Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Apr 14-17, 2025
Register
Loading...
v4.17
 
   1/*
   2 *  linux/mm/page_alloc.c
   3 *
   4 *  Manages the free list, the system allocates free pages here.
   5 *  Note that kmalloc() lives in slab.c
   6 *
   7 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   8 *  Swap reorganised 29.12.95, Stephen Tweedie
   9 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15 */
  16
  17#include <linux/stddef.h>
  18#include <linux/mm.h>
  19#include <linux/swap.h>
  20#include <linux/interrupt.h>
  21#include <linux/pagemap.h>
  22#include <linux/jiffies.h>
  23#include <linux/bootmem.h>
  24#include <linux/memblock.h>
  25#include <linux/compiler.h>
  26#include <linux/kernel.h>
  27#include <linux/kasan.h>
 
  28#include <linux/module.h>
  29#include <linux/suspend.h>
  30#include <linux/pagevec.h>
  31#include <linux/blkdev.h>
  32#include <linux/slab.h>
  33#include <linux/ratelimit.h>
  34#include <linux/oom.h>
  35#include <linux/notifier.h>
  36#include <linux/topology.h>
  37#include <linux/sysctl.h>
  38#include <linux/cpu.h>
  39#include <linux/cpuset.h>
  40#include <linux/memory_hotplug.h>
  41#include <linux/nodemask.h>
  42#include <linux/vmalloc.h>
  43#include <linux/vmstat.h>
  44#include <linux/mempolicy.h>
  45#include <linux/memremap.h>
  46#include <linux/stop_machine.h>
  47#include <linux/sort.h>
  48#include <linux/pfn.h>
  49#include <linux/backing-dev.h>
  50#include <linux/fault-inject.h>
  51#include <linux/page-isolation.h>
  52#include <linux/page_ext.h>
  53#include <linux/debugobjects.h>
  54#include <linux/kmemleak.h>
  55#include <linux/compaction.h>
  56#include <trace/events/kmem.h>
  57#include <trace/events/oom.h>
  58#include <linux/prefetch.h>
  59#include <linux/mm_inline.h>
 
  60#include <linux/migrate.h>
  61#include <linux/hugetlb.h>
  62#include <linux/sched/rt.h>
  63#include <linux/sched/mm.h>
  64#include <linux/page_owner.h>
  65#include <linux/kthread.h>
  66#include <linux/memcontrol.h>
  67#include <linux/ftrace.h>
  68#include <linux/lockdep.h>
  69#include <linux/nmi.h>
  70
  71#include <asm/sections.h>
  72#include <asm/tlbflush.h>
  73#include <asm/div64.h>
  74#include "internal.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  75
  76/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
  77static DEFINE_MUTEX(pcp_batch_high_lock);
  78#define MIN_PERCPU_PAGELIST_FRACTION	(8)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  79
  80#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
  81DEFINE_PER_CPU(int, numa_node);
  82EXPORT_PER_CPU_SYMBOL(numa_node);
  83#endif
  84
  85DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
  86
  87#ifdef CONFIG_HAVE_MEMORYLESS_NODES
  88/*
  89 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
  90 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
  91 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
  92 * defined in <linux/topology.h>.
  93 */
  94DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
  95EXPORT_PER_CPU_SYMBOL(_numa_mem_);
  96int _node_numa_mem_[MAX_NUMNODES];
  97#endif
  98
  99/* work_structs for global per-cpu drains */
 100DEFINE_MUTEX(pcpu_drain_mutex);
 101DEFINE_PER_CPU(struct work_struct, pcpu_drain);
 102
 103#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
 104volatile unsigned long latent_entropy __latent_entropy;
 105EXPORT_SYMBOL(latent_entropy);
 106#endif
 107
 108/*
 109 * Array of node states.
 110 */
 111nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
 112	[N_POSSIBLE] = NODE_MASK_ALL,
 113	[N_ONLINE] = { { [0] = 1UL } },
 114#ifndef CONFIG_NUMA
 115	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
 116#ifdef CONFIG_HIGHMEM
 117	[N_HIGH_MEMORY] = { { [0] = 1UL } },
 118#endif
 119	[N_MEMORY] = { { [0] = 1UL } },
 120	[N_CPU] = { { [0] = 1UL } },
 121#endif	/* NUMA */
 122};
 123EXPORT_SYMBOL(node_states);
 124
 125/* Protect totalram_pages and zone->managed_pages */
 126static DEFINE_SPINLOCK(managed_page_count_lock);
 127
 128unsigned long totalram_pages __read_mostly;
 129unsigned long totalreserve_pages __read_mostly;
 130unsigned long totalcma_pages __read_mostly;
 131
 132int percpu_pagelist_fraction;
 133gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
 134
 135/*
 136 * A cached value of the page's pageblock's migratetype, used when the page is
 137 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
 138 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
 139 * Also the migratetype set in the page does not necessarily match the pcplist
 140 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
 141 * other index - this ensures that it will be put on the correct CMA freelist.
 142 */
 143static inline int get_pcppage_migratetype(struct page *page)
 144{
 145	return page->index;
 146}
 147
 148static inline void set_pcppage_migratetype(struct page *page, int migratetype)
 149{
 150	page->index = migratetype;
 151}
 152
 153#ifdef CONFIG_PM_SLEEP
 154/*
 155 * The following functions are used by the suspend/hibernate code to temporarily
 156 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
 157 * while devices are suspended.  To avoid races with the suspend/hibernate code,
 158 * they should always be called with pm_mutex held (gfp_allowed_mask also should
 159 * only be modified with pm_mutex held, unless the suspend/hibernate code is
 160 * guaranteed not to run in parallel with that modification).
 161 */
 162
 163static gfp_t saved_gfp_mask;
 164
 165void pm_restore_gfp_mask(void)
 166{
 167	WARN_ON(!mutex_is_locked(&pm_mutex));
 168	if (saved_gfp_mask) {
 169		gfp_allowed_mask = saved_gfp_mask;
 170		saved_gfp_mask = 0;
 171	}
 172}
 173
 174void pm_restrict_gfp_mask(void)
 175{
 176	WARN_ON(!mutex_is_locked(&pm_mutex));
 177	WARN_ON(saved_gfp_mask);
 178	saved_gfp_mask = gfp_allowed_mask;
 179	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
 180}
 181
 182bool pm_suspended_storage(void)
 183{
 184	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
 185		return false;
 186	return true;
 187}
 188#endif /* CONFIG_PM_SLEEP */
 189
 190#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
 191unsigned int pageblock_order __read_mostly;
 192#endif
 193
 194static void __free_pages_ok(struct page *page, unsigned int order);
 
 195
 196/*
 197 * results with 256, 32 in the lowmem_reserve sysctl:
 198 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 199 *	1G machine -> (16M dma, 784M normal, 224M high)
 200 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 201 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
 202 *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
 203 *
 204 * TBD: should special case ZONE_DMA32 machines here - in those we normally
 205 * don't need any ZONE_NORMAL reservation
 206 */
 207int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
 208#ifdef CONFIG_ZONE_DMA
 209	[ZONE_DMA] = 256,
 210#endif
 211#ifdef CONFIG_ZONE_DMA32
 212	[ZONE_DMA32] = 256,
 213#endif
 214	[ZONE_NORMAL] = 32,
 215#ifdef CONFIG_HIGHMEM
 216	[ZONE_HIGHMEM] = 0,
 217#endif
 218	[ZONE_MOVABLE] = 0,
 219};
 220
 221EXPORT_SYMBOL(totalram_pages);
 222
 223static char * const zone_names[MAX_NR_ZONES] = {
 224#ifdef CONFIG_ZONE_DMA
 225	 "DMA",
 226#endif
 227#ifdef CONFIG_ZONE_DMA32
 228	 "DMA32",
 229#endif
 230	 "Normal",
 231#ifdef CONFIG_HIGHMEM
 232	 "HighMem",
 233#endif
 234	 "Movable",
 235#ifdef CONFIG_ZONE_DEVICE
 236	 "Device",
 237#endif
 238};
 239
 240char * const migratetype_names[MIGRATE_TYPES] = {
 241	"Unmovable",
 242	"Movable",
 243	"Reclaimable",
 244	"HighAtomic",
 245#ifdef CONFIG_CMA
 246	"CMA",
 247#endif
 248#ifdef CONFIG_MEMORY_ISOLATION
 249	"Isolate",
 250#endif
 251};
 252
 253compound_page_dtor * const compound_page_dtors[] = {
 254	NULL,
 255	free_compound_page,
 256#ifdef CONFIG_HUGETLB_PAGE
 257	free_huge_page,
 258#endif
 259#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 260	free_transhuge_page,
 261#endif
 262};
 263
 264int min_free_kbytes = 1024;
 265int user_min_free_kbytes = -1;
 266int watermark_scale_factor = 10;
 267
 268static unsigned long nr_kernel_pages __meminitdata;
 269static unsigned long nr_all_pages __meminitdata;
 270static unsigned long dma_reserve __meminitdata;
 271
 272#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
 273static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __meminitdata;
 274static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __meminitdata;
 275static unsigned long required_kernelcore __initdata;
 276static unsigned long required_kernelcore_percent __initdata;
 277static unsigned long required_movablecore __initdata;
 278static unsigned long required_movablecore_percent __initdata;
 279static unsigned long zone_movable_pfn[MAX_NUMNODES] __meminitdata;
 280static bool mirrored_kernelcore __meminitdata;
 281
 282/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
 283int movable_zone;
 284EXPORT_SYMBOL(movable_zone);
 285#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
 286
 287#if MAX_NUMNODES > 1
 288int nr_node_ids __read_mostly = MAX_NUMNODES;
 289int nr_online_nodes __read_mostly = 1;
 290EXPORT_SYMBOL(nr_node_ids);
 291EXPORT_SYMBOL(nr_online_nodes);
 292#endif
 293
 
 
 
 
 
 
 294int page_group_by_mobility_disabled __read_mostly;
 295
 296#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
 297/* Returns true if the struct page for the pfn is uninitialised */
 298static inline bool __meminit early_page_uninitialised(unsigned long pfn)
 299{
 300	int nid = early_pfn_to_nid(pfn);
 301
 302	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
 303		return true;
 304
 305	return false;
 
 
 306}
 307
 308/*
 309 * Returns false when the remaining initialisation should be deferred until
 310 * later in the boot cycle when it can be parallelised.
 
 
 311 */
 312static inline bool update_defer_init(pg_data_t *pgdat,
 313				unsigned long pfn, unsigned long zone_end,
 314				unsigned long *nr_initialised)
 315{
 316	/* Always populate low zones for address-constrained allocations */
 317	if (zone_end < pgdat_end_pfn(pgdat))
 318		return true;
 319	(*nr_initialised)++;
 320	if ((*nr_initialised > pgdat->static_init_pgcnt) &&
 321	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
 322		pgdat->first_deferred_pfn = pfn;
 323		return false;
 324	}
 325
 326	return true;
 327}
 328#else
 329static inline bool early_page_uninitialised(unsigned long pfn)
 330{
 331	return false;
 332}
 333
 334static inline bool update_defer_init(pg_data_t *pgdat,
 335				unsigned long pfn, unsigned long zone_end,
 336				unsigned long *nr_initialised)
 337{
 338	return true;
 339}
 340#endif
 341
 342/* Return a pointer to the bitmap storing bits affecting a block of pages */
 343static inline unsigned long *get_pageblock_bitmap(struct page *page,
 344							unsigned long pfn)
 345{
 346#ifdef CONFIG_SPARSEMEM
 347	return __pfn_to_section(pfn)->pageblock_flags;
 348#else
 349	return page_zone(page)->pageblock_flags;
 350#endif /* CONFIG_SPARSEMEM */
 351}
 352
 353static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
 354{
 355#ifdef CONFIG_SPARSEMEM
 356	pfn &= (PAGES_PER_SECTION-1);
 357	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
 358#else
 359	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
 360	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
 361#endif /* CONFIG_SPARSEMEM */
 
 362}
 363
 364/**
 365 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
 366 * @page: The page within the block of interest
 367 * @pfn: The target page frame number
 368 * @end_bitidx: The last bit of interest to retrieve
 369 * @mask: mask of bits that the caller is interested in
 370 *
 371 * Return: pageblock_bits flags
 372 */
 373static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
 374					unsigned long pfn,
 375					unsigned long end_bitidx,
 376					unsigned long mask)
 377{
 378	unsigned long *bitmap;
 379	unsigned long bitidx, word_bitidx;
 380	unsigned long word;
 381
 382	bitmap = get_pageblock_bitmap(page, pfn);
 383	bitidx = pfn_to_bitidx(page, pfn);
 384	word_bitidx = bitidx / BITS_PER_LONG;
 385	bitidx &= (BITS_PER_LONG-1);
 386
 387	word = bitmap[word_bitidx];
 388	bitidx += end_bitidx;
 389	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
 390}
 391
 392unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
 393					unsigned long end_bitidx,
 394					unsigned long mask)
 395{
 396	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
 397}
 398
 399static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
 
 400{
 401	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
 402}
 403
 404/**
 405 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
 406 * @page: The page within the block of interest
 407 * @flags: The flags to set
 408 * @pfn: The target page frame number
 409 * @end_bitidx: The last bit of interest
 410 * @mask: mask of bits that the caller is interested in
 411 */
 412void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
 413					unsigned long pfn,
 414					unsigned long end_bitidx,
 415					unsigned long mask)
 416{
 417	unsigned long *bitmap;
 418	unsigned long bitidx, word_bitidx;
 419	unsigned long old_word, word;
 420
 421	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
 
 422
 423	bitmap = get_pageblock_bitmap(page, pfn);
 424	bitidx = pfn_to_bitidx(page, pfn);
 425	word_bitidx = bitidx / BITS_PER_LONG;
 426	bitidx &= (BITS_PER_LONG-1);
 427
 428	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
 429
 430	bitidx += end_bitidx;
 431	mask <<= (BITS_PER_LONG - bitidx - 1);
 432	flags <<= (BITS_PER_LONG - bitidx - 1);
 433
 434	word = READ_ONCE(bitmap[word_bitidx]);
 435	for (;;) {
 436		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
 437		if (word == old_word)
 438			break;
 439		word = old_word;
 440	}
 441}
 442
 443void set_pageblock_migratetype(struct page *page, int migratetype)
 444{
 445	if (unlikely(page_group_by_mobility_disabled &&
 446		     migratetype < MIGRATE_PCPTYPES))
 447		migratetype = MIGRATE_UNMOVABLE;
 448
 449	set_pageblock_flags_group(page, (unsigned long)migratetype,
 450					PB_migrate, PB_migrate_end);
 451}
 452
 453#ifdef CONFIG_DEBUG_VM
 454static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
 455{
 456	int ret = 0;
 457	unsigned seq;
 458	unsigned long pfn = page_to_pfn(page);
 459	unsigned long sp, start_pfn;
 460
 461	do {
 462		seq = zone_span_seqbegin(zone);
 463		start_pfn = zone->zone_start_pfn;
 464		sp = zone->spanned_pages;
 465		if (!zone_spans_pfn(zone, pfn))
 466			ret = 1;
 467	} while (zone_span_seqretry(zone, seq));
 468
 469	if (ret)
 470		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
 471			pfn, zone_to_nid(zone), zone->name,
 472			start_pfn, start_pfn + sp);
 473
 474	return ret;
 475}
 476
 477static int page_is_consistent(struct zone *zone, struct page *page)
 478{
 479	if (!pfn_valid_within(page_to_pfn(page)))
 480		return 0;
 481	if (zone != page_zone(page))
 482		return 0;
 483
 484	return 1;
 485}
 486/*
 487 * Temporary debugging check for pages not lying within a given zone.
 488 */
 489static int __maybe_unused bad_range(struct zone *zone, struct page *page)
 490{
 491	if (page_outside_zone_boundaries(zone, page))
 492		return 1;
 493	if (!page_is_consistent(zone, page))
 494		return 1;
 495
 496	return 0;
 497}
 498#else
 499static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
 500{
 501	return 0;
 502}
 503#endif
 504
 505static void bad_page(struct page *page, const char *reason,
 506		unsigned long bad_flags)
 507{
 508	static unsigned long resume;
 509	static unsigned long nr_shown;
 510	static unsigned long nr_unshown;
 511
 512	/*
 513	 * Allow a burst of 60 reports, then keep quiet for that minute;
 514	 * or allow a steady drip of one report per second.
 515	 */
 516	if (nr_shown == 60) {
 517		if (time_before(jiffies, resume)) {
 518			nr_unshown++;
 519			goto out;
 520		}
 521		if (nr_unshown) {
 522			pr_alert(
 523			      "BUG: Bad page state: %lu messages suppressed\n",
 524				nr_unshown);
 525			nr_unshown = 0;
 526		}
 527		nr_shown = 0;
 528	}
 529	if (nr_shown++ == 0)
 530		resume = jiffies + 60 * HZ;
 531
 532	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
 533		current->comm, page_to_pfn(page));
 534	__dump_page(page, reason);
 535	bad_flags &= page->flags;
 536	if (bad_flags)
 537		pr_alert("bad because of flags: %#lx(%pGp)\n",
 538						bad_flags, &bad_flags);
 539	dump_page_owner(page);
 540
 541	print_modules();
 542	dump_stack();
 543out:
 544	/* Leave bad fields for debug, except PageBuddy could make trouble */
 545	page_mapcount_reset(page); /* remove PageBuddy */
 546	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 547}
 548
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 549/*
 550 * Higher-order pages are called "compound pages".  They are structured thusly:
 551 *
 552 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
 553 *
 554 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
 555 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
 556 *
 557 * The first tail page's ->compound_dtor holds the offset in array of compound
 558 * page destructors. See compound_page_dtors.
 559 *
 560 * The first tail page's ->compound_order holds the order of allocation.
 561 * This usage means that zero-order pages may not be compound.
 562 */
 563
 564void free_compound_page(struct page *page)
 565{
 566	__free_pages_ok(page, compound_order(page));
 567}
 568
 569void prep_compound_page(struct page *page, unsigned int order)
 570{
 571	int i;
 572	int nr_pages = 1 << order;
 573
 574	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
 575	set_compound_order(page, order);
 576	__SetPageHead(page);
 577	for (i = 1; i < nr_pages; i++) {
 578		struct page *p = page + i;
 579		set_page_count(p, 0);
 580		p->mapping = TAIL_MAPPING;
 581		set_compound_head(p, page);
 582	}
 583	atomic_set(compound_mapcount_ptr(page), -1);
 584}
 585
 586#ifdef CONFIG_DEBUG_PAGEALLOC
 587unsigned int _debug_guardpage_minorder;
 588bool _debug_pagealloc_enabled __read_mostly
 589			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
 590EXPORT_SYMBOL(_debug_pagealloc_enabled);
 591bool _debug_guardpage_enabled __read_mostly;
 592
 593static int __init early_debug_pagealloc(char *buf)
 594{
 595	if (!buf)
 596		return -EINVAL;
 597	return kstrtobool(buf, &_debug_pagealloc_enabled);
 598}
 599early_param("debug_pagealloc", early_debug_pagealloc);
 600
 601static bool need_debug_guardpage(void)
 602{
 603	/* If we don't use debug_pagealloc, we don't need guard page */
 604	if (!debug_pagealloc_enabled())
 605		return false;
 
 606
 607	if (!debug_guardpage_minorder())
 608		return false;
 609
 610	return true;
 
 611}
 612
 613static void init_debug_guardpage(void)
 614{
 615	if (!debug_pagealloc_enabled())
 616		return;
 617
 618	if (!debug_guardpage_minorder())
 619		return;
 620
 621	_debug_guardpage_enabled = true;
 622}
 623
 624struct page_ext_operations debug_guardpage_ops = {
 625	.need = need_debug_guardpage,
 626	.init = init_debug_guardpage,
 627};
 628
 629static int __init debug_guardpage_minorder_setup(char *buf)
 630{
 631	unsigned long res;
 632
 633	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
 634		pr_err("Bad debug_guardpage_minorder value\n");
 635		return 0;
 636	}
 637	_debug_guardpage_minorder = res;
 638	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
 639	return 0;
 640}
 641early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
 642
 643static inline bool set_page_guard(struct zone *zone, struct page *page,
 644				unsigned int order, int migratetype)
 
 645{
 646	struct page_ext *page_ext;
 647
 648	if (!debug_guardpage_enabled())
 649		return false;
 650
 651	if (order >= debug_guardpage_minorder())
 
 
 652		return false;
 653
 654	page_ext = lookup_page_ext(page);
 655	if (unlikely(!page_ext))
 
 
 
 
 
 656		return false;
 657
 658	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
 659
 660	INIT_LIST_HEAD(&page->lru);
 661	set_page_private(page, order);
 662	/* Guard pages are not available for any usage */
 663	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
 664
 665	return true;
 666}
 667
 668static inline void clear_page_guard(struct zone *zone, struct page *page,
 669				unsigned int order, int migratetype)
 
 
 
 
 
 
 
 670{
 671	struct page_ext *page_ext;
 
 
 672
 673	if (!debug_guardpage_enabled())
 674		return;
 
 
 
 675
 676	page_ext = lookup_page_ext(page);
 677	if (unlikely(!page_ext))
 678		return;
 679
 680	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
 
 
 
 
 681
 682	set_page_private(page, 0);
 683	if (!is_migrate_isolate(migratetype))
 684		__mod_zone_freepage_state(zone, (1 << order), migratetype);
 685}
 686#else
 687struct page_ext_operations debug_guardpage_ops;
 688static inline bool set_page_guard(struct zone *zone, struct page *page,
 689			unsigned int order, int migratetype) { return false; }
 690static inline void clear_page_guard(struct zone *zone, struct page *page,
 691				unsigned int order, int migratetype) {}
 692#endif
 693
 694static inline void set_page_order(struct page *page, unsigned int order)
 
 
 
 
 
 
 695{
 696	set_page_private(page, order);
 697	__SetPageBuddy(page);
 
 698}
 699
 700static inline void rmv_page_order(struct page *page)
 
 701{
 
 
 
 
 
 702	__ClearPageBuddy(page);
 703	set_page_private(page, 0);
 
 
 
 
 
 
 
 
 704}
 705
 706/*
 707 * This function checks whether a page is free && is the buddy
 708 * we can do coalesce a page and its buddy if
 709 * (a) the buddy is not in a hole (check before calling!) &&
 710 * (b) the buddy is in the buddy system &&
 711 * (c) a page and its buddy have the same order &&
 712 * (d) a page and its buddy are in the same zone.
 713 *
 714 * For recording whether a page is in the buddy system, we set ->_mapcount
 715 * PAGE_BUDDY_MAPCOUNT_VALUE.
 716 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
 717 * serialized by zone->lock.
 718 *
 719 * For recording page's order, we use page_private(page).
 720 */
 721static inline int page_is_buddy(struct page *page, struct page *buddy,
 722							unsigned int order)
 
 723{
 724	if (page_is_guard(buddy) && page_order(buddy) == order) {
 725		if (page_zone_id(page) != page_zone_id(buddy))
 726			return 0;
 727
 728		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
 729
 730		return 1;
 731	}
 732
 733	if (PageBuddy(buddy) && page_order(buddy) == order) {
 734		/*
 735		 * zone check is done late to avoid uselessly
 736		 * calculating zone/node ids for pages that could
 737		 * never merge.
 738		 */
 739		if (page_zone_id(page) != page_zone_id(buddy))
 740			return 0;
 741
 742		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
 
 743
 744		return 1;
 745	}
 746	return 0;
 747}
 748
 749/*
 750 * Freeing function for a buddy system allocator.
 751 *
 752 * The concept of a buddy system is to maintain direct-mapped table
 753 * (containing bit values) for memory blocks of various "orders".
 754 * The bottom level table contains the map for the smallest allocatable
 755 * units of memory (here, pages), and each level above it describes
 756 * pairs of units from the levels below, hence, "buddies".
 757 * At a high level, all that happens here is marking the table entry
 758 * at the bottom level available, and propagating the changes upward
 759 * as necessary, plus some accounting needed to play nicely with other
 760 * parts of the VM system.
 761 * At each level, we keep a list of pages, which are heads of continuous
 762 * free pages of length of (1 << order) and marked with _mapcount
 763 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
 764 * field.
 765 * So when we are allocating or freeing one, we can derive the state of the
 766 * other.  That is, if we allocate a small block, and both were
 767 * free, the remainder of the region must be split into blocks.
 768 * If a block is freed, and its buddy is also free, then this
 769 * triggers coalescing into a block of larger size.
 770 *
 771 * -- nyc
 772 */
 773
 774static inline void __free_one_page(struct page *page,
 775		unsigned long pfn,
 776		struct zone *zone, unsigned int order,
 777		int migratetype)
 778{
 
 
 779	unsigned long combined_pfn;
 780	unsigned long uninitialized_var(buddy_pfn);
 781	struct page *buddy;
 782	unsigned int max_order;
 783
 784	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
 785
 786	VM_BUG_ON(!zone_is_initialized(zone));
 787	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
 788
 789	VM_BUG_ON(migratetype == -1);
 790	if (likely(!is_migrate_isolate(migratetype)))
 791		__mod_zone_freepage_state(zone, 1 << order, migratetype);
 792
 793	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
 794	VM_BUG_ON_PAGE(bad_range(zone, page), page);
 795
 796continue_merging:
 797	while (order < max_order - 1) {
 798		buddy_pfn = __find_buddy_pfn(pfn, order);
 799		buddy = page + (buddy_pfn - pfn);
 
 
 800
 801		if (!pfn_valid_within(buddy_pfn))
 802			goto done_merging;
 803		if (!page_is_buddy(page, buddy, order))
 804			goto done_merging;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 805		/*
 806		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
 807		 * merge with it and move up one order.
 808		 */
 809		if (page_is_guard(buddy)) {
 810			clear_page_guard(zone, buddy, order, migratetype);
 811		} else {
 812			list_del(&buddy->lru);
 813			zone->free_area[order].nr_free--;
 814			rmv_page_order(buddy);
 815		}
 816		combined_pfn = buddy_pfn & pfn;
 817		page = page + (combined_pfn - pfn);
 818		pfn = combined_pfn;
 819		order++;
 820	}
 821	if (max_order < MAX_ORDER) {
 822		/* If we are here, it means order is >= pageblock_order.
 823		 * We want to prevent merge between freepages on isolate
 824		 * pageblock and normal pageblock. Without this, pageblock
 825		 * isolation could cause incorrect freepage or CMA accounting.
 826		 *
 827		 * We don't want to hit this code for the more frequent
 828		 * low-order merging.
 829		 */
 830		if (unlikely(has_isolate_pageblock(zone))) {
 831			int buddy_mt;
 832
 833			buddy_pfn = __find_buddy_pfn(pfn, order);
 834			buddy = page + (buddy_pfn - pfn);
 835			buddy_mt = get_pageblock_migratetype(buddy);
 836
 837			if (migratetype != buddy_mt
 838					&& (is_migrate_isolate(migratetype) ||
 839						is_migrate_isolate(buddy_mt)))
 840				goto done_merging;
 841		}
 842		max_order++;
 843		goto continue_merging;
 844	}
 845
 846done_merging:
 847	set_page_order(page, order);
 
 
 848
 849	/*
 850	 * If this is not the largest possible page, check if the buddy
 851	 * of the next-highest order is free. If it is, it's possible
 852	 * that pages are being freed that will coalesce soon. In case,
 853	 * that is happening, add the free page to the tail of the list
 854	 * so it's less likely to be used soon and more likely to be merged
 855	 * as a higher order page
 856	 */
 857	if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
 858		struct page *higher_page, *higher_buddy;
 859		combined_pfn = buddy_pfn & pfn;
 860		higher_page = page + (combined_pfn - pfn);
 861		buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
 862		higher_buddy = higher_page + (buddy_pfn - combined_pfn);
 863		if (pfn_valid_within(buddy_pfn) &&
 864		    page_is_buddy(higher_page, higher_buddy, order + 1)) {
 865			list_add_tail(&page->lru,
 866				&zone->free_area[order].free_list[migratetype]);
 867			goto out;
 868		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 869	}
 870
 871	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 872out:
 873	zone->free_area[order].nr_free++;
 
 874}
 875
 876/*
 877 * A bad page could be due to a number of fields. Instead of multiple branches,
 878 * try and check multiple fields with one check. The caller must do a detailed
 879 * check if necessary.
 880 */
 881static inline bool page_expected_state(struct page *page,
 882					unsigned long check_flags)
 883{
 884	if (unlikely(atomic_read(&page->_mapcount) != -1))
 885		return false;
 886
 887	if (unlikely((unsigned long)page->mapping |
 888			page_ref_count(page) |
 889#ifdef CONFIG_MEMCG
 890			(unsigned long)page->mem_cgroup |
 
 
 
 891#endif
 892			(page->flags & check_flags)))
 893		return false;
 894
 895	return true;
 896}
 897
 898static void free_pages_check_bad(struct page *page)
 899{
 900	const char *bad_reason;
 901	unsigned long bad_flags;
 902
 903	bad_reason = NULL;
 904	bad_flags = 0;
 905
 906	if (unlikely(atomic_read(&page->_mapcount) != -1))
 907		bad_reason = "nonzero mapcount";
 908	if (unlikely(page->mapping != NULL))
 909		bad_reason = "non-NULL mapping";
 910	if (unlikely(page_ref_count(page) != 0))
 911		bad_reason = "nonzero _refcount";
 912	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
 913		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
 914		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
 
 
 915	}
 916#ifdef CONFIG_MEMCG
 917	if (unlikely(page->mem_cgroup))
 918		bad_reason = "page still charged to cgroup";
 919#endif
 920	bad_page(page, bad_reason, bad_flags);
 
 
 
 
 
 
 
 
 
 
 921}
 922
 923static inline int free_pages_check(struct page *page)
 924{
 925	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
 926		return 0;
 927
 928	/* Something has gone sideways, find it */
 929	free_pages_check_bad(page);
 930	return 1;
 931}
 932
 933static int free_tail_pages_check(struct page *head_page, struct page *page)
 934{
 
 
 
 
 
 
 935	int ret = 1;
 936
 937	/*
 938	 * We rely page->lru.next never has bit 0 set, unless the page
 939	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
 940	 */
 941	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
 942
 943	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
 944		ret = 0;
 945		goto out;
 946	}
 947	switch (page - head_page) {
 948	case 1:
 949		/* the first tail page: ->mapping is compound_mapcount() */
 950		if (unlikely(compound_mapcount(page))) {
 951			bad_page(page, "nonzero compound_mapcount", 0);
 
 
 
 
 
 
 
 
 952			goto out;
 953		}
 954		break;
 955	case 2:
 956		/*
 957		 * the second tail page: ->mapping is
 958		 * page_deferred_list().next -- ignore value.
 959		 */
 960		break;
 961	default:
 962		if (page->mapping != TAIL_MAPPING) {
 963			bad_page(page, "corrupted mapping in tail page", 0);
 964			goto out;
 965		}
 966		break;
 967	}
 968	if (unlikely(!PageTail(page))) {
 969		bad_page(page, "PageTail not set", 0);
 970		goto out;
 971	}
 972	if (unlikely(compound_head(page) != head_page)) {
 973		bad_page(page, "compound_head not consistent", 0);
 974		goto out;
 975	}
 976	ret = 0;
 977out:
 978	page->mapping = NULL;
 979	clear_compound_head(page);
 980	return ret;
 981}
 982
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 983static __always_inline bool free_pages_prepare(struct page *page,
 984					unsigned int order, bool check_free)
 985{
 986	int bad = 0;
 
 
 
 987
 988	VM_BUG_ON_PAGE(PageTail(page), page);
 989
 990	trace_mm_page_free(page, order);
 
 
 
 
 
 
 
 
 
 
 
 
 
 991
 992	/*
 993	 * Check tail pages before head page information is cleared to
 994	 * avoid checking PageCompound for order-0 pages.
 995	 */
 996	if (unlikely(order)) {
 997		bool compound = PageCompound(page);
 998		int i;
 999
1000		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1001
1002		if (compound)
1003			ClearPageDoubleMap(page);
1004		for (i = 1; i < (1 << order); i++) {
1005			if (compound)
1006				bad += free_tail_pages_check(page, page + i);
1007			if (unlikely(free_pages_check(page + i))) {
1008				bad++;
1009				continue;
 
 
1010			}
1011			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1012		}
1013	}
1014	if (PageMappingFlags(page))
1015		page->mapping = NULL;
1016	if (memcg_kmem_enabled() && PageKmemcg(page))
1017		memcg_kmem_uncharge(page, order);
1018	if (check_free)
1019		bad += free_pages_check(page);
1020	if (bad)
1021		return false;
1022
1023	page_cpupid_reset_last(page);
1024	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1025	reset_page_owner(page, order);
 
1026
1027	if (!PageHighMem(page)) {
1028		debug_check_no_locks_freed(page_address(page),
1029					   PAGE_SIZE << order);
1030		debug_check_no_obj_freed(page_address(page),
1031					   PAGE_SIZE << order);
1032	}
1033	arch_free_page(page, order);
1034	kernel_poison_pages(page, 1 << order, 0);
1035	kernel_map_pages(page, 1 << order, 0);
1036	kasan_free_pages(page, order);
1037
1038	return true;
1039}
1040
1041#ifdef CONFIG_DEBUG_VM
1042static inline bool free_pcp_prepare(struct page *page)
1043{
1044	return free_pages_prepare(page, 0, true);
1045}
 
 
 
 
 
1046
1047static inline bool bulkfree_pcp_prepare(struct page *page)
1048{
1049	return false;
1050}
1051#else
1052static bool free_pcp_prepare(struct page *page)
1053{
1054	return free_pages_prepare(page, 0, false);
1055}
1056
1057static bool bulkfree_pcp_prepare(struct page *page)
1058{
1059	return free_pages_check(page);
1060}
1061#endif /* CONFIG_DEBUG_VM */
 
1062
1063static inline void prefetch_buddy(struct page *page)
1064{
1065	unsigned long pfn = page_to_pfn(page);
1066	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1067	struct page *buddy = page + (buddy_pfn - pfn);
1068
1069	prefetch(buddy);
1070}
1071
1072/*
1073 * Frees a number of pages from the PCP lists
1074 * Assumes all pages on list are in same zone, and of same order.
1075 * count is the number of pages to free.
1076 *
1077 * If the zone was previously in an "all pages pinned" state then look to
1078 * see if this freeing clears that state.
1079 *
1080 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1081 * pinned" detection logic.
1082 */
1083static void free_pcppages_bulk(struct zone *zone, int count,
1084					struct per_cpu_pages *pcp)
 
1085{
1086	int migratetype = 0;
1087	int batch_free = 0;
1088	int prefetch_nr = 0;
1089	bool isolated_pageblocks;
1090	struct page *page, *tmp;
1091	LIST_HEAD(head);
1092
1093	while (count) {
 
 
 
 
 
 
 
 
 
 
 
 
1094		struct list_head *list;
 
1095
1096		/*
1097		 * Remove pages from lists in a round-robin fashion. A
1098		 * batch_free count is maintained that is incremented when an
1099		 * empty list is encountered.  This is so more pages are freed
1100		 * off fuller lists instead of spinning excessively around empty
1101		 * lists
1102		 */
1103		do {
1104			batch_free++;
1105			if (++migratetype == MIGRATE_PCPTYPES)
1106				migratetype = 0;
1107			list = &pcp->lists[migratetype];
1108		} while (list_empty(list));
1109
1110		/* This is the only non-empty list. Free them all. */
1111		if (batch_free == MIGRATE_PCPTYPES)
1112			batch_free = count;
1113
1114		do {
1115			page = list_last_entry(list, struct page, lru);
1116			/* must delete to avoid corrupting pcp list */
1117			list_del(&page->lru);
1118			pcp->count--;
1119
1120			if (bulkfree_pcp_prepare(page))
1121				continue;
1122
1123			list_add_tail(&page->lru, &head);
 
1124
1125			/*
1126			 * We are going to put the page back to the global
1127			 * pool, prefetch its buddy to speed up later access
1128			 * under zone->lock. It is believed the overhead of
1129			 * an additional test and calculating buddy_pfn here
1130			 * can be offset by reduced memory latency later. To
1131			 * avoid excessive prefetching due to large count, only
1132			 * prefetch buddy for the first pcp->batch nr of pages.
1133			 */
1134			if (prefetch_nr++ < pcp->batch)
1135				prefetch_buddy(page);
1136		} while (--count && --batch_free && !list_empty(list));
 
 
1137	}
1138
1139	spin_lock(&zone->lock);
1140	isolated_pageblocks = has_isolate_pageblock(zone);
1141
1142	/*
1143	 * Use safe version since after __free_one_page(),
1144	 * page->lru.next will not point to original list.
1145	 */
1146	list_for_each_entry_safe(page, tmp, &head, lru) {
1147		int mt = get_pcppage_migratetype(page);
1148		/* MIGRATE_ISOLATE page should not go to pcplists */
1149		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1150		/* Pageblock could have been isolated meanwhile */
1151		if (unlikely(isolated_pageblocks))
1152			mt = get_pageblock_migratetype(page);
1153
1154		__free_one_page(page, page_to_pfn(page), zone, 0, mt);
1155		trace_mm_page_pcpu_drain(page, 0, mt);
1156	}
1157	spin_unlock(&zone->lock);
1158}
1159
1160static void free_one_page(struct zone *zone,
1161				struct page *page, unsigned long pfn,
1162				unsigned int order,
1163				int migratetype)
1164{
1165	spin_lock(&zone->lock);
 
 
1166	if (unlikely(has_isolate_pageblock(zone) ||
1167		is_migrate_isolate(migratetype))) {
1168		migratetype = get_pfnblock_migratetype(page, pfn);
1169	}
1170	__free_one_page(page, pfn, zone, order, migratetype);
1171	spin_unlock(&zone->lock);
1172}
1173
1174static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1175				unsigned long zone, int nid)
1176{
1177	mm_zero_struct_page(page);
1178	set_page_links(page, zone, nid, pfn);
1179	init_page_count(page);
1180	page_mapcount_reset(page);
1181	page_cpupid_reset_last(page);
1182
1183	INIT_LIST_HEAD(&page->lru);
1184#ifdef WANT_PAGE_VIRTUAL
1185	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1186	if (!is_highmem_idx(zone))
1187		set_page_address(page, __va(pfn << PAGE_SHIFT));
1188#endif
1189}
1190
1191#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1192static void __meminit init_reserved_page(unsigned long pfn)
1193{
1194	pg_data_t *pgdat;
1195	int nid, zid;
1196
1197	if (!early_page_uninitialised(pfn))
1198		return;
1199
1200	nid = early_pfn_to_nid(pfn);
1201	pgdat = NODE_DATA(nid);
1202
1203	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1204		struct zone *zone = &pgdat->node_zones[zid];
1205
1206		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1207			break;
1208	}
1209	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1210}
1211#else
1212static inline void init_reserved_page(unsigned long pfn)
1213{
1214}
1215#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1216
1217/*
1218 * Initialised pages do not have PageReserved set. This function is
1219 * called for each range allocated by the bootmem allocator and
1220 * marks the pages PageReserved. The remaining valid pages are later
1221 * sent to the buddy page allocator.
1222 */
1223void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1224{
1225	unsigned long start_pfn = PFN_DOWN(start);
1226	unsigned long end_pfn = PFN_UP(end);
1227
1228	for (; start_pfn < end_pfn; start_pfn++) {
1229		if (pfn_valid(start_pfn)) {
1230			struct page *page = pfn_to_page(start_pfn);
1231
1232			init_reserved_page(start_pfn);
1233
1234			/* Avoid false-positive PageTail() */
1235			INIT_LIST_HEAD(&page->lru);
1236
1237			SetPageReserved(page);
1238		}
1239	}
1240}
1241
1242static void __free_pages_ok(struct page *page, unsigned int order)
 
1243{
1244	unsigned long flags;
1245	int migratetype;
1246	unsigned long pfn = page_to_pfn(page);
 
1247
1248	if (!free_pages_prepare(page, order, true))
1249		return;
1250
 
 
 
 
 
1251	migratetype = get_pfnblock_migratetype(page, pfn);
1252	local_irq_save(flags);
 
 
1253	__count_vm_events(PGFREE, 1 << order);
1254	free_one_page(page_zone(page), page, pfn, order, migratetype);
1255	local_irq_restore(flags);
1256}
1257
1258static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1259{
1260	unsigned int nr_pages = 1 << order;
1261	struct page *p = page;
1262	unsigned int loop;
1263
 
 
 
 
 
1264	prefetchw(p);
1265	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1266		prefetchw(p + 1);
1267		__ClearPageReserved(p);
1268		set_page_count(p, 0);
1269	}
1270	__ClearPageReserved(p);
1271	set_page_count(p, 0);
1272
1273	page_zone(page)->managed_pages += nr_pages;
1274	set_page_refcounted(page);
1275	__free_pages(page, order);
1276}
1277
1278#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1279	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1280
1281static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1282
1283int __meminit early_pfn_to_nid(unsigned long pfn)
1284{
1285	static DEFINE_SPINLOCK(early_pfn_lock);
1286	int nid;
1287
1288	spin_lock(&early_pfn_lock);
1289	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1290	if (nid < 0)
1291		nid = first_online_node;
1292	spin_unlock(&early_pfn_lock);
1293
1294	return nid;
1295}
1296#endif
1297
1298#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1299static inline bool __meminit __maybe_unused
1300meminit_pfn_in_nid(unsigned long pfn, int node,
1301		   struct mminit_pfnnid_cache *state)
1302{
1303	int nid;
1304
1305	nid = __early_pfn_to_nid(pfn, state);
1306	if (nid >= 0 && nid != node)
1307		return false;
1308	return true;
1309}
1310
1311/* Only safe to use early in boot when initialisation is single-threaded */
1312static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1313{
1314	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1315}
1316
1317#else
1318
1319static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1320{
1321	return true;
1322}
1323static inline bool __meminit  __maybe_unused
1324meminit_pfn_in_nid(unsigned long pfn, int node,
1325		   struct mminit_pfnnid_cache *state)
1326{
1327	return true;
1328}
1329#endif
1330
 
 
1331
1332void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1333							unsigned int order)
1334{
1335	if (early_page_uninitialised(pfn))
1336		return;
1337	return __free_pages_boot_core(page, order);
1338}
1339
1340/*
1341 * Check that the whole (or subset of) a pageblock given by the interval of
1342 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1343 * with the migration of free compaction scanner. The scanners then need to
1344 * use only pfn_valid_within() check for arches that allow holes within
1345 * pageblocks.
1346 *
1347 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1348 *
1349 * It's possible on some configurations to have a setup like node0 node1 node0
1350 * i.e. it's possible that all pages within a zones range of pages do not
1351 * belong to a single zone. We assume that a border between node0 and node1
1352 * can occur within a single pageblock, but not a node0 node1 node0
1353 * interleaving within a single pageblock. It is therefore sufficient to check
1354 * the first and last page of a pageblock and avoid checking each individual
1355 * page in a pageblock.
 
 
 
 
 
 
 
 
 
1356 */
1357struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1358				     unsigned long end_pfn, struct zone *zone)
1359{
1360	struct page *start_page;
1361	struct page *end_page;
1362
1363	/* end_pfn is one past the range we are checking */
1364	end_pfn--;
1365
1366	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1367		return NULL;
1368
1369	start_page = pfn_to_online_page(start_pfn);
1370	if (!start_page)
1371		return NULL;
1372
1373	if (page_zone(start_page) != zone)
1374		return NULL;
1375
1376	end_page = pfn_to_page(end_pfn);
1377
1378	/* This gives a shorter code than deriving page_zone(end_page) */
1379	if (page_zone_id(start_page) != page_zone_id(end_page))
1380		return NULL;
1381
1382	return start_page;
1383}
1384
1385void set_zone_contiguous(struct zone *zone)
1386{
1387	unsigned long block_start_pfn = zone->zone_start_pfn;
1388	unsigned long block_end_pfn;
1389
1390	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1391	for (; block_start_pfn < zone_end_pfn(zone);
1392			block_start_pfn = block_end_pfn,
1393			 block_end_pfn += pageblock_nr_pages) {
1394
1395		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1396
1397		if (!__pageblock_pfn_to_page(block_start_pfn,
1398					     block_end_pfn, zone))
1399			return;
1400	}
1401
1402	/* We confirm that there is no hole */
1403	zone->contiguous = true;
1404}
1405
1406void clear_zone_contiguous(struct zone *zone)
1407{
1408	zone->contiguous = false;
1409}
1410
1411#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1412static void __init deferred_free_range(unsigned long pfn,
1413				       unsigned long nr_pages)
1414{
1415	struct page *page;
1416	unsigned long i;
1417
1418	if (!nr_pages)
1419		return;
1420
1421	page = pfn_to_page(pfn);
1422
1423	/* Free a large naturally-aligned chunk if possible */
1424	if (nr_pages == pageblock_nr_pages &&
1425	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1426		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1427		__free_pages_boot_core(page, pageblock_order);
1428		return;
1429	}
1430
1431	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1432		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1433			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1434		__free_pages_boot_core(page, 0);
1435	}
1436}
1437
1438/* Completion tracking for deferred_init_memmap() threads */
1439static atomic_t pgdat_init_n_undone __initdata;
1440static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1441
1442static inline void __init pgdat_init_report_one_done(void)
1443{
1444	if (atomic_dec_and_test(&pgdat_init_n_undone))
1445		complete(&pgdat_init_all_done_comp);
1446}
1447
1448/*
1449 * Returns true if page needs to be initialized or freed to buddy allocator.
1450 *
1451 * First we check if pfn is valid on architectures where it is possible to have
1452 * holes within pageblock_nr_pages. On systems where it is not possible, this
1453 * function is optimized out.
1454 *
1455 * Then, we check if a current large page is valid by only checking the validity
1456 * of the head pfn.
1457 *
1458 * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave
1459 * within a node: a pfn is between start and end of a node, but does not belong
1460 * to this memory node.
1461 */
1462static inline bool __init
1463deferred_pfn_valid(int nid, unsigned long pfn,
1464		   struct mminit_pfnnid_cache *nid_init_state)
1465{
1466	if (!pfn_valid_within(pfn))
1467		return false;
1468	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1469		return false;
1470	if (!meminit_pfn_in_nid(pfn, nid, nid_init_state))
1471		return false;
1472	return true;
1473}
1474
1475/*
1476 * Free pages to buddy allocator. Try to free aligned pages in
1477 * pageblock_nr_pages sizes.
1478 */
1479static void __init deferred_free_pages(int nid, int zid, unsigned long pfn,
1480				       unsigned long end_pfn)
1481{
1482	struct mminit_pfnnid_cache nid_init_state = { };
1483	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1484	unsigned long nr_free = 0;
1485
1486	for (; pfn < end_pfn; pfn++) {
1487		if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1488			deferred_free_range(pfn - nr_free, nr_free);
1489			nr_free = 0;
1490		} else if (!(pfn & nr_pgmask)) {
1491			deferred_free_range(pfn - nr_free, nr_free);
1492			nr_free = 1;
1493			touch_nmi_watchdog();
1494		} else {
1495			nr_free++;
1496		}
1497	}
1498	/* Free the last block of pages to allocator */
1499	deferred_free_range(pfn - nr_free, nr_free);
1500}
1501
1502/*
1503 * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1504 * by performing it only once every pageblock_nr_pages.
1505 * Return number of pages initialized.
1506 */
1507static unsigned long  __init deferred_init_pages(int nid, int zid,
1508						 unsigned long pfn,
1509						 unsigned long end_pfn)
1510{
1511	struct mminit_pfnnid_cache nid_init_state = { };
1512	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1513	unsigned long nr_pages = 0;
1514	struct page *page = NULL;
1515
1516	for (; pfn < end_pfn; pfn++) {
1517		if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1518			page = NULL;
1519			continue;
1520		} else if (!page || !(pfn & nr_pgmask)) {
1521			page = pfn_to_page(pfn);
1522			touch_nmi_watchdog();
1523		} else {
1524			page++;
1525		}
1526		__init_single_page(page, pfn, zid, nid);
1527		nr_pages++;
1528	}
1529	return (nr_pages);
1530}
1531
1532/* Initialise remaining memory on a node */
1533static int __init deferred_init_memmap(void *data)
1534{
1535	pg_data_t *pgdat = data;
1536	int nid = pgdat->node_id;
1537	unsigned long start = jiffies;
1538	unsigned long nr_pages = 0;
1539	unsigned long spfn, epfn, first_init_pfn, flags;
1540	phys_addr_t spa, epa;
1541	int zid;
1542	struct zone *zone;
1543	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1544	u64 i;
1545
1546	/* Bind memory initialisation thread to a local node if possible */
1547	if (!cpumask_empty(cpumask))
1548		set_cpus_allowed_ptr(current, cpumask);
1549
1550	pgdat_resize_lock(pgdat, &flags);
1551	first_init_pfn = pgdat->first_deferred_pfn;
1552	if (first_init_pfn == ULONG_MAX) {
1553		pgdat_resize_unlock(pgdat, &flags);
1554		pgdat_init_report_one_done();
1555		return 0;
1556	}
1557
1558	/* Sanity check boundaries */
1559	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1560	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1561	pgdat->first_deferred_pfn = ULONG_MAX;
1562
1563	/* Only the highest zone is deferred so find it */
1564	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1565		zone = pgdat->node_zones + zid;
1566		if (first_init_pfn < zone_end_pfn(zone))
1567			break;
1568	}
1569	first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
1570
1571	/*
1572	 * Initialize and free pages. We do it in two loops: first we initialize
1573	 * struct page, than free to buddy allocator, because while we are
1574	 * freeing pages we can access pages that are ahead (computing buddy
1575	 * page in __free_one_page()).
1576	 */
1577	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1578		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1579		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1580		nr_pages += deferred_init_pages(nid, zid, spfn, epfn);
1581	}
1582	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1583		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1584		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1585		deferred_free_pages(nid, zid, spfn, epfn);
1586	}
1587	pgdat_resize_unlock(pgdat, &flags);
1588
1589	/* Sanity check that the next zone really is unpopulated */
1590	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1591
1592	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1593					jiffies_to_msecs(jiffies - start));
1594
1595	pgdat_init_report_one_done();
1596	return 0;
1597}
1598
1599/*
1600 * During boot we initialize deferred pages on-demand, as needed, but once
1601 * page_alloc_init_late() has finished, the deferred pages are all initialized,
1602 * and we can permanently disable that path.
1603 */
1604static DEFINE_STATIC_KEY_TRUE(deferred_pages);
1605
1606/*
1607 * If this zone has deferred pages, try to grow it by initializing enough
1608 * deferred pages to satisfy the allocation specified by order, rounded up to
1609 * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
1610 * of SECTION_SIZE bytes by initializing struct pages in increments of
1611 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1612 *
1613 * Return true when zone was grown, otherwise return false. We return true even
1614 * when we grow less than requested, to let the caller decide if there are
1615 * enough pages to satisfy the allocation.
1616 *
1617 * Note: We use noinline because this function is needed only during boot, and
1618 * it is called from a __ref function _deferred_grow_zone. This way we are
1619 * making sure that it is not inlined into permanent text section.
1620 */
1621static noinline bool __init
1622deferred_grow_zone(struct zone *zone, unsigned int order)
1623{
1624	int zid = zone_idx(zone);
1625	int nid = zone_to_nid(zone);
1626	pg_data_t *pgdat = NODE_DATA(nid);
1627	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1628	unsigned long nr_pages = 0;
1629	unsigned long first_init_pfn, spfn, epfn, t, flags;
1630	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1631	phys_addr_t spa, epa;
1632	u64 i;
1633
1634	/* Only the last zone may have deferred pages */
1635	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1636		return false;
1637
1638	pgdat_resize_lock(pgdat, &flags);
1639
1640	/*
1641	 * If deferred pages have been initialized while we were waiting for
1642	 * the lock, return true, as the zone was grown.  The caller will retry
1643	 * this zone.  We won't return to this function since the caller also
1644	 * has this static branch.
1645	 */
1646	if (!static_branch_unlikely(&deferred_pages)) {
1647		pgdat_resize_unlock(pgdat, &flags);
1648		return true;
1649	}
1650
1651	/*
1652	 * If someone grew this zone while we were waiting for spinlock, return
1653	 * true, as there might be enough pages already.
1654	 */
1655	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1656		pgdat_resize_unlock(pgdat, &flags);
1657		return true;
1658	}
1659
1660	first_init_pfn = max(zone->zone_start_pfn, first_deferred_pfn);
1661
1662	if (first_init_pfn >= pgdat_end_pfn(pgdat)) {
1663		pgdat_resize_unlock(pgdat, &flags);
1664		return false;
1665	}
1666
1667	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1668		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1669		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1670
1671		while (spfn < epfn && nr_pages < nr_pages_needed) {
1672			t = ALIGN(spfn + PAGES_PER_SECTION, PAGES_PER_SECTION);
1673			first_deferred_pfn = min(t, epfn);
1674			nr_pages += deferred_init_pages(nid, zid, spfn,
1675							first_deferred_pfn);
1676			spfn = first_deferred_pfn;
1677		}
1678
1679		if (nr_pages >= nr_pages_needed)
1680			break;
1681	}
1682
1683	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1684		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1685		epfn = min_t(unsigned long, first_deferred_pfn, PFN_DOWN(epa));
1686		deferred_free_pages(nid, zid, spfn, epfn);
1687
1688		if (first_deferred_pfn == epfn)
1689			break;
1690	}
1691	pgdat->first_deferred_pfn = first_deferred_pfn;
1692	pgdat_resize_unlock(pgdat, &flags);
1693
1694	return nr_pages > 0;
1695}
1696
1697/*
1698 * deferred_grow_zone() is __init, but it is called from
1699 * get_page_from_freelist() during early boot until deferred_pages permanently
1700 * disables this call. This is why we have refdata wrapper to avoid warning,
1701 * and to ensure that the function body gets unloaded.
1702 */
1703static bool __ref
1704_deferred_grow_zone(struct zone *zone, unsigned int order)
1705{
1706	return deferred_grow_zone(zone, order);
1707}
1708
1709#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1710
1711void __init page_alloc_init_late(void)
1712{
1713	struct zone *zone;
1714
1715#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1716	int nid;
1717
1718	/* There will be num_node_state(N_MEMORY) threads */
1719	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1720	for_each_node_state(nid, N_MEMORY) {
1721		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1722	}
1723
1724	/* Block until all are initialised */
1725	wait_for_completion(&pgdat_init_all_done_comp);
1726
1727	/*
1728	 * We initialized the rest of the deferred pages.  Permanently disable
1729	 * on-demand struct page initialization.
1730	 */
1731	static_branch_disable(&deferred_pages);
1732
1733	/* Reinit limits that are based on free pages after the kernel is up */
1734	files_maxfiles_init();
1735#endif
1736#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1737	/* Discard memblock private memory */
1738	memblock_discard();
1739#endif
1740
1741	for_each_populated_zone(zone)
1742		set_zone_contiguous(zone);
1743}
1744
1745#ifdef CONFIG_CMA
1746/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1747void __init init_cma_reserved_pageblock(struct page *page)
1748{
1749	unsigned i = pageblock_nr_pages;
1750	struct page *p = page;
1751
1752	do {
1753		__ClearPageReserved(p);
1754		set_page_count(p, 0);
1755	} while (++p, --i);
1756
1757	set_pageblock_migratetype(page, MIGRATE_CMA);
1758
1759	if (pageblock_order >= MAX_ORDER) {
1760		i = pageblock_nr_pages;
1761		p = page;
1762		do {
1763			set_page_refcounted(p);
1764			__free_pages(p, MAX_ORDER - 1);
1765			p += MAX_ORDER_NR_PAGES;
1766		} while (i -= MAX_ORDER_NR_PAGES);
1767	} else {
1768		set_page_refcounted(page);
1769		__free_pages(page, pageblock_order);
1770	}
1771
1772	adjust_managed_page_count(page, pageblock_nr_pages);
1773}
1774#endif
1775
1776/*
1777 * The order of subdivision here is critical for the IO subsystem.
1778 * Please do not alter this order without good reasons and regression
1779 * testing. Specifically, as large blocks of memory are subdivided,
1780 * the order in which smaller blocks are delivered depends on the order
1781 * they're subdivided in this function. This is the primary factor
1782 * influencing the order in which pages are delivered to the IO
1783 * subsystem according to empirical testing, and this is also justified
1784 * by considering the behavior of a buddy system containing a single
1785 * large block of memory acted on by a series of small allocations.
1786 * This behavior is a critical factor in sglist merging's success.
1787 *
1788 * -- nyc
1789 */
1790static inline void expand(struct zone *zone, struct page *page,
1791	int low, int high, struct free_area *area,
1792	int migratetype)
1793{
1794	unsigned long size = 1 << high;
1795
1796	while (high > low) {
1797		area--;
1798		high--;
1799		size >>= 1;
1800		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1801
1802		/*
1803		 * Mark as guard pages (or page), that will allow to
1804		 * merge back to allocator when buddy will be freed.
1805		 * Corresponding page table entries will not be touched,
1806		 * pages will stay not present in virtual address space
1807		 */
1808		if (set_page_guard(zone, &page[size], high, migratetype))
1809			continue;
1810
1811		list_add(&page[size].lru, &area->free_list[migratetype]);
1812		area->nr_free++;
1813		set_page_order(&page[size], high);
1814	}
1815}
1816
1817static void check_new_page_bad(struct page *page)
1818{
1819	const char *bad_reason = NULL;
1820	unsigned long bad_flags = 0;
1821
1822	if (unlikely(atomic_read(&page->_mapcount) != -1))
1823		bad_reason = "nonzero mapcount";
1824	if (unlikely(page->mapping != NULL))
1825		bad_reason = "non-NULL mapping";
1826	if (unlikely(page_ref_count(page) != 0))
1827		bad_reason = "nonzero _count";
1828	if (unlikely(page->flags & __PG_HWPOISON)) {
1829		bad_reason = "HWPoisoned (hardware-corrupted)";
1830		bad_flags = __PG_HWPOISON;
1831		/* Don't complain about hwpoisoned pages */
1832		page_mapcount_reset(page); /* remove PageBuddy */
1833		return;
1834	}
1835	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1836		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1837		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1838	}
1839#ifdef CONFIG_MEMCG
1840	if (unlikely(page->mem_cgroup))
1841		bad_reason = "page still charged to cgroup";
1842#endif
1843	bad_page(page, bad_reason, bad_flags);
1844}
1845
1846/*
1847 * This page is about to be returned from the page allocator
1848 */
1849static inline int check_new_page(struct page *page)
1850{
1851	if (likely(page_expected_state(page,
1852				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1853		return 0;
1854
1855	check_new_page_bad(page);
1856	return 1;
1857}
1858
1859static inline bool free_pages_prezeroed(void)
1860{
1861	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1862		page_poisoning_enabled();
1863}
 
 
 
 
 
1864
1865#ifdef CONFIG_DEBUG_VM
1866static bool check_pcp_refill(struct page *page)
1867{
1868	return false;
1869}
1870
1871static bool check_new_pcp(struct page *page)
1872{
1873	return check_new_page(page);
1874}
1875#else
1876static bool check_pcp_refill(struct page *page)
1877{
1878	return check_new_page(page);
1879}
1880static bool check_new_pcp(struct page *page)
1881{
1882	return false;
 
 
 
 
1883}
1884#endif /* CONFIG_DEBUG_VM */
1885
1886static bool check_new_pages(struct page *page, unsigned int order)
1887{
1888	int i;
1889	for (i = 0; i < (1 << order); i++) {
1890		struct page *p = page + i;
1891
1892		if (unlikely(check_new_page(p)))
1893			return true;
1894	}
1895
1896	return false;
 
1897}
1898
1899inline void post_alloc_hook(struct page *page, unsigned int order,
1900				gfp_t gfp_flags)
1901{
 
 
 
 
 
1902	set_page_private(page, 0);
1903	set_page_refcounted(page);
1904
1905	arch_alloc_page(page, order);
1906	kernel_map_pages(page, 1 << order, 1);
1907	kernel_poison_pages(page, 1 << order, 1);
1908	kasan_alloc_pages(page, order);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1909	set_page_owner(page, order, gfp_flags);
 
1910}
1911
1912static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1913							unsigned int alloc_flags)
1914{
1915	int i;
1916
1917	post_alloc_hook(page, order, gfp_flags);
1918
1919	if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1920		for (i = 0; i < (1 << order); i++)
1921			clear_highpage(page + i);
1922
1923	if (order && (gfp_flags & __GFP_COMP))
1924		prep_compound_page(page, order);
1925
1926	/*
1927	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1928	 * allocate the page. The expectation is that the caller is taking
1929	 * steps that will free more memory. The caller should avoid the page
1930	 * being used for !PFMEMALLOC purposes.
1931	 */
1932	if (alloc_flags & ALLOC_NO_WATERMARKS)
1933		set_page_pfmemalloc(page);
1934	else
1935		clear_page_pfmemalloc(page);
1936}
1937
1938/*
1939 * Go through the free lists for the given migratetype and remove
1940 * the smallest available page from the freelists
1941 */
1942static __always_inline
1943struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1944						int migratetype)
1945{
1946	unsigned int current_order;
1947	struct free_area *area;
1948	struct page *page;
1949
1950	/* Find a page of the appropriate size in the preferred list */
1951	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1952		area = &(zone->free_area[current_order]);
1953		page = list_first_entry_or_null(&area->free_list[migratetype],
1954							struct page, lru);
1955		if (!page)
1956			continue;
1957		list_del(&page->lru);
1958		rmv_page_order(page);
1959		area->nr_free--;
1960		expand(zone, page, order, current_order, area, migratetype);
1961		set_pcppage_migratetype(page, migratetype);
 
 
 
1962		return page;
1963	}
1964
1965	return NULL;
1966}
1967
1968
1969/*
1970 * This array describes the order lists are fallen back to when
1971 * the free lists for the desirable migrate type are depleted
 
 
1972 */
1973static int fallbacks[MIGRATE_TYPES][4] = {
1974	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
1975	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
1976	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1977#ifdef CONFIG_CMA
1978	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
1979#endif
1980#ifdef CONFIG_MEMORY_ISOLATION
1981	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
1982#endif
1983};
1984
1985#ifdef CONFIG_CMA
1986static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1987					unsigned int order)
1988{
1989	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1990}
1991#else
1992static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1993					unsigned int order) { return NULL; }
1994#endif
1995
1996/*
1997 * Move the free pages in a range to the free lists of the requested type.
1998 * Note that start_page and end_pages are not aligned on a pageblock
1999 * boundary. If alignment is required, use move_freepages_block()
2000 */
2001static int move_freepages(struct zone *zone,
2002			  struct page *start_page, struct page *end_page,
2003			  int migratetype, int *num_movable)
2004{
2005	struct page *page;
 
2006	unsigned int order;
2007	int pages_moved = 0;
2008
2009#ifndef CONFIG_HOLES_IN_ZONE
2010	/*
2011	 * page_zone is not safe to call in this context when
2012	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
2013	 * anyway as we check zone boundaries in move_freepages_block().
2014	 * Remove at a later date when no bug reports exist related to
2015	 * grouping pages by mobility
2016	 */
2017	VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
2018	          pfn_valid(page_to_pfn(end_page)) &&
2019	          page_zone(start_page) != page_zone(end_page));
2020#endif
2021
2022	if (num_movable)
2023		*num_movable = 0;
2024
2025	for (page = start_page; page <= end_page;) {
2026		if (!pfn_valid_within(page_to_pfn(page))) {
2027			page++;
2028			continue;
2029		}
2030
2031		/* Make sure we are not inadvertently changing nodes */
2032		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2033
2034		if (!PageBuddy(page)) {
2035			/*
2036			 * We assume that pages that could be isolated for
2037			 * migration are movable. But we don't actually try
2038			 * isolating, as that would be expensive.
2039			 */
2040			if (num_movable &&
2041					(PageLRU(page) || __PageMovable(page)))
2042				(*num_movable)++;
2043
2044			page++;
2045			continue;
2046		}
2047
2048		order = page_order(page);
2049		list_move(&page->lru,
2050			  &zone->free_area[order].free_list[migratetype]);
2051		page += 1 << order;
 
 
 
2052		pages_moved += 1 << order;
2053	}
2054
2055	return pages_moved;
2056}
2057
2058int move_freepages_block(struct zone *zone, struct page *page,
2059				int migratetype, int *num_movable)
2060{
2061	unsigned long start_pfn, end_pfn;
2062	struct page *start_page, *end_page;
2063
2064	start_pfn = page_to_pfn(page);
2065	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2066	start_page = pfn_to_page(start_pfn);
2067	end_page = start_page + pageblock_nr_pages - 1;
2068	end_pfn = start_pfn + pageblock_nr_pages - 1;
 
2069
2070	/* Do not cross zone boundaries */
2071	if (!zone_spans_pfn(zone, start_pfn))
2072		start_page = page;
2073	if (!zone_spans_pfn(zone, end_pfn))
2074		return 0;
2075
2076	return move_freepages(zone, start_page, end_page, migratetype,
2077								num_movable);
2078}
2079
2080static void change_pageblock_range(struct page *pageblock_page,
2081					int start_order, int migratetype)
2082{
2083	int nr_pageblocks = 1 << (start_order - pageblock_order);
2084
2085	while (nr_pageblocks--) {
2086		set_pageblock_migratetype(pageblock_page, migratetype);
2087		pageblock_page += pageblock_nr_pages;
2088	}
2089}
2090
2091/*
2092 * When we are falling back to another migratetype during allocation, try to
2093 * steal extra free pages from the same pageblocks to satisfy further
2094 * allocations, instead of polluting multiple pageblocks.
2095 *
2096 * If we are stealing a relatively large buddy page, it is likely there will
2097 * be more free pages in the pageblock, so try to steal them all. For
2098 * reclaimable and unmovable allocations, we steal regardless of page size,
2099 * as fragmentation caused by those allocations polluting movable pageblocks
2100 * is worse than movable allocations stealing from unmovable and reclaimable
2101 * pageblocks.
2102 */
2103static bool can_steal_fallback(unsigned int order, int start_mt)
2104{
2105	/*
2106	 * Leaving this order check is intended, although there is
2107	 * relaxed order check in next check. The reason is that
2108	 * we can actually steal whole pageblock if this condition met,
2109	 * but, below check doesn't guarantee it and that is just heuristic
2110	 * so could be changed anytime.
2111	 */
2112	if (order >= pageblock_order)
2113		return true;
2114
2115	if (order >= pageblock_order / 2 ||
2116		start_mt == MIGRATE_RECLAIMABLE ||
2117		start_mt == MIGRATE_UNMOVABLE ||
2118		page_group_by_mobility_disabled)
2119		return true;
2120
2121	return false;
2122}
2123
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2124/*
2125 * This function implements actual steal behaviour. If order is large enough,
2126 * we can steal whole pageblock. If not, we first move freepages in this
2127 * pageblock to our migratetype and determine how many already-allocated pages
2128 * are there in the pageblock with a compatible migratetype. If at least half
2129 * of pages are free or compatible, we can change migratetype of the pageblock
2130 * itself, so pages freed in the future will be put on the correct free list.
2131 */
2132static void steal_suitable_fallback(struct zone *zone, struct page *page,
2133					int start_type, bool whole_block)
2134{
2135	unsigned int current_order = page_order(page);
2136	struct free_area *area;
2137	int free_pages, movable_pages, alike_pages;
2138	int old_block_type;
2139
2140	old_block_type = get_pageblock_migratetype(page);
2141
2142	/*
2143	 * This can happen due to races and we want to prevent broken
2144	 * highatomic accounting.
2145	 */
2146	if (is_migrate_highatomic(old_block_type))
2147		goto single_page;
2148
2149	/* Take ownership for orders >= pageblock_order */
2150	if (current_order >= pageblock_order) {
2151		change_pageblock_range(page, current_order, start_type);
2152		goto single_page;
2153	}
2154
 
 
 
 
 
 
 
 
2155	/* We are not allowed to try stealing from the whole block */
2156	if (!whole_block)
2157		goto single_page;
2158
2159	free_pages = move_freepages_block(zone, page, start_type,
2160						&movable_pages);
 
 
 
 
2161	/*
2162	 * Determine how many pages are compatible with our allocation.
2163	 * For movable allocation, it's the number of movable pages which
2164	 * we just obtained. For other types it's a bit more tricky.
2165	 */
2166	if (start_type == MIGRATE_MOVABLE) {
2167		alike_pages = movable_pages;
2168	} else {
2169		/*
2170		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2171		 * to MOVABLE pageblock, consider all non-movable pages as
2172		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2173		 * vice versa, be conservative since we can't distinguish the
2174		 * exact migratetype of non-movable pages.
2175		 */
2176		if (old_block_type == MIGRATE_MOVABLE)
2177			alike_pages = pageblock_nr_pages
2178						- (free_pages + movable_pages);
2179		else
2180			alike_pages = 0;
2181	}
2182
2183	/* moving whole block can fail due to zone boundary conditions */
2184	if (!free_pages)
2185		goto single_page;
2186
2187	/*
2188	 * If a sufficient number of pages in the block are either free or of
2189	 * comparable migratability as our allocation, claim the whole block.
2190	 */
2191	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2192			page_group_by_mobility_disabled)
2193		set_pageblock_migratetype(page, start_type);
2194
2195	return;
2196
2197single_page:
2198	area = &zone->free_area[current_order];
2199	list_move(&page->lru, &area->free_list[start_type]);
2200}
2201
2202/*
2203 * Check whether there is a suitable fallback freepage with requested order.
2204 * If only_stealable is true, this function returns fallback_mt only if
2205 * we can steal other freepages all together. This would help to reduce
2206 * fragmentation due to mixed migratetype pages in one pageblock.
2207 */
2208int find_suitable_fallback(struct free_area *area, unsigned int order,
2209			int migratetype, bool only_stealable, bool *can_steal)
2210{
2211	int i;
2212	int fallback_mt;
2213
2214	if (area->nr_free == 0)
2215		return -1;
2216
2217	*can_steal = false;
2218	for (i = 0;; i++) {
2219		fallback_mt = fallbacks[migratetype][i];
2220		if (fallback_mt == MIGRATE_TYPES)
2221			break;
2222
2223		if (list_empty(&area->free_list[fallback_mt]))
2224			continue;
2225
2226		if (can_steal_fallback(order, migratetype))
2227			*can_steal = true;
2228
2229		if (!only_stealable)
2230			return fallback_mt;
2231
2232		if (*can_steal)
2233			return fallback_mt;
2234	}
2235
2236	return -1;
2237}
2238
2239/*
2240 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2241 * there are no empty page blocks that contain a page with a suitable order
2242 */
2243static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2244				unsigned int alloc_order)
2245{
2246	int mt;
2247	unsigned long max_managed, flags;
2248
2249	/*
2250	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
 
 
2251	 * Check is race-prone but harmless.
2252	 */
2253	max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
 
 
2254	if (zone->nr_reserved_highatomic >= max_managed)
2255		return;
2256
2257	spin_lock_irqsave(&zone->lock, flags);
2258
2259	/* Recheck the nr_reserved_highatomic limit under the lock */
2260	if (zone->nr_reserved_highatomic >= max_managed)
2261		goto out_unlock;
2262
2263	/* Yoink! */
2264	mt = get_pageblock_migratetype(page);
2265	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2266	    && !is_migrate_cma(mt)) {
2267		zone->nr_reserved_highatomic += pageblock_nr_pages;
2268		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2269		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2270	}
2271
2272out_unlock:
2273	spin_unlock_irqrestore(&zone->lock, flags);
2274}
2275
2276/*
2277 * Used when an allocation is about to fail under memory pressure. This
2278 * potentially hurts the reliability of high-order allocations when under
2279 * intense memory pressure but failed atomic allocations should be easier
2280 * to recover from than an OOM.
2281 *
2282 * If @force is true, try to unreserve a pageblock even though highatomic
2283 * pageblock is exhausted.
2284 */
2285static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2286						bool force)
2287{
2288	struct zonelist *zonelist = ac->zonelist;
2289	unsigned long flags;
2290	struct zoneref *z;
2291	struct zone *zone;
2292	struct page *page;
2293	int order;
2294	bool ret;
2295
2296	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2297								ac->nodemask) {
2298		/*
2299		 * Preserve at least one pageblock unless memory pressure
2300		 * is really high.
2301		 */
2302		if (!force && zone->nr_reserved_highatomic <=
2303					pageblock_nr_pages)
2304			continue;
2305
2306		spin_lock_irqsave(&zone->lock, flags);
2307		for (order = 0; order < MAX_ORDER; order++) {
2308			struct free_area *area = &(zone->free_area[order]);
2309
2310			page = list_first_entry_or_null(
2311					&area->free_list[MIGRATE_HIGHATOMIC],
2312					struct page, lru);
2313			if (!page)
2314				continue;
2315
2316			/*
2317			 * In page freeing path, migratetype change is racy so
2318			 * we can counter several free pages in a pageblock
2319			 * in this loop althoug we changed the pageblock type
2320			 * from highatomic to ac->migratetype. So we should
2321			 * adjust the count once.
2322			 */
2323			if (is_migrate_highatomic_page(page)) {
2324				/*
2325				 * It should never happen but changes to
2326				 * locking could inadvertently allow a per-cpu
2327				 * drain to add pages to MIGRATE_HIGHATOMIC
2328				 * while unreserving so be safe and watch for
2329				 * underflows.
2330				 */
2331				zone->nr_reserved_highatomic -= min(
2332						pageblock_nr_pages,
2333						zone->nr_reserved_highatomic);
2334			}
2335
2336			/*
2337			 * Convert to ac->migratetype and avoid the normal
2338			 * pageblock stealing heuristics. Minimally, the caller
2339			 * is doing the work and needs the pages. More
2340			 * importantly, if the block was always converted to
2341			 * MIGRATE_UNMOVABLE or another type then the number
2342			 * of pageblocks that cannot be completely freed
2343			 * may increase.
2344			 */
2345			set_pageblock_migratetype(page, ac->migratetype);
2346			ret = move_freepages_block(zone, page, ac->migratetype,
2347									NULL);
2348			if (ret) {
2349				spin_unlock_irqrestore(&zone->lock, flags);
2350				return ret;
2351			}
2352		}
2353		spin_unlock_irqrestore(&zone->lock, flags);
2354	}
2355
2356	return false;
2357}
2358
2359/*
2360 * Try finding a free buddy page on the fallback list and put it on the free
2361 * list of requested migratetype, possibly along with other pages from the same
2362 * block, depending on fragmentation avoidance heuristics. Returns true if
2363 * fallback was found so that __rmqueue_smallest() can grab it.
2364 *
2365 * The use of signed ints for order and current_order is a deliberate
2366 * deviation from the rest of this file, to make the for loop
2367 * condition simpler.
2368 */
2369static __always_inline bool
2370__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
 
2371{
2372	struct free_area *area;
2373	int current_order;
 
2374	struct page *page;
2375	int fallback_mt;
2376	bool can_steal;
2377
2378	/*
 
 
 
 
 
 
 
 
2379	 * Find the largest available free page in the other list. This roughly
2380	 * approximates finding the pageblock with the most free pages, which
2381	 * would be too costly to do exactly.
2382	 */
2383	for (current_order = MAX_ORDER - 1; current_order >= order;
2384				--current_order) {
2385		area = &(zone->free_area[current_order]);
2386		fallback_mt = find_suitable_fallback(area, current_order,
2387				start_migratetype, false, &can_steal);
2388		if (fallback_mt == -1)
2389			continue;
2390
2391		/*
2392		 * We cannot steal all free pages from the pageblock and the
2393		 * requested migratetype is movable. In that case it's better to
2394		 * steal and split the smallest available page instead of the
2395		 * largest available page, because even if the next movable
2396		 * allocation falls back into a different pageblock than this
2397		 * one, it won't cause permanent fragmentation.
2398		 */
2399		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2400					&& current_order > order)
2401			goto find_smallest;
2402
2403		goto do_steal;
2404	}
2405
2406	return false;
2407
2408find_smallest:
2409	for (current_order = order; current_order < MAX_ORDER;
2410							current_order++) {
2411		area = &(zone->free_area[current_order]);
2412		fallback_mt = find_suitable_fallback(area, current_order,
2413				start_migratetype, false, &can_steal);
2414		if (fallback_mt != -1)
2415			break;
2416	}
2417
2418	/*
2419	 * This should not happen - we already found a suitable fallback
2420	 * when looking for the largest page.
2421	 */
2422	VM_BUG_ON(current_order == MAX_ORDER);
2423
2424do_steal:
2425	page = list_first_entry(&area->free_list[fallback_mt],
2426							struct page, lru);
2427
2428	steal_suitable_fallback(zone, page, start_migratetype, can_steal);
 
2429
2430	trace_mm_page_alloc_extfrag(page, order, current_order,
2431		start_migratetype, fallback_mt);
2432
2433	return true;
2434
2435}
2436
2437/*
2438 * Do the hard work of removing an element from the buddy allocator.
2439 * Call me with the zone->lock already held.
2440 */
2441static __always_inline struct page *
2442__rmqueue(struct zone *zone, unsigned int order, int migratetype)
 
2443{
2444	struct page *page;
2445
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2446retry:
2447	page = __rmqueue_smallest(zone, order, migratetype);
2448	if (unlikely(!page)) {
2449		if (migratetype == MIGRATE_MOVABLE)
2450			page = __rmqueue_cma_fallback(zone, order);
2451
2452		if (!page && __rmqueue_fallback(zone, order, migratetype))
 
2453			goto retry;
2454	}
2455
2456	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2457	return page;
2458}
2459
2460/*
2461 * Obtain a specified number of elements from the buddy allocator, all under
2462 * a single hold of the lock, for efficiency.  Add them to the supplied list.
2463 * Returns the number of new pages which were placed at *list.
2464 */
2465static int rmqueue_bulk(struct zone *zone, unsigned int order,
2466			unsigned long count, struct list_head *list,
2467			int migratetype)
2468{
2469	int i, alloced = 0;
 
2470
2471	spin_lock(&zone->lock);
2472	for (i = 0; i < count; ++i) {
2473		struct page *page = __rmqueue(zone, order, migratetype);
 
2474		if (unlikely(page == NULL))
2475			break;
2476
2477		if (unlikely(check_pcp_refill(page)))
2478			continue;
2479
2480		/*
2481		 * Split buddy pages returned by expand() are received here in
2482		 * physical page order. The page is added to the tail of
2483		 * caller's list. From the callers perspective, the linked list
2484		 * is ordered by page number under some conditions. This is
2485		 * useful for IO devices that can forward direction from the
2486		 * head, thus also in the physical page order. This is useful
2487		 * for IO devices that can merge IO requests if the physical
2488		 * pages are ordered properly.
2489		 */
2490		list_add_tail(&page->lru, list);
2491		alloced++;
2492		if (is_migrate_cma(get_pcppage_migratetype(page)))
2493			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2494					      -(1 << order));
2495	}
2496
2497	/*
2498	 * i pages were removed from the buddy list even if some leak due
2499	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2500	 * on i. Do not confuse with 'alloced' which is the number of
2501	 * pages added to the pcp list.
2502	 */
2503	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2504	spin_unlock(&zone->lock);
2505	return alloced;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2506}
2507
2508#ifdef CONFIG_NUMA
2509/*
2510 * Called from the vmstat counter updater to drain pagesets of this
2511 * currently executing processor on remote nodes after they have
2512 * expired.
2513 *
2514 * Note that this function must be called with the thread pinned to
2515 * a single processor.
2516 */
2517void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2518{
2519	unsigned long flags;
2520	int to_drain, batch;
2521
2522	local_irq_save(flags);
2523	batch = READ_ONCE(pcp->batch);
2524	to_drain = min(pcp->count, batch);
2525	if (to_drain > 0)
2526		free_pcppages_bulk(zone, to_drain, pcp);
2527	local_irq_restore(flags);
 
 
2528}
2529#endif
2530
2531/*
2532 * Drain pcplists of the indicated processor and zone.
2533 *
2534 * The processor must either be the current processor and the
2535 * thread pinned to the current processor or a processor that
2536 * is not online.
2537 */
2538static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2539{
2540	unsigned long flags;
2541	struct per_cpu_pageset *pset;
2542	struct per_cpu_pages *pcp;
2543
2544	local_irq_save(flags);
2545	pset = per_cpu_ptr(zone->pageset, cpu);
2546
2547	pcp = &pset->pcp;
2548	if (pcp->count)
2549		free_pcppages_bulk(zone, pcp->count, pcp);
2550	local_irq_restore(flags);
2551}
2552
2553/*
2554 * Drain pcplists of all zones on the indicated processor.
2555 *
2556 * The processor must either be the current processor and the
2557 * thread pinned to the current processor or a processor that
2558 * is not online.
2559 */
2560static void drain_pages(unsigned int cpu)
2561{
2562	struct zone *zone;
2563
2564	for_each_populated_zone(zone) {
2565		drain_pages_zone(cpu, zone);
2566	}
2567}
2568
2569/*
2570 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2571 *
2572 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2573 * the single zone's pages.
2574 */
2575void drain_local_pages(struct zone *zone)
2576{
2577	int cpu = smp_processor_id();
2578
2579	if (zone)
2580		drain_pages_zone(cpu, zone);
2581	else
2582		drain_pages(cpu);
2583}
2584
2585static void drain_local_pages_wq(struct work_struct *work)
2586{
2587	/*
2588	 * drain_all_pages doesn't use proper cpu hotplug protection so
2589	 * we can race with cpu offline when the WQ can move this from
2590	 * a cpu pinned worker to an unbound one. We can operate on a different
2591	 * cpu which is allright but we also have to make sure to not move to
2592	 * a different one.
2593	 */
2594	preempt_disable();
2595	drain_local_pages(NULL);
2596	preempt_enable();
2597}
2598
2599/*
2600 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
 
2601 *
2602 * When zone parameter is non-NULL, spill just the single zone's pages.
2603 *
2604 * Note that this can be extremely slow as the draining happens in a workqueue.
 
 
2605 */
2606void drain_all_pages(struct zone *zone)
2607{
2608	int cpu;
2609
2610	/*
2611	 * Allocate in the BSS so we wont require allocation in
2612	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2613	 */
2614	static cpumask_t cpus_with_pcps;
2615
2616	/*
2617	 * Make sure nobody triggers this path before mm_percpu_wq is fully
2618	 * initialized.
2619	 */
2620	if (WARN_ON_ONCE(!mm_percpu_wq))
2621		return;
2622
2623	/*
2624	 * Do not drain if one is already in progress unless it's specific to
2625	 * a zone. Such callers are primarily CMA and memory hotplug and need
2626	 * the drain to be complete when the call returns.
2627	 */
2628	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2629		if (!zone)
2630			return;
2631		mutex_lock(&pcpu_drain_mutex);
2632	}
2633
2634	/*
2635	 * We don't care about racing with CPU hotplug event
2636	 * as offline notification will cause the notified
2637	 * cpu to drain that CPU pcps and on_each_cpu_mask
2638	 * disables preemption as part of its processing
2639	 */
2640	for_each_online_cpu(cpu) {
2641		struct per_cpu_pageset *pcp;
2642		struct zone *z;
2643		bool has_pcps = false;
2644
2645		if (zone) {
2646			pcp = per_cpu_ptr(zone->pageset, cpu);
2647			if (pcp->pcp.count)
 
 
 
 
 
 
2648				has_pcps = true;
2649		} else {
2650			for_each_populated_zone(z) {
2651				pcp = per_cpu_ptr(z->pageset, cpu);
2652				if (pcp->pcp.count) {
2653					has_pcps = true;
2654					break;
2655				}
2656			}
2657		}
2658
2659		if (has_pcps)
2660			cpumask_set_cpu(cpu, &cpus_with_pcps);
2661		else
2662			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2663	}
2664
2665	for_each_cpu(cpu, &cpus_with_pcps) {
2666		struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2667		INIT_WORK(work, drain_local_pages_wq);
2668		queue_work_on(cpu, mm_percpu_wq, work);
 
2669	}
2670	for_each_cpu(cpu, &cpus_with_pcps)
2671		flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2672
2673	mutex_unlock(&pcpu_drain_mutex);
2674}
2675
2676#ifdef CONFIG_HIBERNATION
2677
2678/*
2679 * Touch the watchdog for every WD_PAGE_COUNT pages.
 
 
2680 */
2681#define WD_PAGE_COUNT	(128*1024)
2682
2683void mark_free_pages(struct zone *zone)
2684{
2685	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2686	unsigned long flags;
2687	unsigned int order, t;
2688	struct page *page;
2689
2690	if (zone_is_empty(zone))
2691		return;
2692
2693	spin_lock_irqsave(&zone->lock, flags);
2694
2695	max_zone_pfn = zone_end_pfn(zone);
2696	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2697		if (pfn_valid(pfn)) {
2698			page = pfn_to_page(pfn);
2699
2700			if (!--page_count) {
2701				touch_nmi_watchdog();
2702				page_count = WD_PAGE_COUNT;
2703			}
2704
2705			if (page_zone(page) != zone)
2706				continue;
2707
2708			if (!swsusp_page_is_forbidden(page))
2709				swsusp_unset_page_free(page);
2710		}
2711
2712	for_each_migratetype_order(order, t) {
2713		list_for_each_entry(page,
2714				&zone->free_area[order].free_list[t], lru) {
2715			unsigned long i;
2716
2717			pfn = page_to_pfn(page);
2718			for (i = 0; i < (1UL << order); i++) {
2719				if (!--page_count) {
2720					touch_nmi_watchdog();
2721					page_count = WD_PAGE_COUNT;
2722				}
2723				swsusp_set_page_free(pfn_to_page(pfn + i));
2724			}
2725		}
2726	}
2727	spin_unlock_irqrestore(&zone->lock, flags);
2728}
2729#endif /* CONFIG_PM */
2730
2731static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
 
2732{
2733	int migratetype;
2734
2735	if (!free_pcp_prepare(page))
2736		return false;
2737
2738	migratetype = get_pfnblock_migratetype(page, pfn);
2739	set_pcppage_migratetype(page, migratetype);
2740	return true;
2741}
2742
2743static void free_unref_page_commit(struct page *page, unsigned long pfn)
2744{
2745	struct zone *zone = page_zone(page);
2746	struct per_cpu_pages *pcp;
2747	int migratetype;
2748
2749	migratetype = get_pcppage_migratetype(page);
2750	__count_vm_event(PGFREE);
 
 
 
 
 
 
 
 
 
2751
2752	/*
2753	 * We only track unmovable, reclaimable and movable on pcp lists.
2754	 * Free ISOLATE pages back to the allocator because they are being
2755	 * offlined but treat HIGHATOMIC as movable pages so we can get those
2756	 * areas back if necessary. Otherwise, we may have to free
2757	 * excessively into the page allocator
2758	 */
2759	if (migratetype >= MIGRATE_PCPTYPES) {
2760		if (unlikely(is_migrate_isolate(migratetype))) {
2761			free_one_page(zone, page, pfn, 0, migratetype);
2762			return;
2763		}
2764		migratetype = MIGRATE_MOVABLE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2765	}
2766
2767	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2768	list_add(&page->lru, &pcp->lists[migratetype]);
2769	pcp->count++;
2770	if (pcp->count >= pcp->high) {
2771		unsigned long batch = READ_ONCE(pcp->batch);
2772		free_pcppages_bulk(zone, batch, pcp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2773	}
2774}
2775
2776/*
2777 * Free a 0-order page
2778 */
2779void free_unref_page(struct page *page)
2780{
2781	unsigned long flags;
 
 
2782	unsigned long pfn = page_to_pfn(page);
 
2783
2784	if (!free_unref_page_prepare(page, pfn))
2785		return;
2786
2787	local_irq_save(flags);
2788	free_unref_page_commit(page, pfn);
2789	local_irq_restore(flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2790}
2791
2792/*
2793 * Free a list of 0-order pages
2794 */
2795void free_unref_page_list(struct list_head *list)
2796{
 
2797	struct page *page, *next;
2798	unsigned long flags, pfn;
 
2799	int batch_count = 0;
 
2800
2801	/* Prepare pages for freeing */
2802	list_for_each_entry_safe(page, next, list, lru) {
2803		pfn = page_to_pfn(page);
2804		if (!free_unref_page_prepare(page, pfn))
2805			list_del(&page->lru);
2806		set_page_private(page, pfn);
 
 
 
 
 
 
 
 
 
 
 
 
2807	}
2808
2809	local_irq_save(flags);
2810	list_for_each_entry_safe(page, next, list, lru) {
2811		unsigned long pfn = page_private(page);
2812
2813		set_page_private(page, 0);
2814		trace_mm_page_free_batched(page);
2815		free_unref_page_commit(page, pfn);
2816
2817		/*
2818		 * Guard against excessive IRQ disabled times when we get
2819		 * a large list of pages to free.
 
2820		 */
2821		if (++batch_count == SWAP_CLUSTER_MAX) {
2822			local_irq_restore(flags);
 
 
 
 
2823			batch_count = 0;
2824			local_irq_save(flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2825		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2826	}
2827	local_irq_restore(flags);
2828}
2829
2830/*
2831 * split_page takes a non-compound higher-order page, and splits it into
2832 * n (1<<order) sub-pages: page[0..n]
2833 * Each sub-page must be freed individually.
2834 *
2835 * Note: this is probably too low level an operation for use in drivers.
2836 * Please consult with lkml before using this in your driver.
2837 */
2838void split_page(struct page *page, unsigned int order)
2839{
2840	int i;
2841
2842	VM_BUG_ON_PAGE(PageCompound(page), page);
2843	VM_BUG_ON_PAGE(!page_count(page), page);
2844
2845	for (i = 1; i < (1 << order); i++)
2846		set_page_refcounted(page + i);
2847	split_page_owner(page, order);
 
2848}
2849EXPORT_SYMBOL_GPL(split_page);
2850
2851int __isolate_free_page(struct page *page, unsigned int order)
2852{
2853	unsigned long watermark;
2854	struct zone *zone;
2855	int mt;
2856
2857	BUG_ON(!PageBuddy(page));
2858
2859	zone = page_zone(page);
2860	mt = get_pageblock_migratetype(page);
2861
2862	if (!is_migrate_isolate(mt)) {
 
2863		/*
2864		 * Obey watermarks as if the page was being allocated. We can
2865		 * emulate a high-order watermark check with a raised order-0
2866		 * watermark, because we already know our high-order page
2867		 * exists.
2868		 */
2869		watermark = min_wmark_pages(zone) + (1UL << order);
2870		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2871			return 0;
2872
2873		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2874	}
2875
2876	/* Remove page from free list */
2877	list_del(&page->lru);
2878	zone->free_area[order].nr_free--;
2879	rmv_page_order(page);
2880
2881	/*
2882	 * Set the pageblock if the isolated page is at least half of a
2883	 * pageblock
2884	 */
2885	if (order >= pageblock_order - 1) {
2886		struct page *endpage = page + (1 << order) - 1;
2887		for (; page < endpage; page += pageblock_nr_pages) {
2888			int mt = get_pageblock_migratetype(page);
2889			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2890			    && !is_migrate_highatomic(mt))
 
 
 
2891				set_pageblock_migratetype(page,
2892							  MIGRATE_MOVABLE);
2893		}
2894	}
2895
2896
2897	return 1UL << order;
2898}
2899
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2900/*
2901 * Update NUMA hit/miss statistics
2902 *
2903 * Must be called with interrupts disabled.
2904 */
2905static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
 
2906{
2907#ifdef CONFIG_NUMA
2908	enum numa_stat_item local_stat = NUMA_LOCAL;
2909
2910	/* skip numa counters update if numa stats is disabled */
2911	if (!static_branch_likely(&vm_numa_stat_key))
2912		return;
2913
2914	if (z->node != numa_node_id())
2915		local_stat = NUMA_OTHER;
2916
2917	if (z->node == preferred_zone->node)
2918		__inc_numa_state(z, NUMA_HIT);
2919	else {
2920		__inc_numa_state(z, NUMA_MISS);
2921		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
2922	}
2923	__inc_numa_state(z, local_stat);
2924#endif
2925}
2926
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2927/* Remove page from the per-cpu list, caller must protect the list */
2928static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
 
 
 
2929			struct per_cpu_pages *pcp,
2930			struct list_head *list)
2931{
2932	struct page *page;
2933
2934	do {
2935		if (list_empty(list)) {
2936			pcp->count += rmqueue_bulk(zone, 0,
2937					pcp->batch, list,
2938					migratetype);
 
 
 
 
 
2939			if (unlikely(list_empty(list)))
2940				return NULL;
2941		}
2942
2943		page = list_first_entry(list, struct page, lru);
2944		list_del(&page->lru);
2945		pcp->count--;
2946	} while (check_new_pcp(page));
2947
2948	return page;
2949}
2950
2951/* Lock and remove page from the per-cpu list */
2952static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2953			struct zone *zone, unsigned int order,
2954			gfp_t gfp_flags, int migratetype)
2955{
2956	struct per_cpu_pages *pcp;
2957	struct list_head *list;
2958	struct page *page;
2959	unsigned long flags;
 
 
 
 
 
 
 
 
2960
2961	local_irq_save(flags);
2962	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2963	list = &pcp->lists[migratetype];
2964	page = __rmqueue_pcplist(zone,  migratetype, pcp, list);
 
 
 
 
 
 
2965	if (page) {
2966		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2967		zone_statistics(preferred_zone, zone);
2968	}
2969	local_irq_restore(flags);
2970	return page;
2971}
2972
2973/*
2974 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
 
 
 
 
 
 
 
 
2975 */
 
2976static inline
2977struct page *rmqueue(struct zone *preferred_zone,
2978			struct zone *zone, unsigned int order,
2979			gfp_t gfp_flags, unsigned int alloc_flags,
2980			int migratetype)
2981{
2982	unsigned long flags;
2983	struct page *page;
2984
2985	if (likely(order == 0)) {
2986		page = rmqueue_pcplist(preferred_zone, zone, order,
2987				gfp_flags, migratetype);
2988		goto out;
2989	}
2990
2991	/*
2992	 * We most definitely don't want callers attempting to
2993	 * allocate greater than order-1 page units with __GFP_NOFAIL.
2994	 */
2995	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2996	spin_lock_irqsave(&zone->lock, flags);
2997
2998	do {
2999		page = NULL;
3000		if (alloc_flags & ALLOC_HARDER) {
3001			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3002			if (page)
3003				trace_mm_page_alloc_zone_locked(page, order, migratetype);
3004		}
3005		if (!page)
3006			page = __rmqueue(zone, order, migratetype);
3007	} while (page && check_new_pages(page, order));
3008	spin_unlock(&zone->lock);
3009	if (!page)
3010		goto failed;
3011	__mod_zone_freepage_state(zone, -(1 << order),
3012				  get_pcppage_migratetype(page));
3013
3014	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3015	zone_statistics(preferred_zone, zone);
3016	local_irq_restore(flags);
3017
3018out:
 
 
 
 
 
 
 
3019	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3020	return page;
3021
3022failed:
3023	local_irq_restore(flags);
3024	return NULL;
3025}
3026
3027#ifdef CONFIG_FAIL_PAGE_ALLOC
3028
3029static struct {
3030	struct fault_attr attr;
3031
3032	bool ignore_gfp_highmem;
3033	bool ignore_gfp_reclaim;
3034	u32 min_order;
3035} fail_page_alloc = {
3036	.attr = FAULT_ATTR_INITIALIZER,
3037	.ignore_gfp_reclaim = true,
3038	.ignore_gfp_highmem = true,
3039	.min_order = 1,
3040};
3041
3042static int __init setup_fail_page_alloc(char *str)
3043{
3044	return setup_fault_attr(&fail_page_alloc.attr, str);
3045}
3046__setup("fail_page_alloc=", setup_fail_page_alloc);
3047
3048static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3049{
3050	if (order < fail_page_alloc.min_order)
3051		return false;
3052	if (gfp_mask & __GFP_NOFAIL)
3053		return false;
3054	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3055		return false;
3056	if (fail_page_alloc.ignore_gfp_reclaim &&
3057			(gfp_mask & __GFP_DIRECT_RECLAIM))
3058		return false;
3059
3060	return should_fail(&fail_page_alloc.attr, 1 << order);
3061}
 
3062
3063#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3064
3065static int __init fail_page_alloc_debugfs(void)
3066{
3067	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
3068	struct dentry *dir;
3069
3070	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3071					&fail_page_alloc.attr);
3072	if (IS_ERR(dir))
3073		return PTR_ERR(dir);
3074
3075	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
3076				&fail_page_alloc.ignore_gfp_reclaim))
3077		goto fail;
3078	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3079				&fail_page_alloc.ignore_gfp_highmem))
3080		goto fail;
3081	if (!debugfs_create_u32("min-order", mode, dir,
3082				&fail_page_alloc.min_order))
3083		goto fail;
3084
3085	return 0;
3086fail:
3087	debugfs_remove_recursive(dir);
3088
3089	return -ENOMEM;
3090}
3091
3092late_initcall(fail_page_alloc_debugfs);
3093
3094#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
 
 
 
 
3095
3096#else /* CONFIG_FAIL_PAGE_ALLOC */
 
 
 
 
 
 
 
3097
3098static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3099{
3100	return false;
3101}
3102
3103#endif /* CONFIG_FAIL_PAGE_ALLOC */
3104
3105/*
3106 * Return true if free base pages are above 'mark'. For high-order checks it
3107 * will return true of the order-0 watermark is reached and there is at least
3108 * one free page of a suitable size. Checking now avoids taking the zone lock
3109 * to check in the allocation paths if no pages are free.
3110 */
3111bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3112			 int classzone_idx, unsigned int alloc_flags,
3113			 long free_pages)
3114{
3115	long min = mark;
3116	int o;
3117	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3118
3119	/* free_pages may go negative - that's OK */
3120	free_pages -= (1 << order) - 1;
3121
3122	if (alloc_flags & ALLOC_HIGH)
3123		min -= min / 2;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3124
3125	/*
3126	 * If the caller does not have rights to ALLOC_HARDER then subtract
3127	 * the high-atomic reserves. This will over-estimate the size of the
3128	 * atomic reserve but it avoids a search.
3129	 */
3130	if (likely(!alloc_harder)) {
3131		free_pages -= z->nr_reserved_highatomic;
3132	} else {
3133		/*
3134		 * OOM victims can try even harder than normal ALLOC_HARDER
3135		 * users on the grounds that it's definitely going to be in
3136		 * the exit path shortly and free memory. Any allocation it
3137		 * makes during the free path will be small and short-lived.
3138		 */
3139		if (alloc_flags & ALLOC_OOM)
3140			min -= min / 2;
3141		else
3142			min -= min / 4;
3143	}
3144
3145
3146#ifdef CONFIG_CMA
3147	/* If allocation can't use CMA areas don't use free CMA pages */
3148	if (!(alloc_flags & ALLOC_CMA))
3149		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3150#endif
3151
3152	/*
3153	 * Check watermarks for an order-0 allocation request. If these
3154	 * are not met, then a high-order request also cannot go ahead
3155	 * even if a suitable page happened to be free.
3156	 */
3157	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3158		return false;
3159
3160	/* If this is an order-0 request then the watermark is fine */
3161	if (!order)
3162		return true;
3163
3164	/* For a high-order request, check at least one suitable page is free */
3165	for (o = order; o < MAX_ORDER; o++) {
3166		struct free_area *area = &z->free_area[o];
3167		int mt;
3168
3169		if (!area->nr_free)
3170			continue;
3171
3172		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3173			if (!list_empty(&area->free_list[mt]))
3174				return true;
3175		}
3176
3177#ifdef CONFIG_CMA
3178		if ((alloc_flags & ALLOC_CMA) &&
3179		    !list_empty(&area->free_list[MIGRATE_CMA])) {
3180			return true;
3181		}
3182#endif
3183		if (alloc_harder &&
3184			!list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3185			return true;
 
3186	}
3187	return false;
3188}
3189
3190bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3191		      int classzone_idx, unsigned int alloc_flags)
3192{
3193	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3194					zone_page_state(z, NR_FREE_PAGES));
3195}
3196
3197static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3198		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
 
3199{
3200	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3201	long cma_pages = 0;
3202
3203#ifdef CONFIG_CMA
3204	/* If allocation can't use CMA areas don't use free CMA pages */
3205	if (!(alloc_flags & ALLOC_CMA))
3206		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3207#endif
3208
3209	/*
3210	 * Fast check for order-0 only. If this fails then the reserves
3211	 * need to be calculated. There is a corner case where the check
3212	 * passes but only the high-order atomic reserve are free. If
3213	 * the caller is !atomic then it'll uselessly search the free
3214	 * list. That corner case is then slower but it is harmless.
3215	 */
3216	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3217		return true;
3218
3219	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3220					free_pages);
 
 
 
 
 
 
 
 
 
 
 
 
3221}
3222
3223bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3224			unsigned long mark, int classzone_idx)
3225{
3226	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3227
3228	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3229		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3230
3231	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3232								free_pages);
3233}
3234
3235#ifdef CONFIG_NUMA
 
 
3236static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3237{
3238	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3239				RECLAIM_DISTANCE;
3240}
3241#else	/* CONFIG_NUMA */
3242static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3243{
3244	return true;
3245}
3246#endif	/* CONFIG_NUMA */
3247
3248/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3249 * get_page_from_freelist goes through the zonelist trying to allocate
3250 * a page.
3251 */
3252static struct page *
3253get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3254						const struct alloc_context *ac)
3255{
3256	struct zoneref *z = ac->preferred_zoneref;
3257	struct zone *zone;
3258	struct pglist_data *last_pgdat_dirty_limit = NULL;
 
 
3259
 
3260	/*
3261	 * Scan zonelist, looking for a zone with enough free.
3262	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3263	 */
3264	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3265								ac->nodemask) {
 
 
3266		struct page *page;
3267		unsigned long mark;
3268
3269		if (cpusets_enabled() &&
3270			(alloc_flags & ALLOC_CPUSET) &&
3271			!__cpuset_zone_allowed(zone, gfp_mask))
3272				continue;
3273		/*
3274		 * When allocating a page cache page for writing, we
3275		 * want to get it from a node that is within its dirty
3276		 * limit, such that no single node holds more than its
3277		 * proportional share of globally allowed dirty pages.
3278		 * The dirty limits take into account the node's
3279		 * lowmem reserves and high watermark so that kswapd
3280		 * should be able to balance it without having to
3281		 * write pages from its LRU list.
3282		 *
3283		 * XXX: For now, allow allocations to potentially
3284		 * exceed the per-node dirty limit in the slowpath
3285		 * (spread_dirty_pages unset) before going into reclaim,
3286		 * which is important when on a NUMA setup the allowed
3287		 * nodes are together not big enough to reach the
3288		 * global limit.  The proper fix for these situations
3289		 * will require awareness of nodes in the
3290		 * dirty-throttling and the flusher threads.
3291		 */
3292		if (ac->spread_dirty_pages) {
3293			if (last_pgdat_dirty_limit == zone->zone_pgdat)
3294				continue;
 
 
3295
3296			if (!node_dirty_ok(zone->zone_pgdat)) {
3297				last_pgdat_dirty_limit = zone->zone_pgdat;
3298				continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3299			}
3300		}
3301
3302		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3303		if (!zone_watermark_fast(zone, order, mark,
3304				       ac_classzone_idx(ac), alloc_flags)) {
 
3305			int ret;
3306
 
 
 
 
 
3307#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3308			/*
3309			 * Watermark failed for this zone, but see if we can
3310			 * grow this zone if it contains deferred pages.
3311			 */
3312			if (static_branch_unlikely(&deferred_pages)) {
3313				if (_deferred_grow_zone(zone, order))
3314					goto try_this_zone;
3315			}
3316#endif
3317			/* Checked here to keep the fast path fast */
3318			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3319			if (alloc_flags & ALLOC_NO_WATERMARKS)
3320				goto try_this_zone;
3321
3322			if (node_reclaim_mode == 0 ||
3323			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3324				continue;
3325
3326			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3327			switch (ret) {
3328			case NODE_RECLAIM_NOSCAN:
3329				/* did not scan */
3330				continue;
3331			case NODE_RECLAIM_FULL:
3332				/* scanned but unreclaimable */
3333				continue;
3334			default:
3335				/* did we reclaim enough */
3336				if (zone_watermark_ok(zone, order, mark,
3337						ac_classzone_idx(ac), alloc_flags))
3338					goto try_this_zone;
3339
3340				continue;
3341			}
3342		}
3343
3344try_this_zone:
3345		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3346				gfp_mask, alloc_flags, ac->migratetype);
3347		if (page) {
3348			prep_new_page(page, order, gfp_mask, alloc_flags);
3349
3350			/*
3351			 * If this is a high-order atomic allocation then check
3352			 * if the pageblock should be reserved for the future
3353			 */
3354			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3355				reserve_highatomic_pageblock(page, zone, order);
3356
3357			return page;
3358		} else {
 
 
 
 
 
3359#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3360			/* Try again if zone has deferred pages */
3361			if (static_branch_unlikely(&deferred_pages)) {
3362				if (_deferred_grow_zone(zone, order))
3363					goto try_this_zone;
3364			}
3365#endif
3366		}
3367	}
3368
3369	return NULL;
3370}
3371
3372/*
3373 * Large machines with many possible nodes should not always dump per-node
3374 * meminfo in irq context.
3375 */
3376static inline bool should_suppress_show_mem(void)
3377{
3378	bool ret = false;
3379
3380#if NODES_SHIFT > 8
3381	ret = in_interrupt();
3382#endif
3383	return ret;
3384}
3385
3386static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3387{
3388	unsigned int filter = SHOW_MEM_FILTER_NODES;
3389	static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3390
3391	if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3392		return;
3393
3394	/*
3395	 * This documents exceptions given to allocations in certain
3396	 * contexts that are allowed to allocate outside current's set
3397	 * of allowed nodes.
3398	 */
3399	if (!(gfp_mask & __GFP_NOMEMALLOC))
3400		if (tsk_is_oom_victim(current) ||
3401		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3402			filter &= ~SHOW_MEM_FILTER_NODES;
3403	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3404		filter &= ~SHOW_MEM_FILTER_NODES;
3405
3406	show_mem(filter, nodemask);
3407}
3408
3409void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3410{
3411	struct va_format vaf;
3412	va_list args;
3413	static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3414				      DEFAULT_RATELIMIT_BURST);
3415
3416	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
 
 
3417		return;
3418
3419	va_start(args, fmt);
3420	vaf.fmt = fmt;
3421	vaf.va = &args;
3422	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
3423			current->comm, &vaf, gfp_mask, &gfp_mask,
3424			nodemask_pr_args(nodemask));
3425	va_end(args);
3426
3427	cpuset_print_current_mems_allowed();
3428
3429	dump_stack();
3430	warn_alloc_show_mem(gfp_mask, nodemask);
3431}
3432
3433static inline struct page *
3434__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3435			      unsigned int alloc_flags,
3436			      const struct alloc_context *ac)
3437{
3438	struct page *page;
3439
3440	page = get_page_from_freelist(gfp_mask, order,
3441			alloc_flags|ALLOC_CPUSET, ac);
3442	/*
3443	 * fallback to ignore cpuset restriction if our nodes
3444	 * are depleted
3445	 */
3446	if (!page)
3447		page = get_page_from_freelist(gfp_mask, order,
3448				alloc_flags, ac);
3449
3450	return page;
3451}
3452
3453static inline struct page *
3454__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3455	const struct alloc_context *ac, unsigned long *did_some_progress)
3456{
3457	struct oom_control oc = {
3458		.zonelist = ac->zonelist,
3459		.nodemask = ac->nodemask,
3460		.memcg = NULL,
3461		.gfp_mask = gfp_mask,
3462		.order = order,
3463	};
3464	struct page *page;
3465
3466	*did_some_progress = 0;
3467
3468	/*
3469	 * Acquire the oom lock.  If that fails, somebody else is
3470	 * making progress for us.
3471	 */
3472	if (!mutex_trylock(&oom_lock)) {
3473		*did_some_progress = 1;
3474		schedule_timeout_uninterruptible(1);
3475		return NULL;
3476	}
3477
3478	/*
3479	 * Go through the zonelist yet one more time, keep very high watermark
3480	 * here, this is only to catch a parallel oom killing, we must fail if
3481	 * we're still under heavy pressure. But make sure that this reclaim
3482	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3483	 * allocation which will never fail due to oom_lock already held.
3484	 */
3485	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3486				      ~__GFP_DIRECT_RECLAIM, order,
3487				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3488	if (page)
3489		goto out;
3490
3491	/* Coredumps can quickly deplete all memory reserves */
3492	if (current->flags & PF_DUMPCORE)
3493		goto out;
3494	/* The OOM killer will not help higher order allocs */
3495	if (order > PAGE_ALLOC_COSTLY_ORDER)
3496		goto out;
3497	/*
3498	 * We have already exhausted all our reclaim opportunities without any
3499	 * success so it is time to admit defeat. We will skip the OOM killer
3500	 * because it is very likely that the caller has a more reasonable
3501	 * fallback than shooting a random task.
 
 
3502	 */
3503	if (gfp_mask & __GFP_RETRY_MAYFAIL)
3504		goto out;
3505	/* The OOM killer does not needlessly kill tasks for lowmem */
3506	if (ac->high_zoneidx < ZONE_NORMAL)
3507		goto out;
3508	if (pm_suspended_storage())
3509		goto out;
3510	/*
3511	 * XXX: GFP_NOFS allocations should rather fail than rely on
3512	 * other request to make a forward progress.
3513	 * We are in an unfortunate situation where out_of_memory cannot
3514	 * do much for this context but let's try it to at least get
3515	 * access to memory reserved if the current task is killed (see
3516	 * out_of_memory). Once filesystems are ready to handle allocation
3517	 * failures more gracefully we should just bail out here.
3518	 */
3519
3520	/* The OOM killer may not free memory on a specific node */
3521	if (gfp_mask & __GFP_THISNODE)
3522		goto out;
3523
3524	/* Exhausted what can be done so it's blame time */
3525	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
 
3526		*did_some_progress = 1;
3527
3528		/*
3529		 * Help non-failing allocations by giving them access to memory
3530		 * reserves
3531		 */
3532		if (gfp_mask & __GFP_NOFAIL)
3533			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3534					ALLOC_NO_WATERMARKS, ac);
3535	}
3536out:
3537	mutex_unlock(&oom_lock);
3538	return page;
3539}
3540
3541/*
3542 * Maximum number of compaction retries wit a progress before OOM
3543 * killer is consider as the only way to move forward.
3544 */
3545#define MAX_COMPACT_RETRIES 16
3546
3547#ifdef CONFIG_COMPACTION
3548/* Try memory compaction for high-order allocations before reclaim */
3549static struct page *
3550__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3551		unsigned int alloc_flags, const struct alloc_context *ac,
3552		enum compact_priority prio, enum compact_result *compact_result)
3553{
3554	struct page *page;
 
3555	unsigned int noreclaim_flag;
3556
3557	if (!order)
3558		return NULL;
3559
 
 
3560	noreclaim_flag = memalloc_noreclaim_save();
 
3561	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3562									prio);
 
3563	memalloc_noreclaim_restore(noreclaim_flag);
 
 
3564
3565	if (*compact_result <= COMPACT_INACTIVE)
3566		return NULL;
3567
3568	/*
3569	 * At least in one zone compaction wasn't deferred or skipped, so let's
3570	 * count a compaction stall
3571	 */
3572	count_vm_event(COMPACTSTALL);
3573
3574	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
 
 
 
 
 
 
3575
3576	if (page) {
3577		struct zone *zone = page_zone(page);
3578
3579		zone->compact_blockskip_flush = false;
3580		compaction_defer_reset(zone, order, true);
3581		count_vm_event(COMPACTSUCCESS);
3582		return page;
3583	}
3584
3585	/*
3586	 * It's bad if compaction run occurs and fails. The most likely reason
3587	 * is that pages exist, but not enough to satisfy watermarks.
3588	 */
3589	count_vm_event(COMPACTFAIL);
3590
3591	cond_resched();
3592
3593	return NULL;
3594}
3595
3596static inline bool
3597should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3598		     enum compact_result compact_result,
3599		     enum compact_priority *compact_priority,
3600		     int *compaction_retries)
3601{
3602	int max_retries = MAX_COMPACT_RETRIES;
3603	int min_priority;
3604	bool ret = false;
3605	int retries = *compaction_retries;
3606	enum compact_priority priority = *compact_priority;
3607
3608	if (!order)
3609		return false;
3610
3611	if (compaction_made_progress(compact_result))
3612		(*compaction_retries)++;
3613
3614	/*
3615	 * compaction considers all the zone as desperately out of memory
3616	 * so it doesn't really make much sense to retry except when the
3617	 * failure could be caused by insufficient priority
3618	 */
3619	if (compaction_failed(compact_result))
3620		goto check_priority;
3621
3622	/*
3623	 * make sure the compaction wasn't deferred or didn't bail out early
3624	 * due to locks contention before we declare that we should give up.
3625	 * But do not retry if the given zonelist is not suitable for
3626	 * compaction.
3627	 */
3628	if (compaction_withdrawn(compact_result)) {
3629		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3630		goto out;
3631	}
3632
3633	/*
3634	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3635	 * costly ones because they are de facto nofail and invoke OOM
3636	 * killer to move on while costly can fail and users are ready
3637	 * to cope with that. 1/4 retries is rather arbitrary but we
3638	 * would need much more detailed feedback from compaction to
3639	 * make a better decision.
3640	 */
3641	if (order > PAGE_ALLOC_COSTLY_ORDER)
3642		max_retries /= 4;
3643	if (*compaction_retries <= max_retries) {
3644		ret = true;
3645		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
3646	}
3647
3648	/*
3649	 * Make sure there are attempts at the highest priority if we exhausted
3650	 * all retries or failed at the lower priorities.
3651	 */
3652check_priority:
3653	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3654			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3655
3656	if (*compact_priority > min_priority) {
3657		(*compact_priority)--;
3658		*compaction_retries = 0;
3659		ret = true;
3660	}
3661out:
3662	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3663	return ret;
3664}
3665#else
3666static inline struct page *
3667__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3668		unsigned int alloc_flags, const struct alloc_context *ac,
3669		enum compact_priority prio, enum compact_result *compact_result)
3670{
3671	*compact_result = COMPACT_SKIPPED;
3672	return NULL;
3673}
3674
3675static inline bool
3676should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3677		     enum compact_result compact_result,
3678		     enum compact_priority *compact_priority,
3679		     int *compaction_retries)
3680{
3681	struct zone *zone;
3682	struct zoneref *z;
3683
3684	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3685		return false;
3686
3687	/*
3688	 * There are setups with compaction disabled which would prefer to loop
3689	 * inside the allocator rather than hit the oom killer prematurely.
3690	 * Let's give them a good hope and keep retrying while the order-0
3691	 * watermarks are OK.
3692	 */
3693	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3694					ac->nodemask) {
3695		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3696					ac_classzone_idx(ac), alloc_flags))
3697			return true;
3698	}
3699	return false;
3700}
3701#endif /* CONFIG_COMPACTION */
3702
3703#ifdef CONFIG_LOCKDEP
3704struct lockdep_map __fs_reclaim_map =
3705	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3706
3707static bool __need_fs_reclaim(gfp_t gfp_mask)
3708{
3709	gfp_mask = current_gfp_context(gfp_mask);
3710
3711	/* no reclaim without waiting on it */
3712	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3713		return false;
3714
3715	/* this guy won't enter reclaim */
3716	if (current->flags & PF_MEMALLOC)
3717		return false;
3718
3719	/* We're only interested __GFP_FS allocations for now */
3720	if (!(gfp_mask & __GFP_FS))
3721		return false;
3722
3723	if (gfp_mask & __GFP_NOLOCKDEP)
3724		return false;
3725
3726	return true;
3727}
3728
 
 
 
 
 
 
 
 
 
 
3729void fs_reclaim_acquire(gfp_t gfp_mask)
3730{
3731	if (__need_fs_reclaim(gfp_mask))
3732		lock_map_acquire(&__fs_reclaim_map);
 
 
 
 
 
 
 
 
 
 
3733}
3734EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3735
3736void fs_reclaim_release(gfp_t gfp_mask)
3737{
3738	if (__need_fs_reclaim(gfp_mask))
3739		lock_map_release(&__fs_reclaim_map);
 
 
 
 
3740}
3741EXPORT_SYMBOL_GPL(fs_reclaim_release);
3742#endif
3743
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3744/* Perform direct synchronous page reclaim */
3745static int
3746__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3747					const struct alloc_context *ac)
3748{
3749	struct reclaim_state reclaim_state;
3750	int progress;
3751	unsigned int noreclaim_flag;
 
3752
3753	cond_resched();
3754
3755	/* We now go into synchronous reclaim */
3756	cpuset_memory_pressure_bump();
3757	noreclaim_flag = memalloc_noreclaim_save();
3758	fs_reclaim_acquire(gfp_mask);
3759	reclaim_state.reclaimed_slab = 0;
3760	current->reclaim_state = &reclaim_state;
3761
3762	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3763								ac->nodemask);
3764
3765	current->reclaim_state = NULL;
3766	fs_reclaim_release(gfp_mask);
3767	memalloc_noreclaim_restore(noreclaim_flag);
 
3768
3769	cond_resched();
3770
3771	return progress;
3772}
3773
3774/* The really slow allocator path where we enter direct reclaim */
3775static inline struct page *
3776__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3777		unsigned int alloc_flags, const struct alloc_context *ac,
3778		unsigned long *did_some_progress)
3779{
3780	struct page *page = NULL;
 
3781	bool drained = false;
3782
 
3783	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3784	if (unlikely(!(*did_some_progress)))
3785		return NULL;
3786
3787retry:
3788	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3789
3790	/*
3791	 * If an allocation failed after direct reclaim, it could be because
3792	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3793	 * Shrink them them and try again
3794	 */
3795	if (!page && !drained) {
3796		unreserve_highatomic_pageblock(ac, false);
3797		drain_all_pages(NULL);
3798		drained = true;
3799		goto retry;
3800	}
 
 
3801
3802	return page;
3803}
3804
3805static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3806			     const struct alloc_context *ac)
3807{
3808	struct zoneref *z;
3809	struct zone *zone;
3810	pg_data_t *last_pgdat = NULL;
3811	enum zone_type high_zoneidx = ac->high_zoneidx;
3812
3813	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
3814					ac->nodemask) {
3815		if (last_pgdat != zone->zone_pgdat)
3816			wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
3817		last_pgdat = zone->zone_pgdat;
 
 
 
3818	}
3819}
3820
3821static inline unsigned int
3822gfp_to_alloc_flags(gfp_t gfp_mask)
3823{
3824	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3825
3826	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3827	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
 
 
 
 
 
3828
3829	/*
3830	 * The caller may dip into page reserves a bit more if the caller
3831	 * cannot run direct reclaim, or if the caller has realtime scheduling
3832	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3833	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3834	 */
3835	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
 
3836
3837	if (gfp_mask & __GFP_ATOMIC) {
3838		/*
3839		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3840		 * if it can't schedule.
3841		 */
3842		if (!(gfp_mask & __GFP_NOMEMALLOC))
3843			alloc_flags |= ALLOC_HARDER;
 
 
 
 
 
3844		/*
3845		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3846		 * comment for __cpuset_node_allowed().
 
3847		 */
3848		alloc_flags &= ~ALLOC_CPUSET;
3849	} else if (unlikely(rt_task(current)) && !in_interrupt())
3850		alloc_flags |= ALLOC_HARDER;
 
 
 
3851
3852#ifdef CONFIG_CMA
3853	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3854		alloc_flags |= ALLOC_CMA;
3855#endif
3856	return alloc_flags;
3857}
3858
3859static bool oom_reserves_allowed(struct task_struct *tsk)
3860{
3861	if (!tsk_is_oom_victim(tsk))
3862		return false;
3863
3864	/*
3865	 * !MMU doesn't have oom reaper so give access to memory reserves
3866	 * only to the thread with TIF_MEMDIE set
3867	 */
3868	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3869		return false;
3870
3871	return true;
3872}
3873
3874/*
3875 * Distinguish requests which really need access to full memory
3876 * reserves from oom victims which can live with a portion of it
3877 */
3878static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3879{
3880	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3881		return 0;
3882	if (gfp_mask & __GFP_MEMALLOC)
3883		return ALLOC_NO_WATERMARKS;
3884	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3885		return ALLOC_NO_WATERMARKS;
3886	if (!in_interrupt()) {
3887		if (current->flags & PF_MEMALLOC)
3888			return ALLOC_NO_WATERMARKS;
3889		else if (oom_reserves_allowed(current))
3890			return ALLOC_OOM;
3891	}
3892
3893	return 0;
3894}
3895
3896bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3897{
3898	return !!__gfp_pfmemalloc_flags(gfp_mask);
3899}
3900
3901/*
3902 * Checks whether it makes sense to retry the reclaim to make a forward progress
3903 * for the given allocation request.
3904 *
3905 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3906 * without success, or when we couldn't even meet the watermark if we
3907 * reclaimed all remaining pages on the LRU lists.
3908 *
3909 * Returns true if a retry is viable or false to enter the oom path.
3910 */
3911static inline bool
3912should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3913		     struct alloc_context *ac, int alloc_flags,
3914		     bool did_some_progress, int *no_progress_loops)
3915{
3916	struct zone *zone;
3917	struct zoneref *z;
 
3918
3919	/*
3920	 * Costly allocations might have made a progress but this doesn't mean
3921	 * their order will become available due to high fragmentation so
3922	 * always increment the no progress counter for them
3923	 */
3924	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3925		*no_progress_loops = 0;
3926	else
3927		(*no_progress_loops)++;
3928
3929	/*
3930	 * Make sure we converge to OOM if we cannot make any progress
3931	 * several times in the row.
3932	 */
3933	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3934		/* Before OOM, exhaust highatomic_reserve */
3935		return unreserve_highatomic_pageblock(ac, true);
3936	}
3937
3938	/*
3939	 * Keep reclaiming pages while there is a chance this will lead
3940	 * somewhere.  If none of the target zones can satisfy our allocation
3941	 * request even if all reclaimable pages are considered then we are
3942	 * screwed and have to go OOM.
3943	 */
3944	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3945					ac->nodemask) {
3946		unsigned long available;
3947		unsigned long reclaimable;
3948		unsigned long min_wmark = min_wmark_pages(zone);
3949		bool wmark;
3950
3951		available = reclaimable = zone_reclaimable_pages(zone);
3952		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3953
3954		/*
3955		 * Would the allocation succeed if we reclaimed all
3956		 * reclaimable pages?
3957		 */
3958		wmark = __zone_watermark_ok(zone, order, min_wmark,
3959				ac_classzone_idx(ac), alloc_flags, available);
3960		trace_reclaim_retry_zone(z, order, reclaimable,
3961				available, min_wmark, *no_progress_loops, wmark);
3962		if (wmark) {
3963			/*
3964			 * If we didn't make any progress and have a lot of
3965			 * dirty + writeback pages then we should wait for
3966			 * an IO to complete to slow down the reclaim and
3967			 * prevent from pre mature OOM
3968			 */
3969			if (!did_some_progress) {
3970				unsigned long write_pending;
3971
3972				write_pending = zone_page_state_snapshot(zone,
3973							NR_ZONE_WRITE_PENDING);
3974
3975				if (2 * write_pending > reclaimable) {
3976					congestion_wait(BLK_RW_ASYNC, HZ/10);
3977					return true;
3978				}
3979			}
3980
3981			/*
3982			 * Memory allocation/reclaim might be called from a WQ
3983			 * context and the current implementation of the WQ
3984			 * concurrency control doesn't recognize that
3985			 * a particular WQ is congested if the worker thread is
3986			 * looping without ever sleeping. Therefore we have to
3987			 * do a short sleep here rather than calling
3988			 * cond_resched().
3989			 */
3990			if (current->flags & PF_WQ_WORKER)
3991				schedule_timeout_uninterruptible(1);
3992			else
3993				cond_resched();
3994
3995			return true;
3996		}
3997	}
3998
3999	return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4000}
4001
4002static inline bool
4003check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4004{
4005	/*
4006	 * It's possible that cpuset's mems_allowed and the nodemask from
4007	 * mempolicy don't intersect. This should be normally dealt with by
4008	 * policy_nodemask(), but it's possible to race with cpuset update in
4009	 * such a way the check therein was true, and then it became false
4010	 * before we got our cpuset_mems_cookie here.
4011	 * This assumes that for all allocations, ac->nodemask can come only
4012	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4013	 * when it does not intersect with the cpuset restrictions) or the
4014	 * caller can deal with a violated nodemask.
4015	 */
4016	if (cpusets_enabled() && ac->nodemask &&
4017			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4018		ac->nodemask = NULL;
4019		return true;
4020	}
4021
4022	/*
4023	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4024	 * possible to race with parallel threads in such a way that our
4025	 * allocation can fail while the mask is being updated. If we are about
4026	 * to fail, check if the cpuset changed during allocation and if so,
4027	 * retry.
4028	 */
4029	if (read_mems_allowed_retry(cpuset_mems_cookie))
4030		return true;
4031
4032	return false;
4033}
4034
4035static inline struct page *
4036__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4037						struct alloc_context *ac)
4038{
4039	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
 
4040	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4041	struct page *page = NULL;
4042	unsigned int alloc_flags;
4043	unsigned long did_some_progress;
4044	enum compact_priority compact_priority;
4045	enum compact_result compact_result;
4046	int compaction_retries;
4047	int no_progress_loops;
4048	unsigned int cpuset_mems_cookie;
 
4049	int reserve_flags;
4050
4051	/*
4052	 * In the slowpath, we sanity check order to avoid ever trying to
4053	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
4054	 * be using allocators in order of preference for an area that is
4055	 * too large.
4056	 */
4057	if (order >= MAX_ORDER) {
4058		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4059		return NULL;
4060	}
4061
4062	/*
4063	 * We also sanity check to catch abuse of atomic reserves being used by
4064	 * callers that are not in atomic context.
4065	 */
4066	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4067				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4068		gfp_mask &= ~__GFP_ATOMIC;
4069
4070retry_cpuset:
4071	compaction_retries = 0;
4072	no_progress_loops = 0;
4073	compact_priority = DEF_COMPACT_PRIORITY;
4074	cpuset_mems_cookie = read_mems_allowed_begin();
 
4075
4076	/*
4077	 * The fast path uses conservative alloc_flags to succeed only until
4078	 * kswapd needs to be woken up, and to avoid the cost of setting up
4079	 * alloc_flags precisely. So we do that now.
4080	 */
4081	alloc_flags = gfp_to_alloc_flags(gfp_mask);
4082
4083	/*
4084	 * We need to recalculate the starting point for the zonelist iterator
4085	 * because we might have used different nodemask in the fast path, or
4086	 * there was a cpuset modification and we are retrying - otherwise we
4087	 * could end up iterating over non-eligible zones endlessly.
4088	 */
4089	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4090					ac->high_zoneidx, ac->nodemask);
4091	if (!ac->preferred_zoneref->zone)
4092		goto nopage;
4093
4094	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
 
 
 
 
 
 
 
 
 
 
 
 
 
4095		wake_all_kswapds(order, gfp_mask, ac);
4096
4097	/*
4098	 * The adjusted alloc_flags might result in immediate success, so try
4099	 * that first
4100	 */
4101	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4102	if (page)
4103		goto got_pg;
4104
4105	/*
4106	 * For costly allocations, try direct compaction first, as it's likely
4107	 * that we have enough base pages and don't need to reclaim. For non-
4108	 * movable high-order allocations, do that as well, as compaction will
4109	 * try prevent permanent fragmentation by migrating from blocks of the
4110	 * same migratetype.
4111	 * Don't try this for allocations that are allowed to ignore
4112	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4113	 */
4114	if (can_direct_reclaim &&
4115			(costly_order ||
4116			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4117			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4118		page = __alloc_pages_direct_compact(gfp_mask, order,
4119						alloc_flags, ac,
4120						INIT_COMPACT_PRIORITY,
4121						&compact_result);
4122		if (page)
4123			goto got_pg;
4124
4125		/*
4126		 * Checks for costly allocations with __GFP_NORETRY, which
4127		 * includes THP page fault allocations
4128		 */
4129		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4130			/*
4131			 * If compaction is deferred for high-order allocations,
4132			 * it is because sync compaction recently failed. If
4133			 * this is the case and the caller requested a THP
4134			 * allocation, we do not want to heavily disrupt the
4135			 * system, so we fail the allocation instead of entering
4136			 * direct reclaim.
 
 
 
 
 
 
 
 
 
4137			 */
4138			if (compact_result == COMPACT_DEFERRED)
 
4139				goto nopage;
4140
4141			/*
4142			 * Looks like reclaim/compaction is worth trying, but
4143			 * sync compaction could be very expensive, so keep
4144			 * using async compaction.
4145			 */
4146			compact_priority = INIT_COMPACT_PRIORITY;
4147		}
4148	}
4149
4150retry:
4151	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4152	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4153		wake_all_kswapds(order, gfp_mask, ac);
4154
4155	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4156	if (reserve_flags)
4157		alloc_flags = reserve_flags;
 
4158
4159	/*
4160	 * Reset the zonelist iterators if memory policies can be ignored.
4161	 * These allocations are high priority and system rather than user
4162	 * orientated.
4163	 */
4164	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4165		ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
4166		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4167					ac->high_zoneidx, ac->nodemask);
4168	}
4169
4170	/* Attempt with potentially adjusted zonelist and alloc_flags */
4171	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4172	if (page)
4173		goto got_pg;
4174
4175	/* Caller is not willing to reclaim, we can't balance anything */
4176	if (!can_direct_reclaim)
4177		goto nopage;
4178
4179	/* Avoid recursion of direct reclaim */
4180	if (current->flags & PF_MEMALLOC)
4181		goto nopage;
4182
4183	/* Try direct reclaim and then allocating */
4184	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4185							&did_some_progress);
4186	if (page)
4187		goto got_pg;
4188
4189	/* Try direct compaction and then allocating */
4190	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4191					compact_priority, &compact_result);
4192	if (page)
4193		goto got_pg;
4194
4195	/* Do not loop if specifically requested */
4196	if (gfp_mask & __GFP_NORETRY)
4197		goto nopage;
4198
4199	/*
4200	 * Do not retry costly high order allocations unless they are
4201	 * __GFP_RETRY_MAYFAIL
4202	 */
4203	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
 
4204		goto nopage;
4205
4206	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4207				 did_some_progress > 0, &no_progress_loops))
4208		goto retry;
4209
4210	/*
4211	 * It doesn't make any sense to retry for the compaction if the order-0
4212	 * reclaim is not able to make any progress because the current
4213	 * implementation of the compaction depends on the sufficient amount
4214	 * of free memory (see __compaction_suitable)
4215	 */
4216	if (did_some_progress > 0 &&
4217			should_compact_retry(ac, order, alloc_flags,
4218				compact_result, &compact_priority,
4219				&compaction_retries))
4220		goto retry;
4221
4222
4223	/* Deal with possible cpuset update races before we start OOM killing */
4224	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4225		goto retry_cpuset;
 
 
 
 
4226
4227	/* Reclaim has failed us, start killing things */
4228	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4229	if (page)
4230		goto got_pg;
4231
4232	/* Avoid allocations with no watermarks from looping endlessly */
4233	if (tsk_is_oom_victim(current) &&
4234	    (alloc_flags == ALLOC_OOM ||
4235	     (gfp_mask & __GFP_NOMEMALLOC)))
4236		goto nopage;
4237
4238	/* Retry as long as the OOM killer is making progress */
4239	if (did_some_progress) {
4240		no_progress_loops = 0;
4241		goto retry;
4242	}
4243
4244nopage:
4245	/* Deal with possible cpuset update races before we fail */
4246	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4247		goto retry_cpuset;
 
 
 
 
4248
4249	/*
4250	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4251	 * we always retry
4252	 */
4253	if (gfp_mask & __GFP_NOFAIL) {
4254		/*
4255		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4256		 * of any new users that actually require GFP_NOWAIT
4257		 */
4258		if (WARN_ON_ONCE(!can_direct_reclaim))
4259			goto fail;
4260
4261		/*
4262		 * PF_MEMALLOC request from this context is rather bizarre
4263		 * because we cannot reclaim anything and only can loop waiting
4264		 * for somebody to do a work for us
4265		 */
4266		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4267
4268		/*
4269		 * non failing costly orders are a hard requirement which we
4270		 * are not prepared for much so let's warn about these users
4271		 * so that we can identify them and convert them to something
4272		 * else.
4273		 */
4274		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4275
4276		/*
4277		 * Help non-failing allocations by giving them access to memory
4278		 * reserves but do not use ALLOC_NO_WATERMARKS because this
 
4279		 * could deplete whole memory reserves which would just make
4280		 * the situation worse
4281		 */
4282		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4283		if (page)
4284			goto got_pg;
4285
4286		cond_resched();
4287		goto retry;
4288	}
4289fail:
4290	warn_alloc(gfp_mask, ac->nodemask,
4291			"page allocation failure: order:%u", order);
4292got_pg:
4293	return page;
4294}
4295
4296static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4297		int preferred_nid, nodemask_t *nodemask,
4298		struct alloc_context *ac, gfp_t *alloc_mask,
4299		unsigned int *alloc_flags)
4300{
4301	ac->high_zoneidx = gfp_zone(gfp_mask);
4302	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4303	ac->nodemask = nodemask;
4304	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4305
4306	if (cpusets_enabled()) {
4307		*alloc_mask |= __GFP_HARDWALL;
4308		if (!ac->nodemask)
 
 
 
 
4309			ac->nodemask = &cpuset_current_mems_allowed;
4310		else
4311			*alloc_flags |= ALLOC_CPUSET;
4312	}
4313
4314	fs_reclaim_acquire(gfp_mask);
4315	fs_reclaim_release(gfp_mask);
4316
4317	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4318
4319	if (should_fail_alloc_page(gfp_mask, order))
4320		return false;
4321
4322	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4323		*alloc_flags |= ALLOC_CMA;
4324
4325	return true;
4326}
4327
4328/* Determine whether to spread dirty pages and what the first usable zone */
4329static inline void finalise_ac(gfp_t gfp_mask,
4330		unsigned int order, struct alloc_context *ac)
4331{
4332	/* Dirty zone balancing only done in the fast path */
4333	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4334
4335	/*
4336	 * The preferred zone is used for statistics but crucially it is
4337	 * also used as the starting point for the zonelist iterator. It
4338	 * may get reset for allocations that ignore memory policies.
4339	 */
4340	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4341					ac->high_zoneidx, ac->nodemask);
 
 
4342}
4343
4344/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4345 * This is the 'heart' of the zoned buddy allocator.
4346 */
4347struct page *
4348__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4349							nodemask_t *nodemask)
4350{
4351	struct page *page;
4352	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4353	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4354	struct alloc_context ac = { };
4355
4356	gfp_mask &= gfp_allowed_mask;
4357	alloc_mask = gfp_mask;
4358	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
 
 
4359		return NULL;
4360
4361	finalise_ac(gfp_mask, order, &ac);
4362
4363	/* First allocation attempt */
4364	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4365	if (likely(page))
4366		goto out;
4367
4368	/*
4369	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4370	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4371	 * from a particular context which has been marked by
4372	 * memalloc_no{fs,io}_{save,restore}.
 
4373	 */
4374	alloc_mask = current_gfp_context(gfp_mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4375	ac.spread_dirty_pages = false;
4376
4377	/*
4378	 * Restore the original nodemask if it was potentially replaced with
4379	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4380	 */
4381	if (unlikely(ac.nodemask != nodemask))
4382		ac.nodemask = nodemask;
4383
4384	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4385
4386out:
4387	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4388	    unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4389		__free_pages(page, order);
4390		page = NULL;
4391	}
4392
4393	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
 
4394
4395	return page;
4396}
4397EXPORT_SYMBOL(__alloc_pages_nodemask);
 
 
 
 
 
 
 
 
 
4398
4399/*
4400 * Common helper functions.
 
 
4401 */
4402unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4403{
4404	struct page *page;
4405
4406	/*
4407	 * __get_free_pages() returns a virtual address, which cannot represent
4408	 * a highmem page
4409	 */
4410	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
4411
4412	page = alloc_pages(gfp_mask, order);
4413	if (!page)
4414		return 0;
4415	return (unsigned long) page_address(page);
4416}
4417EXPORT_SYMBOL(__get_free_pages);
4418
4419unsigned long get_zeroed_page(gfp_t gfp_mask)
4420{
4421	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4422}
4423EXPORT_SYMBOL(get_zeroed_page);
4424
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4425void __free_pages(struct page *page, unsigned int order)
4426{
4427	if (put_page_testzero(page)) {
4428		if (order == 0)
4429			free_unref_page(page);
4430		else
4431			__free_pages_ok(page, order);
4432	}
4433}
4434
 
 
 
 
 
 
4435EXPORT_SYMBOL(__free_pages);
4436
4437void free_pages(unsigned long addr, unsigned int order)
4438{
4439	if (addr != 0) {
4440		VM_BUG_ON(!virt_addr_valid((void *)addr));
4441		__free_pages(virt_to_page((void *)addr), order);
4442	}
4443}
4444
4445EXPORT_SYMBOL(free_pages);
4446
4447/*
4448 * Page Fragment:
4449 *  An arbitrary-length arbitrary-offset area of memory which resides
4450 *  within a 0 or higher order page.  Multiple fragments within that page
4451 *  are individually refcounted, in the page's reference counter.
4452 *
4453 * The page_frag functions below provide a simple allocation framework for
4454 * page fragments.  This is used by the network stack and network device
4455 * drivers to provide a backing region of memory for use as either an
4456 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4457 */
4458static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4459					     gfp_t gfp_mask)
4460{
4461	struct page *page = NULL;
4462	gfp_t gfp = gfp_mask;
4463
4464#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4465	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4466		    __GFP_NOMEMALLOC;
4467	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4468				PAGE_FRAG_CACHE_MAX_ORDER);
4469	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4470#endif
4471	if (unlikely(!page))
4472		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4473
4474	nc->va = page ? page_address(page) : NULL;
4475
4476	return page;
4477}
4478
4479void __page_frag_cache_drain(struct page *page, unsigned int count)
4480{
4481	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4482
4483	if (page_ref_sub_and_test(page, count)) {
4484		unsigned int order = compound_order(page);
4485
4486		if (order == 0)
4487			free_unref_page(page);
4488		else
4489			__free_pages_ok(page, order);
4490	}
4491}
4492EXPORT_SYMBOL(__page_frag_cache_drain);
4493
4494void *page_frag_alloc(struct page_frag_cache *nc,
4495		      unsigned int fragsz, gfp_t gfp_mask)
 
4496{
4497	unsigned int size = PAGE_SIZE;
4498	struct page *page;
4499	int offset;
4500
4501	if (unlikely(!nc->va)) {
4502refill:
4503		page = __page_frag_cache_refill(nc, gfp_mask);
4504		if (!page)
4505			return NULL;
4506
4507#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4508		/* if size can vary use size else just use PAGE_SIZE */
4509		size = nc->size;
4510#endif
4511		/* Even if we own the page, we do not use atomic_set().
4512		 * This would break get_page_unless_zero() users.
4513		 */
4514		page_ref_add(page, size - 1);
4515
4516		/* reset page count bias and offset to start of new frag */
4517		nc->pfmemalloc = page_is_pfmemalloc(page);
4518		nc->pagecnt_bias = size;
4519		nc->offset = size;
4520	}
4521
4522	offset = nc->offset - fragsz;
4523	if (unlikely(offset < 0)) {
4524		page = virt_to_page(nc->va);
4525
4526		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4527			goto refill;
4528
 
 
 
 
 
4529#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4530		/* if size can vary use size else just use PAGE_SIZE */
4531		size = nc->size;
4532#endif
4533		/* OK, page count is 0, we can safely set it */
4534		set_page_count(page, size);
4535
4536		/* reset page count bias and offset to start of new frag */
4537		nc->pagecnt_bias = size;
4538		offset = size - fragsz;
 
 
 
 
 
 
 
 
 
 
 
 
4539	}
4540
4541	nc->pagecnt_bias--;
 
4542	nc->offset = offset;
4543
4544	return nc->va + offset;
4545}
4546EXPORT_SYMBOL(page_frag_alloc);
4547
4548/*
4549 * Frees a page fragment allocated out of either a compound or order 0 page.
4550 */
4551void page_frag_free(void *addr)
4552{
4553	struct page *page = virt_to_head_page(addr);
4554
4555	if (unlikely(put_page_testzero(page)))
4556		__free_pages_ok(page, compound_order(page));
4557}
4558EXPORT_SYMBOL(page_frag_free);
4559
4560static void *make_alloc_exact(unsigned long addr, unsigned int order,
4561		size_t size)
4562{
4563	if (addr) {
4564		unsigned long alloc_end = addr + (PAGE_SIZE << order);
4565		unsigned long used = addr + PAGE_ALIGN(size);
4566
4567		split_page(virt_to_page((void *)addr), order);
4568		while (used < alloc_end) {
4569			free_page(used);
4570			used += PAGE_SIZE;
4571		}
 
 
 
 
4572	}
4573	return (void *)addr;
4574}
4575
4576/**
4577 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4578 * @size: the number of bytes to allocate
4579 * @gfp_mask: GFP flags for the allocation
4580 *
4581 * This function is similar to alloc_pages(), except that it allocates the
4582 * minimum number of pages to satisfy the request.  alloc_pages() can only
4583 * allocate memory in power-of-two pages.
4584 *
4585 * This function is also limited by MAX_ORDER.
4586 *
4587 * Memory allocated by this function must be released by free_pages_exact().
 
 
4588 */
4589void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4590{
4591	unsigned int order = get_order(size);
4592	unsigned long addr;
4593
 
 
 
4594	addr = __get_free_pages(gfp_mask, order);
4595	return make_alloc_exact(addr, order, size);
4596}
4597EXPORT_SYMBOL(alloc_pages_exact);
4598
4599/**
4600 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4601 *			   pages on a node.
4602 * @nid: the preferred node ID where memory should be allocated
4603 * @size: the number of bytes to allocate
4604 * @gfp_mask: GFP flags for the allocation
4605 *
4606 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4607 * back.
 
 
4608 */
4609void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4610{
4611	unsigned int order = get_order(size);
4612	struct page *p = alloc_pages_node(nid, gfp_mask, order);
 
 
 
 
 
4613	if (!p)
4614		return NULL;
4615	return make_alloc_exact((unsigned long)page_address(p), order, size);
4616}
4617
4618/**
4619 * free_pages_exact - release memory allocated via alloc_pages_exact()
4620 * @virt: the value returned by alloc_pages_exact.
4621 * @size: size of allocation, same value as passed to alloc_pages_exact().
4622 *
4623 * Release the memory allocated by a previous call to alloc_pages_exact.
4624 */
4625void free_pages_exact(void *virt, size_t size)
4626{
4627	unsigned long addr = (unsigned long)virt;
4628	unsigned long end = addr + PAGE_ALIGN(size);
4629
4630	while (addr < end) {
4631		free_page(addr);
4632		addr += PAGE_SIZE;
4633	}
4634}
4635EXPORT_SYMBOL(free_pages_exact);
4636
4637/**
4638 * nr_free_zone_pages - count number of pages beyond high watermark
4639 * @offset: The zone index of the highest zone
4640 *
4641 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4642 * high watermark within all zones at or below a given zone index.  For each
4643 * zone, the number of pages is calculated as:
4644 *
4645 *     nr_free_zone_pages = managed_pages - high_pages
 
 
4646 */
4647static unsigned long nr_free_zone_pages(int offset)
4648{
4649	struct zoneref *z;
4650	struct zone *zone;
4651
4652	/* Just pick one node, since fallback list is circular */
4653	unsigned long sum = 0;
4654
4655	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4656
4657	for_each_zone_zonelist(zone, z, zonelist, offset) {
4658		unsigned long size = zone->managed_pages;
4659		unsigned long high = high_wmark_pages(zone);
4660		if (size > high)
4661			sum += size - high;
4662	}
4663
4664	return sum;
4665}
4666
4667/**
4668 * nr_free_buffer_pages - count number of pages beyond high watermark
4669 *
4670 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4671 * watermark within ZONE_DMA and ZONE_NORMAL.
 
 
 
4672 */
4673unsigned long nr_free_buffer_pages(void)
4674{
4675	return nr_free_zone_pages(gfp_zone(GFP_USER));
4676}
4677EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4678
4679/**
4680 * nr_free_pagecache_pages - count number of pages beyond high watermark
4681 *
4682 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4683 * high watermark within all zones.
4684 */
4685unsigned long nr_free_pagecache_pages(void)
4686{
4687	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4688}
4689
4690static inline void show_node(struct zone *zone)
4691{
4692	if (IS_ENABLED(CONFIG_NUMA))
4693		printk("Node %d ", zone_to_nid(zone));
4694}
4695
4696long si_mem_available(void)
4697{
4698	long available;
4699	unsigned long pagecache;
4700	unsigned long wmark_low = 0;
4701	unsigned long pages[NR_LRU_LISTS];
4702	struct zone *zone;
4703	int lru;
4704
4705	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4706		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4707
4708	for_each_zone(zone)
4709		wmark_low += zone->watermark[WMARK_LOW];
4710
4711	/*
4712	 * Estimate the amount of memory available for userspace allocations,
4713	 * without causing swapping.
4714	 */
4715	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
4716
4717	/*
4718	 * Not all the page cache can be freed, otherwise the system will
4719	 * start swapping. Assume at least half of the page cache, or the
4720	 * low watermark worth of cache, needs to stay.
4721	 */
4722	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4723	pagecache -= min(pagecache / 2, wmark_low);
4724	available += pagecache;
4725
4726	/*
4727	 * Part of the reclaimable slab consists of items that are in use,
4728	 * and cannot be freed. Cap this estimate at the low watermark.
4729	 */
4730	available += global_node_page_state(NR_SLAB_RECLAIMABLE) -
4731		     min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2,
4732			 wmark_low);
4733
4734	/*
4735	 * Part of the kernel memory, which can be released under memory
4736	 * pressure.
4737	 */
4738	available += global_node_page_state(NR_INDIRECTLY_RECLAIMABLE_BYTES) >>
4739		PAGE_SHIFT;
4740
4741	if (available < 0)
4742		available = 0;
4743	return available;
4744}
4745EXPORT_SYMBOL_GPL(si_mem_available);
4746
4747void si_meminfo(struct sysinfo *val)
4748{
4749	val->totalram = totalram_pages;
4750	val->sharedram = global_node_page_state(NR_SHMEM);
4751	val->freeram = global_zone_page_state(NR_FREE_PAGES);
4752	val->bufferram = nr_blockdev_pages();
4753	val->totalhigh = totalhigh_pages;
4754	val->freehigh = nr_free_highpages();
4755	val->mem_unit = PAGE_SIZE;
4756}
4757
4758EXPORT_SYMBOL(si_meminfo);
4759
4760#ifdef CONFIG_NUMA
4761void si_meminfo_node(struct sysinfo *val, int nid)
4762{
4763	int zone_type;		/* needs to be signed */
4764	unsigned long managed_pages = 0;
4765	unsigned long managed_highpages = 0;
4766	unsigned long free_highpages = 0;
4767	pg_data_t *pgdat = NODE_DATA(nid);
4768
4769	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4770		managed_pages += pgdat->node_zones[zone_type].managed_pages;
4771	val->totalram = managed_pages;
4772	val->sharedram = node_page_state(pgdat, NR_SHMEM);
4773	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4774#ifdef CONFIG_HIGHMEM
4775	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4776		struct zone *zone = &pgdat->node_zones[zone_type];
4777
4778		if (is_highmem(zone)) {
4779			managed_highpages += zone->managed_pages;
4780			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4781		}
4782	}
4783	val->totalhigh = managed_highpages;
4784	val->freehigh = free_highpages;
4785#else
4786	val->totalhigh = managed_highpages;
4787	val->freehigh = free_highpages;
4788#endif
4789	val->mem_unit = PAGE_SIZE;
4790}
4791#endif
4792
4793/*
4794 * Determine whether the node should be displayed or not, depending on whether
4795 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4796 */
4797static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4798{
4799	if (!(flags & SHOW_MEM_FILTER_NODES))
4800		return false;
4801
4802	/*
4803	 * no node mask - aka implicit memory numa policy. Do not bother with
4804	 * the synchronization - read_mems_allowed_begin - because we do not
4805	 * have to be precise here.
4806	 */
4807	if (!nodemask)
4808		nodemask = &cpuset_current_mems_allowed;
4809
4810	return !node_isset(nid, *nodemask);
4811}
4812
4813#define K(x) ((x) << (PAGE_SHIFT-10))
4814
4815static void show_migration_types(unsigned char type)
4816{
4817	static const char types[MIGRATE_TYPES] = {
4818		[MIGRATE_UNMOVABLE]	= 'U',
4819		[MIGRATE_MOVABLE]	= 'M',
4820		[MIGRATE_RECLAIMABLE]	= 'E',
4821		[MIGRATE_HIGHATOMIC]	= 'H',
4822#ifdef CONFIG_CMA
4823		[MIGRATE_CMA]		= 'C',
4824#endif
4825#ifdef CONFIG_MEMORY_ISOLATION
4826		[MIGRATE_ISOLATE]	= 'I',
4827#endif
4828	};
4829	char tmp[MIGRATE_TYPES + 1];
4830	char *p = tmp;
4831	int i;
4832
4833	for (i = 0; i < MIGRATE_TYPES; i++) {
4834		if (type & (1 << i))
4835			*p++ = types[i];
4836	}
4837
4838	*p = '\0';
4839	printk(KERN_CONT "(%s) ", tmp);
4840}
4841
4842/*
4843 * Show free area list (used inside shift_scroll-lock stuff)
4844 * We also calculate the percentage fragmentation. We do this by counting the
4845 * memory on each free list with the exception of the first item on the list.
4846 *
4847 * Bits in @filter:
4848 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4849 *   cpuset.
4850 */
4851void show_free_areas(unsigned int filter, nodemask_t *nodemask)
4852{
4853	unsigned long free_pcp = 0;
4854	int cpu;
4855	struct zone *zone;
4856	pg_data_t *pgdat;
4857
4858	for_each_populated_zone(zone) {
4859		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4860			continue;
4861
4862		for_each_online_cpu(cpu)
4863			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4864	}
4865
4866	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4867		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4868		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4869		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4870		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4871		" free:%lu free_pcp:%lu free_cma:%lu\n",
4872		global_node_page_state(NR_ACTIVE_ANON),
4873		global_node_page_state(NR_INACTIVE_ANON),
4874		global_node_page_state(NR_ISOLATED_ANON),
4875		global_node_page_state(NR_ACTIVE_FILE),
4876		global_node_page_state(NR_INACTIVE_FILE),
4877		global_node_page_state(NR_ISOLATED_FILE),
4878		global_node_page_state(NR_UNEVICTABLE),
4879		global_node_page_state(NR_FILE_DIRTY),
4880		global_node_page_state(NR_WRITEBACK),
4881		global_node_page_state(NR_UNSTABLE_NFS),
4882		global_node_page_state(NR_SLAB_RECLAIMABLE),
4883		global_node_page_state(NR_SLAB_UNRECLAIMABLE),
4884		global_node_page_state(NR_FILE_MAPPED),
4885		global_node_page_state(NR_SHMEM),
4886		global_zone_page_state(NR_PAGETABLE),
4887		global_zone_page_state(NR_BOUNCE),
4888		global_zone_page_state(NR_FREE_PAGES),
4889		free_pcp,
4890		global_zone_page_state(NR_FREE_CMA_PAGES));
4891
4892	for_each_online_pgdat(pgdat) {
4893		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4894			continue;
4895
4896		printk("Node %d"
4897			" active_anon:%lukB"
4898			" inactive_anon:%lukB"
4899			" active_file:%lukB"
4900			" inactive_file:%lukB"
4901			" unevictable:%lukB"
4902			" isolated(anon):%lukB"
4903			" isolated(file):%lukB"
4904			" mapped:%lukB"
4905			" dirty:%lukB"
4906			" writeback:%lukB"
4907			" shmem:%lukB"
4908#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4909			" shmem_thp: %lukB"
4910			" shmem_pmdmapped: %lukB"
4911			" anon_thp: %lukB"
4912#endif
4913			" writeback_tmp:%lukB"
4914			" unstable:%lukB"
4915			" all_unreclaimable? %s"
4916			"\n",
4917			pgdat->node_id,
4918			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4919			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4920			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4921			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4922			K(node_page_state(pgdat, NR_UNEVICTABLE)),
4923			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4924			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4925			K(node_page_state(pgdat, NR_FILE_MAPPED)),
4926			K(node_page_state(pgdat, NR_FILE_DIRTY)),
4927			K(node_page_state(pgdat, NR_WRITEBACK)),
4928			K(node_page_state(pgdat, NR_SHMEM)),
4929#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4930			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4931			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4932					* HPAGE_PMD_NR),
4933			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4934#endif
4935			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4936			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4937			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4938				"yes" : "no");
4939	}
4940
4941	for_each_populated_zone(zone) {
4942		int i;
4943
4944		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4945			continue;
4946
4947		free_pcp = 0;
4948		for_each_online_cpu(cpu)
4949			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4950
4951		show_node(zone);
4952		printk(KERN_CONT
4953			"%s"
4954			" free:%lukB"
4955			" min:%lukB"
4956			" low:%lukB"
4957			" high:%lukB"
4958			" active_anon:%lukB"
4959			" inactive_anon:%lukB"
4960			" active_file:%lukB"
4961			" inactive_file:%lukB"
4962			" unevictable:%lukB"
4963			" writepending:%lukB"
4964			" present:%lukB"
4965			" managed:%lukB"
4966			" mlocked:%lukB"
4967			" kernel_stack:%lukB"
4968			" pagetables:%lukB"
4969			" bounce:%lukB"
4970			" free_pcp:%lukB"
4971			" local_pcp:%ukB"
4972			" free_cma:%lukB"
4973			"\n",
4974			zone->name,
4975			K(zone_page_state(zone, NR_FREE_PAGES)),
4976			K(min_wmark_pages(zone)),
4977			K(low_wmark_pages(zone)),
4978			K(high_wmark_pages(zone)),
4979			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4980			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4981			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4982			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4983			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4984			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4985			K(zone->present_pages),
4986			K(zone->managed_pages),
4987			K(zone_page_state(zone, NR_MLOCK)),
4988			zone_page_state(zone, NR_KERNEL_STACK_KB),
4989			K(zone_page_state(zone, NR_PAGETABLE)),
4990			K(zone_page_state(zone, NR_BOUNCE)),
4991			K(free_pcp),
4992			K(this_cpu_read(zone->pageset->pcp.count)),
4993			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4994		printk("lowmem_reserve[]:");
4995		for (i = 0; i < MAX_NR_ZONES; i++)
4996			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4997		printk(KERN_CONT "\n");
4998	}
4999
5000	for_each_populated_zone(zone) {
5001		unsigned int order;
5002		unsigned long nr[MAX_ORDER], flags, total = 0;
5003		unsigned char types[MAX_ORDER];
5004
5005		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5006			continue;
5007		show_node(zone);
5008		printk(KERN_CONT "%s: ", zone->name);
5009
5010		spin_lock_irqsave(&zone->lock, flags);
5011		for (order = 0; order < MAX_ORDER; order++) {
5012			struct free_area *area = &zone->free_area[order];
5013			int type;
5014
5015			nr[order] = area->nr_free;
5016			total += nr[order] << order;
5017
5018			types[order] = 0;
5019			for (type = 0; type < MIGRATE_TYPES; type++) {
5020				if (!list_empty(&area->free_list[type]))
5021					types[order] |= 1 << type;
5022			}
5023		}
5024		spin_unlock_irqrestore(&zone->lock, flags);
5025		for (order = 0; order < MAX_ORDER; order++) {
5026			printk(KERN_CONT "%lu*%lukB ",
5027			       nr[order], K(1UL) << order);
5028			if (nr[order])
5029				show_migration_types(types[order]);
5030		}
5031		printk(KERN_CONT "= %lukB\n", K(total));
5032	}
5033
5034	hugetlb_show_meminfo();
5035
5036	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5037
5038	show_swap_cache_info();
5039}
5040
5041static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5042{
5043	zoneref->zone = zone;
5044	zoneref->zone_idx = zone_idx(zone);
5045}
5046
5047/*
5048 * Builds allocation fallback zone lists.
5049 *
5050 * Add all populated zones of a node to the zonelist.
5051 */
5052static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5053{
5054	struct zone *zone;
5055	enum zone_type zone_type = MAX_NR_ZONES;
5056	int nr_zones = 0;
5057
5058	do {
5059		zone_type--;
5060		zone = pgdat->node_zones + zone_type;
5061		if (managed_zone(zone)) {
5062			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5063			check_highest_zone(zone_type);
5064		}
5065	} while (zone_type);
5066
5067	return nr_zones;
5068}
5069
5070#ifdef CONFIG_NUMA
5071
5072static int __parse_numa_zonelist_order(char *s)
5073{
5074	/*
5075	 * We used to support different zonlists modes but they turned
5076	 * out to be just not useful. Let's keep the warning in place
5077	 * if somebody still use the cmd line parameter so that we do
5078	 * not fail it silently
5079	 */
5080	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5081		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5082		return -EINVAL;
5083	}
5084	return 0;
5085}
5086
5087static __init int setup_numa_zonelist_order(char *s)
5088{
5089	if (!s)
5090		return 0;
5091
5092	return __parse_numa_zonelist_order(s);
5093}
5094early_param("numa_zonelist_order", setup_numa_zonelist_order);
5095
5096char numa_zonelist_order[] = "Node";
5097
5098/*
5099 * sysctl handler for numa_zonelist_order
5100 */
5101int numa_zonelist_order_handler(struct ctl_table *table, int write,
5102		void __user *buffer, size_t *length,
5103		loff_t *ppos)
5104{
5105	char *str;
5106	int ret;
5107
5108	if (!write)
5109		return proc_dostring(table, write, buffer, length, ppos);
5110	str = memdup_user_nul(buffer, 16);
5111	if (IS_ERR(str))
5112		return PTR_ERR(str);
5113
5114	ret = __parse_numa_zonelist_order(str);
5115	kfree(str);
5116	return ret;
5117}
5118
5119
5120#define MAX_NODE_LOAD (nr_online_nodes)
5121static int node_load[MAX_NUMNODES];
5122
5123/**
5124 * find_next_best_node - find the next node that should appear in a given node's fallback list
5125 * @node: node whose fallback list we're appending
5126 * @used_node_mask: nodemask_t of already used nodes
5127 *
5128 * We use a number of factors to determine which is the next node that should
5129 * appear on a given node's fallback list.  The node should not have appeared
5130 * already in @node's fallback list, and it should be the next closest node
5131 * according to the distance array (which contains arbitrary distance values
5132 * from each node to each node in the system), and should also prefer nodes
5133 * with no CPUs, since presumably they'll have very little allocation pressure
5134 * on them otherwise.
5135 * It returns -1 if no node is found.
 
5136 */
5137static int find_next_best_node(int node, nodemask_t *used_node_mask)
5138{
5139	int n, val;
5140	int min_val = INT_MAX;
5141	int best_node = NUMA_NO_NODE;
5142	const struct cpumask *tmp = cpumask_of_node(0);
5143
5144	/* Use the local node if we haven't already */
5145	if (!node_isset(node, *used_node_mask)) {
 
 
 
5146		node_set(node, *used_node_mask);
5147		return node;
5148	}
5149
5150	for_each_node_state(n, N_MEMORY) {
5151
5152		/* Don't want a node to appear more than once */
5153		if (node_isset(n, *used_node_mask))
5154			continue;
5155
5156		/* Use the distance array to find the distance */
5157		val = node_distance(node, n);
5158
5159		/* Penalize nodes under us ("prefer the next node") */
5160		val += (n < node);
5161
5162		/* Give preference to headless and unused nodes */
5163		tmp = cpumask_of_node(n);
5164		if (!cpumask_empty(tmp))
5165			val += PENALTY_FOR_NODE_WITH_CPUS;
5166
5167		/* Slight preference for less loaded node */
5168		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5169		val += node_load[n];
5170
5171		if (val < min_val) {
5172			min_val = val;
5173			best_node = n;
5174		}
5175	}
5176
5177	if (best_node >= 0)
5178		node_set(best_node, *used_node_mask);
5179
5180	return best_node;
5181}
5182
5183
5184/*
5185 * Build zonelists ordered by node and zones within node.
5186 * This results in maximum locality--normal zone overflows into local
5187 * DMA zone, if any--but risks exhausting DMA zone.
5188 */
5189static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5190		unsigned nr_nodes)
5191{
5192	struct zoneref *zonerefs;
5193	int i;
5194
5195	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5196
5197	for (i = 0; i < nr_nodes; i++) {
5198		int nr_zones;
5199
5200		pg_data_t *node = NODE_DATA(node_order[i]);
5201
5202		nr_zones = build_zonerefs_node(node, zonerefs);
5203		zonerefs += nr_zones;
5204	}
5205	zonerefs->zone = NULL;
5206	zonerefs->zone_idx = 0;
5207}
5208
5209/*
5210 * Build gfp_thisnode zonelists
5211 */
5212static void build_thisnode_zonelists(pg_data_t *pgdat)
5213{
5214	struct zoneref *zonerefs;
5215	int nr_zones;
5216
5217	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5218	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5219	zonerefs += nr_zones;
5220	zonerefs->zone = NULL;
5221	zonerefs->zone_idx = 0;
5222}
5223
5224/*
5225 * Build zonelists ordered by zone and nodes within zones.
5226 * This results in conserving DMA zone[s] until all Normal memory is
5227 * exhausted, but results in overflowing to remote node while memory
5228 * may still exist in local DMA zone.
5229 */
5230
5231static void build_zonelists(pg_data_t *pgdat)
5232{
5233	static int node_order[MAX_NUMNODES];
5234	int node, load, nr_nodes = 0;
5235	nodemask_t used_mask;
5236	int local_node, prev_node;
5237
5238	/* NUMA-aware ordering of nodes */
5239	local_node = pgdat->node_id;
5240	load = nr_online_nodes;
5241	prev_node = local_node;
5242	nodes_clear(used_mask);
5243
5244	memset(node_order, 0, sizeof(node_order));
5245	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5246		/*
5247		 * We don't want to pressure a particular node.
5248		 * So adding penalty to the first node in same
5249		 * distance group to make it round-robin.
5250		 */
5251		if (node_distance(local_node, node) !=
5252		    node_distance(local_node, prev_node))
5253			node_load[node] = load;
5254
5255		node_order[nr_nodes++] = node;
5256		prev_node = node;
5257		load--;
5258	}
5259
5260	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5261	build_thisnode_zonelists(pgdat);
 
 
 
 
5262}
5263
5264#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5265/*
5266 * Return node id of node used for "local" allocations.
5267 * I.e., first node id of first zone in arg node's generic zonelist.
5268 * Used for initializing percpu 'numa_mem', which is used primarily
5269 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5270 */
5271int local_memory_node(int node)
5272{
5273	struct zoneref *z;
5274
5275	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5276				   gfp_zone(GFP_KERNEL),
5277				   NULL);
5278	return z->zone->node;
5279}
5280#endif
5281
5282static void setup_min_unmapped_ratio(void);
5283static void setup_min_slab_ratio(void);
5284#else	/* CONFIG_NUMA */
5285
5286static void build_zonelists(pg_data_t *pgdat)
5287{
5288	int node, local_node;
5289	struct zoneref *zonerefs;
5290	int nr_zones;
5291
5292	local_node = pgdat->node_id;
5293
5294	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5295	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5296	zonerefs += nr_zones;
5297
5298	/*
5299	 * Now we build the zonelist so that it contains the zones
5300	 * of all the other nodes.
5301	 * We don't want to pressure a particular node, so when
5302	 * building the zones for node N, we make sure that the
5303	 * zones coming right after the local ones are those from
5304	 * node N+1 (modulo N)
5305	 */
5306	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5307		if (!node_online(node))
5308			continue;
5309		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5310		zonerefs += nr_zones;
5311	}
5312	for (node = 0; node < local_node; node++) {
5313		if (!node_online(node))
5314			continue;
5315		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5316		zonerefs += nr_zones;
5317	}
5318
5319	zonerefs->zone = NULL;
5320	zonerefs->zone_idx = 0;
5321}
5322
5323#endif	/* CONFIG_NUMA */
5324
5325/*
5326 * Boot pageset table. One per cpu which is going to be used for all
5327 * zones and all nodes. The parameters will be set in such a way
5328 * that an item put on a list will immediately be handed over to
5329 * the buddy list. This is safe since pageset manipulation is done
5330 * with interrupts disabled.
5331 *
5332 * The boot_pagesets must be kept even after bootup is complete for
5333 * unused processors and/or zones. They do play a role for bootstrapping
5334 * hotplugged processors.
5335 *
5336 * zoneinfo_show() and maybe other functions do
5337 * not check if the processor is online before following the pageset pointer.
5338 * Other parts of the kernel may not check if the zone is available.
5339 */
5340static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5341static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5342static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
 
 
 
5343
5344static void __build_all_zonelists(void *data)
5345{
5346	int nid;
5347	int __maybe_unused cpu;
5348	pg_data_t *self = data;
5349	static DEFINE_SPINLOCK(lock);
5350
5351	spin_lock(&lock);
 
 
 
 
 
 
 
 
 
 
 
5352
5353#ifdef CONFIG_NUMA
5354	memset(node_load, 0, sizeof(node_load));
5355#endif
5356
5357	/*
5358	 * This node is hotadded and no memory is yet present.   So just
5359	 * building zonelists is fine - no need to touch other nodes.
5360	 */
5361	if (self && !node_online(self->node_id)) {
5362		build_zonelists(self);
5363	} else {
5364		for_each_online_node(nid) {
 
 
 
 
5365			pg_data_t *pgdat = NODE_DATA(nid);
5366
5367			build_zonelists(pgdat);
5368		}
5369
5370#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5371		/*
5372		 * We now know the "local memory node" for each node--
5373		 * i.e., the node of the first zone in the generic zonelist.
5374		 * Set up numa_mem percpu variable for on-line cpus.  During
5375		 * boot, only the boot cpu should be on-line;  we'll init the
5376		 * secondary cpus' numa_mem as they come on-line.  During
5377		 * node/memory hotplug, we'll fixup all on-line cpus.
5378		 */
5379		for_each_online_cpu(cpu)
5380			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5381#endif
5382	}
5383
5384	spin_unlock(&lock);
 
5385}
5386
5387static noinline void __init
5388build_all_zonelists_init(void)
5389{
5390	int cpu;
5391
5392	__build_all_zonelists(NULL);
5393
5394	/*
5395	 * Initialize the boot_pagesets that are going to be used
5396	 * for bootstrapping processors. The real pagesets for
5397	 * each zone will be allocated later when the per cpu
5398	 * allocator is available.
5399	 *
5400	 * boot_pagesets are used also for bootstrapping offline
5401	 * cpus if the system is already booted because the pagesets
5402	 * are needed to initialize allocators on a specific cpu too.
5403	 * F.e. the percpu allocator needs the page allocator which
5404	 * needs the percpu allocator in order to allocate its pagesets
5405	 * (a chicken-egg dilemma).
5406	 */
5407	for_each_possible_cpu(cpu)
5408		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5409
5410	mminit_verify_zonelist();
5411	cpuset_init_current_mems_allowed();
5412}
5413
5414/*
5415 * unless system_state == SYSTEM_BOOTING.
5416 *
5417 * __ref due to call of __init annotated helper build_all_zonelists_init
5418 * [protected by SYSTEM_BOOTING].
5419 */
5420void __ref build_all_zonelists(pg_data_t *pgdat)
5421{
 
 
5422	if (system_state == SYSTEM_BOOTING) {
5423		build_all_zonelists_init();
5424	} else {
5425		__build_all_zonelists(pgdat);
5426		/* cpuset refresh routine should be here */
5427	}
5428	vm_total_pages = nr_free_pagecache_pages();
 
5429	/*
5430	 * Disable grouping by mobility if the number of pages in the
5431	 * system is too low to allow the mechanism to work. It would be
5432	 * more accurate, but expensive to check per-zone. This check is
5433	 * made on memory-hotadd so a system can start with mobility
5434	 * disabled and enable it later
5435	 */
5436	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5437		page_group_by_mobility_disabled = 1;
5438	else
5439		page_group_by_mobility_disabled = 0;
5440
5441	pr_info("Built %i zonelists, mobility grouping %s.  Total pages: %ld\n",
5442		nr_online_nodes,
5443		page_group_by_mobility_disabled ? "off" : "on",
5444		vm_total_pages);
5445#ifdef CONFIG_NUMA
5446	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5447#endif
5448}
5449
5450/*
5451 * Initially all pages are reserved - free ones are freed
5452 * up by free_all_bootmem() once the early boot process is
5453 * done. Non-atomic initialization, single-pass.
5454 */
5455void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5456		unsigned long start_pfn, enum memmap_context context,
5457		struct vmem_altmap *altmap)
5458{
5459	unsigned long end_pfn = start_pfn + size;
5460	pg_data_t *pgdat = NODE_DATA(nid);
5461	unsigned long pfn;
5462	unsigned long nr_initialised = 0;
5463	struct page *page;
5464#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5465	struct memblock_region *r = NULL, *tmp;
5466#endif
5467
5468	if (highest_memmap_pfn < end_pfn - 1)
5469		highest_memmap_pfn = end_pfn - 1;
5470
5471	/*
5472	 * Honor reservation requested by the driver for this ZONE_DEVICE
5473	 * memory
5474	 */
5475	if (altmap && start_pfn == altmap->base_pfn)
5476		start_pfn += altmap->reserve;
5477
5478	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5479		/*
5480		 * There can be holes in boot-time mem_map[]s handed to this
5481		 * function.  They do not exist on hotplugged memory.
5482		 */
5483		if (context != MEMMAP_EARLY)
5484			goto not_early;
5485
5486		if (!early_pfn_valid(pfn))
5487			continue;
5488		if (!early_pfn_in_nid(pfn, nid))
5489			continue;
5490		if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5491			break;
5492
5493#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5494		/*
5495		 * Check given memblock attribute by firmware which can affect
5496		 * kernel memory layout.  If zone==ZONE_MOVABLE but memory is
5497		 * mirrored, it's an overlapped memmap init. skip it.
5498		 */
5499		if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5500			if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5501				for_each_memblock(memory, tmp)
5502					if (pfn < memblock_region_memory_end_pfn(tmp))
5503						break;
5504				r = tmp;
5505			}
5506			if (pfn >= memblock_region_memory_base_pfn(r) &&
5507			    memblock_is_mirror(r)) {
5508				/* already initialized as NORMAL */
5509				pfn = memblock_region_memory_end_pfn(r);
5510				continue;
5511			}
5512		}
5513#endif
5514
5515not_early:
5516		page = pfn_to_page(pfn);
5517		__init_single_page(page, pfn, zone, nid);
5518		if (context == MEMMAP_HOTPLUG)
5519			SetPageReserved(page);
5520
5521		/*
5522		 * Mark the block movable so that blocks are reserved for
5523		 * movable at startup. This will force kernel allocations
5524		 * to reserve their blocks rather than leaking throughout
5525		 * the address space during boot when many long-lived
5526		 * kernel allocations are made.
5527		 *
5528		 * bitmap is created for zone's valid pfn range. but memmap
5529		 * can be created for invalid pages (for alignment)
5530		 * check here not to call set_pageblock_migratetype() against
5531		 * pfn out of zone.
5532		 *
5533		 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
5534		 * because this is done early in sparse_add_one_section
5535		 */
5536		if (!(pfn & (pageblock_nr_pages - 1))) {
5537			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5538			cond_resched();
5539		}
5540	}
5541}
5542
5543static void __meminit zone_init_free_lists(struct zone *zone)
5544{
5545	unsigned int order, t;
5546	for_each_migratetype_order(order, t) {
5547		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5548		zone->free_area[order].nr_free = 0;
5549	}
5550}
5551
5552#ifndef __HAVE_ARCH_MEMMAP_INIT
5553#define memmap_init(size, nid, zone, start_pfn) \
5554	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY, NULL)
5555#endif
5556
5557static int zone_batchsize(struct zone *zone)
5558{
5559#ifdef CONFIG_MMU
5560	int batch;
5561
5562	/*
5563	 * The per-cpu-pages pools are set to around 1000th of the
5564	 * size of the zone.  But no more than 1/2 of a meg.
5565	 *
5566	 * OK, so we don't know how big the cache is.  So guess.
5567	 */
5568	batch = zone->managed_pages / 1024;
5569	if (batch * PAGE_SIZE > 512 * 1024)
5570		batch = (512 * 1024) / PAGE_SIZE;
5571	batch /= 4;		/* We effectively *= 4 below */
5572	if (batch < 1)
5573		batch = 1;
5574
5575	/*
5576	 * Clamp the batch to a 2^n - 1 value. Having a power
5577	 * of 2 value was found to be more likely to have
5578	 * suboptimal cache aliasing properties in some cases.
5579	 *
5580	 * For example if 2 tasks are alternately allocating
5581	 * batches of pages, one task can end up with a lot
5582	 * of pages of one half of the possible page colors
5583	 * and the other with pages of the other colors.
5584	 */
5585	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5586
5587	return batch;
5588
5589#else
5590	/* The deferral and batching of frees should be suppressed under NOMMU
5591	 * conditions.
5592	 *
5593	 * The problem is that NOMMU needs to be able to allocate large chunks
5594	 * of contiguous memory as there's no hardware page translation to
5595	 * assemble apparent contiguous memory from discontiguous pages.
5596	 *
5597	 * Queueing large contiguous runs of pages for batching, however,
5598	 * causes the pages to actually be freed in smaller chunks.  As there
5599	 * can be a significant delay between the individual batches being
5600	 * recycled, this leads to the once large chunks of space being
5601	 * fragmented and becoming unavailable for high-order allocations.
5602	 */
5603	return 0;
5604#endif
5605}
5606
5607/*
5608 * pcp->high and pcp->batch values are related and dependent on one another:
5609 * ->batch must never be higher then ->high.
5610 * The following function updates them in a safe manner without read side
5611 * locking.
5612 *
5613 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5614 * those fields changing asynchronously (acording the the above rule).
5615 *
5616 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5617 * outside of boot time (or some other assurance that no concurrent updaters
5618 * exist).
5619 */
5620static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5621		unsigned long batch)
5622{
5623       /* start with a fail safe value for batch */
5624	pcp->batch = 1;
5625	smp_wmb();
5626
5627       /* Update high, then batch, in order */
5628	pcp->high = high;
5629	smp_wmb();
5630
5631	pcp->batch = batch;
5632}
5633
5634/* a companion to pageset_set_high() */
5635static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5636{
5637	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5638}
5639
5640static void pageset_init(struct per_cpu_pageset *p)
5641{
5642	struct per_cpu_pages *pcp;
5643	int migratetype;
5644
5645	memset(p, 0, sizeof(*p));
5646
5647	pcp = &p->pcp;
5648	pcp->count = 0;
5649	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5650		INIT_LIST_HEAD(&pcp->lists[migratetype]);
5651}
5652
5653static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5654{
5655	pageset_init(p);
5656	pageset_set_batch(p, batch);
5657}
5658
5659/*
5660 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5661 * to the value high for the pageset p.
5662 */
5663static void pageset_set_high(struct per_cpu_pageset *p,
5664				unsigned long high)
5665{
5666	unsigned long batch = max(1UL, high / 4);
5667	if ((high / 4) > (PAGE_SHIFT * 8))
5668		batch = PAGE_SHIFT * 8;
5669
5670	pageset_update(&p->pcp, high, batch);
5671}
5672
5673static void pageset_set_high_and_batch(struct zone *zone,
5674				       struct per_cpu_pageset *pcp)
5675{
5676	if (percpu_pagelist_fraction)
5677		pageset_set_high(pcp,
5678			(zone->managed_pages /
5679				percpu_pagelist_fraction));
5680	else
5681		pageset_set_batch(pcp, zone_batchsize(zone));
5682}
5683
5684static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5685{
5686	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5687
5688	pageset_init(pcp);
5689	pageset_set_high_and_batch(zone, pcp);
5690}
5691
5692void __meminit setup_zone_pageset(struct zone *zone)
5693{
5694	int cpu;
5695	zone->pageset = alloc_percpu(struct per_cpu_pageset);
5696	for_each_possible_cpu(cpu)
5697		zone_pageset_init(zone, cpu);
5698}
5699
5700/*
5701 * Allocate per cpu pagesets and initialize them.
5702 * Before this call only boot pagesets were available.
5703 */
5704void __init setup_per_cpu_pageset(void)
5705{
5706	struct pglist_data *pgdat;
5707	struct zone *zone;
5708
5709	for_each_populated_zone(zone)
5710		setup_zone_pageset(zone);
5711
5712	for_each_online_pgdat(pgdat)
5713		pgdat->per_cpu_nodestats =
5714			alloc_percpu(struct per_cpu_nodestat);
5715}
 
 
 
 
 
 
 
 
 
 
 
5716
5717static __meminit void zone_pcp_init(struct zone *zone)
5718{
5719	/*
5720	 * per cpu subsystem is not up at this point. The following code
5721	 * relies on the ability of the linker to provide the
5722	 * offset of a (static) per cpu variable into the per cpu area.
 
 
 
5723	 */
5724	zone->pageset = &boot_pageset;
5725
5726	if (populated_zone(zone))
5727		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
5728			zone->name, zone->present_pages,
5729					 zone_batchsize(zone));
5730}
5731
5732void __meminit init_currently_empty_zone(struct zone *zone,
5733					unsigned long zone_start_pfn,
5734					unsigned long size)
5735{
5736	struct pglist_data *pgdat = zone->zone_pgdat;
5737
5738	pgdat->nr_zones = zone_idx(zone) + 1;
5739
5740	zone->zone_start_pfn = zone_start_pfn;
5741
5742	mminit_dprintk(MMINIT_TRACE, "memmap_init",
5743			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
5744			pgdat->node_id,
5745			(unsigned long)zone_idx(zone),
5746			zone_start_pfn, (zone_start_pfn + size));
5747
5748	zone_init_free_lists(zone);
5749	zone->initialized = 1;
5750}
5751
5752#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5753#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5754
5755/*
5756 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5757 */
5758int __meminit __early_pfn_to_nid(unsigned long pfn,
5759					struct mminit_pfnnid_cache *state)
5760{
5761	unsigned long start_pfn, end_pfn;
5762	int nid;
5763
5764	if (state->last_start <= pfn && pfn < state->last_end)
5765		return state->last_nid;
5766
5767	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5768	if (nid != -1) {
5769		state->last_start = start_pfn;
5770		state->last_end = end_pfn;
5771		state->last_nid = nid;
5772	}
5773
5774	return nid;
5775}
5776#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5777
5778/**
5779 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5780 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5781 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5782 *
5783 * If an architecture guarantees that all ranges registered contain no holes
5784 * and may be freed, this this function may be used instead of calling
5785 * memblock_free_early_nid() manually.
5786 */
5787void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5788{
5789	unsigned long start_pfn, end_pfn;
5790	int i, this_nid;
5791
5792	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5793		start_pfn = min(start_pfn, max_low_pfn);
5794		end_pfn = min(end_pfn, max_low_pfn);
5795
5796		if (start_pfn < end_pfn)
5797			memblock_free_early_nid(PFN_PHYS(start_pfn),
5798					(end_pfn - start_pfn) << PAGE_SHIFT,
5799					this_nid);
5800	}
5801}
5802
5803/**
5804 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5805 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5806 *
5807 * If an architecture guarantees that all ranges registered contain no holes and may
5808 * be freed, this function may be used instead of calling memory_present() manually.
5809 */
5810void __init sparse_memory_present_with_active_regions(int nid)
5811{
5812	unsigned long start_pfn, end_pfn;
5813	int i, this_nid;
5814
5815	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5816		memory_present(this_nid, start_pfn, end_pfn);
5817}
5818
5819/**
5820 * get_pfn_range_for_nid - Return the start and end page frames for a node
5821 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5822 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5823 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5824 *
5825 * It returns the start and end page frame of a node based on information
5826 * provided by memblock_set_node(). If called for a node
5827 * with no available memory, a warning is printed and the start and end
5828 * PFNs will be 0.
5829 */
5830void __meminit get_pfn_range_for_nid(unsigned int nid,
5831			unsigned long *start_pfn, unsigned long *end_pfn)
5832{
5833	unsigned long this_start_pfn, this_end_pfn;
5834	int i;
5835
5836	*start_pfn = -1UL;
5837	*end_pfn = 0;
5838
5839	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5840		*start_pfn = min(*start_pfn, this_start_pfn);
5841		*end_pfn = max(*end_pfn, this_end_pfn);
5842	}
5843
5844	if (*start_pfn == -1UL)
5845		*start_pfn = 0;
5846}
5847
5848/*
5849 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5850 * assumption is made that zones within a node are ordered in monotonic
5851 * increasing memory addresses so that the "highest" populated zone is used
5852 */
5853static void __init find_usable_zone_for_movable(void)
5854{
5855	int zone_index;
5856	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5857		if (zone_index == ZONE_MOVABLE)
5858			continue;
5859
5860		if (arch_zone_highest_possible_pfn[zone_index] >
5861				arch_zone_lowest_possible_pfn[zone_index])
5862			break;
5863	}
5864
5865	VM_BUG_ON(zone_index == -1);
5866	movable_zone = zone_index;
5867}
5868
5869/*
5870 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5871 * because it is sized independent of architecture. Unlike the other zones,
5872 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5873 * in each node depending on the size of each node and how evenly kernelcore
5874 * is distributed. This helper function adjusts the zone ranges
5875 * provided by the architecture for a given node by using the end of the
5876 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5877 * zones within a node are in order of monotonic increases memory addresses
5878 */
5879static void __meminit adjust_zone_range_for_zone_movable(int nid,
5880					unsigned long zone_type,
5881					unsigned long node_start_pfn,
5882					unsigned long node_end_pfn,
5883					unsigned long *zone_start_pfn,
5884					unsigned long *zone_end_pfn)
5885{
5886	/* Only adjust if ZONE_MOVABLE is on this node */
5887	if (zone_movable_pfn[nid]) {
5888		/* Size ZONE_MOVABLE */
5889		if (zone_type == ZONE_MOVABLE) {
5890			*zone_start_pfn = zone_movable_pfn[nid];
5891			*zone_end_pfn = min(node_end_pfn,
5892				arch_zone_highest_possible_pfn[movable_zone]);
5893
5894		/* Adjust for ZONE_MOVABLE starting within this range */
5895		} else if (!mirrored_kernelcore &&
5896			*zone_start_pfn < zone_movable_pfn[nid] &&
5897			*zone_end_pfn > zone_movable_pfn[nid]) {
5898			*zone_end_pfn = zone_movable_pfn[nid];
5899
5900		/* Check if this whole range is within ZONE_MOVABLE */
5901		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
5902			*zone_start_pfn = *zone_end_pfn;
5903	}
5904}
5905
5906/*
5907 * Return the number of pages a zone spans in a node, including holes
5908 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5909 */
5910static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5911					unsigned long zone_type,
5912					unsigned long node_start_pfn,
5913					unsigned long node_end_pfn,
5914					unsigned long *zone_start_pfn,
5915					unsigned long *zone_end_pfn,
5916					unsigned long *ignored)
5917{
5918	/* When hotadd a new node from cpu_up(), the node should be empty */
5919	if (!node_start_pfn && !node_end_pfn)
5920		return 0;
5921
5922	/* Get the start and end of the zone */
5923	*zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5924	*zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5925	adjust_zone_range_for_zone_movable(nid, zone_type,
5926				node_start_pfn, node_end_pfn,
5927				zone_start_pfn, zone_end_pfn);
5928
5929	/* Check that this node has pages within the zone's required range */
5930	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5931		return 0;
5932
5933	/* Move the zone boundaries inside the node if necessary */
5934	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5935	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5936
5937	/* Return the spanned pages */
5938	return *zone_end_pfn - *zone_start_pfn;
5939}
5940
5941/*
5942 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5943 * then all holes in the requested range will be accounted for.
5944 */
5945unsigned long __meminit __absent_pages_in_range(int nid,
5946				unsigned long range_start_pfn,
5947				unsigned long range_end_pfn)
5948{
5949	unsigned long nr_absent = range_end_pfn - range_start_pfn;
5950	unsigned long start_pfn, end_pfn;
5951	int i;
5952
5953	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5954		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5955		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5956		nr_absent -= end_pfn - start_pfn;
5957	}
5958	return nr_absent;
5959}
5960
5961/**
5962 * absent_pages_in_range - Return number of page frames in holes within a range
5963 * @start_pfn: The start PFN to start searching for holes
5964 * @end_pfn: The end PFN to stop searching for holes
5965 *
5966 * It returns the number of pages frames in memory holes within a range.
5967 */
5968unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5969							unsigned long end_pfn)
5970{
5971	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5972}
5973
5974/* Return the number of page frames in holes in a zone on a node */
5975static unsigned long __meminit zone_absent_pages_in_node(int nid,
5976					unsigned long zone_type,
5977					unsigned long node_start_pfn,
5978					unsigned long node_end_pfn,
5979					unsigned long *ignored)
5980{
5981	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5982	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5983	unsigned long zone_start_pfn, zone_end_pfn;
5984	unsigned long nr_absent;
5985
5986	/* When hotadd a new node from cpu_up(), the node should be empty */
5987	if (!node_start_pfn && !node_end_pfn)
5988		return 0;
5989
5990	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5991	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5992
5993	adjust_zone_range_for_zone_movable(nid, zone_type,
5994			node_start_pfn, node_end_pfn,
5995			&zone_start_pfn, &zone_end_pfn);
5996	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5997
5998	/*
5999	 * ZONE_MOVABLE handling.
6000	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6001	 * and vice versa.
6002	 */
6003	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6004		unsigned long start_pfn, end_pfn;
6005		struct memblock_region *r;
6006
6007		for_each_memblock(memory, r) {
6008			start_pfn = clamp(memblock_region_memory_base_pfn(r),
6009					  zone_start_pfn, zone_end_pfn);
6010			end_pfn = clamp(memblock_region_memory_end_pfn(r),
6011					zone_start_pfn, zone_end_pfn);
6012
6013			if (zone_type == ZONE_MOVABLE &&
6014			    memblock_is_mirror(r))
6015				nr_absent += end_pfn - start_pfn;
6016
6017			if (zone_type == ZONE_NORMAL &&
6018			    !memblock_is_mirror(r))
6019				nr_absent += end_pfn - start_pfn;
6020		}
6021	}
6022
6023	return nr_absent;
6024}
6025
6026#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6027static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
6028					unsigned long zone_type,
6029					unsigned long node_start_pfn,
6030					unsigned long node_end_pfn,
6031					unsigned long *zone_start_pfn,
6032					unsigned long *zone_end_pfn,
6033					unsigned long *zones_size)
6034{
6035	unsigned int zone;
6036
6037	*zone_start_pfn = node_start_pfn;
6038	for (zone = 0; zone < zone_type; zone++)
6039		*zone_start_pfn += zones_size[zone];
6040
6041	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6042
6043	return zones_size[zone_type];
6044}
6045
6046static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
6047						unsigned long zone_type,
6048						unsigned long node_start_pfn,
6049						unsigned long node_end_pfn,
6050						unsigned long *zholes_size)
6051{
6052	if (!zholes_size)
6053		return 0;
6054
6055	return zholes_size[zone_type];
6056}
6057
6058#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6059
6060static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
6061						unsigned long node_start_pfn,
6062						unsigned long node_end_pfn,
6063						unsigned long *zones_size,
6064						unsigned long *zholes_size)
6065{
6066	unsigned long realtotalpages = 0, totalpages = 0;
6067	enum zone_type i;
6068
6069	for (i = 0; i < MAX_NR_ZONES; i++) {
6070		struct zone *zone = pgdat->node_zones + i;
6071		unsigned long zone_start_pfn, zone_end_pfn;
6072		unsigned long size, real_size;
6073
6074		size = zone_spanned_pages_in_node(pgdat->node_id, i,
6075						  node_start_pfn,
6076						  node_end_pfn,
6077						  &zone_start_pfn,
6078						  &zone_end_pfn,
6079						  zones_size);
6080		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6081						  node_start_pfn, node_end_pfn,
6082						  zholes_size);
6083		if (size)
6084			zone->zone_start_pfn = zone_start_pfn;
6085		else
6086			zone->zone_start_pfn = 0;
6087		zone->spanned_pages = size;
6088		zone->present_pages = real_size;
6089
6090		totalpages += size;
6091		realtotalpages += real_size;
6092	}
6093
6094	pgdat->node_spanned_pages = totalpages;
6095	pgdat->node_present_pages = realtotalpages;
6096	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6097							realtotalpages);
6098}
6099
6100#ifndef CONFIG_SPARSEMEM
6101/*
6102 * Calculate the size of the zone->blockflags rounded to an unsigned long
6103 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6104 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6105 * round what is now in bits to nearest long in bits, then return it in
6106 * bytes.
 
 
 
 
 
 
 
 
 
 
6107 */
6108static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
 
6109{
6110	unsigned long usemapsize;
6111
6112	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6113	usemapsize = roundup(zonesize, pageblock_nr_pages);
6114	usemapsize = usemapsize >> pageblock_order;
6115	usemapsize *= NR_PAGEBLOCK_BITS;
6116	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6117
6118	return usemapsize / 8;
6119}
6120
6121static void __init setup_usemap(struct pglist_data *pgdat,
6122				struct zone *zone,
6123				unsigned long zone_start_pfn,
6124				unsigned long zonesize)
6125{
6126	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6127	zone->pageblock_flags = NULL;
6128	if (usemapsize)
6129		zone->pageblock_flags =
6130			memblock_virt_alloc_node_nopanic(usemapsize,
6131							 pgdat->node_id);
6132}
6133#else
6134static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6135				unsigned long zone_start_pfn, unsigned long zonesize) {}
6136#endif /* CONFIG_SPARSEMEM */
6137
6138#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
 
6139
6140/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6141void __paginginit set_pageblock_order(void)
6142{
6143	unsigned int order;
6144
6145	/* Check that pageblock_nr_pages has not already been setup */
6146	if (pageblock_order)
6147		return;
6148
6149	if (HPAGE_SHIFT > PAGE_SHIFT)
6150		order = HUGETLB_PAGE_ORDER;
6151	else
6152		order = MAX_ORDER - 1;
6153
6154	/*
6155	 * Assume the largest contiguous order of interest is a huge page.
6156	 * This value may be variable depending on boot parameters on IA64 and
6157	 * powerpc.
 
6158	 */
6159	pageblock_order = order;
6160}
6161#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6162
6163/*
6164 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6165 * is unused as pageblock_order is set at compile-time. See
6166 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6167 * the kernel config
6168 */
6169void __paginginit set_pageblock_order(void)
6170{
6171}
6172
6173#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6174
6175static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
6176						   unsigned long present_pages)
6177{
6178	unsigned long pages = spanned_pages;
6179
6180	/*
6181	 * Provide a more accurate estimation if there are holes within
6182	 * the zone and SPARSEMEM is in use. If there are holes within the
6183	 * zone, each populated memory region may cost us one or two extra
6184	 * memmap pages due to alignment because memmap pages for each
6185	 * populated regions may not be naturally aligned on page boundary.
6186	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6187	 */
6188	if (spanned_pages > present_pages + (present_pages >> 4) &&
6189	    IS_ENABLED(CONFIG_SPARSEMEM))
6190		pages = present_pages;
6191
6192	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
 
 
 
6193}
6194
6195/*
6196 * Set up the zone data structures:
6197 *   - mark all pages reserved
6198 *   - mark all memory queues empty
6199 *   - clear the memory bitmaps
6200 *
6201 * NOTE: pgdat should get zeroed by caller.
6202 */
6203static void __paginginit free_area_init_core(struct pglist_data *pgdat)
6204{
6205	enum zone_type j;
6206	int nid = pgdat->node_id;
6207
6208	pgdat_resize_init(pgdat);
6209#ifdef CONFIG_NUMA_BALANCING
6210	spin_lock_init(&pgdat->numabalancing_migrate_lock);
6211	pgdat->numabalancing_migrate_nr_pages = 0;
6212	pgdat->numabalancing_migrate_next_window = jiffies;
6213#endif
6214#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6215	spin_lock_init(&pgdat->split_queue_lock);
6216	INIT_LIST_HEAD(&pgdat->split_queue);
6217	pgdat->split_queue_len = 0;
6218#endif
6219	init_waitqueue_head(&pgdat->kswapd_wait);
6220	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6221#ifdef CONFIG_COMPACTION
6222	init_waitqueue_head(&pgdat->kcompactd_wait);
6223#endif
6224	pgdat_page_ext_init(pgdat);
6225	spin_lock_init(&pgdat->lru_lock);
6226	lruvec_init(node_lruvec(pgdat));
6227
6228	pgdat->per_cpu_nodestats = &boot_nodestats;
6229
6230	for (j = 0; j < MAX_NR_ZONES; j++) {
6231		struct zone *zone = pgdat->node_zones + j;
6232		unsigned long size, realsize, freesize, memmap_pages;
6233		unsigned long zone_start_pfn = zone->zone_start_pfn;
6234
6235		size = zone->spanned_pages;
6236		realsize = freesize = zone->present_pages;
6237
6238		/*
6239		 * Adjust freesize so that it accounts for how much memory
6240		 * is used by this zone for memmap. This affects the watermark
6241		 * and per-cpu initialisations
6242		 */
6243		memmap_pages = calc_memmap_size(size, realsize);
6244		if (!is_highmem_idx(j)) {
6245			if (freesize >= memmap_pages) {
6246				freesize -= memmap_pages;
6247				if (memmap_pages)
6248					printk(KERN_DEBUG
6249					       "  %s zone: %lu pages used for memmap\n",
6250					       zone_names[j], memmap_pages);
6251			} else
6252				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6253					zone_names[j], memmap_pages, freesize);
6254		}
6255
6256		/* Account for reserved pages */
6257		if (j == 0 && freesize > dma_reserve) {
6258			freesize -= dma_reserve;
6259			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6260					zone_names[0], dma_reserve);
6261		}
6262
6263		if (!is_highmem_idx(j))
6264			nr_kernel_pages += freesize;
6265		/* Charge for highmem memmap if there are enough kernel pages */
6266		else if (nr_kernel_pages > memmap_pages * 2)
6267			nr_kernel_pages -= memmap_pages;
6268		nr_all_pages += freesize;
6269
 
 
 
 
6270		/*
6271		 * Set an approximate value for lowmem here, it will be adjusted
6272		 * when the bootmem allocator frees pages into the buddy system.
6273		 * And all highmem pages will be managed by the buddy system.
6274		 */
6275		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
6276#ifdef CONFIG_NUMA
6277		zone->node = nid;
6278#endif
6279		zone->name = zone_names[j];
6280		zone->zone_pgdat = pgdat;
6281		spin_lock_init(&zone->lock);
6282		zone_seqlock_init(zone);
6283		zone_pcp_init(zone);
6284
6285		if (!size)
6286			continue;
6287
6288		set_pageblock_order();
6289		setup_usemap(pgdat, zone, zone_start_pfn, size);
6290		init_currently_empty_zone(zone, zone_start_pfn, size);
6291		memmap_init(size, nid, j, zone_start_pfn);
6292	}
6293}
6294
6295#ifdef CONFIG_FLAT_NODE_MEM_MAP
6296static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6297{
6298	unsigned long __maybe_unused start = 0;
6299	unsigned long __maybe_unused offset = 0;
6300
6301	/* Skip empty nodes */
6302	if (!pgdat->node_spanned_pages)
 
6303		return;
6304
6305	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6306	offset = pgdat->node_start_pfn - start;
6307	/* ia64 gets its own node_mem_map, before this, without bootmem */
6308	if (!pgdat->node_mem_map) {
6309		unsigned long size, end;
6310		struct page *map;
6311
6312		/*
6313		 * The zone's endpoints aren't required to be MAX_ORDER
6314		 * aligned but the node_mem_map endpoints must be in order
6315		 * for the buddy allocator to function correctly.
6316		 */
6317		end = pgdat_end_pfn(pgdat);
6318		end = ALIGN(end, MAX_ORDER_NR_PAGES);
6319		size =  (end - start) * sizeof(struct page);
6320		map = memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
6321		pgdat->node_mem_map = map + offset;
6322	}
6323	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6324				__func__, pgdat->node_id, (unsigned long)pgdat,
6325				(unsigned long)pgdat->node_mem_map);
6326#ifndef CONFIG_NEED_MULTIPLE_NODES
6327	/*
6328	 * With no DISCONTIG, the global mem_map is just set as node 0's
6329	 */
6330	if (pgdat == NODE_DATA(0)) {
6331		mem_map = NODE_DATA(0)->node_mem_map;
6332#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6333		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6334			mem_map -= offset;
6335#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6336	}
6337#endif
6338}
6339#else
6340static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6341#endif /* CONFIG_FLAT_NODE_MEM_MAP */
6342
6343void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6344		unsigned long node_start_pfn, unsigned long *zholes_size)
6345{
6346	pg_data_t *pgdat = NODE_DATA(nid);
6347	unsigned long start_pfn = 0;
6348	unsigned long end_pfn = 0;
6349
6350	/* pg_data_t should be reset to zero when it's allocated */
6351	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6352
6353	pgdat->node_id = nid;
6354	pgdat->node_start_pfn = node_start_pfn;
6355	pgdat->per_cpu_nodestats = NULL;
6356#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6357	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6358	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6359		(u64)start_pfn << PAGE_SHIFT,
6360		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6361#else
6362	start_pfn = node_start_pfn;
6363#endif
6364	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6365				  zones_size, zholes_size);
6366
6367	alloc_node_mem_map(pgdat);
6368
6369#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6370	/*
6371	 * We start only with one section of pages, more pages are added as
6372	 * needed until the rest of deferred pages are initialized.
6373	 */
6374	pgdat->static_init_pgcnt = min_t(unsigned long, PAGES_PER_SECTION,
6375					 pgdat->node_spanned_pages);
6376	pgdat->first_deferred_pfn = ULONG_MAX;
6377#endif
6378	free_area_init_core(pgdat);
6379}
6380
6381#ifdef CONFIG_HAVE_MEMBLOCK
6382/*
6383 * Only struct pages that are backed by physical memory are zeroed and
6384 * initialized by going through __init_single_page(). But, there are some
6385 * struct pages which are reserved in memblock allocator and their fields
6386 * may be accessed (for example page_to_pfn() on some configuration accesses
6387 * flags). We must explicitly zero those struct pages.
6388 */
6389void __paginginit zero_resv_unavail(void)
6390{
6391	phys_addr_t start, end;
6392	unsigned long pfn;
6393	u64 i, pgcnt;
6394
6395	/*
6396	 * Loop through ranges that are reserved, but do not have reported
6397	 * physical memory backing.
6398	 */
6399	pgcnt = 0;
6400	for_each_resv_unavail_range(i, &start, &end) {
6401		for (pfn = PFN_DOWN(start); pfn < PFN_UP(end); pfn++) {
6402			if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages)))
6403				continue;
6404			mm_zero_struct_page(pfn_to_page(pfn));
6405			pgcnt++;
6406		}
6407	}
6408
6409	/*
6410	 * Struct pages that do not have backing memory. This could be because
6411	 * firmware is using some of this memory, or for some other reasons.
6412	 * Once memblock is changed so such behaviour is not allowed: i.e.
6413	 * list of "reserved" memory must be a subset of list of "memory", then
6414	 * this code can be removed.
6415	 */
6416	if (pgcnt)
6417		pr_info("Reserved but unavailable: %lld pages", pgcnt);
6418}
6419#endif /* CONFIG_HAVE_MEMBLOCK */
6420
6421#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6422
6423#if MAX_NUMNODES > 1
6424/*
6425 * Figure out the number of possible node ids.
 
6426 */
6427void __init setup_nr_node_ids(void)
6428{
6429	unsigned int highest;
6430
6431	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6432	nr_node_ids = highest + 1;
6433}
6434#endif
6435
6436/**
6437 * node_map_pfn_alignment - determine the maximum internode alignment
6438 *
6439 * This function should be called after node map is populated and sorted.
6440 * It calculates the maximum power of two alignment which can distinguish
6441 * all the nodes.
6442 *
6443 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6444 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
6445 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
6446 * shifted, 1GiB is enough and this function will indicate so.
6447 *
6448 * This is used to test whether pfn -> nid mapping of the chosen memory
6449 * model has fine enough granularity to avoid incorrect mapping for the
6450 * populated node map.
6451 *
6452 * Returns the determined alignment in pfn's.  0 if there is no alignment
6453 * requirement (single node).
6454 */
6455unsigned long __init node_map_pfn_alignment(void)
6456{
6457	unsigned long accl_mask = 0, last_end = 0;
6458	unsigned long start, end, mask;
6459	int last_nid = -1;
6460	int i, nid;
6461
6462	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6463		if (!start || last_nid < 0 || last_nid == nid) {
6464			last_nid = nid;
6465			last_end = end;
6466			continue;
6467		}
6468
6469		/*
6470		 * Start with a mask granular enough to pin-point to the
6471		 * start pfn and tick off bits one-by-one until it becomes
6472		 * too coarse to separate the current node from the last.
6473		 */
6474		mask = ~((1 << __ffs(start)) - 1);
6475		while (mask && last_end <= (start & (mask << 1)))
6476			mask <<= 1;
6477
6478		/* accumulate all internode masks */
6479		accl_mask |= mask;
6480	}
6481
6482	/* convert mask to number of pages */
6483	return ~accl_mask + 1;
6484}
6485
6486/* Find the lowest pfn for a node */
6487static unsigned long __init find_min_pfn_for_node(int nid)
6488{
6489	unsigned long min_pfn = ULONG_MAX;
6490	unsigned long start_pfn;
6491	int i;
6492
6493	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6494		min_pfn = min(min_pfn, start_pfn);
6495
6496	if (min_pfn == ULONG_MAX) {
6497		pr_warn("Could not find start_pfn for node %d\n", nid);
6498		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
6499	}
6500
6501	return min_pfn;
6502}
6503
6504/**
6505 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6506 *
6507 * It returns the minimum PFN based on information provided via
6508 * memblock_set_node().
6509 */
6510unsigned long __init find_min_pfn_with_active_regions(void)
6511{
6512	return find_min_pfn_for_node(MAX_NUMNODES);
6513}
6514
6515/*
6516 * early_calculate_totalpages()
6517 * Sum pages in active regions for movable zone.
6518 * Populate N_MEMORY for calculating usable_nodes.
6519 */
6520static unsigned long __init early_calculate_totalpages(void)
6521{
6522	unsigned long totalpages = 0;
6523	unsigned long start_pfn, end_pfn;
6524	int i, nid;
6525
6526	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6527		unsigned long pages = end_pfn - start_pfn;
6528
6529		totalpages += pages;
6530		if (pages)
6531			node_set_state(nid, N_MEMORY);
6532	}
6533	return totalpages;
6534}
6535
6536/*
6537 * Find the PFN the Movable zone begins in each node. Kernel memory
6538 * is spread evenly between nodes as long as the nodes have enough
6539 * memory. When they don't, some nodes will have more kernelcore than
6540 * others
6541 */
6542static void __init find_zone_movable_pfns_for_nodes(void)
6543{
6544	int i, nid;
6545	unsigned long usable_startpfn;
6546	unsigned long kernelcore_node, kernelcore_remaining;
6547	/* save the state before borrow the nodemask */
6548	nodemask_t saved_node_state = node_states[N_MEMORY];
6549	unsigned long totalpages = early_calculate_totalpages();
6550	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6551	struct memblock_region *r;
6552
6553	/* Need to find movable_zone earlier when movable_node is specified. */
6554	find_usable_zone_for_movable();
6555
6556	/*
6557	 * If movable_node is specified, ignore kernelcore and movablecore
6558	 * options.
6559	 */
6560	if (movable_node_is_enabled()) {
6561		for_each_memblock(memory, r) {
6562			if (!memblock_is_hotpluggable(r))
6563				continue;
6564
6565			nid = r->nid;
6566
6567			usable_startpfn = PFN_DOWN(r->base);
6568			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6569				min(usable_startpfn, zone_movable_pfn[nid]) :
6570				usable_startpfn;
6571		}
6572
6573		goto out2;
6574	}
6575
6576	/*
6577	 * If kernelcore=mirror is specified, ignore movablecore option
6578	 */
6579	if (mirrored_kernelcore) {
6580		bool mem_below_4gb_not_mirrored = false;
6581
6582		for_each_memblock(memory, r) {
6583			if (memblock_is_mirror(r))
6584				continue;
6585
6586			nid = r->nid;
6587
6588			usable_startpfn = memblock_region_memory_base_pfn(r);
6589
6590			if (usable_startpfn < 0x100000) {
6591				mem_below_4gb_not_mirrored = true;
6592				continue;
6593			}
6594
6595			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6596				min(usable_startpfn, zone_movable_pfn[nid]) :
6597				usable_startpfn;
6598		}
6599
6600		if (mem_below_4gb_not_mirrored)
6601			pr_warn("This configuration results in unmirrored kernel memory.");
6602
6603		goto out2;
6604	}
6605
6606	/*
6607	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
6608	 * amount of necessary memory.
6609	 */
6610	if (required_kernelcore_percent)
6611		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
6612				       10000UL;
6613	if (required_movablecore_percent)
6614		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
6615					10000UL;
6616
6617	/*
6618	 * If movablecore= was specified, calculate what size of
6619	 * kernelcore that corresponds so that memory usable for
6620	 * any allocation type is evenly spread. If both kernelcore
6621	 * and movablecore are specified, then the value of kernelcore
6622	 * will be used for required_kernelcore if it's greater than
6623	 * what movablecore would have allowed.
6624	 */
6625	if (required_movablecore) {
6626		unsigned long corepages;
6627
6628		/*
6629		 * Round-up so that ZONE_MOVABLE is at least as large as what
6630		 * was requested by the user
6631		 */
6632		required_movablecore =
6633			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6634		required_movablecore = min(totalpages, required_movablecore);
6635		corepages = totalpages - required_movablecore;
6636
6637		required_kernelcore = max(required_kernelcore, corepages);
6638	}
6639
6640	/*
6641	 * If kernelcore was not specified or kernelcore size is larger
6642	 * than totalpages, there is no ZONE_MOVABLE.
6643	 */
6644	if (!required_kernelcore || required_kernelcore >= totalpages)
6645		goto out;
6646
6647	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6648	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6649
6650restart:
6651	/* Spread kernelcore memory as evenly as possible throughout nodes */
6652	kernelcore_node = required_kernelcore / usable_nodes;
6653	for_each_node_state(nid, N_MEMORY) {
6654		unsigned long start_pfn, end_pfn;
6655
6656		/*
6657		 * Recalculate kernelcore_node if the division per node
6658		 * now exceeds what is necessary to satisfy the requested
6659		 * amount of memory for the kernel
6660		 */
6661		if (required_kernelcore < kernelcore_node)
6662			kernelcore_node = required_kernelcore / usable_nodes;
6663
6664		/*
6665		 * As the map is walked, we track how much memory is usable
6666		 * by the kernel using kernelcore_remaining. When it is
6667		 * 0, the rest of the node is usable by ZONE_MOVABLE
6668		 */
6669		kernelcore_remaining = kernelcore_node;
6670
6671		/* Go through each range of PFNs within this node */
6672		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6673			unsigned long size_pages;
6674
6675			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6676			if (start_pfn >= end_pfn)
6677				continue;
6678
6679			/* Account for what is only usable for kernelcore */
6680			if (start_pfn < usable_startpfn) {
6681				unsigned long kernel_pages;
6682				kernel_pages = min(end_pfn, usable_startpfn)
6683								- start_pfn;
6684
6685				kernelcore_remaining -= min(kernel_pages,
6686							kernelcore_remaining);
6687				required_kernelcore -= min(kernel_pages,
6688							required_kernelcore);
6689
6690				/* Continue if range is now fully accounted */
6691				if (end_pfn <= usable_startpfn) {
6692
6693					/*
6694					 * Push zone_movable_pfn to the end so
6695					 * that if we have to rebalance
6696					 * kernelcore across nodes, we will
6697					 * not double account here
6698					 */
6699					zone_movable_pfn[nid] = end_pfn;
6700					continue;
6701				}
6702				start_pfn = usable_startpfn;
6703			}
6704
6705			/*
6706			 * The usable PFN range for ZONE_MOVABLE is from
6707			 * start_pfn->end_pfn. Calculate size_pages as the
6708			 * number of pages used as kernelcore
6709			 */
6710			size_pages = end_pfn - start_pfn;
6711			if (size_pages > kernelcore_remaining)
6712				size_pages = kernelcore_remaining;
6713			zone_movable_pfn[nid] = start_pfn + size_pages;
6714
6715			/*
6716			 * Some kernelcore has been met, update counts and
6717			 * break if the kernelcore for this node has been
6718			 * satisfied
6719			 */
6720			required_kernelcore -= min(required_kernelcore,
6721								size_pages);
6722			kernelcore_remaining -= size_pages;
6723			if (!kernelcore_remaining)
6724				break;
6725		}
6726	}
6727
 
6728	/*
6729	 * If there is still required_kernelcore, we do another pass with one
6730	 * less node in the count. This will push zone_movable_pfn[nid] further
6731	 * along on the nodes that still have memory until kernelcore is
6732	 * satisfied
6733	 */
6734	usable_nodes--;
6735	if (usable_nodes && required_kernelcore > usable_nodes)
6736		goto restart;
6737
6738out2:
6739	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6740	for (nid = 0; nid < MAX_NUMNODES; nid++)
6741		zone_movable_pfn[nid] =
6742			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6743
6744out:
6745	/* restore the node_state */
6746	node_states[N_MEMORY] = saved_node_state;
6747}
6748
6749/* Any regular or high memory on that node ? */
6750static void check_for_memory(pg_data_t *pgdat, int nid)
6751{
6752	enum zone_type zone_type;
6753
6754	if (N_MEMORY == N_NORMAL_MEMORY)
6755		return;
6756
6757	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6758		struct zone *zone = &pgdat->node_zones[zone_type];
6759		if (populated_zone(zone)) {
6760			node_set_state(nid, N_HIGH_MEMORY);
6761			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6762			    zone_type <= ZONE_NORMAL)
6763				node_set_state(nid, N_NORMAL_MEMORY);
6764			break;
6765		}
6766	}
6767}
6768
6769/**
6770 * free_area_init_nodes - Initialise all pg_data_t and zone data
6771 * @max_zone_pfn: an array of max PFNs for each zone
6772 *
6773 * This will call free_area_init_node() for each active node in the system.
6774 * Using the page ranges provided by memblock_set_node(), the size of each
6775 * zone in each node and their holes is calculated. If the maximum PFN
6776 * between two adjacent zones match, it is assumed that the zone is empty.
6777 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6778 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6779 * starts where the previous one ended. For example, ZONE_DMA32 starts
6780 * at arch_max_dma_pfn.
6781 */
6782void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6783{
6784	unsigned long start_pfn, end_pfn;
6785	int i, nid;
6786
6787	/* Record where the zone boundaries are */
6788	memset(arch_zone_lowest_possible_pfn, 0,
6789				sizeof(arch_zone_lowest_possible_pfn));
6790	memset(arch_zone_highest_possible_pfn, 0,
6791				sizeof(arch_zone_highest_possible_pfn));
6792
6793	start_pfn = find_min_pfn_with_active_regions();
6794
6795	for (i = 0; i < MAX_NR_ZONES; i++) {
6796		if (i == ZONE_MOVABLE)
6797			continue;
6798
6799		end_pfn = max(max_zone_pfn[i], start_pfn);
6800		arch_zone_lowest_possible_pfn[i] = start_pfn;
6801		arch_zone_highest_possible_pfn[i] = end_pfn;
6802
6803		start_pfn = end_pfn;
6804	}
6805
6806	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
6807	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6808	find_zone_movable_pfns_for_nodes();
6809
6810	/* Print out the zone ranges */
6811	pr_info("Zone ranges:\n");
6812	for (i = 0; i < MAX_NR_ZONES; i++) {
6813		if (i == ZONE_MOVABLE)
6814			continue;
6815		pr_info("  %-8s ", zone_names[i]);
6816		if (arch_zone_lowest_possible_pfn[i] ==
6817				arch_zone_highest_possible_pfn[i])
6818			pr_cont("empty\n");
6819		else
6820			pr_cont("[mem %#018Lx-%#018Lx]\n",
6821				(u64)arch_zone_lowest_possible_pfn[i]
6822					<< PAGE_SHIFT,
6823				((u64)arch_zone_highest_possible_pfn[i]
6824					<< PAGE_SHIFT) - 1);
6825	}
6826
6827	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
6828	pr_info("Movable zone start for each node\n");
6829	for (i = 0; i < MAX_NUMNODES; i++) {
6830		if (zone_movable_pfn[i])
6831			pr_info("  Node %d: %#018Lx\n", i,
6832			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6833	}
6834
6835	/* Print out the early node map */
6836	pr_info("Early memory node ranges\n");
6837	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6838		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6839			(u64)start_pfn << PAGE_SHIFT,
6840			((u64)end_pfn << PAGE_SHIFT) - 1);
6841
6842	/* Initialise every node */
6843	mminit_verify_pageflags_layout();
6844	setup_nr_node_ids();
6845	for_each_online_node(nid) {
6846		pg_data_t *pgdat = NODE_DATA(nid);
6847		free_area_init_node(nid, NULL,
6848				find_min_pfn_for_node(nid), NULL);
6849
6850		/* Any memory on that node */
6851		if (pgdat->node_present_pages)
6852			node_set_state(nid, N_MEMORY);
6853		check_for_memory(pgdat, nid);
6854	}
6855	zero_resv_unavail();
6856}
6857
6858static int __init cmdline_parse_core(char *p, unsigned long *core,
6859				     unsigned long *percent)
6860{
6861	unsigned long long coremem;
6862	char *endptr;
6863
6864	if (!p)
6865		return -EINVAL;
6866
6867	/* Value may be a percentage of total memory, otherwise bytes */
6868	coremem = simple_strtoull(p, &endptr, 0);
6869	if (*endptr == '%') {
6870		/* Paranoid check for percent values greater than 100 */
6871		WARN_ON(coremem > 100);
6872
6873		*percent = coremem;
6874	} else {
6875		coremem = memparse(p, &p);
6876		/* Paranoid check that UL is enough for the coremem value */
6877		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6878
6879		*core = coremem >> PAGE_SHIFT;
6880		*percent = 0UL;
6881	}
6882	return 0;
6883}
6884
6885/*
6886 * kernelcore=size sets the amount of memory for use for allocations that
6887 * cannot be reclaimed or migrated.
6888 */
6889static int __init cmdline_parse_kernelcore(char *p)
6890{
6891	/* parse kernelcore=mirror */
6892	if (parse_option_str(p, "mirror")) {
6893		mirrored_kernelcore = true;
6894		return 0;
6895	}
6896
6897	return cmdline_parse_core(p, &required_kernelcore,
6898				  &required_kernelcore_percent);
6899}
 
6900
6901/*
6902 * movablecore=size sets the amount of memory for use for allocations that
6903 * can be reclaimed or migrated.
6904 */
6905static int __init cmdline_parse_movablecore(char *p)
6906{
6907	return cmdline_parse_core(p, &required_movablecore,
6908				  &required_movablecore_percent);
6909}
6910
6911early_param("kernelcore", cmdline_parse_kernelcore);
6912early_param("movablecore", cmdline_parse_movablecore);
6913
6914#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6915
6916void adjust_managed_page_count(struct page *page, long count)
6917{
6918	spin_lock(&managed_page_count_lock);
6919	page_zone(page)->managed_pages += count;
6920	totalram_pages += count;
6921#ifdef CONFIG_HIGHMEM
6922	if (PageHighMem(page))
6923		totalhigh_pages += count;
6924#endif
6925	spin_unlock(&managed_page_count_lock);
6926}
6927EXPORT_SYMBOL(adjust_managed_page_count);
6928
6929unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6930{
6931	void *pos;
6932	unsigned long pages = 0;
6933
6934	start = (void *)PAGE_ALIGN((unsigned long)start);
6935	end = (void *)((unsigned long)end & PAGE_MASK);
6936	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6937		if ((unsigned int)poison <= 0xFF)
6938			memset(pos, poison, PAGE_SIZE);
6939		free_reserved_page(virt_to_page(pos));
 
6940	}
6941
6942	if (pages && s)
6943		pr_info("Freeing %s memory: %ldK\n",
6944			s, pages << (PAGE_SHIFT - 10));
6945
6946	return pages;
6947}
6948EXPORT_SYMBOL(free_reserved_area);
6949
6950#ifdef	CONFIG_HIGHMEM
6951void free_highmem_page(struct page *page)
6952{
6953	__free_reserved_page(page);
6954	totalram_pages++;
6955	page_zone(page)->managed_pages++;
6956	totalhigh_pages++;
6957}
6958#endif
6959
6960
6961void __init mem_init_print_info(const char *str)
6962{
6963	unsigned long physpages, codesize, datasize, rosize, bss_size;
6964	unsigned long init_code_size, init_data_size;
6965
6966	physpages = get_num_physpages();
6967	codesize = _etext - _stext;
6968	datasize = _edata - _sdata;
6969	rosize = __end_rodata - __start_rodata;
6970	bss_size = __bss_stop - __bss_start;
6971	init_data_size = __init_end - __init_begin;
6972	init_code_size = _einittext - _sinittext;
6973
6974	/*
6975	 * Detect special cases and adjust section sizes accordingly:
6976	 * 1) .init.* may be embedded into .data sections
6977	 * 2) .init.text.* may be out of [__init_begin, __init_end],
6978	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
6979	 * 3) .rodata.* may be embedded into .text or .data sections.
6980	 */
6981#define adj_init_size(start, end, size, pos, adj) \
6982	do { \
6983		if (start <= pos && pos < end && size > adj) \
6984			size -= adj; \
6985	} while (0)
6986
6987	adj_init_size(__init_begin, __init_end, init_data_size,
6988		     _sinittext, init_code_size);
6989	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6990	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6991	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6992	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6993
6994#undef	adj_init_size
6995
6996	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6997#ifdef	CONFIG_HIGHMEM
6998		", %luK highmem"
6999#endif
7000		"%s%s)\n",
7001		nr_free_pages() << (PAGE_SHIFT - 10),
7002		physpages << (PAGE_SHIFT - 10),
7003		codesize >> 10, datasize >> 10, rosize >> 10,
7004		(init_data_size + init_code_size) >> 10, bss_size >> 10,
7005		(physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
7006		totalcma_pages << (PAGE_SHIFT - 10),
7007#ifdef	CONFIG_HIGHMEM
7008		totalhigh_pages << (PAGE_SHIFT - 10),
7009#endif
7010		str ? ", " : "", str ? str : "");
7011}
7012
7013/**
7014 * set_dma_reserve - set the specified number of pages reserved in the first zone
7015 * @new_dma_reserve: The number of pages to mark reserved
7016 *
7017 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7018 * In the DMA zone, a significant percentage may be consumed by kernel image
7019 * and other unfreeable allocations which can skew the watermarks badly. This
7020 * function may optionally be used to account for unfreeable pages in the
7021 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7022 * smaller per-cpu batchsize.
7023 */
7024void __init set_dma_reserve(unsigned long new_dma_reserve)
7025{
7026	dma_reserve = new_dma_reserve;
7027}
7028
7029void __init free_area_init(unsigned long *zones_size)
7030{
7031	free_area_init_node(0, zones_size,
7032			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7033	zero_resv_unavail();
7034}
7035
7036static int page_alloc_cpu_dead(unsigned int cpu)
7037{
 
7038
7039	lru_add_drain_cpu(cpu);
 
7040	drain_pages(cpu);
7041
7042	/*
7043	 * Spill the event counters of the dead processor
7044	 * into the current processors event counters.
7045	 * This artificially elevates the count of the current
7046	 * processor.
7047	 */
7048	vm_events_fold_cpu(cpu);
7049
7050	/*
7051	 * Zero the differential counters of the dead processor
7052	 * so that the vm statistics are consistent.
7053	 *
7054	 * This is only okay since the processor is dead and cannot
7055	 * race with what we are doing.
7056	 */
7057	cpu_vm_stats_fold(cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
7058	return 0;
7059}
7060
7061void __init page_alloc_init(void)
7062{
7063	int ret;
7064
7065	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7066					"mm/page_alloc:dead", NULL,
 
7067					page_alloc_cpu_dead);
7068	WARN_ON(ret < 0);
7069}
7070
7071/*
7072 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7073 *	or min_free_kbytes changes.
7074 */
7075static void calculate_totalreserve_pages(void)
7076{
7077	struct pglist_data *pgdat;
7078	unsigned long reserve_pages = 0;
7079	enum zone_type i, j;
7080
7081	for_each_online_pgdat(pgdat) {
7082
7083		pgdat->totalreserve_pages = 0;
7084
7085		for (i = 0; i < MAX_NR_ZONES; i++) {
7086			struct zone *zone = pgdat->node_zones + i;
7087			long max = 0;
 
7088
7089			/* Find valid and maximum lowmem_reserve in the zone */
7090			for (j = i; j < MAX_NR_ZONES; j++) {
7091				if (zone->lowmem_reserve[j] > max)
7092					max = zone->lowmem_reserve[j];
7093			}
7094
7095			/* we treat the high watermark as reserved pages. */
7096			max += high_wmark_pages(zone);
7097
7098			if (max > zone->managed_pages)
7099				max = zone->managed_pages;
7100
7101			pgdat->totalreserve_pages += max;
7102
7103			reserve_pages += max;
7104		}
7105	}
7106	totalreserve_pages = reserve_pages;
7107}
7108
7109/*
7110 * setup_per_zone_lowmem_reserve - called whenever
7111 *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
7112 *	has a correct pages reserved value, so an adequate number of
7113 *	pages are left in the zone after a successful __alloc_pages().
7114 */
7115static void setup_per_zone_lowmem_reserve(void)
7116{
7117	struct pglist_data *pgdat;
7118	enum zone_type j, idx;
7119
7120	for_each_online_pgdat(pgdat) {
7121		for (j = 0; j < MAX_NR_ZONES; j++) {
7122			struct zone *zone = pgdat->node_zones + j;
7123			unsigned long managed_pages = zone->managed_pages;
7124
7125			zone->lowmem_reserve[j] = 0;
7126
7127			idx = j;
7128			while (idx) {
7129				struct zone *lower_zone;
7130
7131				idx--;
7132				lower_zone = pgdat->node_zones + idx;
7133
7134				if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7135					sysctl_lowmem_reserve_ratio[idx] = 0;
7136					lower_zone->lowmem_reserve[j] = 0;
7137				} else {
7138					lower_zone->lowmem_reserve[j] =
7139						managed_pages / sysctl_lowmem_reserve_ratio[idx];
7140				}
7141				managed_pages += lower_zone->managed_pages;
7142			}
7143		}
7144	}
7145
7146	/* update totalreserve_pages */
7147	calculate_totalreserve_pages();
7148}
7149
7150static void __setup_per_zone_wmarks(void)
7151{
7152	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7153	unsigned long lowmem_pages = 0;
7154	struct zone *zone;
7155	unsigned long flags;
7156
7157	/* Calculate total number of !ZONE_HIGHMEM pages */
7158	for_each_zone(zone) {
7159		if (!is_highmem(zone))
7160			lowmem_pages += zone->managed_pages;
7161	}
7162
7163	for_each_zone(zone) {
7164		u64 tmp;
7165
7166		spin_lock_irqsave(&zone->lock, flags);
7167		tmp = (u64)pages_min * zone->managed_pages;
7168		do_div(tmp, lowmem_pages);
7169		if (is_highmem(zone)) {
7170			/*
7171			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7172			 * need highmem pages, so cap pages_min to a small
7173			 * value here.
7174			 *
7175			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7176			 * deltas control asynch page reclaim, and so should
7177			 * not be capped for highmem.
7178			 */
7179			unsigned long min_pages;
7180
7181			min_pages = zone->managed_pages / 1024;
7182			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7183			zone->watermark[WMARK_MIN] = min_pages;
7184		} else {
7185			/*
7186			 * If it's a lowmem zone, reserve a number of pages
7187			 * proportionate to the zone's size.
7188			 */
7189			zone->watermark[WMARK_MIN] = tmp;
7190		}
7191
7192		/*
7193		 * Set the kswapd watermarks distance according to the
7194		 * scale factor in proportion to available memory, but
7195		 * ensure a minimum size on small systems.
7196		 */
7197		tmp = max_t(u64, tmp >> 2,
7198			    mult_frac(zone->managed_pages,
7199				      watermark_scale_factor, 10000));
7200
7201		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
7202		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
 
 
7203
7204		spin_unlock_irqrestore(&zone->lock, flags);
7205	}
7206
7207	/* update totalreserve_pages */
7208	calculate_totalreserve_pages();
7209}
7210
7211/**
7212 * setup_per_zone_wmarks - called when min_free_kbytes changes
7213 * or when memory is hot-{added|removed}
7214 *
7215 * Ensures that the watermark[min,low,high] values for each zone are set
7216 * correctly with respect to min_free_kbytes.
7217 */
7218void setup_per_zone_wmarks(void)
7219{
 
7220	static DEFINE_SPINLOCK(lock);
7221
7222	spin_lock(&lock);
7223	__setup_per_zone_wmarks();
7224	spin_unlock(&lock);
 
 
 
 
 
 
 
7225}
7226
7227/*
7228 * Initialise min_free_kbytes.
7229 *
7230 * For small machines we want it small (128k min).  For large machines
7231 * we want it large (64MB max).  But it is not linear, because network
7232 * bandwidth does not increase linearly with machine size.  We use
7233 *
7234 *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7235 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
7236 *
7237 * which yields
7238 *
7239 * 16MB:	512k
7240 * 32MB:	724k
7241 * 64MB:	1024k
7242 * 128MB:	1448k
7243 * 256MB:	2048k
7244 * 512MB:	2896k
7245 * 1024MB:	4096k
7246 * 2048MB:	5792k
7247 * 4096MB:	8192k
7248 * 8192MB:	11584k
7249 * 16384MB:	16384k
7250 */
7251int __meminit init_per_zone_wmark_min(void)
7252{
7253	unsigned long lowmem_kbytes;
7254	int new_min_free_kbytes;
7255
7256	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7257	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7258
7259	if (new_min_free_kbytes > user_min_free_kbytes) {
7260		min_free_kbytes = new_min_free_kbytes;
7261		if (min_free_kbytes < 128)
7262			min_free_kbytes = 128;
7263		if (min_free_kbytes > 65536)
7264			min_free_kbytes = 65536;
7265	} else {
7266		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7267				new_min_free_kbytes, user_min_free_kbytes);
7268	}
 
 
 
 
 
7269	setup_per_zone_wmarks();
7270	refresh_zone_stat_thresholds();
7271	setup_per_zone_lowmem_reserve();
7272
7273#ifdef CONFIG_NUMA
7274	setup_min_unmapped_ratio();
7275	setup_min_slab_ratio();
7276#endif
7277
 
 
7278	return 0;
7279}
7280core_initcall(init_per_zone_wmark_min)
7281
7282/*
7283 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7284 *	that we can call two helper functions whenever min_free_kbytes
7285 *	changes.
7286 */
7287int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7288	void __user *buffer, size_t *length, loff_t *ppos)
7289{
7290	int rc;
7291
7292	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7293	if (rc)
7294		return rc;
7295
7296	if (write) {
7297		user_min_free_kbytes = min_free_kbytes;
7298		setup_per_zone_wmarks();
7299	}
7300	return 0;
7301}
7302
7303int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7304	void __user *buffer, size_t *length, loff_t *ppos)
7305{
7306	int rc;
7307
7308	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7309	if (rc)
7310		return rc;
7311
7312	if (write)
7313		setup_per_zone_wmarks();
7314
7315	return 0;
7316}
7317
7318#ifdef CONFIG_NUMA
7319static void setup_min_unmapped_ratio(void)
7320{
7321	pg_data_t *pgdat;
7322	struct zone *zone;
7323
7324	for_each_online_pgdat(pgdat)
7325		pgdat->min_unmapped_pages = 0;
7326
7327	for_each_zone(zone)
7328		zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7329				sysctl_min_unmapped_ratio) / 100;
7330}
7331
7332
7333int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7334	void __user *buffer, size_t *length, loff_t *ppos)
7335{
7336	int rc;
7337
7338	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7339	if (rc)
7340		return rc;
7341
7342	setup_min_unmapped_ratio();
7343
7344	return 0;
7345}
7346
7347static void setup_min_slab_ratio(void)
7348{
7349	pg_data_t *pgdat;
7350	struct zone *zone;
7351
7352	for_each_online_pgdat(pgdat)
7353		pgdat->min_slab_pages = 0;
7354
7355	for_each_zone(zone)
7356		zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7357				sysctl_min_slab_ratio) / 100;
7358}
7359
7360int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7361	void __user *buffer, size_t *length, loff_t *ppos)
7362{
7363	int rc;
7364
7365	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7366	if (rc)
7367		return rc;
7368
7369	setup_min_slab_ratio();
7370
7371	return 0;
7372}
7373#endif
7374
7375/*
7376 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7377 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7378 *	whenever sysctl_lowmem_reserve_ratio changes.
7379 *
7380 * The reserve ratio obviously has absolutely no relation with the
7381 * minimum watermarks. The lowmem reserve ratio can only make sense
7382 * if in function of the boot time zone sizes.
7383 */
7384int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7385	void __user *buffer, size_t *length, loff_t *ppos)
7386{
 
 
7387	proc_dointvec_minmax(table, write, buffer, length, ppos);
 
 
 
 
 
 
7388	setup_per_zone_lowmem_reserve();
7389	return 0;
7390}
7391
7392/*
7393 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7394 * cpu.  It is the fraction of total pages in each zone that a hot per cpu
7395 * pagelist can have before it gets flushed back to buddy allocator.
7396 */
7397int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7398	void __user *buffer, size_t *length, loff_t *ppos)
7399{
7400	struct zone *zone;
7401	int old_percpu_pagelist_fraction;
7402	int ret;
7403
7404	mutex_lock(&pcp_batch_high_lock);
7405	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7406
7407	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7408	if (!write || ret < 0)
7409		goto out;
7410
7411	/* Sanity checking to avoid pcp imbalance */
7412	if (percpu_pagelist_fraction &&
7413	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7414		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7415		ret = -EINVAL;
7416		goto out;
7417	}
7418
7419	/* No change? */
7420	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7421		goto out;
7422
7423	for_each_populated_zone(zone) {
7424		unsigned int cpu;
7425
7426		for_each_possible_cpu(cpu)
7427			pageset_set_high_and_batch(zone,
7428					per_cpu_ptr(zone->pageset, cpu));
7429	}
7430out:
7431	mutex_unlock(&pcp_batch_high_lock);
7432	return ret;
7433}
7434
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7435#ifdef CONFIG_NUMA
7436int hashdist = HASHDIST_DEFAULT;
7437
7438static int __init set_hashdist(char *str)
7439{
7440	if (!str)
7441		return 0;
7442	hashdist = simple_strtoul(str, &str, 0);
7443	return 1;
7444}
7445__setup("hashdist=", set_hashdist);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7446#endif
 
 
7447
7448#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7449/*
7450 * Returns the number of pages that arch has reserved but
7451 * is not known to alloc_large_system_hash().
7452 */
7453static unsigned long __init arch_reserved_kernel_pages(void)
7454{
7455	return 0;
7456}
7457#endif
7458
7459/*
7460 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7461 * machines. As memory size is increased the scale is also increased but at
7462 * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
7463 * quadruples the scale is increased by one, which means the size of hash table
7464 * only doubles, instead of quadrupling as well.
7465 * Because 32-bit systems cannot have large physical memory, where this scaling
7466 * makes sense, it is disabled on such platforms.
7467 */
7468#if __BITS_PER_LONG > 32
7469#define ADAPT_SCALE_BASE	(64ul << 30)
7470#define ADAPT_SCALE_SHIFT	2
7471#define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
7472#endif
7473
7474/*
7475 * allocate a large system hash table from bootmem
7476 * - it is assumed that the hash table must contain an exact power-of-2
7477 *   quantity of entries
7478 * - limit is the number of hash buckets, not the total allocation size
7479 */
7480void *__init alloc_large_system_hash(const char *tablename,
7481				     unsigned long bucketsize,
7482				     unsigned long numentries,
7483				     int scale,
7484				     int flags,
7485				     unsigned int *_hash_shift,
7486				     unsigned int *_hash_mask,
7487				     unsigned long low_limit,
7488				     unsigned long high_limit)
7489{
7490	unsigned long long max = high_limit;
7491	unsigned long log2qty, size;
7492	void *table = NULL;
7493	gfp_t gfp_flags;
7494
7495	/* allow the kernel cmdline to have a say */
7496	if (!numentries) {
7497		/* round applicable memory size up to nearest megabyte */
7498		numentries = nr_kernel_pages;
7499		numentries -= arch_reserved_kernel_pages();
7500
7501		/* It isn't necessary when PAGE_SIZE >= 1MB */
7502		if (PAGE_SHIFT < 20)
7503			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7504
7505#if __BITS_PER_LONG > 32
7506		if (!high_limit) {
7507			unsigned long adapt;
7508
7509			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7510			     adapt <<= ADAPT_SCALE_SHIFT)
7511				scale++;
7512		}
7513#endif
7514
7515		/* limit to 1 bucket per 2^scale bytes of low memory */
7516		if (scale > PAGE_SHIFT)
7517			numentries >>= (scale - PAGE_SHIFT);
7518		else
7519			numentries <<= (PAGE_SHIFT - scale);
7520
7521		/* Make sure we've got at least a 0-order allocation.. */
7522		if (unlikely(flags & HASH_SMALL)) {
7523			/* Makes no sense without HASH_EARLY */
7524			WARN_ON(!(flags & HASH_EARLY));
7525			if (!(numentries >> *_hash_shift)) {
7526				numentries = 1UL << *_hash_shift;
7527				BUG_ON(!numentries);
7528			}
7529		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7530			numentries = PAGE_SIZE / bucketsize;
7531	}
7532	numentries = roundup_pow_of_two(numentries);
7533
7534	/* limit allocation size to 1/16 total memory by default */
7535	if (max == 0) {
7536		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7537		do_div(max, bucketsize);
7538	}
7539	max = min(max, 0x80000000ULL);
7540
7541	if (numentries < low_limit)
7542		numentries = low_limit;
7543	if (numentries > max)
7544		numentries = max;
7545
7546	log2qty = ilog2(numentries);
7547
7548	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
7549	do {
7550		size = bucketsize << log2qty;
7551		if (flags & HASH_EARLY) {
7552			if (flags & HASH_ZERO)
7553				table = memblock_virt_alloc_nopanic(size, 0);
7554			else
7555				table = memblock_virt_alloc_raw(size, 0);
7556		} else if (hashdist) {
7557			table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
7558		} else {
7559			/*
7560			 * If bucketsize is not a power-of-two, we may free
7561			 * some pages at the end of hash table which
7562			 * alloc_pages_exact() automatically does
7563			 */
7564			if (get_order(size) < MAX_ORDER) {
7565				table = alloc_pages_exact(size, gfp_flags);
7566				kmemleak_alloc(table, size, 1, gfp_flags);
7567			}
7568		}
7569	} while (!table && size > PAGE_SIZE && --log2qty);
7570
7571	if (!table)
7572		panic("Failed to allocate %s hash table\n", tablename);
7573
7574	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7575		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7576
7577	if (_hash_shift)
7578		*_hash_shift = log2qty;
7579	if (_hash_mask)
7580		*_hash_mask = (1 << log2qty) - 1;
7581
7582	return table;
7583}
7584
7585/*
7586 * This function checks whether pageblock includes unmovable pages or not.
7587 * If @count is not zero, it is okay to include less @count unmovable pages
7588 *
7589 * PageLRU check without isolation or lru_lock could race so that
7590 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7591 * check without lock_page also may miss some movable non-lru pages at
7592 * race condition. So you can't expect this function should be exact.
7593 */
7594bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7595			 int migratetype,
7596			 bool skip_hwpoisoned_pages)
7597{
7598	unsigned long pfn, iter, found;
7599
7600	/*
7601	 * TODO we could make this much more efficient by not checking every
7602	 * page in the range if we know all of them are in MOVABLE_ZONE and
7603	 * that the movable zone guarantees that pages are migratable but
7604	 * the later is not the case right now unfortunatelly. E.g. movablecore
7605	 * can still lead to having bootmem allocations in zone_movable.
7606	 */
7607
7608	/*
7609	 * CMA allocations (alloc_contig_range) really need to mark isolate
7610	 * CMA pageblocks even when they are not movable in fact so consider
7611	 * them movable here.
7612	 */
7613	if (is_migrate_cma(migratetype) &&
7614			is_migrate_cma(get_pageblock_migratetype(page)))
7615		return false;
7616
7617	pfn = page_to_pfn(page);
7618	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7619		unsigned long check = pfn + iter;
7620
7621		if (!pfn_valid_within(check))
7622			continue;
7623
7624		page = pfn_to_page(check);
7625
7626		if (PageReserved(page))
7627			goto unmovable;
7628
7629		/*
7630		 * Hugepages are not in LRU lists, but they're movable.
7631		 * We need not scan over tail pages bacause we don't
7632		 * handle each tail page individually in migration.
7633		 */
7634		if (PageHuge(page)) {
7635			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7636			continue;
7637		}
7638
7639		/*
7640		 * We can't use page_count without pin a page
7641		 * because another CPU can free compound page.
7642		 * This check already skips compound tails of THP
7643		 * because their page->_refcount is zero at all time.
7644		 */
7645		if (!page_ref_count(page)) {
7646			if (PageBuddy(page))
7647				iter += (1 << page_order(page)) - 1;
7648			continue;
7649		}
7650
7651		/*
7652		 * The HWPoisoned page may be not in buddy system, and
7653		 * page_count() is not 0.
7654		 */
7655		if (skip_hwpoisoned_pages && PageHWPoison(page))
7656			continue;
7657
7658		if (__PageMovable(page))
7659			continue;
7660
7661		if (!PageLRU(page))
7662			found++;
7663		/*
7664		 * If there are RECLAIMABLE pages, we need to check
7665		 * it.  But now, memory offline itself doesn't call
7666		 * shrink_node_slabs() and it still to be fixed.
7667		 */
7668		/*
7669		 * If the page is not RAM, page_count()should be 0.
7670		 * we don't need more check. This is an _used_ not-movable page.
7671		 *
7672		 * The problematic thing here is PG_reserved pages. PG_reserved
7673		 * is set to both of a memory hole page and a _used_ kernel
7674		 * page at boot.
7675		 */
7676		if (found > count)
7677			goto unmovable;
7678	}
7679	return false;
7680unmovable:
7681	WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
7682	return true;
7683}
7684
7685bool is_pageblock_removable_nolock(struct page *page)
7686{
7687	struct zone *zone;
7688	unsigned long pfn;
7689
7690	/*
7691	 * We have to be careful here because we are iterating over memory
7692	 * sections which are not zone aware so we might end up outside of
7693	 * the zone but still within the section.
7694	 * We have to take care about the node as well. If the node is offline
7695	 * its NODE_DATA will be NULL - see page_zone.
7696	 */
7697	if (!node_online(page_to_nid(page)))
7698		return false;
7699
7700	zone = page_zone(page);
7701	pfn = page_to_pfn(page);
7702	if (!zone_spans_pfn(zone, pfn))
7703		return false;
7704
7705	return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, true);
7706}
7707
7708#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7709
7710static unsigned long pfn_max_align_down(unsigned long pfn)
7711{
7712	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7713			     pageblock_nr_pages) - 1);
7714}
7715
7716static unsigned long pfn_max_align_up(unsigned long pfn)
7717{
7718	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7719				pageblock_nr_pages));
7720}
7721
7722/* [start, end) must belong to a single zone. */
7723static int __alloc_contig_migrate_range(struct compact_control *cc,
7724					unsigned long start, unsigned long end)
7725{
7726	/* This function is based on compact_zone() from compaction.c. */
7727	unsigned long nr_reclaimed;
7728	unsigned long pfn = start;
7729	unsigned int tries = 0;
7730	int ret = 0;
 
 
 
 
7731
7732	migrate_prep();
7733
7734	while (pfn < end || !list_empty(&cc->migratepages)) {
7735		if (fatal_signal_pending(current)) {
7736			ret = -EINTR;
7737			break;
7738		}
7739
7740		if (list_empty(&cc->migratepages)) {
7741			cc->nr_migratepages = 0;
7742			pfn = isolate_migratepages_range(cc, pfn, end);
7743			if (!pfn) {
7744				ret = -EINTR;
7745				break;
7746			}
7747			tries = 0;
7748		} else if (++tries == 5) {
7749			ret = ret < 0 ? ret : -EBUSY;
7750			break;
7751		}
7752
7753		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7754							&cc->migratepages);
7755		cc->nr_migratepages -= nr_reclaimed;
7756
7757		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7758				    NULL, 0, cc->mode, MR_CONTIG_RANGE);
 
 
 
 
 
 
 
7759	}
 
 
7760	if (ret < 0) {
 
 
7761		putback_movable_pages(&cc->migratepages);
7762		return ret;
7763	}
7764	return 0;
7765}
7766
7767/**
7768 * alloc_contig_range() -- tries to allocate given range of pages
7769 * @start:	start PFN to allocate
7770 * @end:	one-past-the-last PFN to allocate
7771 * @migratetype:	migratetype of the underlaying pageblocks (either
7772 *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
7773 *			in range must have the same migratetype and it must
7774 *			be either of the two.
7775 * @gfp_mask:	GFP mask to use during compaction
7776 *
7777 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7778 * aligned.  The PFN range must belong to a single zone.
7779 *
7780 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
7781 * pageblocks in the range.  Once isolated, the pageblocks should not
7782 * be modified by others.
7783 *
7784 * Returns zero on success or negative error code.  On success all
7785 * pages which PFN is in [start, end) are allocated for the caller and
7786 * need to be freed with free_contig_range().
7787 */
7788int alloc_contig_range(unsigned long start, unsigned long end,
7789		       unsigned migratetype, gfp_t gfp_mask)
7790{
7791	unsigned long outer_start, outer_end;
7792	unsigned int order;
7793	int ret = 0;
7794
7795	struct compact_control cc = {
7796		.nr_migratepages = 0,
7797		.order = -1,
7798		.zone = page_zone(pfn_to_page(start)),
7799		.mode = MIGRATE_SYNC,
7800		.ignore_skip_hint = true,
7801		.no_set_skip_hint = true,
7802		.gfp_mask = current_gfp_context(gfp_mask),
 
7803	};
7804	INIT_LIST_HEAD(&cc.migratepages);
7805
7806	/*
7807	 * What we do here is we mark all pageblocks in range as
7808	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
7809	 * have different sizes, and due to the way page allocator
7810	 * work, we align the range to biggest of the two pages so
7811	 * that page allocator won't try to merge buddies from
7812	 * different pageblocks and change MIGRATE_ISOLATE to some
7813	 * other migration type.
7814	 *
7815	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7816	 * migrate the pages from an unaligned range (ie. pages that
7817	 * we are interested in).  This will put all the pages in
7818	 * range back to page allocator as MIGRATE_ISOLATE.
7819	 *
7820	 * When this is done, we take the pages in range from page
7821	 * allocator removing them from the buddy system.  This way
7822	 * page allocator will never consider using them.
7823	 *
7824	 * This lets us mark the pageblocks back as
7825	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7826	 * aligned range but not in the unaligned, original range are
7827	 * put back to page allocator so that buddy can use them.
7828	 */
7829
7830	ret = start_isolate_page_range(pfn_max_align_down(start),
7831				       pfn_max_align_up(end), migratetype,
7832				       false);
7833	if (ret)
7834		return ret;
 
 
7835
7836	/*
7837	 * In case of -EBUSY, we'd like to know which page causes problem.
7838	 * So, just fall through. test_pages_isolated() has a tracepoint
7839	 * which will report the busy page.
7840	 *
7841	 * It is possible that busy pages could become available before
7842	 * the call to test_pages_isolated, and the range will actually be
7843	 * allocated.  So, if we fall through be sure to clear ret so that
7844	 * -EBUSY is not accidentally used or returned to caller.
7845	 */
7846	ret = __alloc_contig_migrate_range(&cc, start, end);
7847	if (ret && ret != -EBUSY)
7848		goto done;
7849	ret =0;
7850
7851	/*
7852	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7853	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
7854	 * more, all pages in [start, end) are free in page allocator.
7855	 * What we are going to do is to allocate all pages from
7856	 * [start, end) (that is remove them from page allocator).
7857	 *
7858	 * The only problem is that pages at the beginning and at the
7859	 * end of interesting range may be not aligned with pages that
7860	 * page allocator holds, ie. they can be part of higher order
7861	 * pages.  Because of this, we reserve the bigger range and
7862	 * once this is done free the pages we are not interested in.
7863	 *
7864	 * We don't have to hold zone->lock here because the pages are
7865	 * isolated thus they won't get removed from buddy.
7866	 */
7867
7868	lru_add_drain_all();
7869	drain_all_pages(cc.zone);
7870
7871	order = 0;
7872	outer_start = start;
7873	while (!PageBuddy(pfn_to_page(outer_start))) {
7874		if (++order >= MAX_ORDER) {
7875			outer_start = start;
7876			break;
7877		}
7878		outer_start &= ~0UL << order;
7879	}
7880
7881	if (outer_start != start) {
7882		order = page_order(pfn_to_page(outer_start));
7883
7884		/*
7885		 * outer_start page could be small order buddy page and
7886		 * it doesn't include start page. Adjust outer_start
7887		 * in this case to report failed page properly
7888		 * on tracepoint in test_pages_isolated()
7889		 */
7890		if (outer_start + (1UL << order) <= start)
7891			outer_start = start;
7892	}
7893
7894	/* Make sure the range is really isolated. */
7895	if (test_pages_isolated(outer_start, end, false)) {
7896		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
7897			__func__, outer_start, end);
7898		ret = -EBUSY;
7899		goto done;
7900	}
7901
7902	/* Grab isolated pages from freelists. */
7903	outer_end = isolate_freepages_range(&cc, outer_start, end);
7904	if (!outer_end) {
7905		ret = -EBUSY;
7906		goto done;
7907	}
7908
7909	/* Free head and tail (if any) */
7910	if (start != outer_start)
7911		free_contig_range(outer_start, start - outer_start);
7912	if (end != outer_end)
7913		free_contig_range(end, outer_end - end);
7914
7915done:
7916	undo_isolate_page_range(pfn_max_align_down(start),
7917				pfn_max_align_up(end), migratetype);
7918	return ret;
7919}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7920
7921void free_contig_range(unsigned long pfn, unsigned nr_pages)
7922{
7923	unsigned int count = 0;
7924
7925	for (; nr_pages--; pfn++) {
7926		struct page *page = pfn_to_page(pfn);
7927
7928		count += page_count(page) != 1;
7929		__free_page(page);
7930	}
7931	WARN(count != 0, "%d pages are still in use!\n", count);
7932}
7933#endif
7934
7935#ifdef CONFIG_MEMORY_HOTPLUG
7936/*
7937 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7938 * page high values need to be recalulated.
 
 
 
 
7939 */
7940void __meminit zone_pcp_update(struct zone *zone)
7941{
7942	unsigned cpu;
7943	mutex_lock(&pcp_batch_high_lock);
7944	for_each_possible_cpu(cpu)
7945		pageset_set_high_and_batch(zone,
7946				per_cpu_ptr(zone->pageset, cpu));
 
 
 
 
 
7947	mutex_unlock(&pcp_batch_high_lock);
7948}
7949#endif
7950
7951void zone_pcp_reset(struct zone *zone)
7952{
7953	unsigned long flags;
7954	int cpu;
7955	struct per_cpu_pageset *pset;
7956
7957	/* avoid races with drain_pages()  */
7958	local_irq_save(flags);
7959	if (zone->pageset != &boot_pageset) {
7960		for_each_online_cpu(cpu) {
7961			pset = per_cpu_ptr(zone->pageset, cpu);
7962			drain_zonestat(zone, pset);
 
 
 
 
 
 
7963		}
7964		free_percpu(zone->pageset);
7965		zone->pageset = &boot_pageset;
7966	}
7967	local_irq_restore(flags);
7968}
7969
7970#ifdef CONFIG_MEMORY_HOTREMOVE
7971/*
7972 * All pages in the range must be in a single zone and isolated
7973 * before calling this.
7974 */
7975void
7976__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7977{
 
7978	struct page *page;
7979	struct zone *zone;
7980	unsigned int order, i;
7981	unsigned long pfn;
7982	unsigned long flags;
7983	/* find the first valid pfn */
7984	for (pfn = start_pfn; pfn < end_pfn; pfn++)
7985		if (pfn_valid(pfn))
7986			break;
7987	if (pfn == end_pfn)
7988		return;
7989	offline_mem_sections(pfn, end_pfn);
7990	zone = page_zone(pfn_to_page(pfn));
7991	spin_lock_irqsave(&zone->lock, flags);
7992	pfn = start_pfn;
7993	while (pfn < end_pfn) {
7994		if (!pfn_valid(pfn)) {
7995			pfn++;
7996			continue;
7997		}
7998		page = pfn_to_page(pfn);
7999		/*
8000		 * The HWPoisoned page may be not in buddy system, and
8001		 * page_count() is not 0.
8002		 */
8003		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8004			pfn++;
8005			SetPageReserved(page);
 
 
 
 
 
 
 
 
 
8006			continue;
8007		}
8008
8009		BUG_ON(page_count(page));
8010		BUG_ON(!PageBuddy(page));
8011		order = page_order(page);
8012#ifdef CONFIG_DEBUG_VM
8013		pr_info("remove from free list %lx %d %lx\n",
8014			pfn, 1 << order, end_pfn);
8015#endif
8016		list_del(&page->lru);
8017		rmv_page_order(page);
8018		zone->free_area[order].nr_free--;
8019		for (i = 0; i < (1 << order); i++)
8020			SetPageReserved((page+i));
8021		pfn += (1 << order);
8022	}
8023	spin_unlock_irqrestore(&zone->lock, flags);
8024}
8025#endif
8026
 
 
 
8027bool is_free_buddy_page(struct page *page)
8028{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8029	struct zone *zone = page_zone(page);
8030	unsigned long pfn = page_to_pfn(page);
8031	unsigned long flags;
8032	unsigned int order;
 
8033
8034	spin_lock_irqsave(&zone->lock, flags);
8035	for (order = 0; order < MAX_ORDER; order++) {
8036		struct page *page_head = page - (pfn & ((1 << order) - 1));
 
8037
8038		if (PageBuddy(page_head) && page_order(page_head) >= order)
 
 
 
 
 
 
 
 
 
 
 
8039			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8040	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8041	spin_unlock_irqrestore(&zone->lock, flags);
8042
8043	return order < MAX_ORDER;
 
 
 
8044}
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/page_alloc.c
   4 *
   5 *  Manages the free list, the system allocates free pages here.
   6 *  Note that kmalloc() lives in slab.c
   7 *
   8 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   9 *  Swap reorganised 29.12.95, Stephen Tweedie
  10 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  11 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  12 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  13 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  14 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  15 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  16 */
  17
  18#include <linux/stddef.h>
  19#include <linux/mm.h>
  20#include <linux/highmem.h>
  21#include <linux/interrupt.h>
 
  22#include <linux/jiffies.h>
 
 
  23#include <linux/compiler.h>
  24#include <linux/kernel.h>
  25#include <linux/kasan.h>
  26#include <linux/kmsan.h>
  27#include <linux/module.h>
  28#include <linux/suspend.h>
 
 
 
  29#include <linux/ratelimit.h>
  30#include <linux/oom.h>
 
  31#include <linux/topology.h>
  32#include <linux/sysctl.h>
  33#include <linux/cpu.h>
  34#include <linux/cpuset.h>
  35#include <linux/memory_hotplug.h>
  36#include <linux/nodemask.h>
 
  37#include <linux/vmstat.h>
 
 
 
 
 
 
  38#include <linux/fault-inject.h>
 
 
 
 
  39#include <linux/compaction.h>
  40#include <trace/events/kmem.h>
  41#include <trace/events/oom.h>
  42#include <linux/prefetch.h>
  43#include <linux/mm_inline.h>
  44#include <linux/mmu_notifier.h>
  45#include <linux/migrate.h>
 
 
  46#include <linux/sched/mm.h>
  47#include <linux/page_owner.h>
  48#include <linux/page_table_check.h>
  49#include <linux/memcontrol.h>
  50#include <linux/ftrace.h>
  51#include <linux/lockdep.h>
  52#include <linux/psi.h>
  53#include <linux/khugepaged.h>
  54#include <linux/delayacct.h>
  55#include <linux/cacheinfo.h>
  56#include <asm/div64.h>
  57#include "internal.h"
  58#include "shuffle.h"
  59#include "page_reporting.h"
  60
  61/* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
  62typedef int __bitwise fpi_t;
  63
  64/* No special request */
  65#define FPI_NONE		((__force fpi_t)0)
  66
  67/*
  68 * Skip free page reporting notification for the (possibly merged) page.
  69 * This does not hinder free page reporting from grabbing the page,
  70 * reporting it and marking it "reported" -  it only skips notifying
  71 * the free page reporting infrastructure about a newly freed page. For
  72 * example, used when temporarily pulling a page from a freelist and
  73 * putting it back unmodified.
  74 */
  75#define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
  76
  77/*
  78 * Place the (possibly merged) page to the tail of the freelist. Will ignore
  79 * page shuffling (relevant code - e.g., memory onlining - is expected to
  80 * shuffle the whole zone).
  81 *
  82 * Note: No code should rely on this flag for correctness - it's purely
  83 *       to allow for optimizations when handing back either fresh pages
  84 *       (memory onlining) or untouched pages (page isolation, free page
  85 *       reporting).
  86 */
  87#define FPI_TO_TAIL		((__force fpi_t)BIT(1))
  88
  89/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
  90static DEFINE_MUTEX(pcp_batch_high_lock);
  91#define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
  92
  93#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
  94/*
  95 * On SMP, spin_trylock is sufficient protection.
  96 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
  97 */
  98#define pcp_trylock_prepare(flags)	do { } while (0)
  99#define pcp_trylock_finish(flag)	do { } while (0)
 100#else
 101
 102/* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
 103#define pcp_trylock_prepare(flags)	local_irq_save(flags)
 104#define pcp_trylock_finish(flags)	local_irq_restore(flags)
 105#endif
 106
 107/*
 108 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
 109 * a migration causing the wrong PCP to be locked and remote memory being
 110 * potentially allocated, pin the task to the CPU for the lookup+lock.
 111 * preempt_disable is used on !RT because it is faster than migrate_disable.
 112 * migrate_disable is used on RT because otherwise RT spinlock usage is
 113 * interfered with and a high priority task cannot preempt the allocator.
 114 */
 115#ifndef CONFIG_PREEMPT_RT
 116#define pcpu_task_pin()		preempt_disable()
 117#define pcpu_task_unpin()	preempt_enable()
 118#else
 119#define pcpu_task_pin()		migrate_disable()
 120#define pcpu_task_unpin()	migrate_enable()
 121#endif
 122
 123/*
 124 * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
 125 * Return value should be used with equivalent unlock helper.
 126 */
 127#define pcpu_spin_lock(type, member, ptr)				\
 128({									\
 129	type *_ret;							\
 130	pcpu_task_pin();						\
 131	_ret = this_cpu_ptr(ptr);					\
 132	spin_lock(&_ret->member);					\
 133	_ret;								\
 134})
 135
 136#define pcpu_spin_trylock(type, member, ptr)				\
 137({									\
 138	type *_ret;							\
 139	pcpu_task_pin();						\
 140	_ret = this_cpu_ptr(ptr);					\
 141	if (!spin_trylock(&_ret->member)) {				\
 142		pcpu_task_unpin();					\
 143		_ret = NULL;						\
 144	}								\
 145	_ret;								\
 146})
 147
 148#define pcpu_spin_unlock(member, ptr)					\
 149({									\
 150	spin_unlock(&ptr->member);					\
 151	pcpu_task_unpin();						\
 152})
 153
 154/* struct per_cpu_pages specific helpers. */
 155#define pcp_spin_lock(ptr)						\
 156	pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
 157
 158#define pcp_spin_trylock(ptr)						\
 159	pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
 160
 161#define pcp_spin_unlock(ptr)						\
 162	pcpu_spin_unlock(lock, ptr)
 163
 164#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
 165DEFINE_PER_CPU(int, numa_node);
 166EXPORT_PER_CPU_SYMBOL(numa_node);
 167#endif
 168
 169DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
 170
 171#ifdef CONFIG_HAVE_MEMORYLESS_NODES
 172/*
 173 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
 174 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
 175 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
 176 * defined in <linux/topology.h>.
 177 */
 178DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
 179EXPORT_PER_CPU_SYMBOL(_numa_mem_);
 
 180#endif
 181
 182static DEFINE_MUTEX(pcpu_drain_mutex);
 
 
 183
 184#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
 185volatile unsigned long latent_entropy __latent_entropy;
 186EXPORT_SYMBOL(latent_entropy);
 187#endif
 188
 189/*
 190 * Array of node states.
 191 */
 192nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
 193	[N_POSSIBLE] = NODE_MASK_ALL,
 194	[N_ONLINE] = { { [0] = 1UL } },
 195#ifndef CONFIG_NUMA
 196	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
 197#ifdef CONFIG_HIGHMEM
 198	[N_HIGH_MEMORY] = { { [0] = 1UL } },
 199#endif
 200	[N_MEMORY] = { { [0] = 1UL } },
 201	[N_CPU] = { { [0] = 1UL } },
 202#endif	/* NUMA */
 203};
 204EXPORT_SYMBOL(node_states);
 205
 
 
 
 
 
 
 
 
 206gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
 207
 208/*
 209 * A cached value of the page's pageblock's migratetype, used when the page is
 210 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
 211 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
 212 * Also the migratetype set in the page does not necessarily match the pcplist
 213 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
 214 * other index - this ensures that it will be put on the correct CMA freelist.
 215 */
 216static inline int get_pcppage_migratetype(struct page *page)
 217{
 218	return page->index;
 219}
 220
 221static inline void set_pcppage_migratetype(struct page *page, int migratetype)
 222{
 223	page->index = migratetype;
 224}
 225
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 226#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
 227unsigned int pageblock_order __read_mostly;
 228#endif
 229
 230static void __free_pages_ok(struct page *page, unsigned int order,
 231			    fpi_t fpi_flags);
 232
 233/*
 234 * results with 256, 32 in the lowmem_reserve sysctl:
 235 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 236 *	1G machine -> (16M dma, 784M normal, 224M high)
 237 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 238 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
 239 *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
 240 *
 241 * TBD: should special case ZONE_DMA32 machines here - in those we normally
 242 * don't need any ZONE_NORMAL reservation
 243 */
 244static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
 245#ifdef CONFIG_ZONE_DMA
 246	[ZONE_DMA] = 256,
 247#endif
 248#ifdef CONFIG_ZONE_DMA32
 249	[ZONE_DMA32] = 256,
 250#endif
 251	[ZONE_NORMAL] = 32,
 252#ifdef CONFIG_HIGHMEM
 253	[ZONE_HIGHMEM] = 0,
 254#endif
 255	[ZONE_MOVABLE] = 0,
 256};
 257
 258char * const zone_names[MAX_NR_ZONES] = {
 
 
 259#ifdef CONFIG_ZONE_DMA
 260	 "DMA",
 261#endif
 262#ifdef CONFIG_ZONE_DMA32
 263	 "DMA32",
 264#endif
 265	 "Normal",
 266#ifdef CONFIG_HIGHMEM
 267	 "HighMem",
 268#endif
 269	 "Movable",
 270#ifdef CONFIG_ZONE_DEVICE
 271	 "Device",
 272#endif
 273};
 274
 275const char * const migratetype_names[MIGRATE_TYPES] = {
 276	"Unmovable",
 277	"Movable",
 278	"Reclaimable",
 279	"HighAtomic",
 280#ifdef CONFIG_CMA
 281	"CMA",
 282#endif
 283#ifdef CONFIG_MEMORY_ISOLATION
 284	"Isolate",
 285#endif
 286};
 287
 
 
 
 
 
 
 
 
 
 
 
 288int min_free_kbytes = 1024;
 289int user_min_free_kbytes = -1;
 290static int watermark_boost_factor __read_mostly = 15000;
 291static int watermark_scale_factor = 10;
 
 
 
 
 
 
 
 
 
 
 
 
 
 292
 293/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
 294int movable_zone;
 295EXPORT_SYMBOL(movable_zone);
 
 296
 297#if MAX_NUMNODES > 1
 298unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
 299unsigned int nr_online_nodes __read_mostly = 1;
 300EXPORT_SYMBOL(nr_node_ids);
 301EXPORT_SYMBOL(nr_online_nodes);
 302#endif
 303
 304static bool page_contains_unaccepted(struct page *page, unsigned int order);
 305static void accept_page(struct page *page, unsigned int order);
 306static bool try_to_accept_memory(struct zone *zone, unsigned int order);
 307static inline bool has_unaccepted_memory(void);
 308static bool __free_unaccepted(struct page *page);
 309
 310int page_group_by_mobility_disabled __read_mostly;
 311
 312#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
 313/*
 314 * During boot we initialize deferred pages on-demand, as needed, but once
 315 * page_alloc_init_late() has finished, the deferred pages are all initialized,
 316 * and we can permanently disable that path.
 317 */
 318DEFINE_STATIC_KEY_TRUE(deferred_pages);
 
 319
 320static inline bool deferred_pages_enabled(void)
 321{
 322	return static_branch_unlikely(&deferred_pages);
 323}
 324
 325/*
 326 * deferred_grow_zone() is __init, but it is called from
 327 * get_page_from_freelist() during early boot until deferred_pages permanently
 328 * disables this call. This is why we have refdata wrapper to avoid warning,
 329 * and to ensure that the function body gets unloaded.
 330 */
 331static bool __ref
 332_deferred_grow_zone(struct zone *zone, unsigned int order)
 
 333{
 334       return deferred_grow_zone(zone, order);
 
 
 
 
 
 
 
 
 
 
 335}
 336#else
 337static inline bool deferred_pages_enabled(void)
 338{
 339	return false;
 340}
 341#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
 
 
 
 
 
 
 
 342
 343/* Return a pointer to the bitmap storing bits affecting a block of pages */
 344static inline unsigned long *get_pageblock_bitmap(const struct page *page,
 345							unsigned long pfn)
 346{
 347#ifdef CONFIG_SPARSEMEM
 348	return section_to_usemap(__pfn_to_section(pfn));
 349#else
 350	return page_zone(page)->pageblock_flags;
 351#endif /* CONFIG_SPARSEMEM */
 352}
 353
 354static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
 355{
 356#ifdef CONFIG_SPARSEMEM
 357	pfn &= (PAGES_PER_SECTION-1);
 
 358#else
 359	pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
 
 360#endif /* CONFIG_SPARSEMEM */
 361	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
 362}
 363
 364/**
 365 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
 366 * @page: The page within the block of interest
 367 * @pfn: The target page frame number
 
 368 * @mask: mask of bits that the caller is interested in
 369 *
 370 * Return: pageblock_bits flags
 371 */
 372unsigned long get_pfnblock_flags_mask(const struct page *page,
 373					unsigned long pfn, unsigned long mask)
 
 
 374{
 375	unsigned long *bitmap;
 376	unsigned long bitidx, word_bitidx;
 377	unsigned long word;
 378
 379	bitmap = get_pageblock_bitmap(page, pfn);
 380	bitidx = pfn_to_bitidx(page, pfn);
 381	word_bitidx = bitidx / BITS_PER_LONG;
 382	bitidx &= (BITS_PER_LONG-1);
 383	/*
 384	 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
 385	 * a consistent read of the memory array, so that results, even though
 386	 * racy, are not corrupted.
 387	 */
 388	word = READ_ONCE(bitmap[word_bitidx]);
 389	return (word >> bitidx) & mask;
 
 
 
 
 390}
 391
 392static __always_inline int get_pfnblock_migratetype(const struct page *page,
 393					unsigned long pfn)
 394{
 395	return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
 396}
 397
 398/**
 399 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
 400 * @page: The page within the block of interest
 401 * @flags: The flags to set
 402 * @pfn: The target page frame number
 
 403 * @mask: mask of bits that the caller is interested in
 404 */
 405void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
 406					unsigned long pfn,
 
 407					unsigned long mask)
 408{
 409	unsigned long *bitmap;
 410	unsigned long bitidx, word_bitidx;
 411	unsigned long word;
 412
 413	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
 414	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
 415
 416	bitmap = get_pageblock_bitmap(page, pfn);
 417	bitidx = pfn_to_bitidx(page, pfn);
 418	word_bitidx = bitidx / BITS_PER_LONG;
 419	bitidx &= (BITS_PER_LONG-1);
 420
 421	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
 422
 423	mask <<= bitidx;
 424	flags <<= bitidx;
 
 425
 426	word = READ_ONCE(bitmap[word_bitidx]);
 427	do {
 428	} while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
 
 
 
 
 429}
 430
 431void set_pageblock_migratetype(struct page *page, int migratetype)
 432{
 433	if (unlikely(page_group_by_mobility_disabled &&
 434		     migratetype < MIGRATE_PCPTYPES))
 435		migratetype = MIGRATE_UNMOVABLE;
 436
 437	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
 438				page_to_pfn(page), MIGRATETYPE_MASK);
 439}
 440
 441#ifdef CONFIG_DEBUG_VM
 442static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
 443{
 444	int ret;
 445	unsigned seq;
 446	unsigned long pfn = page_to_pfn(page);
 447	unsigned long sp, start_pfn;
 448
 449	do {
 450		seq = zone_span_seqbegin(zone);
 451		start_pfn = zone->zone_start_pfn;
 452		sp = zone->spanned_pages;
 453		ret = !zone_spans_pfn(zone, pfn);
 
 454	} while (zone_span_seqretry(zone, seq));
 455
 456	if (ret)
 457		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
 458			pfn, zone_to_nid(zone), zone->name,
 459			start_pfn, start_pfn + sp);
 460
 461	return ret;
 462}
 463
 
 
 
 
 
 
 
 
 
 464/*
 465 * Temporary debugging check for pages not lying within a given zone.
 466 */
 467static int __maybe_unused bad_range(struct zone *zone, struct page *page)
 468{
 469	if (page_outside_zone_boundaries(zone, page))
 470		return 1;
 471	if (zone != page_zone(page))
 472		return 1;
 473
 474	return 0;
 475}
 476#else
 477static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
 478{
 479	return 0;
 480}
 481#endif
 482
 483static void bad_page(struct page *page, const char *reason)
 
 484{
 485	static unsigned long resume;
 486	static unsigned long nr_shown;
 487	static unsigned long nr_unshown;
 488
 489	/*
 490	 * Allow a burst of 60 reports, then keep quiet for that minute;
 491	 * or allow a steady drip of one report per second.
 492	 */
 493	if (nr_shown == 60) {
 494		if (time_before(jiffies, resume)) {
 495			nr_unshown++;
 496			goto out;
 497		}
 498		if (nr_unshown) {
 499			pr_alert(
 500			      "BUG: Bad page state: %lu messages suppressed\n",
 501				nr_unshown);
 502			nr_unshown = 0;
 503		}
 504		nr_shown = 0;
 505	}
 506	if (nr_shown++ == 0)
 507		resume = jiffies + 60 * HZ;
 508
 509	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
 510		current->comm, page_to_pfn(page));
 511	dump_page(page, reason);
 
 
 
 
 
 512
 513	print_modules();
 514	dump_stack();
 515out:
 516	/* Leave bad fields for debug, except PageBuddy could make trouble */
 517	page_mapcount_reset(page); /* remove PageBuddy */
 518	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 519}
 520
 521static inline unsigned int order_to_pindex(int migratetype, int order)
 522{
 523#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 524	if (order > PAGE_ALLOC_COSTLY_ORDER) {
 525		VM_BUG_ON(order != pageblock_order);
 526		return NR_LOWORDER_PCP_LISTS;
 527	}
 528#else
 529	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
 530#endif
 531
 532	return (MIGRATE_PCPTYPES * order) + migratetype;
 533}
 534
 535static inline int pindex_to_order(unsigned int pindex)
 536{
 537	int order = pindex / MIGRATE_PCPTYPES;
 538
 539#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 540	if (pindex == NR_LOWORDER_PCP_LISTS)
 541		order = pageblock_order;
 542#else
 543	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
 544#endif
 545
 546	return order;
 547}
 548
 549static inline bool pcp_allowed_order(unsigned int order)
 550{
 551	if (order <= PAGE_ALLOC_COSTLY_ORDER)
 552		return true;
 553#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 554	if (order == pageblock_order)
 555		return true;
 556#endif
 557	return false;
 558}
 559
 560static inline void free_the_page(struct page *page, unsigned int order)
 561{
 562	if (pcp_allowed_order(order))		/* Via pcp? */
 563		free_unref_page(page, order);
 564	else
 565		__free_pages_ok(page, order, FPI_NONE);
 566}
 567
 568/*
 569 * Higher-order pages are called "compound pages".  They are structured thusly:
 570 *
 571 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
 572 *
 573 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
 574 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
 575 *
 
 
 
 576 * The first tail page's ->compound_order holds the order of allocation.
 577 * This usage means that zero-order pages may not be compound.
 578 */
 579
 
 
 
 
 
 580void prep_compound_page(struct page *page, unsigned int order)
 581{
 582	int i;
 583	int nr_pages = 1 << order;
 584
 
 
 585	__SetPageHead(page);
 586	for (i = 1; i < nr_pages; i++)
 587		prep_compound_tail(page, i);
 
 
 
 
 
 
 588
 589	prep_compound_head(page, order);
 
 
 
 
 
 
 
 
 
 
 
 590}
 
 591
 592void destroy_large_folio(struct folio *folio)
 593{
 594	if (folio_test_hugetlb(folio)) {
 595		free_huge_folio(folio);
 596		return;
 597	}
 598
 599	if (folio_test_large_rmappable(folio))
 600		folio_undo_large_rmappable(folio);
 601
 602	mem_cgroup_uncharge(folio);
 603	free_the_page(&folio->page, folio_order(folio));
 604}
 605
 606static inline void set_buddy_order(struct page *page, unsigned int order)
 607{
 608	set_page_private(page, order);
 609	__SetPageBuddy(page);
 
 
 
 
 
 610}
 611
 612#ifdef CONFIG_COMPACTION
 613static inline struct capture_control *task_capc(struct zone *zone)
 
 
 
 
 614{
 615	struct capture_control *capc = current->capture_control;
 616
 617	return unlikely(capc) &&
 618		!(current->flags & PF_KTHREAD) &&
 619		!capc->page &&
 620		capc->cc->zone == zone ? capc : NULL;
 
 
 
 621}
 
 622
 623static inline bool
 624compaction_capture(struct capture_control *capc, struct page *page,
 625		   int order, int migratetype)
 626{
 627	if (!capc || order != capc->cc->order)
 
 
 628		return false;
 629
 630	/* Do not accidentally pollute CMA or isolated regions*/
 631	if (is_migrate_cma(migratetype) ||
 632	    is_migrate_isolate(migratetype))
 633		return false;
 634
 635	/*
 636	 * Do not let lower order allocations pollute a movable pageblock.
 637	 * This might let an unmovable request use a reclaimable pageblock
 638	 * and vice-versa but no more than normal fallback logic which can
 639	 * have trouble finding a high-order free page.
 640	 */
 641	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
 642		return false;
 643
 644	capc->page = page;
 
 
 
 
 
 
 645	return true;
 646}
 647
 648#else
 649static inline struct capture_control *task_capc(struct zone *zone)
 650{
 651	return NULL;
 652}
 653
 654static inline bool
 655compaction_capture(struct capture_control *capc, struct page *page,
 656		   int order, int migratetype)
 657{
 658	return false;
 659}
 660#endif /* CONFIG_COMPACTION */
 661
 662/* Used for pages not on another list */
 663static inline void add_to_free_list(struct page *page, struct zone *zone,
 664				    unsigned int order, int migratetype)
 665{
 666	struct free_area *area = &zone->free_area[order];
 667
 668	list_add(&page->buddy_list, &area->free_list[migratetype]);
 669	area->nr_free++;
 670}
 671
 672/* Used for pages not on another list */
 673static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
 674					 unsigned int order, int migratetype)
 675{
 676	struct free_area *area = &zone->free_area[order];
 677
 678	list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
 679	area->nr_free++;
 
 680}
 
 
 
 
 
 
 
 681
 682/*
 683 * Used for pages which are on another list. Move the pages to the tail
 684 * of the list - so the moved pages won't immediately be considered for
 685 * allocation again (e.g., optimization for memory onlining).
 686 */
 687static inline void move_to_free_list(struct page *page, struct zone *zone,
 688				     unsigned int order, int migratetype)
 689{
 690	struct free_area *area = &zone->free_area[order];
 691
 692	list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
 693}
 694
 695static inline void del_page_from_free_list(struct page *page, struct zone *zone,
 696					   unsigned int order)
 697{
 698	/* clear reported state and update reported page count */
 699	if (page_reported(page))
 700		__ClearPageReported(page);
 701
 702	list_del(&page->buddy_list);
 703	__ClearPageBuddy(page);
 704	set_page_private(page, 0);
 705	zone->free_area[order].nr_free--;
 706}
 707
 708static inline struct page *get_page_from_free_area(struct free_area *area,
 709					    int migratetype)
 710{
 711	return list_first_entry_or_null(&area->free_list[migratetype],
 712					struct page, buddy_list);
 713}
 714
 715/*
 716 * If this is not the largest possible page, check if the buddy
 717 * of the next-highest order is free. If it is, it's possible
 718 * that pages are being freed that will coalesce soon. In case,
 719 * that is happening, add the free page to the tail of the list
 720 * so it's less likely to be used soon and more likely to be merged
 721 * as a higher order page
 
 
 
 
 
 
 
 722 */
 723static inline bool
 724buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
 725		   struct page *page, unsigned int order)
 726{
 727	unsigned long higher_page_pfn;
 728	struct page *higher_page;
 
 
 
 
 
 
 729
 730	if (order >= MAX_PAGE_ORDER - 1)
 731		return false;
 
 
 
 
 
 
 732
 733	higher_page_pfn = buddy_pfn & pfn;
 734	higher_page = page + (higher_page_pfn - pfn);
 735
 736	return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
 737			NULL) != NULL;
 
 738}
 739
 740/*
 741 * Freeing function for a buddy system allocator.
 742 *
 743 * The concept of a buddy system is to maintain direct-mapped table
 744 * (containing bit values) for memory blocks of various "orders".
 745 * The bottom level table contains the map for the smallest allocatable
 746 * units of memory (here, pages), and each level above it describes
 747 * pairs of units from the levels below, hence, "buddies".
 748 * At a high level, all that happens here is marking the table entry
 749 * at the bottom level available, and propagating the changes upward
 750 * as necessary, plus some accounting needed to play nicely with other
 751 * parts of the VM system.
 752 * At each level, we keep a list of pages, which are heads of continuous
 753 * free pages of length of (1 << order) and marked with PageBuddy.
 754 * Page's order is recorded in page_private(page) field.
 
 755 * So when we are allocating or freeing one, we can derive the state of the
 756 * other.  That is, if we allocate a small block, and both were
 757 * free, the remainder of the region must be split into blocks.
 758 * If a block is freed, and its buddy is also free, then this
 759 * triggers coalescing into a block of larger size.
 760 *
 761 * -- nyc
 762 */
 763
 764static inline void __free_one_page(struct page *page,
 765		unsigned long pfn,
 766		struct zone *zone, unsigned int order,
 767		int migratetype, fpi_t fpi_flags)
 768{
 769	struct capture_control *capc = task_capc(zone);
 770	unsigned long buddy_pfn = 0;
 771	unsigned long combined_pfn;
 
 772	struct page *buddy;
 773	bool to_tail;
 
 
 774
 775	VM_BUG_ON(!zone_is_initialized(zone));
 776	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
 777
 778	VM_BUG_ON(migratetype == -1);
 779	if (likely(!is_migrate_isolate(migratetype)))
 780		__mod_zone_freepage_state(zone, 1 << order, migratetype);
 781
 782	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
 783	VM_BUG_ON_PAGE(bad_range(zone, page), page);
 784
 785	while (order < MAX_PAGE_ORDER) {
 786		if (compaction_capture(capc, page, order, migratetype)) {
 787			__mod_zone_freepage_state(zone, -(1 << order),
 788								migratetype);
 789			return;
 790		}
 791
 792		buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
 793		if (!buddy)
 
 794			goto done_merging;
 795
 796		if (unlikely(order >= pageblock_order)) {
 797			/*
 798			 * We want to prevent merge between freepages on pageblock
 799			 * without fallbacks and normal pageblock. Without this,
 800			 * pageblock isolation could cause incorrect freepage or CMA
 801			 * accounting or HIGHATOMIC accounting.
 802			 */
 803			int buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn);
 804
 805			if (migratetype != buddy_mt
 806					&& (!migratetype_is_mergeable(migratetype) ||
 807						!migratetype_is_mergeable(buddy_mt)))
 808				goto done_merging;
 809		}
 810
 811		/*
 812		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
 813		 * merge with it and move up one order.
 814		 */
 815		if (page_is_guard(buddy))
 816			clear_page_guard(zone, buddy, order, migratetype);
 817		else
 818			del_page_from_free_list(buddy, zone, order);
 
 
 
 819		combined_pfn = buddy_pfn & pfn;
 820		page = page + (combined_pfn - pfn);
 821		pfn = combined_pfn;
 822		order++;
 823	}
 
 
 
 
 
 
 
 
 
 
 
 824
 825done_merging:
 826	set_buddy_order(page, order);
 
 827
 828	if (fpi_flags & FPI_TO_TAIL)
 829		to_tail = true;
 830	else if (is_shuffle_order(order))
 831		to_tail = shuffle_pick_tail();
 832	else
 833		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
 
 
 834
 835	if (to_tail)
 836		add_to_free_list_tail(page, zone, order, migratetype);
 837	else
 838		add_to_free_list(page, zone, order, migratetype);
 839
 840	/* Notify page reporting subsystem of freed page */
 841	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
 842		page_reporting_notify_free(order);
 843}
 844
 845/**
 846 * split_free_page() -- split a free page at split_pfn_offset
 847 * @free_page:		the original free page
 848 * @order:		the order of the page
 849 * @split_pfn_offset:	split offset within the page
 850 *
 851 * Return -ENOENT if the free page is changed, otherwise 0
 852 *
 853 * It is used when the free page crosses two pageblocks with different migratetypes
 854 * at split_pfn_offset within the page. The split free page will be put into
 855 * separate migratetype lists afterwards. Otherwise, the function achieves
 856 * nothing.
 857 */
 858int split_free_page(struct page *free_page,
 859			unsigned int order, unsigned long split_pfn_offset)
 860{
 861	struct zone *zone = page_zone(free_page);
 862	unsigned long free_page_pfn = page_to_pfn(free_page);
 863	unsigned long pfn;
 864	unsigned long flags;
 865	int free_page_order;
 866	int mt;
 867	int ret = 0;
 868
 869	if (split_pfn_offset == 0)
 870		return ret;
 871
 872	spin_lock_irqsave(&zone->lock, flags);
 873
 874	if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
 875		ret = -ENOENT;
 876		goto out;
 877	}
 878
 879	mt = get_pfnblock_migratetype(free_page, free_page_pfn);
 880	if (likely(!is_migrate_isolate(mt)))
 881		__mod_zone_freepage_state(zone, -(1UL << order), mt);
 882
 883	del_page_from_free_list(free_page, zone, order);
 884	for (pfn = free_page_pfn;
 885	     pfn < free_page_pfn + (1UL << order);) {
 886		int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
 887
 888		free_page_order = min_t(unsigned int,
 889					pfn ? __ffs(pfn) : order,
 890					__fls(split_pfn_offset));
 891		__free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
 892				mt, FPI_NONE);
 893		pfn += 1UL << free_page_order;
 894		split_pfn_offset -= (1UL << free_page_order);
 895		/* we have done the first part, now switch to second part */
 896		if (split_pfn_offset == 0)
 897			split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
 898	}
 899out:
 900	spin_unlock_irqrestore(&zone->lock, flags);
 901	return ret;
 902}
 
 903/*
 904 * A bad page could be due to a number of fields. Instead of multiple branches,
 905 * try and check multiple fields with one check. The caller must do a detailed
 906 * check if necessary.
 907 */
 908static inline bool page_expected_state(struct page *page,
 909					unsigned long check_flags)
 910{
 911	if (unlikely(atomic_read(&page->_mapcount) != -1))
 912		return false;
 913
 914	if (unlikely((unsigned long)page->mapping |
 915			page_ref_count(page) |
 916#ifdef CONFIG_MEMCG
 917			page->memcg_data |
 918#endif
 919#ifdef CONFIG_PAGE_POOL
 920			((page->pp_magic & ~0x3UL) == PP_SIGNATURE) |
 921#endif
 922			(page->flags & check_flags)))
 923		return false;
 924
 925	return true;
 926}
 927
 928static const char *page_bad_reason(struct page *page, unsigned long flags)
 929{
 930	const char *bad_reason = NULL;
 
 
 
 
 931
 932	if (unlikely(atomic_read(&page->_mapcount) != -1))
 933		bad_reason = "nonzero mapcount";
 934	if (unlikely(page->mapping != NULL))
 935		bad_reason = "non-NULL mapping";
 936	if (unlikely(page_ref_count(page) != 0))
 937		bad_reason = "nonzero _refcount";
 938	if (unlikely(page->flags & flags)) {
 939		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
 940			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
 941		else
 942			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
 943	}
 944#ifdef CONFIG_MEMCG
 945	if (unlikely(page->memcg_data))
 946		bad_reason = "page still charged to cgroup";
 947#endif
 948#ifdef CONFIG_PAGE_POOL
 949	if (unlikely((page->pp_magic & ~0x3UL) == PP_SIGNATURE))
 950		bad_reason = "page_pool leak";
 951#endif
 952	return bad_reason;
 953}
 954
 955static void free_page_is_bad_report(struct page *page)
 956{
 957	bad_page(page,
 958		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
 959}
 960
 961static inline bool free_page_is_bad(struct page *page)
 962{
 963	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
 964		return false;
 965
 966	/* Something has gone sideways, find it */
 967	free_page_is_bad_report(page);
 968	return true;
 969}
 970
 971static inline bool is_check_pages_enabled(void)
 972{
 973	return static_branch_unlikely(&check_pages_enabled);
 974}
 975
 976static int free_tail_page_prepare(struct page *head_page, struct page *page)
 977{
 978	struct folio *folio = (struct folio *)head_page;
 979	int ret = 1;
 980
 981	/*
 982	 * We rely page->lru.next never has bit 0 set, unless the page
 983	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
 984	 */
 985	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
 986
 987	if (!is_check_pages_enabled()) {
 988		ret = 0;
 989		goto out;
 990	}
 991	switch (page - head_page) {
 992	case 1:
 993		/* the first tail page: these may be in place of ->mapping */
 994		if (unlikely(folio_entire_mapcount(folio))) {
 995			bad_page(page, "nonzero entire_mapcount");
 996			goto out;
 997		}
 998		if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
 999			bad_page(page, "nonzero nr_pages_mapped");
1000			goto out;
1001		}
1002		if (unlikely(atomic_read(&folio->_pincount))) {
1003			bad_page(page, "nonzero pincount");
1004			goto out;
1005		}
1006		break;
1007	case 2:
1008		/*
1009		 * the second tail page: ->mapping is
1010		 * deferred_list.next -- ignore value.
1011		 */
1012		break;
1013	default:
1014		if (page->mapping != TAIL_MAPPING) {
1015			bad_page(page, "corrupted mapping in tail page");
1016			goto out;
1017		}
1018		break;
1019	}
1020	if (unlikely(!PageTail(page))) {
1021		bad_page(page, "PageTail not set");
1022		goto out;
1023	}
1024	if (unlikely(compound_head(page) != head_page)) {
1025		bad_page(page, "compound_head not consistent");
1026		goto out;
1027	}
1028	ret = 0;
1029out:
1030	page->mapping = NULL;
1031	clear_compound_head(page);
1032	return ret;
1033}
1034
1035/*
1036 * Skip KASAN memory poisoning when either:
1037 *
1038 * 1. For generic KASAN: deferred memory initialization has not yet completed.
1039 *    Tag-based KASAN modes skip pages freed via deferred memory initialization
1040 *    using page tags instead (see below).
1041 * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
1042 *    that error detection is disabled for accesses via the page address.
1043 *
1044 * Pages will have match-all tags in the following circumstances:
1045 *
1046 * 1. Pages are being initialized for the first time, including during deferred
1047 *    memory init; see the call to page_kasan_tag_reset in __init_single_page.
1048 * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1049 *    exception of pages unpoisoned by kasan_unpoison_vmalloc.
1050 * 3. The allocation was excluded from being checked due to sampling,
1051 *    see the call to kasan_unpoison_pages.
1052 *
1053 * Poisoning pages during deferred memory init will greatly lengthen the
1054 * process and cause problem in large memory systems as the deferred pages
1055 * initialization is done with interrupt disabled.
1056 *
1057 * Assuming that there will be no reference to those newly initialized
1058 * pages before they are ever allocated, this should have no effect on
1059 * KASAN memory tracking as the poison will be properly inserted at page
1060 * allocation time. The only corner case is when pages are allocated by
1061 * on-demand allocation and then freed again before the deferred pages
1062 * initialization is done, but this is not likely to happen.
1063 */
1064static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1065{
1066	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1067		return deferred_pages_enabled();
1068
1069	return page_kasan_tag(page) == KASAN_TAG_KERNEL;
1070}
1071
1072static void kernel_init_pages(struct page *page, int numpages)
1073{
1074	int i;
1075
1076	/* s390's use of memset() could override KASAN redzones. */
1077	kasan_disable_current();
1078	for (i = 0; i < numpages; i++)
1079		clear_highpage_kasan_tagged(page + i);
1080	kasan_enable_current();
1081}
1082
1083static __always_inline bool free_pages_prepare(struct page *page,
1084			unsigned int order, fpi_t fpi_flags)
1085{
1086	int bad = 0;
1087	bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
1088	bool init = want_init_on_free();
1089	bool compound = PageCompound(page);
1090
1091	VM_BUG_ON_PAGE(PageTail(page), page);
1092
1093	trace_mm_page_free(page, order);
1094	kmsan_free_page(page, order);
1095
1096	if (memcg_kmem_online() && PageMemcgKmem(page))
1097		__memcg_kmem_uncharge_page(page, order);
1098
1099	if (unlikely(PageHWPoison(page)) && !order) {
1100		/* Do not let hwpoison pages hit pcplists/buddy */
1101		reset_page_owner(page, order);
1102		page_table_check_free(page, order);
1103		return false;
1104	}
1105
1106	VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1107
1108	/*
1109	 * Check tail pages before head page information is cleared to
1110	 * avoid checking PageCompound for order-0 pages.
1111	 */
1112	if (unlikely(order)) {
 
1113		int i;
1114
 
 
1115		if (compound)
1116			page[1].flags &= ~PAGE_FLAGS_SECOND;
1117		for (i = 1; i < (1 << order); i++) {
1118			if (compound)
1119				bad += free_tail_page_prepare(page, page + i);
1120			if (is_check_pages_enabled()) {
1121				if (free_page_is_bad(page + i)) {
1122					bad++;
1123					continue;
1124				}
1125			}
1126			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1127		}
1128	}
1129	if (PageMappingFlags(page))
1130		page->mapping = NULL;
1131	if (is_check_pages_enabled()) {
1132		if (free_page_is_bad(page))
1133			bad++;
1134		if (bad)
1135			return false;
1136	}
1137
1138	page_cpupid_reset_last(page);
1139	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1140	reset_page_owner(page, order);
1141	page_table_check_free(page, order);
1142
1143	if (!PageHighMem(page)) {
1144		debug_check_no_locks_freed(page_address(page),
1145					   PAGE_SIZE << order);
1146		debug_check_no_obj_freed(page_address(page),
1147					   PAGE_SIZE << order);
1148	}
 
 
 
 
1149
1150	kernel_poison_pages(page, 1 << order);
 
1151
1152	/*
1153	 * As memory initialization might be integrated into KASAN,
1154	 * KASAN poisoning and memory initialization code must be
1155	 * kept together to avoid discrepancies in behavior.
1156	 *
1157	 * With hardware tag-based KASAN, memory tags must be set before the
1158	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1159	 */
1160	if (!skip_kasan_poison) {
1161		kasan_poison_pages(page, order, init);
1162
1163		/* Memory is already initialized if KASAN did it internally. */
1164		if (kasan_has_integrated_init())
1165			init = false;
1166	}
1167	if (init)
1168		kernel_init_pages(page, 1 << order);
 
 
 
1169
1170	/*
1171	 * arch_free_page() can make the page's contents inaccessible.  s390
1172	 * does this.  So nothing which can access the page's contents should
1173	 * happen after this.
1174	 */
1175	arch_free_page(page, order);
1176
1177	debug_pagealloc_unmap_pages(page, 1 << order);
 
 
 
 
1178
1179	return true;
1180}
1181
1182/*
1183 * Frees a number of pages from the PCP lists
1184 * Assumes all pages on list are in same zone.
1185 * count is the number of pages to free.
 
 
 
 
 
 
1186 */
1187static void free_pcppages_bulk(struct zone *zone, int count,
1188					struct per_cpu_pages *pcp,
1189					int pindex)
1190{
1191	unsigned long flags;
1192	unsigned int order;
 
1193	bool isolated_pageblocks;
1194	struct page *page;
 
1195
1196	/*
1197	 * Ensure proper count is passed which otherwise would stuck in the
1198	 * below while (list_empty(list)) loop.
1199	 */
1200	count = min(pcp->count, count);
1201
1202	/* Ensure requested pindex is drained first. */
1203	pindex = pindex - 1;
1204
1205	spin_lock_irqsave(&zone->lock, flags);
1206	isolated_pageblocks = has_isolate_pageblock(zone);
1207
1208	while (count > 0) {
1209		struct list_head *list;
1210		int nr_pages;
1211
1212		/* Remove pages from lists in a round-robin fashion. */
 
 
 
 
 
 
1213		do {
1214			if (++pindex > NR_PCP_LISTS - 1)
1215				pindex = 0;
1216			list = &pcp->lists[pindex];
 
1217		} while (list_empty(list));
1218
1219		order = pindex_to_order(pindex);
1220		nr_pages = 1 << order;
 
 
1221		do {
1222			int mt;
 
 
 
 
 
 
1223
1224			page = list_last_entry(list, struct page, pcp_list);
1225			mt = get_pcppage_migratetype(page);
1226
1227			/* must delete to avoid corrupting pcp list */
1228			list_del(&page->pcp_list);
1229			count -= nr_pages;
1230			pcp->count -= nr_pages;
1231
1232			/* MIGRATE_ISOLATE page should not go to pcplists */
1233			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1234			/* Pageblock could have been isolated meanwhile */
1235			if (unlikely(isolated_pageblocks))
1236				mt = get_pageblock_migratetype(page);
1237
1238			__free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1239			trace_mm_page_pcpu_drain(page, order, mt);
1240		} while (count > 0 && !list_empty(list));
1241	}
1242
1243	spin_unlock_irqrestore(&zone->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1244}
1245
1246static void free_one_page(struct zone *zone,
1247				struct page *page, unsigned long pfn,
1248				unsigned int order,
1249				int migratetype, fpi_t fpi_flags)
1250{
1251	unsigned long flags;
1252
1253	spin_lock_irqsave(&zone->lock, flags);
1254	if (unlikely(has_isolate_pageblock(zone) ||
1255		is_migrate_isolate(migratetype))) {
1256		migratetype = get_pfnblock_migratetype(page, pfn);
1257	}
1258	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1259	spin_unlock_irqrestore(&zone->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1260}
1261
1262static void __free_pages_ok(struct page *page, unsigned int order,
1263			    fpi_t fpi_flags)
1264{
 
1265	int migratetype;
1266	unsigned long pfn = page_to_pfn(page);
1267	struct zone *zone = page_zone(page);
1268
1269	if (!free_pages_prepare(page, order, fpi_flags))
1270		return;
1271
1272	/*
1273	 * Calling get_pfnblock_migratetype() without spin_lock_irqsave() here
1274	 * is used to avoid calling get_pfnblock_migratetype() under the lock.
1275	 * This will reduce the lock holding time.
1276	 */
1277	migratetype = get_pfnblock_migratetype(page, pfn);
1278
1279	free_one_page(zone, page, pfn, order, migratetype, fpi_flags);
1280
1281	__count_vm_events(PGFREE, 1 << order);
 
 
1282}
1283
1284void __free_pages_core(struct page *page, unsigned int order)
1285{
1286	unsigned int nr_pages = 1 << order;
1287	struct page *p = page;
1288	unsigned int loop;
1289
1290	/*
1291	 * When initializing the memmap, __init_single_page() sets the refcount
1292	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1293	 * refcount of all involved pages to 0.
1294	 */
1295	prefetchw(p);
1296	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1297		prefetchw(p + 1);
1298		__ClearPageReserved(p);
1299		set_page_count(p, 0);
1300	}
1301	__ClearPageReserved(p);
1302	set_page_count(p, 0);
1303
1304	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1305
1306	if (page_contains_unaccepted(page, order)) {
1307		if (order == MAX_PAGE_ORDER && __free_unaccepted(page))
1308			return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1309
1310		accept_page(page, order);
1311	}
1312
1313	/*
1314	 * Bypass PCP and place fresh pages right to the tail, primarily
1315	 * relevant for memory onlining.
1316	 */
1317	__free_pages_ok(page, order, FPI_TO_TAIL);
 
1318}
1319
1320/*
1321 * Check that the whole (or subset of) a pageblock given by the interval of
1322 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1323 * with the migration of free compaction scanner.
 
 
1324 *
1325 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1326 *
1327 * It's possible on some configurations to have a setup like node0 node1 node0
1328 * i.e. it's possible that all pages within a zones range of pages do not
1329 * belong to a single zone. We assume that a border between node0 and node1
1330 * can occur within a single pageblock, but not a node0 node1 node0
1331 * interleaving within a single pageblock. It is therefore sufficient to check
1332 * the first and last page of a pageblock and avoid checking each individual
1333 * page in a pageblock.
1334 *
1335 * Note: the function may return non-NULL struct page even for a page block
1336 * which contains a memory hole (i.e. there is no physical memory for a subset
1337 * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which
1338 * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1339 * even though the start pfn is online and valid. This should be safe most of
1340 * the time because struct pages are still initialized via init_unavailable_range()
1341 * and pfn walkers shouldn't touch any physical memory range for which they do
1342 * not recognize any specific metadata in struct pages.
1343 */
1344struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1345				     unsigned long end_pfn, struct zone *zone)
1346{
1347	struct page *start_page;
1348	struct page *end_page;
1349
1350	/* end_pfn is one past the range we are checking */
1351	end_pfn--;
1352
1353	if (!pfn_valid(end_pfn))
1354		return NULL;
1355
1356	start_page = pfn_to_online_page(start_pfn);
1357	if (!start_page)
1358		return NULL;
1359
1360	if (page_zone(start_page) != zone)
1361		return NULL;
1362
1363	end_page = pfn_to_page(end_pfn);
1364
1365	/* This gives a shorter code than deriving page_zone(end_page) */
1366	if (page_zone_id(start_page) != page_zone_id(end_page))
1367		return NULL;
1368
1369	return start_page;
1370}
1371
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1372/*
1373 * The order of subdivision here is critical for the IO subsystem.
1374 * Please do not alter this order without good reasons and regression
1375 * testing. Specifically, as large blocks of memory are subdivided,
1376 * the order in which smaller blocks are delivered depends on the order
1377 * they're subdivided in this function. This is the primary factor
1378 * influencing the order in which pages are delivered to the IO
1379 * subsystem according to empirical testing, and this is also justified
1380 * by considering the behavior of a buddy system containing a single
1381 * large block of memory acted on by a series of small allocations.
1382 * This behavior is a critical factor in sglist merging's success.
1383 *
1384 * -- nyc
1385 */
1386static inline void expand(struct zone *zone, struct page *page,
1387	int low, int high, int migratetype)
 
1388{
1389	unsigned long size = 1 << high;
1390
1391	while (high > low) {
 
1392		high--;
1393		size >>= 1;
1394		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1395
1396		/*
1397		 * Mark as guard pages (or page), that will allow to
1398		 * merge back to allocator when buddy will be freed.
1399		 * Corresponding page table entries will not be touched,
1400		 * pages will stay not present in virtual address space
1401		 */
1402		if (set_page_guard(zone, &page[size], high, migratetype))
1403			continue;
1404
1405		add_to_free_list(&page[size], zone, high, migratetype);
1406		set_buddy_order(&page[size], high);
 
1407	}
1408}
1409
1410static void check_new_page_bad(struct page *page)
1411{
 
 
 
 
 
 
 
 
 
1412	if (unlikely(page->flags & __PG_HWPOISON)) {
 
 
1413		/* Don't complain about hwpoisoned pages */
1414		page_mapcount_reset(page); /* remove PageBuddy */
1415		return;
1416	}
1417
1418	bad_page(page,
1419		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
 
 
 
 
 
 
1420}
1421
1422/*
1423 * This page is about to be returned from the page allocator
1424 */
1425static int check_new_page(struct page *page)
1426{
1427	if (likely(page_expected_state(page,
1428				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1429		return 0;
1430
1431	check_new_page_bad(page);
1432	return 1;
1433}
1434
1435static inline bool check_new_pages(struct page *page, unsigned int order)
1436{
1437	if (is_check_pages_enabled()) {
1438		for (int i = 0; i < (1 << order); i++) {
1439			struct page *p = page + i;
1440
1441			if (check_new_page(p))
1442				return true;
1443		}
1444	}
1445
 
 
 
1446	return false;
1447}
1448
1449static inline bool should_skip_kasan_unpoison(gfp_t flags)
1450{
1451	/* Don't skip if a software KASAN mode is enabled. */
1452	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1453	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1454		return false;
1455
1456	/* Skip, if hardware tag-based KASAN is not enabled. */
1457	if (!kasan_hw_tags_enabled())
1458		return true;
1459
1460	/*
1461	 * With hardware tag-based KASAN enabled, skip if this has been
1462	 * requested via __GFP_SKIP_KASAN.
1463	 */
1464	return flags & __GFP_SKIP_KASAN;
1465}
 
1466
1467static inline bool should_skip_init(gfp_t flags)
1468{
1469	/* Don't skip, if hardware tag-based KASAN is not enabled. */
1470	if (!kasan_hw_tags_enabled())
1471		return false;
 
 
 
 
1472
1473	/* For hardware tag-based KASAN, skip if requested. */
1474	return (flags & __GFP_SKIP_ZERO);
1475}
1476
1477inline void post_alloc_hook(struct page *page, unsigned int order,
1478				gfp_t gfp_flags)
1479{
1480	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1481			!should_skip_init(gfp_flags);
1482	bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1483	int i;
1484
1485	set_page_private(page, 0);
1486	set_page_refcounted(page);
1487
1488	arch_alloc_page(page, order);
1489	debug_pagealloc_map_pages(page, 1 << order);
1490
1491	/*
1492	 * Page unpoisoning must happen before memory initialization.
1493	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1494	 * allocations and the page unpoisoning code will complain.
1495	 */
1496	kernel_unpoison_pages(page, 1 << order);
1497
1498	/*
1499	 * As memory initialization might be integrated into KASAN,
1500	 * KASAN unpoisoning and memory initializion code must be
1501	 * kept together to avoid discrepancies in behavior.
1502	 */
1503
1504	/*
1505	 * If memory tags should be zeroed
1506	 * (which happens only when memory should be initialized as well).
1507	 */
1508	if (zero_tags) {
1509		/* Initialize both memory and memory tags. */
1510		for (i = 0; i != 1 << order; ++i)
1511			tag_clear_highpage(page + i);
1512
1513		/* Take note that memory was initialized by the loop above. */
1514		init = false;
1515	}
1516	if (!should_skip_kasan_unpoison(gfp_flags) &&
1517	    kasan_unpoison_pages(page, order, init)) {
1518		/* Take note that memory was initialized by KASAN. */
1519		if (kasan_has_integrated_init())
1520			init = false;
1521	} else {
1522		/*
1523		 * If memory tags have not been set by KASAN, reset the page
1524		 * tags to ensure page_address() dereferencing does not fault.
1525		 */
1526		for (i = 0; i != 1 << order; ++i)
1527			page_kasan_tag_reset(page + i);
1528	}
1529	/* If memory is still not initialized, initialize it now. */
1530	if (init)
1531		kernel_init_pages(page, 1 << order);
1532
1533	set_page_owner(page, order, gfp_flags);
1534	page_table_check_alloc(page, order);
1535}
1536
1537static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1538							unsigned int alloc_flags)
1539{
 
 
1540	post_alloc_hook(page, order, gfp_flags);
1541
 
 
 
 
1542	if (order && (gfp_flags & __GFP_COMP))
1543		prep_compound_page(page, order);
1544
1545	/*
1546	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1547	 * allocate the page. The expectation is that the caller is taking
1548	 * steps that will free more memory. The caller should avoid the page
1549	 * being used for !PFMEMALLOC purposes.
1550	 */
1551	if (alloc_flags & ALLOC_NO_WATERMARKS)
1552		set_page_pfmemalloc(page);
1553	else
1554		clear_page_pfmemalloc(page);
1555}
1556
1557/*
1558 * Go through the free lists for the given migratetype and remove
1559 * the smallest available page from the freelists
1560 */
1561static __always_inline
1562struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1563						int migratetype)
1564{
1565	unsigned int current_order;
1566	struct free_area *area;
1567	struct page *page;
1568
1569	/* Find a page of the appropriate size in the preferred list */
1570	for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) {
1571		area = &(zone->free_area[current_order]);
1572		page = get_page_from_free_area(area, migratetype);
 
1573		if (!page)
1574			continue;
1575		del_page_from_free_list(page, zone, current_order);
1576		expand(zone, page, order, current_order, migratetype);
 
 
1577		set_pcppage_migratetype(page, migratetype);
1578		trace_mm_page_alloc_zone_locked(page, order, migratetype,
1579				pcp_allowed_order(order) &&
1580				migratetype < MIGRATE_PCPTYPES);
1581		return page;
1582	}
1583
1584	return NULL;
1585}
1586
1587
1588/*
1589 * This array describes the order lists are fallen back to when
1590 * the free lists for the desirable migrate type are depleted
1591 *
1592 * The other migratetypes do not have fallbacks.
1593 */
1594static int fallbacks[MIGRATE_TYPES][MIGRATE_PCPTYPES - 1] = {
1595	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE   },
1596	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1597	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE   },
 
 
 
 
 
 
1598};
1599
1600#ifdef CONFIG_CMA
1601static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1602					unsigned int order)
1603{
1604	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1605}
1606#else
1607static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1608					unsigned int order) { return NULL; }
1609#endif
1610
1611/*
1612 * Move the free pages in a range to the freelist tail of the requested type.
1613 * Note that start_page and end_pages are not aligned on a pageblock
1614 * boundary. If alignment is required, use move_freepages_block()
1615 */
1616static int move_freepages(struct zone *zone,
1617			  unsigned long start_pfn, unsigned long end_pfn,
1618			  int migratetype, int *num_movable)
1619{
1620	struct page *page;
1621	unsigned long pfn;
1622	unsigned int order;
1623	int pages_moved = 0;
1624
1625	for (pfn = start_pfn; pfn <= end_pfn;) {
1626		page = pfn_to_page(pfn);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1627		if (!PageBuddy(page)) {
1628			/*
1629			 * We assume that pages that could be isolated for
1630			 * migration are movable. But we don't actually try
1631			 * isolating, as that would be expensive.
1632			 */
1633			if (num_movable &&
1634					(PageLRU(page) || __PageMovable(page)))
1635				(*num_movable)++;
1636			pfn++;
 
1637			continue;
1638		}
1639
1640		/* Make sure we are not inadvertently changing nodes */
1641		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1642		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1643
1644		order = buddy_order(page);
1645		move_to_free_list(page, zone, order, migratetype);
1646		pfn += 1 << order;
1647		pages_moved += 1 << order;
1648	}
1649
1650	return pages_moved;
1651}
1652
1653int move_freepages_block(struct zone *zone, struct page *page,
1654				int migratetype, int *num_movable)
1655{
1656	unsigned long start_pfn, end_pfn, pfn;
 
1657
1658	if (num_movable)
1659		*num_movable = 0;
1660
1661	pfn = page_to_pfn(page);
1662	start_pfn = pageblock_start_pfn(pfn);
1663	end_pfn = pageblock_end_pfn(pfn) - 1;
1664
1665	/* Do not cross zone boundaries */
1666	if (!zone_spans_pfn(zone, start_pfn))
1667		start_pfn = pfn;
1668	if (!zone_spans_pfn(zone, end_pfn))
1669		return 0;
1670
1671	return move_freepages(zone, start_pfn, end_pfn, migratetype,
1672								num_movable);
1673}
1674
1675static void change_pageblock_range(struct page *pageblock_page,
1676					int start_order, int migratetype)
1677{
1678	int nr_pageblocks = 1 << (start_order - pageblock_order);
1679
1680	while (nr_pageblocks--) {
1681		set_pageblock_migratetype(pageblock_page, migratetype);
1682		pageblock_page += pageblock_nr_pages;
1683	}
1684}
1685
1686/*
1687 * When we are falling back to another migratetype during allocation, try to
1688 * steal extra free pages from the same pageblocks to satisfy further
1689 * allocations, instead of polluting multiple pageblocks.
1690 *
1691 * If we are stealing a relatively large buddy page, it is likely there will
1692 * be more free pages in the pageblock, so try to steal them all. For
1693 * reclaimable and unmovable allocations, we steal regardless of page size,
1694 * as fragmentation caused by those allocations polluting movable pageblocks
1695 * is worse than movable allocations stealing from unmovable and reclaimable
1696 * pageblocks.
1697 */
1698static bool can_steal_fallback(unsigned int order, int start_mt)
1699{
1700	/*
1701	 * Leaving this order check is intended, although there is
1702	 * relaxed order check in next check. The reason is that
1703	 * we can actually steal whole pageblock if this condition met,
1704	 * but, below check doesn't guarantee it and that is just heuristic
1705	 * so could be changed anytime.
1706	 */
1707	if (order >= pageblock_order)
1708		return true;
1709
1710	if (order >= pageblock_order / 2 ||
1711		start_mt == MIGRATE_RECLAIMABLE ||
1712		start_mt == MIGRATE_UNMOVABLE ||
1713		page_group_by_mobility_disabled)
1714		return true;
1715
1716	return false;
1717}
1718
1719static inline bool boost_watermark(struct zone *zone)
1720{
1721	unsigned long max_boost;
1722
1723	if (!watermark_boost_factor)
1724		return false;
1725	/*
1726	 * Don't bother in zones that are unlikely to produce results.
1727	 * On small machines, including kdump capture kernels running
1728	 * in a small area, boosting the watermark can cause an out of
1729	 * memory situation immediately.
1730	 */
1731	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
1732		return false;
1733
1734	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
1735			watermark_boost_factor, 10000);
1736
1737	/*
1738	 * high watermark may be uninitialised if fragmentation occurs
1739	 * very early in boot so do not boost. We do not fall
1740	 * through and boost by pageblock_nr_pages as failing
1741	 * allocations that early means that reclaim is not going
1742	 * to help and it may even be impossible to reclaim the
1743	 * boosted watermark resulting in a hang.
1744	 */
1745	if (!max_boost)
1746		return false;
1747
1748	max_boost = max(pageblock_nr_pages, max_boost);
1749
1750	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
1751		max_boost);
1752
1753	return true;
1754}
1755
1756/*
1757 * This function implements actual steal behaviour. If order is large enough,
1758 * we can steal whole pageblock. If not, we first move freepages in this
1759 * pageblock to our migratetype and determine how many already-allocated pages
1760 * are there in the pageblock with a compatible migratetype. If at least half
1761 * of pages are free or compatible, we can change migratetype of the pageblock
1762 * itself, so pages freed in the future will be put on the correct free list.
1763 */
1764static void steal_suitable_fallback(struct zone *zone, struct page *page,
1765		unsigned int alloc_flags, int start_type, bool whole_block)
1766{
1767	unsigned int current_order = buddy_order(page);
 
1768	int free_pages, movable_pages, alike_pages;
1769	int old_block_type;
1770
1771	old_block_type = get_pageblock_migratetype(page);
1772
1773	/*
1774	 * This can happen due to races and we want to prevent broken
1775	 * highatomic accounting.
1776	 */
1777	if (is_migrate_highatomic(old_block_type))
1778		goto single_page;
1779
1780	/* Take ownership for orders >= pageblock_order */
1781	if (current_order >= pageblock_order) {
1782		change_pageblock_range(page, current_order, start_type);
1783		goto single_page;
1784	}
1785
1786	/*
1787	 * Boost watermarks to increase reclaim pressure to reduce the
1788	 * likelihood of future fallbacks. Wake kswapd now as the node
1789	 * may be balanced overall and kswapd will not wake naturally.
1790	 */
1791	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
1792		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1793
1794	/* We are not allowed to try stealing from the whole block */
1795	if (!whole_block)
1796		goto single_page;
1797
1798	free_pages = move_freepages_block(zone, page, start_type,
1799						&movable_pages);
1800	/* moving whole block can fail due to zone boundary conditions */
1801	if (!free_pages)
1802		goto single_page;
1803
1804	/*
1805	 * Determine how many pages are compatible with our allocation.
1806	 * For movable allocation, it's the number of movable pages which
1807	 * we just obtained. For other types it's a bit more tricky.
1808	 */
1809	if (start_type == MIGRATE_MOVABLE) {
1810		alike_pages = movable_pages;
1811	} else {
1812		/*
1813		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
1814		 * to MOVABLE pageblock, consider all non-movable pages as
1815		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
1816		 * vice versa, be conservative since we can't distinguish the
1817		 * exact migratetype of non-movable pages.
1818		 */
1819		if (old_block_type == MIGRATE_MOVABLE)
1820			alike_pages = pageblock_nr_pages
1821						- (free_pages + movable_pages);
1822		else
1823			alike_pages = 0;
1824	}
 
 
 
 
 
1825	/*
1826	 * If a sufficient number of pages in the block are either free or of
1827	 * compatible migratability as our allocation, claim the whole block.
1828	 */
1829	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
1830			page_group_by_mobility_disabled)
1831		set_pageblock_migratetype(page, start_type);
1832
1833	return;
1834
1835single_page:
1836	move_to_free_list(page, zone, current_order, start_type);
 
1837}
1838
1839/*
1840 * Check whether there is a suitable fallback freepage with requested order.
1841 * If only_stealable is true, this function returns fallback_mt only if
1842 * we can steal other freepages all together. This would help to reduce
1843 * fragmentation due to mixed migratetype pages in one pageblock.
1844 */
1845int find_suitable_fallback(struct free_area *area, unsigned int order,
1846			int migratetype, bool only_stealable, bool *can_steal)
1847{
1848	int i;
1849	int fallback_mt;
1850
1851	if (area->nr_free == 0)
1852		return -1;
1853
1854	*can_steal = false;
1855	for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
1856		fallback_mt = fallbacks[migratetype][i];
1857		if (free_area_empty(area, fallback_mt))
 
 
 
1858			continue;
1859
1860		if (can_steal_fallback(order, migratetype))
1861			*can_steal = true;
1862
1863		if (!only_stealable)
1864			return fallback_mt;
1865
1866		if (*can_steal)
1867			return fallback_mt;
1868	}
1869
1870	return -1;
1871}
1872
1873/*
1874 * Reserve a pageblock for exclusive use of high-order atomic allocations if
1875 * there are no empty page blocks that contain a page with a suitable order
1876 */
1877static void reserve_highatomic_pageblock(struct page *page, struct zone *zone)
 
1878{
1879	int mt;
1880	unsigned long max_managed, flags;
1881
1882	/*
1883	 * The number reserved as: minimum is 1 pageblock, maximum is
1884	 * roughly 1% of a zone. But if 1% of a zone falls below a
1885	 * pageblock size, then don't reserve any pageblocks.
1886	 * Check is race-prone but harmless.
1887	 */
1888	if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages)
1889		return;
1890	max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages);
1891	if (zone->nr_reserved_highatomic >= max_managed)
1892		return;
1893
1894	spin_lock_irqsave(&zone->lock, flags);
1895
1896	/* Recheck the nr_reserved_highatomic limit under the lock */
1897	if (zone->nr_reserved_highatomic >= max_managed)
1898		goto out_unlock;
1899
1900	/* Yoink! */
1901	mt = get_pageblock_migratetype(page);
1902	/* Only reserve normal pageblocks (i.e., they can merge with others) */
1903	if (migratetype_is_mergeable(mt)) {
1904		zone->nr_reserved_highatomic += pageblock_nr_pages;
1905		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1906		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
1907	}
1908
1909out_unlock:
1910	spin_unlock_irqrestore(&zone->lock, flags);
1911}
1912
1913/*
1914 * Used when an allocation is about to fail under memory pressure. This
1915 * potentially hurts the reliability of high-order allocations when under
1916 * intense memory pressure but failed atomic allocations should be easier
1917 * to recover from than an OOM.
1918 *
1919 * If @force is true, try to unreserve a pageblock even though highatomic
1920 * pageblock is exhausted.
1921 */
1922static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
1923						bool force)
1924{
1925	struct zonelist *zonelist = ac->zonelist;
1926	unsigned long flags;
1927	struct zoneref *z;
1928	struct zone *zone;
1929	struct page *page;
1930	int order;
1931	bool ret;
1932
1933	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
1934								ac->nodemask) {
1935		/*
1936		 * Preserve at least one pageblock unless memory pressure
1937		 * is really high.
1938		 */
1939		if (!force && zone->nr_reserved_highatomic <=
1940					pageblock_nr_pages)
1941			continue;
1942
1943		spin_lock_irqsave(&zone->lock, flags);
1944		for (order = 0; order < NR_PAGE_ORDERS; order++) {
1945			struct free_area *area = &(zone->free_area[order]);
1946
1947			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
 
 
1948			if (!page)
1949				continue;
1950
1951			/*
1952			 * In page freeing path, migratetype change is racy so
1953			 * we can counter several free pages in a pageblock
1954			 * in this loop although we changed the pageblock type
1955			 * from highatomic to ac->migratetype. So we should
1956			 * adjust the count once.
1957			 */
1958			if (is_migrate_highatomic_page(page)) {
1959				/*
1960				 * It should never happen but changes to
1961				 * locking could inadvertently allow a per-cpu
1962				 * drain to add pages to MIGRATE_HIGHATOMIC
1963				 * while unreserving so be safe and watch for
1964				 * underflows.
1965				 */
1966				zone->nr_reserved_highatomic -= min(
1967						pageblock_nr_pages,
1968						zone->nr_reserved_highatomic);
1969			}
1970
1971			/*
1972			 * Convert to ac->migratetype and avoid the normal
1973			 * pageblock stealing heuristics. Minimally, the caller
1974			 * is doing the work and needs the pages. More
1975			 * importantly, if the block was always converted to
1976			 * MIGRATE_UNMOVABLE or another type then the number
1977			 * of pageblocks that cannot be completely freed
1978			 * may increase.
1979			 */
1980			set_pageblock_migratetype(page, ac->migratetype);
1981			ret = move_freepages_block(zone, page, ac->migratetype,
1982									NULL);
1983			if (ret) {
1984				spin_unlock_irqrestore(&zone->lock, flags);
1985				return ret;
1986			}
1987		}
1988		spin_unlock_irqrestore(&zone->lock, flags);
1989	}
1990
1991	return false;
1992}
1993
1994/*
1995 * Try finding a free buddy page on the fallback list and put it on the free
1996 * list of requested migratetype, possibly along with other pages from the same
1997 * block, depending on fragmentation avoidance heuristics. Returns true if
1998 * fallback was found so that __rmqueue_smallest() can grab it.
1999 *
2000 * The use of signed ints for order and current_order is a deliberate
2001 * deviation from the rest of this file, to make the for loop
2002 * condition simpler.
2003 */
2004static __always_inline bool
2005__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2006						unsigned int alloc_flags)
2007{
2008	struct free_area *area;
2009	int current_order;
2010	int min_order = order;
2011	struct page *page;
2012	int fallback_mt;
2013	bool can_steal;
2014
2015	/*
2016	 * Do not steal pages from freelists belonging to other pageblocks
2017	 * i.e. orders < pageblock_order. If there are no local zones free,
2018	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2019	 */
2020	if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2021		min_order = pageblock_order;
2022
2023	/*
2024	 * Find the largest available free page in the other list. This roughly
2025	 * approximates finding the pageblock with the most free pages, which
2026	 * would be too costly to do exactly.
2027	 */
2028	for (current_order = MAX_PAGE_ORDER; current_order >= min_order;
2029				--current_order) {
2030		area = &(zone->free_area[current_order]);
2031		fallback_mt = find_suitable_fallback(area, current_order,
2032				start_migratetype, false, &can_steal);
2033		if (fallback_mt == -1)
2034			continue;
2035
2036		/*
2037		 * We cannot steal all free pages from the pageblock and the
2038		 * requested migratetype is movable. In that case it's better to
2039		 * steal and split the smallest available page instead of the
2040		 * largest available page, because even if the next movable
2041		 * allocation falls back into a different pageblock than this
2042		 * one, it won't cause permanent fragmentation.
2043		 */
2044		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2045					&& current_order > order)
2046			goto find_smallest;
2047
2048		goto do_steal;
2049	}
2050
2051	return false;
2052
2053find_smallest:
2054	for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) {
 
2055		area = &(zone->free_area[current_order]);
2056		fallback_mt = find_suitable_fallback(area, current_order,
2057				start_migratetype, false, &can_steal);
2058		if (fallback_mt != -1)
2059			break;
2060	}
2061
2062	/*
2063	 * This should not happen - we already found a suitable fallback
2064	 * when looking for the largest page.
2065	 */
2066	VM_BUG_ON(current_order > MAX_PAGE_ORDER);
2067
2068do_steal:
2069	page = get_page_from_free_area(area, fallback_mt);
 
2070
2071	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2072								can_steal);
2073
2074	trace_mm_page_alloc_extfrag(page, order, current_order,
2075		start_migratetype, fallback_mt);
2076
2077	return true;
2078
2079}
2080
2081/*
2082 * Do the hard work of removing an element from the buddy allocator.
2083 * Call me with the zone->lock already held.
2084 */
2085static __always_inline struct page *
2086__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2087						unsigned int alloc_flags)
2088{
2089	struct page *page;
2090
2091	if (IS_ENABLED(CONFIG_CMA)) {
2092		/*
2093		 * Balance movable allocations between regular and CMA areas by
2094		 * allocating from CMA when over half of the zone's free memory
2095		 * is in the CMA area.
2096		 */
2097		if (alloc_flags & ALLOC_CMA &&
2098		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2099		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2100			page = __rmqueue_cma_fallback(zone, order);
2101			if (page)
2102				return page;
2103		}
2104	}
2105retry:
2106	page = __rmqueue_smallest(zone, order, migratetype);
2107	if (unlikely(!page)) {
2108		if (alloc_flags & ALLOC_CMA)
2109			page = __rmqueue_cma_fallback(zone, order);
2110
2111		if (!page && __rmqueue_fallback(zone, order, migratetype,
2112								alloc_flags))
2113			goto retry;
2114	}
 
 
2115	return page;
2116}
2117
2118/*
2119 * Obtain a specified number of elements from the buddy allocator, all under
2120 * a single hold of the lock, for efficiency.  Add them to the supplied list.
2121 * Returns the number of new pages which were placed at *list.
2122 */
2123static int rmqueue_bulk(struct zone *zone, unsigned int order,
2124			unsigned long count, struct list_head *list,
2125			int migratetype, unsigned int alloc_flags)
2126{
2127	unsigned long flags;
2128	int i;
2129
2130	spin_lock_irqsave(&zone->lock, flags);
2131	for (i = 0; i < count; ++i) {
2132		struct page *page = __rmqueue(zone, order, migratetype,
2133								alloc_flags);
2134		if (unlikely(page == NULL))
2135			break;
2136
 
 
 
2137		/*
2138		 * Split buddy pages returned by expand() are received here in
2139		 * physical page order. The page is added to the tail of
2140		 * caller's list. From the callers perspective, the linked list
2141		 * is ordered by page number under some conditions. This is
2142		 * useful for IO devices that can forward direction from the
2143		 * head, thus also in the physical page order. This is useful
2144		 * for IO devices that can merge IO requests if the physical
2145		 * pages are ordered properly.
2146		 */
2147		list_add_tail(&page->pcp_list, list);
 
2148		if (is_migrate_cma(get_pcppage_migratetype(page)))
2149			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2150					      -(1 << order));
2151	}
2152
 
 
 
 
 
 
2153	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2154	spin_unlock_irqrestore(&zone->lock, flags);
2155
2156	return i;
2157}
2158
2159/*
2160 * Called from the vmstat counter updater to decay the PCP high.
2161 * Return whether there are addition works to do.
2162 */
2163int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp)
2164{
2165	int high_min, to_drain, batch;
2166	int todo = 0;
2167
2168	high_min = READ_ONCE(pcp->high_min);
2169	batch = READ_ONCE(pcp->batch);
2170	/*
2171	 * Decrease pcp->high periodically to try to free possible
2172	 * idle PCP pages.  And, avoid to free too many pages to
2173	 * control latency.  This caps pcp->high decrement too.
2174	 */
2175	if (pcp->high > high_min) {
2176		pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2177				 pcp->high - (pcp->high >> 3), high_min);
2178		if (pcp->high > high_min)
2179			todo++;
2180	}
2181
2182	to_drain = pcp->count - pcp->high;
2183	if (to_drain > 0) {
2184		spin_lock(&pcp->lock);
2185		free_pcppages_bulk(zone, to_drain, pcp, 0);
2186		spin_unlock(&pcp->lock);
2187		todo++;
2188	}
2189
2190	return todo;
2191}
2192
2193#ifdef CONFIG_NUMA
2194/*
2195 * Called from the vmstat counter updater to drain pagesets of this
2196 * currently executing processor on remote nodes after they have
2197 * expired.
 
 
 
2198 */
2199void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2200{
 
2201	int to_drain, batch;
2202
 
2203	batch = READ_ONCE(pcp->batch);
2204	to_drain = min(pcp->count, batch);
2205	if (to_drain > 0) {
2206		spin_lock(&pcp->lock);
2207		free_pcppages_bulk(zone, to_drain, pcp, 0);
2208		spin_unlock(&pcp->lock);
2209	}
2210}
2211#endif
2212
2213/*
2214 * Drain pcplists of the indicated processor and zone.
 
 
 
 
2215 */
2216static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2217{
 
 
2218	struct per_cpu_pages *pcp;
2219
2220	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2221	if (pcp->count) {
2222		spin_lock(&pcp->lock);
2223		free_pcppages_bulk(zone, pcp->count, pcp, 0);
2224		spin_unlock(&pcp->lock);
2225	}
 
2226}
2227
2228/*
2229 * Drain pcplists of all zones on the indicated processor.
 
 
 
 
2230 */
2231static void drain_pages(unsigned int cpu)
2232{
2233	struct zone *zone;
2234
2235	for_each_populated_zone(zone) {
2236		drain_pages_zone(cpu, zone);
2237	}
2238}
2239
2240/*
2241 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
 
 
 
2242 */
2243void drain_local_pages(struct zone *zone)
2244{
2245	int cpu = smp_processor_id();
2246
2247	if (zone)
2248		drain_pages_zone(cpu, zone);
2249	else
2250		drain_pages(cpu);
2251}
2252
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2253/*
2254 * The implementation of drain_all_pages(), exposing an extra parameter to
2255 * drain on all cpus.
2256 *
2257 * drain_all_pages() is optimized to only execute on cpus where pcplists are
2258 * not empty. The check for non-emptiness can however race with a free to
2259 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2260 * that need the guarantee that every CPU has drained can disable the
2261 * optimizing racy check.
2262 */
2263static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2264{
2265	int cpu;
2266
2267	/*
2268	 * Allocate in the BSS so we won't require allocation in
2269	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2270	 */
2271	static cpumask_t cpus_with_pcps;
2272
2273	/*
 
 
 
 
 
 
 
2274	 * Do not drain if one is already in progress unless it's specific to
2275	 * a zone. Such callers are primarily CMA and memory hotplug and need
2276	 * the drain to be complete when the call returns.
2277	 */
2278	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2279		if (!zone)
2280			return;
2281		mutex_lock(&pcpu_drain_mutex);
2282	}
2283
2284	/*
2285	 * We don't care about racing with CPU hotplug event
2286	 * as offline notification will cause the notified
2287	 * cpu to drain that CPU pcps and on_each_cpu_mask
2288	 * disables preemption as part of its processing
2289	 */
2290	for_each_online_cpu(cpu) {
2291		struct per_cpu_pages *pcp;
2292		struct zone *z;
2293		bool has_pcps = false;
2294
2295		if (force_all_cpus) {
2296			/*
2297			 * The pcp.count check is racy, some callers need a
2298			 * guarantee that no cpu is missed.
2299			 */
2300			has_pcps = true;
2301		} else if (zone) {
2302			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2303			if (pcp->count)
2304				has_pcps = true;
2305		} else {
2306			for_each_populated_zone(z) {
2307				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2308				if (pcp->count) {
2309					has_pcps = true;
2310					break;
2311				}
2312			}
2313		}
2314
2315		if (has_pcps)
2316			cpumask_set_cpu(cpu, &cpus_with_pcps);
2317		else
2318			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2319	}
2320
2321	for_each_cpu(cpu, &cpus_with_pcps) {
2322		if (zone)
2323			drain_pages_zone(cpu, zone);
2324		else
2325			drain_pages(cpu);
2326	}
 
 
2327
2328	mutex_unlock(&pcpu_drain_mutex);
2329}
2330
 
 
2331/*
2332 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2333 *
2334 * When zone parameter is non-NULL, spill just the single zone's pages.
2335 */
2336void drain_all_pages(struct zone *zone)
 
 
2337{
2338	__drain_all_pages(zone, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2339}
 
2340
2341static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
2342							unsigned int order)
2343{
2344	int migratetype;
2345
2346	if (!free_pages_prepare(page, order, FPI_NONE))
2347		return false;
2348
2349	migratetype = get_pfnblock_migratetype(page, pfn);
2350	set_pcppage_migratetype(page, migratetype);
2351	return true;
2352}
2353
2354static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high)
2355{
2356	int min_nr_free, max_nr_free;
 
 
2357
2358	/* Free as much as possible if batch freeing high-order pages. */
2359	if (unlikely(free_high))
2360		return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX);
2361
2362	/* Check for PCP disabled or boot pageset */
2363	if (unlikely(high < batch))
2364		return 1;
2365
2366	/* Leave at least pcp->batch pages on the list */
2367	min_nr_free = batch;
2368	max_nr_free = high - batch;
2369
2370	/*
2371	 * Increase the batch number to the number of the consecutive
2372	 * freed pages to reduce zone lock contention.
 
 
 
2373	 */
2374	batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free);
2375
2376	return batch;
2377}
2378
2379static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2380		       int batch, bool free_high)
2381{
2382	int high, high_min, high_max;
2383
2384	high_min = READ_ONCE(pcp->high_min);
2385	high_max = READ_ONCE(pcp->high_max);
2386	high = pcp->high = clamp(pcp->high, high_min, high_max);
2387
2388	if (unlikely(!high))
2389		return 0;
2390
2391	if (unlikely(free_high)) {
2392		pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2393				high_min);
2394		return 0;
2395	}
2396
2397	/*
2398	 * If reclaim is active, limit the number of pages that can be
2399	 * stored on pcp lists
2400	 */
2401	if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) {
2402		int free_count = max_t(int, pcp->free_count, batch);
2403
2404		pcp->high = max(high - free_count, high_min);
2405		return min(batch << 2, pcp->high);
2406	}
2407
2408	if (high_min == high_max)
2409		return high;
2410
2411	if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) {
2412		int free_count = max_t(int, pcp->free_count, batch);
2413
2414		pcp->high = max(high - free_count, high_min);
2415		high = max(pcp->count, high_min);
2416	} else if (pcp->count >= high) {
2417		int need_high = pcp->free_count + batch;
2418
2419		/* pcp->high should be large enough to hold batch freed pages */
2420		if (pcp->high < need_high)
2421			pcp->high = clamp(need_high, high_min, high_max);
2422	}
2423
2424	return high;
2425}
2426
2427static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
2428				   struct page *page, int migratetype,
2429				   unsigned int order)
2430{
2431	int high, batch;
2432	int pindex;
2433	bool free_high = false;
2434
2435	/*
2436	 * On freeing, reduce the number of pages that are batch allocated.
2437	 * See nr_pcp_alloc() where alloc_factor is increased for subsequent
2438	 * allocations.
2439	 */
2440	pcp->alloc_factor >>= 1;
2441	__count_vm_events(PGFREE, 1 << order);
2442	pindex = order_to_pindex(migratetype, order);
2443	list_add(&page->pcp_list, &pcp->lists[pindex]);
2444	pcp->count += 1 << order;
2445
2446	batch = READ_ONCE(pcp->batch);
2447	/*
2448	 * As high-order pages other than THP's stored on PCP can contribute
2449	 * to fragmentation, limit the number stored when PCP is heavily
2450	 * freeing without allocation. The remainder after bulk freeing
2451	 * stops will be drained from vmstat refresh context.
2452	 */
2453	if (order && order <= PAGE_ALLOC_COSTLY_ORDER) {
2454		free_high = (pcp->free_count >= batch &&
2455			     (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) &&
2456			     (!(pcp->flags & PCPF_FREE_HIGH_BATCH) ||
2457			      pcp->count >= READ_ONCE(batch)));
2458		pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER;
2459	} else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) {
2460		pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER;
2461	}
2462	if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX))
2463		pcp->free_count += (1 << order);
2464	high = nr_pcp_high(pcp, zone, batch, free_high);
2465	if (pcp->count >= high) {
2466		free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high),
2467				   pcp, pindex);
2468		if (test_bit(ZONE_BELOW_HIGH, &zone->flags) &&
2469		    zone_watermark_ok(zone, 0, high_wmark_pages(zone),
2470				      ZONE_MOVABLE, 0))
2471			clear_bit(ZONE_BELOW_HIGH, &zone->flags);
2472	}
2473}
2474
2475/*
2476 * Free a pcp page
2477 */
2478void free_unref_page(struct page *page, unsigned int order)
2479{
2480	unsigned long __maybe_unused UP_flags;
2481	struct per_cpu_pages *pcp;
2482	struct zone *zone;
2483	unsigned long pfn = page_to_pfn(page);
2484	int migratetype, pcpmigratetype;
2485
2486	if (!free_unref_page_prepare(page, pfn, order))
2487		return;
2488
2489	/*
2490	 * We only track unmovable, reclaimable and movable on pcp lists.
2491	 * Place ISOLATE pages on the isolated list because they are being
2492	 * offlined but treat HIGHATOMIC and CMA as movable pages so we can
2493	 * get those areas back if necessary. Otherwise, we may have to free
2494	 * excessively into the page allocator
2495	 */
2496	migratetype = pcpmigratetype = get_pcppage_migratetype(page);
2497	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
2498		if (unlikely(is_migrate_isolate(migratetype))) {
2499			free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
2500			return;
2501		}
2502		pcpmigratetype = MIGRATE_MOVABLE;
2503	}
2504
2505	zone = page_zone(page);
2506	pcp_trylock_prepare(UP_flags);
2507	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2508	if (pcp) {
2509		free_unref_page_commit(zone, pcp, page, pcpmigratetype, order);
2510		pcp_spin_unlock(pcp);
2511	} else {
2512		free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
2513	}
2514	pcp_trylock_finish(UP_flags);
2515}
2516
2517/*
2518 * Free a list of 0-order pages
2519 */
2520void free_unref_page_list(struct list_head *list)
2521{
2522	unsigned long __maybe_unused UP_flags;
2523	struct page *page, *next;
2524	struct per_cpu_pages *pcp = NULL;
2525	struct zone *locked_zone = NULL;
2526	int batch_count = 0;
2527	int migratetype;
2528
2529	/* Prepare pages for freeing */
2530	list_for_each_entry_safe(page, next, list, lru) {
2531		unsigned long pfn = page_to_pfn(page);
2532		if (!free_unref_page_prepare(page, pfn, 0)) {
2533			list_del(&page->lru);
2534			continue;
2535		}
2536
2537		/*
2538		 * Free isolated pages directly to the allocator, see
2539		 * comment in free_unref_page.
2540		 */
2541		migratetype = get_pcppage_migratetype(page);
2542		if (unlikely(is_migrate_isolate(migratetype))) {
2543			list_del(&page->lru);
2544			free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
2545			continue;
2546		}
2547	}
2548
 
2549	list_for_each_entry_safe(page, next, list, lru) {
2550		struct zone *zone = page_zone(page);
2551
2552		list_del(&page->lru);
2553		migratetype = get_pcppage_migratetype(page);
 
2554
2555		/*
2556		 * Either different zone requiring a different pcp lock or
2557		 * excessive lock hold times when freeing a large list of
2558		 * pages.
2559		 */
2560		if (zone != locked_zone || batch_count == SWAP_CLUSTER_MAX) {
2561			if (pcp) {
2562				pcp_spin_unlock(pcp);
2563				pcp_trylock_finish(UP_flags);
2564			}
2565
2566			batch_count = 0;
2567
2568			/*
2569			 * trylock is necessary as pages may be getting freed
2570			 * from IRQ or SoftIRQ context after an IO completion.
2571			 */
2572			pcp_trylock_prepare(UP_flags);
2573			pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2574			if (unlikely(!pcp)) {
2575				pcp_trylock_finish(UP_flags);
2576				free_one_page(zone, page, page_to_pfn(page),
2577					      0, migratetype, FPI_NONE);
2578				locked_zone = NULL;
2579				continue;
2580			}
2581			locked_zone = zone;
2582		}
2583
2584		/*
2585		 * Non-isolated types over MIGRATE_PCPTYPES get added
2586		 * to the MIGRATE_MOVABLE pcp list.
2587		 */
2588		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
2589			migratetype = MIGRATE_MOVABLE;
2590
2591		trace_mm_page_free_batched(page);
2592		free_unref_page_commit(zone, pcp, page, migratetype, 0);
2593		batch_count++;
2594	}
2595
2596	if (pcp) {
2597		pcp_spin_unlock(pcp);
2598		pcp_trylock_finish(UP_flags);
2599	}
 
2600}
2601
2602/*
2603 * split_page takes a non-compound higher-order page, and splits it into
2604 * n (1<<order) sub-pages: page[0..n]
2605 * Each sub-page must be freed individually.
2606 *
2607 * Note: this is probably too low level an operation for use in drivers.
2608 * Please consult with lkml before using this in your driver.
2609 */
2610void split_page(struct page *page, unsigned int order)
2611{
2612	int i;
2613
2614	VM_BUG_ON_PAGE(PageCompound(page), page);
2615	VM_BUG_ON_PAGE(!page_count(page), page);
2616
2617	for (i = 1; i < (1 << order); i++)
2618		set_page_refcounted(page + i);
2619	split_page_owner(page, 1 << order);
2620	split_page_memcg(page, 1 << order);
2621}
2622EXPORT_SYMBOL_GPL(split_page);
2623
2624int __isolate_free_page(struct page *page, unsigned int order)
2625{
2626	struct zone *zone = page_zone(page);
2627	int mt = get_pageblock_migratetype(page);
 
 
 
 
 
 
2628
2629	if (!is_migrate_isolate(mt)) {
2630		unsigned long watermark;
2631		/*
2632		 * Obey watermarks as if the page was being allocated. We can
2633		 * emulate a high-order watermark check with a raised order-0
2634		 * watermark, because we already know our high-order page
2635		 * exists.
2636		 */
2637		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
2638		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2639			return 0;
2640
2641		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2642	}
2643
2644	del_page_from_free_list(page, zone, order);
 
 
 
2645
2646	/*
2647	 * Set the pageblock if the isolated page is at least half of a
2648	 * pageblock
2649	 */
2650	if (order >= pageblock_order - 1) {
2651		struct page *endpage = page + (1 << order) - 1;
2652		for (; page < endpage; page += pageblock_nr_pages) {
2653			int mt = get_pageblock_migratetype(page);
2654			/*
2655			 * Only change normal pageblocks (i.e., they can merge
2656			 * with others)
2657			 */
2658			if (migratetype_is_mergeable(mt))
2659				set_pageblock_migratetype(page,
2660							  MIGRATE_MOVABLE);
2661		}
2662	}
2663
 
2664	return 1UL << order;
2665}
2666
2667/**
2668 * __putback_isolated_page - Return a now-isolated page back where we got it
2669 * @page: Page that was isolated
2670 * @order: Order of the isolated page
2671 * @mt: The page's pageblock's migratetype
2672 *
2673 * This function is meant to return a page pulled from the free lists via
2674 * __isolate_free_page back to the free lists they were pulled from.
2675 */
2676void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2677{
2678	struct zone *zone = page_zone(page);
2679
2680	/* zone lock should be held when this function is called */
2681	lockdep_assert_held(&zone->lock);
2682
2683	/* Return isolated page to tail of freelist. */
2684	__free_one_page(page, page_to_pfn(page), zone, order, mt,
2685			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
2686}
2687
2688/*
2689 * Update NUMA hit/miss statistics
 
 
2690 */
2691static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2692				   long nr_account)
2693{
2694#ifdef CONFIG_NUMA
2695	enum numa_stat_item local_stat = NUMA_LOCAL;
2696
2697	/* skip numa counters update if numa stats is disabled */
2698	if (!static_branch_likely(&vm_numa_stat_key))
2699		return;
2700
2701	if (zone_to_nid(z) != numa_node_id())
2702		local_stat = NUMA_OTHER;
2703
2704	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2705		__count_numa_events(z, NUMA_HIT, nr_account);
2706	else {
2707		__count_numa_events(z, NUMA_MISS, nr_account);
2708		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
2709	}
2710	__count_numa_events(z, local_stat, nr_account);
2711#endif
2712}
2713
2714static __always_inline
2715struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2716			   unsigned int order, unsigned int alloc_flags,
2717			   int migratetype)
2718{
2719	struct page *page;
2720	unsigned long flags;
2721
2722	do {
2723		page = NULL;
2724		spin_lock_irqsave(&zone->lock, flags);
2725		if (alloc_flags & ALLOC_HIGHATOMIC)
2726			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2727		if (!page) {
2728			page = __rmqueue(zone, order, migratetype, alloc_flags);
2729
2730			/*
2731			 * If the allocation fails, allow OOM handling access
2732			 * to HIGHATOMIC reserves as failing now is worse than
2733			 * failing a high-order atomic allocation in the
2734			 * future.
2735			 */
2736			if (!page && (alloc_flags & ALLOC_OOM))
2737				page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2738
2739			if (!page) {
2740				spin_unlock_irqrestore(&zone->lock, flags);
2741				return NULL;
2742			}
2743		}
2744		__mod_zone_freepage_state(zone, -(1 << order),
2745					  get_pcppage_migratetype(page));
2746		spin_unlock_irqrestore(&zone->lock, flags);
2747	} while (check_new_pages(page, order));
2748
2749	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2750	zone_statistics(preferred_zone, zone, 1);
2751
2752	return page;
2753}
2754
2755static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order)
2756{
2757	int high, base_batch, batch, max_nr_alloc;
2758	int high_max, high_min;
2759
2760	base_batch = READ_ONCE(pcp->batch);
2761	high_min = READ_ONCE(pcp->high_min);
2762	high_max = READ_ONCE(pcp->high_max);
2763	high = pcp->high = clamp(pcp->high, high_min, high_max);
2764
2765	/* Check for PCP disabled or boot pageset */
2766	if (unlikely(high < base_batch))
2767		return 1;
2768
2769	if (order)
2770		batch = base_batch;
2771	else
2772		batch = (base_batch << pcp->alloc_factor);
2773
2774	/*
2775	 * If we had larger pcp->high, we could avoid to allocate from
2776	 * zone.
2777	 */
2778	if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags))
2779		high = pcp->high = min(high + batch, high_max);
2780
2781	if (!order) {
2782		max_nr_alloc = max(high - pcp->count - base_batch, base_batch);
2783		/*
2784		 * Double the number of pages allocated each time there is
2785		 * subsequent allocation of order-0 pages without any freeing.
2786		 */
2787		if (batch <= max_nr_alloc &&
2788		    pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX)
2789			pcp->alloc_factor++;
2790		batch = min(batch, max_nr_alloc);
2791	}
2792
2793	/*
2794	 * Scale batch relative to order if batch implies free pages
2795	 * can be stored on the PCP. Batch can be 1 for small zones or
2796	 * for boot pagesets which should never store free pages as
2797	 * the pages may belong to arbitrary zones.
2798	 */
2799	if (batch > 1)
2800		batch = max(batch >> order, 2);
2801
2802	return batch;
2803}
2804
2805/* Remove page from the per-cpu list, caller must protect the list */
2806static inline
2807struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
2808			int migratetype,
2809			unsigned int alloc_flags,
2810			struct per_cpu_pages *pcp,
2811			struct list_head *list)
2812{
2813	struct page *page;
2814
2815	do {
2816		if (list_empty(list)) {
2817			int batch = nr_pcp_alloc(pcp, zone, order);
2818			int alloced;
2819
2820			alloced = rmqueue_bulk(zone, order,
2821					batch, list,
2822					migratetype, alloc_flags);
2823
2824			pcp->count += alloced << order;
2825			if (unlikely(list_empty(list)))
2826				return NULL;
2827		}
2828
2829		page = list_first_entry(list, struct page, pcp_list);
2830		list_del(&page->pcp_list);
2831		pcp->count -= 1 << order;
2832	} while (check_new_pages(page, order));
2833
2834	return page;
2835}
2836
2837/* Lock and remove page from the per-cpu list */
2838static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2839			struct zone *zone, unsigned int order,
2840			int migratetype, unsigned int alloc_flags)
2841{
2842	struct per_cpu_pages *pcp;
2843	struct list_head *list;
2844	struct page *page;
2845	unsigned long __maybe_unused UP_flags;
2846
2847	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
2848	pcp_trylock_prepare(UP_flags);
2849	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2850	if (!pcp) {
2851		pcp_trylock_finish(UP_flags);
2852		return NULL;
2853	}
2854
2855	/*
2856	 * On allocation, reduce the number of pages that are batch freed.
2857	 * See nr_pcp_free() where free_factor is increased for subsequent
2858	 * frees.
2859	 */
2860	pcp->free_count >>= 1;
2861	list = &pcp->lists[order_to_pindex(migratetype, order)];
2862	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
2863	pcp_spin_unlock(pcp);
2864	pcp_trylock_finish(UP_flags);
2865	if (page) {
2866		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2867		zone_statistics(preferred_zone, zone, 1);
2868	}
 
2869	return page;
2870}
2871
2872/*
2873 * Allocate a page from the given zone.
2874 * Use pcplists for THP or "cheap" high-order allocations.
2875 */
2876
2877/*
2878 * Do not instrument rmqueue() with KMSAN. This function may call
2879 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
2880 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
2881 * may call rmqueue() again, which will result in a deadlock.
2882 */
2883__no_sanitize_memory
2884static inline
2885struct page *rmqueue(struct zone *preferred_zone,
2886			struct zone *zone, unsigned int order,
2887			gfp_t gfp_flags, unsigned int alloc_flags,
2888			int migratetype)
2889{
 
2890	struct page *page;
2891
 
 
 
 
 
 
2892	/*
2893	 * We most definitely don't want callers attempting to
2894	 * allocate greater than order-1 page units with __GFP_NOFAIL.
2895	 */
2896	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
 
2897
2898	if (likely(pcp_allowed_order(order))) {
2899		page = rmqueue_pcplist(preferred_zone, zone, order,
2900				       migratetype, alloc_flags);
2901		if (likely(page))
2902			goto out;
2903	}
 
 
 
 
 
 
 
 
 
2904
2905	page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
2906							migratetype);
 
2907
2908out:
2909	/* Separate test+clear to avoid unnecessary atomics */
2910	if ((alloc_flags & ALLOC_KSWAPD) &&
2911	    unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
2912		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2913		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
2914	}
2915
2916	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2917	return page;
 
 
 
 
2918}
2919
2920noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2921{
2922	return __should_fail_alloc_page(gfp_mask, order);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2923}
2924ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
2925
2926static inline long __zone_watermark_unusable_free(struct zone *z,
2927				unsigned int order, unsigned int alloc_flags)
 
2928{
2929	long unusable_free = (1 << order) - 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2930
2931	/*
2932	 * If the caller does not have rights to reserves below the min
2933	 * watermark then subtract the high-atomic reserves. This will
2934	 * over-estimate the size of the atomic reserve but it avoids a search.
2935	 */
2936	if (likely(!(alloc_flags & ALLOC_RESERVES)))
2937		unusable_free += z->nr_reserved_highatomic;
2938
2939#ifdef CONFIG_CMA
2940	/* If allocation can't use CMA areas don't use free CMA pages */
2941	if (!(alloc_flags & ALLOC_CMA))
2942		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
2943#endif
2944#ifdef CONFIG_UNACCEPTED_MEMORY
2945	unusable_free += zone_page_state(z, NR_UNACCEPTED);
2946#endif
2947
2948	return unusable_free;
 
 
2949}
2950
 
 
2951/*
2952 * Return true if free base pages are above 'mark'. For high-order checks it
2953 * will return true of the order-0 watermark is reached and there is at least
2954 * one free page of a suitable size. Checking now avoids taking the zone lock
2955 * to check in the allocation paths if no pages are free.
2956 */
2957bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2958			 int highest_zoneidx, unsigned int alloc_flags,
2959			 long free_pages)
2960{
2961	long min = mark;
2962	int o;
 
2963
2964	/* free_pages may go negative - that's OK */
2965	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
2966
2967	if (unlikely(alloc_flags & ALLOC_RESERVES)) {
2968		/*
2969		 * __GFP_HIGH allows access to 50% of the min reserve as well
2970		 * as OOM.
2971		 */
2972		if (alloc_flags & ALLOC_MIN_RESERVE) {
2973			min -= min / 2;
2974
2975			/*
2976			 * Non-blocking allocations (e.g. GFP_ATOMIC) can
2977			 * access more reserves than just __GFP_HIGH. Other
2978			 * non-blocking allocations requests such as GFP_NOWAIT
2979			 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
2980			 * access to the min reserve.
2981			 */
2982			if (alloc_flags & ALLOC_NON_BLOCK)
2983				min -= min / 4;
2984		}
2985
 
 
 
 
 
 
 
 
2986		/*
2987		 * OOM victims can try even harder than the normal reserve
2988		 * users on the grounds that it's definitely going to be in
2989		 * the exit path shortly and free memory. Any allocation it
2990		 * makes during the free path will be small and short-lived.
2991		 */
2992		if (alloc_flags & ALLOC_OOM)
2993			min -= min / 2;
 
 
2994	}
2995
 
 
 
 
 
 
 
2996	/*
2997	 * Check watermarks for an order-0 allocation request. If these
2998	 * are not met, then a high-order request also cannot go ahead
2999	 * even if a suitable page happened to be free.
3000	 */
3001	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3002		return false;
3003
3004	/* If this is an order-0 request then the watermark is fine */
3005	if (!order)
3006		return true;
3007
3008	/* For a high-order request, check at least one suitable page is free */
3009	for (o = order; o < NR_PAGE_ORDERS; o++) {
3010		struct free_area *area = &z->free_area[o];
3011		int mt;
3012
3013		if (!area->nr_free)
3014			continue;
3015
3016		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3017			if (!free_area_empty(area, mt))
3018				return true;
3019		}
3020
3021#ifdef CONFIG_CMA
3022		if ((alloc_flags & ALLOC_CMA) &&
3023		    !free_area_empty(area, MIGRATE_CMA)) {
3024			return true;
3025		}
3026#endif
3027		if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
3028		    !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
3029			return true;
3030		}
3031	}
3032	return false;
3033}
3034
3035bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3036		      int highest_zoneidx, unsigned int alloc_flags)
3037{
3038	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3039					zone_page_state(z, NR_FREE_PAGES));
3040}
3041
3042static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3043				unsigned long mark, int highest_zoneidx,
3044				unsigned int alloc_flags, gfp_t gfp_mask)
3045{
3046	long free_pages;
 
3047
3048	free_pages = zone_page_state(z, NR_FREE_PAGES);
 
 
 
 
3049
3050	/*
3051	 * Fast check for order-0 only. If this fails then the reserves
3052	 * need to be calculated.
 
 
 
3053	 */
3054	if (!order) {
3055		long usable_free;
3056		long reserved;
3057
3058		usable_free = free_pages;
3059		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
3060
3061		/* reserved may over estimate high-atomic reserves. */
3062		usable_free -= min(usable_free, reserved);
3063		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
3064			return true;
3065	}
3066
3067	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3068					free_pages))
3069		return true;
3070
3071	/*
3072	 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
3073	 * when checking the min watermark. The min watermark is the
3074	 * point where boosting is ignored so that kswapd is woken up
3075	 * when below the low watermark.
3076	 */
3077	if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
3078		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3079		mark = z->_watermark[WMARK_MIN];
3080		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3081					alloc_flags, free_pages);
3082	}
3083
3084	return false;
3085}
3086
3087bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3088			unsigned long mark, int highest_zoneidx)
3089{
3090	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3091
3092	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3093		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3094
3095	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3096								free_pages);
3097}
3098
3099#ifdef CONFIG_NUMA
3100int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3101
3102static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3103{
3104	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3105				node_reclaim_distance;
3106}
3107#else	/* CONFIG_NUMA */
3108static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3109{
3110	return true;
3111}
3112#endif	/* CONFIG_NUMA */
3113
3114/*
3115 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3116 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3117 * premature use of a lower zone may cause lowmem pressure problems that
3118 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3119 * probably too small. It only makes sense to spread allocations to avoid
3120 * fragmentation between the Normal and DMA32 zones.
3121 */
3122static inline unsigned int
3123alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3124{
3125	unsigned int alloc_flags;
3126
3127	/*
3128	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3129	 * to save a branch.
3130	 */
3131	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3132
3133#ifdef CONFIG_ZONE_DMA32
3134	if (!zone)
3135		return alloc_flags;
3136
3137	if (zone_idx(zone) != ZONE_NORMAL)
3138		return alloc_flags;
3139
3140	/*
3141	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3142	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3143	 * on UMA that if Normal is populated then so is DMA32.
3144	 */
3145	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3146	if (nr_online_nodes > 1 && !populated_zone(--zone))
3147		return alloc_flags;
3148
3149	alloc_flags |= ALLOC_NOFRAGMENT;
3150#endif /* CONFIG_ZONE_DMA32 */
3151	return alloc_flags;
3152}
3153
3154/* Must be called after current_gfp_context() which can change gfp_mask */
3155static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3156						  unsigned int alloc_flags)
3157{
3158#ifdef CONFIG_CMA
3159	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3160		alloc_flags |= ALLOC_CMA;
3161#endif
3162	return alloc_flags;
3163}
3164
3165/*
3166 * get_page_from_freelist goes through the zonelist trying to allocate
3167 * a page.
3168 */
3169static struct page *
3170get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3171						const struct alloc_context *ac)
3172{
3173	struct zoneref *z;
3174	struct zone *zone;
3175	struct pglist_data *last_pgdat = NULL;
3176	bool last_pgdat_dirty_ok = false;
3177	bool no_fallback;
3178
3179retry:
3180	/*
3181	 * Scan zonelist, looking for a zone with enough free.
3182	 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
3183	 */
3184	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3185	z = ac->preferred_zoneref;
3186	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3187					ac->nodemask) {
3188		struct page *page;
3189		unsigned long mark;
3190
3191		if (cpusets_enabled() &&
3192			(alloc_flags & ALLOC_CPUSET) &&
3193			!__cpuset_zone_allowed(zone, gfp_mask))
3194				continue;
3195		/*
3196		 * When allocating a page cache page for writing, we
3197		 * want to get it from a node that is within its dirty
3198		 * limit, such that no single node holds more than its
3199		 * proportional share of globally allowed dirty pages.
3200		 * The dirty limits take into account the node's
3201		 * lowmem reserves and high watermark so that kswapd
3202		 * should be able to balance it without having to
3203		 * write pages from its LRU list.
3204		 *
3205		 * XXX: For now, allow allocations to potentially
3206		 * exceed the per-node dirty limit in the slowpath
3207		 * (spread_dirty_pages unset) before going into reclaim,
3208		 * which is important when on a NUMA setup the allowed
3209		 * nodes are together not big enough to reach the
3210		 * global limit.  The proper fix for these situations
3211		 * will require awareness of nodes in the
3212		 * dirty-throttling and the flusher threads.
3213		 */
3214		if (ac->spread_dirty_pages) {
3215			if (last_pgdat != zone->zone_pgdat) {
3216				last_pgdat = zone->zone_pgdat;
3217				last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3218			}
3219
3220			if (!last_pgdat_dirty_ok)
 
3221				continue;
3222		}
3223
3224		if (no_fallback && nr_online_nodes > 1 &&
3225		    zone != ac->preferred_zoneref->zone) {
3226			int local_nid;
3227
3228			/*
3229			 * If moving to a remote node, retry but allow
3230			 * fragmenting fallbacks. Locality is more important
3231			 * than fragmentation avoidance.
3232			 */
3233			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3234			if (zone_to_nid(zone) != local_nid) {
3235				alloc_flags &= ~ALLOC_NOFRAGMENT;
3236				goto retry;
3237			}
3238		}
3239
3240		/*
3241		 * Detect whether the number of free pages is below high
3242		 * watermark.  If so, we will decrease pcp->high and free
3243		 * PCP pages in free path to reduce the possibility of
3244		 * premature page reclaiming.  Detection is done here to
3245		 * avoid to do that in hotter free path.
3246		 */
3247		if (test_bit(ZONE_BELOW_HIGH, &zone->flags))
3248			goto check_alloc_wmark;
3249
3250		mark = high_wmark_pages(zone);
3251		if (zone_watermark_fast(zone, order, mark,
3252					ac->highest_zoneidx, alloc_flags,
3253					gfp_mask))
3254			goto try_this_zone;
3255		else
3256			set_bit(ZONE_BELOW_HIGH, &zone->flags);
3257
3258check_alloc_wmark:
3259		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3260		if (!zone_watermark_fast(zone, order, mark,
3261				       ac->highest_zoneidx, alloc_flags,
3262				       gfp_mask)) {
3263			int ret;
3264
3265			if (has_unaccepted_memory()) {
3266				if (try_to_accept_memory(zone, order))
3267					goto try_this_zone;
3268			}
3269
3270#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3271			/*
3272			 * Watermark failed for this zone, but see if we can
3273			 * grow this zone if it contains deferred pages.
3274			 */
3275			if (deferred_pages_enabled()) {
3276				if (_deferred_grow_zone(zone, order))
3277					goto try_this_zone;
3278			}
3279#endif
3280			/* Checked here to keep the fast path fast */
3281			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3282			if (alloc_flags & ALLOC_NO_WATERMARKS)
3283				goto try_this_zone;
3284
3285			if (!node_reclaim_enabled() ||
3286			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3287				continue;
3288
3289			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3290			switch (ret) {
3291			case NODE_RECLAIM_NOSCAN:
3292				/* did not scan */
3293				continue;
3294			case NODE_RECLAIM_FULL:
3295				/* scanned but unreclaimable */
3296				continue;
3297			default:
3298				/* did we reclaim enough */
3299				if (zone_watermark_ok(zone, order, mark,
3300					ac->highest_zoneidx, alloc_flags))
3301					goto try_this_zone;
3302
3303				continue;
3304			}
3305		}
3306
3307try_this_zone:
3308		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3309				gfp_mask, alloc_flags, ac->migratetype);
3310		if (page) {
3311			prep_new_page(page, order, gfp_mask, alloc_flags);
3312
3313			/*
3314			 * If this is a high-order atomic allocation then check
3315			 * if the pageblock should be reserved for the future
3316			 */
3317			if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3318				reserve_highatomic_pageblock(page, zone);
3319
3320			return page;
3321		} else {
3322			if (has_unaccepted_memory()) {
3323				if (try_to_accept_memory(zone, order))
3324					goto try_this_zone;
3325			}
3326
3327#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3328			/* Try again if zone has deferred pages */
3329			if (deferred_pages_enabled()) {
3330				if (_deferred_grow_zone(zone, order))
3331					goto try_this_zone;
3332			}
3333#endif
3334		}
3335	}
3336
3337	/*
3338	 * It's possible on a UMA machine to get through all zones that are
3339	 * fragmented. If avoiding fragmentation, reset and try again.
3340	 */
3341	if (no_fallback) {
3342		alloc_flags &= ~ALLOC_NOFRAGMENT;
3343		goto retry;
3344	}
 
 
3345
3346	return NULL;
 
 
 
3347}
3348
3349static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3350{
3351	unsigned int filter = SHOW_MEM_FILTER_NODES;
 
 
 
 
3352
3353	/*
3354	 * This documents exceptions given to allocations in certain
3355	 * contexts that are allowed to allocate outside current's set
3356	 * of allowed nodes.
3357	 */
3358	if (!(gfp_mask & __GFP_NOMEMALLOC))
3359		if (tsk_is_oom_victim(current) ||
3360		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3361			filter &= ~SHOW_MEM_FILTER_NODES;
3362	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3363		filter &= ~SHOW_MEM_FILTER_NODES;
3364
3365	__show_mem(filter, nodemask, gfp_zone(gfp_mask));
3366}
3367
3368void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3369{
3370	struct va_format vaf;
3371	va_list args;
3372	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
 
3373
3374	if ((gfp_mask & __GFP_NOWARN) ||
3375	     !__ratelimit(&nopage_rs) ||
3376	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3377		return;
3378
3379	va_start(args, fmt);
3380	vaf.fmt = fmt;
3381	vaf.va = &args;
3382	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3383			current->comm, &vaf, gfp_mask, &gfp_mask,
3384			nodemask_pr_args(nodemask));
3385	va_end(args);
3386
3387	cpuset_print_current_mems_allowed();
3388	pr_cont("\n");
3389	dump_stack();
3390	warn_alloc_show_mem(gfp_mask, nodemask);
3391}
3392
3393static inline struct page *
3394__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3395			      unsigned int alloc_flags,
3396			      const struct alloc_context *ac)
3397{
3398	struct page *page;
3399
3400	page = get_page_from_freelist(gfp_mask, order,
3401			alloc_flags|ALLOC_CPUSET, ac);
3402	/*
3403	 * fallback to ignore cpuset restriction if our nodes
3404	 * are depleted
3405	 */
3406	if (!page)
3407		page = get_page_from_freelist(gfp_mask, order,
3408				alloc_flags, ac);
3409
3410	return page;
3411}
3412
3413static inline struct page *
3414__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3415	const struct alloc_context *ac, unsigned long *did_some_progress)
3416{
3417	struct oom_control oc = {
3418		.zonelist = ac->zonelist,
3419		.nodemask = ac->nodemask,
3420		.memcg = NULL,
3421		.gfp_mask = gfp_mask,
3422		.order = order,
3423	};
3424	struct page *page;
3425
3426	*did_some_progress = 0;
3427
3428	/*
3429	 * Acquire the oom lock.  If that fails, somebody else is
3430	 * making progress for us.
3431	 */
3432	if (!mutex_trylock(&oom_lock)) {
3433		*did_some_progress = 1;
3434		schedule_timeout_uninterruptible(1);
3435		return NULL;
3436	}
3437
3438	/*
3439	 * Go through the zonelist yet one more time, keep very high watermark
3440	 * here, this is only to catch a parallel oom killing, we must fail if
3441	 * we're still under heavy pressure. But make sure that this reclaim
3442	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3443	 * allocation which will never fail due to oom_lock already held.
3444	 */
3445	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3446				      ~__GFP_DIRECT_RECLAIM, order,
3447				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3448	if (page)
3449		goto out;
3450
3451	/* Coredumps can quickly deplete all memory reserves */
3452	if (current->flags & PF_DUMPCORE)
3453		goto out;
3454	/* The OOM killer will not help higher order allocs */
3455	if (order > PAGE_ALLOC_COSTLY_ORDER)
3456		goto out;
3457	/*
3458	 * We have already exhausted all our reclaim opportunities without any
3459	 * success so it is time to admit defeat. We will skip the OOM killer
3460	 * because it is very likely that the caller has a more reasonable
3461	 * fallback than shooting a random task.
3462	 *
3463	 * The OOM killer may not free memory on a specific node.
3464	 */
3465	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
3466		goto out;
3467	/* The OOM killer does not needlessly kill tasks for lowmem */
3468	if (ac->highest_zoneidx < ZONE_NORMAL)
3469		goto out;
3470	if (pm_suspended_storage())
3471		goto out;
3472	/*
3473	 * XXX: GFP_NOFS allocations should rather fail than rely on
3474	 * other request to make a forward progress.
3475	 * We are in an unfortunate situation where out_of_memory cannot
3476	 * do much for this context but let's try it to at least get
3477	 * access to memory reserved if the current task is killed (see
3478	 * out_of_memory). Once filesystems are ready to handle allocation
3479	 * failures more gracefully we should just bail out here.
3480	 */
3481
 
 
 
 
3482	/* Exhausted what can be done so it's blame time */
3483	if (out_of_memory(&oc) ||
3484	    WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
3485		*did_some_progress = 1;
3486
3487		/*
3488		 * Help non-failing allocations by giving them access to memory
3489		 * reserves
3490		 */
3491		if (gfp_mask & __GFP_NOFAIL)
3492			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3493					ALLOC_NO_WATERMARKS, ac);
3494	}
3495out:
3496	mutex_unlock(&oom_lock);
3497	return page;
3498}
3499
3500/*
3501 * Maximum number of compaction retries with a progress before OOM
3502 * killer is consider as the only way to move forward.
3503 */
3504#define MAX_COMPACT_RETRIES 16
3505
3506#ifdef CONFIG_COMPACTION
3507/* Try memory compaction for high-order allocations before reclaim */
3508static struct page *
3509__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3510		unsigned int alloc_flags, const struct alloc_context *ac,
3511		enum compact_priority prio, enum compact_result *compact_result)
3512{
3513	struct page *page = NULL;
3514	unsigned long pflags;
3515	unsigned int noreclaim_flag;
3516
3517	if (!order)
3518		return NULL;
3519
3520	psi_memstall_enter(&pflags);
3521	delayacct_compact_start();
3522	noreclaim_flag = memalloc_noreclaim_save();
3523
3524	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3525								prio, &page);
3526
3527	memalloc_noreclaim_restore(noreclaim_flag);
3528	psi_memstall_leave(&pflags);
3529	delayacct_compact_end();
3530
3531	if (*compact_result == COMPACT_SKIPPED)
3532		return NULL;
 
3533	/*
3534	 * At least in one zone compaction wasn't deferred or skipped, so let's
3535	 * count a compaction stall
3536	 */
3537	count_vm_event(COMPACTSTALL);
3538
3539	/* Prep a captured page if available */
3540	if (page)
3541		prep_new_page(page, order, gfp_mask, alloc_flags);
3542
3543	/* Try get a page from the freelist if available */
3544	if (!page)
3545		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3546
3547	if (page) {
3548		struct zone *zone = page_zone(page);
3549
3550		zone->compact_blockskip_flush = false;
3551		compaction_defer_reset(zone, order, true);
3552		count_vm_event(COMPACTSUCCESS);
3553		return page;
3554	}
3555
3556	/*
3557	 * It's bad if compaction run occurs and fails. The most likely reason
3558	 * is that pages exist, but not enough to satisfy watermarks.
3559	 */
3560	count_vm_event(COMPACTFAIL);
3561
3562	cond_resched();
3563
3564	return NULL;
3565}
3566
3567static inline bool
3568should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3569		     enum compact_result compact_result,
3570		     enum compact_priority *compact_priority,
3571		     int *compaction_retries)
3572{
3573	int max_retries = MAX_COMPACT_RETRIES;
3574	int min_priority;
3575	bool ret = false;
3576	int retries = *compaction_retries;
3577	enum compact_priority priority = *compact_priority;
3578
3579	if (!order)
3580		return false;
3581
3582	if (fatal_signal_pending(current))
3583		return false;
 
 
 
 
 
 
 
 
3584
3585	/*
3586	 * Compaction was skipped due to a lack of free order-0
3587	 * migration targets. Continue if reclaim can help.
 
 
3588	 */
3589	if (compact_result == COMPACT_SKIPPED) {
3590		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3591		goto out;
3592	}
3593
3594	/*
3595	 * Compaction managed to coalesce some page blocks, but the
3596	 * allocation failed presumably due to a race. Retry some.
 
 
 
 
3597	 */
3598	if (compact_result == COMPACT_SUCCESS) {
3599		/*
3600		 * !costly requests are much more important than
3601		 * __GFP_RETRY_MAYFAIL costly ones because they are de
3602		 * facto nofail and invoke OOM killer to move on while
3603		 * costly can fail and users are ready to cope with
3604		 * that. 1/4 retries is rather arbitrary but we would
3605		 * need much more detailed feedback from compaction to
3606		 * make a better decision.
3607		 */
3608		if (order > PAGE_ALLOC_COSTLY_ORDER)
3609			max_retries /= 4;
3610
3611		if (++(*compaction_retries) <= max_retries) {
3612			ret = true;
3613			goto out;
3614		}
3615	}
3616
3617	/*
3618	 * Compaction failed. Retry with increasing priority.
 
3619	 */
 
3620	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3621			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3622
3623	if (*compact_priority > min_priority) {
3624		(*compact_priority)--;
3625		*compaction_retries = 0;
3626		ret = true;
3627	}
3628out:
3629	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3630	return ret;
3631}
3632#else
3633static inline struct page *
3634__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3635		unsigned int alloc_flags, const struct alloc_context *ac,
3636		enum compact_priority prio, enum compact_result *compact_result)
3637{
3638	*compact_result = COMPACT_SKIPPED;
3639	return NULL;
3640}
3641
3642static inline bool
3643should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3644		     enum compact_result compact_result,
3645		     enum compact_priority *compact_priority,
3646		     int *compaction_retries)
3647{
3648	struct zone *zone;
3649	struct zoneref *z;
3650
3651	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3652		return false;
3653
3654	/*
3655	 * There are setups with compaction disabled which would prefer to loop
3656	 * inside the allocator rather than hit the oom killer prematurely.
3657	 * Let's give them a good hope and keep retrying while the order-0
3658	 * watermarks are OK.
3659	 */
3660	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3661				ac->highest_zoneidx, ac->nodemask) {
3662		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3663					ac->highest_zoneidx, alloc_flags))
3664			return true;
3665	}
3666	return false;
3667}
3668#endif /* CONFIG_COMPACTION */
3669
3670#ifdef CONFIG_LOCKDEP
3671static struct lockdep_map __fs_reclaim_map =
3672	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3673
3674static bool __need_reclaim(gfp_t gfp_mask)
3675{
 
 
3676	/* no reclaim without waiting on it */
3677	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3678		return false;
3679
3680	/* this guy won't enter reclaim */
3681	if (current->flags & PF_MEMALLOC)
3682		return false;
3683
 
 
 
 
3684	if (gfp_mask & __GFP_NOLOCKDEP)
3685		return false;
3686
3687	return true;
3688}
3689
3690void __fs_reclaim_acquire(unsigned long ip)
3691{
3692	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
3693}
3694
3695void __fs_reclaim_release(unsigned long ip)
3696{
3697	lock_release(&__fs_reclaim_map, ip);
3698}
3699
3700void fs_reclaim_acquire(gfp_t gfp_mask)
3701{
3702	gfp_mask = current_gfp_context(gfp_mask);
3703
3704	if (__need_reclaim(gfp_mask)) {
3705		if (gfp_mask & __GFP_FS)
3706			__fs_reclaim_acquire(_RET_IP_);
3707
3708#ifdef CONFIG_MMU_NOTIFIER
3709		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
3710		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
3711#endif
3712
3713	}
3714}
3715EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3716
3717void fs_reclaim_release(gfp_t gfp_mask)
3718{
3719	gfp_mask = current_gfp_context(gfp_mask);
3720
3721	if (__need_reclaim(gfp_mask)) {
3722		if (gfp_mask & __GFP_FS)
3723			__fs_reclaim_release(_RET_IP_);
3724	}
3725}
3726EXPORT_SYMBOL_GPL(fs_reclaim_release);
3727#endif
3728
3729/*
3730 * Zonelists may change due to hotplug during allocation. Detect when zonelists
3731 * have been rebuilt so allocation retries. Reader side does not lock and
3732 * retries the allocation if zonelist changes. Writer side is protected by the
3733 * embedded spin_lock.
3734 */
3735static DEFINE_SEQLOCK(zonelist_update_seq);
3736
3737static unsigned int zonelist_iter_begin(void)
3738{
3739	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3740		return read_seqbegin(&zonelist_update_seq);
3741
3742	return 0;
3743}
3744
3745static unsigned int check_retry_zonelist(unsigned int seq)
3746{
3747	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3748		return read_seqretry(&zonelist_update_seq, seq);
3749
3750	return seq;
3751}
3752
3753/* Perform direct synchronous page reclaim */
3754static unsigned long
3755__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3756					const struct alloc_context *ac)
3757{
 
 
3758	unsigned int noreclaim_flag;
3759	unsigned long progress;
3760
3761	cond_resched();
3762
3763	/* We now go into synchronous reclaim */
3764	cpuset_memory_pressure_bump();
 
3765	fs_reclaim_acquire(gfp_mask);
3766	noreclaim_flag = memalloc_noreclaim_save();
 
3767
3768	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3769								ac->nodemask);
3770
 
 
3771	memalloc_noreclaim_restore(noreclaim_flag);
3772	fs_reclaim_release(gfp_mask);
3773
3774	cond_resched();
3775
3776	return progress;
3777}
3778
3779/* The really slow allocator path where we enter direct reclaim */
3780static inline struct page *
3781__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3782		unsigned int alloc_flags, const struct alloc_context *ac,
3783		unsigned long *did_some_progress)
3784{
3785	struct page *page = NULL;
3786	unsigned long pflags;
3787	bool drained = false;
3788
3789	psi_memstall_enter(&pflags);
3790	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3791	if (unlikely(!(*did_some_progress)))
3792		goto out;
3793
3794retry:
3795	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3796
3797	/*
3798	 * If an allocation failed after direct reclaim, it could be because
3799	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3800	 * Shrink them and try again
3801	 */
3802	if (!page && !drained) {
3803		unreserve_highatomic_pageblock(ac, false);
3804		drain_all_pages(NULL);
3805		drained = true;
3806		goto retry;
3807	}
3808out:
3809	psi_memstall_leave(&pflags);
3810
3811	return page;
3812}
3813
3814static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3815			     const struct alloc_context *ac)
3816{
3817	struct zoneref *z;
3818	struct zone *zone;
3819	pg_data_t *last_pgdat = NULL;
3820	enum zone_type highest_zoneidx = ac->highest_zoneidx;
3821
3822	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
3823					ac->nodemask) {
3824		if (!managed_zone(zone))
3825			continue;
3826		if (last_pgdat != zone->zone_pgdat) {
3827			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
3828			last_pgdat = zone->zone_pgdat;
3829		}
3830	}
3831}
3832
3833static inline unsigned int
3834gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
3835{
3836	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3837
3838	/*
3839	 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
3840	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3841	 * to save two branches.
3842	 */
3843	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
3844	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
3845
3846	/*
3847	 * The caller may dip into page reserves a bit more if the caller
3848	 * cannot run direct reclaim, or if the caller has realtime scheduling
3849	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3850	 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
3851	 */
3852	alloc_flags |= (__force int)
3853		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
3854
3855	if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
3856		/*
3857		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3858		 * if it can't schedule.
3859		 */
3860		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
3861			alloc_flags |= ALLOC_NON_BLOCK;
3862
3863			if (order > 0)
3864				alloc_flags |= ALLOC_HIGHATOMIC;
3865		}
3866
3867		/*
3868		 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
3869		 * GFP_ATOMIC) rather than fail, see the comment for
3870		 * cpuset_node_allowed().
3871		 */
3872		if (alloc_flags & ALLOC_MIN_RESERVE)
3873			alloc_flags &= ~ALLOC_CPUSET;
3874	} else if (unlikely(rt_task(current)) && in_task())
3875		alloc_flags |= ALLOC_MIN_RESERVE;
3876
3877	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
3878
 
 
 
 
3879	return alloc_flags;
3880}
3881
3882static bool oom_reserves_allowed(struct task_struct *tsk)
3883{
3884	if (!tsk_is_oom_victim(tsk))
3885		return false;
3886
3887	/*
3888	 * !MMU doesn't have oom reaper so give access to memory reserves
3889	 * only to the thread with TIF_MEMDIE set
3890	 */
3891	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3892		return false;
3893
3894	return true;
3895}
3896
3897/*
3898 * Distinguish requests which really need access to full memory
3899 * reserves from oom victims which can live with a portion of it
3900 */
3901static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3902{
3903	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3904		return 0;
3905	if (gfp_mask & __GFP_MEMALLOC)
3906		return ALLOC_NO_WATERMARKS;
3907	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3908		return ALLOC_NO_WATERMARKS;
3909	if (!in_interrupt()) {
3910		if (current->flags & PF_MEMALLOC)
3911			return ALLOC_NO_WATERMARKS;
3912		else if (oom_reserves_allowed(current))
3913			return ALLOC_OOM;
3914	}
3915
3916	return 0;
3917}
3918
3919bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3920{
3921	return !!__gfp_pfmemalloc_flags(gfp_mask);
3922}
3923
3924/*
3925 * Checks whether it makes sense to retry the reclaim to make a forward progress
3926 * for the given allocation request.
3927 *
3928 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3929 * without success, or when we couldn't even meet the watermark if we
3930 * reclaimed all remaining pages on the LRU lists.
3931 *
3932 * Returns true if a retry is viable or false to enter the oom path.
3933 */
3934static inline bool
3935should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3936		     struct alloc_context *ac, int alloc_flags,
3937		     bool did_some_progress, int *no_progress_loops)
3938{
3939	struct zone *zone;
3940	struct zoneref *z;
3941	bool ret = false;
3942
3943	/*
3944	 * Costly allocations might have made a progress but this doesn't mean
3945	 * their order will become available due to high fragmentation so
3946	 * always increment the no progress counter for them
3947	 */
3948	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3949		*no_progress_loops = 0;
3950	else
3951		(*no_progress_loops)++;
3952
3953	if (*no_progress_loops > MAX_RECLAIM_RETRIES)
3954		goto out;
3955
 
 
 
 
 
3956
3957	/*
3958	 * Keep reclaiming pages while there is a chance this will lead
3959	 * somewhere.  If none of the target zones can satisfy our allocation
3960	 * request even if all reclaimable pages are considered then we are
3961	 * screwed and have to go OOM.
3962	 */
3963	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3964				ac->highest_zoneidx, ac->nodemask) {
3965		unsigned long available;
3966		unsigned long reclaimable;
3967		unsigned long min_wmark = min_wmark_pages(zone);
3968		bool wmark;
3969
3970		available = reclaimable = zone_reclaimable_pages(zone);
3971		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3972
3973		/*
3974		 * Would the allocation succeed if we reclaimed all
3975		 * reclaimable pages?
3976		 */
3977		wmark = __zone_watermark_ok(zone, order, min_wmark,
3978				ac->highest_zoneidx, alloc_flags, available);
3979		trace_reclaim_retry_zone(z, order, reclaimable,
3980				available, min_wmark, *no_progress_loops, wmark);
3981		if (wmark) {
3982			ret = true;
3983			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3984		}
3985	}
3986
3987	/*
3988	 * Memory allocation/reclaim might be called from a WQ context and the
3989	 * current implementation of the WQ concurrency control doesn't
3990	 * recognize that a particular WQ is congested if the worker thread is
3991	 * looping without ever sleeping. Therefore we have to do a short sleep
3992	 * here rather than calling cond_resched().
3993	 */
3994	if (current->flags & PF_WQ_WORKER)
3995		schedule_timeout_uninterruptible(1);
3996	else
3997		cond_resched();
3998out:
3999	/* Before OOM, exhaust highatomic_reserve */
4000	if (!ret)
4001		return unreserve_highatomic_pageblock(ac, true);
4002
4003	return ret;
4004}
4005
4006static inline bool
4007check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4008{
4009	/*
4010	 * It's possible that cpuset's mems_allowed and the nodemask from
4011	 * mempolicy don't intersect. This should be normally dealt with by
4012	 * policy_nodemask(), but it's possible to race with cpuset update in
4013	 * such a way the check therein was true, and then it became false
4014	 * before we got our cpuset_mems_cookie here.
4015	 * This assumes that for all allocations, ac->nodemask can come only
4016	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4017	 * when it does not intersect with the cpuset restrictions) or the
4018	 * caller can deal with a violated nodemask.
4019	 */
4020	if (cpusets_enabled() && ac->nodemask &&
4021			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4022		ac->nodemask = NULL;
4023		return true;
4024	}
4025
4026	/*
4027	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4028	 * possible to race with parallel threads in such a way that our
4029	 * allocation can fail while the mask is being updated. If we are about
4030	 * to fail, check if the cpuset changed during allocation and if so,
4031	 * retry.
4032	 */
4033	if (read_mems_allowed_retry(cpuset_mems_cookie))
4034		return true;
4035
4036	return false;
4037}
4038
4039static inline struct page *
4040__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4041						struct alloc_context *ac)
4042{
4043	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4044	bool can_compact = gfp_compaction_allowed(gfp_mask);
4045	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4046	struct page *page = NULL;
4047	unsigned int alloc_flags;
4048	unsigned long did_some_progress;
4049	enum compact_priority compact_priority;
4050	enum compact_result compact_result;
4051	int compaction_retries;
4052	int no_progress_loops;
4053	unsigned int cpuset_mems_cookie;
4054	unsigned int zonelist_iter_cookie;
4055	int reserve_flags;
4056
4057restart:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4058	compaction_retries = 0;
4059	no_progress_loops = 0;
4060	compact_priority = DEF_COMPACT_PRIORITY;
4061	cpuset_mems_cookie = read_mems_allowed_begin();
4062	zonelist_iter_cookie = zonelist_iter_begin();
4063
4064	/*
4065	 * The fast path uses conservative alloc_flags to succeed only until
4066	 * kswapd needs to be woken up, and to avoid the cost of setting up
4067	 * alloc_flags precisely. So we do that now.
4068	 */
4069	alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
4070
4071	/*
4072	 * We need to recalculate the starting point for the zonelist iterator
4073	 * because we might have used different nodemask in the fast path, or
4074	 * there was a cpuset modification and we are retrying - otherwise we
4075	 * could end up iterating over non-eligible zones endlessly.
4076	 */
4077	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4078					ac->highest_zoneidx, ac->nodemask);
4079	if (!ac->preferred_zoneref->zone)
4080		goto nopage;
4081
4082	/*
4083	 * Check for insane configurations where the cpuset doesn't contain
4084	 * any suitable zone to satisfy the request - e.g. non-movable
4085	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4086	 */
4087	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4088		struct zoneref *z = first_zones_zonelist(ac->zonelist,
4089					ac->highest_zoneidx,
4090					&cpuset_current_mems_allowed);
4091		if (!z->zone)
4092			goto nopage;
4093	}
4094
4095	if (alloc_flags & ALLOC_KSWAPD)
4096		wake_all_kswapds(order, gfp_mask, ac);
4097
4098	/*
4099	 * The adjusted alloc_flags might result in immediate success, so try
4100	 * that first
4101	 */
4102	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4103	if (page)
4104		goto got_pg;
4105
4106	/*
4107	 * For costly allocations, try direct compaction first, as it's likely
4108	 * that we have enough base pages and don't need to reclaim. For non-
4109	 * movable high-order allocations, do that as well, as compaction will
4110	 * try prevent permanent fragmentation by migrating from blocks of the
4111	 * same migratetype.
4112	 * Don't try this for allocations that are allowed to ignore
4113	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4114	 */
4115	if (can_direct_reclaim && can_compact &&
4116			(costly_order ||
4117			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4118			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4119		page = __alloc_pages_direct_compact(gfp_mask, order,
4120						alloc_flags, ac,
4121						INIT_COMPACT_PRIORITY,
4122						&compact_result);
4123		if (page)
4124			goto got_pg;
4125
4126		/*
4127		 * Checks for costly allocations with __GFP_NORETRY, which
4128		 * includes some THP page fault allocations
4129		 */
4130		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4131			/*
4132			 * If allocating entire pageblock(s) and compaction
4133			 * failed because all zones are below low watermarks
4134			 * or is prohibited because it recently failed at this
4135			 * order, fail immediately unless the allocator has
4136			 * requested compaction and reclaim retry.
4137			 *
4138			 * Reclaim is
4139			 *  - potentially very expensive because zones are far
4140			 *    below their low watermarks or this is part of very
4141			 *    bursty high order allocations,
4142			 *  - not guaranteed to help because isolate_freepages()
4143			 *    may not iterate over freed pages as part of its
4144			 *    linear scan, and
4145			 *  - unlikely to make entire pageblocks free on its
4146			 *    own.
4147			 */
4148			if (compact_result == COMPACT_SKIPPED ||
4149			    compact_result == COMPACT_DEFERRED)
4150				goto nopage;
4151
4152			/*
4153			 * Looks like reclaim/compaction is worth trying, but
4154			 * sync compaction could be very expensive, so keep
4155			 * using async compaction.
4156			 */
4157			compact_priority = INIT_COMPACT_PRIORITY;
4158		}
4159	}
4160
4161retry:
4162	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4163	if (alloc_flags & ALLOC_KSWAPD)
4164		wake_all_kswapds(order, gfp_mask, ac);
4165
4166	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4167	if (reserve_flags)
4168		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4169					  (alloc_flags & ALLOC_KSWAPD);
4170
4171	/*
4172	 * Reset the nodemask and zonelist iterators if memory policies can be
4173	 * ignored. These allocations are high priority and system rather than
4174	 * user oriented.
4175	 */
4176	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4177		ac->nodemask = NULL;
4178		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4179					ac->highest_zoneidx, ac->nodemask);
4180	}
4181
4182	/* Attempt with potentially adjusted zonelist and alloc_flags */
4183	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4184	if (page)
4185		goto got_pg;
4186
4187	/* Caller is not willing to reclaim, we can't balance anything */
4188	if (!can_direct_reclaim)
4189		goto nopage;
4190
4191	/* Avoid recursion of direct reclaim */
4192	if (current->flags & PF_MEMALLOC)
4193		goto nopage;
4194
4195	/* Try direct reclaim and then allocating */
4196	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4197							&did_some_progress);
4198	if (page)
4199		goto got_pg;
4200
4201	/* Try direct compaction and then allocating */
4202	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4203					compact_priority, &compact_result);
4204	if (page)
4205		goto got_pg;
4206
4207	/* Do not loop if specifically requested */
4208	if (gfp_mask & __GFP_NORETRY)
4209		goto nopage;
4210
4211	/*
4212	 * Do not retry costly high order allocations unless they are
4213	 * __GFP_RETRY_MAYFAIL and we can compact
4214	 */
4215	if (costly_order && (!can_compact ||
4216			     !(gfp_mask & __GFP_RETRY_MAYFAIL)))
4217		goto nopage;
4218
4219	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4220				 did_some_progress > 0, &no_progress_loops))
4221		goto retry;
4222
4223	/*
4224	 * It doesn't make any sense to retry for the compaction if the order-0
4225	 * reclaim is not able to make any progress because the current
4226	 * implementation of the compaction depends on the sufficient amount
4227	 * of free memory (see __compaction_suitable)
4228	 */
4229	if (did_some_progress > 0 && can_compact &&
4230			should_compact_retry(ac, order, alloc_flags,
4231				compact_result, &compact_priority,
4232				&compaction_retries))
4233		goto retry;
4234
4235
4236	/*
4237	 * Deal with possible cpuset update races or zonelist updates to avoid
4238	 * a unnecessary OOM kill.
4239	 */
4240	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4241	    check_retry_zonelist(zonelist_iter_cookie))
4242		goto restart;
4243
4244	/* Reclaim has failed us, start killing things */
4245	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4246	if (page)
4247		goto got_pg;
4248
4249	/* Avoid allocations with no watermarks from looping endlessly */
4250	if (tsk_is_oom_victim(current) &&
4251	    (alloc_flags & ALLOC_OOM ||
4252	     (gfp_mask & __GFP_NOMEMALLOC)))
4253		goto nopage;
4254
4255	/* Retry as long as the OOM killer is making progress */
4256	if (did_some_progress) {
4257		no_progress_loops = 0;
4258		goto retry;
4259	}
4260
4261nopage:
4262	/*
4263	 * Deal with possible cpuset update races or zonelist updates to avoid
4264	 * a unnecessary OOM kill.
4265	 */
4266	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4267	    check_retry_zonelist(zonelist_iter_cookie))
4268		goto restart;
4269
4270	/*
4271	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4272	 * we always retry
4273	 */
4274	if (gfp_mask & __GFP_NOFAIL) {
4275		/*
4276		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4277		 * of any new users that actually require GFP_NOWAIT
4278		 */
4279		if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
4280			goto fail;
4281
4282		/*
4283		 * PF_MEMALLOC request from this context is rather bizarre
4284		 * because we cannot reclaim anything and only can loop waiting
4285		 * for somebody to do a work for us
4286		 */
4287		WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
4288
4289		/*
4290		 * non failing costly orders are a hard requirement which we
4291		 * are not prepared for much so let's warn about these users
4292		 * so that we can identify them and convert them to something
4293		 * else.
4294		 */
4295		WARN_ON_ONCE_GFP(costly_order, gfp_mask);
4296
4297		/*
4298		 * Help non-failing allocations by giving some access to memory
4299		 * reserves normally used for high priority non-blocking
4300		 * allocations but do not use ALLOC_NO_WATERMARKS because this
4301		 * could deplete whole memory reserves which would just make
4302		 * the situation worse.
4303		 */
4304		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4305		if (page)
4306			goto got_pg;
4307
4308		cond_resched();
4309		goto retry;
4310	}
4311fail:
4312	warn_alloc(gfp_mask, ac->nodemask,
4313			"page allocation failure: order:%u", order);
4314got_pg:
4315	return page;
4316}
4317
4318static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4319		int preferred_nid, nodemask_t *nodemask,
4320		struct alloc_context *ac, gfp_t *alloc_gfp,
4321		unsigned int *alloc_flags)
4322{
4323	ac->highest_zoneidx = gfp_zone(gfp_mask);
4324	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4325	ac->nodemask = nodemask;
4326	ac->migratetype = gfp_migratetype(gfp_mask);
4327
4328	if (cpusets_enabled()) {
4329		*alloc_gfp |= __GFP_HARDWALL;
4330		/*
4331		 * When we are in the interrupt context, it is irrelevant
4332		 * to the current task context. It means that any node ok.
4333		 */
4334		if (in_task() && !ac->nodemask)
4335			ac->nodemask = &cpuset_current_mems_allowed;
4336		else
4337			*alloc_flags |= ALLOC_CPUSET;
4338	}
4339
4340	might_alloc(gfp_mask);
 
 
 
4341
4342	if (should_fail_alloc_page(gfp_mask, order))
4343		return false;
4344
4345	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
 
4346
 
 
 
 
 
 
 
4347	/* Dirty zone balancing only done in the fast path */
4348	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4349
4350	/*
4351	 * The preferred zone is used for statistics but crucially it is
4352	 * also used as the starting point for the zonelist iterator. It
4353	 * may get reset for allocations that ignore memory policies.
4354	 */
4355	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4356					ac->highest_zoneidx, ac->nodemask);
4357
4358	return true;
4359}
4360
4361/*
4362 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
4363 * @gfp: GFP flags for the allocation
4364 * @preferred_nid: The preferred NUMA node ID to allocate from
4365 * @nodemask: Set of nodes to allocate from, may be NULL
4366 * @nr_pages: The number of pages desired on the list or array
4367 * @page_list: Optional list to store the allocated pages
4368 * @page_array: Optional array to store the pages
4369 *
4370 * This is a batched version of the page allocator that attempts to
4371 * allocate nr_pages quickly. Pages are added to page_list if page_list
4372 * is not NULL, otherwise it is assumed that the page_array is valid.
4373 *
4374 * For lists, nr_pages is the number of pages that should be allocated.
4375 *
4376 * For arrays, only NULL elements are populated with pages and nr_pages
4377 * is the maximum number of pages that will be stored in the array.
4378 *
4379 * Returns the number of pages on the list or array.
4380 */
4381unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
4382			nodemask_t *nodemask, int nr_pages,
4383			struct list_head *page_list,
4384			struct page **page_array)
4385{
4386	struct page *page;
4387	unsigned long __maybe_unused UP_flags;
4388	struct zone *zone;
4389	struct zoneref *z;
4390	struct per_cpu_pages *pcp;
4391	struct list_head *pcp_list;
4392	struct alloc_context ac;
4393	gfp_t alloc_gfp;
4394	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4395	int nr_populated = 0, nr_account = 0;
4396
4397	/*
4398	 * Skip populated array elements to determine if any pages need
4399	 * to be allocated before disabling IRQs.
4400	 */
4401	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
4402		nr_populated++;
4403
4404	/* No pages requested? */
4405	if (unlikely(nr_pages <= 0))
4406		goto out;
4407
4408	/* Already populated array? */
4409	if (unlikely(page_array && nr_pages - nr_populated == 0))
4410		goto out;
4411
4412	/* Bulk allocator does not support memcg accounting. */
4413	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
4414		goto failed;
4415
4416	/* Use the single page allocator for one page. */
4417	if (nr_pages - nr_populated == 1)
4418		goto failed;
4419
4420#ifdef CONFIG_PAGE_OWNER
4421	/*
4422	 * PAGE_OWNER may recurse into the allocator to allocate space to
4423	 * save the stack with pagesets.lock held. Releasing/reacquiring
4424	 * removes much of the performance benefit of bulk allocation so
4425	 * force the caller to allocate one page at a time as it'll have
4426	 * similar performance to added complexity to the bulk allocator.
4427	 */
4428	if (static_branch_unlikely(&page_owner_inited))
4429		goto failed;
4430#endif
4431
4432	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4433	gfp &= gfp_allowed_mask;
4434	alloc_gfp = gfp;
4435	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
4436		goto out;
4437	gfp = alloc_gfp;
4438
4439	/* Find an allowed local zone that meets the low watermark. */
4440	for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
4441		unsigned long mark;
4442
4443		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4444		    !__cpuset_zone_allowed(zone, gfp)) {
4445			continue;
4446		}
4447
4448		if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
4449		    zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
4450			goto failed;
4451		}
4452
4453		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4454		if (zone_watermark_fast(zone, 0,  mark,
4455				zonelist_zone_idx(ac.preferred_zoneref),
4456				alloc_flags, gfp)) {
4457			break;
4458		}
4459	}
4460
4461	/*
4462	 * If there are no allowed local zones that meets the watermarks then
4463	 * try to allocate a single page and reclaim if necessary.
4464	 */
4465	if (unlikely(!zone))
4466		goto failed;
4467
4468	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4469	pcp_trylock_prepare(UP_flags);
4470	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
4471	if (!pcp)
4472		goto failed_irq;
4473
4474	/* Attempt the batch allocation */
4475	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
4476	while (nr_populated < nr_pages) {
4477
4478		/* Skip existing pages */
4479		if (page_array && page_array[nr_populated]) {
4480			nr_populated++;
4481			continue;
4482		}
4483
4484		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
4485								pcp, pcp_list);
4486		if (unlikely(!page)) {
4487			/* Try and allocate at least one page */
4488			if (!nr_account) {
4489				pcp_spin_unlock(pcp);
4490				goto failed_irq;
4491			}
4492			break;
4493		}
4494		nr_account++;
4495
4496		prep_new_page(page, 0, gfp, 0);
4497		if (page_list)
4498			list_add(&page->lru, page_list);
4499		else
4500			page_array[nr_populated] = page;
4501		nr_populated++;
4502	}
4503
4504	pcp_spin_unlock(pcp);
4505	pcp_trylock_finish(UP_flags);
4506
4507	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4508	zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
4509
4510out:
4511	return nr_populated;
4512
4513failed_irq:
4514	pcp_trylock_finish(UP_flags);
4515
4516failed:
4517	page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
4518	if (page) {
4519		if (page_list)
4520			list_add(&page->lru, page_list);
4521		else
4522			page_array[nr_populated] = page;
4523		nr_populated++;
4524	}
4525
4526	goto out;
4527}
4528EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
4529
4530/*
4531 * This is the 'heart' of the zoned buddy allocator.
4532 */
4533struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
 
4534							nodemask_t *nodemask)
4535{
4536	struct page *page;
4537	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4538	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
4539	struct alloc_context ac = { };
4540
4541	/*
4542	 * There are several places where we assume that the order value is sane
4543	 * so bail out early if the request is out of bound.
4544	 */
4545	if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp))
4546		return NULL;
4547
4548	gfp &= gfp_allowed_mask;
 
 
 
 
 
 
4549	/*
4550	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4551	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4552	 * from a particular context which has been marked by
4553	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4554	 * movable zones are not used during allocation.
4555	 */
4556	gfp = current_gfp_context(gfp);
4557	alloc_gfp = gfp;
4558	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
4559			&alloc_gfp, &alloc_flags))
4560		return NULL;
4561
4562	/*
4563	 * Forbid the first pass from falling back to types that fragment
4564	 * memory until all local zones are considered.
4565	 */
4566	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
4567
4568	/* First allocation attempt */
4569	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4570	if (likely(page))
4571		goto out;
4572
4573	alloc_gfp = gfp;
4574	ac.spread_dirty_pages = false;
4575
4576	/*
4577	 * Restore the original nodemask if it was potentially replaced with
4578	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4579	 */
4580	ac.nodemask = nodemask;
 
4581
4582	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
4583
4584out:
4585	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
4586	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
4587		__free_pages(page, order);
4588		page = NULL;
4589	}
4590
4591	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4592	kmsan_alloc_page(page, order, alloc_gfp);
4593
4594	return page;
4595}
4596EXPORT_SYMBOL(__alloc_pages);
4597
4598struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
4599		nodemask_t *nodemask)
4600{
4601	struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
4602					preferred_nid, nodemask);
4603	return page_rmappable_folio(page);
4604}
4605EXPORT_SYMBOL(__folio_alloc);
4606
4607/*
4608 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4609 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4610 * you need to access high mem.
4611 */
4612unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4613{
4614	struct page *page;
4615
4616	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
 
 
 
 
 
 
4617	if (!page)
4618		return 0;
4619	return (unsigned long) page_address(page);
4620}
4621EXPORT_SYMBOL(__get_free_pages);
4622
4623unsigned long get_zeroed_page(gfp_t gfp_mask)
4624{
4625	return __get_free_page(gfp_mask | __GFP_ZERO);
4626}
4627EXPORT_SYMBOL(get_zeroed_page);
4628
4629/**
4630 * __free_pages - Free pages allocated with alloc_pages().
4631 * @page: The page pointer returned from alloc_pages().
4632 * @order: The order of the allocation.
4633 *
4634 * This function can free multi-page allocations that are not compound
4635 * pages.  It does not check that the @order passed in matches that of
4636 * the allocation, so it is easy to leak memory.  Freeing more memory
4637 * than was allocated will probably emit a warning.
4638 *
4639 * If the last reference to this page is speculative, it will be released
4640 * by put_page() which only frees the first page of a non-compound
4641 * allocation.  To prevent the remaining pages from being leaked, we free
4642 * the subsequent pages here.  If you want to use the page's reference
4643 * count to decide when to free the allocation, you should allocate a
4644 * compound page, and use put_page() instead of __free_pages().
4645 *
4646 * Context: May be called in interrupt context or while holding a normal
4647 * spinlock, but not in NMI context or while holding a raw spinlock.
4648 */
4649void __free_pages(struct page *page, unsigned int order)
4650{
4651	/* get PageHead before we drop reference */
4652	int head = PageHead(page);
 
 
 
 
 
4653
4654	if (put_page_testzero(page))
4655		free_the_page(page, order);
4656	else if (!head)
4657		while (order-- > 0)
4658			free_the_page(page + (1 << order), order);
4659}
4660EXPORT_SYMBOL(__free_pages);
4661
4662void free_pages(unsigned long addr, unsigned int order)
4663{
4664	if (addr != 0) {
4665		VM_BUG_ON(!virt_addr_valid((void *)addr));
4666		__free_pages(virt_to_page((void *)addr), order);
4667	}
4668}
4669
4670EXPORT_SYMBOL(free_pages);
4671
4672/*
4673 * Page Fragment:
4674 *  An arbitrary-length arbitrary-offset area of memory which resides
4675 *  within a 0 or higher order page.  Multiple fragments within that page
4676 *  are individually refcounted, in the page's reference counter.
4677 *
4678 * The page_frag functions below provide a simple allocation framework for
4679 * page fragments.  This is used by the network stack and network device
4680 * drivers to provide a backing region of memory for use as either an
4681 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4682 */
4683static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4684					     gfp_t gfp_mask)
4685{
4686	struct page *page = NULL;
4687	gfp_t gfp = gfp_mask;
4688
4689#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4690	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4691		    __GFP_NOMEMALLOC;
4692	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4693				PAGE_FRAG_CACHE_MAX_ORDER);
4694	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4695#endif
4696	if (unlikely(!page))
4697		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4698
4699	nc->va = page ? page_address(page) : NULL;
4700
4701	return page;
4702}
4703
4704void __page_frag_cache_drain(struct page *page, unsigned int count)
4705{
4706	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4707
4708	if (page_ref_sub_and_test(page, count))
4709		free_the_page(page, compound_order(page));
 
 
 
 
 
 
4710}
4711EXPORT_SYMBOL(__page_frag_cache_drain);
4712
4713void *page_frag_alloc_align(struct page_frag_cache *nc,
4714		      unsigned int fragsz, gfp_t gfp_mask,
4715		      unsigned int align_mask)
4716{
4717	unsigned int size = PAGE_SIZE;
4718	struct page *page;
4719	int offset;
4720
4721	if (unlikely(!nc->va)) {
4722refill:
4723		page = __page_frag_cache_refill(nc, gfp_mask);
4724		if (!page)
4725			return NULL;
4726
4727#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4728		/* if size can vary use size else just use PAGE_SIZE */
4729		size = nc->size;
4730#endif
4731		/* Even if we own the page, we do not use atomic_set().
4732		 * This would break get_page_unless_zero() users.
4733		 */
4734		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4735
4736		/* reset page count bias and offset to start of new frag */
4737		nc->pfmemalloc = page_is_pfmemalloc(page);
4738		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4739		nc->offset = size;
4740	}
4741
4742	offset = nc->offset - fragsz;
4743	if (unlikely(offset < 0)) {
4744		page = virt_to_page(nc->va);
4745
4746		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4747			goto refill;
4748
4749		if (unlikely(nc->pfmemalloc)) {
4750			free_the_page(page, compound_order(page));
4751			goto refill;
4752		}
4753
4754#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4755		/* if size can vary use size else just use PAGE_SIZE */
4756		size = nc->size;
4757#endif
4758		/* OK, page count is 0, we can safely set it */
4759		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4760
4761		/* reset page count bias and offset to start of new frag */
4762		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4763		offset = size - fragsz;
4764		if (unlikely(offset < 0)) {
4765			/*
4766			 * The caller is trying to allocate a fragment
4767			 * with fragsz > PAGE_SIZE but the cache isn't big
4768			 * enough to satisfy the request, this may
4769			 * happen in low memory conditions.
4770			 * We don't release the cache page because
4771			 * it could make memory pressure worse
4772			 * so we simply return NULL here.
4773			 */
4774			return NULL;
4775		}
4776	}
4777
4778	nc->pagecnt_bias--;
4779	offset &= align_mask;
4780	nc->offset = offset;
4781
4782	return nc->va + offset;
4783}
4784EXPORT_SYMBOL(page_frag_alloc_align);
4785
4786/*
4787 * Frees a page fragment allocated out of either a compound or order 0 page.
4788 */
4789void page_frag_free(void *addr)
4790{
4791	struct page *page = virt_to_head_page(addr);
4792
4793	if (unlikely(put_page_testzero(page)))
4794		free_the_page(page, compound_order(page));
4795}
4796EXPORT_SYMBOL(page_frag_free);
4797
4798static void *make_alloc_exact(unsigned long addr, unsigned int order,
4799		size_t size)
4800{
4801	if (addr) {
4802		unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
4803		struct page *page = virt_to_page((void *)addr);
4804		struct page *last = page + nr;
4805
4806		split_page_owner(page, 1 << order);
4807		split_page_memcg(page, 1 << order);
4808		while (page < --last)
4809			set_page_refcounted(last);
4810
4811		last = page + (1UL << order);
4812		for (page += nr; page < last; page++)
4813			__free_pages_ok(page, 0, FPI_TO_TAIL);
4814	}
4815	return (void *)addr;
4816}
4817
4818/**
4819 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4820 * @size: the number of bytes to allocate
4821 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4822 *
4823 * This function is similar to alloc_pages(), except that it allocates the
4824 * minimum number of pages to satisfy the request.  alloc_pages() can only
4825 * allocate memory in power-of-two pages.
4826 *
4827 * This function is also limited by MAX_PAGE_ORDER.
4828 *
4829 * Memory allocated by this function must be released by free_pages_exact().
4830 *
4831 * Return: pointer to the allocated area or %NULL in case of error.
4832 */
4833void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4834{
4835	unsigned int order = get_order(size);
4836	unsigned long addr;
4837
4838	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4839		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4840
4841	addr = __get_free_pages(gfp_mask, order);
4842	return make_alloc_exact(addr, order, size);
4843}
4844EXPORT_SYMBOL(alloc_pages_exact);
4845
4846/**
4847 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4848 *			   pages on a node.
4849 * @nid: the preferred node ID where memory should be allocated
4850 * @size: the number of bytes to allocate
4851 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4852 *
4853 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4854 * back.
4855 *
4856 * Return: pointer to the allocated area or %NULL in case of error.
4857 */
4858void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4859{
4860	unsigned int order = get_order(size);
4861	struct page *p;
4862
4863	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4864		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4865
4866	p = alloc_pages_node(nid, gfp_mask, order);
4867	if (!p)
4868		return NULL;
4869	return make_alloc_exact((unsigned long)page_address(p), order, size);
4870}
4871
4872/**
4873 * free_pages_exact - release memory allocated via alloc_pages_exact()
4874 * @virt: the value returned by alloc_pages_exact.
4875 * @size: size of allocation, same value as passed to alloc_pages_exact().
4876 *
4877 * Release the memory allocated by a previous call to alloc_pages_exact.
4878 */
4879void free_pages_exact(void *virt, size_t size)
4880{
4881	unsigned long addr = (unsigned long)virt;
4882	unsigned long end = addr + PAGE_ALIGN(size);
4883
4884	while (addr < end) {
4885		free_page(addr);
4886		addr += PAGE_SIZE;
4887	}
4888}
4889EXPORT_SYMBOL(free_pages_exact);
4890
4891/**
4892 * nr_free_zone_pages - count number of pages beyond high watermark
4893 * @offset: The zone index of the highest zone
4894 *
4895 * nr_free_zone_pages() counts the number of pages which are beyond the
4896 * high watermark within all zones at or below a given zone index.  For each
4897 * zone, the number of pages is calculated as:
4898 *
4899 *     nr_free_zone_pages = managed_pages - high_pages
4900 *
4901 * Return: number of pages beyond high watermark.
4902 */
4903static unsigned long nr_free_zone_pages(int offset)
4904{
4905	struct zoneref *z;
4906	struct zone *zone;
4907
4908	/* Just pick one node, since fallback list is circular */
4909	unsigned long sum = 0;
4910
4911	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4912
4913	for_each_zone_zonelist(zone, z, zonelist, offset) {
4914		unsigned long size = zone_managed_pages(zone);
4915		unsigned long high = high_wmark_pages(zone);
4916		if (size > high)
4917			sum += size - high;
4918	}
4919
4920	return sum;
4921}
4922
4923/**
4924 * nr_free_buffer_pages - count number of pages beyond high watermark
4925 *
4926 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4927 * watermark within ZONE_DMA and ZONE_NORMAL.
4928 *
4929 * Return: number of pages beyond high watermark within ZONE_DMA and
4930 * ZONE_NORMAL.
4931 */
4932unsigned long nr_free_buffer_pages(void)
4933{
4934	return nr_free_zone_pages(gfp_zone(GFP_USER));
4935}
4936EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4937
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4938static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4939{
4940	zoneref->zone = zone;
4941	zoneref->zone_idx = zone_idx(zone);
4942}
4943
4944/*
4945 * Builds allocation fallback zone lists.
4946 *
4947 * Add all populated zones of a node to the zonelist.
4948 */
4949static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
4950{
4951	struct zone *zone;
4952	enum zone_type zone_type = MAX_NR_ZONES;
4953	int nr_zones = 0;
4954
4955	do {
4956		zone_type--;
4957		zone = pgdat->node_zones + zone_type;
4958		if (populated_zone(zone)) {
4959			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
4960			check_highest_zone(zone_type);
4961		}
4962	} while (zone_type);
4963
4964	return nr_zones;
4965}
4966
4967#ifdef CONFIG_NUMA
4968
4969static int __parse_numa_zonelist_order(char *s)
4970{
4971	/*
4972	 * We used to support different zonelists modes but they turned
4973	 * out to be just not useful. Let's keep the warning in place
4974	 * if somebody still use the cmd line parameter so that we do
4975	 * not fail it silently
4976	 */
4977	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
4978		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
4979		return -EINVAL;
4980	}
4981	return 0;
4982}
4983
4984static char numa_zonelist_order[] = "Node";
4985#define NUMA_ZONELIST_ORDER_LEN	16
 
 
 
 
 
 
 
 
 
4986/*
4987 * sysctl handler for numa_zonelist_order
4988 */
4989static int numa_zonelist_order_handler(struct ctl_table *table, int write,
4990		void *buffer, size_t *length, loff_t *ppos)
 
4991{
4992	if (write)
4993		return __parse_numa_zonelist_order(buffer);
4994	return proc_dostring(table, write, buffer, length, ppos);
 
 
 
 
 
 
 
 
 
4995}
4996
 
 
4997static int node_load[MAX_NUMNODES];
4998
4999/**
5000 * find_next_best_node - find the next node that should appear in a given node's fallback list
5001 * @node: node whose fallback list we're appending
5002 * @used_node_mask: nodemask_t of already used nodes
5003 *
5004 * We use a number of factors to determine which is the next node that should
5005 * appear on a given node's fallback list.  The node should not have appeared
5006 * already in @node's fallback list, and it should be the next closest node
5007 * according to the distance array (which contains arbitrary distance values
5008 * from each node to each node in the system), and should also prefer nodes
5009 * with no CPUs, since presumably they'll have very little allocation pressure
5010 * on them otherwise.
5011 *
5012 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5013 */
5014int find_next_best_node(int node, nodemask_t *used_node_mask)
5015{
5016	int n, val;
5017	int min_val = INT_MAX;
5018	int best_node = NUMA_NO_NODE;
 
5019
5020	/*
5021	 * Use the local node if we haven't already, but for memoryless local
5022	 * node, we should skip it and fall back to other nodes.
5023	 */
5024	if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) {
5025		node_set(node, *used_node_mask);
5026		return node;
5027	}
5028
5029	for_each_node_state(n, N_MEMORY) {
5030
5031		/* Don't want a node to appear more than once */
5032		if (node_isset(n, *used_node_mask))
5033			continue;
5034
5035		/* Use the distance array to find the distance */
5036		val = node_distance(node, n);
5037
5038		/* Penalize nodes under us ("prefer the next node") */
5039		val += (n < node);
5040
5041		/* Give preference to headless and unused nodes */
5042		if (!cpumask_empty(cpumask_of_node(n)))
 
5043			val += PENALTY_FOR_NODE_WITH_CPUS;
5044
5045		/* Slight preference for less loaded node */
5046		val *= MAX_NUMNODES;
5047		val += node_load[n];
5048
5049		if (val < min_val) {
5050			min_val = val;
5051			best_node = n;
5052		}
5053	}
5054
5055	if (best_node >= 0)
5056		node_set(best_node, *used_node_mask);
5057
5058	return best_node;
5059}
5060
5061
5062/*
5063 * Build zonelists ordered by node and zones within node.
5064 * This results in maximum locality--normal zone overflows into local
5065 * DMA zone, if any--but risks exhausting DMA zone.
5066 */
5067static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5068		unsigned nr_nodes)
5069{
5070	struct zoneref *zonerefs;
5071	int i;
5072
5073	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5074
5075	for (i = 0; i < nr_nodes; i++) {
5076		int nr_zones;
5077
5078		pg_data_t *node = NODE_DATA(node_order[i]);
5079
5080		nr_zones = build_zonerefs_node(node, zonerefs);
5081		zonerefs += nr_zones;
5082	}
5083	zonerefs->zone = NULL;
5084	zonerefs->zone_idx = 0;
5085}
5086
5087/*
5088 * Build gfp_thisnode zonelists
5089 */
5090static void build_thisnode_zonelists(pg_data_t *pgdat)
5091{
5092	struct zoneref *zonerefs;
5093	int nr_zones;
5094
5095	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5096	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5097	zonerefs += nr_zones;
5098	zonerefs->zone = NULL;
5099	zonerefs->zone_idx = 0;
5100}
5101
5102/*
5103 * Build zonelists ordered by zone and nodes within zones.
5104 * This results in conserving DMA zone[s] until all Normal memory is
5105 * exhausted, but results in overflowing to remote node while memory
5106 * may still exist in local DMA zone.
5107 */
5108
5109static void build_zonelists(pg_data_t *pgdat)
5110{
5111	static int node_order[MAX_NUMNODES];
5112	int node, nr_nodes = 0;
5113	nodemask_t used_mask = NODE_MASK_NONE;
5114	int local_node, prev_node;
5115
5116	/* NUMA-aware ordering of nodes */
5117	local_node = pgdat->node_id;
 
5118	prev_node = local_node;
 
5119
5120	memset(node_order, 0, sizeof(node_order));
5121	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5122		/*
5123		 * We don't want to pressure a particular node.
5124		 * So adding penalty to the first node in same
5125		 * distance group to make it round-robin.
5126		 */
5127		if (node_distance(local_node, node) !=
5128		    node_distance(local_node, prev_node))
5129			node_load[node] += 1;
5130
5131		node_order[nr_nodes++] = node;
5132		prev_node = node;
 
5133	}
5134
5135	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5136	build_thisnode_zonelists(pgdat);
5137	pr_info("Fallback order for Node %d: ", local_node);
5138	for (node = 0; node < nr_nodes; node++)
5139		pr_cont("%d ", node_order[node]);
5140	pr_cont("\n");
5141}
5142
5143#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5144/*
5145 * Return node id of node used for "local" allocations.
5146 * I.e., first node id of first zone in arg node's generic zonelist.
5147 * Used for initializing percpu 'numa_mem', which is used primarily
5148 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5149 */
5150int local_memory_node(int node)
5151{
5152	struct zoneref *z;
5153
5154	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5155				   gfp_zone(GFP_KERNEL),
5156				   NULL);
5157	return zone_to_nid(z->zone);
5158}
5159#endif
5160
5161static void setup_min_unmapped_ratio(void);
5162static void setup_min_slab_ratio(void);
5163#else	/* CONFIG_NUMA */
5164
5165static void build_zonelists(pg_data_t *pgdat)
5166{
5167	int node, local_node;
5168	struct zoneref *zonerefs;
5169	int nr_zones;
5170
5171	local_node = pgdat->node_id;
5172
5173	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5174	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5175	zonerefs += nr_zones;
5176
5177	/*
5178	 * Now we build the zonelist so that it contains the zones
5179	 * of all the other nodes.
5180	 * We don't want to pressure a particular node, so when
5181	 * building the zones for node N, we make sure that the
5182	 * zones coming right after the local ones are those from
5183	 * node N+1 (modulo N)
5184	 */
5185	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5186		if (!node_online(node))
5187			continue;
5188		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5189		zonerefs += nr_zones;
5190	}
5191	for (node = 0; node < local_node; node++) {
5192		if (!node_online(node))
5193			continue;
5194		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5195		zonerefs += nr_zones;
5196	}
5197
5198	zonerefs->zone = NULL;
5199	zonerefs->zone_idx = 0;
5200}
5201
5202#endif	/* CONFIG_NUMA */
5203
5204/*
5205 * Boot pageset table. One per cpu which is going to be used for all
5206 * zones and all nodes. The parameters will be set in such a way
5207 * that an item put on a list will immediately be handed over to
5208 * the buddy list. This is safe since pageset manipulation is done
5209 * with interrupts disabled.
5210 *
5211 * The boot_pagesets must be kept even after bootup is complete for
5212 * unused processors and/or zones. They do play a role for bootstrapping
5213 * hotplugged processors.
5214 *
5215 * zoneinfo_show() and maybe other functions do
5216 * not check if the processor is online before following the pageset pointer.
5217 * Other parts of the kernel may not check if the zone is available.
5218 */
5219static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5220/* These effectively disable the pcplists in the boot pageset completely */
5221#define BOOT_PAGESET_HIGH	0
5222#define BOOT_PAGESET_BATCH	1
5223static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5224static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5225
5226static void __build_all_zonelists(void *data)
5227{
5228	int nid;
5229	int __maybe_unused cpu;
5230	pg_data_t *self = data;
5231	unsigned long flags;
5232
5233	/*
5234	 * The zonelist_update_seq must be acquired with irqsave because the
5235	 * reader can be invoked from IRQ with GFP_ATOMIC.
5236	 */
5237	write_seqlock_irqsave(&zonelist_update_seq, flags);
5238	/*
5239	 * Also disable synchronous printk() to prevent any printk() from
5240	 * trying to hold port->lock, for
5241	 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5242	 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5243	 */
5244	printk_deferred_enter();
5245
5246#ifdef CONFIG_NUMA
5247	memset(node_load, 0, sizeof(node_load));
5248#endif
5249
5250	/*
5251	 * This node is hotadded and no memory is yet present.   So just
5252	 * building zonelists is fine - no need to touch other nodes.
5253	 */
5254	if (self && !node_online(self->node_id)) {
5255		build_zonelists(self);
5256	} else {
5257		/*
5258		 * All possible nodes have pgdat preallocated
5259		 * in free_area_init
5260		 */
5261		for_each_node(nid) {
5262			pg_data_t *pgdat = NODE_DATA(nid);
5263
5264			build_zonelists(pgdat);
5265		}
5266
5267#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5268		/*
5269		 * We now know the "local memory node" for each node--
5270		 * i.e., the node of the first zone in the generic zonelist.
5271		 * Set up numa_mem percpu variable for on-line cpus.  During
5272		 * boot, only the boot cpu should be on-line;  we'll init the
5273		 * secondary cpus' numa_mem as they come on-line.  During
5274		 * node/memory hotplug, we'll fixup all on-line cpus.
5275		 */
5276		for_each_online_cpu(cpu)
5277			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5278#endif
5279	}
5280
5281	printk_deferred_exit();
5282	write_sequnlock_irqrestore(&zonelist_update_seq, flags);
5283}
5284
5285static noinline void __init
5286build_all_zonelists_init(void)
5287{
5288	int cpu;
5289
5290	__build_all_zonelists(NULL);
5291
5292	/*
5293	 * Initialize the boot_pagesets that are going to be used
5294	 * for bootstrapping processors. The real pagesets for
5295	 * each zone will be allocated later when the per cpu
5296	 * allocator is available.
5297	 *
5298	 * boot_pagesets are used also for bootstrapping offline
5299	 * cpus if the system is already booted because the pagesets
5300	 * are needed to initialize allocators on a specific cpu too.
5301	 * F.e. the percpu allocator needs the page allocator which
5302	 * needs the percpu allocator in order to allocate its pagesets
5303	 * (a chicken-egg dilemma).
5304	 */
5305	for_each_possible_cpu(cpu)
5306		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5307
5308	mminit_verify_zonelist();
5309	cpuset_init_current_mems_allowed();
5310}
5311
5312/*
5313 * unless system_state == SYSTEM_BOOTING.
5314 *
5315 * __ref due to call of __init annotated helper build_all_zonelists_init
5316 * [protected by SYSTEM_BOOTING].
5317 */
5318void __ref build_all_zonelists(pg_data_t *pgdat)
5319{
5320	unsigned long vm_total_pages;
5321
5322	if (system_state == SYSTEM_BOOTING) {
5323		build_all_zonelists_init();
5324	} else {
5325		__build_all_zonelists(pgdat);
5326		/* cpuset refresh routine should be here */
5327	}
5328	/* Get the number of free pages beyond high watermark in all zones. */
5329	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5330	/*
5331	 * Disable grouping by mobility if the number of pages in the
5332	 * system is too low to allow the mechanism to work. It would be
5333	 * more accurate, but expensive to check per-zone. This check is
5334	 * made on memory-hotadd so a system can start with mobility
5335	 * disabled and enable it later
5336	 */
5337	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5338		page_group_by_mobility_disabled = 1;
5339	else
5340		page_group_by_mobility_disabled = 0;
5341
5342	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
5343		nr_online_nodes,
5344		page_group_by_mobility_disabled ? "off" : "on",
5345		vm_total_pages);
5346#ifdef CONFIG_NUMA
5347	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5348#endif
5349}
5350
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5351static int zone_batchsize(struct zone *zone)
5352{
5353#ifdef CONFIG_MMU
5354	int batch;
5355
5356	/*
5357	 * The number of pages to batch allocate is either ~0.1%
5358	 * of the zone or 1MB, whichever is smaller. The batch
5359	 * size is striking a balance between allocation latency
5360	 * and zone lock contention.
5361	 */
5362	batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
 
 
5363	batch /= 4;		/* We effectively *= 4 below */
5364	if (batch < 1)
5365		batch = 1;
5366
5367	/*
5368	 * Clamp the batch to a 2^n - 1 value. Having a power
5369	 * of 2 value was found to be more likely to have
5370	 * suboptimal cache aliasing properties in some cases.
5371	 *
5372	 * For example if 2 tasks are alternately allocating
5373	 * batches of pages, one task can end up with a lot
5374	 * of pages of one half of the possible page colors
5375	 * and the other with pages of the other colors.
5376	 */
5377	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5378
5379	return batch;
5380
5381#else
5382	/* The deferral and batching of frees should be suppressed under NOMMU
5383	 * conditions.
5384	 *
5385	 * The problem is that NOMMU needs to be able to allocate large chunks
5386	 * of contiguous memory as there's no hardware page translation to
5387	 * assemble apparent contiguous memory from discontiguous pages.
5388	 *
5389	 * Queueing large contiguous runs of pages for batching, however,
5390	 * causes the pages to actually be freed in smaller chunks.  As there
5391	 * can be a significant delay between the individual batches being
5392	 * recycled, this leads to the once large chunks of space being
5393	 * fragmented and becoming unavailable for high-order allocations.
5394	 */
5395	return 0;
5396#endif
5397}
5398
5399static int percpu_pagelist_high_fraction;
5400static int zone_highsize(struct zone *zone, int batch, int cpu_online,
5401			 int high_fraction)
 
 
 
 
 
 
 
 
 
 
 
 
5402{
5403#ifdef CONFIG_MMU
5404	int high;
5405	int nr_split_cpus;
5406	unsigned long total_pages;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5407
5408	if (!high_fraction) {
5409		/*
5410		 * By default, the high value of the pcp is based on the zone
5411		 * low watermark so that if they are full then background
5412		 * reclaim will not be started prematurely.
5413		 */
5414		total_pages = low_wmark_pages(zone);
5415	} else {
5416		/*
5417		 * If percpu_pagelist_high_fraction is configured, the high
5418		 * value is based on a fraction of the managed pages in the
5419		 * zone.
5420		 */
5421		total_pages = zone_managed_pages(zone) / high_fraction;
5422	}
5423
 
 
5424	/*
5425	 * Split the high value across all online CPUs local to the zone. Note
5426	 * that early in boot that CPUs may not be online yet and that during
5427	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5428	 * onlined. For memory nodes that have no CPUs, split the high value
5429	 * across all online CPUs to mitigate the risk that reclaim is triggered
5430	 * prematurely due to pages stored on pcp lists.
5431	 */
5432	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
5433	if (!nr_split_cpus)
5434		nr_split_cpus = num_online_cpus();
5435	high = total_pages / nr_split_cpus;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5436
5437	/*
5438	 * Ensure high is at least batch*4. The multiple is based on the
5439	 * historical relationship between high and batch.
 
5440	 */
5441	high = max(high, batch << 2);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5442
5443	return high;
5444#else
5445	return 0;
5446#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5447}
5448
 
5449/*
5450 * pcp->high and pcp->batch values are related and generally batch is lower
5451 * than high. They are also related to pcp->count such that count is lower
5452 * than high, and as soon as it reaches high, the pcplist is flushed.
5453 *
5454 * However, guaranteeing these relations at all times would require e.g. write
5455 * barriers here but also careful usage of read barriers at the read side, and
5456 * thus be prone to error and bad for performance. Thus the update only prevents
5457 * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max
5458 * should ensure they can cope with those fields changing asynchronously, and
5459 * fully trust only the pcp->count field on the local CPU with interrupts
5460 * disabled.
5461 *
5462 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5463 * outside of boot time (or some other assurance that no concurrent updaters
5464 * exist).
5465 */
5466static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min,
5467			   unsigned long high_max, unsigned long batch)
5468{
5469	WRITE_ONCE(pcp->batch, batch);
5470	WRITE_ONCE(pcp->high_min, high_min);
5471	WRITE_ONCE(pcp->high_max, high_max);
 
 
 
 
 
 
5472}
5473
5474static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
 
 
 
5475{
5476	int pindex;
 
 
 
 
 
 
 
 
 
 
5477
5478	memset(pcp, 0, sizeof(*pcp));
5479	memset(pzstats, 0, sizeof(*pzstats));
5480
5481	spin_lock_init(&pcp->lock);
5482	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
5483		INIT_LIST_HEAD(&pcp->lists[pindex]);
 
 
 
 
 
 
 
 
 
 
5484
5485	/*
5486	 * Set batch and high values safe for a boot pageset. A true percpu
5487	 * pageset's initialization will update them subsequently. Here we don't
5488	 * need to be as careful as pageset_update() as nobody can access the
5489	 * pageset yet.
5490	 */
5491	pcp->high_min = BOOT_PAGESET_HIGH;
5492	pcp->high_max = BOOT_PAGESET_HIGH;
5493	pcp->batch = BOOT_PAGESET_BATCH;
5494	pcp->free_count = 0;
 
 
 
 
 
 
 
 
5495}
5496
5497static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min,
5498					      unsigned long high_max, unsigned long batch)
 
 
5499{
5500	struct per_cpu_pages *pcp;
5501	int cpu;
 
 
 
 
 
 
 
 
 
 
 
5502
5503	for_each_possible_cpu(cpu) {
5504		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5505		pageset_update(pcp, high_min, high_max, batch);
5506	}
5507}
5508
5509/*
5510 * Calculate and set new high and batch values for all per-cpu pagesets of a
5511 * zone based on the zone's size.
 
 
 
 
5512 */
5513static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
5514{
5515	int new_high_min, new_high_max, new_batch;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5516
5517	new_batch = max(1, zone_batchsize(zone));
5518	if (percpu_pagelist_high_fraction) {
5519		new_high_min = zone_highsize(zone, new_batch, cpu_online,
5520					     percpu_pagelist_high_fraction);
5521		/*
5522		 * PCP high is tuned manually, disable auto-tuning via
5523		 * setting high_min and high_max to the manual value.
 
5524		 */
5525		new_high_max = new_high_min;
5526	} else {
5527		new_high_min = zone_highsize(zone, new_batch, cpu_online, 0);
5528		new_high_max = zone_highsize(zone, new_batch, cpu_online,
5529					     MIN_PERCPU_PAGELIST_HIGH_FRACTION);
 
 
 
 
 
 
 
 
 
 
 
 
5530	}
 
 
 
 
 
 
 
5531
5532	if (zone->pageset_high_min == new_high_min &&
5533	    zone->pageset_high_max == new_high_max &&
5534	    zone->pageset_batch == new_batch)
5535		return;
5536
5537	zone->pageset_high_min = new_high_min;
5538	zone->pageset_high_max = new_high_max;
5539	zone->pageset_batch = new_batch;
5540
5541	__zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max,
5542					  new_batch);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5543}
 
 
 
5544
5545void __meminit setup_zone_pageset(struct zone *zone)
 
5546{
5547	int cpu;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5548
5549	/* Size may be 0 on !SMP && !NUMA */
5550	if (sizeof(struct per_cpu_zonestat) > 0)
5551		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
 
 
 
 
 
 
 
 
5552
5553	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
5554	for_each_possible_cpu(cpu) {
5555		struct per_cpu_pages *pcp;
5556		struct per_cpu_zonestat *pzstats;
 
 
 
 
 
 
 
 
 
5557
5558		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5559		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
5560		per_cpu_pages_init(pcp, pzstats);
 
 
 
 
 
 
 
 
 
5561	}
5562
5563	zone_set_pageset_high_and_batch(zone, 0);
 
 
 
 
 
 
 
 
5564}
 
5565
 
 
 
5566/*
5567 * The zone indicated has a new number of managed_pages; batch sizes and percpu
5568 * page high values need to be recalculated.
5569 */
5570static void zone_pcp_update(struct zone *zone, int cpu_online)
5571{
5572	mutex_lock(&pcp_batch_high_lock);
5573	zone_set_pageset_high_and_batch(zone, cpu_online);
5574	mutex_unlock(&pcp_batch_high_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5575}
5576
5577static void zone_pcp_update_cacheinfo(struct zone *zone)
 
5578{
5579	int cpu;
5580	struct per_cpu_pages *pcp;
5581	struct cpu_cacheinfo *cci;
 
 
 
5582
5583	for_each_online_cpu(cpu) {
5584		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5585		cci = get_cpu_cacheinfo(cpu);
5586		/*
5587		 * If data cache slice of CPU is large enough, "pcp->batch"
5588		 * pages can be preserved in PCP before draining PCP for
5589		 * consecutive high-order pages freeing without allocation.
5590		 * This can reduce zone lock contention without hurting
5591		 * cache-hot pages sharing.
5592		 */
5593		spin_lock(&pcp->lock);
5594		if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch)
5595			pcp->flags |= PCPF_FREE_HIGH_BATCH;
5596		else
5597			pcp->flags &= ~PCPF_FREE_HIGH_BATCH;
5598		spin_unlock(&pcp->lock);
5599	}
 
 
5600}
5601
5602void setup_pcp_cacheinfo(void)
 
 
 
 
 
 
5603{
5604	struct zone *zone;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5605
5606	for_each_populated_zone(zone)
5607		zone_pcp_update_cacheinfo(zone);
 
 
 
5608}
5609
5610/*
5611 * Allocate per cpu pagesets and initialize them.
5612 * Before this call only boot pagesets were available.
 
 
5613 */
5614void __init setup_per_cpu_pageset(void)
5615{
5616	struct pglist_data *pgdat;
5617	struct zone *zone;
5618	int __maybe_unused cpu;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5619
5620	for_each_populated_zone(zone)
5621		setup_zone_pageset(zone);
 
 
 
 
 
 
 
 
 
 
5622
5623#ifdef CONFIG_NUMA
5624	/*
5625	 * Unpopulated zones continue using the boot pagesets.
5626	 * The numa stats for these pagesets need to be reset.
5627	 * Otherwise, they will end up skewing the stats of
5628	 * the nodes these zones are associated with.
5629	 */
5630	for_each_possible_cpu(cpu) {
5631		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
5632		memset(pzstats->vm_numa_event, 0,
5633		       sizeof(pzstats->vm_numa_event));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5634	}
5635#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5636
5637	for_each_online_pgdat(pgdat)
5638		pgdat->per_cpu_nodestats =
5639			alloc_percpu(struct per_cpu_nodestat);
 
5640}
5641
5642__meminit void zone_pcp_init(struct zone *zone)
 
 
 
 
5643{
5644	/*
5645	 * per cpu subsystem is not up at this point. The following code
5646	 * relies on the ability of the linker to provide the
5647	 * offset of a (static) per cpu variable into the per cpu area.
5648	 */
5649	zone->per_cpu_pageset = &boot_pageset;
5650	zone->per_cpu_zonestats = &boot_zonestats;
5651	zone->pageset_high_min = BOOT_PAGESET_HIGH;
5652	zone->pageset_high_max = BOOT_PAGESET_HIGH;
5653	zone->pageset_batch = BOOT_PAGESET_BATCH;
5654
5655	if (populated_zone(zone))
5656		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
5657			 zone->present_pages, zone_batchsize(zone));
 
 
 
 
 
5658}
5659
 
 
 
 
 
5660void adjust_managed_page_count(struct page *page, long count)
5661{
5662	atomic_long_add(count, &page_zone(page)->managed_pages);
5663	totalram_pages_add(count);
 
5664#ifdef CONFIG_HIGHMEM
5665	if (PageHighMem(page))
5666		totalhigh_pages_add(count);
5667#endif
 
5668}
5669EXPORT_SYMBOL(adjust_managed_page_count);
5670
5671unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
5672{
5673	void *pos;
5674	unsigned long pages = 0;
5675
5676	start = (void *)PAGE_ALIGN((unsigned long)start);
5677	end = (void *)((unsigned long)end & PAGE_MASK);
5678	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5679		struct page *page = virt_to_page(pos);
5680		void *direct_map_addr;
5681
5682		/*
5683		 * 'direct_map_addr' might be different from 'pos'
5684		 * because some architectures' virt_to_page()
5685		 * work with aliases.  Getting the direct map
5686		 * address ensures that we get a _writeable_
5687		 * alias for the memset().
5688		 */
5689		direct_map_addr = page_address(page);
5690		/*
5691		 * Perform a kasan-unchecked memset() since this memory
5692		 * has not been initialized.
5693		 */
5694		direct_map_addr = kasan_reset_tag(direct_map_addr);
5695		if ((unsigned int)poison <= 0xFF)
5696			memset(direct_map_addr, poison, PAGE_SIZE);
5697
5698		free_reserved_page(page);
5699	}
5700
5701	if (pages && s)
5702		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
 
5703
5704	return pages;
5705}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5706
5707static int page_alloc_cpu_dead(unsigned int cpu)
5708{
5709	struct zone *zone;
5710
5711	lru_add_drain_cpu(cpu);
5712	mlock_drain_remote(cpu);
5713	drain_pages(cpu);
5714
5715	/*
5716	 * Spill the event counters of the dead processor
5717	 * into the current processors event counters.
5718	 * This artificially elevates the count of the current
5719	 * processor.
5720	 */
5721	vm_events_fold_cpu(cpu);
5722
5723	/*
5724	 * Zero the differential counters of the dead processor
5725	 * so that the vm statistics are consistent.
5726	 *
5727	 * This is only okay since the processor is dead and cannot
5728	 * race with what we are doing.
5729	 */
5730	cpu_vm_stats_fold(cpu);
5731
5732	for_each_populated_zone(zone)
5733		zone_pcp_update(zone, 0);
5734
5735	return 0;
5736}
5737
5738static int page_alloc_cpu_online(unsigned int cpu)
5739{
5740	struct zone *zone;
5741
5742	for_each_populated_zone(zone)
5743		zone_pcp_update(zone, 1);
5744	return 0;
5745}
5746
5747void __init page_alloc_init_cpuhp(void)
5748{
5749	int ret;
5750
5751	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
5752					"mm/page_alloc:pcp",
5753					page_alloc_cpu_online,
5754					page_alloc_cpu_dead);
5755	WARN_ON(ret < 0);
5756}
5757
5758/*
5759 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
5760 *	or min_free_kbytes changes.
5761 */
5762static void calculate_totalreserve_pages(void)
5763{
5764	struct pglist_data *pgdat;
5765	unsigned long reserve_pages = 0;
5766	enum zone_type i, j;
5767
5768	for_each_online_pgdat(pgdat) {
5769
5770		pgdat->totalreserve_pages = 0;
5771
5772		for (i = 0; i < MAX_NR_ZONES; i++) {
5773			struct zone *zone = pgdat->node_zones + i;
5774			long max = 0;
5775			unsigned long managed_pages = zone_managed_pages(zone);
5776
5777			/* Find valid and maximum lowmem_reserve in the zone */
5778			for (j = i; j < MAX_NR_ZONES; j++) {
5779				if (zone->lowmem_reserve[j] > max)
5780					max = zone->lowmem_reserve[j];
5781			}
5782
5783			/* we treat the high watermark as reserved pages. */
5784			max += high_wmark_pages(zone);
5785
5786			if (max > managed_pages)
5787				max = managed_pages;
5788
5789			pgdat->totalreserve_pages += max;
5790
5791			reserve_pages += max;
5792		}
5793	}
5794	totalreserve_pages = reserve_pages;
5795}
5796
5797/*
5798 * setup_per_zone_lowmem_reserve - called whenever
5799 *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
5800 *	has a correct pages reserved value, so an adequate number of
5801 *	pages are left in the zone after a successful __alloc_pages().
5802 */
5803static void setup_per_zone_lowmem_reserve(void)
5804{
5805	struct pglist_data *pgdat;
5806	enum zone_type i, j;
5807
5808	for_each_online_pgdat(pgdat) {
5809		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
5810			struct zone *zone = &pgdat->node_zones[i];
5811			int ratio = sysctl_lowmem_reserve_ratio[i];
5812			bool clear = !ratio || !zone_managed_pages(zone);
5813			unsigned long managed_pages = 0;
5814
5815			for (j = i + 1; j < MAX_NR_ZONES; j++) {
5816				struct zone *upper_zone = &pgdat->node_zones[j];
5817
5818				managed_pages += zone_managed_pages(upper_zone);
5819
5820				if (clear)
5821					zone->lowmem_reserve[j] = 0;
5822				else
5823					zone->lowmem_reserve[j] = managed_pages / ratio;
 
 
 
 
 
 
5824			}
5825		}
5826	}
5827
5828	/* update totalreserve_pages */
5829	calculate_totalreserve_pages();
5830}
5831
5832static void __setup_per_zone_wmarks(void)
5833{
5834	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5835	unsigned long lowmem_pages = 0;
5836	struct zone *zone;
5837	unsigned long flags;
5838
5839	/* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
5840	for_each_zone(zone) {
5841		if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE)
5842			lowmem_pages += zone_managed_pages(zone);
5843	}
5844
5845	for_each_zone(zone) {
5846		u64 tmp;
5847
5848		spin_lock_irqsave(&zone->lock, flags);
5849		tmp = (u64)pages_min * zone_managed_pages(zone);
5850		do_div(tmp, lowmem_pages);
5851		if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) {
5852			/*
5853			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5854			 * need highmem and movable zones pages, so cap pages_min
5855			 * to a small  value here.
5856			 *
5857			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5858			 * deltas control async page reclaim, and so should
5859			 * not be capped for highmem and movable zones.
5860			 */
5861			unsigned long min_pages;
5862
5863			min_pages = zone_managed_pages(zone) / 1024;
5864			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5865			zone->_watermark[WMARK_MIN] = min_pages;
5866		} else {
5867			/*
5868			 * If it's a lowmem zone, reserve a number of pages
5869			 * proportionate to the zone's size.
5870			 */
5871			zone->_watermark[WMARK_MIN] = tmp;
5872		}
5873
5874		/*
5875		 * Set the kswapd watermarks distance according to the
5876		 * scale factor in proportion to available memory, but
5877		 * ensure a minimum size on small systems.
5878		 */
5879		tmp = max_t(u64, tmp >> 2,
5880			    mult_frac(zone_managed_pages(zone),
5881				      watermark_scale_factor, 10000));
5882
5883		zone->watermark_boost = 0;
5884		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
5885		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
5886		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
5887
5888		spin_unlock_irqrestore(&zone->lock, flags);
5889	}
5890
5891	/* update totalreserve_pages */
5892	calculate_totalreserve_pages();
5893}
5894
5895/**
5896 * setup_per_zone_wmarks - called when min_free_kbytes changes
5897 * or when memory is hot-{added|removed}
5898 *
5899 * Ensures that the watermark[min,low,high] values for each zone are set
5900 * correctly with respect to min_free_kbytes.
5901 */
5902void setup_per_zone_wmarks(void)
5903{
5904	struct zone *zone;
5905	static DEFINE_SPINLOCK(lock);
5906
5907	spin_lock(&lock);
5908	__setup_per_zone_wmarks();
5909	spin_unlock(&lock);
5910
5911	/*
5912	 * The watermark size have changed so update the pcpu batch
5913	 * and high limits or the limits may be inappropriate.
5914	 */
5915	for_each_zone(zone)
5916		zone_pcp_update(zone, 0);
5917}
5918
5919/*
5920 * Initialise min_free_kbytes.
5921 *
5922 * For small machines we want it small (128k min).  For large machines
5923 * we want it large (256MB max).  But it is not linear, because network
5924 * bandwidth does not increase linearly with machine size.  We use
5925 *
5926 *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5927 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
5928 *
5929 * which yields
5930 *
5931 * 16MB:	512k
5932 * 32MB:	724k
5933 * 64MB:	1024k
5934 * 128MB:	1448k
5935 * 256MB:	2048k
5936 * 512MB:	2896k
5937 * 1024MB:	4096k
5938 * 2048MB:	5792k
5939 * 4096MB:	8192k
5940 * 8192MB:	11584k
5941 * 16384MB:	16384k
5942 */
5943void calculate_min_free_kbytes(void)
5944{
5945	unsigned long lowmem_kbytes;
5946	int new_min_free_kbytes;
5947
5948	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5949	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5950
5951	if (new_min_free_kbytes > user_min_free_kbytes)
5952		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
5953	else
 
 
 
 
5954		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5955				new_min_free_kbytes, user_min_free_kbytes);
5956
5957}
5958
5959int __meminit init_per_zone_wmark_min(void)
5960{
5961	calculate_min_free_kbytes();
5962	setup_per_zone_wmarks();
5963	refresh_zone_stat_thresholds();
5964	setup_per_zone_lowmem_reserve();
5965
5966#ifdef CONFIG_NUMA
5967	setup_min_unmapped_ratio();
5968	setup_min_slab_ratio();
5969#endif
5970
5971	khugepaged_min_free_kbytes_update();
5972
5973	return 0;
5974}
5975postcore_initcall(init_per_zone_wmark_min)
5976
5977/*
5978 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5979 *	that we can call two helper functions whenever min_free_kbytes
5980 *	changes.
5981 */
5982static int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
5983		void *buffer, size_t *length, loff_t *ppos)
5984{
5985	int rc;
5986
5987	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5988	if (rc)
5989		return rc;
5990
5991	if (write) {
5992		user_min_free_kbytes = min_free_kbytes;
5993		setup_per_zone_wmarks();
5994	}
5995	return 0;
5996}
5997
5998static int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
5999		void *buffer, size_t *length, loff_t *ppos)
6000{
6001	int rc;
6002
6003	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6004	if (rc)
6005		return rc;
6006
6007	if (write)
6008		setup_per_zone_wmarks();
6009
6010	return 0;
6011}
6012
6013#ifdef CONFIG_NUMA
6014static void setup_min_unmapped_ratio(void)
6015{
6016	pg_data_t *pgdat;
6017	struct zone *zone;
6018
6019	for_each_online_pgdat(pgdat)
6020		pgdat->min_unmapped_pages = 0;
6021
6022	for_each_zone(zone)
6023		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
6024						         sysctl_min_unmapped_ratio) / 100;
6025}
6026
6027
6028static int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6029		void *buffer, size_t *length, loff_t *ppos)
6030{
6031	int rc;
6032
6033	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6034	if (rc)
6035		return rc;
6036
6037	setup_min_unmapped_ratio();
6038
6039	return 0;
6040}
6041
6042static void setup_min_slab_ratio(void)
6043{
6044	pg_data_t *pgdat;
6045	struct zone *zone;
6046
6047	for_each_online_pgdat(pgdat)
6048		pgdat->min_slab_pages = 0;
6049
6050	for_each_zone(zone)
6051		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
6052						     sysctl_min_slab_ratio) / 100;
6053}
6054
6055static int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6056		void *buffer, size_t *length, loff_t *ppos)
6057{
6058	int rc;
6059
6060	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6061	if (rc)
6062		return rc;
6063
6064	setup_min_slab_ratio();
6065
6066	return 0;
6067}
6068#endif
6069
6070/*
6071 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6072 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6073 *	whenever sysctl_lowmem_reserve_ratio changes.
6074 *
6075 * The reserve ratio obviously has absolutely no relation with the
6076 * minimum watermarks. The lowmem reserve ratio can only make sense
6077 * if in function of the boot time zone sizes.
6078 */
6079static int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table,
6080		int write, void *buffer, size_t *length, loff_t *ppos)
6081{
6082	int i;
6083
6084	proc_dointvec_minmax(table, write, buffer, length, ppos);
6085
6086	for (i = 0; i < MAX_NR_ZONES; i++) {
6087		if (sysctl_lowmem_reserve_ratio[i] < 1)
6088			sysctl_lowmem_reserve_ratio[i] = 0;
6089	}
6090
6091	setup_per_zone_lowmem_reserve();
6092	return 0;
6093}
6094
6095/*
6096 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
6097 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6098 * pagelist can have before it gets flushed back to buddy allocator.
6099 */
6100static int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
6101		int write, void *buffer, size_t *length, loff_t *ppos)
6102{
6103	struct zone *zone;
6104	int old_percpu_pagelist_high_fraction;
6105	int ret;
6106
6107	mutex_lock(&pcp_batch_high_lock);
6108	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
6109
6110	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6111	if (!write || ret < 0)
6112		goto out;
6113
6114	/* Sanity checking to avoid pcp imbalance */
6115	if (percpu_pagelist_high_fraction &&
6116	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
6117		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
6118		ret = -EINVAL;
6119		goto out;
6120	}
6121
6122	/* No change? */
6123	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
6124		goto out;
6125
6126	for_each_populated_zone(zone)
6127		zone_set_pageset_high_and_batch(zone, 0);
 
 
 
 
 
6128out:
6129	mutex_unlock(&pcp_batch_high_lock);
6130	return ret;
6131}
6132
6133static struct ctl_table page_alloc_sysctl_table[] = {
6134	{
6135		.procname	= "min_free_kbytes",
6136		.data		= &min_free_kbytes,
6137		.maxlen		= sizeof(min_free_kbytes),
6138		.mode		= 0644,
6139		.proc_handler	= min_free_kbytes_sysctl_handler,
6140		.extra1		= SYSCTL_ZERO,
6141	},
6142	{
6143		.procname	= "watermark_boost_factor",
6144		.data		= &watermark_boost_factor,
6145		.maxlen		= sizeof(watermark_boost_factor),
6146		.mode		= 0644,
6147		.proc_handler	= proc_dointvec_minmax,
6148		.extra1		= SYSCTL_ZERO,
6149	},
6150	{
6151		.procname	= "watermark_scale_factor",
6152		.data		= &watermark_scale_factor,
6153		.maxlen		= sizeof(watermark_scale_factor),
6154		.mode		= 0644,
6155		.proc_handler	= watermark_scale_factor_sysctl_handler,
6156		.extra1		= SYSCTL_ONE,
6157		.extra2		= SYSCTL_THREE_THOUSAND,
6158	},
6159	{
6160		.procname	= "percpu_pagelist_high_fraction",
6161		.data		= &percpu_pagelist_high_fraction,
6162		.maxlen		= sizeof(percpu_pagelist_high_fraction),
6163		.mode		= 0644,
6164		.proc_handler	= percpu_pagelist_high_fraction_sysctl_handler,
6165		.extra1		= SYSCTL_ZERO,
6166	},
6167	{
6168		.procname	= "lowmem_reserve_ratio",
6169		.data		= &sysctl_lowmem_reserve_ratio,
6170		.maxlen		= sizeof(sysctl_lowmem_reserve_ratio),
6171		.mode		= 0644,
6172		.proc_handler	= lowmem_reserve_ratio_sysctl_handler,
6173	},
6174#ifdef CONFIG_NUMA
6175	{
6176		.procname	= "numa_zonelist_order",
6177		.data		= &numa_zonelist_order,
6178		.maxlen		= NUMA_ZONELIST_ORDER_LEN,
6179		.mode		= 0644,
6180		.proc_handler	= numa_zonelist_order_handler,
6181	},
6182	{
6183		.procname	= "min_unmapped_ratio",
6184		.data		= &sysctl_min_unmapped_ratio,
6185		.maxlen		= sizeof(sysctl_min_unmapped_ratio),
6186		.mode		= 0644,
6187		.proc_handler	= sysctl_min_unmapped_ratio_sysctl_handler,
6188		.extra1		= SYSCTL_ZERO,
6189		.extra2		= SYSCTL_ONE_HUNDRED,
6190	},
6191	{
6192		.procname	= "min_slab_ratio",
6193		.data		= &sysctl_min_slab_ratio,
6194		.maxlen		= sizeof(sysctl_min_slab_ratio),
6195		.mode		= 0644,
6196		.proc_handler	= sysctl_min_slab_ratio_sysctl_handler,
6197		.extra1		= SYSCTL_ZERO,
6198		.extra2		= SYSCTL_ONE_HUNDRED,
6199	},
6200#endif
6201	{}
6202};
6203
6204void __init page_alloc_sysctl_init(void)
 
 
 
 
 
6205{
6206	register_sysctl_init("vm", page_alloc_sysctl_table);
6207}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6208
6209#ifdef CONFIG_CONTIG_ALLOC
6210/* Usage: See admin-guide/dynamic-debug-howto.rst */
6211static void alloc_contig_dump_pages(struct list_head *page_list)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6212{
6213	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6214
6215	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6216		struct page *page;
 
 
 
 
 
 
 
6217
6218		dump_stack();
6219		list_for_each_entry(page, page_list, lru)
6220			dump_page(page, "migration failure");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6221	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6222}
6223
6224/* [start, end) must belong to a single zone. */
6225int __alloc_contig_migrate_range(struct compact_control *cc,
6226					unsigned long start, unsigned long end)
6227{
6228	/* This function is based on compact_zone() from compaction.c. */
6229	unsigned int nr_reclaimed;
6230	unsigned long pfn = start;
6231	unsigned int tries = 0;
6232	int ret = 0;
6233	struct migration_target_control mtc = {
6234		.nid = zone_to_nid(cc->zone),
6235		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
6236	};
6237
6238	lru_cache_disable();
6239
6240	while (pfn < end || !list_empty(&cc->migratepages)) {
6241		if (fatal_signal_pending(current)) {
6242			ret = -EINTR;
6243			break;
6244		}
6245
6246		if (list_empty(&cc->migratepages)) {
6247			cc->nr_migratepages = 0;
6248			ret = isolate_migratepages_range(cc, pfn, end);
6249			if (ret && ret != -EAGAIN)
 
6250				break;
6251			pfn = cc->migrate_pfn;
6252			tries = 0;
6253		} else if (++tries == 5) {
6254			ret = -EBUSY;
6255			break;
6256		}
6257
6258		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6259							&cc->migratepages);
6260		cc->nr_migratepages -= nr_reclaimed;
6261
6262		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6263			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6264
6265		/*
6266		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6267		 * to retry again over this error, so do the same here.
6268		 */
6269		if (ret == -ENOMEM)
6270			break;
6271	}
6272
6273	lru_cache_enable();
6274	if (ret < 0) {
6275		if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
6276			alloc_contig_dump_pages(&cc->migratepages);
6277		putback_movable_pages(&cc->migratepages);
6278		return ret;
6279	}
6280	return 0;
6281}
6282
6283/**
6284 * alloc_contig_range() -- tries to allocate given range of pages
6285 * @start:	start PFN to allocate
6286 * @end:	one-past-the-last PFN to allocate
6287 * @migratetype:	migratetype of the underlying pageblocks (either
6288 *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6289 *			in range must have the same migratetype and it must
6290 *			be either of the two.
6291 * @gfp_mask:	GFP mask to use during compaction
6292 *
6293 * The PFN range does not have to be pageblock aligned. The PFN range must
6294 * belong to a single zone.
6295 *
6296 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6297 * pageblocks in the range.  Once isolated, the pageblocks should not
6298 * be modified by others.
6299 *
6300 * Return: zero on success or negative error code.  On success all
6301 * pages which PFN is in [start, end) are allocated for the caller and
6302 * need to be freed with free_contig_range().
6303 */
6304int alloc_contig_range(unsigned long start, unsigned long end,
6305		       unsigned migratetype, gfp_t gfp_mask)
6306{
6307	unsigned long outer_start, outer_end;
6308	int order;
6309	int ret = 0;
6310
6311	struct compact_control cc = {
6312		.nr_migratepages = 0,
6313		.order = -1,
6314		.zone = page_zone(pfn_to_page(start)),
6315		.mode = MIGRATE_SYNC,
6316		.ignore_skip_hint = true,
6317		.no_set_skip_hint = true,
6318		.gfp_mask = current_gfp_context(gfp_mask),
6319		.alloc_contig = true,
6320	};
6321	INIT_LIST_HEAD(&cc.migratepages);
6322
6323	/*
6324	 * What we do here is we mark all pageblocks in range as
6325	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6326	 * have different sizes, and due to the way page allocator
6327	 * work, start_isolate_page_range() has special handlings for this.
 
 
 
6328	 *
6329	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6330	 * migrate the pages from an unaligned range (ie. pages that
6331	 * we are interested in). This will put all the pages in
6332	 * range back to page allocator as MIGRATE_ISOLATE.
6333	 *
6334	 * When this is done, we take the pages in range from page
6335	 * allocator removing them from the buddy system.  This way
6336	 * page allocator will never consider using them.
6337	 *
6338	 * This lets us mark the pageblocks back as
6339	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6340	 * aligned range but not in the unaligned, original range are
6341	 * put back to page allocator so that buddy can use them.
6342	 */
6343
6344	ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
 
 
6345	if (ret)
6346		goto done;
6347
6348	drain_all_pages(cc.zone);
6349
6350	/*
6351	 * In case of -EBUSY, we'd like to know which page causes problem.
6352	 * So, just fall through. test_pages_isolated() has a tracepoint
6353	 * which will report the busy page.
6354	 *
6355	 * It is possible that busy pages could become available before
6356	 * the call to test_pages_isolated, and the range will actually be
6357	 * allocated.  So, if we fall through be sure to clear ret so that
6358	 * -EBUSY is not accidentally used or returned to caller.
6359	 */
6360	ret = __alloc_contig_migrate_range(&cc, start, end);
6361	if (ret && ret != -EBUSY)
6362		goto done;
6363	ret = 0;
6364
6365	/*
6366	 * Pages from [start, end) are within a pageblock_nr_pages
6367	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6368	 * more, all pages in [start, end) are free in page allocator.
6369	 * What we are going to do is to allocate all pages from
6370	 * [start, end) (that is remove them from page allocator).
6371	 *
6372	 * The only problem is that pages at the beginning and at the
6373	 * end of interesting range may be not aligned with pages that
6374	 * page allocator holds, ie. they can be part of higher order
6375	 * pages.  Because of this, we reserve the bigger range and
6376	 * once this is done free the pages we are not interested in.
6377	 *
6378	 * We don't have to hold zone->lock here because the pages are
6379	 * isolated thus they won't get removed from buddy.
6380	 */
6381
 
 
 
6382	order = 0;
6383	outer_start = start;
6384	while (!PageBuddy(pfn_to_page(outer_start))) {
6385		if (++order > MAX_PAGE_ORDER) {
6386			outer_start = start;
6387			break;
6388		}
6389		outer_start &= ~0UL << order;
6390	}
6391
6392	if (outer_start != start) {
6393		order = buddy_order(pfn_to_page(outer_start));
6394
6395		/*
6396		 * outer_start page could be small order buddy page and
6397		 * it doesn't include start page. Adjust outer_start
6398		 * in this case to report failed page properly
6399		 * on tracepoint in test_pages_isolated()
6400		 */
6401		if (outer_start + (1UL << order) <= start)
6402			outer_start = start;
6403	}
6404
6405	/* Make sure the range is really isolated. */
6406	if (test_pages_isolated(outer_start, end, 0)) {
 
 
6407		ret = -EBUSY;
6408		goto done;
6409	}
6410
6411	/* Grab isolated pages from freelists. */
6412	outer_end = isolate_freepages_range(&cc, outer_start, end);
6413	if (!outer_end) {
6414		ret = -EBUSY;
6415		goto done;
6416	}
6417
6418	/* Free head and tail (if any) */
6419	if (start != outer_start)
6420		free_contig_range(outer_start, start - outer_start);
6421	if (end != outer_end)
6422		free_contig_range(end, outer_end - end);
6423
6424done:
6425	undo_isolate_page_range(start, end, migratetype);
 
6426	return ret;
6427}
6428EXPORT_SYMBOL(alloc_contig_range);
6429
6430static int __alloc_contig_pages(unsigned long start_pfn,
6431				unsigned long nr_pages, gfp_t gfp_mask)
6432{
6433	unsigned long end_pfn = start_pfn + nr_pages;
6434
6435	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
6436				  gfp_mask);
6437}
6438
6439static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6440				   unsigned long nr_pages)
6441{
6442	unsigned long i, end_pfn = start_pfn + nr_pages;
6443	struct page *page;
6444
6445	for (i = start_pfn; i < end_pfn; i++) {
6446		page = pfn_to_online_page(i);
6447		if (!page)
6448			return false;
6449
6450		if (page_zone(page) != z)
6451			return false;
6452
6453		if (PageReserved(page))
6454			return false;
6455
6456		if (PageHuge(page))
6457			return false;
6458	}
6459	return true;
6460}
6461
6462static bool zone_spans_last_pfn(const struct zone *zone,
6463				unsigned long start_pfn, unsigned long nr_pages)
6464{
6465	unsigned long last_pfn = start_pfn + nr_pages - 1;
6466
6467	return zone_spans_pfn(zone, last_pfn);
6468}
6469
6470/**
6471 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6472 * @nr_pages:	Number of contiguous pages to allocate
6473 * @gfp_mask:	GFP mask to limit search and used during compaction
6474 * @nid:	Target node
6475 * @nodemask:	Mask for other possible nodes
6476 *
6477 * This routine is a wrapper around alloc_contig_range(). It scans over zones
6478 * on an applicable zonelist to find a contiguous pfn range which can then be
6479 * tried for allocation with alloc_contig_range(). This routine is intended
6480 * for allocation requests which can not be fulfilled with the buddy allocator.
6481 *
6482 * The allocated memory is always aligned to a page boundary. If nr_pages is a
6483 * power of two, then allocated range is also guaranteed to be aligned to same
6484 * nr_pages (e.g. 1GB request would be aligned to 1GB).
6485 *
6486 * Allocated pages can be freed with free_contig_range() or by manually calling
6487 * __free_page() on each allocated page.
6488 *
6489 * Return: pointer to contiguous pages on success, or NULL if not successful.
6490 */
6491struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
6492				int nid, nodemask_t *nodemask)
6493{
6494	unsigned long ret, pfn, flags;
6495	struct zonelist *zonelist;
6496	struct zone *zone;
6497	struct zoneref *z;
6498
6499	zonelist = node_zonelist(nid, gfp_mask);
6500	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6501					gfp_zone(gfp_mask), nodemask) {
6502		spin_lock_irqsave(&zone->lock, flags);
6503
6504		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6505		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6506			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6507				/*
6508				 * We release the zone lock here because
6509				 * alloc_contig_range() will also lock the zone
6510				 * at some point. If there's an allocation
6511				 * spinning on this lock, it may win the race
6512				 * and cause alloc_contig_range() to fail...
6513				 */
6514				spin_unlock_irqrestore(&zone->lock, flags);
6515				ret = __alloc_contig_pages(pfn, nr_pages,
6516							gfp_mask);
6517				if (!ret)
6518					return pfn_to_page(pfn);
6519				spin_lock_irqsave(&zone->lock, flags);
6520			}
6521			pfn += nr_pages;
6522		}
6523		spin_unlock_irqrestore(&zone->lock, flags);
6524	}
6525	return NULL;
6526}
6527#endif /* CONFIG_CONTIG_ALLOC */
6528
6529void free_contig_range(unsigned long pfn, unsigned long nr_pages)
6530{
6531	unsigned long count = 0;
6532
6533	for (; nr_pages--; pfn++) {
6534		struct page *page = pfn_to_page(pfn);
6535
6536		count += page_count(page) != 1;
6537		__free_page(page);
6538	}
6539	WARN(count != 0, "%lu pages are still in use!\n", count);
6540}
6541EXPORT_SYMBOL(free_contig_range);
6542
 
6543/*
6544 * Effectively disable pcplists for the zone by setting the high limit to 0
6545 * and draining all cpus. A concurrent page freeing on another CPU that's about
6546 * to put the page on pcplist will either finish before the drain and the page
6547 * will be drained, or observe the new high limit and skip the pcplist.
6548 *
6549 * Must be paired with a call to zone_pcp_enable().
6550 */
6551void zone_pcp_disable(struct zone *zone)
6552{
 
6553	mutex_lock(&pcp_batch_high_lock);
6554	__zone_set_pageset_high_and_batch(zone, 0, 0, 1);
6555	__drain_all_pages(zone, true);
6556}
6557
6558void zone_pcp_enable(struct zone *zone)
6559{
6560	__zone_set_pageset_high_and_batch(zone, zone->pageset_high_min,
6561		zone->pageset_high_max, zone->pageset_batch);
6562	mutex_unlock(&pcp_batch_high_lock);
6563}
 
6564
6565void zone_pcp_reset(struct zone *zone)
6566{
 
6567	int cpu;
6568	struct per_cpu_zonestat *pzstats;
6569
6570	if (zone->per_cpu_pageset != &boot_pageset) {
 
 
6571		for_each_online_cpu(cpu) {
6572			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6573			drain_zonestat(zone, pzstats);
6574		}
6575		free_percpu(zone->per_cpu_pageset);
6576		zone->per_cpu_pageset = &boot_pageset;
6577		if (zone->per_cpu_zonestats != &boot_zonestats) {
6578			free_percpu(zone->per_cpu_zonestats);
6579			zone->per_cpu_zonestats = &boot_zonestats;
6580		}
 
 
6581	}
 
6582}
6583
6584#ifdef CONFIG_MEMORY_HOTREMOVE
6585/*
6586 * All pages in the range must be in a single zone, must not contain holes,
6587 * must span full sections, and must be isolated before calling this function.
6588 */
6589void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
 
6590{
6591	unsigned long pfn = start_pfn;
6592	struct page *page;
6593	struct zone *zone;
6594	unsigned int order;
 
6595	unsigned long flags;
6596
 
 
 
 
 
6597	offline_mem_sections(pfn, end_pfn);
6598	zone = page_zone(pfn_to_page(pfn));
6599	spin_lock_irqsave(&zone->lock, flags);
 
6600	while (pfn < end_pfn) {
 
 
 
 
6601		page = pfn_to_page(pfn);
6602		/*
6603		 * The HWPoisoned page may be not in buddy system, and
6604		 * page_count() is not 0.
6605		 */
6606		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6607			pfn++;
6608			continue;
6609		}
6610		/*
6611		 * At this point all remaining PageOffline() pages have a
6612		 * reference count of 0 and can simply be skipped.
6613		 */
6614		if (PageOffline(page)) {
6615			BUG_ON(page_count(page));
6616			BUG_ON(PageBuddy(page));
6617			pfn++;
6618			continue;
6619		}
6620
6621		BUG_ON(page_count(page));
6622		BUG_ON(!PageBuddy(page));
6623		order = buddy_order(page);
6624		del_page_from_free_list(page, zone, order);
 
 
 
 
 
 
 
 
6625		pfn += (1 << order);
6626	}
6627	spin_unlock_irqrestore(&zone->lock, flags);
6628}
6629#endif
6630
6631/*
6632 * This function returns a stable result only if called under zone lock.
6633 */
6634bool is_free_buddy_page(struct page *page)
6635{
6636	unsigned long pfn = page_to_pfn(page);
6637	unsigned int order;
6638
6639	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6640		struct page *page_head = page - (pfn & ((1 << order) - 1));
6641
6642		if (PageBuddy(page_head) &&
6643		    buddy_order_unsafe(page_head) >= order)
6644			break;
6645	}
6646
6647	return order <= MAX_PAGE_ORDER;
6648}
6649EXPORT_SYMBOL(is_free_buddy_page);
6650
6651#ifdef CONFIG_MEMORY_FAILURE
6652/*
6653 * Break down a higher-order page in sub-pages, and keep our target out of
6654 * buddy allocator.
6655 */
6656static void break_down_buddy_pages(struct zone *zone, struct page *page,
6657				   struct page *target, int low, int high,
6658				   int migratetype)
6659{
6660	unsigned long size = 1 << high;
6661	struct page *current_buddy;
6662
6663	while (high > low) {
6664		high--;
6665		size >>= 1;
6666
6667		if (target >= &page[size]) {
6668			current_buddy = page;
6669			page = page + size;
6670		} else {
6671			current_buddy = page + size;
6672		}
6673
6674		if (set_page_guard(zone, current_buddy, high, migratetype))
6675			continue;
6676
6677		add_to_free_list(current_buddy, zone, high, migratetype);
6678		set_buddy_order(current_buddy, high);
6679	}
6680}
6681
6682/*
6683 * Take a page that will be marked as poisoned off the buddy allocator.
6684 */
6685bool take_page_off_buddy(struct page *page)
6686{
6687	struct zone *zone = page_zone(page);
6688	unsigned long pfn = page_to_pfn(page);
6689	unsigned long flags;
6690	unsigned int order;
6691	bool ret = false;
6692
6693	spin_lock_irqsave(&zone->lock, flags);
6694	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6695		struct page *page_head = page - (pfn & ((1 << order) - 1));
6696		int page_order = buddy_order(page_head);
6697
6698		if (PageBuddy(page_head) && page_order >= order) {
6699			unsigned long pfn_head = page_to_pfn(page_head);
6700			int migratetype = get_pfnblock_migratetype(page_head,
6701								   pfn_head);
6702
6703			del_page_from_free_list(page_head, zone, page_order);
6704			break_down_buddy_pages(zone, page_head, page, 0,
6705						page_order, migratetype);
6706			SetPageHWPoisonTakenOff(page);
6707			if (!is_migrate_isolate(migratetype))
6708				__mod_zone_freepage_state(zone, -1, migratetype);
6709			ret = true;
6710			break;
6711		}
6712		if (page_count(page_head) > 0)
6713			break;
6714	}
6715	spin_unlock_irqrestore(&zone->lock, flags);
6716	return ret;
6717}
6718
6719/*
6720 * Cancel takeoff done by take_page_off_buddy().
6721 */
6722bool put_page_back_buddy(struct page *page)
6723{
6724	struct zone *zone = page_zone(page);
6725	unsigned long pfn = page_to_pfn(page);
6726	unsigned long flags;
6727	int migratetype = get_pfnblock_migratetype(page, pfn);
6728	bool ret = false;
6729
6730	spin_lock_irqsave(&zone->lock, flags);
6731	if (put_page_testzero(page)) {
6732		ClearPageHWPoisonTakenOff(page);
6733		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
6734		if (TestClearPageHWPoison(page)) {
6735			ret = true;
6736		}
6737	}
6738	spin_unlock_irqrestore(&zone->lock, flags);
6739
6740	return ret;
6741}
6742#endif
6743
6744#ifdef CONFIG_ZONE_DMA
6745bool has_managed_dma(void)
6746{
6747	struct pglist_data *pgdat;
6748
6749	for_each_online_pgdat(pgdat) {
6750		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
6751
6752		if (managed_zone(zone))
6753			return true;
6754	}
6755	return false;
6756}
6757#endif /* CONFIG_ZONE_DMA */
6758
6759#ifdef CONFIG_UNACCEPTED_MEMORY
6760
6761/* Counts number of zones with unaccepted pages. */
6762static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages);
6763
6764static bool lazy_accept = true;
6765
6766static int __init accept_memory_parse(char *p)
6767{
6768	if (!strcmp(p, "lazy")) {
6769		lazy_accept = true;
6770		return 0;
6771	} else if (!strcmp(p, "eager")) {
6772		lazy_accept = false;
6773		return 0;
6774	} else {
6775		return -EINVAL;
6776	}
6777}
6778early_param("accept_memory", accept_memory_parse);
6779
6780static bool page_contains_unaccepted(struct page *page, unsigned int order)
6781{
6782	phys_addr_t start = page_to_phys(page);
6783	phys_addr_t end = start + (PAGE_SIZE << order);
6784
6785	return range_contains_unaccepted_memory(start, end);
6786}
6787
6788static void accept_page(struct page *page, unsigned int order)
6789{
6790	phys_addr_t start = page_to_phys(page);
6791
6792	accept_memory(start, start + (PAGE_SIZE << order));
6793}
6794
6795static bool try_to_accept_memory_one(struct zone *zone)
6796{
6797	unsigned long flags;
6798	struct page *page;
6799	bool last;
6800
6801	if (list_empty(&zone->unaccepted_pages))
6802		return false;
6803
6804	spin_lock_irqsave(&zone->lock, flags);
6805	page = list_first_entry_or_null(&zone->unaccepted_pages,
6806					struct page, lru);
6807	if (!page) {
6808		spin_unlock_irqrestore(&zone->lock, flags);
6809		return false;
6810	}
6811
6812	list_del(&page->lru);
6813	last = list_empty(&zone->unaccepted_pages);
6814
6815	__mod_zone_freepage_state(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6816	__mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
6817	spin_unlock_irqrestore(&zone->lock, flags);
6818
6819	accept_page(page, MAX_PAGE_ORDER);
6820
6821	__free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL);
6822
6823	if (last)
6824		static_branch_dec(&zones_with_unaccepted_pages);
6825
6826	return true;
6827}
6828
6829static bool try_to_accept_memory(struct zone *zone, unsigned int order)
6830{
6831	long to_accept;
6832	int ret = false;
6833
6834	/* How much to accept to get to high watermark? */
6835	to_accept = high_wmark_pages(zone) -
6836		    (zone_page_state(zone, NR_FREE_PAGES) -
6837		    __zone_watermark_unusable_free(zone, order, 0));
6838
6839	/* Accept at least one page */
6840	do {
6841		if (!try_to_accept_memory_one(zone))
6842			break;
6843		ret = true;
6844		to_accept -= MAX_ORDER_NR_PAGES;
6845	} while (to_accept > 0);
6846
6847	return ret;
6848}
6849
6850static inline bool has_unaccepted_memory(void)
6851{
6852	return static_branch_unlikely(&zones_with_unaccepted_pages);
6853}
6854
6855static bool __free_unaccepted(struct page *page)
6856{
6857	struct zone *zone = page_zone(page);
6858	unsigned long flags;
6859	bool first = false;
6860
6861	if (!lazy_accept)
6862		return false;
6863
6864	spin_lock_irqsave(&zone->lock, flags);
6865	first = list_empty(&zone->unaccepted_pages);
6866	list_add_tail(&page->lru, &zone->unaccepted_pages);
6867	__mod_zone_freepage_state(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6868	__mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
6869	spin_unlock_irqrestore(&zone->lock, flags);
6870
6871	if (first)
6872		static_branch_inc(&zones_with_unaccepted_pages);
6873
6874	return true;
6875}
6876
6877#else
6878
6879static bool page_contains_unaccepted(struct page *page, unsigned int order)
6880{
6881	return false;
6882}
6883
6884static void accept_page(struct page *page, unsigned int order)
6885{
6886}
6887
6888static bool try_to_accept_memory(struct zone *zone, unsigned int order)
6889{
6890	return false;
6891}
6892
6893static inline bool has_unaccepted_memory(void)
6894{
6895	return false;
6896}
6897
6898static bool __free_unaccepted(struct page *page)
6899{
6900	BUILD_BUG();
6901	return false;
6902}
6903
6904#endif /* CONFIG_UNACCEPTED_MEMORY */