Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/mm/swap_state.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
7 *
8 * Rewritten to use page cache, (C) 1998 Stephen Tweedie
9 */
10#include <linux/mm.h>
11#include <linux/gfp.h>
12#include <linux/kernel_stat.h>
13#include <linux/swap.h>
14#include <linux/swapops.h>
15#include <linux/init.h>
16#include <linux/pagemap.h>
17#include <linux/backing-dev.h>
18#include <linux/blkdev.h>
19#include <linux/pagevec.h>
20#include <linux/migrate.h>
21#include <linux/vmalloc.h>
22#include <linux/swap_slots.h>
23#include <linux/huge_mm.h>
24
25#include <asm/pgtable.h>
26
27/*
28 * swapper_space is a fiction, retained to simplify the path through
29 * vmscan's shrink_page_list.
30 */
31static const struct address_space_operations swap_aops = {
32 .writepage = swap_writepage,
33 .set_page_dirty = swap_set_page_dirty,
34#ifdef CONFIG_MIGRATION
35 .migratepage = migrate_page,
36#endif
37};
38
39struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly;
40static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly;
41static bool enable_vma_readahead __read_mostly = true;
42
43#define SWAP_RA_WIN_SHIFT (PAGE_SHIFT / 2)
44#define SWAP_RA_HITS_MASK ((1UL << SWAP_RA_WIN_SHIFT) - 1)
45#define SWAP_RA_HITS_MAX SWAP_RA_HITS_MASK
46#define SWAP_RA_WIN_MASK (~PAGE_MASK & ~SWAP_RA_HITS_MASK)
47
48#define SWAP_RA_HITS(v) ((v) & SWAP_RA_HITS_MASK)
49#define SWAP_RA_WIN(v) (((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
50#define SWAP_RA_ADDR(v) ((v) & PAGE_MASK)
51
52#define SWAP_RA_VAL(addr, win, hits) \
53 (((addr) & PAGE_MASK) | \
54 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) | \
55 ((hits) & SWAP_RA_HITS_MASK))
56
57/* Initial readahead hits is 4 to start up with a small window */
58#define GET_SWAP_RA_VAL(vma) \
59 (atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
60
61#define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0)
62#define ADD_CACHE_INFO(x, nr) do { swap_cache_info.x += (nr); } while (0)
63
64static struct {
65 unsigned long add_total;
66 unsigned long del_total;
67 unsigned long find_success;
68 unsigned long find_total;
69} swap_cache_info;
70
71unsigned long total_swapcache_pages(void)
72{
73 unsigned int i, j, nr;
74 unsigned long ret = 0;
75 struct address_space *spaces;
76
77 rcu_read_lock();
78 for (i = 0; i < MAX_SWAPFILES; i++) {
79 /*
80 * The corresponding entries in nr_swapper_spaces and
81 * swapper_spaces will be reused only after at least
82 * one grace period. So it is impossible for them
83 * belongs to different usage.
84 */
85 nr = nr_swapper_spaces[i];
86 spaces = rcu_dereference(swapper_spaces[i]);
87 if (!nr || !spaces)
88 continue;
89 for (j = 0; j < nr; j++)
90 ret += spaces[j].nrpages;
91 }
92 rcu_read_unlock();
93 return ret;
94}
95
96static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
97
98void show_swap_cache_info(void)
99{
100 printk("%lu pages in swap cache\n", total_swapcache_pages());
101 printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
102 swap_cache_info.add_total, swap_cache_info.del_total,
103 swap_cache_info.find_success, swap_cache_info.find_total);
104 printk("Free swap = %ldkB\n",
105 get_nr_swap_pages() << (PAGE_SHIFT - 10));
106 printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
107}
108
109/*
110 * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
111 * but sets SwapCache flag and private instead of mapping and index.
112 */
113int __add_to_swap_cache(struct page *page, swp_entry_t entry)
114{
115 int error, i, nr = hpage_nr_pages(page);
116 struct address_space *address_space;
117 pgoff_t idx = swp_offset(entry);
118
119 VM_BUG_ON_PAGE(!PageLocked(page), page);
120 VM_BUG_ON_PAGE(PageSwapCache(page), page);
121 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
122
123 page_ref_add(page, nr);
124 SetPageSwapCache(page);
125
126 address_space = swap_address_space(entry);
127 xa_lock_irq(&address_space->i_pages);
128 for (i = 0; i < nr; i++) {
129 set_page_private(page + i, entry.val + i);
130 error = radix_tree_insert(&address_space->i_pages,
131 idx + i, page + i);
132 if (unlikely(error))
133 break;
134 }
135 if (likely(!error)) {
136 address_space->nrpages += nr;
137 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
138 ADD_CACHE_INFO(add_total, nr);
139 } else {
140 /*
141 * Only the context which have set SWAP_HAS_CACHE flag
142 * would call add_to_swap_cache().
143 * So add_to_swap_cache() doesn't returns -EEXIST.
144 */
145 VM_BUG_ON(error == -EEXIST);
146 set_page_private(page + i, 0UL);
147 while (i--) {
148 radix_tree_delete(&address_space->i_pages, idx + i);
149 set_page_private(page + i, 0UL);
150 }
151 ClearPageSwapCache(page);
152 page_ref_sub(page, nr);
153 }
154 xa_unlock_irq(&address_space->i_pages);
155
156 return error;
157}
158
159
160int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
161{
162 int error;
163
164 error = radix_tree_maybe_preload_order(gfp_mask, compound_order(page));
165 if (!error) {
166 error = __add_to_swap_cache(page, entry);
167 radix_tree_preload_end();
168 }
169 return error;
170}
171
172/*
173 * This must be called only on pages that have
174 * been verified to be in the swap cache.
175 */
176void __delete_from_swap_cache(struct page *page)
177{
178 struct address_space *address_space;
179 int i, nr = hpage_nr_pages(page);
180 swp_entry_t entry;
181 pgoff_t idx;
182
183 VM_BUG_ON_PAGE(!PageLocked(page), page);
184 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
185 VM_BUG_ON_PAGE(PageWriteback(page), page);
186
187 entry.val = page_private(page);
188 address_space = swap_address_space(entry);
189 idx = swp_offset(entry);
190 for (i = 0; i < nr; i++) {
191 radix_tree_delete(&address_space->i_pages, idx + i);
192 set_page_private(page + i, 0);
193 }
194 ClearPageSwapCache(page);
195 address_space->nrpages -= nr;
196 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
197 ADD_CACHE_INFO(del_total, nr);
198}
199
200/**
201 * add_to_swap - allocate swap space for a page
202 * @page: page we want to move to swap
203 *
204 * Allocate swap space for the page and add the page to the
205 * swap cache. Caller needs to hold the page lock.
206 */
207int add_to_swap(struct page *page)
208{
209 swp_entry_t entry;
210 int err;
211
212 VM_BUG_ON_PAGE(!PageLocked(page), page);
213 VM_BUG_ON_PAGE(!PageUptodate(page), page);
214
215 entry = get_swap_page(page);
216 if (!entry.val)
217 return 0;
218
219 if (mem_cgroup_try_charge_swap(page, entry))
220 goto fail;
221
222 /*
223 * Radix-tree node allocations from PF_MEMALLOC contexts could
224 * completely exhaust the page allocator. __GFP_NOMEMALLOC
225 * stops emergency reserves from being allocated.
226 *
227 * TODO: this could cause a theoretical memory reclaim
228 * deadlock in the swap out path.
229 */
230 /*
231 * Add it to the swap cache.
232 */
233 err = add_to_swap_cache(page, entry,
234 __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
235 /* -ENOMEM radix-tree allocation failure */
236 if (err)
237 /*
238 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
239 * clear SWAP_HAS_CACHE flag.
240 */
241 goto fail;
242 /*
243 * Normally the page will be dirtied in unmap because its pte should be
244 * dirty. A special case is MADV_FREE page. The page'e pte could have
245 * dirty bit cleared but the page's SwapBacked bit is still set because
246 * clearing the dirty bit and SwapBacked bit has no lock protected. For
247 * such page, unmap will not set dirty bit for it, so page reclaim will
248 * not write the page out. This can cause data corruption when the page
249 * is swap in later. Always setting the dirty bit for the page solves
250 * the problem.
251 */
252 set_page_dirty(page);
253
254 return 1;
255
256fail:
257 put_swap_page(page, entry);
258 return 0;
259}
260
261/*
262 * This must be called only on pages that have
263 * been verified to be in the swap cache and locked.
264 * It will never put the page into the free list,
265 * the caller has a reference on the page.
266 */
267void delete_from_swap_cache(struct page *page)
268{
269 swp_entry_t entry;
270 struct address_space *address_space;
271
272 entry.val = page_private(page);
273
274 address_space = swap_address_space(entry);
275 xa_lock_irq(&address_space->i_pages);
276 __delete_from_swap_cache(page);
277 xa_unlock_irq(&address_space->i_pages);
278
279 put_swap_page(page, entry);
280 page_ref_sub(page, hpage_nr_pages(page));
281}
282
283/*
284 * If we are the only user, then try to free up the swap cache.
285 *
286 * Its ok to check for PageSwapCache without the page lock
287 * here because we are going to recheck again inside
288 * try_to_free_swap() _with_ the lock.
289 * - Marcelo
290 */
291static inline void free_swap_cache(struct page *page)
292{
293 if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
294 try_to_free_swap(page);
295 unlock_page(page);
296 }
297}
298
299/*
300 * Perform a free_page(), also freeing any swap cache associated with
301 * this page if it is the last user of the page.
302 */
303void free_page_and_swap_cache(struct page *page)
304{
305 free_swap_cache(page);
306 if (!is_huge_zero_page(page))
307 put_page(page);
308}
309
310/*
311 * Passed an array of pages, drop them all from swapcache and then release
312 * them. They are removed from the LRU and freed if this is their last use.
313 */
314void free_pages_and_swap_cache(struct page **pages, int nr)
315{
316 struct page **pagep = pages;
317 int i;
318
319 lru_add_drain();
320 for (i = 0; i < nr; i++)
321 free_swap_cache(pagep[i]);
322 release_pages(pagep, nr);
323}
324
325static inline bool swap_use_vma_readahead(void)
326{
327 return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap);
328}
329
330/*
331 * Lookup a swap entry in the swap cache. A found page will be returned
332 * unlocked and with its refcount incremented - we rely on the kernel
333 * lock getting page table operations atomic even if we drop the page
334 * lock before returning.
335 */
336struct page *lookup_swap_cache(swp_entry_t entry, struct vm_area_struct *vma,
337 unsigned long addr)
338{
339 struct page *page;
340
341 page = find_get_page(swap_address_space(entry), swp_offset(entry));
342
343 INC_CACHE_INFO(find_total);
344 if (page) {
345 bool vma_ra = swap_use_vma_readahead();
346 bool readahead;
347
348 INC_CACHE_INFO(find_success);
349 /*
350 * At the moment, we don't support PG_readahead for anon THP
351 * so let's bail out rather than confusing the readahead stat.
352 */
353 if (unlikely(PageTransCompound(page)))
354 return page;
355
356 readahead = TestClearPageReadahead(page);
357 if (vma && vma_ra) {
358 unsigned long ra_val;
359 int win, hits;
360
361 ra_val = GET_SWAP_RA_VAL(vma);
362 win = SWAP_RA_WIN(ra_val);
363 hits = SWAP_RA_HITS(ra_val);
364 if (readahead)
365 hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX);
366 atomic_long_set(&vma->swap_readahead_info,
367 SWAP_RA_VAL(addr, win, hits));
368 }
369
370 if (readahead) {
371 count_vm_event(SWAP_RA_HIT);
372 if (!vma || !vma_ra)
373 atomic_inc(&swapin_readahead_hits);
374 }
375 }
376
377 return page;
378}
379
380struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
381 struct vm_area_struct *vma, unsigned long addr,
382 bool *new_page_allocated)
383{
384 struct page *found_page, *new_page = NULL;
385 struct address_space *swapper_space = swap_address_space(entry);
386 int err;
387 *new_page_allocated = false;
388
389 do {
390 /*
391 * First check the swap cache. Since this is normally
392 * called after lookup_swap_cache() failed, re-calling
393 * that would confuse statistics.
394 */
395 found_page = find_get_page(swapper_space, swp_offset(entry));
396 if (found_page)
397 break;
398
399 /*
400 * Just skip read ahead for unused swap slot.
401 * During swap_off when swap_slot_cache is disabled,
402 * we have to handle the race between putting
403 * swap entry in swap cache and marking swap slot
404 * as SWAP_HAS_CACHE. That's done in later part of code or
405 * else swap_off will be aborted if we return NULL.
406 */
407 if (!__swp_swapcount(entry) && swap_slot_cache_enabled)
408 break;
409
410 /*
411 * Get a new page to read into from swap.
412 */
413 if (!new_page) {
414 new_page = alloc_page_vma(gfp_mask, vma, addr);
415 if (!new_page)
416 break; /* Out of memory */
417 }
418
419 /*
420 * call radix_tree_preload() while we can wait.
421 */
422 err = radix_tree_maybe_preload(gfp_mask & GFP_KERNEL);
423 if (err)
424 break;
425
426 /*
427 * Swap entry may have been freed since our caller observed it.
428 */
429 err = swapcache_prepare(entry);
430 if (err == -EEXIST) {
431 radix_tree_preload_end();
432 /*
433 * We might race against get_swap_page() and stumble
434 * across a SWAP_HAS_CACHE swap_map entry whose page
435 * has not been brought into the swapcache yet.
436 */
437 cond_resched();
438 continue;
439 }
440 if (err) { /* swp entry is obsolete ? */
441 radix_tree_preload_end();
442 break;
443 }
444
445 /* May fail (-ENOMEM) if radix-tree node allocation failed. */
446 __SetPageLocked(new_page);
447 __SetPageSwapBacked(new_page);
448 err = __add_to_swap_cache(new_page, entry);
449 if (likely(!err)) {
450 radix_tree_preload_end();
451 /*
452 * Initiate read into locked page and return.
453 */
454 lru_cache_add_anon(new_page);
455 *new_page_allocated = true;
456 return new_page;
457 }
458 radix_tree_preload_end();
459 __ClearPageLocked(new_page);
460 /*
461 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
462 * clear SWAP_HAS_CACHE flag.
463 */
464 put_swap_page(new_page, entry);
465 } while (err != -ENOMEM);
466
467 if (new_page)
468 put_page(new_page);
469 return found_page;
470}
471
472/*
473 * Locate a page of swap in physical memory, reserving swap cache space
474 * and reading the disk if it is not already cached.
475 * A failure return means that either the page allocation failed or that
476 * the swap entry is no longer in use.
477 */
478struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
479 struct vm_area_struct *vma, unsigned long addr, bool do_poll)
480{
481 bool page_was_allocated;
482 struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
483 vma, addr, &page_was_allocated);
484
485 if (page_was_allocated)
486 swap_readpage(retpage, do_poll);
487
488 return retpage;
489}
490
491static unsigned int __swapin_nr_pages(unsigned long prev_offset,
492 unsigned long offset,
493 int hits,
494 int max_pages,
495 int prev_win)
496{
497 unsigned int pages, last_ra;
498
499 /*
500 * This heuristic has been found to work well on both sequential and
501 * random loads, swapping to hard disk or to SSD: please don't ask
502 * what the "+ 2" means, it just happens to work well, that's all.
503 */
504 pages = hits + 2;
505 if (pages == 2) {
506 /*
507 * We can have no readahead hits to judge by: but must not get
508 * stuck here forever, so check for an adjacent offset instead
509 * (and don't even bother to check whether swap type is same).
510 */
511 if (offset != prev_offset + 1 && offset != prev_offset - 1)
512 pages = 1;
513 } else {
514 unsigned int roundup = 4;
515 while (roundup < pages)
516 roundup <<= 1;
517 pages = roundup;
518 }
519
520 if (pages > max_pages)
521 pages = max_pages;
522
523 /* Don't shrink readahead too fast */
524 last_ra = prev_win / 2;
525 if (pages < last_ra)
526 pages = last_ra;
527
528 return pages;
529}
530
531static unsigned long swapin_nr_pages(unsigned long offset)
532{
533 static unsigned long prev_offset;
534 unsigned int hits, pages, max_pages;
535 static atomic_t last_readahead_pages;
536
537 max_pages = 1 << READ_ONCE(page_cluster);
538 if (max_pages <= 1)
539 return 1;
540
541 hits = atomic_xchg(&swapin_readahead_hits, 0);
542 pages = __swapin_nr_pages(prev_offset, offset, hits, max_pages,
543 atomic_read(&last_readahead_pages));
544 if (!hits)
545 prev_offset = offset;
546 atomic_set(&last_readahead_pages, pages);
547
548 return pages;
549}
550
551/**
552 * swap_cluster_readahead - swap in pages in hope we need them soon
553 * @entry: swap entry of this memory
554 * @gfp_mask: memory allocation flags
555 * @vmf: fault information
556 *
557 * Returns the struct page for entry and addr, after queueing swapin.
558 *
559 * Primitive swap readahead code. We simply read an aligned block of
560 * (1 << page_cluster) entries in the swap area. This method is chosen
561 * because it doesn't cost us any seek time. We also make sure to queue
562 * the 'original' request together with the readahead ones...
563 *
564 * This has been extended to use the NUMA policies from the mm triggering
565 * the readahead.
566 *
567 * Caller must hold down_read on the vma->vm_mm if vmf->vma is not NULL.
568 */
569struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask,
570 struct vm_fault *vmf)
571{
572 struct page *page;
573 unsigned long entry_offset = swp_offset(entry);
574 unsigned long offset = entry_offset;
575 unsigned long start_offset, end_offset;
576 unsigned long mask;
577 struct swap_info_struct *si = swp_swap_info(entry);
578 struct blk_plug plug;
579 bool do_poll = true, page_allocated;
580 struct vm_area_struct *vma = vmf->vma;
581 unsigned long addr = vmf->address;
582
583 mask = swapin_nr_pages(offset) - 1;
584 if (!mask)
585 goto skip;
586
587 do_poll = false;
588 /* Read a page_cluster sized and aligned cluster around offset. */
589 start_offset = offset & ~mask;
590 end_offset = offset | mask;
591 if (!start_offset) /* First page is swap header. */
592 start_offset++;
593 if (end_offset >= si->max)
594 end_offset = si->max - 1;
595
596 blk_start_plug(&plug);
597 for (offset = start_offset; offset <= end_offset ; offset++) {
598 /* Ok, do the async read-ahead now */
599 page = __read_swap_cache_async(
600 swp_entry(swp_type(entry), offset),
601 gfp_mask, vma, addr, &page_allocated);
602 if (!page)
603 continue;
604 if (page_allocated) {
605 swap_readpage(page, false);
606 if (offset != entry_offset) {
607 SetPageReadahead(page);
608 count_vm_event(SWAP_RA);
609 }
610 }
611 put_page(page);
612 }
613 blk_finish_plug(&plug);
614
615 lru_add_drain(); /* Push any new pages onto the LRU now */
616skip:
617 return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll);
618}
619
620int init_swap_address_space(unsigned int type, unsigned long nr_pages)
621{
622 struct address_space *spaces, *space;
623 unsigned int i, nr;
624
625 nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
626 spaces = kvzalloc(sizeof(struct address_space) * nr, GFP_KERNEL);
627 if (!spaces)
628 return -ENOMEM;
629 for (i = 0; i < nr; i++) {
630 space = spaces + i;
631 INIT_RADIX_TREE(&space->i_pages, GFP_ATOMIC|__GFP_NOWARN);
632 atomic_set(&space->i_mmap_writable, 0);
633 space->a_ops = &swap_aops;
634 /* swap cache doesn't use writeback related tags */
635 mapping_set_no_writeback_tags(space);
636 }
637 nr_swapper_spaces[type] = nr;
638 rcu_assign_pointer(swapper_spaces[type], spaces);
639
640 return 0;
641}
642
643void exit_swap_address_space(unsigned int type)
644{
645 struct address_space *spaces;
646
647 spaces = swapper_spaces[type];
648 nr_swapper_spaces[type] = 0;
649 rcu_assign_pointer(swapper_spaces[type], NULL);
650 synchronize_rcu();
651 kvfree(spaces);
652}
653
654static inline void swap_ra_clamp_pfn(struct vm_area_struct *vma,
655 unsigned long faddr,
656 unsigned long lpfn,
657 unsigned long rpfn,
658 unsigned long *start,
659 unsigned long *end)
660{
661 *start = max3(lpfn, PFN_DOWN(vma->vm_start),
662 PFN_DOWN(faddr & PMD_MASK));
663 *end = min3(rpfn, PFN_DOWN(vma->vm_end),
664 PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE));
665}
666
667static void swap_ra_info(struct vm_fault *vmf,
668 struct vma_swap_readahead *ra_info)
669{
670 struct vm_area_struct *vma = vmf->vma;
671 unsigned long ra_val;
672 swp_entry_t entry;
673 unsigned long faddr, pfn, fpfn;
674 unsigned long start, end;
675 pte_t *pte, *orig_pte;
676 unsigned int max_win, hits, prev_win, win, left;
677#ifndef CONFIG_64BIT
678 pte_t *tpte;
679#endif
680
681 max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster),
682 SWAP_RA_ORDER_CEILING);
683 if (max_win == 1) {
684 ra_info->win = 1;
685 return;
686 }
687
688 faddr = vmf->address;
689 orig_pte = pte = pte_offset_map(vmf->pmd, faddr);
690 entry = pte_to_swp_entry(*pte);
691 if ((unlikely(non_swap_entry(entry)))) {
692 pte_unmap(orig_pte);
693 return;
694 }
695
696 fpfn = PFN_DOWN(faddr);
697 ra_val = GET_SWAP_RA_VAL(vma);
698 pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val));
699 prev_win = SWAP_RA_WIN(ra_val);
700 hits = SWAP_RA_HITS(ra_val);
701 ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits,
702 max_win, prev_win);
703 atomic_long_set(&vma->swap_readahead_info,
704 SWAP_RA_VAL(faddr, win, 0));
705
706 if (win == 1) {
707 pte_unmap(orig_pte);
708 return;
709 }
710
711 /* Copy the PTEs because the page table may be unmapped */
712 if (fpfn == pfn + 1)
713 swap_ra_clamp_pfn(vma, faddr, fpfn, fpfn + win, &start, &end);
714 else if (pfn == fpfn + 1)
715 swap_ra_clamp_pfn(vma, faddr, fpfn - win + 1, fpfn + 1,
716 &start, &end);
717 else {
718 left = (win - 1) / 2;
719 swap_ra_clamp_pfn(vma, faddr, fpfn - left, fpfn + win - left,
720 &start, &end);
721 }
722 ra_info->nr_pte = end - start;
723 ra_info->offset = fpfn - start;
724 pte -= ra_info->offset;
725#ifdef CONFIG_64BIT
726 ra_info->ptes = pte;
727#else
728 tpte = ra_info->ptes;
729 for (pfn = start; pfn != end; pfn++)
730 *tpte++ = *pte++;
731#endif
732 pte_unmap(orig_pte);
733}
734
735static struct page *swap_vma_readahead(swp_entry_t fentry, gfp_t gfp_mask,
736 struct vm_fault *vmf)
737{
738 struct blk_plug plug;
739 struct vm_area_struct *vma = vmf->vma;
740 struct page *page;
741 pte_t *pte, pentry;
742 swp_entry_t entry;
743 unsigned int i;
744 bool page_allocated;
745 struct vma_swap_readahead ra_info = {0,};
746
747 swap_ra_info(vmf, &ra_info);
748 if (ra_info.win == 1)
749 goto skip;
750
751 blk_start_plug(&plug);
752 for (i = 0, pte = ra_info.ptes; i < ra_info.nr_pte;
753 i++, pte++) {
754 pentry = *pte;
755 if (pte_none(pentry))
756 continue;
757 if (pte_present(pentry))
758 continue;
759 entry = pte_to_swp_entry(pentry);
760 if (unlikely(non_swap_entry(entry)))
761 continue;
762 page = __read_swap_cache_async(entry, gfp_mask, vma,
763 vmf->address, &page_allocated);
764 if (!page)
765 continue;
766 if (page_allocated) {
767 swap_readpage(page, false);
768 if (i != ra_info.offset) {
769 SetPageReadahead(page);
770 count_vm_event(SWAP_RA);
771 }
772 }
773 put_page(page);
774 }
775 blk_finish_plug(&plug);
776 lru_add_drain();
777skip:
778 return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address,
779 ra_info.win == 1);
780}
781
782/**
783 * swapin_readahead - swap in pages in hope we need them soon
784 * @entry: swap entry of this memory
785 * @gfp_mask: memory allocation flags
786 * @vmf: fault information
787 *
788 * Returns the struct page for entry and addr, after queueing swapin.
789 *
790 * It's a main entry function for swap readahead. By the configuration,
791 * it will read ahead blocks by cluster-based(ie, physical disk based)
792 * or vma-based(ie, virtual address based on faulty address) readahead.
793 */
794struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
795 struct vm_fault *vmf)
796{
797 return swap_use_vma_readahead() ?
798 swap_vma_readahead(entry, gfp_mask, vmf) :
799 swap_cluster_readahead(entry, gfp_mask, vmf);
800}
801
802#ifdef CONFIG_SYSFS
803static ssize_t vma_ra_enabled_show(struct kobject *kobj,
804 struct kobj_attribute *attr, char *buf)
805{
806 return sprintf(buf, "%s\n", enable_vma_readahead ? "true" : "false");
807}
808static ssize_t vma_ra_enabled_store(struct kobject *kobj,
809 struct kobj_attribute *attr,
810 const char *buf, size_t count)
811{
812 if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1))
813 enable_vma_readahead = true;
814 else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1))
815 enable_vma_readahead = false;
816 else
817 return -EINVAL;
818
819 return count;
820}
821static struct kobj_attribute vma_ra_enabled_attr =
822 __ATTR(vma_ra_enabled, 0644, vma_ra_enabled_show,
823 vma_ra_enabled_store);
824
825static struct attribute *swap_attrs[] = {
826 &vma_ra_enabled_attr.attr,
827 NULL,
828};
829
830static struct attribute_group swap_attr_group = {
831 .attrs = swap_attrs,
832};
833
834static int __init swap_init_sysfs(void)
835{
836 int err;
837 struct kobject *swap_kobj;
838
839 swap_kobj = kobject_create_and_add("swap", mm_kobj);
840 if (!swap_kobj) {
841 pr_err("failed to create swap kobject\n");
842 return -ENOMEM;
843 }
844 err = sysfs_create_group(swap_kobj, &swap_attr_group);
845 if (err) {
846 pr_err("failed to register swap group\n");
847 goto delete_obj;
848 }
849 return 0;
850
851delete_obj:
852 kobject_put(swap_kobj);
853 return err;
854}
855subsys_initcall(swap_init_sysfs);
856#endif
1/*
2 * linux/mm/swap_state.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 *
7 * Rewritten to use page cache, (C) 1998 Stephen Tweedie
8 */
9#include <linux/mm.h>
10#include <linux/gfp.h>
11#include <linux/kernel_stat.h>
12#include <linux/swap.h>
13#include <linux/swapops.h>
14#include <linux/init.h>
15#include <linux/pagemap.h>
16#include <linux/backing-dev.h>
17#include <linux/blkdev.h>
18#include <linux/pagevec.h>
19#include <linux/migrate.h>
20
21#include <asm/pgtable.h>
22
23/*
24 * swapper_space is a fiction, retained to simplify the path through
25 * vmscan's shrink_page_list.
26 */
27static const struct address_space_operations swap_aops = {
28 .writepage = swap_writepage,
29 .set_page_dirty = swap_set_page_dirty,
30#ifdef CONFIG_MIGRATION
31 .migratepage = migrate_page,
32#endif
33};
34
35struct address_space swapper_spaces[MAX_SWAPFILES] = {
36 [0 ... MAX_SWAPFILES - 1] = {
37 .page_tree = RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN),
38 .i_mmap_writable = ATOMIC_INIT(0),
39 .a_ops = &swap_aops,
40 /* swap cache doesn't use writeback related tags */
41 .flags = 1 << AS_NO_WRITEBACK_TAGS,
42 }
43};
44
45#define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0)
46
47static struct {
48 unsigned long add_total;
49 unsigned long del_total;
50 unsigned long find_success;
51 unsigned long find_total;
52} swap_cache_info;
53
54unsigned long total_swapcache_pages(void)
55{
56 int i;
57 unsigned long ret = 0;
58
59 for (i = 0; i < MAX_SWAPFILES; i++)
60 ret += swapper_spaces[i].nrpages;
61 return ret;
62}
63
64static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
65
66void show_swap_cache_info(void)
67{
68 printk("%lu pages in swap cache\n", total_swapcache_pages());
69 printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
70 swap_cache_info.add_total, swap_cache_info.del_total,
71 swap_cache_info.find_success, swap_cache_info.find_total);
72 printk("Free swap = %ldkB\n",
73 get_nr_swap_pages() << (PAGE_SHIFT - 10));
74 printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
75}
76
77/*
78 * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
79 * but sets SwapCache flag and private instead of mapping and index.
80 */
81int __add_to_swap_cache(struct page *page, swp_entry_t entry)
82{
83 int error;
84 struct address_space *address_space;
85
86 VM_BUG_ON_PAGE(!PageLocked(page), page);
87 VM_BUG_ON_PAGE(PageSwapCache(page), page);
88 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
89
90 get_page(page);
91 SetPageSwapCache(page);
92 set_page_private(page, entry.val);
93
94 address_space = swap_address_space(entry);
95 spin_lock_irq(&address_space->tree_lock);
96 error = radix_tree_insert(&address_space->page_tree,
97 swp_offset(entry), page);
98 if (likely(!error)) {
99 address_space->nrpages++;
100 __inc_node_page_state(page, NR_FILE_PAGES);
101 INC_CACHE_INFO(add_total);
102 }
103 spin_unlock_irq(&address_space->tree_lock);
104
105 if (unlikely(error)) {
106 /*
107 * Only the context which have set SWAP_HAS_CACHE flag
108 * would call add_to_swap_cache().
109 * So add_to_swap_cache() doesn't returns -EEXIST.
110 */
111 VM_BUG_ON(error == -EEXIST);
112 set_page_private(page, 0UL);
113 ClearPageSwapCache(page);
114 put_page(page);
115 }
116
117 return error;
118}
119
120
121int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
122{
123 int error;
124
125 error = radix_tree_maybe_preload(gfp_mask);
126 if (!error) {
127 error = __add_to_swap_cache(page, entry);
128 radix_tree_preload_end();
129 }
130 return error;
131}
132
133/*
134 * This must be called only on pages that have
135 * been verified to be in the swap cache.
136 */
137void __delete_from_swap_cache(struct page *page)
138{
139 swp_entry_t entry;
140 struct address_space *address_space;
141
142 VM_BUG_ON_PAGE(!PageLocked(page), page);
143 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
144 VM_BUG_ON_PAGE(PageWriteback(page), page);
145
146 entry.val = page_private(page);
147 address_space = swap_address_space(entry);
148 radix_tree_delete(&address_space->page_tree, swp_offset(entry));
149 set_page_private(page, 0);
150 ClearPageSwapCache(page);
151 address_space->nrpages--;
152 __dec_node_page_state(page, NR_FILE_PAGES);
153 INC_CACHE_INFO(del_total);
154}
155
156/**
157 * add_to_swap - allocate swap space for a page
158 * @page: page we want to move to swap
159 *
160 * Allocate swap space for the page and add the page to the
161 * swap cache. Caller needs to hold the page lock.
162 */
163int add_to_swap(struct page *page, struct list_head *list)
164{
165 swp_entry_t entry;
166 int err;
167
168 VM_BUG_ON_PAGE(!PageLocked(page), page);
169 VM_BUG_ON_PAGE(!PageUptodate(page), page);
170
171 entry = get_swap_page();
172 if (!entry.val)
173 return 0;
174
175 if (mem_cgroup_try_charge_swap(page, entry)) {
176 swapcache_free(entry);
177 return 0;
178 }
179
180 if (unlikely(PageTransHuge(page)))
181 if (unlikely(split_huge_page_to_list(page, list))) {
182 swapcache_free(entry);
183 return 0;
184 }
185
186 /*
187 * Radix-tree node allocations from PF_MEMALLOC contexts could
188 * completely exhaust the page allocator. __GFP_NOMEMALLOC
189 * stops emergency reserves from being allocated.
190 *
191 * TODO: this could cause a theoretical memory reclaim
192 * deadlock in the swap out path.
193 */
194 /*
195 * Add it to the swap cache.
196 */
197 err = add_to_swap_cache(page, entry,
198 __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
199
200 if (!err) {
201 return 1;
202 } else { /* -ENOMEM radix-tree allocation failure */
203 /*
204 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
205 * clear SWAP_HAS_CACHE flag.
206 */
207 swapcache_free(entry);
208 return 0;
209 }
210}
211
212/*
213 * This must be called only on pages that have
214 * been verified to be in the swap cache and locked.
215 * It will never put the page into the free list,
216 * the caller has a reference on the page.
217 */
218void delete_from_swap_cache(struct page *page)
219{
220 swp_entry_t entry;
221 struct address_space *address_space;
222
223 entry.val = page_private(page);
224
225 address_space = swap_address_space(entry);
226 spin_lock_irq(&address_space->tree_lock);
227 __delete_from_swap_cache(page);
228 spin_unlock_irq(&address_space->tree_lock);
229
230 swapcache_free(entry);
231 put_page(page);
232}
233
234/*
235 * If we are the only user, then try to free up the swap cache.
236 *
237 * Its ok to check for PageSwapCache without the page lock
238 * here because we are going to recheck again inside
239 * try_to_free_swap() _with_ the lock.
240 * - Marcelo
241 */
242static inline void free_swap_cache(struct page *page)
243{
244 if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
245 try_to_free_swap(page);
246 unlock_page(page);
247 }
248}
249
250/*
251 * Perform a free_page(), also freeing any swap cache associated with
252 * this page if it is the last user of the page.
253 */
254void free_page_and_swap_cache(struct page *page)
255{
256 free_swap_cache(page);
257 if (!is_huge_zero_page(page))
258 put_page(page);
259}
260
261/*
262 * Passed an array of pages, drop them all from swapcache and then release
263 * them. They are removed from the LRU and freed if this is their last use.
264 */
265void free_pages_and_swap_cache(struct page **pages, int nr)
266{
267 struct page **pagep = pages;
268 int i;
269
270 lru_add_drain();
271 for (i = 0; i < nr; i++)
272 free_swap_cache(pagep[i]);
273 release_pages(pagep, nr, false);
274}
275
276/*
277 * Lookup a swap entry in the swap cache. A found page will be returned
278 * unlocked and with its refcount incremented - we rely on the kernel
279 * lock getting page table operations atomic even if we drop the page
280 * lock before returning.
281 */
282struct page * lookup_swap_cache(swp_entry_t entry)
283{
284 struct page *page;
285
286 page = find_get_page(swap_address_space(entry), swp_offset(entry));
287
288 if (page) {
289 INC_CACHE_INFO(find_success);
290 if (TestClearPageReadahead(page))
291 atomic_inc(&swapin_readahead_hits);
292 }
293
294 INC_CACHE_INFO(find_total);
295 return page;
296}
297
298struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
299 struct vm_area_struct *vma, unsigned long addr,
300 bool *new_page_allocated)
301{
302 struct page *found_page, *new_page = NULL;
303 struct address_space *swapper_space = swap_address_space(entry);
304 int err;
305 *new_page_allocated = false;
306
307 do {
308 /*
309 * First check the swap cache. Since this is normally
310 * called after lookup_swap_cache() failed, re-calling
311 * that would confuse statistics.
312 */
313 found_page = find_get_page(swapper_space, swp_offset(entry));
314 if (found_page)
315 break;
316
317 /*
318 * Get a new page to read into from swap.
319 */
320 if (!new_page) {
321 new_page = alloc_page_vma(gfp_mask, vma, addr);
322 if (!new_page)
323 break; /* Out of memory */
324 }
325
326 /*
327 * call radix_tree_preload() while we can wait.
328 */
329 err = radix_tree_maybe_preload(gfp_mask & GFP_KERNEL);
330 if (err)
331 break;
332
333 /*
334 * Swap entry may have been freed since our caller observed it.
335 */
336 err = swapcache_prepare(entry);
337 if (err == -EEXIST) {
338 radix_tree_preload_end();
339 /*
340 * We might race against get_swap_page() and stumble
341 * across a SWAP_HAS_CACHE swap_map entry whose page
342 * has not been brought into the swapcache yet, while
343 * the other end is scheduled away waiting on discard
344 * I/O completion at scan_swap_map().
345 *
346 * In order to avoid turning this transitory state
347 * into a permanent loop around this -EEXIST case
348 * if !CONFIG_PREEMPT and the I/O completion happens
349 * to be waiting on the CPU waitqueue where we are now
350 * busy looping, we just conditionally invoke the
351 * scheduler here, if there are some more important
352 * tasks to run.
353 */
354 cond_resched();
355 continue;
356 }
357 if (err) { /* swp entry is obsolete ? */
358 radix_tree_preload_end();
359 break;
360 }
361
362 /* May fail (-ENOMEM) if radix-tree node allocation failed. */
363 __SetPageLocked(new_page);
364 __SetPageSwapBacked(new_page);
365 err = __add_to_swap_cache(new_page, entry);
366 if (likely(!err)) {
367 radix_tree_preload_end();
368 /*
369 * Initiate read into locked page and return.
370 */
371 lru_cache_add_anon(new_page);
372 *new_page_allocated = true;
373 return new_page;
374 }
375 radix_tree_preload_end();
376 __ClearPageLocked(new_page);
377 /*
378 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
379 * clear SWAP_HAS_CACHE flag.
380 */
381 swapcache_free(entry);
382 } while (err != -ENOMEM);
383
384 if (new_page)
385 put_page(new_page);
386 return found_page;
387}
388
389/*
390 * Locate a page of swap in physical memory, reserving swap cache space
391 * and reading the disk if it is not already cached.
392 * A failure return means that either the page allocation failed or that
393 * the swap entry is no longer in use.
394 */
395struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
396 struct vm_area_struct *vma, unsigned long addr)
397{
398 bool page_was_allocated;
399 struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
400 vma, addr, &page_was_allocated);
401
402 if (page_was_allocated)
403 swap_readpage(retpage);
404
405 return retpage;
406}
407
408static unsigned long swapin_nr_pages(unsigned long offset)
409{
410 static unsigned long prev_offset;
411 unsigned int pages, max_pages, last_ra;
412 static atomic_t last_readahead_pages;
413
414 max_pages = 1 << READ_ONCE(page_cluster);
415 if (max_pages <= 1)
416 return 1;
417
418 /*
419 * This heuristic has been found to work well on both sequential and
420 * random loads, swapping to hard disk or to SSD: please don't ask
421 * what the "+ 2" means, it just happens to work well, that's all.
422 */
423 pages = atomic_xchg(&swapin_readahead_hits, 0) + 2;
424 if (pages == 2) {
425 /*
426 * We can have no readahead hits to judge by: but must not get
427 * stuck here forever, so check for an adjacent offset instead
428 * (and don't even bother to check whether swap type is same).
429 */
430 if (offset != prev_offset + 1 && offset != prev_offset - 1)
431 pages = 1;
432 prev_offset = offset;
433 } else {
434 unsigned int roundup = 4;
435 while (roundup < pages)
436 roundup <<= 1;
437 pages = roundup;
438 }
439
440 if (pages > max_pages)
441 pages = max_pages;
442
443 /* Don't shrink readahead too fast */
444 last_ra = atomic_read(&last_readahead_pages) / 2;
445 if (pages < last_ra)
446 pages = last_ra;
447 atomic_set(&last_readahead_pages, pages);
448
449 return pages;
450}
451
452/**
453 * swapin_readahead - swap in pages in hope we need them soon
454 * @entry: swap entry of this memory
455 * @gfp_mask: memory allocation flags
456 * @vma: user vma this address belongs to
457 * @addr: target address for mempolicy
458 *
459 * Returns the struct page for entry and addr, after queueing swapin.
460 *
461 * Primitive swap readahead code. We simply read an aligned block of
462 * (1 << page_cluster) entries in the swap area. This method is chosen
463 * because it doesn't cost us any seek time. We also make sure to queue
464 * the 'original' request together with the readahead ones...
465 *
466 * This has been extended to use the NUMA policies from the mm triggering
467 * the readahead.
468 *
469 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
470 */
471struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
472 struct vm_area_struct *vma, unsigned long addr)
473{
474 struct page *page;
475 unsigned long entry_offset = swp_offset(entry);
476 unsigned long offset = entry_offset;
477 unsigned long start_offset, end_offset;
478 unsigned long mask;
479 struct blk_plug plug;
480
481 mask = swapin_nr_pages(offset) - 1;
482 if (!mask)
483 goto skip;
484
485 /* Read a page_cluster sized and aligned cluster around offset. */
486 start_offset = offset & ~mask;
487 end_offset = offset | mask;
488 if (!start_offset) /* First page is swap header. */
489 start_offset++;
490
491 blk_start_plug(&plug);
492 for (offset = start_offset; offset <= end_offset ; offset++) {
493 /* Ok, do the async read-ahead now */
494 page = read_swap_cache_async(swp_entry(swp_type(entry), offset),
495 gfp_mask, vma, addr);
496 if (!page)
497 continue;
498 if (offset != entry_offset)
499 SetPageReadahead(page);
500 put_page(page);
501 }
502 blk_finish_plug(&plug);
503
504 lru_add_drain(); /* Push any new pages onto the LRU now */
505skip:
506 return read_swap_cache_async(entry, gfp_mask, vma, addr);
507}