {
831	.attrs = swap_attrs,
832};
833
834static int __init swap_init_sysfs(void)
835{
836	int err;
837	struct kobject *swap_kobj;
838
839	swap_kobj = kobject_create_and_add("swap", mm_kobj);
840	if (!swap_kobj) {
841		pr_err("failed to create swap kobject\n");
842		return -ENOMEM;
843	}
844	err = sysfs_create_group(swap_kobj, &swap_attr_group);
845	if (err) {
846		pr_err("failed to register swap group\n");
847		goto delete_obj;
848	}
849	return 0;
850
851delete_obj:
852	kobject_put(swap_kobj);
853	return err;
854}
855subsys_initcall(swap_init_sysfs);
856#endif
v6.9.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 *  linux/mm/swap_state.c
  4 *
  5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
  6 *  Swap reorganised 29.12.95, Stephen Tweedie
  7 *
  8 *  Rewritten to use page cache, (C) 1998 Stephen Tweedie
  9 */
 10#include <linux/mm.h>
 11#include <linux/gfp.h>
 12#include <linux/kernel_stat.h>
 13#include <linux/mempolicy.h>
 14#include <linux/swap.h>
 15#include <linux/swapops.h>
 16#include <linux/init.h>
 17#include <linux/pagemap.h>
 18#include <linux/pagevec.h>
 19#include <linux/backing-dev.h>
 20#include <linux/blkdev.h>
 
 21#include <linux/migrate.h>
 22#include <linux/vmalloc.h>
 23#include <linux/swap_slots.h>
 24#include <linux/huge_mm.h>
 25#include <linux/shmem_fs.h>
 26#include "internal.h"
 27#include "swap.h"
 28
 29/*
 30 * swapper_space is a fiction, retained to simplify the path through
 31 * vmscan's shrink_page_list.
 32 */
 33static const struct address_space_operations swap_aops = {
 34	.writepage	= swap_writepage,
 35	.dirty_folio	= noop_dirty_folio,
 36#ifdef CONFIG_MIGRATION
 37	.migrate_folio	= migrate_folio,
 38#endif
 39};
 40
 41struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly;
 42static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly;
 43static bool enable_vma_readahead __read_mostly = true;
 44
 45#define SWAP_RA_WIN_SHIFT	(PAGE_SHIFT / 2)
 46#define SWAP_RA_HITS_MASK	((1UL << SWAP_RA_WIN_SHIFT) - 1)
 47#define SWAP_RA_HITS_MAX	SWAP_RA_HITS_MASK
 48#define SWAP_RA_WIN_MASK	(~PAGE_MASK & ~SWAP_RA_HITS_MASK)
 49
 50#define SWAP_RA_HITS(v)		((v) & SWAP_RA_HITS_MASK)
 51#define SWAP_RA_WIN(v)		(((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
 52#define SWAP_RA_ADDR(v)		((v) & PAGE_MASK)
 53
 54#define SWAP_RA_VAL(addr, win, hits)				\
 55	(((addr) & PAGE_MASK) |					\
 56	 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) |	\
 57	 ((hits) & SWAP_RA_HITS_MASK))
 58
 59/* Initial readahead hits is 4 to start up with a small window */
 60#define GET_SWAP_RA_VAL(vma)					\
 61	(atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
 62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 63static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
 64
 65void show_swap_cache_info(void)
 66{
 67	printk("%lu pages in swap cache\n", total_swapcache_pages());
 68	printk("Free swap  = %ldkB\n", K(get_nr_swap_pages()));
 69	printk("Total swap = %lukB\n", K(total_swap_pages));
 70}
 71
 72void *get_shadow_from_swap_cache(swp_entry_t entry)
 73{
 74	struct address_space *address_space = swap_address_space(entry);
 75	pgoff_t idx = swp_offset(entry);
 76	struct page *page;
 77
 78	page = xa_load(&address_space->i_pages, idx);
 79	if (xa_is_value(page))
 80		return page;
 81	return NULL;
 82}
 83
 84/*
 85 * add_to_swap_cache resembles filemap_add_folio on swapper_space,
 86 * but sets SwapCache flag and private instead of mapping and index.
 87 */
 88int add_to_swap_cache(struct folio *folio, swp_entry_t entry,
 89			gfp_t gfp, void **shadowp)
 90{
 91	struct address_space *address_space = swap_address_space(entry);
 
 92	pgoff_t idx = swp_offset(entry);
 93	XA_STATE_ORDER(xas, &address_space->i_pages, idx, folio_order(folio));
 94	unsigned long i, nr = folio_nr_pages(folio);
 95	void *old;
 96
 97	xas_set_update(&xas, workingset_update_node);
 98
 99	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
100	VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio);
101	VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
102
103	folio_ref_add(folio, nr);
104	folio_set_swapcache(folio);
105	folio->swap = entry;
106
107	do {
108		xas_lock_irq(&xas);
109		xas_create_range(&xas);
110		if (xas_error(&xas))
111			goto unlock;
112		for (i = 0; i < nr; i++) {
113			VM_BUG_ON_FOLIO(xas.xa_index != idx + i, folio);
114			if (shadowp) {
115				old = xas_load(&xas);
116				if (xa_is_value(old))
117					*shadowp = old;
118			}
119			xas_store(&xas, folio);
120			xas_next(&xas);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
121		}
122		address_space->nrpages += nr;
123		__node_stat_mod_folio(folio, NR_FILE_PAGES, nr);
124		__lruvec_stat_mod_folio(folio, NR_SWAPCACHE, nr);
125unlock:
126		xas_unlock_irq(&xas);
127	} while (xas_nomem(&xas, gfp));
 
 
128
129	if (!xas_error(&xas))
130		return 0;
 
131
132	folio_clear_swapcache(folio);
133	folio_ref_sub(folio, nr);
134	return xas_error(&xas);
 
 
 
135}
136
137/*
138 * This must be called only on folios that have
139 * been verified to be in the swap cache.
140 */
141void __delete_from_swap_cache(struct folio *folio,
142			swp_entry_t entry, void *shadow)
143{
144	struct address_space *address_space = swap_address_space(entry);
145	int i;
146	long nr = folio_nr_pages(folio);
147	pgoff_t idx = swp_offset(entry);
148	XA_STATE(xas, &address_space->i_pages, idx);
149
150	xas_set_update(&xas, workingset_update_node);
151
152	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
153	VM_BUG_ON_FOLIO(!folio_test_swapcache(folio), folio);
154	VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
155
 
 
 
 
 
 
 
156	for (i = 0; i < nr; i++) {
157		void *entry = xas_store(&xas, shadow);
158		VM_BUG_ON_PAGE(entry != folio, entry);
159		xas_next(&xas);
160	}
161	folio->swap.val = 0;
162	folio_clear_swapcache(folio);
163	address_space->nrpages -= nr;
164	__node_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
165	__lruvec_stat_mod_folio(folio, NR_SWAPCACHE, -nr);
166}
167
168/**
169 * add_to_swap - allocate swap space for a folio
170 * @folio: folio we want to move to swap
171 *
172 * Allocate swap space for the folio and add the folio to the
173 * swap cache.
174 *
175 * Context: Caller needs to hold the folio lock.
176 * Return: Whether the folio was added to the swap cache.
177 */
178bool add_to_swap(struct folio *folio)
179{
180	swp_entry_t entry;
181	int err;
182
183	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
184	VM_BUG_ON_FOLIO(!folio_test_uptodate(folio), folio);
185
186	entry = folio_alloc_swap(folio);
187	if (!entry.val)
188		return false;
 
 
 
189
190	/*
191	 * XArray node allocations from PF_MEMALLOC contexts could
192	 * completely exhaust the page allocator. __GFP_NOMEMALLOC
193	 * stops emergency reserves from being allocated.
194	 *
195	 * TODO: this could cause a theoretical memory reclaim
196	 * deadlock in the swap out path.
197	 */
198	/*
199	 * Add it to the swap cache.
200	 */
201	err = add_to_swap_cache(folio, entry,
202			__GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN, NULL);
 
203	if (err)
204		/*
205		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
206		 * clear SWAP_HAS_CACHE flag.
207		 */
208		goto fail;
209	/*
210	 * Normally the folio will be dirtied in unmap because its
211	 * pte should be dirty. A special case is MADV_FREE page. The
212	 * page's pte could have dirty bit cleared but the folio's
213	 * SwapBacked flag is still set because clearing the dirty bit
214	 * and SwapBacked flag has no lock protected. For such folio,
215	 * unmap will not set dirty bit for it, so folio reclaim will
216	 * not write the folio out. This can cause data corruption when
217	 * the folio is swapped in later. Always setting the dirty flag
218	 * for the folio solves the problem.
219	 */
220	folio_mark_dirty(folio);
221
222	return true;
223
224fail:
225	put_swap_folio(folio, entry);
226	return false;
227}
228
229/*
230 * This must be called only on folios that have
231 * been verified to be in the swap cache and locked.
232 * It will never put the folio into the free list,
233 * the caller has a reference on the folio.
234 */
235void delete_from_swap_cache(struct folio *folio)
236{
237	swp_entry_t entry = folio->swap;
238	struct address_space *address_space = swap_address_space(entry);
239
 
 
 
240	xa_lock_irq(&address_space->i_pages);
241	__delete_from_swap_cache(folio, entry, NULL);
242	xa_unlock_irq(&address_space->i_pages);
243
244	put_swap_folio(folio, entry);
245	folio_ref_sub(folio, folio_nr_pages(folio));
246}
247
248void clear_shadow_from_swap_cache(int type, unsigned long begin,
249				unsigned long end)
250{
251	unsigned long curr = begin;
252	void *old;
253
254	for (;;) {
255		swp_entry_t entry = swp_entry(type, curr);
256		struct address_space *address_space = swap_address_space(entry);
257		XA_STATE(xas, &address_space->i_pages, curr);
258
259		xas_set_update(&xas, workingset_update_node);
260
261		xa_lock_irq(&address_space->i_pages);
262		xas_for_each(&xas, old, end) {
263			if (!xa_is_value(old))
264				continue;
265			xas_store(&xas, NULL);
266		}
267		xa_unlock_irq(&address_space->i_pages);
268
269		/* search the next swapcache until we meet end */
270		curr >>= SWAP_ADDRESS_SPACE_SHIFT;
271		curr++;
272		curr <<= SWAP_ADDRESS_SPACE_SHIFT;
273		if (curr > end)
274			break;
275	}
276}
277
278/*
279 * If we are the only user, then try to free up the swap cache.
280 *
281 * Its ok to check the swapcache flag without the folio lock
282 * here because we are going to recheck again inside
283 * folio_free_swap() _with_ the lock.
284 * 					- Marcelo
285 */
286void free_swap_cache(struct folio *folio)
287{
288	if (folio_test_swapcache(folio) && !folio_mapped(folio) &&
289	    folio_trylock(folio)) {
290		folio_free_swap(folio);
291		folio_unlock(folio);
292	}
293}
294
295/*
296 * Perform a free_page(), also freeing any swap cache associated with
297 * this page if it is the last user of the page.
298 */
299void free_page_and_swap_cache(struct page *page)
300{
301	struct folio *folio = page_folio(page);
302
303	free_swap_cache(folio);
304	if (!is_huge_zero_page(page))
305		folio_put(folio);
306}
307
308/*
309 * Passed an array of pages, drop them all from swapcache and then release
310 * them.  They are removed from the LRU and freed if this is their last use.
311 */
312void free_pages_and_swap_cache(struct encoded_page **pages, int nr)
313{
314	struct folio_batch folios;
315	unsigned int refs[PAGEVEC_SIZE];
316
317	lru_add_drain();
318	folio_batch_init(&folios);
319	for (int i = 0; i < nr; i++) {
320		struct folio *folio = page_folio(encoded_page_ptr(pages[i]));
321
322		free_swap_cache(folio);
323		refs[folios.nr] = 1;
324		if (unlikely(encoded_page_flags(pages[i]) &
325			     ENCODED_PAGE_BIT_NR_PAGES_NEXT))
326			refs[folios.nr] = encoded_nr_pages(pages[++i]);
327
328		if (folio_batch_add(&folios, folio) == 0)
329			folios_put_refs(&folios, refs);
330	}
331	if (folios.nr)
332		folios_put_refs(&folios, refs);
333}
334
335static inline bool swap_use_vma_readahead(void)
336{
337	return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap);
338}
339
340/*
341 * Lookup a swap entry in the swap cache. A found folio will be returned
342 * unlocked and with its refcount incremented - we rely on the kernel
343 * lock getting page table operations atomic even if we drop the folio
344 * lock before returning.
345 *
346 * Caller must lock the swap device or hold a reference to keep it valid.
347 */
348struct folio *swap_cache_get_folio(swp_entry_t entry,
349		struct vm_area_struct *vma, unsigned long addr)
350{
351	struct folio *folio;
352
353	folio = filemap_get_folio(swap_address_space(entry), swp_offset(entry));
354	if (!IS_ERR(folio)) {
 
 
355		bool vma_ra = swap_use_vma_readahead();
356		bool readahead;
357
 
358		/*
359		 * At the moment, we don't support PG_readahead for anon THP
360		 * so let's bail out rather than confusing the readahead stat.
361		 */
362		if (unlikely(folio_test_large(folio)))
363			return folio;
364
365		readahead = folio_test_clear_readahead(folio);
366		if (vma && vma_ra) {
367			unsigned long ra_val;
368			int win, hits;
369
370			ra_val = GET_SWAP_RA_VAL(vma);
371			win = SWAP_RA_WIN(ra_val);
372			hits = SWAP_RA_HITS(ra_val);
373			if (readahead)
374				hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX);
375			atomic_long_set(&vma->swap_readahead_info,
376					SWAP_RA_VAL(addr, win, hits));
377		}
378
379		if (readahead) {
380			count_vm_event(SWAP_RA_HIT);
381			if (!vma || !vma_ra)
382				atomic_inc(&swapin_readahead_hits);
383		}
384	} else {
385		folio = NULL;
386	}
387
388	return folio;
389}
390
391/**
392 * filemap_get_incore_folio - Find and get a folio from the page or swap caches.
393 * @mapping: The address_space to search.
394 * @index: The page cache index.
395 *
396 * This differs from filemap_get_folio() in that it will also look for the
397 * folio in the swap cache.
398 *
399 * Return: The found folio or %NULL.
400 */
401struct folio *filemap_get_incore_folio(struct address_space *mapping,
402		pgoff_t index)
403{
404	swp_entry_t swp;
405	struct swap_info_struct *si;
406	struct folio *folio = filemap_get_entry(mapping, index);
407
408	if (!folio)
409		return ERR_PTR(-ENOENT);
410	if (!xa_is_value(folio))
411		return folio;
412	if (!shmem_mapping(mapping))
413		return ERR_PTR(-ENOENT);
414
415	swp = radix_to_swp_entry(folio);
416	/* There might be swapin error entries in shmem mapping. */
417	if (non_swap_entry(swp))
418		return ERR_PTR(-ENOENT);
419	/* Prevent swapoff from happening to us */
420	si = get_swap_device(swp);
421	if (!si)
422		return ERR_PTR(-ENOENT);
423	index = swp_offset(swp);
424	folio = filemap_get_folio(swap_address_space(swp), index);
425	put_swap_device(si);
426	return folio;
427}
428
429struct folio *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
430		struct mempolicy *mpol, pgoff_t ilx, bool *new_page_allocated,
431		bool skip_if_exists)
432{
433	struct swap_info_struct *si;
434	struct folio *folio;
435	void *shadow = NULL;
436
437	*new_page_allocated = false;
438	si = get_swap_device(entry);
439	if (!si)
440		return NULL;
441
442	for (;;) {
443		int err;
444		/*
445		 * First check the swap cache.  Since this is normally
446		 * called after swap_cache_get_folio() failed, re-calling
447		 * that would confuse statistics.
448		 */
449		folio = filemap_get_folio(swap_address_space(entry),
450						swp_offset(entry));
451		if (!IS_ERR(folio))
452			goto got_folio;
453
454		/*
455		 * Just skip read ahead for unused swap slot.
456		 * During swap_off when swap_slot_cache is disabled,
457		 * we have to handle the race between putting
458		 * swap entry in swap cache and marking swap slot
459		 * as SWAP_HAS_CACHE.  That's done in later part of code or
460		 * else swap_off will be aborted if we return NULL.
461		 */
462		if (!swap_swapcount(si, entry) && swap_slot_cache_enabled)
463			goto fail_put_swap;
464
465		/*
466		 * Get a new folio to read into from swap.  Allocate it now,
467		 * before marking swap_map SWAP_HAS_CACHE, when -EEXIST will
468		 * cause any racers to loop around until we add it to cache.
469		 */
470		folio = (struct folio *)alloc_pages_mpol(gfp_mask, 0,
471						mpol, ilx, numa_node_id());
472		if (!folio)
473                        goto fail_put_swap;
474
475		/*
476		 * Swap entry may have been freed since our caller observed it.
477		 */
478		err = swapcache_prepare(entry);
479		if (!err)
480			break;
481
482		folio_put(folio);
483		if (err != -EEXIST)
484			goto fail_put_swap;
485
486		/*
487		 * Protect against a recursive call to __read_swap_cache_async()
488		 * on the same entry waiting forever here because SWAP_HAS_CACHE
489		 * is set but the folio is not the swap cache yet. This can
490		 * happen today if mem_cgroup_swapin_charge_folio() below
491		 * triggers reclaim through zswap, which may call
492		 * __read_swap_cache_async() in the writeback path.
493		 */
494		if (skip_if_exists)
495			goto fail_put_swap;
 
 
 
 
 
 
 
 
 
 
 
 
 
496
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
497		/*
498		 * We might race against __delete_from_swap_cache(), and
499		 * stumble across a swap_map entry whose SWAP_HAS_CACHE
500		 * has not yet been cleared.  Or race against another
501		 * __read_swap_cache_async(), which has set SWAP_HAS_CACHE
502		 * in swap_map, but not yet added its folio to swap cache.
503		 */
504		schedule_timeout_uninterruptible(1);
505	}
506
507	/*
508	 * The swap entry is ours to swap in. Prepare the new folio.
509	 */
510
511	__folio_set_locked(folio);
512	__folio_set_swapbacked(folio);
513
514	if (mem_cgroup_swapin_charge_folio(folio, NULL, gfp_mask, entry))
515		goto fail_unlock;
516
517	/* May fail (-ENOMEM) if XArray node allocation failed. */
518	if (add_to_swap_cache(folio, entry, gfp_mask & GFP_RECLAIM_MASK, &shadow))
519		goto fail_unlock;
520
521	mem_cgroup_swapin_uncharge_swap(entry);
522
523	if (shadow)
524		workingset_refault(folio, shadow);
525
526	/* Caller will initiate read into locked folio */
527	folio_add_lru(folio);
528	*new_page_allocated = true;
529got_folio:
530	put_swap_device(si);
531	return folio;
532
533fail_unlock:
534	put_swap_folio(folio, entry);
535	folio_unlock(folio);
536	folio_put(folio);
537fail_put_swap:
538	put_swap_device(si);
539	return NULL;
540}
541
542/*
543 * Locate a page of swap in physical memory, reserving swap cache space
544 * and reading the disk if it is not already cached.
545 * A failure return means that either the page allocation failed or that
546 * the swap entry is no longer in use.
547 *
548 * get/put_swap_device() aren't needed to call this function, because
549 * __read_swap_cache_async() call them and swap_read_folio() holds the
550 * swap cache folio lock.
551 */
552struct folio *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
553		struct vm_area_struct *vma, unsigned long addr,
554		struct swap_iocb **plug)
555{
556	bool page_allocated;
557	struct mempolicy *mpol;
558	pgoff_t ilx;
559	struct folio *folio;
560
561	mpol = get_vma_policy(vma, addr, 0, &ilx);
562	folio = __read_swap_cache_async(entry, gfp_mask, mpol, ilx,
563					&page_allocated, false);
564	mpol_cond_put(mpol);
565
566	if (page_allocated)
567		swap_read_folio(folio, false, plug);
568	return folio;
569}
570
571static unsigned int __swapin_nr_pages(unsigned long prev_offset,
572				      unsigned long offset,
573				      int hits,
574				      int max_pages,
575				      int prev_win)
576{
577	unsigned int pages, last_ra;
578
579	/*
580	 * This heuristic has been found to work well on both sequential and
581	 * random loads, swapping to hard disk or to SSD: please don't ask
582	 * what the "+ 2" means, it just happens to work well, that's all.
583	 */
584	pages = hits + 2;
585	if (pages == 2) {
586		/*
587		 * We can have no readahead hits to judge by: but must not get
588		 * stuck here forever, so check for an adjacent offset instead
589		 * (and don't even bother to check whether swap type is same).
590		 */
591		if (offset != prev_offset + 1 && offset != prev_offset - 1)
592			pages = 1;
593	} else {
594		unsigned int roundup = 4;
595		while (roundup < pages)
596			roundup <<= 1;
597		pages = roundup;
598	}
599
600	if (pages > max_pages)
601		pages = max_pages;
602
603	/* Don't shrink readahead too fast */
604	last_ra = prev_win / 2;
605	if (pages < last_ra)
606		pages = last_ra;
607
608	return pages;
609}
610
611static unsigned long swapin_nr_pages(unsigned long offset)
612{
613	static unsigned long prev_offset;
614	unsigned int hits, pages, max_pages;
615	static atomic_t last_readahead_pages;
616
617	max_pages = 1 << READ_ONCE(page_cluster);
618	if (max_pages <= 1)
619		return 1;
620
621	hits = atomic_xchg(&swapin_readahead_hits, 0);
622	pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits,
623				  max_pages,
624				  atomic_read(&last_readahead_pages));
625	if (!hits)
626		WRITE_ONCE(prev_offset, offset);
627	atomic_set(&last_readahead_pages, pages);
628
629	return pages;
630}
631
632/**
633 * swap_cluster_readahead - swap in pages in hope we need them soon
634 * @entry: swap entry of this memory
635 * @gfp_mask: memory allocation flags
636 * @mpol: NUMA memory allocation policy to be applied
637 * @ilx: NUMA interleave index, for use only when MPOL_INTERLEAVE
638 *
639 * Returns the struct folio for entry and addr, after queueing swapin.
640 *
641 * Primitive swap readahead code. We simply read an aligned block of
642 * (1 << page_cluster) entries in the swap area. This method is chosen
643 * because it doesn't cost us any seek time.  We also make sure to queue
644 * the 'original' request together with the readahead ones...
645 *
646 * Note: it is intentional that the same NUMA policy and interleave index
647 * are used for every page of the readahead: neighbouring pages on swap
648 * are fairly likely to have been swapped out from the same node.
 
649 */
650struct folio *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask,
651				    struct mempolicy *mpol, pgoff_t ilx)
652{
653	struct folio *folio;
654	unsigned long entry_offset = swp_offset(entry);
655	unsigned long offset = entry_offset;
656	unsigned long start_offset, end_offset;
657	unsigned long mask;
658	struct swap_info_struct *si = swp_swap_info(entry);
659	struct blk_plug plug;
660	struct swap_iocb *splug = NULL;
661	bool page_allocated;
 
662
663	mask = swapin_nr_pages(offset) - 1;
664	if (!mask)
665		goto skip;
666
 
667	/* Read a page_cluster sized and aligned cluster around offset. */
668	start_offset = offset & ~mask;
669	end_offset = offset | mask;
670	if (!start_offset)	/* First page is swap header. */
671		start_offset++;
672	if (end_offset >= si->max)
673		end_offset = si->max - 1;
674
675	blk_start_plug(&plug);
676	for (offset = start_offset; offset <= end_offset ; offset++) {
677		/* Ok, do the async read-ahead now */
678		folio = __read_swap_cache_async(
679				swp_entry(swp_type(entry), offset),
680				gfp_mask, mpol, ilx, &page_allocated, false);
681		if (!folio)
682			continue;
683		if (page_allocated) {
684			swap_read_folio(folio, false, &splug);
685			if (offset != entry_offset) {
686				folio_set_readahead(folio);
687				count_vm_event(SWAP_RA);
688			}
689		}
690		folio_put(folio);
691	}
692	blk_finish_plug(&plug);
693	swap_read_unplug(splug);
694	lru_add_drain();	/* Push any new pages onto the LRU now */
695skip:
696	/* The page was likely read above, so no need for plugging here */
697	folio = __read_swap_cache_async(entry, gfp_mask, mpol, ilx,
698					&page_allocated, false);
699	if (unlikely(page_allocated)) {
700		zswap_folio_swapin(folio);
701		swap_read_folio(folio, false, NULL);
702	}
703	return folio;
704}
705
706int init_swap_address_space(unsigned int type, unsigned long nr_pages)
707{
708	struct address_space *spaces, *space;
709	unsigned int i, nr;
710
711	nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
712	spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL);
713	if (!spaces)
714		return -ENOMEM;
715	for (i = 0; i < nr; i++) {
716		space = spaces + i;
717		xa_init_flags(&space->i_pages, XA_FLAGS_LOCK_IRQ);
718		atomic_set(&space->i_mmap_writable, 0);
719		space->a_ops = &swap_aops;
720		/* swap cache doesn't use writeback related tags */
721		mapping_set_no_writeback_tags(space);
722	}
723	nr_swapper_spaces[type] = nr;
724	swapper_spaces[type] = spaces;
725
726	return 0;
727}
728
729void exit_swap_address_space(unsigned int type)
730{
731	int i;
732	struct address_space *spaces = swapper_spaces[type];
733
734	for (i = 0; i < nr_swapper_spaces[type]; i++)
735		VM_WARN_ON_ONCE(!mapping_empty(&spaces[i]));
 
 
736	kvfree(spaces);
737	nr_swapper_spaces[type] = 0;
738	swapper_spaces[type] = NULL;
739}
740
741#define SWAP_RA_ORDER_CEILING	5
742
743struct vma_swap_readahead {
744	unsigned short win;
745	unsigned short offset;
746	unsigned short nr_pte;
747};
 
 
 
 
 
748
749static void swap_ra_info(struct vm_fault *vmf,
750			 struct vma_swap_readahead *ra_info)
751{
752	struct vm_area_struct *vma = vmf->vma;
753	unsigned long ra_val;
754	unsigned long faddr, pfn, fpfn, lpfn, rpfn;
 
755	unsigned long start, end;
756	unsigned int max_win, hits, prev_win, win;
 
 
 
 
757
758	max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster),
759			     SWAP_RA_ORDER_CEILING);
760	if (max_win == 1) {
761		ra_info->win = 1;
762		return;
763	}
764
765	faddr = vmf->address;
 
 
 
 
 
 
 
766	fpfn = PFN_DOWN(faddr);
767	ra_val = GET_SWAP_RA_VAL(vma);
768	pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val));
769	prev_win = SWAP_RA_WIN(ra_val);
770	hits = SWAP_RA_HITS(ra_val);
771	ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits,
772					       max_win, prev_win);
773	atomic_long_set(&vma->swap_readahead_info,
774			SWAP_RA_VAL(faddr, win, 0));
775	if (win == 1)
 
 
776		return;
 
777
778	if (fpfn == pfn + 1) {
779		lpfn = fpfn;
780		rpfn = fpfn + win;
781	} else if (pfn == fpfn + 1) {
782		lpfn = fpfn - win + 1;
783		rpfn = fpfn + 1;
784	} else {
785		unsigned int left = (win - 1) / 2;
786
787		lpfn = fpfn - left;
788		rpfn = fpfn + win - left;
789	}
790	start = max3(lpfn, PFN_DOWN(vma->vm_start),
791		     PFN_DOWN(faddr & PMD_MASK));
792	end = min3(rpfn, PFN_DOWN(vma->vm_end),
793		   PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE));
794
795	ra_info->nr_pte = end - start;
796	ra_info->offset = fpfn - start;
 
 
 
 
 
 
 
 
 
797}
798
799/**
800 * swap_vma_readahead - swap in pages in hope we need them soon
801 * @targ_entry: swap entry of the targeted memory
802 * @gfp_mask: memory allocation flags
803 * @mpol: NUMA memory allocation policy to be applied
804 * @targ_ilx: NUMA interleave index, for use only when MPOL_INTERLEAVE
805 * @vmf: fault information
806 *
807 * Returns the struct folio for entry and addr, after queueing swapin.
808 *
809 * Primitive swap readahead code. We simply read in a few pages whose
810 * virtual addresses are around the fault address in the same vma.
811 *
812 * Caller must hold read mmap_lock if vmf->vma is not NULL.
813 *
814 */
815static struct folio *swap_vma_readahead(swp_entry_t targ_entry, gfp_t gfp_mask,
816		struct mempolicy *mpol, pgoff_t targ_ilx, struct vm_fault *vmf)
817{
818	struct blk_plug plug;
819	struct swap_iocb *splug = NULL;
820	struct folio *folio;
821	pte_t *pte = NULL, pentry;
822	unsigned long addr;
823	swp_entry_t entry;
824	pgoff_t ilx;
825	unsigned int i;
826	bool page_allocated;
827	struct vma_swap_readahead ra_info = {
828		.win = 1,
829	};
830
831	swap_ra_info(vmf, &ra_info);
832	if (ra_info.win == 1)
833		goto skip;
834
835	addr = vmf->address - (ra_info.offset * PAGE_SIZE);
836	ilx = targ_ilx - ra_info.offset;
837
838	blk_start_plug(&plug);
839	for (i = 0; i < ra_info.nr_pte; i++, ilx++, addr += PAGE_SIZE) {
840		if (!pte++) {
841			pte = pte_offset_map(vmf->pmd, addr);
842			if (!pte)
843				break;
844		}
845		pentry = ptep_get_lockless(pte);
846		if (!is_swap_pte(pentry))
847			continue;
848		entry = pte_to_swp_entry(pentry);
849		if (unlikely(non_swap_entry(entry)))
850			continue;
851		pte_unmap(pte);
852		pte = NULL;
853		folio = __read_swap_cache_async(entry, gfp_mask, mpol, ilx,
854						&page_allocated, false);
855		if (!folio)
856			continue;
857		if (page_allocated) {
858			swap_read_folio(folio, false, &splug);
859			if (i != ra_info.offset) {
860				folio_set_readahead(folio);
861				count_vm_event(SWAP_RA);
862			}
863		}
864		folio_put(folio);
865	}
866	if (pte)
867		pte_unmap(pte);
868	blk_finish_plug(&plug);
869	swap_read_unplug(splug);
870	lru_add_drain();
871skip:
872	/* The folio was likely read above, so no need for plugging here */
873	folio = __read_swap_cache_async(targ_entry, gfp_mask, mpol, targ_ilx,
874					&page_allocated, false);
875	if (unlikely(page_allocated)) {
876		zswap_folio_swapin(folio);
877		swap_read_folio(folio, false, NULL);
878	}
879	return folio;
880}
881
882/**
883 * swapin_readahead - swap in pages in hope we need them soon
884 * @entry: swap entry of this memory
885 * @gfp_mask: memory allocation flags
886 * @vmf: fault information
887 *
888 * Returns the struct page for entry and addr, after queueing swapin.
889 *
890 * It's a main entry function for swap readahead. By the configuration,
891 * it will read ahead blocks by cluster-based(ie, physical disk based)
892 * or vma-based(ie, virtual address based on faulty address) readahead.
893 */
894struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
895				struct vm_fault *vmf)
896{
897	struct mempolicy *mpol;
898	pgoff_t ilx;
899	struct folio *folio;
900
901	mpol = get_vma_policy(vmf->vma, vmf->address, 0, &ilx);
902	folio = swap_use_vma_readahead() ?
903		swap_vma_readahead(entry, gfp_mask, mpol, ilx, vmf) :
904		swap_cluster_readahead(entry, gfp_mask, mpol, ilx);
905	mpol_cond_put(mpol);
906
907	if (!folio)
908		return NULL;
909	return folio_file_page(folio, swp_offset(entry));
910}
911
912#ifdef CONFIG_SYSFS
913static ssize_t vma_ra_enabled_show(struct kobject *kobj,
914				     struct kobj_attribute *attr, char *buf)
915{
916	return sysfs_emit(buf, "%s\n",
917			  enable_vma_readahead ? "true" : "false");
918}
919static ssize_t vma_ra_enabled_store(struct kobject *kobj,
920				      struct kobj_attribute *attr,
921				      const char *buf, size_t count)
922{
923	ssize_t ret;
924
925	ret = kstrtobool(buf, &enable_vma_readahead);
926	if (ret)
927		return ret;
 
928
929	return count;
930}
931static struct kobj_attribute vma_ra_enabled_attr = __ATTR_RW(vma_ra_enabled);
 
 
932
933static struct attribute *swap_attrs[] = {
934	&vma_ra_enabled_attr.attr,
935	NULL,
936};
937
938static const struct attribute_group swap_attr_group = {
939	.attrs = swap_attrs,
940};
941
942static int __init swap_init_sysfs(void)
943{
944	int err;
945	struct kobject *swap_kobj;
946
947	swap_kobj = kobject_create_and_add("swap", mm_kobj);
948	if (!swap_kobj) {
949		pr_err("failed to create swap kobject\n");
950		return -ENOMEM;
951	}
952	err = sysfs_create_group(swap_kobj, &swap_attr_group);
953	if (err) {
954		pr_err("failed to register swap group\n");
955		goto delete_obj;
956	}
957	return 0;
958
959delete_obj:
960	kobject_put(swap_kobj);
961	return err;
962}
963subsys_initcall(swap_init_sysfs);
964#endif