Linux Audio

Check our new training course

Loading...
v4.17
   1/*
   2 *  linux/mm/page_alloc.c
   3 *
   4 *  Manages the free list, the system allocates free pages here.
   5 *  Note that kmalloc() lives in slab.c
   6 *
   7 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   8 *  Swap reorganised 29.12.95, Stephen Tweedie
   9 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15 */
  16
  17#include <linux/stddef.h>
  18#include <linux/mm.h>
  19#include <linux/swap.h>
  20#include <linux/interrupt.h>
  21#include <linux/pagemap.h>
  22#include <linux/jiffies.h>
  23#include <linux/bootmem.h>
  24#include <linux/memblock.h>
  25#include <linux/compiler.h>
  26#include <linux/kernel.h>
 
  27#include <linux/kasan.h>
  28#include <linux/module.h>
  29#include <linux/suspend.h>
  30#include <linux/pagevec.h>
  31#include <linux/blkdev.h>
  32#include <linux/slab.h>
  33#include <linux/ratelimit.h>
  34#include <linux/oom.h>
  35#include <linux/notifier.h>
  36#include <linux/topology.h>
  37#include <linux/sysctl.h>
  38#include <linux/cpu.h>
  39#include <linux/cpuset.h>
  40#include <linux/memory_hotplug.h>
  41#include <linux/nodemask.h>
  42#include <linux/vmalloc.h>
  43#include <linux/vmstat.h>
  44#include <linux/mempolicy.h>
  45#include <linux/memremap.h>
  46#include <linux/stop_machine.h>
  47#include <linux/sort.h>
  48#include <linux/pfn.h>
  49#include <linux/backing-dev.h>
  50#include <linux/fault-inject.h>
  51#include <linux/page-isolation.h>
  52#include <linux/page_ext.h>
  53#include <linux/debugobjects.h>
  54#include <linux/kmemleak.h>
  55#include <linux/compaction.h>
  56#include <trace/events/kmem.h>
  57#include <trace/events/oom.h>
  58#include <linux/prefetch.h>
  59#include <linux/mm_inline.h>
  60#include <linux/migrate.h>
 
  61#include <linux/hugetlb.h>
  62#include <linux/sched/rt.h>
  63#include <linux/sched/mm.h>
  64#include <linux/page_owner.h>
  65#include <linux/kthread.h>
  66#include <linux/memcontrol.h>
  67#include <linux/ftrace.h>
  68#include <linux/lockdep.h>
  69#include <linux/nmi.h>
  70
  71#include <asm/sections.h>
  72#include <asm/tlbflush.h>
  73#include <asm/div64.h>
  74#include "internal.h"
  75
  76/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
  77static DEFINE_MUTEX(pcp_batch_high_lock);
  78#define MIN_PERCPU_PAGELIST_FRACTION	(8)
  79
  80#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
  81DEFINE_PER_CPU(int, numa_node);
  82EXPORT_PER_CPU_SYMBOL(numa_node);
  83#endif
  84
  85DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
  86
  87#ifdef CONFIG_HAVE_MEMORYLESS_NODES
  88/*
  89 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
  90 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
  91 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
  92 * defined in <linux/topology.h>.
  93 */
  94DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
  95EXPORT_PER_CPU_SYMBOL(_numa_mem_);
  96int _node_numa_mem_[MAX_NUMNODES];
  97#endif
  98
  99/* work_structs for global per-cpu drains */
 100DEFINE_MUTEX(pcpu_drain_mutex);
 101DEFINE_PER_CPU(struct work_struct, pcpu_drain);
 102
 103#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
 104volatile unsigned long latent_entropy __latent_entropy;
 105EXPORT_SYMBOL(latent_entropy);
 106#endif
 107
 108/*
 109 * Array of node states.
 110 */
 111nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
 112	[N_POSSIBLE] = NODE_MASK_ALL,
 113	[N_ONLINE] = { { [0] = 1UL } },
 114#ifndef CONFIG_NUMA
 115	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
 116#ifdef CONFIG_HIGHMEM
 117	[N_HIGH_MEMORY] = { { [0] = 1UL } },
 118#endif
 
 119	[N_MEMORY] = { { [0] = 1UL } },
 
 120	[N_CPU] = { { [0] = 1UL } },
 121#endif	/* NUMA */
 122};
 123EXPORT_SYMBOL(node_states);
 124
 125/* Protect totalram_pages and zone->managed_pages */
 126static DEFINE_SPINLOCK(managed_page_count_lock);
 127
 128unsigned long totalram_pages __read_mostly;
 129unsigned long totalreserve_pages __read_mostly;
 130unsigned long totalcma_pages __read_mostly;
 131
 132int percpu_pagelist_fraction;
 133gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
 134
 135/*
 136 * A cached value of the page's pageblock's migratetype, used when the page is
 137 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
 138 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
 139 * Also the migratetype set in the page does not necessarily match the pcplist
 140 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
 141 * other index - this ensures that it will be put on the correct CMA freelist.
 142 */
 143static inline int get_pcppage_migratetype(struct page *page)
 144{
 145	return page->index;
 146}
 147
 148static inline void set_pcppage_migratetype(struct page *page, int migratetype)
 149{
 150	page->index = migratetype;
 151}
 152
 153#ifdef CONFIG_PM_SLEEP
 154/*
 155 * The following functions are used by the suspend/hibernate code to temporarily
 156 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
 157 * while devices are suspended.  To avoid races with the suspend/hibernate code,
 158 * they should always be called with pm_mutex held (gfp_allowed_mask also should
 159 * only be modified with pm_mutex held, unless the suspend/hibernate code is
 160 * guaranteed not to run in parallel with that modification).
 161 */
 162
 163static gfp_t saved_gfp_mask;
 164
 165void pm_restore_gfp_mask(void)
 166{
 167	WARN_ON(!mutex_is_locked(&pm_mutex));
 168	if (saved_gfp_mask) {
 169		gfp_allowed_mask = saved_gfp_mask;
 170		saved_gfp_mask = 0;
 171	}
 172}
 173
 174void pm_restrict_gfp_mask(void)
 175{
 176	WARN_ON(!mutex_is_locked(&pm_mutex));
 177	WARN_ON(saved_gfp_mask);
 178	saved_gfp_mask = gfp_allowed_mask;
 179	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
 180}
 181
 182bool pm_suspended_storage(void)
 183{
 184	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
 185		return false;
 186	return true;
 187}
 188#endif /* CONFIG_PM_SLEEP */
 189
 190#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
 191unsigned int pageblock_order __read_mostly;
 192#endif
 193
 194static void __free_pages_ok(struct page *page, unsigned int order);
 195
 196/*
 197 * results with 256, 32 in the lowmem_reserve sysctl:
 198 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 199 *	1G machine -> (16M dma, 784M normal, 224M high)
 200 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 201 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
 202 *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
 203 *
 204 * TBD: should special case ZONE_DMA32 machines here - in those we normally
 205 * don't need any ZONE_NORMAL reservation
 206 */
 207int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
 208#ifdef CONFIG_ZONE_DMA
 209	[ZONE_DMA] = 256,
 210#endif
 211#ifdef CONFIG_ZONE_DMA32
 212	[ZONE_DMA32] = 256,
 213#endif
 214	[ZONE_NORMAL] = 32,
 215#ifdef CONFIG_HIGHMEM
 216	[ZONE_HIGHMEM] = 0,
 217#endif
 218	[ZONE_MOVABLE] = 0,
 219};
 220
 221EXPORT_SYMBOL(totalram_pages);
 222
 223static char * const zone_names[MAX_NR_ZONES] = {
 224#ifdef CONFIG_ZONE_DMA
 225	 "DMA",
 226#endif
 227#ifdef CONFIG_ZONE_DMA32
 228	 "DMA32",
 229#endif
 230	 "Normal",
 231#ifdef CONFIG_HIGHMEM
 232	 "HighMem",
 233#endif
 234	 "Movable",
 235#ifdef CONFIG_ZONE_DEVICE
 236	 "Device",
 237#endif
 238};
 239
 240char * const migratetype_names[MIGRATE_TYPES] = {
 241	"Unmovable",
 242	"Movable",
 243	"Reclaimable",
 244	"HighAtomic",
 245#ifdef CONFIG_CMA
 246	"CMA",
 247#endif
 248#ifdef CONFIG_MEMORY_ISOLATION
 249	"Isolate",
 250#endif
 251};
 252
 253compound_page_dtor * const compound_page_dtors[] = {
 254	NULL,
 255	free_compound_page,
 256#ifdef CONFIG_HUGETLB_PAGE
 257	free_huge_page,
 258#endif
 259#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 260	free_transhuge_page,
 261#endif
 262};
 263
 264int min_free_kbytes = 1024;
 265int user_min_free_kbytes = -1;
 266int watermark_scale_factor = 10;
 267
 268static unsigned long nr_kernel_pages __meminitdata;
 269static unsigned long nr_all_pages __meminitdata;
 270static unsigned long dma_reserve __meminitdata;
 271
 272#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
 273static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __meminitdata;
 274static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __meminitdata;
 275static unsigned long required_kernelcore __initdata;
 276static unsigned long required_kernelcore_percent __initdata;
 277static unsigned long required_movablecore __initdata;
 278static unsigned long required_movablecore_percent __initdata;
 279static unsigned long zone_movable_pfn[MAX_NUMNODES] __meminitdata;
 280static bool mirrored_kernelcore __meminitdata;
 281
 282/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
 283int movable_zone;
 284EXPORT_SYMBOL(movable_zone);
 285#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
 286
 287#if MAX_NUMNODES > 1
 288int nr_node_ids __read_mostly = MAX_NUMNODES;
 289int nr_online_nodes __read_mostly = 1;
 290EXPORT_SYMBOL(nr_node_ids);
 291EXPORT_SYMBOL(nr_online_nodes);
 292#endif
 293
 294int page_group_by_mobility_disabled __read_mostly;
 295
 296#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
 
 
 
 
 
 297/* Returns true if the struct page for the pfn is uninitialised */
 298static inline bool __meminit early_page_uninitialised(unsigned long pfn)
 299{
 300	int nid = early_pfn_to_nid(pfn);
 
 301
 302	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
 
 
 
 
 
 303		return true;
 304
 305	return false;
 306}
 307
 308/*
 309 * Returns false when the remaining initialisation should be deferred until
 310 * later in the boot cycle when it can be parallelised.
 311 */
 312static inline bool update_defer_init(pg_data_t *pgdat,
 313				unsigned long pfn, unsigned long zone_end,
 314				unsigned long *nr_initialised)
 315{
 316	/* Always populate low zones for address-constrained allocations */
 
 
 317	if (zone_end < pgdat_end_pfn(pgdat))
 318		return true;
 
 
 
 
 
 
 
 319	(*nr_initialised)++;
 320	if ((*nr_initialised > pgdat->static_init_pgcnt) &&
 321	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
 322		pgdat->first_deferred_pfn = pfn;
 323		return false;
 324	}
 325
 326	return true;
 327}
 328#else
 
 
 
 
 329static inline bool early_page_uninitialised(unsigned long pfn)
 330{
 331	return false;
 332}
 333
 
 
 
 
 
 334static inline bool update_defer_init(pg_data_t *pgdat,
 335				unsigned long pfn, unsigned long zone_end,
 336				unsigned long *nr_initialised)
 337{
 338	return true;
 339}
 340#endif
 341
 342/* Return a pointer to the bitmap storing bits affecting a block of pages */
 343static inline unsigned long *get_pageblock_bitmap(struct page *page,
 344							unsigned long pfn)
 345{
 346#ifdef CONFIG_SPARSEMEM
 347	return __pfn_to_section(pfn)->pageblock_flags;
 348#else
 349	return page_zone(page)->pageblock_flags;
 350#endif /* CONFIG_SPARSEMEM */
 351}
 352
 353static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
 354{
 355#ifdef CONFIG_SPARSEMEM
 356	pfn &= (PAGES_PER_SECTION-1);
 357	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
 358#else
 359	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
 360	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
 361#endif /* CONFIG_SPARSEMEM */
 362}
 363
 364/**
 365 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
 366 * @page: The page within the block of interest
 367 * @pfn: The target page frame number
 368 * @end_bitidx: The last bit of interest to retrieve
 369 * @mask: mask of bits that the caller is interested in
 370 *
 371 * Return: pageblock_bits flags
 372 */
 373static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
 374					unsigned long pfn,
 375					unsigned long end_bitidx,
 376					unsigned long mask)
 377{
 378	unsigned long *bitmap;
 379	unsigned long bitidx, word_bitidx;
 380	unsigned long word;
 381
 382	bitmap = get_pageblock_bitmap(page, pfn);
 383	bitidx = pfn_to_bitidx(page, pfn);
 384	word_bitidx = bitidx / BITS_PER_LONG;
 385	bitidx &= (BITS_PER_LONG-1);
 386
 387	word = bitmap[word_bitidx];
 388	bitidx += end_bitidx;
 389	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
 390}
 391
 392unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
 393					unsigned long end_bitidx,
 394					unsigned long mask)
 395{
 396	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
 397}
 398
 399static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
 400{
 401	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
 402}
 403
 404/**
 405 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
 406 * @page: The page within the block of interest
 407 * @flags: The flags to set
 408 * @pfn: The target page frame number
 409 * @end_bitidx: The last bit of interest
 410 * @mask: mask of bits that the caller is interested in
 411 */
 412void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
 413					unsigned long pfn,
 414					unsigned long end_bitidx,
 415					unsigned long mask)
 416{
 417	unsigned long *bitmap;
 418	unsigned long bitidx, word_bitidx;
 419	unsigned long old_word, word;
 420
 421	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
 422
 423	bitmap = get_pageblock_bitmap(page, pfn);
 424	bitidx = pfn_to_bitidx(page, pfn);
 425	word_bitidx = bitidx / BITS_PER_LONG;
 426	bitidx &= (BITS_PER_LONG-1);
 427
 428	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
 429
 430	bitidx += end_bitidx;
 431	mask <<= (BITS_PER_LONG - bitidx - 1);
 432	flags <<= (BITS_PER_LONG - bitidx - 1);
 433
 434	word = READ_ONCE(bitmap[word_bitidx]);
 435	for (;;) {
 436		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
 437		if (word == old_word)
 438			break;
 439		word = old_word;
 440	}
 441}
 442
 443void set_pageblock_migratetype(struct page *page, int migratetype)
 444{
 445	if (unlikely(page_group_by_mobility_disabled &&
 446		     migratetype < MIGRATE_PCPTYPES))
 447		migratetype = MIGRATE_UNMOVABLE;
 448
 449	set_pageblock_flags_group(page, (unsigned long)migratetype,
 450					PB_migrate, PB_migrate_end);
 451}
 452
 453#ifdef CONFIG_DEBUG_VM
 454static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
 455{
 456	int ret = 0;
 457	unsigned seq;
 458	unsigned long pfn = page_to_pfn(page);
 459	unsigned long sp, start_pfn;
 460
 461	do {
 462		seq = zone_span_seqbegin(zone);
 463		start_pfn = zone->zone_start_pfn;
 464		sp = zone->spanned_pages;
 465		if (!zone_spans_pfn(zone, pfn))
 466			ret = 1;
 467	} while (zone_span_seqretry(zone, seq));
 468
 469	if (ret)
 470		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
 471			pfn, zone_to_nid(zone), zone->name,
 472			start_pfn, start_pfn + sp);
 473
 474	return ret;
 475}
 476
 477static int page_is_consistent(struct zone *zone, struct page *page)
 478{
 479	if (!pfn_valid_within(page_to_pfn(page)))
 480		return 0;
 481	if (zone != page_zone(page))
 482		return 0;
 483
 484	return 1;
 485}
 486/*
 487 * Temporary debugging check for pages not lying within a given zone.
 488 */
 489static int __maybe_unused bad_range(struct zone *zone, struct page *page)
 490{
 491	if (page_outside_zone_boundaries(zone, page))
 492		return 1;
 493	if (!page_is_consistent(zone, page))
 494		return 1;
 495
 496	return 0;
 497}
 498#else
 499static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
 500{
 501	return 0;
 502}
 503#endif
 504
 505static void bad_page(struct page *page, const char *reason,
 506		unsigned long bad_flags)
 507{
 508	static unsigned long resume;
 509	static unsigned long nr_shown;
 510	static unsigned long nr_unshown;
 511
 
 
 
 
 
 
 512	/*
 513	 * Allow a burst of 60 reports, then keep quiet for that minute;
 514	 * or allow a steady drip of one report per second.
 515	 */
 516	if (nr_shown == 60) {
 517		if (time_before(jiffies, resume)) {
 518			nr_unshown++;
 519			goto out;
 520		}
 521		if (nr_unshown) {
 522			pr_alert(
 523			      "BUG: Bad page state: %lu messages suppressed\n",
 524				nr_unshown);
 525			nr_unshown = 0;
 526		}
 527		nr_shown = 0;
 528	}
 529	if (nr_shown++ == 0)
 530		resume = jiffies + 60 * HZ;
 531
 532	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
 533		current->comm, page_to_pfn(page));
 534	__dump_page(page, reason);
 535	bad_flags &= page->flags;
 536	if (bad_flags)
 537		pr_alert("bad because of flags: %#lx(%pGp)\n",
 538						bad_flags, &bad_flags);
 539	dump_page_owner(page);
 540
 541	print_modules();
 542	dump_stack();
 543out:
 544	/* Leave bad fields for debug, except PageBuddy could make trouble */
 545	page_mapcount_reset(page); /* remove PageBuddy */
 546	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 547}
 548
 549/*
 550 * Higher-order pages are called "compound pages".  They are structured thusly:
 551 *
 552 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
 553 *
 554 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
 555 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
 556 *
 557 * The first tail page's ->compound_dtor holds the offset in array of compound
 558 * page destructors. See compound_page_dtors.
 559 *
 560 * The first tail page's ->compound_order holds the order of allocation.
 561 * This usage means that zero-order pages may not be compound.
 562 */
 563
 564void free_compound_page(struct page *page)
 565{
 566	__free_pages_ok(page, compound_order(page));
 567}
 568
 569void prep_compound_page(struct page *page, unsigned int order)
 570{
 571	int i;
 572	int nr_pages = 1 << order;
 573
 574	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
 575	set_compound_order(page, order);
 576	__SetPageHead(page);
 577	for (i = 1; i < nr_pages; i++) {
 578		struct page *p = page + i;
 579		set_page_count(p, 0);
 580		p->mapping = TAIL_MAPPING;
 581		set_compound_head(p, page);
 582	}
 583	atomic_set(compound_mapcount_ptr(page), -1);
 584}
 585
 586#ifdef CONFIG_DEBUG_PAGEALLOC
 587unsigned int _debug_guardpage_minorder;
 588bool _debug_pagealloc_enabled __read_mostly
 589			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
 590EXPORT_SYMBOL(_debug_pagealloc_enabled);
 591bool _debug_guardpage_enabled __read_mostly;
 592
 593static int __init early_debug_pagealloc(char *buf)
 594{
 595	if (!buf)
 596		return -EINVAL;
 597	return kstrtobool(buf, &_debug_pagealloc_enabled);
 
 
 
 
 
 
 
 598}
 599early_param("debug_pagealloc", early_debug_pagealloc);
 600
 601static bool need_debug_guardpage(void)
 602{
 603	/* If we don't use debug_pagealloc, we don't need guard page */
 604	if (!debug_pagealloc_enabled())
 605		return false;
 606
 607	if (!debug_guardpage_minorder())
 608		return false;
 609
 610	return true;
 611}
 612
 613static void init_debug_guardpage(void)
 614{
 615	if (!debug_pagealloc_enabled())
 616		return;
 617
 618	if (!debug_guardpage_minorder())
 619		return;
 620
 621	_debug_guardpage_enabled = true;
 622}
 623
 624struct page_ext_operations debug_guardpage_ops = {
 625	.need = need_debug_guardpage,
 626	.init = init_debug_guardpage,
 627};
 628
 629static int __init debug_guardpage_minorder_setup(char *buf)
 630{
 631	unsigned long res;
 632
 633	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
 634		pr_err("Bad debug_guardpage_minorder value\n");
 635		return 0;
 636	}
 637	_debug_guardpage_minorder = res;
 638	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
 639	return 0;
 640}
 641early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
 642
 643static inline bool set_page_guard(struct zone *zone, struct page *page,
 644				unsigned int order, int migratetype)
 645{
 646	struct page_ext *page_ext;
 647
 648	if (!debug_guardpage_enabled())
 649		return false;
 650
 651	if (order >= debug_guardpage_minorder())
 652		return false;
 653
 654	page_ext = lookup_page_ext(page);
 655	if (unlikely(!page_ext))
 656		return false;
 657
 658	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
 659
 660	INIT_LIST_HEAD(&page->lru);
 661	set_page_private(page, order);
 662	/* Guard pages are not available for any usage */
 663	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
 664
 665	return true;
 666}
 667
 668static inline void clear_page_guard(struct zone *zone, struct page *page,
 669				unsigned int order, int migratetype)
 670{
 671	struct page_ext *page_ext;
 672
 673	if (!debug_guardpage_enabled())
 674		return;
 675
 676	page_ext = lookup_page_ext(page);
 677	if (unlikely(!page_ext))
 678		return;
 679
 680	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
 681
 682	set_page_private(page, 0);
 683	if (!is_migrate_isolate(migratetype))
 684		__mod_zone_freepage_state(zone, (1 << order), migratetype);
 685}
 686#else
 687struct page_ext_operations debug_guardpage_ops;
 688static inline bool set_page_guard(struct zone *zone, struct page *page,
 689			unsigned int order, int migratetype) { return false; }
 690static inline void clear_page_guard(struct zone *zone, struct page *page,
 691				unsigned int order, int migratetype) {}
 692#endif
 693
 694static inline void set_page_order(struct page *page, unsigned int order)
 695{
 696	set_page_private(page, order);
 697	__SetPageBuddy(page);
 698}
 699
 700static inline void rmv_page_order(struct page *page)
 701{
 702	__ClearPageBuddy(page);
 703	set_page_private(page, 0);
 704}
 705
 706/*
 707 * This function checks whether a page is free && is the buddy
 708 * we can do coalesce a page and its buddy if
 709 * (a) the buddy is not in a hole (check before calling!) &&
 710 * (b) the buddy is in the buddy system &&
 711 * (c) a page and its buddy have the same order &&
 712 * (d) a page and its buddy are in the same zone.
 713 *
 714 * For recording whether a page is in the buddy system, we set ->_mapcount
 715 * PAGE_BUDDY_MAPCOUNT_VALUE.
 716 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
 717 * serialized by zone->lock.
 718 *
 719 * For recording page's order, we use page_private(page).
 720 */
 721static inline int page_is_buddy(struct page *page, struct page *buddy,
 722							unsigned int order)
 723{
 
 
 
 724	if (page_is_guard(buddy) && page_order(buddy) == order) {
 725		if (page_zone_id(page) != page_zone_id(buddy))
 726			return 0;
 727
 728		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
 729
 730		return 1;
 731	}
 732
 733	if (PageBuddy(buddy) && page_order(buddy) == order) {
 734		/*
 735		 * zone check is done late to avoid uselessly
 736		 * calculating zone/node ids for pages that could
 737		 * never merge.
 738		 */
 739		if (page_zone_id(page) != page_zone_id(buddy))
 740			return 0;
 741
 742		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
 743
 744		return 1;
 745	}
 746	return 0;
 747}
 748
 749/*
 750 * Freeing function for a buddy system allocator.
 751 *
 752 * The concept of a buddy system is to maintain direct-mapped table
 753 * (containing bit values) for memory blocks of various "orders".
 754 * The bottom level table contains the map for the smallest allocatable
 755 * units of memory (here, pages), and each level above it describes
 756 * pairs of units from the levels below, hence, "buddies".
 757 * At a high level, all that happens here is marking the table entry
 758 * at the bottom level available, and propagating the changes upward
 759 * as necessary, plus some accounting needed to play nicely with other
 760 * parts of the VM system.
 761 * At each level, we keep a list of pages, which are heads of continuous
 762 * free pages of length of (1 << order) and marked with _mapcount
 763 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
 764 * field.
 765 * So when we are allocating or freeing one, we can derive the state of the
 766 * other.  That is, if we allocate a small block, and both were
 767 * free, the remainder of the region must be split into blocks.
 768 * If a block is freed, and its buddy is also free, then this
 769 * triggers coalescing into a block of larger size.
 770 *
 771 * -- nyc
 772 */
 773
 774static inline void __free_one_page(struct page *page,
 775		unsigned long pfn,
 776		struct zone *zone, unsigned int order,
 777		int migratetype)
 778{
 779	unsigned long combined_pfn;
 780	unsigned long uninitialized_var(buddy_pfn);
 
 781	struct page *buddy;
 782	unsigned int max_order;
 783
 784	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
 785
 786	VM_BUG_ON(!zone_is_initialized(zone));
 787	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
 788
 789	VM_BUG_ON(migratetype == -1);
 790	if (likely(!is_migrate_isolate(migratetype)))
 791		__mod_zone_freepage_state(zone, 1 << order, migratetype);
 792
 793	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
 
 
 794	VM_BUG_ON_PAGE(bad_range(zone, page), page);
 795
 796continue_merging:
 797	while (order < max_order - 1) {
 798		buddy_pfn = __find_buddy_pfn(pfn, order);
 799		buddy = page + (buddy_pfn - pfn);
 800
 801		if (!pfn_valid_within(buddy_pfn))
 802			goto done_merging;
 803		if (!page_is_buddy(page, buddy, order))
 804			goto done_merging;
 805		/*
 806		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
 807		 * merge with it and move up one order.
 808		 */
 809		if (page_is_guard(buddy)) {
 810			clear_page_guard(zone, buddy, order, migratetype);
 811		} else {
 812			list_del(&buddy->lru);
 813			zone->free_area[order].nr_free--;
 814			rmv_page_order(buddy);
 815		}
 816		combined_pfn = buddy_pfn & pfn;
 817		page = page + (combined_pfn - pfn);
 818		pfn = combined_pfn;
 819		order++;
 820	}
 821	if (max_order < MAX_ORDER) {
 822		/* If we are here, it means order is >= pageblock_order.
 823		 * We want to prevent merge between freepages on isolate
 824		 * pageblock and normal pageblock. Without this, pageblock
 825		 * isolation could cause incorrect freepage or CMA accounting.
 826		 *
 827		 * We don't want to hit this code for the more frequent
 828		 * low-order merging.
 829		 */
 830		if (unlikely(has_isolate_pageblock(zone))) {
 831			int buddy_mt;
 832
 833			buddy_pfn = __find_buddy_pfn(pfn, order);
 834			buddy = page + (buddy_pfn - pfn);
 835			buddy_mt = get_pageblock_migratetype(buddy);
 836
 837			if (migratetype != buddy_mt
 838					&& (is_migrate_isolate(migratetype) ||
 839						is_migrate_isolate(buddy_mt)))
 840				goto done_merging;
 841		}
 842		max_order++;
 843		goto continue_merging;
 844	}
 845
 846done_merging:
 847	set_page_order(page, order);
 848
 849	/*
 850	 * If this is not the largest possible page, check if the buddy
 851	 * of the next-highest order is free. If it is, it's possible
 852	 * that pages are being freed that will coalesce soon. In case,
 853	 * that is happening, add the free page to the tail of the list
 854	 * so it's less likely to be used soon and more likely to be merged
 855	 * as a higher order page
 856	 */
 857	if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
 858		struct page *higher_page, *higher_buddy;
 859		combined_pfn = buddy_pfn & pfn;
 860		higher_page = page + (combined_pfn - pfn);
 861		buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
 862		higher_buddy = higher_page + (buddy_pfn - combined_pfn);
 863		if (pfn_valid_within(buddy_pfn) &&
 864		    page_is_buddy(higher_page, higher_buddy, order + 1)) {
 865			list_add_tail(&page->lru,
 866				&zone->free_area[order].free_list[migratetype]);
 867			goto out;
 868		}
 869	}
 870
 871	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
 872out:
 873	zone->free_area[order].nr_free++;
 874}
 875
 876/*
 877 * A bad page could be due to a number of fields. Instead of multiple branches,
 878 * try and check multiple fields with one check. The caller must do a detailed
 879 * check if necessary.
 880 */
 881static inline bool page_expected_state(struct page *page,
 882					unsigned long check_flags)
 883{
 884	if (unlikely(atomic_read(&page->_mapcount) != -1))
 885		return false;
 886
 887	if (unlikely((unsigned long)page->mapping |
 888			page_ref_count(page) |
 889#ifdef CONFIG_MEMCG
 890			(unsigned long)page->mem_cgroup |
 891#endif
 892			(page->flags & check_flags)))
 893		return false;
 894
 895	return true;
 896}
 897
 898static void free_pages_check_bad(struct page *page)
 899{
 900	const char *bad_reason;
 901	unsigned long bad_flags;
 902
 903	bad_reason = NULL;
 904	bad_flags = 0;
 905
 906	if (unlikely(atomic_read(&page->_mapcount) != -1))
 907		bad_reason = "nonzero mapcount";
 908	if (unlikely(page->mapping != NULL))
 909		bad_reason = "non-NULL mapping";
 910	if (unlikely(page_ref_count(page) != 0))
 911		bad_reason = "nonzero _refcount";
 912	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
 913		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
 914		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
 915	}
 916#ifdef CONFIG_MEMCG
 917	if (unlikely(page->mem_cgroup))
 918		bad_reason = "page still charged to cgroup";
 919#endif
 920	bad_page(page, bad_reason, bad_flags);
 921}
 922
 923static inline int free_pages_check(struct page *page)
 924{
 925	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
 926		return 0;
 927
 928	/* Something has gone sideways, find it */
 929	free_pages_check_bad(page);
 930	return 1;
 931}
 932
 933static int free_tail_pages_check(struct page *head_page, struct page *page)
 934{
 935	int ret = 1;
 936
 937	/*
 938	 * We rely page->lru.next never has bit 0 set, unless the page
 939	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
 940	 */
 941	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
 942
 943	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
 944		ret = 0;
 945		goto out;
 946	}
 947	switch (page - head_page) {
 948	case 1:
 949		/* the first tail page: ->mapping is compound_mapcount() */
 950		if (unlikely(compound_mapcount(page))) {
 951			bad_page(page, "nonzero compound_mapcount", 0);
 952			goto out;
 953		}
 954		break;
 955	case 2:
 956		/*
 957		 * the second tail page: ->mapping is
 958		 * page_deferred_list().next -- ignore value.
 959		 */
 960		break;
 961	default:
 962		if (page->mapping != TAIL_MAPPING) {
 963			bad_page(page, "corrupted mapping in tail page", 0);
 964			goto out;
 965		}
 966		break;
 967	}
 968	if (unlikely(!PageTail(page))) {
 969		bad_page(page, "PageTail not set", 0);
 970		goto out;
 971	}
 972	if (unlikely(compound_head(page) != head_page)) {
 973		bad_page(page, "compound_head not consistent", 0);
 974		goto out;
 975	}
 976	ret = 0;
 977out:
 978	page->mapping = NULL;
 979	clear_compound_head(page);
 980	return ret;
 981}
 982
 983static __always_inline bool free_pages_prepare(struct page *page,
 984					unsigned int order, bool check_free)
 985{
 986	int bad = 0;
 987
 988	VM_BUG_ON_PAGE(PageTail(page), page);
 989
 990	trace_mm_page_free(page, order);
 991
 992	/*
 993	 * Check tail pages before head page information is cleared to
 994	 * avoid checking PageCompound for order-0 pages.
 995	 */
 996	if (unlikely(order)) {
 997		bool compound = PageCompound(page);
 998		int i;
 999
1000		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1001
1002		if (compound)
1003			ClearPageDoubleMap(page);
1004		for (i = 1; i < (1 << order); i++) {
1005			if (compound)
1006				bad += free_tail_pages_check(page, page + i);
1007			if (unlikely(free_pages_check(page + i))) {
1008				bad++;
1009				continue;
1010			}
1011			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1012		}
1013	}
1014	if (PageMappingFlags(page))
1015		page->mapping = NULL;
1016	if (memcg_kmem_enabled() && PageKmemcg(page))
1017		memcg_kmem_uncharge(page, order);
1018	if (check_free)
1019		bad += free_pages_check(page);
1020	if (bad)
1021		return false;
1022
1023	page_cpupid_reset_last(page);
1024	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1025	reset_page_owner(page, order);
1026
1027	if (!PageHighMem(page)) {
1028		debug_check_no_locks_freed(page_address(page),
1029					   PAGE_SIZE << order);
1030		debug_check_no_obj_freed(page_address(page),
1031					   PAGE_SIZE << order);
1032	}
1033	arch_free_page(page, order);
1034	kernel_poison_pages(page, 1 << order, 0);
1035	kernel_map_pages(page, 1 << order, 0);
1036	kasan_free_pages(page, order);
1037
1038	return true;
1039}
1040
1041#ifdef CONFIG_DEBUG_VM
1042static inline bool free_pcp_prepare(struct page *page)
1043{
1044	return free_pages_prepare(page, 0, true);
1045}
1046
1047static inline bool bulkfree_pcp_prepare(struct page *page)
1048{
1049	return false;
1050}
1051#else
1052static bool free_pcp_prepare(struct page *page)
1053{
1054	return free_pages_prepare(page, 0, false);
1055}
1056
1057static bool bulkfree_pcp_prepare(struct page *page)
1058{
1059	return free_pages_check(page);
1060}
1061#endif /* CONFIG_DEBUG_VM */
1062
1063static inline void prefetch_buddy(struct page *page)
1064{
1065	unsigned long pfn = page_to_pfn(page);
1066	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1067	struct page *buddy = page + (buddy_pfn - pfn);
1068
1069	prefetch(buddy);
1070}
1071
1072/*
1073 * Frees a number of pages from the PCP lists
1074 * Assumes all pages on list are in same zone, and of same order.
1075 * count is the number of pages to free.
1076 *
1077 * If the zone was previously in an "all pages pinned" state then look to
1078 * see if this freeing clears that state.
1079 *
1080 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1081 * pinned" detection logic.
1082 */
1083static void free_pcppages_bulk(struct zone *zone, int count,
1084					struct per_cpu_pages *pcp)
1085{
1086	int migratetype = 0;
1087	int batch_free = 0;
1088	int prefetch_nr = 0;
1089	bool isolated_pageblocks;
1090	struct page *page, *tmp;
1091	LIST_HEAD(head);
 
 
 
1092
1093	while (count) {
 
1094		struct list_head *list;
1095
1096		/*
1097		 * Remove pages from lists in a round-robin fashion. A
1098		 * batch_free count is maintained that is incremented when an
1099		 * empty list is encountered.  This is so more pages are freed
1100		 * off fuller lists instead of spinning excessively around empty
1101		 * lists
1102		 */
1103		do {
1104			batch_free++;
1105			if (++migratetype == MIGRATE_PCPTYPES)
1106				migratetype = 0;
1107			list = &pcp->lists[migratetype];
1108		} while (list_empty(list));
1109
1110		/* This is the only non-empty list. Free them all. */
1111		if (batch_free == MIGRATE_PCPTYPES)
1112			batch_free = count;
1113
1114		do {
 
 
1115			page = list_last_entry(list, struct page, lru);
1116			/* must delete to avoid corrupting pcp list */
1117			list_del(&page->lru);
1118			pcp->count--;
1119
1120			if (bulkfree_pcp_prepare(page))
1121				continue;
1122
1123			list_add_tail(&page->lru, &head);
1124
1125			/*
1126			 * We are going to put the page back to the global
1127			 * pool, prefetch its buddy to speed up later access
1128			 * under zone->lock. It is believed the overhead of
1129			 * an additional test and calculating buddy_pfn here
1130			 * can be offset by reduced memory latency later. To
1131			 * avoid excessive prefetching due to large count, only
1132			 * prefetch buddy for the first pcp->batch nr of pages.
1133			 */
1134			if (prefetch_nr++ < pcp->batch)
1135				prefetch_buddy(page);
1136		} while (--count && --batch_free && !list_empty(list));
1137	}
1138
1139	spin_lock(&zone->lock);
1140	isolated_pageblocks = has_isolate_pageblock(zone);
1141
1142	/*
1143	 * Use safe version since after __free_one_page(),
1144	 * page->lru.next will not point to original list.
1145	 */
1146	list_for_each_entry_safe(page, tmp, &head, lru) {
1147		int mt = get_pcppage_migratetype(page);
1148		/* MIGRATE_ISOLATE page should not go to pcplists */
1149		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1150		/* Pageblock could have been isolated meanwhile */
1151		if (unlikely(isolated_pageblocks))
1152			mt = get_pageblock_migratetype(page);
1153
1154		__free_one_page(page, page_to_pfn(page), zone, 0, mt);
1155		trace_mm_page_pcpu_drain(page, 0, mt);
1156	}
1157	spin_unlock(&zone->lock);
1158}
1159
1160static void free_one_page(struct zone *zone,
1161				struct page *page, unsigned long pfn,
1162				unsigned int order,
1163				int migratetype)
1164{
 
1165	spin_lock(&zone->lock);
 
 
 
 
1166	if (unlikely(has_isolate_pageblock(zone) ||
1167		is_migrate_isolate(migratetype))) {
1168		migratetype = get_pfnblock_migratetype(page, pfn);
1169	}
1170	__free_one_page(page, pfn, zone, order, migratetype);
1171	spin_unlock(&zone->lock);
1172}
1173
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1174static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1175				unsigned long zone, int nid)
1176{
1177	mm_zero_struct_page(page);
1178	set_page_links(page, zone, nid, pfn);
1179	init_page_count(page);
1180	page_mapcount_reset(page);
1181	page_cpupid_reset_last(page);
1182
1183	INIT_LIST_HEAD(&page->lru);
1184#ifdef WANT_PAGE_VIRTUAL
1185	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1186	if (!is_highmem_idx(zone))
1187		set_page_address(page, __va(pfn << PAGE_SHIFT));
1188#endif
1189}
1190
 
 
 
 
 
 
1191#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1192static void __meminit init_reserved_page(unsigned long pfn)
1193{
1194	pg_data_t *pgdat;
1195	int nid, zid;
1196
1197	if (!early_page_uninitialised(pfn))
1198		return;
1199
1200	nid = early_pfn_to_nid(pfn);
1201	pgdat = NODE_DATA(nid);
1202
1203	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1204		struct zone *zone = &pgdat->node_zones[zid];
1205
1206		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1207			break;
1208	}
1209	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1210}
1211#else
1212static inline void init_reserved_page(unsigned long pfn)
1213{
1214}
1215#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1216
1217/*
1218 * Initialised pages do not have PageReserved set. This function is
1219 * called for each range allocated by the bootmem allocator and
1220 * marks the pages PageReserved. The remaining valid pages are later
1221 * sent to the buddy page allocator.
1222 */
1223void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1224{
1225	unsigned long start_pfn = PFN_DOWN(start);
1226	unsigned long end_pfn = PFN_UP(end);
1227
1228	for (; start_pfn < end_pfn; start_pfn++) {
1229		if (pfn_valid(start_pfn)) {
1230			struct page *page = pfn_to_page(start_pfn);
1231
1232			init_reserved_page(start_pfn);
1233
1234			/* Avoid false-positive PageTail() */
1235			INIT_LIST_HEAD(&page->lru);
1236
1237			SetPageReserved(page);
1238		}
1239	}
1240}
1241
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1242static void __free_pages_ok(struct page *page, unsigned int order)
1243{
1244	unsigned long flags;
1245	int migratetype;
1246	unsigned long pfn = page_to_pfn(page);
1247
1248	if (!free_pages_prepare(page, order, true))
1249		return;
1250
1251	migratetype = get_pfnblock_migratetype(page, pfn);
1252	local_irq_save(flags);
1253	__count_vm_events(PGFREE, 1 << order);
1254	free_one_page(page_zone(page), page, pfn, order, migratetype);
1255	local_irq_restore(flags);
1256}
1257
1258static void __init __free_pages_boot_core(struct page *page, unsigned int order)
 
1259{
1260	unsigned int nr_pages = 1 << order;
1261	struct page *p = page;
1262	unsigned int loop;
1263
1264	prefetchw(p);
1265	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1266		prefetchw(p + 1);
1267		__ClearPageReserved(p);
1268		set_page_count(p, 0);
1269	}
1270	__ClearPageReserved(p);
1271	set_page_count(p, 0);
1272
1273	page_zone(page)->managed_pages += nr_pages;
1274	set_page_refcounted(page);
1275	__free_pages(page, order);
1276}
1277
1278#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1279	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1280
1281static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1282
1283int __meminit early_pfn_to_nid(unsigned long pfn)
1284{
1285	static DEFINE_SPINLOCK(early_pfn_lock);
1286	int nid;
1287
1288	spin_lock(&early_pfn_lock);
1289	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1290	if (nid < 0)
1291		nid = first_online_node;
1292	spin_unlock(&early_pfn_lock);
1293
1294	return nid;
1295}
1296#endif
1297
1298#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1299static inline bool __meminit __maybe_unused
1300meminit_pfn_in_nid(unsigned long pfn, int node,
1301		   struct mminit_pfnnid_cache *state)
1302{
1303	int nid;
1304
1305	nid = __early_pfn_to_nid(pfn, state);
1306	if (nid >= 0 && nid != node)
1307		return false;
1308	return true;
1309}
1310
1311/* Only safe to use early in boot when initialisation is single-threaded */
1312static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1313{
1314	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1315}
1316
1317#else
1318
1319static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1320{
1321	return true;
1322}
1323static inline bool __meminit  __maybe_unused
1324meminit_pfn_in_nid(unsigned long pfn, int node,
1325		   struct mminit_pfnnid_cache *state)
1326{
1327	return true;
1328}
1329#endif
1330
1331
1332void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1333							unsigned int order)
1334{
1335	if (early_page_uninitialised(pfn))
1336		return;
1337	return __free_pages_boot_core(page, order);
1338}
1339
1340/*
1341 * Check that the whole (or subset of) a pageblock given by the interval of
1342 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1343 * with the migration of free compaction scanner. The scanners then need to
1344 * use only pfn_valid_within() check for arches that allow holes within
1345 * pageblocks.
1346 *
1347 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1348 *
1349 * It's possible on some configurations to have a setup like node0 node1 node0
1350 * i.e. it's possible that all pages within a zones range of pages do not
1351 * belong to a single zone. We assume that a border between node0 and node1
1352 * can occur within a single pageblock, but not a node0 node1 node0
1353 * interleaving within a single pageblock. It is therefore sufficient to check
1354 * the first and last page of a pageblock and avoid checking each individual
1355 * page in a pageblock.
1356 */
1357struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1358				     unsigned long end_pfn, struct zone *zone)
1359{
1360	struct page *start_page;
1361	struct page *end_page;
1362
1363	/* end_pfn is one past the range we are checking */
1364	end_pfn--;
1365
1366	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1367		return NULL;
1368
1369	start_page = pfn_to_online_page(start_pfn);
1370	if (!start_page)
1371		return NULL;
1372
1373	if (page_zone(start_page) != zone)
1374		return NULL;
1375
1376	end_page = pfn_to_page(end_pfn);
1377
1378	/* This gives a shorter code than deriving page_zone(end_page) */
1379	if (page_zone_id(start_page) != page_zone_id(end_page))
1380		return NULL;
1381
1382	return start_page;
1383}
1384
1385void set_zone_contiguous(struct zone *zone)
1386{
1387	unsigned long block_start_pfn = zone->zone_start_pfn;
1388	unsigned long block_end_pfn;
1389
1390	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1391	for (; block_start_pfn < zone_end_pfn(zone);
1392			block_start_pfn = block_end_pfn,
1393			 block_end_pfn += pageblock_nr_pages) {
1394
1395		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1396
1397		if (!__pageblock_pfn_to_page(block_start_pfn,
1398					     block_end_pfn, zone))
1399			return;
1400	}
1401
1402	/* We confirm that there is no hole */
1403	zone->contiguous = true;
1404}
1405
1406void clear_zone_contiguous(struct zone *zone)
1407{
1408	zone->contiguous = false;
1409}
1410
1411#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1412static void __init deferred_free_range(unsigned long pfn,
1413				       unsigned long nr_pages)
1414{
1415	struct page *page;
1416	unsigned long i;
1417
1418	if (!nr_pages)
1419		return;
1420
1421	page = pfn_to_page(pfn);
1422
1423	/* Free a large naturally-aligned chunk if possible */
1424	if (nr_pages == pageblock_nr_pages &&
1425	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1426		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1427		__free_pages_boot_core(page, pageblock_order);
1428		return;
1429	}
1430
1431	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1432		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1433			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1434		__free_pages_boot_core(page, 0);
1435	}
1436}
1437
1438/* Completion tracking for deferred_init_memmap() threads */
1439static atomic_t pgdat_init_n_undone __initdata;
1440static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1441
1442static inline void __init pgdat_init_report_one_done(void)
1443{
1444	if (atomic_dec_and_test(&pgdat_init_n_undone))
1445		complete(&pgdat_init_all_done_comp);
1446}
1447
1448/*
1449 * Returns true if page needs to be initialized or freed to buddy allocator.
1450 *
1451 * First we check if pfn is valid on architectures where it is possible to have
1452 * holes within pageblock_nr_pages. On systems where it is not possible, this
1453 * function is optimized out.
1454 *
1455 * Then, we check if a current large page is valid by only checking the validity
1456 * of the head pfn.
1457 *
1458 * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave
1459 * within a node: a pfn is between start and end of a node, but does not belong
1460 * to this memory node.
1461 */
1462static inline bool __init
1463deferred_pfn_valid(int nid, unsigned long pfn,
1464		   struct mminit_pfnnid_cache *nid_init_state)
1465{
1466	if (!pfn_valid_within(pfn))
1467		return false;
1468	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1469		return false;
1470	if (!meminit_pfn_in_nid(pfn, nid, nid_init_state))
1471		return false;
1472	return true;
1473}
1474
1475/*
1476 * Free pages to buddy allocator. Try to free aligned pages in
1477 * pageblock_nr_pages sizes.
1478 */
1479static void __init deferred_free_pages(int nid, int zid, unsigned long pfn,
1480				       unsigned long end_pfn)
1481{
1482	struct mminit_pfnnid_cache nid_init_state = { };
1483	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1484	unsigned long nr_free = 0;
1485
1486	for (; pfn < end_pfn; pfn++) {
1487		if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1488			deferred_free_range(pfn - nr_free, nr_free);
1489			nr_free = 0;
1490		} else if (!(pfn & nr_pgmask)) {
1491			deferred_free_range(pfn - nr_free, nr_free);
1492			nr_free = 1;
1493			touch_nmi_watchdog();
1494		} else {
1495			nr_free++;
1496		}
1497	}
1498	/* Free the last block of pages to allocator */
1499	deferred_free_range(pfn - nr_free, nr_free);
1500}
1501
1502/*
1503 * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1504 * by performing it only once every pageblock_nr_pages.
1505 * Return number of pages initialized.
1506 */
1507static unsigned long  __init deferred_init_pages(int nid, int zid,
1508						 unsigned long pfn,
1509						 unsigned long end_pfn)
1510{
1511	struct mminit_pfnnid_cache nid_init_state = { };
1512	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1513	unsigned long nr_pages = 0;
1514	struct page *page = NULL;
1515
1516	for (; pfn < end_pfn; pfn++) {
1517		if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1518			page = NULL;
1519			continue;
1520		} else if (!page || !(pfn & nr_pgmask)) {
1521			page = pfn_to_page(pfn);
1522			touch_nmi_watchdog();
1523		} else {
1524			page++;
1525		}
1526		__init_single_page(page, pfn, zid, nid);
1527		nr_pages++;
1528	}
1529	return (nr_pages);
1530}
1531
1532/* Initialise remaining memory on a node */
1533static int __init deferred_init_memmap(void *data)
1534{
1535	pg_data_t *pgdat = data;
1536	int nid = pgdat->node_id;
 
1537	unsigned long start = jiffies;
1538	unsigned long nr_pages = 0;
1539	unsigned long spfn, epfn, first_init_pfn, flags;
1540	phys_addr_t spa, epa;
1541	int zid;
1542	struct zone *zone;
 
1543	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1544	u64 i;
1545
1546	/* Bind memory initialisation thread to a local node if possible */
1547	if (!cpumask_empty(cpumask))
1548		set_cpus_allowed_ptr(current, cpumask);
1549
1550	pgdat_resize_lock(pgdat, &flags);
1551	first_init_pfn = pgdat->first_deferred_pfn;
1552	if (first_init_pfn == ULONG_MAX) {
1553		pgdat_resize_unlock(pgdat, &flags);
1554		pgdat_init_report_one_done();
1555		return 0;
1556	}
1557
 
 
 
 
1558	/* Sanity check boundaries */
1559	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1560	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1561	pgdat->first_deferred_pfn = ULONG_MAX;
1562
1563	/* Only the highest zone is deferred so find it */
1564	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1565		zone = pgdat->node_zones + zid;
1566		if (first_init_pfn < zone_end_pfn(zone))
1567			break;
1568	}
1569	first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
1570
1571	/*
1572	 * Initialize and free pages. We do it in two loops: first we initialize
1573	 * struct page, than free to buddy allocator, because while we are
1574	 * freeing pages we can access pages that are ahead (computing buddy
1575	 * page in __free_one_page()).
1576	 */
1577	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1578		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1579		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1580		nr_pages += deferred_init_pages(nid, zid, spfn, epfn);
1581	}
1582	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1583		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1584		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1585		deferred_free_pages(nid, zid, spfn, epfn);
1586	}
1587	pgdat_resize_unlock(pgdat, &flags);
1588
1589	/* Sanity check that the next zone really is unpopulated */
1590	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1591
1592	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1593					jiffies_to_msecs(jiffies - start));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1594
1595	pgdat_init_report_one_done();
1596	return 0;
1597}
1598
1599/*
1600 * During boot we initialize deferred pages on-demand, as needed, but once
1601 * page_alloc_init_late() has finished, the deferred pages are all initialized,
1602 * and we can permanently disable that path.
1603 */
1604static DEFINE_STATIC_KEY_TRUE(deferred_pages);
1605
1606/*
1607 * If this zone has deferred pages, try to grow it by initializing enough
1608 * deferred pages to satisfy the allocation specified by order, rounded up to
1609 * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
1610 * of SECTION_SIZE bytes by initializing struct pages in increments of
1611 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1612 *
1613 * Return true when zone was grown, otherwise return false. We return true even
1614 * when we grow less than requested, to let the caller decide if there are
1615 * enough pages to satisfy the allocation.
1616 *
1617 * Note: We use noinline because this function is needed only during boot, and
1618 * it is called from a __ref function _deferred_grow_zone. This way we are
1619 * making sure that it is not inlined into permanent text section.
1620 */
1621static noinline bool __init
1622deferred_grow_zone(struct zone *zone, unsigned int order)
1623{
1624	int zid = zone_idx(zone);
1625	int nid = zone_to_nid(zone);
1626	pg_data_t *pgdat = NODE_DATA(nid);
1627	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1628	unsigned long nr_pages = 0;
1629	unsigned long first_init_pfn, spfn, epfn, t, flags;
1630	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1631	phys_addr_t spa, epa;
1632	u64 i;
1633
1634	/* Only the last zone may have deferred pages */
1635	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1636		return false;
1637
1638	pgdat_resize_lock(pgdat, &flags);
 
 
 
1639
1640	/*
1641	 * If deferred pages have been initialized while we were waiting for
1642	 * the lock, return true, as the zone was grown.  The caller will retry
1643	 * this zone.  We won't return to this function since the caller also
1644	 * has this static branch.
1645	 */
1646	if (!static_branch_unlikely(&deferred_pages)) {
1647		pgdat_resize_unlock(pgdat, &flags);
1648		return true;
1649	}
1650
1651	/*
1652	 * If someone grew this zone while we were waiting for spinlock, return
1653	 * true, as there might be enough pages already.
1654	 */
1655	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1656		pgdat_resize_unlock(pgdat, &flags);
1657		return true;
1658	}
1659
1660	first_init_pfn = max(zone->zone_start_pfn, first_deferred_pfn);
 
 
 
1661
1662	if (first_init_pfn >= pgdat_end_pfn(pgdat)) {
1663		pgdat_resize_unlock(pgdat, &flags);
1664		return false;
1665	}
 
 
 
1666
1667	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1668		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1669		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1670
1671		while (spfn < epfn && nr_pages < nr_pages_needed) {
1672			t = ALIGN(spfn + PAGES_PER_SECTION, PAGES_PER_SECTION);
1673			first_deferred_pfn = min(t, epfn);
1674			nr_pages += deferred_init_pages(nid, zid, spfn,
1675							first_deferred_pfn);
1676			spfn = first_deferred_pfn;
1677		}
1678
1679		if (nr_pages >= nr_pages_needed)
1680			break;
1681	}
1682
1683	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1684		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1685		epfn = min_t(unsigned long, first_deferred_pfn, PFN_DOWN(epa));
1686		deferred_free_pages(nid, zid, spfn, epfn);
1687
1688		if (first_deferred_pfn == epfn)
1689			break;
1690	}
1691	pgdat->first_deferred_pfn = first_deferred_pfn;
1692	pgdat_resize_unlock(pgdat, &flags);
1693
1694	return nr_pages > 0;
1695}
1696
1697/*
1698 * deferred_grow_zone() is __init, but it is called from
1699 * get_page_from_freelist() during early boot until deferred_pages permanently
1700 * disables this call. This is why we have refdata wrapper to avoid warning,
1701 * and to ensure that the function body gets unloaded.
1702 */
1703static bool __ref
1704_deferred_grow_zone(struct zone *zone, unsigned int order)
1705{
1706	return deferred_grow_zone(zone, order);
1707}
1708
1709#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1710
1711void __init page_alloc_init_late(void)
1712{
1713	struct zone *zone;
1714
1715#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1716	int nid;
1717
1718	/* There will be num_node_state(N_MEMORY) threads */
1719	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1720	for_each_node_state(nid, N_MEMORY) {
1721		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1722	}
1723
1724	/* Block until all are initialised */
1725	wait_for_completion(&pgdat_init_all_done_comp);
1726
1727	/*
1728	 * We initialized the rest of the deferred pages.  Permanently disable
1729	 * on-demand struct page initialization.
1730	 */
1731	static_branch_disable(&deferred_pages);
1732
1733	/* Reinit limits that are based on free pages after the kernel is up */
1734	files_maxfiles_init();
1735#endif
1736#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1737	/* Discard memblock private memory */
1738	memblock_discard();
1739#endif
1740
1741	for_each_populated_zone(zone)
1742		set_zone_contiguous(zone);
1743}
1744
1745#ifdef CONFIG_CMA
1746/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1747void __init init_cma_reserved_pageblock(struct page *page)
1748{
1749	unsigned i = pageblock_nr_pages;
1750	struct page *p = page;
1751
1752	do {
1753		__ClearPageReserved(p);
1754		set_page_count(p, 0);
1755	} while (++p, --i);
1756
1757	set_pageblock_migratetype(page, MIGRATE_CMA);
1758
1759	if (pageblock_order >= MAX_ORDER) {
1760		i = pageblock_nr_pages;
1761		p = page;
1762		do {
1763			set_page_refcounted(p);
1764			__free_pages(p, MAX_ORDER - 1);
1765			p += MAX_ORDER_NR_PAGES;
1766		} while (i -= MAX_ORDER_NR_PAGES);
1767	} else {
1768		set_page_refcounted(page);
1769		__free_pages(page, pageblock_order);
1770	}
1771
1772	adjust_managed_page_count(page, pageblock_nr_pages);
1773}
1774#endif
1775
1776/*
1777 * The order of subdivision here is critical for the IO subsystem.
1778 * Please do not alter this order without good reasons and regression
1779 * testing. Specifically, as large blocks of memory are subdivided,
1780 * the order in which smaller blocks are delivered depends on the order
1781 * they're subdivided in this function. This is the primary factor
1782 * influencing the order in which pages are delivered to the IO
1783 * subsystem according to empirical testing, and this is also justified
1784 * by considering the behavior of a buddy system containing a single
1785 * large block of memory acted on by a series of small allocations.
1786 * This behavior is a critical factor in sglist merging's success.
1787 *
1788 * -- nyc
1789 */
1790static inline void expand(struct zone *zone, struct page *page,
1791	int low, int high, struct free_area *area,
1792	int migratetype)
1793{
1794	unsigned long size = 1 << high;
1795
1796	while (high > low) {
1797		area--;
1798		high--;
1799		size >>= 1;
1800		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1801
1802		/*
1803		 * Mark as guard pages (or page), that will allow to
1804		 * merge back to allocator when buddy will be freed.
1805		 * Corresponding page table entries will not be touched,
1806		 * pages will stay not present in virtual address space
1807		 */
1808		if (set_page_guard(zone, &page[size], high, migratetype))
 
 
 
1809			continue;
1810
1811		list_add(&page[size].lru, &area->free_list[migratetype]);
1812		area->nr_free++;
1813		set_page_order(&page[size], high);
1814	}
1815}
1816
1817static void check_new_page_bad(struct page *page)
 
 
 
1818{
1819	const char *bad_reason = NULL;
1820	unsigned long bad_flags = 0;
1821
1822	if (unlikely(atomic_read(&page->_mapcount) != -1))
1823		bad_reason = "nonzero mapcount";
1824	if (unlikely(page->mapping != NULL))
1825		bad_reason = "non-NULL mapping";
1826	if (unlikely(page_ref_count(page) != 0))
1827		bad_reason = "nonzero _count";
1828	if (unlikely(page->flags & __PG_HWPOISON)) {
1829		bad_reason = "HWPoisoned (hardware-corrupted)";
1830		bad_flags = __PG_HWPOISON;
1831		/* Don't complain about hwpoisoned pages */
1832		page_mapcount_reset(page); /* remove PageBuddy */
1833		return;
1834	}
1835	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1836		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1837		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1838	}
1839#ifdef CONFIG_MEMCG
1840	if (unlikely(page->mem_cgroup))
1841		bad_reason = "page still charged to cgroup";
1842#endif
1843	bad_page(page, bad_reason, bad_flags);
1844}
1845
1846/*
1847 * This page is about to be returned from the page allocator
1848 */
1849static inline int check_new_page(struct page *page)
1850{
1851	if (likely(page_expected_state(page,
1852				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1853		return 0;
1854
1855	check_new_page_bad(page);
1856	return 1;
1857}
1858
1859static inline bool free_pages_prezeroed(void)
1860{
1861	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1862		page_poisoning_enabled();
1863}
1864
1865#ifdef CONFIG_DEBUG_VM
1866static bool check_pcp_refill(struct page *page)
1867{
1868	return false;
1869}
1870
1871static bool check_new_pcp(struct page *page)
1872{
1873	return check_new_page(page);
1874}
1875#else
1876static bool check_pcp_refill(struct page *page)
1877{
1878	return check_new_page(page);
1879}
1880static bool check_new_pcp(struct page *page)
1881{
1882	return false;
1883}
1884#endif /* CONFIG_DEBUG_VM */
1885
1886static bool check_new_pages(struct page *page, unsigned int order)
1887{
1888	int i;
 
 
1889	for (i = 0; i < (1 << order); i++) {
1890		struct page *p = page + i;
1891
1892		if (unlikely(check_new_page(p)))
1893			return true;
 
 
1894	}
1895
1896	return false;
1897}
1898
1899inline void post_alloc_hook(struct page *page, unsigned int order,
1900				gfp_t gfp_flags)
1901{
1902	set_page_private(page, 0);
1903	set_page_refcounted(page);
1904
1905	arch_alloc_page(page, order);
1906	kernel_map_pages(page, 1 << order, 1);
1907	kernel_poison_pages(page, 1 << order, 1);
1908	kasan_alloc_pages(page, order);
1909	set_page_owner(page, order, gfp_flags);
1910}
1911
1912static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1913							unsigned int alloc_flags)
1914{
1915	int i;
1916
1917	post_alloc_hook(page, order, gfp_flags);
1918
1919	if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1920		for (i = 0; i < (1 << order); i++)
1921			clear_highpage(page + i);
1922
1923	if (order && (gfp_flags & __GFP_COMP))
1924		prep_compound_page(page, order);
1925
 
 
1926	/*
1927	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1928	 * allocate the page. The expectation is that the caller is taking
1929	 * steps that will free more memory. The caller should avoid the page
1930	 * being used for !PFMEMALLOC purposes.
1931	 */
1932	if (alloc_flags & ALLOC_NO_WATERMARKS)
1933		set_page_pfmemalloc(page);
1934	else
1935		clear_page_pfmemalloc(page);
 
 
1936}
1937
1938/*
1939 * Go through the free lists for the given migratetype and remove
1940 * the smallest available page from the freelists
1941 */
1942static __always_inline
1943struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1944						int migratetype)
1945{
1946	unsigned int current_order;
1947	struct free_area *area;
1948	struct page *page;
1949
1950	/* Find a page of the appropriate size in the preferred list */
1951	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1952		area = &(zone->free_area[current_order]);
1953		page = list_first_entry_or_null(&area->free_list[migratetype],
1954							struct page, lru);
1955		if (!page)
1956			continue;
1957		list_del(&page->lru);
1958		rmv_page_order(page);
1959		area->nr_free--;
1960		expand(zone, page, order, current_order, area, migratetype);
1961		set_pcppage_migratetype(page, migratetype);
1962		return page;
1963	}
1964
1965	return NULL;
1966}
1967
1968
1969/*
1970 * This array describes the order lists are fallen back to when
1971 * the free lists for the desirable migrate type are depleted
1972 */
1973static int fallbacks[MIGRATE_TYPES][4] = {
1974	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
1975	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
1976	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1977#ifdef CONFIG_CMA
1978	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
1979#endif
1980#ifdef CONFIG_MEMORY_ISOLATION
1981	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
1982#endif
1983};
1984
1985#ifdef CONFIG_CMA
1986static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1987					unsigned int order)
1988{
1989	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1990}
1991#else
1992static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1993					unsigned int order) { return NULL; }
1994#endif
1995
1996/*
1997 * Move the free pages in a range to the free lists of the requested type.
1998 * Note that start_page and end_pages are not aligned on a pageblock
1999 * boundary. If alignment is required, use move_freepages_block()
2000 */
2001static int move_freepages(struct zone *zone,
2002			  struct page *start_page, struct page *end_page,
2003			  int migratetype, int *num_movable)
2004{
2005	struct page *page;
2006	unsigned int order;
2007	int pages_moved = 0;
2008
2009#ifndef CONFIG_HOLES_IN_ZONE
2010	/*
2011	 * page_zone is not safe to call in this context when
2012	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
2013	 * anyway as we check zone boundaries in move_freepages_block().
2014	 * Remove at a later date when no bug reports exist related to
2015	 * grouping pages by mobility
2016	 */
2017	VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
2018	          pfn_valid(page_to_pfn(end_page)) &&
2019	          page_zone(start_page) != page_zone(end_page));
2020#endif
2021
2022	if (num_movable)
2023		*num_movable = 0;
2024
2025	for (page = start_page; page <= end_page;) {
 
 
 
2026		if (!pfn_valid_within(page_to_pfn(page))) {
2027			page++;
2028			continue;
2029		}
2030
2031		/* Make sure we are not inadvertently changing nodes */
2032		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2033
2034		if (!PageBuddy(page)) {
2035			/*
2036			 * We assume that pages that could be isolated for
2037			 * migration are movable. But we don't actually try
2038			 * isolating, as that would be expensive.
2039			 */
2040			if (num_movable &&
2041					(PageLRU(page) || __PageMovable(page)))
2042				(*num_movable)++;
2043
2044			page++;
2045			continue;
2046		}
2047
2048		order = page_order(page);
2049		list_move(&page->lru,
2050			  &zone->free_area[order].free_list[migratetype]);
2051		page += 1 << order;
2052		pages_moved += 1 << order;
2053	}
2054
2055	return pages_moved;
2056}
2057
2058int move_freepages_block(struct zone *zone, struct page *page,
2059				int migratetype, int *num_movable)
2060{
2061	unsigned long start_pfn, end_pfn;
2062	struct page *start_page, *end_page;
2063
2064	start_pfn = page_to_pfn(page);
2065	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2066	start_page = pfn_to_page(start_pfn);
2067	end_page = start_page + pageblock_nr_pages - 1;
2068	end_pfn = start_pfn + pageblock_nr_pages - 1;
2069
2070	/* Do not cross zone boundaries */
2071	if (!zone_spans_pfn(zone, start_pfn))
2072		start_page = page;
2073	if (!zone_spans_pfn(zone, end_pfn))
2074		return 0;
2075
2076	return move_freepages(zone, start_page, end_page, migratetype,
2077								num_movable);
2078}
2079
2080static void change_pageblock_range(struct page *pageblock_page,
2081					int start_order, int migratetype)
2082{
2083	int nr_pageblocks = 1 << (start_order - pageblock_order);
2084
2085	while (nr_pageblocks--) {
2086		set_pageblock_migratetype(pageblock_page, migratetype);
2087		pageblock_page += pageblock_nr_pages;
2088	}
2089}
2090
2091/*
2092 * When we are falling back to another migratetype during allocation, try to
2093 * steal extra free pages from the same pageblocks to satisfy further
2094 * allocations, instead of polluting multiple pageblocks.
2095 *
2096 * If we are stealing a relatively large buddy page, it is likely there will
2097 * be more free pages in the pageblock, so try to steal them all. For
2098 * reclaimable and unmovable allocations, we steal regardless of page size,
2099 * as fragmentation caused by those allocations polluting movable pageblocks
2100 * is worse than movable allocations stealing from unmovable and reclaimable
2101 * pageblocks.
2102 */
2103static bool can_steal_fallback(unsigned int order, int start_mt)
2104{
2105	/*
2106	 * Leaving this order check is intended, although there is
2107	 * relaxed order check in next check. The reason is that
2108	 * we can actually steal whole pageblock if this condition met,
2109	 * but, below check doesn't guarantee it and that is just heuristic
2110	 * so could be changed anytime.
2111	 */
2112	if (order >= pageblock_order)
2113		return true;
2114
2115	if (order >= pageblock_order / 2 ||
2116		start_mt == MIGRATE_RECLAIMABLE ||
2117		start_mt == MIGRATE_UNMOVABLE ||
2118		page_group_by_mobility_disabled)
2119		return true;
2120
2121	return false;
2122}
2123
2124/*
2125 * This function implements actual steal behaviour. If order is large enough,
2126 * we can steal whole pageblock. If not, we first move freepages in this
2127 * pageblock to our migratetype and determine how many already-allocated pages
2128 * are there in the pageblock with a compatible migratetype. If at least half
2129 * of pages are free or compatible, we can change migratetype of the pageblock
2130 * itself, so pages freed in the future will be put on the correct free list.
2131 */
2132static void steal_suitable_fallback(struct zone *zone, struct page *page,
2133					int start_type, bool whole_block)
2134{
2135	unsigned int current_order = page_order(page);
2136	struct free_area *area;
2137	int free_pages, movable_pages, alike_pages;
2138	int old_block_type;
2139
2140	old_block_type = get_pageblock_migratetype(page);
2141
2142	/*
2143	 * This can happen due to races and we want to prevent broken
2144	 * highatomic accounting.
2145	 */
2146	if (is_migrate_highatomic(old_block_type))
2147		goto single_page;
2148
2149	/* Take ownership for orders >= pageblock_order */
2150	if (current_order >= pageblock_order) {
2151		change_pageblock_range(page, current_order, start_type);
2152		goto single_page;
2153	}
2154
2155	/* We are not allowed to try stealing from the whole block */
2156	if (!whole_block)
2157		goto single_page;
2158
2159	free_pages = move_freepages_block(zone, page, start_type,
2160						&movable_pages);
2161	/*
2162	 * Determine how many pages are compatible with our allocation.
2163	 * For movable allocation, it's the number of movable pages which
2164	 * we just obtained. For other types it's a bit more tricky.
2165	 */
2166	if (start_type == MIGRATE_MOVABLE) {
2167		alike_pages = movable_pages;
2168	} else {
2169		/*
2170		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2171		 * to MOVABLE pageblock, consider all non-movable pages as
2172		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2173		 * vice versa, be conservative since we can't distinguish the
2174		 * exact migratetype of non-movable pages.
2175		 */
2176		if (old_block_type == MIGRATE_MOVABLE)
2177			alike_pages = pageblock_nr_pages
2178						- (free_pages + movable_pages);
2179		else
2180			alike_pages = 0;
2181	}
2182
2183	/* moving whole block can fail due to zone boundary conditions */
2184	if (!free_pages)
2185		goto single_page;
2186
2187	/*
2188	 * If a sufficient number of pages in the block are either free or of
2189	 * comparable migratability as our allocation, claim the whole block.
2190	 */
2191	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2192			page_group_by_mobility_disabled)
2193		set_pageblock_migratetype(page, start_type);
2194
2195	return;
2196
2197single_page:
2198	area = &zone->free_area[current_order];
2199	list_move(&page->lru, &area->free_list[start_type]);
2200}
2201
2202/*
2203 * Check whether there is a suitable fallback freepage with requested order.
2204 * If only_stealable is true, this function returns fallback_mt only if
2205 * we can steal other freepages all together. This would help to reduce
2206 * fragmentation due to mixed migratetype pages in one pageblock.
2207 */
2208int find_suitable_fallback(struct free_area *area, unsigned int order,
2209			int migratetype, bool only_stealable, bool *can_steal)
2210{
2211	int i;
2212	int fallback_mt;
2213
2214	if (area->nr_free == 0)
2215		return -1;
2216
2217	*can_steal = false;
2218	for (i = 0;; i++) {
2219		fallback_mt = fallbacks[migratetype][i];
2220		if (fallback_mt == MIGRATE_TYPES)
2221			break;
2222
2223		if (list_empty(&area->free_list[fallback_mt]))
2224			continue;
2225
2226		if (can_steal_fallback(order, migratetype))
2227			*can_steal = true;
2228
2229		if (!only_stealable)
2230			return fallback_mt;
2231
2232		if (*can_steal)
2233			return fallback_mt;
2234	}
2235
2236	return -1;
2237}
2238
2239/*
2240 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2241 * there are no empty page blocks that contain a page with a suitable order
2242 */
2243static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2244				unsigned int alloc_order)
2245{
2246	int mt;
2247	unsigned long max_managed, flags;
2248
2249	/*
2250	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2251	 * Check is race-prone but harmless.
2252	 */
2253	max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2254	if (zone->nr_reserved_highatomic >= max_managed)
2255		return;
2256
2257	spin_lock_irqsave(&zone->lock, flags);
2258
2259	/* Recheck the nr_reserved_highatomic limit under the lock */
2260	if (zone->nr_reserved_highatomic >= max_managed)
2261		goto out_unlock;
2262
2263	/* Yoink! */
2264	mt = get_pageblock_migratetype(page);
2265	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2266	    && !is_migrate_cma(mt)) {
2267		zone->nr_reserved_highatomic += pageblock_nr_pages;
2268		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2269		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2270	}
2271
2272out_unlock:
2273	spin_unlock_irqrestore(&zone->lock, flags);
2274}
2275
2276/*
2277 * Used when an allocation is about to fail under memory pressure. This
2278 * potentially hurts the reliability of high-order allocations when under
2279 * intense memory pressure but failed atomic allocations should be easier
2280 * to recover from than an OOM.
2281 *
2282 * If @force is true, try to unreserve a pageblock even though highatomic
2283 * pageblock is exhausted.
2284 */
2285static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2286						bool force)
2287{
2288	struct zonelist *zonelist = ac->zonelist;
2289	unsigned long flags;
2290	struct zoneref *z;
2291	struct zone *zone;
2292	struct page *page;
2293	int order;
2294	bool ret;
2295
2296	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2297								ac->nodemask) {
2298		/*
2299		 * Preserve at least one pageblock unless memory pressure
2300		 * is really high.
2301		 */
2302		if (!force && zone->nr_reserved_highatomic <=
2303					pageblock_nr_pages)
2304			continue;
2305
2306		spin_lock_irqsave(&zone->lock, flags);
2307		for (order = 0; order < MAX_ORDER; order++) {
2308			struct free_area *area = &(zone->free_area[order]);
2309
2310			page = list_first_entry_or_null(
2311					&area->free_list[MIGRATE_HIGHATOMIC],
2312					struct page, lru);
2313			if (!page)
2314				continue;
2315
2316			/*
2317			 * In page freeing path, migratetype change is racy so
2318			 * we can counter several free pages in a pageblock
2319			 * in this loop althoug we changed the pageblock type
2320			 * from highatomic to ac->migratetype. So we should
2321			 * adjust the count once.
2322			 */
2323			if (is_migrate_highatomic_page(page)) {
2324				/*
2325				 * It should never happen but changes to
2326				 * locking could inadvertently allow a per-cpu
2327				 * drain to add pages to MIGRATE_HIGHATOMIC
2328				 * while unreserving so be safe and watch for
2329				 * underflows.
2330				 */
2331				zone->nr_reserved_highatomic -= min(
2332						pageblock_nr_pages,
2333						zone->nr_reserved_highatomic);
2334			}
2335
2336			/*
2337			 * Convert to ac->migratetype and avoid the normal
2338			 * pageblock stealing heuristics. Minimally, the caller
2339			 * is doing the work and needs the pages. More
2340			 * importantly, if the block was always converted to
2341			 * MIGRATE_UNMOVABLE or another type then the number
2342			 * of pageblocks that cannot be completely freed
2343			 * may increase.
2344			 */
2345			set_pageblock_migratetype(page, ac->migratetype);
2346			ret = move_freepages_block(zone, page, ac->migratetype,
2347									NULL);
2348			if (ret) {
2349				spin_unlock_irqrestore(&zone->lock, flags);
2350				return ret;
2351			}
2352		}
2353		spin_unlock_irqrestore(&zone->lock, flags);
2354	}
2355
2356	return false;
2357}
2358
2359/*
2360 * Try finding a free buddy page on the fallback list and put it on the free
2361 * list of requested migratetype, possibly along with other pages from the same
2362 * block, depending on fragmentation avoidance heuristics. Returns true if
2363 * fallback was found so that __rmqueue_smallest() can grab it.
2364 *
2365 * The use of signed ints for order and current_order is a deliberate
2366 * deviation from the rest of this file, to make the for loop
2367 * condition simpler.
2368 */
2369static __always_inline bool
2370__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
2371{
2372	struct free_area *area;
2373	int current_order;
2374	struct page *page;
2375	int fallback_mt;
2376	bool can_steal;
2377
2378	/*
2379	 * Find the largest available free page in the other list. This roughly
2380	 * approximates finding the pageblock with the most free pages, which
2381	 * would be too costly to do exactly.
2382	 */
2383	for (current_order = MAX_ORDER - 1; current_order >= order;
2384				--current_order) {
2385		area = &(zone->free_area[current_order]);
2386		fallback_mt = find_suitable_fallback(area, current_order,
2387				start_migratetype, false, &can_steal);
2388		if (fallback_mt == -1)
2389			continue;
2390
2391		/*
2392		 * We cannot steal all free pages from the pageblock and the
2393		 * requested migratetype is movable. In that case it's better to
2394		 * steal and split the smallest available page instead of the
2395		 * largest available page, because even if the next movable
2396		 * allocation falls back into a different pageblock than this
2397		 * one, it won't cause permanent fragmentation.
2398		 */
2399		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2400					&& current_order > order)
2401			goto find_smallest;
2402
2403		goto do_steal;
2404	}
2405
2406	return false;
2407
2408find_smallest:
2409	for (current_order = order; current_order < MAX_ORDER;
2410							current_order++) {
2411		area = &(zone->free_area[current_order]);
2412		fallback_mt = find_suitable_fallback(area, current_order,
2413				start_migratetype, false, &can_steal);
2414		if (fallback_mt != -1)
2415			break;
2416	}
2417
2418	/*
2419	 * This should not happen - we already found a suitable fallback
2420	 * when looking for the largest page.
2421	 */
2422	VM_BUG_ON(current_order == MAX_ORDER);
2423
2424do_steal:
2425	page = list_first_entry(&area->free_list[fallback_mt],
2426							struct page, lru);
2427
2428	steal_suitable_fallback(zone, page, start_migratetype, can_steal);
 
 
 
 
 
 
 
 
 
2429
2430	trace_mm_page_alloc_extfrag(page, order, current_order,
2431		start_migratetype, fallback_mt);
2432
2433	return true;
 
2434
 
2435}
2436
2437/*
2438 * Do the hard work of removing an element from the buddy allocator.
2439 * Call me with the zone->lock already held.
2440 */
2441static __always_inline struct page *
2442__rmqueue(struct zone *zone, unsigned int order, int migratetype)
2443{
2444	struct page *page;
2445
2446retry:
2447	page = __rmqueue_smallest(zone, order, migratetype);
2448	if (unlikely(!page)) {
2449		if (migratetype == MIGRATE_MOVABLE)
2450			page = __rmqueue_cma_fallback(zone, order);
2451
2452		if (!page && __rmqueue_fallback(zone, order, migratetype))
2453			goto retry;
2454	}
2455
2456	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2457	return page;
2458}
2459
2460/*
2461 * Obtain a specified number of elements from the buddy allocator, all under
2462 * a single hold of the lock, for efficiency.  Add them to the supplied list.
2463 * Returns the number of new pages which were placed at *list.
2464 */
2465static int rmqueue_bulk(struct zone *zone, unsigned int order,
2466			unsigned long count, struct list_head *list,
2467			int migratetype)
2468{
2469	int i, alloced = 0;
2470
2471	spin_lock(&zone->lock);
2472	for (i = 0; i < count; ++i) {
2473		struct page *page = __rmqueue(zone, order, migratetype);
2474		if (unlikely(page == NULL))
2475			break;
2476
2477		if (unlikely(check_pcp_refill(page)))
2478			continue;
2479
2480		/*
2481		 * Split buddy pages returned by expand() are received here in
2482		 * physical page order. The page is added to the tail of
2483		 * caller's list. From the callers perspective, the linked list
2484		 * is ordered by page number under some conditions. This is
2485		 * useful for IO devices that can forward direction from the
2486		 * head, thus also in the physical page order. This is useful
2487		 * for IO devices that can merge IO requests if the physical
2488		 * pages are ordered properly.
2489		 */
2490		list_add_tail(&page->lru, list);
2491		alloced++;
 
 
 
2492		if (is_migrate_cma(get_pcppage_migratetype(page)))
2493			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2494					      -(1 << order));
2495	}
2496
2497	/*
2498	 * i pages were removed from the buddy list even if some leak due
2499	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2500	 * on i. Do not confuse with 'alloced' which is the number of
2501	 * pages added to the pcp list.
2502	 */
2503	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2504	spin_unlock(&zone->lock);
2505	return alloced;
2506}
2507
2508#ifdef CONFIG_NUMA
2509/*
2510 * Called from the vmstat counter updater to drain pagesets of this
2511 * currently executing processor on remote nodes after they have
2512 * expired.
2513 *
2514 * Note that this function must be called with the thread pinned to
2515 * a single processor.
2516 */
2517void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2518{
2519	unsigned long flags;
2520	int to_drain, batch;
2521
2522	local_irq_save(flags);
2523	batch = READ_ONCE(pcp->batch);
2524	to_drain = min(pcp->count, batch);
2525	if (to_drain > 0)
2526		free_pcppages_bulk(zone, to_drain, pcp);
 
 
2527	local_irq_restore(flags);
2528}
2529#endif
2530
2531/*
2532 * Drain pcplists of the indicated processor and zone.
2533 *
2534 * The processor must either be the current processor and the
2535 * thread pinned to the current processor or a processor that
2536 * is not online.
2537 */
2538static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2539{
2540	unsigned long flags;
2541	struct per_cpu_pageset *pset;
2542	struct per_cpu_pages *pcp;
2543
2544	local_irq_save(flags);
2545	pset = per_cpu_ptr(zone->pageset, cpu);
2546
2547	pcp = &pset->pcp;
2548	if (pcp->count)
2549		free_pcppages_bulk(zone, pcp->count, pcp);
 
 
2550	local_irq_restore(flags);
2551}
2552
2553/*
2554 * Drain pcplists of all zones on the indicated processor.
2555 *
2556 * The processor must either be the current processor and the
2557 * thread pinned to the current processor or a processor that
2558 * is not online.
2559 */
2560static void drain_pages(unsigned int cpu)
2561{
2562	struct zone *zone;
2563
2564	for_each_populated_zone(zone) {
2565		drain_pages_zone(cpu, zone);
2566	}
2567}
2568
2569/*
2570 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2571 *
2572 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2573 * the single zone's pages.
2574 */
2575void drain_local_pages(struct zone *zone)
2576{
2577	int cpu = smp_processor_id();
2578
2579	if (zone)
2580		drain_pages_zone(cpu, zone);
2581	else
2582		drain_pages(cpu);
2583}
2584
2585static void drain_local_pages_wq(struct work_struct *work)
2586{
2587	/*
2588	 * drain_all_pages doesn't use proper cpu hotplug protection so
2589	 * we can race with cpu offline when the WQ can move this from
2590	 * a cpu pinned worker to an unbound one. We can operate on a different
2591	 * cpu which is allright but we also have to make sure to not move to
2592	 * a different one.
2593	 */
2594	preempt_disable();
2595	drain_local_pages(NULL);
2596	preempt_enable();
2597}
2598
2599/*
2600 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2601 *
2602 * When zone parameter is non-NULL, spill just the single zone's pages.
2603 *
2604 * Note that this can be extremely slow as the draining happens in a workqueue.
 
 
 
 
2605 */
2606void drain_all_pages(struct zone *zone)
2607{
2608	int cpu;
2609
2610	/*
2611	 * Allocate in the BSS so we wont require allocation in
2612	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2613	 */
2614	static cpumask_t cpus_with_pcps;
2615
2616	/*
2617	 * Make sure nobody triggers this path before mm_percpu_wq is fully
2618	 * initialized.
2619	 */
2620	if (WARN_ON_ONCE(!mm_percpu_wq))
2621		return;
2622
2623	/*
2624	 * Do not drain if one is already in progress unless it's specific to
2625	 * a zone. Such callers are primarily CMA and memory hotplug and need
2626	 * the drain to be complete when the call returns.
2627	 */
2628	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2629		if (!zone)
2630			return;
2631		mutex_lock(&pcpu_drain_mutex);
2632	}
2633
2634	/*
2635	 * We don't care about racing with CPU hotplug event
2636	 * as offline notification will cause the notified
2637	 * cpu to drain that CPU pcps and on_each_cpu_mask
2638	 * disables preemption as part of its processing
2639	 */
2640	for_each_online_cpu(cpu) {
2641		struct per_cpu_pageset *pcp;
2642		struct zone *z;
2643		bool has_pcps = false;
2644
2645		if (zone) {
2646			pcp = per_cpu_ptr(zone->pageset, cpu);
2647			if (pcp->pcp.count)
2648				has_pcps = true;
2649		} else {
2650			for_each_populated_zone(z) {
2651				pcp = per_cpu_ptr(z->pageset, cpu);
2652				if (pcp->pcp.count) {
2653					has_pcps = true;
2654					break;
2655				}
2656			}
2657		}
2658
2659		if (has_pcps)
2660			cpumask_set_cpu(cpu, &cpus_with_pcps);
2661		else
2662			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2663	}
2664
2665	for_each_cpu(cpu, &cpus_with_pcps) {
2666		struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2667		INIT_WORK(work, drain_local_pages_wq);
2668		queue_work_on(cpu, mm_percpu_wq, work);
2669	}
2670	for_each_cpu(cpu, &cpus_with_pcps)
2671		flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2672
2673	mutex_unlock(&pcpu_drain_mutex);
2674}
2675
2676#ifdef CONFIG_HIBERNATION
2677
2678/*
2679 * Touch the watchdog for every WD_PAGE_COUNT pages.
2680 */
2681#define WD_PAGE_COUNT	(128*1024)
2682
2683void mark_free_pages(struct zone *zone)
2684{
2685	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2686	unsigned long flags;
2687	unsigned int order, t;
2688	struct page *page;
2689
2690	if (zone_is_empty(zone))
2691		return;
2692
2693	spin_lock_irqsave(&zone->lock, flags);
2694
2695	max_zone_pfn = zone_end_pfn(zone);
2696	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2697		if (pfn_valid(pfn)) {
2698			page = pfn_to_page(pfn);
2699
2700			if (!--page_count) {
2701				touch_nmi_watchdog();
2702				page_count = WD_PAGE_COUNT;
2703			}
2704
2705			if (page_zone(page) != zone)
2706				continue;
2707
2708			if (!swsusp_page_is_forbidden(page))
2709				swsusp_unset_page_free(page);
2710		}
2711
2712	for_each_migratetype_order(order, t) {
2713		list_for_each_entry(page,
2714				&zone->free_area[order].free_list[t], lru) {
2715			unsigned long i;
2716
2717			pfn = page_to_pfn(page);
2718			for (i = 0; i < (1UL << order); i++) {
2719				if (!--page_count) {
2720					touch_nmi_watchdog();
2721					page_count = WD_PAGE_COUNT;
2722				}
2723				swsusp_set_page_free(pfn_to_page(pfn + i));
2724			}
2725		}
2726	}
2727	spin_unlock_irqrestore(&zone->lock, flags);
2728}
2729#endif /* CONFIG_PM */
2730
2731static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
 
 
 
 
2732{
 
 
 
 
2733	int migratetype;
2734
2735	if (!free_pcp_prepare(page))
2736		return false;
2737
2738	migratetype = get_pfnblock_migratetype(page, pfn);
2739	set_pcppage_migratetype(page, migratetype);
2740	return true;
2741}
2742
2743static void free_unref_page_commit(struct page *page, unsigned long pfn)
2744{
2745	struct zone *zone = page_zone(page);
2746	struct per_cpu_pages *pcp;
2747	int migratetype;
2748
2749	migratetype = get_pcppage_migratetype(page);
2750	__count_vm_event(PGFREE);
2751
2752	/*
2753	 * We only track unmovable, reclaimable and movable on pcp lists.
2754	 * Free ISOLATE pages back to the allocator because they are being
2755	 * offlined but treat HIGHATOMIC as movable pages so we can get those
2756	 * areas back if necessary. Otherwise, we may have to free
2757	 * excessively into the page allocator
2758	 */
2759	if (migratetype >= MIGRATE_PCPTYPES) {
2760		if (unlikely(is_migrate_isolate(migratetype))) {
2761			free_one_page(zone, page, pfn, 0, migratetype);
2762			return;
2763		}
2764		migratetype = MIGRATE_MOVABLE;
2765	}
2766
2767	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2768	list_add(&page->lru, &pcp->lists[migratetype]);
 
 
 
2769	pcp->count++;
2770	if (pcp->count >= pcp->high) {
2771		unsigned long batch = READ_ONCE(pcp->batch);
2772		free_pcppages_bulk(zone, batch, pcp);
 
2773	}
2774}
2775
2776/*
2777 * Free a 0-order page
2778 */
2779void free_unref_page(struct page *page)
2780{
2781	unsigned long flags;
2782	unsigned long pfn = page_to_pfn(page);
2783
2784	if (!free_unref_page_prepare(page, pfn))
2785		return;
2786
2787	local_irq_save(flags);
2788	free_unref_page_commit(page, pfn);
2789	local_irq_restore(flags);
2790}
2791
2792/*
2793 * Free a list of 0-order pages
2794 */
2795void free_unref_page_list(struct list_head *list)
2796{
2797	struct page *page, *next;
2798	unsigned long flags, pfn;
2799	int batch_count = 0;
2800
2801	/* Prepare pages for freeing */
2802	list_for_each_entry_safe(page, next, list, lru) {
2803		pfn = page_to_pfn(page);
2804		if (!free_unref_page_prepare(page, pfn))
2805			list_del(&page->lru);
2806		set_page_private(page, pfn);
2807	}
2808
2809	local_irq_save(flags);
2810	list_for_each_entry_safe(page, next, list, lru) {
2811		unsigned long pfn = page_private(page);
2812
2813		set_page_private(page, 0);
2814		trace_mm_page_free_batched(page);
2815		free_unref_page_commit(page, pfn);
2816
2817		/*
2818		 * Guard against excessive IRQ disabled times when we get
2819		 * a large list of pages to free.
2820		 */
2821		if (++batch_count == SWAP_CLUSTER_MAX) {
2822			local_irq_restore(flags);
2823			batch_count = 0;
2824			local_irq_save(flags);
2825		}
2826	}
2827	local_irq_restore(flags);
2828}
2829
2830/*
2831 * split_page takes a non-compound higher-order page, and splits it into
2832 * n (1<<order) sub-pages: page[0..n]
2833 * Each sub-page must be freed individually.
2834 *
2835 * Note: this is probably too low level an operation for use in drivers.
2836 * Please consult with lkml before using this in your driver.
2837 */
2838void split_page(struct page *page, unsigned int order)
2839{
2840	int i;
 
2841
2842	VM_BUG_ON_PAGE(PageCompound(page), page);
2843	VM_BUG_ON_PAGE(!page_count(page), page);
2844
2845	for (i = 1; i < (1 << order); i++)
 
 
 
 
 
 
 
 
 
 
 
2846		set_page_refcounted(page + i);
2847	split_page_owner(page, order);
 
2848}
2849EXPORT_SYMBOL_GPL(split_page);
2850
2851int __isolate_free_page(struct page *page, unsigned int order)
2852{
2853	unsigned long watermark;
2854	struct zone *zone;
2855	int mt;
2856
2857	BUG_ON(!PageBuddy(page));
2858
2859	zone = page_zone(page);
2860	mt = get_pageblock_migratetype(page);
2861
2862	if (!is_migrate_isolate(mt)) {
2863		/*
2864		 * Obey watermarks as if the page was being allocated. We can
2865		 * emulate a high-order watermark check with a raised order-0
2866		 * watermark, because we already know our high-order page
2867		 * exists.
2868		 */
2869		watermark = min_wmark_pages(zone) + (1UL << order);
2870		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2871			return 0;
2872
2873		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2874	}
2875
2876	/* Remove page from free list */
2877	list_del(&page->lru);
2878	zone->free_area[order].nr_free--;
2879	rmv_page_order(page);
2880
2881	/*
2882	 * Set the pageblock if the isolated page is at least half of a
2883	 * pageblock
2884	 */
2885	if (order >= pageblock_order - 1) {
2886		struct page *endpage = page + (1 << order) - 1;
2887		for (; page < endpage; page += pageblock_nr_pages) {
2888			int mt = get_pageblock_migratetype(page);
2889			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2890			    && !is_migrate_highatomic(mt))
2891				set_pageblock_migratetype(page,
2892							  MIGRATE_MOVABLE);
2893		}
2894	}
2895
2896
2897	return 1UL << order;
2898}
2899
2900/*
2901 * Update NUMA hit/miss statistics
 
 
 
 
2902 *
2903 * Must be called with interrupts disabled.
 
2904 */
2905static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2906{
2907#ifdef CONFIG_NUMA
2908	enum numa_stat_item local_stat = NUMA_LOCAL;
2909
2910	/* skip numa counters update if numa stats is disabled */
2911	if (!static_branch_likely(&vm_numa_stat_key))
2912		return;
2913
2914	if (z->node != numa_node_id())
2915		local_stat = NUMA_OTHER;
2916
2917	if (z->node == preferred_zone->node)
2918		__inc_numa_state(z, NUMA_HIT);
2919	else {
2920		__inc_numa_state(z, NUMA_MISS);
2921		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
2922	}
2923	__inc_numa_state(z, local_stat);
2924#endif
2925}
2926
2927/* Remove page from the per-cpu list, caller must protect the list */
2928static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2929			struct per_cpu_pages *pcp,
2930			struct list_head *list)
2931{
2932	struct page *page;
2933
2934	do {
2935		if (list_empty(list)) {
2936			pcp->count += rmqueue_bulk(zone, 0,
2937					pcp->batch, list,
2938					migratetype);
2939			if (unlikely(list_empty(list)))
2940				return NULL;
2941		}
2942
2943		page = list_first_entry(list, struct page, lru);
2944		list_del(&page->lru);
2945		pcp->count--;
2946	} while (check_new_pcp(page));
2947
2948	return page;
2949}
2950
2951/* Lock and remove page from the per-cpu list */
2952static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2953			struct zone *zone, unsigned int order,
2954			gfp_t gfp_flags, int migratetype)
2955{
2956	struct per_cpu_pages *pcp;
2957	struct list_head *list;
2958	struct page *page;
2959	unsigned long flags;
2960
2961	local_irq_save(flags);
2962	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2963	list = &pcp->lists[migratetype];
2964	page = __rmqueue_pcplist(zone,  migratetype, pcp, list);
2965	if (page) {
2966		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2967		zone_statistics(preferred_zone, zone);
2968	}
2969	local_irq_restore(flags);
2970	return page;
2971}
2972
2973/*
2974 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2975 */
2976static inline
2977struct page *rmqueue(struct zone *preferred_zone,
2978			struct zone *zone, unsigned int order,
2979			gfp_t gfp_flags, unsigned int alloc_flags,
2980			int migratetype)
2981{
2982	unsigned long flags;
2983	struct page *page;
 
2984
2985	if (likely(order == 0)) {
2986		page = rmqueue_pcplist(preferred_zone, zone, order,
2987				gfp_flags, migratetype);
2988		goto out;
2989	}
2990
2991	/*
2992	 * We most definitely don't want callers attempting to
2993	 * allocate greater than order-1 page units with __GFP_NOFAIL.
2994	 */
2995	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2996	spin_lock_irqsave(&zone->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2997
2998	do {
2999		page = NULL;
3000		if (alloc_flags & ALLOC_HARDER) {
3001			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3002			if (page)
3003				trace_mm_page_alloc_zone_locked(page, order, migratetype);
3004		}
3005		if (!page)
3006			page = __rmqueue(zone, order, migratetype);
3007	} while (page && check_new_pages(page, order));
3008	spin_unlock(&zone->lock);
3009	if (!page)
3010		goto failed;
3011	__mod_zone_freepage_state(zone, -(1 << order),
3012				  get_pcppage_migratetype(page));
 
 
 
 
 
3013
3014	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3015	zone_statistics(preferred_zone, zone);
3016	local_irq_restore(flags);
3017
3018out:
3019	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3020	return page;
3021
3022failed:
3023	local_irq_restore(flags);
3024	return NULL;
3025}
3026
3027#ifdef CONFIG_FAIL_PAGE_ALLOC
3028
3029static struct {
3030	struct fault_attr attr;
3031
3032	bool ignore_gfp_highmem;
3033	bool ignore_gfp_reclaim;
3034	u32 min_order;
3035} fail_page_alloc = {
3036	.attr = FAULT_ATTR_INITIALIZER,
3037	.ignore_gfp_reclaim = true,
3038	.ignore_gfp_highmem = true,
3039	.min_order = 1,
3040};
3041
3042static int __init setup_fail_page_alloc(char *str)
3043{
3044	return setup_fault_attr(&fail_page_alloc.attr, str);
3045}
3046__setup("fail_page_alloc=", setup_fail_page_alloc);
3047
3048static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3049{
3050	if (order < fail_page_alloc.min_order)
3051		return false;
3052	if (gfp_mask & __GFP_NOFAIL)
3053		return false;
3054	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3055		return false;
3056	if (fail_page_alloc.ignore_gfp_reclaim &&
3057			(gfp_mask & __GFP_DIRECT_RECLAIM))
3058		return false;
3059
3060	return should_fail(&fail_page_alloc.attr, 1 << order);
3061}
3062
3063#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3064
3065static int __init fail_page_alloc_debugfs(void)
3066{
3067	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
3068	struct dentry *dir;
3069
3070	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3071					&fail_page_alloc.attr);
3072	if (IS_ERR(dir))
3073		return PTR_ERR(dir);
3074
3075	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
3076				&fail_page_alloc.ignore_gfp_reclaim))
3077		goto fail;
3078	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3079				&fail_page_alloc.ignore_gfp_highmem))
3080		goto fail;
3081	if (!debugfs_create_u32("min-order", mode, dir,
3082				&fail_page_alloc.min_order))
3083		goto fail;
3084
3085	return 0;
3086fail:
3087	debugfs_remove_recursive(dir);
3088
3089	return -ENOMEM;
3090}
3091
3092late_initcall(fail_page_alloc_debugfs);
3093
3094#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3095
3096#else /* CONFIG_FAIL_PAGE_ALLOC */
3097
3098static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3099{
3100	return false;
3101}
3102
3103#endif /* CONFIG_FAIL_PAGE_ALLOC */
3104
3105/*
3106 * Return true if free base pages are above 'mark'. For high-order checks it
3107 * will return true of the order-0 watermark is reached and there is at least
3108 * one free page of a suitable size. Checking now avoids taking the zone lock
3109 * to check in the allocation paths if no pages are free.
3110 */
3111bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3112			 int classzone_idx, unsigned int alloc_flags,
3113			 long free_pages)
3114{
3115	long min = mark;
3116	int o;
3117	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3118
3119	/* free_pages may go negative - that's OK */
3120	free_pages -= (1 << order) - 1;
3121
3122	if (alloc_flags & ALLOC_HIGH)
3123		min -= min / 2;
3124
3125	/*
3126	 * If the caller does not have rights to ALLOC_HARDER then subtract
3127	 * the high-atomic reserves. This will over-estimate the size of the
3128	 * atomic reserve but it avoids a search.
3129	 */
3130	if (likely(!alloc_harder)) {
3131		free_pages -= z->nr_reserved_highatomic;
3132	} else {
3133		/*
3134		 * OOM victims can try even harder than normal ALLOC_HARDER
3135		 * users on the grounds that it's definitely going to be in
3136		 * the exit path shortly and free memory. Any allocation it
3137		 * makes during the free path will be small and short-lived.
3138		 */
3139		if (alloc_flags & ALLOC_OOM)
3140			min -= min / 2;
3141		else
3142			min -= min / 4;
3143	}
3144
3145
3146#ifdef CONFIG_CMA
3147	/* If allocation can't use CMA areas don't use free CMA pages */
3148	if (!(alloc_flags & ALLOC_CMA))
3149		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3150#endif
3151
3152	/*
3153	 * Check watermarks for an order-0 allocation request. If these
3154	 * are not met, then a high-order request also cannot go ahead
3155	 * even if a suitable page happened to be free.
3156	 */
3157	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3158		return false;
3159
3160	/* If this is an order-0 request then the watermark is fine */
3161	if (!order)
3162		return true;
3163
3164	/* For a high-order request, check at least one suitable page is free */
3165	for (o = order; o < MAX_ORDER; o++) {
3166		struct free_area *area = &z->free_area[o];
3167		int mt;
3168
3169		if (!area->nr_free)
3170			continue;
3171
 
 
 
3172		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3173			if (!list_empty(&area->free_list[mt]))
3174				return true;
3175		}
3176
3177#ifdef CONFIG_CMA
3178		if ((alloc_flags & ALLOC_CMA) &&
3179		    !list_empty(&area->free_list[MIGRATE_CMA])) {
3180			return true;
3181		}
3182#endif
3183		if (alloc_harder &&
3184			!list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3185			return true;
3186	}
3187	return false;
3188}
3189
3190bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3191		      int classzone_idx, unsigned int alloc_flags)
3192{
3193	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3194					zone_page_state(z, NR_FREE_PAGES));
3195}
3196
3197static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3198		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3199{
3200	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3201	long cma_pages = 0;
3202
3203#ifdef CONFIG_CMA
3204	/* If allocation can't use CMA areas don't use free CMA pages */
3205	if (!(alloc_flags & ALLOC_CMA))
3206		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3207#endif
3208
3209	/*
3210	 * Fast check for order-0 only. If this fails then the reserves
3211	 * need to be calculated. There is a corner case where the check
3212	 * passes but only the high-order atomic reserve are free. If
3213	 * the caller is !atomic then it'll uselessly search the free
3214	 * list. That corner case is then slower but it is harmless.
3215	 */
3216	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3217		return true;
3218
3219	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3220					free_pages);
3221}
3222
3223bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3224			unsigned long mark, int classzone_idx)
3225{
3226	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3227
3228	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3229		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3230
3231	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3232								free_pages);
3233}
3234
3235#ifdef CONFIG_NUMA
 
 
 
 
 
3236static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3237{
3238	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3239				RECLAIM_DISTANCE;
3240}
3241#else	/* CONFIG_NUMA */
 
 
 
 
 
3242static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3243{
3244	return true;
3245}
3246#endif	/* CONFIG_NUMA */
3247
 
 
 
 
 
 
 
 
 
 
 
 
3248/*
3249 * get_page_from_freelist goes through the zonelist trying to allocate
3250 * a page.
3251 */
3252static struct page *
3253get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3254						const struct alloc_context *ac)
3255{
3256	struct zoneref *z = ac->preferred_zoneref;
 
 
3257	struct zone *zone;
3258	struct pglist_data *last_pgdat_dirty_limit = NULL;
 
 
 
 
3259
3260	/*
3261	 * Scan zonelist, looking for a zone with enough free.
3262	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3263	 */
3264	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3265								ac->nodemask) {
3266		struct page *page;
3267		unsigned long mark;
3268
3269		if (cpusets_enabled() &&
3270			(alloc_flags & ALLOC_CPUSET) &&
3271			!__cpuset_zone_allowed(zone, gfp_mask))
3272				continue;
3273		/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3274		 * When allocating a page cache page for writing, we
3275		 * want to get it from a node that is within its dirty
3276		 * limit, such that no single node holds more than its
3277		 * proportional share of globally allowed dirty pages.
3278		 * The dirty limits take into account the node's
3279		 * lowmem reserves and high watermark so that kswapd
3280		 * should be able to balance it without having to
3281		 * write pages from its LRU list.
3282		 *
 
 
 
 
 
 
 
3283		 * XXX: For now, allow allocations to potentially
3284		 * exceed the per-node dirty limit in the slowpath
3285		 * (spread_dirty_pages unset) before going into reclaim,
3286		 * which is important when on a NUMA setup the allowed
3287		 * nodes are together not big enough to reach the
3288		 * global limit.  The proper fix for these situations
3289		 * will require awareness of nodes in the
3290		 * dirty-throttling and the flusher threads.
3291		 */
3292		if (ac->spread_dirty_pages) {
3293			if (last_pgdat_dirty_limit == zone->zone_pgdat)
3294				continue;
3295
3296			if (!node_dirty_ok(zone->zone_pgdat)) {
3297				last_pgdat_dirty_limit = zone->zone_pgdat;
3298				continue;
3299			}
3300		}
3301
3302		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3303		if (!zone_watermark_fast(zone, order, mark,
3304				       ac_classzone_idx(ac), alloc_flags)) {
3305			int ret;
3306
3307#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3308			/*
3309			 * Watermark failed for this zone, but see if we can
3310			 * grow this zone if it contains deferred pages.
3311			 */
3312			if (static_branch_unlikely(&deferred_pages)) {
3313				if (_deferred_grow_zone(zone, order))
3314					goto try_this_zone;
3315			}
3316#endif
3317			/* Checked here to keep the fast path fast */
3318			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3319			if (alloc_flags & ALLOC_NO_WATERMARKS)
3320				goto try_this_zone;
3321
3322			if (node_reclaim_mode == 0 ||
3323			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3324				continue;
3325
3326			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3327			switch (ret) {
3328			case NODE_RECLAIM_NOSCAN:
3329				/* did not scan */
3330				continue;
3331			case NODE_RECLAIM_FULL:
3332				/* scanned but unreclaimable */
3333				continue;
3334			default:
3335				/* did we reclaim enough */
3336				if (zone_watermark_ok(zone, order, mark,
3337						ac_classzone_idx(ac), alloc_flags))
3338					goto try_this_zone;
3339
3340				continue;
3341			}
3342		}
3343
3344try_this_zone:
3345		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3346				gfp_mask, alloc_flags, ac->migratetype);
3347		if (page) {
3348			prep_new_page(page, order, gfp_mask, alloc_flags);
 
3349
3350			/*
3351			 * If this is a high-order atomic allocation then check
3352			 * if the pageblock should be reserved for the future
3353			 */
3354			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3355				reserve_highatomic_pageblock(page, zone, order);
3356
3357			return page;
3358		} else {
3359#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3360			/* Try again if zone has deferred pages */
3361			if (static_branch_unlikely(&deferred_pages)) {
3362				if (_deferred_grow_zone(zone, order))
3363					goto try_this_zone;
3364			}
3365#endif
3366		}
3367	}
3368
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3369	return NULL;
3370}
3371
3372/*
3373 * Large machines with many possible nodes should not always dump per-node
3374 * meminfo in irq context.
3375 */
3376static inline bool should_suppress_show_mem(void)
3377{
3378	bool ret = false;
3379
3380#if NODES_SHIFT > 8
3381	ret = in_interrupt();
3382#endif
3383	return ret;
3384}
3385
3386static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
 
 
 
 
3387{
3388	unsigned int filter = SHOW_MEM_FILTER_NODES;
3389	static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3390
3391	if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
 
3392		return;
3393
3394	/*
3395	 * This documents exceptions given to allocations in certain
3396	 * contexts that are allowed to allocate outside current's set
3397	 * of allowed nodes.
3398	 */
3399	if (!(gfp_mask & __GFP_NOMEMALLOC))
3400		if (tsk_is_oom_victim(current) ||
3401		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3402			filter &= ~SHOW_MEM_FILTER_NODES;
3403	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3404		filter &= ~SHOW_MEM_FILTER_NODES;
3405
3406	show_mem(filter, nodemask);
3407}
 
3408
3409void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3410{
3411	struct va_format vaf;
3412	va_list args;
3413	static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3414				      DEFAULT_RATELIMIT_BURST);
3415
3416	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3417		return;
3418
3419	va_start(args, fmt);
3420	vaf.fmt = fmt;
3421	vaf.va = &args;
3422	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
3423			current->comm, &vaf, gfp_mask, &gfp_mask,
3424			nodemask_pr_args(nodemask));
3425	va_end(args);
3426
3427	cpuset_print_current_mems_allowed();
 
3428
 
 
3429	dump_stack();
3430	warn_alloc_show_mem(gfp_mask, nodemask);
3431}
3432
3433static inline struct page *
3434__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3435			      unsigned int alloc_flags,
3436			      const struct alloc_context *ac)
3437{
3438	struct page *page;
3439
3440	page = get_page_from_freelist(gfp_mask, order,
3441			alloc_flags|ALLOC_CPUSET, ac);
3442	/*
3443	 * fallback to ignore cpuset restriction if our nodes
3444	 * are depleted
3445	 */
3446	if (!page)
3447		page = get_page_from_freelist(gfp_mask, order,
3448				alloc_flags, ac);
3449
3450	return page;
3451}
3452
3453static inline struct page *
3454__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3455	const struct alloc_context *ac, unsigned long *did_some_progress)
3456{
3457	struct oom_control oc = {
3458		.zonelist = ac->zonelist,
3459		.nodemask = ac->nodemask,
3460		.memcg = NULL,
3461		.gfp_mask = gfp_mask,
3462		.order = order,
3463	};
3464	struct page *page;
3465
3466	*did_some_progress = 0;
3467
3468	/*
3469	 * Acquire the oom lock.  If that fails, somebody else is
3470	 * making progress for us.
3471	 */
3472	if (!mutex_trylock(&oom_lock)) {
3473		*did_some_progress = 1;
3474		schedule_timeout_uninterruptible(1);
3475		return NULL;
3476	}
3477
3478	/*
3479	 * Go through the zonelist yet one more time, keep very high watermark
3480	 * here, this is only to catch a parallel oom killing, we must fail if
3481	 * we're still under heavy pressure. But make sure that this reclaim
3482	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3483	 * allocation which will never fail due to oom_lock already held.
3484	 */
3485	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3486				      ~__GFP_DIRECT_RECLAIM, order,
3487				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3488	if (page)
3489		goto out;
3490
3491	/* Coredumps can quickly deplete all memory reserves */
3492	if (current->flags & PF_DUMPCORE)
3493		goto out;
3494	/* The OOM killer will not help higher order allocs */
3495	if (order > PAGE_ALLOC_COSTLY_ORDER)
3496		goto out;
3497	/*
3498	 * We have already exhausted all our reclaim opportunities without any
3499	 * success so it is time to admit defeat. We will skip the OOM killer
3500	 * because it is very likely that the caller has a more reasonable
3501	 * fallback than shooting a random task.
3502	 */
3503	if (gfp_mask & __GFP_RETRY_MAYFAIL)
3504		goto out;
3505	/* The OOM killer does not needlessly kill tasks for lowmem */
3506	if (ac->high_zoneidx < ZONE_NORMAL)
3507		goto out;
3508	if (pm_suspended_storage())
3509		goto out;
3510	/*
3511	 * XXX: GFP_NOFS allocations should rather fail than rely on
3512	 * other request to make a forward progress.
3513	 * We are in an unfortunate situation where out_of_memory cannot
3514	 * do much for this context but let's try it to at least get
3515	 * access to memory reserved if the current task is killed (see
3516	 * out_of_memory). Once filesystems are ready to handle allocation
3517	 * failures more gracefully we should just bail out here.
3518	 */
3519
3520	/* The OOM killer may not free memory on a specific node */
3521	if (gfp_mask & __GFP_THISNODE)
3522		goto out;
3523
3524	/* Exhausted what can be done so it's blame time */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3525	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3526		*did_some_progress = 1;
3527
3528		/*
3529		 * Help non-failing allocations by giving them access to memory
3530		 * reserves
3531		 */
3532		if (gfp_mask & __GFP_NOFAIL)
3533			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
 
 
 
3534					ALLOC_NO_WATERMARKS, ac);
 
3535	}
3536out:
3537	mutex_unlock(&oom_lock);
3538	return page;
3539}
3540
3541/*
3542 * Maximum number of compaction retries wit a progress before OOM
3543 * killer is consider as the only way to move forward.
3544 */
3545#define MAX_COMPACT_RETRIES 16
3546
3547#ifdef CONFIG_COMPACTION
3548/* Try memory compaction for high-order allocations before reclaim */
3549static struct page *
3550__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3551		unsigned int alloc_flags, const struct alloc_context *ac,
3552		enum compact_priority prio, enum compact_result *compact_result)
 
3553{
 
3554	struct page *page;
3555	unsigned int noreclaim_flag;
3556
3557	if (!order)
3558		return NULL;
3559
3560	noreclaim_flag = memalloc_noreclaim_save();
3561	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3562									prio);
3563	memalloc_noreclaim_restore(noreclaim_flag);
3564
3565	if (*compact_result <= COMPACT_INACTIVE)
 
 
 
 
3566		return NULL;
 
 
 
3567
3568	/*
3569	 * At least in one zone compaction wasn't deferred or skipped, so let's
3570	 * count a compaction stall
3571	 */
3572	count_vm_event(COMPACTSTALL);
3573
3574	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
 
3575
3576	if (page) {
3577		struct zone *zone = page_zone(page);
3578
3579		zone->compact_blockskip_flush = false;
3580		compaction_defer_reset(zone, order, true);
3581		count_vm_event(COMPACTSUCCESS);
3582		return page;
3583	}
3584
3585	/*
3586	 * It's bad if compaction run occurs and fails. The most likely reason
3587	 * is that pages exist, but not enough to satisfy watermarks.
3588	 */
3589	count_vm_event(COMPACTFAIL);
3590
3591	cond_resched();
3592
3593	return NULL;
3594}
3595
3596static inline bool
3597should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3598		     enum compact_result compact_result,
3599		     enum compact_priority *compact_priority,
3600		     int *compaction_retries)
3601{
3602	int max_retries = MAX_COMPACT_RETRIES;
3603	int min_priority;
3604	bool ret = false;
3605	int retries = *compaction_retries;
3606	enum compact_priority priority = *compact_priority;
3607
3608	if (!order)
3609		return false;
3610
3611	if (compaction_made_progress(compact_result))
3612		(*compaction_retries)++;
3613
3614	/*
3615	 * compaction considers all the zone as desperately out of memory
3616	 * so it doesn't really make much sense to retry except when the
3617	 * failure could be caused by insufficient priority
3618	 */
3619	if (compaction_failed(compact_result))
3620		goto check_priority;
3621
3622	/*
3623	 * make sure the compaction wasn't deferred or didn't bail out early
3624	 * due to locks contention before we declare that we should give up.
3625	 * But do not retry if the given zonelist is not suitable for
3626	 * compaction.
3627	 */
3628	if (compaction_withdrawn(compact_result)) {
3629		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3630		goto out;
3631	}
3632
3633	/*
3634	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3635	 * costly ones because they are de facto nofail and invoke OOM
3636	 * killer to move on while costly can fail and users are ready
3637	 * to cope with that. 1/4 retries is rather arbitrary but we
3638	 * would need much more detailed feedback from compaction to
3639	 * make a better decision.
3640	 */
3641	if (order > PAGE_ALLOC_COSTLY_ORDER)
3642		max_retries /= 4;
3643	if (*compaction_retries <= max_retries) {
3644		ret = true;
3645		goto out;
3646	}
3647
3648	/*
3649	 * Make sure there are attempts at the highest priority if we exhausted
3650	 * all retries or failed at the lower priorities.
3651	 */
3652check_priority:
3653	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3654			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3655
3656	if (*compact_priority > min_priority) {
3657		(*compact_priority)--;
3658		*compaction_retries = 0;
3659		ret = true;
3660	}
3661out:
3662	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3663	return ret;
3664}
3665#else
3666static inline struct page *
3667__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3668		unsigned int alloc_flags, const struct alloc_context *ac,
3669		enum compact_priority prio, enum compact_result *compact_result)
 
3670{
3671	*compact_result = COMPACT_SKIPPED;
3672	return NULL;
3673}
3674
3675static inline bool
3676should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3677		     enum compact_result compact_result,
3678		     enum compact_priority *compact_priority,
3679		     int *compaction_retries)
3680{
3681	struct zone *zone;
3682	struct zoneref *z;
3683
3684	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3685		return false;
3686
3687	/*
3688	 * There are setups with compaction disabled which would prefer to loop
3689	 * inside the allocator rather than hit the oom killer prematurely.
3690	 * Let's give them a good hope and keep retrying while the order-0
3691	 * watermarks are OK.
3692	 */
3693	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3694					ac->nodemask) {
3695		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3696					ac_classzone_idx(ac), alloc_flags))
3697			return true;
3698	}
3699	return false;
3700}
3701#endif /* CONFIG_COMPACTION */
3702
3703#ifdef CONFIG_LOCKDEP
3704struct lockdep_map __fs_reclaim_map =
3705	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3706
3707static bool __need_fs_reclaim(gfp_t gfp_mask)
3708{
3709	gfp_mask = current_gfp_context(gfp_mask);
3710
3711	/* no reclaim without waiting on it */
3712	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3713		return false;
3714
3715	/* this guy won't enter reclaim */
3716	if (current->flags & PF_MEMALLOC)
3717		return false;
3718
3719	/* We're only interested __GFP_FS allocations for now */
3720	if (!(gfp_mask & __GFP_FS))
3721		return false;
3722
3723	if (gfp_mask & __GFP_NOLOCKDEP)
3724		return false;
3725
3726	return true;
3727}
3728
3729void fs_reclaim_acquire(gfp_t gfp_mask)
3730{
3731	if (__need_fs_reclaim(gfp_mask))
3732		lock_map_acquire(&__fs_reclaim_map);
3733}
3734EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3735
3736void fs_reclaim_release(gfp_t gfp_mask)
3737{
3738	if (__need_fs_reclaim(gfp_mask))
3739		lock_map_release(&__fs_reclaim_map);
3740}
3741EXPORT_SYMBOL_GPL(fs_reclaim_release);
3742#endif
3743
3744/* Perform direct synchronous page reclaim */
3745static int
3746__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3747					const struct alloc_context *ac)
3748{
3749	struct reclaim_state reclaim_state;
3750	int progress;
3751	unsigned int noreclaim_flag;
3752
3753	cond_resched();
3754
3755	/* We now go into synchronous reclaim */
3756	cpuset_memory_pressure_bump();
3757	noreclaim_flag = memalloc_noreclaim_save();
3758	fs_reclaim_acquire(gfp_mask);
3759	reclaim_state.reclaimed_slab = 0;
3760	current->reclaim_state = &reclaim_state;
3761
3762	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3763								ac->nodemask);
3764
3765	current->reclaim_state = NULL;
3766	fs_reclaim_release(gfp_mask);
3767	memalloc_noreclaim_restore(noreclaim_flag);
3768
3769	cond_resched();
3770
3771	return progress;
3772}
3773
3774/* The really slow allocator path where we enter direct reclaim */
3775static inline struct page *
3776__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3777		unsigned int alloc_flags, const struct alloc_context *ac,
3778		unsigned long *did_some_progress)
3779{
3780	struct page *page = NULL;
3781	bool drained = false;
3782
3783	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3784	if (unlikely(!(*did_some_progress)))
3785		return NULL;
3786
3787retry:
3788	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
 
3789
3790	/*
3791	 * If an allocation failed after direct reclaim, it could be because
3792	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3793	 * Shrink them them and try again
3794	 */
3795	if (!page && !drained) {
3796		unreserve_highatomic_pageblock(ac, false);
3797		drain_all_pages(NULL);
3798		drained = true;
3799		goto retry;
3800	}
3801
3802	return page;
3803}
3804
3805static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3806			     const struct alloc_context *ac)
3807{
3808	struct zoneref *z;
3809	struct zone *zone;
3810	pg_data_t *last_pgdat = NULL;
3811	enum zone_type high_zoneidx = ac->high_zoneidx;
3812
3813	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
3814					ac->nodemask) {
3815		if (last_pgdat != zone->zone_pgdat)
3816			wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
3817		last_pgdat = zone->zone_pgdat;
3818	}
3819}
3820
3821static inline unsigned int
3822gfp_to_alloc_flags(gfp_t gfp_mask)
3823{
3824	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3825
3826	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3827	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3828
3829	/*
3830	 * The caller may dip into page reserves a bit more if the caller
3831	 * cannot run direct reclaim, or if the caller has realtime scheduling
3832	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3833	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3834	 */
3835	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3836
3837	if (gfp_mask & __GFP_ATOMIC) {
3838		/*
3839		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3840		 * if it can't schedule.
3841		 */
3842		if (!(gfp_mask & __GFP_NOMEMALLOC))
3843			alloc_flags |= ALLOC_HARDER;
3844		/*
3845		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3846		 * comment for __cpuset_node_allowed().
3847		 */
3848		alloc_flags &= ~ALLOC_CPUSET;
3849	} else if (unlikely(rt_task(current)) && !in_interrupt())
3850		alloc_flags |= ALLOC_HARDER;
3851
 
 
 
 
 
 
 
 
 
 
3852#ifdef CONFIG_CMA
3853	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3854		alloc_flags |= ALLOC_CMA;
3855#endif
3856	return alloc_flags;
3857}
3858
3859static bool oom_reserves_allowed(struct task_struct *tsk)
3860{
3861	if (!tsk_is_oom_victim(tsk))
3862		return false;
3863
3864	/*
3865	 * !MMU doesn't have oom reaper so give access to memory reserves
3866	 * only to the thread with TIF_MEMDIE set
3867	 */
3868	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3869		return false;
3870
3871	return true;
3872}
3873
3874/*
3875 * Distinguish requests which really need access to full memory
3876 * reserves from oom victims which can live with a portion of it
3877 */
3878static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3879{
3880	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3881		return 0;
3882	if (gfp_mask & __GFP_MEMALLOC)
3883		return ALLOC_NO_WATERMARKS;
3884	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3885		return ALLOC_NO_WATERMARKS;
3886	if (!in_interrupt()) {
3887		if (current->flags & PF_MEMALLOC)
3888			return ALLOC_NO_WATERMARKS;
3889		else if (oom_reserves_allowed(current))
3890			return ALLOC_OOM;
3891	}
3892
3893	return 0;
3894}
3895
3896bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3897{
3898	return !!__gfp_pfmemalloc_flags(gfp_mask);
3899}
3900
3901/*
3902 * Checks whether it makes sense to retry the reclaim to make a forward progress
3903 * for the given allocation request.
3904 *
3905 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3906 * without success, or when we couldn't even meet the watermark if we
3907 * reclaimed all remaining pages on the LRU lists.
3908 *
3909 * Returns true if a retry is viable or false to enter the oom path.
3910 */
3911static inline bool
3912should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3913		     struct alloc_context *ac, int alloc_flags,
3914		     bool did_some_progress, int *no_progress_loops)
3915{
3916	struct zone *zone;
3917	struct zoneref *z;
3918
3919	/*
3920	 * Costly allocations might have made a progress but this doesn't mean
3921	 * their order will become available due to high fragmentation so
3922	 * always increment the no progress counter for them
3923	 */
3924	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3925		*no_progress_loops = 0;
3926	else
3927		(*no_progress_loops)++;
3928
3929	/*
3930	 * Make sure we converge to OOM if we cannot make any progress
3931	 * several times in the row.
3932	 */
3933	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3934		/* Before OOM, exhaust highatomic_reserve */
3935		return unreserve_highatomic_pageblock(ac, true);
3936	}
3937
3938	/*
3939	 * Keep reclaiming pages while there is a chance this will lead
3940	 * somewhere.  If none of the target zones can satisfy our allocation
3941	 * request even if all reclaimable pages are considered then we are
3942	 * screwed and have to go OOM.
3943	 */
3944	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3945					ac->nodemask) {
3946		unsigned long available;
3947		unsigned long reclaimable;
3948		unsigned long min_wmark = min_wmark_pages(zone);
3949		bool wmark;
3950
3951		available = reclaimable = zone_reclaimable_pages(zone);
3952		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3953
3954		/*
3955		 * Would the allocation succeed if we reclaimed all
3956		 * reclaimable pages?
3957		 */
3958		wmark = __zone_watermark_ok(zone, order, min_wmark,
3959				ac_classzone_idx(ac), alloc_flags, available);
3960		trace_reclaim_retry_zone(z, order, reclaimable,
3961				available, min_wmark, *no_progress_loops, wmark);
3962		if (wmark) {
3963			/*
3964			 * If we didn't make any progress and have a lot of
3965			 * dirty + writeback pages then we should wait for
3966			 * an IO to complete to slow down the reclaim and
3967			 * prevent from pre mature OOM
3968			 */
3969			if (!did_some_progress) {
3970				unsigned long write_pending;
3971
3972				write_pending = zone_page_state_snapshot(zone,
3973							NR_ZONE_WRITE_PENDING);
3974
3975				if (2 * write_pending > reclaimable) {
3976					congestion_wait(BLK_RW_ASYNC, HZ/10);
3977					return true;
3978				}
3979			}
3980
3981			/*
3982			 * Memory allocation/reclaim might be called from a WQ
3983			 * context and the current implementation of the WQ
3984			 * concurrency control doesn't recognize that
3985			 * a particular WQ is congested if the worker thread is
3986			 * looping without ever sleeping. Therefore we have to
3987			 * do a short sleep here rather than calling
3988			 * cond_resched().
3989			 */
3990			if (current->flags & PF_WQ_WORKER)
3991				schedule_timeout_uninterruptible(1);
3992			else
3993				cond_resched();
3994
3995			return true;
3996		}
3997	}
3998
3999	return false;
4000}
4001
4002static inline bool
4003check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4004{
4005	/*
4006	 * It's possible that cpuset's mems_allowed and the nodemask from
4007	 * mempolicy don't intersect. This should be normally dealt with by
4008	 * policy_nodemask(), but it's possible to race with cpuset update in
4009	 * such a way the check therein was true, and then it became false
4010	 * before we got our cpuset_mems_cookie here.
4011	 * This assumes that for all allocations, ac->nodemask can come only
4012	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4013	 * when it does not intersect with the cpuset restrictions) or the
4014	 * caller can deal with a violated nodemask.
4015	 */
4016	if (cpusets_enabled() && ac->nodemask &&
4017			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4018		ac->nodemask = NULL;
4019		return true;
4020	}
4021
4022	/*
4023	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4024	 * possible to race with parallel threads in such a way that our
4025	 * allocation can fail while the mask is being updated. If we are about
4026	 * to fail, check if the cpuset changed during allocation and if so,
4027	 * retry.
4028	 */
4029	if (read_mems_allowed_retry(cpuset_mems_cookie))
4030		return true;
4031
4032	return false;
4033}
4034
4035static inline struct page *
4036__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4037						struct alloc_context *ac)
4038{
4039	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4040	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4041	struct page *page = NULL;
4042	unsigned int alloc_flags;
 
4043	unsigned long did_some_progress;
4044	enum compact_priority compact_priority;
4045	enum compact_result compact_result;
4046	int compaction_retries;
4047	int no_progress_loops;
4048	unsigned int cpuset_mems_cookie;
4049	int reserve_flags;
4050
4051	/*
4052	 * In the slowpath, we sanity check order to avoid ever trying to
4053	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
4054	 * be using allocators in order of preference for an area that is
4055	 * too large.
4056	 */
4057	if (order >= MAX_ORDER) {
4058		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4059		return NULL;
4060	}
4061
4062	/*
4063	 * We also sanity check to catch abuse of atomic reserves being used by
4064	 * callers that are not in atomic context.
4065	 */
4066	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4067				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4068		gfp_mask &= ~__GFP_ATOMIC;
4069
4070retry_cpuset:
4071	compaction_retries = 0;
4072	no_progress_loops = 0;
4073	compact_priority = DEF_COMPACT_PRIORITY;
4074	cpuset_mems_cookie = read_mems_allowed_begin();
4075
4076	/*
4077	 * The fast path uses conservative alloc_flags to succeed only until
4078	 * kswapd needs to be woken up, and to avoid the cost of setting up
4079	 * alloc_flags precisely. So we do that now.
4080	 */
4081	alloc_flags = gfp_to_alloc_flags(gfp_mask);
4082
4083	/*
4084	 * We need to recalculate the starting point for the zonelist iterator
4085	 * because we might have used different nodemask in the fast path, or
4086	 * there was a cpuset modification and we are retrying - otherwise we
4087	 * could end up iterating over non-eligible zones endlessly.
4088	 */
4089	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4090					ac->high_zoneidx, ac->nodemask);
4091	if (!ac->preferred_zoneref->zone)
4092		goto nopage;
4093
4094	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4095		wake_all_kswapds(order, gfp_mask, ac);
4096
4097	/*
4098	 * The adjusted alloc_flags might result in immediate success, so try
4099	 * that first
4100	 */
4101	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
 
 
 
 
 
 
 
 
 
4102	if (page)
4103		goto got_pg;
4104
4105	/*
4106	 * For costly allocations, try direct compaction first, as it's likely
4107	 * that we have enough base pages and don't need to reclaim. For non-
4108	 * movable high-order allocations, do that as well, as compaction will
4109	 * try prevent permanent fragmentation by migrating from blocks of the
4110	 * same migratetype.
4111	 * Don't try this for allocations that are allowed to ignore
4112	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4113	 */
4114	if (can_direct_reclaim &&
4115			(costly_order ||
4116			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4117			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4118		page = __alloc_pages_direct_compact(gfp_mask, order,
4119						alloc_flags, ac,
4120						INIT_COMPACT_PRIORITY,
4121						&compact_result);
4122		if (page)
4123			goto got_pg;
 
4124
 
 
4125		/*
4126		 * Checks for costly allocations with __GFP_NORETRY, which
4127		 * includes THP page fault allocations
 
4128		 */
4129		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4130			/*
4131			 * If compaction is deferred for high-order allocations,
4132			 * it is because sync compaction recently failed. If
4133			 * this is the case and the caller requested a THP
4134			 * allocation, we do not want to heavily disrupt the
4135			 * system, so we fail the allocation instead of entering
4136			 * direct reclaim.
4137			 */
4138			if (compact_result == COMPACT_DEFERRED)
4139				goto nopage;
4140
4141			/*
4142			 * Looks like reclaim/compaction is worth trying, but
4143			 * sync compaction could be very expensive, so keep
4144			 * using async compaction.
4145			 */
4146			compact_priority = INIT_COMPACT_PRIORITY;
 
 
 
 
4147		}
 
4148	}
4149
4150retry:
4151	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4152	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4153		wake_all_kswapds(order, gfp_mask, ac);
4154
4155	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4156	if (reserve_flags)
4157		alloc_flags = reserve_flags;
4158
4159	/*
4160	 * Reset the zonelist iterators if memory policies can be ignored.
4161	 * These allocations are high priority and system rather than user
4162	 * orientated.
4163	 */
4164	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4165		ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
4166		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4167					ac->high_zoneidx, ac->nodemask);
4168	}
4169
4170	/* Attempt with potentially adjusted zonelist and alloc_flags */
4171	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4172	if (page)
4173		goto got_pg;
4174
4175	/* Caller is not willing to reclaim, we can't balance anything */
4176	if (!can_direct_reclaim)
4177		goto nopage;
 
 
 
 
 
 
 
 
4178
4179	/* Avoid recursion of direct reclaim */
4180	if (current->flags & PF_MEMALLOC)
4181		goto nopage;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4182
4183	/* Try direct reclaim and then allocating */
4184	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4185							&did_some_progress);
4186	if (page)
4187		goto got_pg;
4188
4189	/* Try direct compaction and then allocating */
4190	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4191					compact_priority, &compact_result);
4192	if (page)
4193		goto got_pg;
4194
4195	/* Do not loop if specifically requested */
4196	if (gfp_mask & __GFP_NORETRY)
4197		goto nopage;
4198
4199	/*
4200	 * Do not retry costly high order allocations unless they are
4201	 * __GFP_RETRY_MAYFAIL
4202	 */
4203	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4204		goto nopage;
4205
4206	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4207				 did_some_progress > 0, &no_progress_loops))
 
 
 
 
4208		goto retry;
4209
4210	/*
4211	 * It doesn't make any sense to retry for the compaction if the order-0
4212	 * reclaim is not able to make any progress because the current
4213	 * implementation of the compaction depends on the sufficient amount
4214	 * of free memory (see __compaction_suitable)
4215	 */
4216	if (did_some_progress > 0 &&
4217			should_compact_retry(ac, order, alloc_flags,
4218				compact_result, &compact_priority,
4219				&compaction_retries))
4220		goto retry;
4221
4222
4223	/* Deal with possible cpuset update races before we start OOM killing */
4224	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4225		goto retry_cpuset;
4226
4227	/* Reclaim has failed us, start killing things */
4228	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4229	if (page)
4230		goto got_pg;
4231
4232	/* Avoid allocations with no watermarks from looping endlessly */
4233	if (tsk_is_oom_victim(current) &&
4234	    (alloc_flags == ALLOC_OOM ||
4235	     (gfp_mask & __GFP_NOMEMALLOC)))
4236		goto nopage;
4237
4238	/* Retry as long as the OOM killer is making progress */
4239	if (did_some_progress) {
4240		no_progress_loops = 0;
4241		goto retry;
4242	}
4243
4244nopage:
4245	/* Deal with possible cpuset update races before we fail */
4246	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4247		goto retry_cpuset;
4248
 
4249	/*
4250	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4251	 * we always retry
4252	 */
4253	if (gfp_mask & __GFP_NOFAIL) {
4254		/*
4255		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4256		 * of any new users that actually require GFP_NOWAIT
4257		 */
4258		if (WARN_ON_ONCE(!can_direct_reclaim))
4259			goto fail;
4260
4261		/*
4262		 * PF_MEMALLOC request from this context is rather bizarre
4263		 * because we cannot reclaim anything and only can loop waiting
4264		 * for somebody to do a work for us
4265		 */
4266		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4267
4268		/*
4269		 * non failing costly orders are a hard requirement which we
4270		 * are not prepared for much so let's warn about these users
4271		 * so that we can identify them and convert them to something
4272		 * else.
4273		 */
4274		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4275
4276		/*
4277		 * Help non-failing allocations by giving them access to memory
4278		 * reserves but do not use ALLOC_NO_WATERMARKS because this
4279		 * could deplete whole memory reserves which would just make
4280		 * the situation worse
4281		 */
4282		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4283		if (page)
4284			goto got_pg;
4285
4286		cond_resched();
4287		goto retry;
4288	}
4289fail:
4290	warn_alloc(gfp_mask, ac->nodemask,
4291			"page allocation failure: order:%u", order);
4292got_pg:
4293	return page;
4294}
4295
4296static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4297		int preferred_nid, nodemask_t *nodemask,
4298		struct alloc_context *ac, gfp_t *alloc_mask,
4299		unsigned int *alloc_flags)
4300{
4301	ac->high_zoneidx = gfp_zone(gfp_mask);
4302	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4303	ac->nodemask = nodemask;
4304	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4305
4306	if (cpusets_enabled()) {
4307		*alloc_mask |= __GFP_HARDWALL;
4308		if (!ac->nodemask)
4309			ac->nodemask = &cpuset_current_mems_allowed;
4310		else
4311			*alloc_flags |= ALLOC_CPUSET;
4312	}
4313
4314	fs_reclaim_acquire(gfp_mask);
4315	fs_reclaim_release(gfp_mask);
4316
4317	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4318
4319	if (should_fail_alloc_page(gfp_mask, order))
4320		return false;
4321
4322	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4323		*alloc_flags |= ALLOC_CMA;
4324
4325	return true;
4326}
4327
4328/* Determine whether to spread dirty pages and what the first usable zone */
4329static inline void finalise_ac(gfp_t gfp_mask,
4330		unsigned int order, struct alloc_context *ac)
4331{
4332	/* Dirty zone balancing only done in the fast path */
4333	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4334
4335	/*
4336	 * The preferred zone is used for statistics but crucially it is
4337	 * also used as the starting point for the zonelist iterator. It
4338	 * may get reset for allocations that ignore memory policies.
4339	 */
4340	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4341					ac->high_zoneidx, ac->nodemask);
4342}
4343
4344/*
4345 * This is the 'heart' of the zoned buddy allocator.
4346 */
4347struct page *
4348__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4349							nodemask_t *nodemask)
4350{
4351	struct page *page;
4352	unsigned int alloc_flags = ALLOC_WMARK_LOW;
 
 
4353	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4354	struct alloc_context ac = { };
 
 
 
 
4355
4356	gfp_mask &= gfp_allowed_mask;
4357	alloc_mask = gfp_mask;
4358	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4359		return NULL;
4360
4361	finalise_ac(gfp_mask, order, &ac);
4362
4363	/* First allocation attempt */
4364	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4365	if (likely(page))
4366		goto out;
4367
4368	/*
4369	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4370	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4371	 * from a particular context which has been marked by
4372	 * memalloc_no{fs,io}_{save,restore}.
4373	 */
4374	alloc_mask = current_gfp_context(gfp_mask);
4375	ac.spread_dirty_pages = false;
4376
4377	/*
4378	 * Restore the original nodemask if it was potentially replaced with
4379	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
 
4380	 */
4381	if (unlikely(ac.nodemask != nodemask))
4382		ac.nodemask = nodemask;
4383
4384	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
 
4385
4386out:
4387	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4388	    unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4389		__free_pages(page, order);
4390		page = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4391	}
4392
 
 
 
4393	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4394
 
 
 
 
 
 
 
 
 
 
4395	return page;
4396}
4397EXPORT_SYMBOL(__alloc_pages_nodemask);
4398
4399/*
4400 * Common helper functions.
4401 */
4402unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4403{
4404	struct page *page;
4405
4406	/*
4407	 * __get_free_pages() returns a virtual address, which cannot represent
4408	 * a highmem page
4409	 */
4410	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
4411
4412	page = alloc_pages(gfp_mask, order);
4413	if (!page)
4414		return 0;
4415	return (unsigned long) page_address(page);
4416}
4417EXPORT_SYMBOL(__get_free_pages);
4418
4419unsigned long get_zeroed_page(gfp_t gfp_mask)
4420{
4421	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4422}
4423EXPORT_SYMBOL(get_zeroed_page);
4424
4425void __free_pages(struct page *page, unsigned int order)
4426{
4427	if (put_page_testzero(page)) {
4428		if (order == 0)
4429			free_unref_page(page);
4430		else
4431			__free_pages_ok(page, order);
4432	}
4433}
4434
4435EXPORT_SYMBOL(__free_pages);
4436
4437void free_pages(unsigned long addr, unsigned int order)
4438{
4439	if (addr != 0) {
4440		VM_BUG_ON(!virt_addr_valid((void *)addr));
4441		__free_pages(virt_to_page((void *)addr), order);
4442	}
4443}
4444
4445EXPORT_SYMBOL(free_pages);
4446
4447/*
4448 * Page Fragment:
4449 *  An arbitrary-length arbitrary-offset area of memory which resides
4450 *  within a 0 or higher order page.  Multiple fragments within that page
4451 *  are individually refcounted, in the page's reference counter.
4452 *
4453 * The page_frag functions below provide a simple allocation framework for
4454 * page fragments.  This is used by the network stack and network device
4455 * drivers to provide a backing region of memory for use as either an
4456 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4457 */
4458static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4459					     gfp_t gfp_mask)
4460{
4461	struct page *page = NULL;
4462	gfp_t gfp = gfp_mask;
4463
4464#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4465	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4466		    __GFP_NOMEMALLOC;
4467	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4468				PAGE_FRAG_CACHE_MAX_ORDER);
4469	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4470#endif
4471	if (unlikely(!page))
4472		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4473
4474	nc->va = page ? page_address(page) : NULL;
4475
4476	return page;
4477}
4478
4479void __page_frag_cache_drain(struct page *page, unsigned int count)
4480{
4481	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4482
4483	if (page_ref_sub_and_test(page, count)) {
4484		unsigned int order = compound_order(page);
4485
4486		if (order == 0)
4487			free_unref_page(page);
4488		else
4489			__free_pages_ok(page, order);
4490	}
4491}
4492EXPORT_SYMBOL(__page_frag_cache_drain);
4493
4494void *page_frag_alloc(struct page_frag_cache *nc,
4495		      unsigned int fragsz, gfp_t gfp_mask)
4496{
4497	unsigned int size = PAGE_SIZE;
4498	struct page *page;
4499	int offset;
4500
4501	if (unlikely(!nc->va)) {
4502refill:
4503		page = __page_frag_cache_refill(nc, gfp_mask);
4504		if (!page)
4505			return NULL;
4506
4507#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4508		/* if size can vary use size else just use PAGE_SIZE */
4509		size = nc->size;
4510#endif
4511		/* Even if we own the page, we do not use atomic_set().
4512		 * This would break get_page_unless_zero() users.
4513		 */
4514		page_ref_add(page, size - 1);
4515
4516		/* reset page count bias and offset to start of new frag */
4517		nc->pfmemalloc = page_is_pfmemalloc(page);
4518		nc->pagecnt_bias = size;
4519		nc->offset = size;
4520	}
4521
4522	offset = nc->offset - fragsz;
4523	if (unlikely(offset < 0)) {
4524		page = virt_to_page(nc->va);
4525
4526		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4527			goto refill;
4528
4529#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4530		/* if size can vary use size else just use PAGE_SIZE */
4531		size = nc->size;
4532#endif
4533		/* OK, page count is 0, we can safely set it */
4534		set_page_count(page, size);
4535
4536		/* reset page count bias and offset to start of new frag */
4537		nc->pagecnt_bias = size;
4538		offset = size - fragsz;
4539	}
4540
4541	nc->pagecnt_bias--;
4542	nc->offset = offset;
4543
4544	return nc->va + offset;
4545}
4546EXPORT_SYMBOL(page_frag_alloc);
4547
4548/*
4549 * Frees a page fragment allocated out of either a compound or order 0 page.
4550 */
4551void page_frag_free(void *addr)
4552{
4553	struct page *page = virt_to_head_page(addr);
4554
4555	if (unlikely(put_page_testzero(page)))
4556		__free_pages_ok(page, compound_order(page));
4557}
4558EXPORT_SYMBOL(page_frag_free);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4559
4560static void *make_alloc_exact(unsigned long addr, unsigned int order,
4561		size_t size)
4562{
4563	if (addr) {
4564		unsigned long alloc_end = addr + (PAGE_SIZE << order);
4565		unsigned long used = addr + PAGE_ALIGN(size);
4566
4567		split_page(virt_to_page((void *)addr), order);
4568		while (used < alloc_end) {
4569			free_page(used);
4570			used += PAGE_SIZE;
4571		}
4572	}
4573	return (void *)addr;
4574}
4575
4576/**
4577 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4578 * @size: the number of bytes to allocate
4579 * @gfp_mask: GFP flags for the allocation
4580 *
4581 * This function is similar to alloc_pages(), except that it allocates the
4582 * minimum number of pages to satisfy the request.  alloc_pages() can only
4583 * allocate memory in power-of-two pages.
4584 *
4585 * This function is also limited by MAX_ORDER.
4586 *
4587 * Memory allocated by this function must be released by free_pages_exact().
4588 */
4589void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4590{
4591	unsigned int order = get_order(size);
4592	unsigned long addr;
4593
4594	addr = __get_free_pages(gfp_mask, order);
4595	return make_alloc_exact(addr, order, size);
4596}
4597EXPORT_SYMBOL(alloc_pages_exact);
4598
4599/**
4600 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4601 *			   pages on a node.
4602 * @nid: the preferred node ID where memory should be allocated
4603 * @size: the number of bytes to allocate
4604 * @gfp_mask: GFP flags for the allocation
4605 *
4606 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4607 * back.
4608 */
4609void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4610{
4611	unsigned int order = get_order(size);
4612	struct page *p = alloc_pages_node(nid, gfp_mask, order);
4613	if (!p)
4614		return NULL;
4615	return make_alloc_exact((unsigned long)page_address(p), order, size);
4616}
4617
4618/**
4619 * free_pages_exact - release memory allocated via alloc_pages_exact()
4620 * @virt: the value returned by alloc_pages_exact.
4621 * @size: size of allocation, same value as passed to alloc_pages_exact().
4622 *
4623 * Release the memory allocated by a previous call to alloc_pages_exact.
4624 */
4625void free_pages_exact(void *virt, size_t size)
4626{
4627	unsigned long addr = (unsigned long)virt;
4628	unsigned long end = addr + PAGE_ALIGN(size);
4629
4630	while (addr < end) {
4631		free_page(addr);
4632		addr += PAGE_SIZE;
4633	}
4634}
4635EXPORT_SYMBOL(free_pages_exact);
4636
4637/**
4638 * nr_free_zone_pages - count number of pages beyond high watermark
4639 * @offset: The zone index of the highest zone
4640 *
4641 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4642 * high watermark within all zones at or below a given zone index.  For each
4643 * zone, the number of pages is calculated as:
4644 *
4645 *     nr_free_zone_pages = managed_pages - high_pages
4646 */
4647static unsigned long nr_free_zone_pages(int offset)
4648{
4649	struct zoneref *z;
4650	struct zone *zone;
4651
4652	/* Just pick one node, since fallback list is circular */
4653	unsigned long sum = 0;
4654
4655	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4656
4657	for_each_zone_zonelist(zone, z, zonelist, offset) {
4658		unsigned long size = zone->managed_pages;
4659		unsigned long high = high_wmark_pages(zone);
4660		if (size > high)
4661			sum += size - high;
4662	}
4663
4664	return sum;
4665}
4666
4667/**
4668 * nr_free_buffer_pages - count number of pages beyond high watermark
4669 *
4670 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4671 * watermark within ZONE_DMA and ZONE_NORMAL.
4672 */
4673unsigned long nr_free_buffer_pages(void)
4674{
4675	return nr_free_zone_pages(gfp_zone(GFP_USER));
4676}
4677EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4678
4679/**
4680 * nr_free_pagecache_pages - count number of pages beyond high watermark
4681 *
4682 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4683 * high watermark within all zones.
4684 */
4685unsigned long nr_free_pagecache_pages(void)
4686{
4687	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4688}
4689
4690static inline void show_node(struct zone *zone)
4691{
4692	if (IS_ENABLED(CONFIG_NUMA))
4693		printk("Node %d ", zone_to_nid(zone));
4694}
4695
4696long si_mem_available(void)
4697{
4698	long available;
4699	unsigned long pagecache;
4700	unsigned long wmark_low = 0;
4701	unsigned long pages[NR_LRU_LISTS];
4702	struct zone *zone;
4703	int lru;
4704
4705	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4706		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4707
4708	for_each_zone(zone)
4709		wmark_low += zone->watermark[WMARK_LOW];
4710
4711	/*
4712	 * Estimate the amount of memory available for userspace allocations,
4713	 * without causing swapping.
4714	 */
4715	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
4716
4717	/*
4718	 * Not all the page cache can be freed, otherwise the system will
4719	 * start swapping. Assume at least half of the page cache, or the
4720	 * low watermark worth of cache, needs to stay.
4721	 */
4722	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4723	pagecache -= min(pagecache / 2, wmark_low);
4724	available += pagecache;
4725
4726	/*
4727	 * Part of the reclaimable slab consists of items that are in use,
4728	 * and cannot be freed. Cap this estimate at the low watermark.
4729	 */
4730	available += global_node_page_state(NR_SLAB_RECLAIMABLE) -
4731		     min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2,
4732			 wmark_low);
4733
4734	/*
4735	 * Part of the kernel memory, which can be released under memory
4736	 * pressure.
4737	 */
4738	available += global_node_page_state(NR_INDIRECTLY_RECLAIMABLE_BYTES) >>
4739		PAGE_SHIFT;
4740
4741	if (available < 0)
4742		available = 0;
4743	return available;
4744}
4745EXPORT_SYMBOL_GPL(si_mem_available);
4746
4747void si_meminfo(struct sysinfo *val)
4748{
4749	val->totalram = totalram_pages;
4750	val->sharedram = global_node_page_state(NR_SHMEM);
4751	val->freeram = global_zone_page_state(NR_FREE_PAGES);
4752	val->bufferram = nr_blockdev_pages();
4753	val->totalhigh = totalhigh_pages;
4754	val->freehigh = nr_free_highpages();
4755	val->mem_unit = PAGE_SIZE;
4756}
4757
4758EXPORT_SYMBOL(si_meminfo);
4759
4760#ifdef CONFIG_NUMA
4761void si_meminfo_node(struct sysinfo *val, int nid)
4762{
4763	int zone_type;		/* needs to be signed */
4764	unsigned long managed_pages = 0;
4765	unsigned long managed_highpages = 0;
4766	unsigned long free_highpages = 0;
4767	pg_data_t *pgdat = NODE_DATA(nid);
4768
4769	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4770		managed_pages += pgdat->node_zones[zone_type].managed_pages;
4771	val->totalram = managed_pages;
4772	val->sharedram = node_page_state(pgdat, NR_SHMEM);
4773	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4774#ifdef CONFIG_HIGHMEM
4775	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4776		struct zone *zone = &pgdat->node_zones[zone_type];
4777
4778		if (is_highmem(zone)) {
4779			managed_highpages += zone->managed_pages;
4780			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4781		}
4782	}
4783	val->totalhigh = managed_highpages;
4784	val->freehigh = free_highpages;
4785#else
4786	val->totalhigh = managed_highpages;
4787	val->freehigh = free_highpages;
4788#endif
4789	val->mem_unit = PAGE_SIZE;
4790}
4791#endif
4792
4793/*
4794 * Determine whether the node should be displayed or not, depending on whether
4795 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4796 */
4797static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4798{
4799	if (!(flags & SHOW_MEM_FILTER_NODES))
4800		return false;
4801
4802	/*
4803	 * no node mask - aka implicit memory numa policy. Do not bother with
4804	 * the synchronization - read_mems_allowed_begin - because we do not
4805	 * have to be precise here.
4806	 */
4807	if (!nodemask)
4808		nodemask = &cpuset_current_mems_allowed;
4809
4810	return !node_isset(nid, *nodemask);
 
 
 
 
 
4811}
4812
4813#define K(x) ((x) << (PAGE_SHIFT-10))
4814
4815static void show_migration_types(unsigned char type)
4816{
4817	static const char types[MIGRATE_TYPES] = {
4818		[MIGRATE_UNMOVABLE]	= 'U',
4819		[MIGRATE_MOVABLE]	= 'M',
4820		[MIGRATE_RECLAIMABLE]	= 'E',
4821		[MIGRATE_HIGHATOMIC]	= 'H',
4822#ifdef CONFIG_CMA
4823		[MIGRATE_CMA]		= 'C',
4824#endif
4825#ifdef CONFIG_MEMORY_ISOLATION
4826		[MIGRATE_ISOLATE]	= 'I',
4827#endif
4828	};
4829	char tmp[MIGRATE_TYPES + 1];
4830	char *p = tmp;
4831	int i;
4832
4833	for (i = 0; i < MIGRATE_TYPES; i++) {
4834		if (type & (1 << i))
4835			*p++ = types[i];
4836	}
4837
4838	*p = '\0';
4839	printk(KERN_CONT "(%s) ", tmp);
4840}
4841
4842/*
4843 * Show free area list (used inside shift_scroll-lock stuff)
4844 * We also calculate the percentage fragmentation. We do this by counting the
4845 * memory on each free list with the exception of the first item on the list.
4846 *
4847 * Bits in @filter:
4848 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4849 *   cpuset.
4850 */
4851void show_free_areas(unsigned int filter, nodemask_t *nodemask)
4852{
4853	unsigned long free_pcp = 0;
4854	int cpu;
4855	struct zone *zone;
4856	pg_data_t *pgdat;
4857
4858	for_each_populated_zone(zone) {
4859		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4860			continue;
4861
4862		for_each_online_cpu(cpu)
4863			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4864	}
4865
4866	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4867		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4868		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4869		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4870		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4871		" free:%lu free_pcp:%lu free_cma:%lu\n",
4872		global_node_page_state(NR_ACTIVE_ANON),
4873		global_node_page_state(NR_INACTIVE_ANON),
4874		global_node_page_state(NR_ISOLATED_ANON),
4875		global_node_page_state(NR_ACTIVE_FILE),
4876		global_node_page_state(NR_INACTIVE_FILE),
4877		global_node_page_state(NR_ISOLATED_FILE),
4878		global_node_page_state(NR_UNEVICTABLE),
4879		global_node_page_state(NR_FILE_DIRTY),
4880		global_node_page_state(NR_WRITEBACK),
4881		global_node_page_state(NR_UNSTABLE_NFS),
4882		global_node_page_state(NR_SLAB_RECLAIMABLE),
4883		global_node_page_state(NR_SLAB_UNRECLAIMABLE),
4884		global_node_page_state(NR_FILE_MAPPED),
4885		global_node_page_state(NR_SHMEM),
4886		global_zone_page_state(NR_PAGETABLE),
4887		global_zone_page_state(NR_BOUNCE),
4888		global_zone_page_state(NR_FREE_PAGES),
4889		free_pcp,
4890		global_zone_page_state(NR_FREE_CMA_PAGES));
4891
4892	for_each_online_pgdat(pgdat) {
4893		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4894			continue;
4895
4896		printk("Node %d"
4897			" active_anon:%lukB"
4898			" inactive_anon:%lukB"
4899			" active_file:%lukB"
4900			" inactive_file:%lukB"
4901			" unevictable:%lukB"
4902			" isolated(anon):%lukB"
4903			" isolated(file):%lukB"
4904			" mapped:%lukB"
4905			" dirty:%lukB"
4906			" writeback:%lukB"
4907			" shmem:%lukB"
4908#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4909			" shmem_thp: %lukB"
4910			" shmem_pmdmapped: %lukB"
4911			" anon_thp: %lukB"
4912#endif
4913			" writeback_tmp:%lukB"
4914			" unstable:%lukB"
4915			" all_unreclaimable? %s"
4916			"\n",
4917			pgdat->node_id,
4918			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4919			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4920			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4921			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4922			K(node_page_state(pgdat, NR_UNEVICTABLE)),
4923			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4924			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4925			K(node_page_state(pgdat, NR_FILE_MAPPED)),
4926			K(node_page_state(pgdat, NR_FILE_DIRTY)),
4927			K(node_page_state(pgdat, NR_WRITEBACK)),
4928			K(node_page_state(pgdat, NR_SHMEM)),
4929#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4930			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4931			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4932					* HPAGE_PMD_NR),
4933			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4934#endif
4935			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4936			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4937			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4938				"yes" : "no");
4939	}
4940
4941	for_each_populated_zone(zone) {
4942		int i;
4943
4944		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4945			continue;
4946
4947		free_pcp = 0;
4948		for_each_online_cpu(cpu)
4949			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4950
4951		show_node(zone);
4952		printk(KERN_CONT
4953			"%s"
4954			" free:%lukB"
4955			" min:%lukB"
4956			" low:%lukB"
4957			" high:%lukB"
4958			" active_anon:%lukB"
4959			" inactive_anon:%lukB"
4960			" active_file:%lukB"
4961			" inactive_file:%lukB"
4962			" unevictable:%lukB"
4963			" writepending:%lukB"
 
4964			" present:%lukB"
4965			" managed:%lukB"
4966			" mlocked:%lukB"
 
 
 
 
 
 
4967			" kernel_stack:%lukB"
4968			" pagetables:%lukB"
 
4969			" bounce:%lukB"
4970			" free_pcp:%lukB"
4971			" local_pcp:%ukB"
4972			" free_cma:%lukB"
 
 
 
4973			"\n",
4974			zone->name,
4975			K(zone_page_state(zone, NR_FREE_PAGES)),
4976			K(min_wmark_pages(zone)),
4977			K(low_wmark_pages(zone)),
4978			K(high_wmark_pages(zone)),
4979			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4980			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4981			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4982			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4983			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4984			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
 
4985			K(zone->present_pages),
4986			K(zone->managed_pages),
4987			K(zone_page_state(zone, NR_MLOCK)),
4988			zone_page_state(zone, NR_KERNEL_STACK_KB),
 
 
 
 
 
 
 
4989			K(zone_page_state(zone, NR_PAGETABLE)),
 
4990			K(zone_page_state(zone, NR_BOUNCE)),
4991			K(free_pcp),
4992			K(this_cpu_read(zone->pageset->pcp.count)),
4993			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
 
 
 
 
4994		printk("lowmem_reserve[]:");
4995		for (i = 0; i < MAX_NR_ZONES; i++)
4996			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4997		printk(KERN_CONT "\n");
4998	}
4999
5000	for_each_populated_zone(zone) {
5001		unsigned int order;
5002		unsigned long nr[MAX_ORDER], flags, total = 0;
5003		unsigned char types[MAX_ORDER];
5004
5005		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5006			continue;
5007		show_node(zone);
5008		printk(KERN_CONT "%s: ", zone->name);
5009
5010		spin_lock_irqsave(&zone->lock, flags);
5011		for (order = 0; order < MAX_ORDER; order++) {
5012			struct free_area *area = &zone->free_area[order];
5013			int type;
5014
5015			nr[order] = area->nr_free;
5016			total += nr[order] << order;
5017
5018			types[order] = 0;
5019			for (type = 0; type < MIGRATE_TYPES; type++) {
5020				if (!list_empty(&area->free_list[type]))
5021					types[order] |= 1 << type;
5022			}
5023		}
5024		spin_unlock_irqrestore(&zone->lock, flags);
5025		for (order = 0; order < MAX_ORDER; order++) {
5026			printk(KERN_CONT "%lu*%lukB ",
5027			       nr[order], K(1UL) << order);
5028			if (nr[order])
5029				show_migration_types(types[order]);
5030		}
5031		printk(KERN_CONT "= %lukB\n", K(total));
5032	}
5033
5034	hugetlb_show_meminfo();
5035
5036	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5037
5038	show_swap_cache_info();
5039}
5040
5041static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5042{
5043	zoneref->zone = zone;
5044	zoneref->zone_idx = zone_idx(zone);
5045}
5046
5047/*
5048 * Builds allocation fallback zone lists.
5049 *
5050 * Add all populated zones of a node to the zonelist.
5051 */
5052static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
 
5053{
5054	struct zone *zone;
5055	enum zone_type zone_type = MAX_NR_ZONES;
5056	int nr_zones = 0;
5057
5058	do {
5059		zone_type--;
5060		zone = pgdat->node_zones + zone_type;
5061		if (managed_zone(zone)) {
5062			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
 
5063			check_highest_zone(zone_type);
5064		}
5065	} while (zone_type);
5066
5067	return nr_zones;
5068}
5069
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5070#ifdef CONFIG_NUMA
 
 
 
 
 
 
 
 
 
 
 
 
 
5071
5072static int __parse_numa_zonelist_order(char *s)
5073{
5074	/*
5075	 * We used to support different zonlists modes but they turned
5076	 * out to be just not useful. Let's keep the warning in place
5077	 * if somebody still use the cmd line parameter so that we do
5078	 * not fail it silently
5079	 */
5080	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5081		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5082		return -EINVAL;
5083	}
5084	return 0;
5085}
5086
5087static __init int setup_numa_zonelist_order(char *s)
5088{
 
 
5089	if (!s)
5090		return 0;
5091
5092	return __parse_numa_zonelist_order(s);
 
 
 
 
5093}
5094early_param("numa_zonelist_order", setup_numa_zonelist_order);
5095
5096char numa_zonelist_order[] = "Node";
5097
5098/*
5099 * sysctl handler for numa_zonelist_order
5100 */
5101int numa_zonelist_order_handler(struct ctl_table *table, int write,
5102		void __user *buffer, size_t *length,
5103		loff_t *ppos)
5104{
5105	char *str;
5106	int ret;
 
5107
5108	if (!write)
5109		return proc_dostring(table, write, buffer, length, ppos);
5110	str = memdup_user_nul(buffer, 16);
5111	if (IS_ERR(str))
5112		return PTR_ERR(str);
 
 
 
 
 
 
 
 
5113
5114	ret = __parse_numa_zonelist_order(str);
5115	kfree(str);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5116	return ret;
5117}
5118
5119
5120#define MAX_NODE_LOAD (nr_online_nodes)
5121static int node_load[MAX_NUMNODES];
5122
5123/**
5124 * find_next_best_node - find the next node that should appear in a given node's fallback list
5125 * @node: node whose fallback list we're appending
5126 * @used_node_mask: nodemask_t of already used nodes
5127 *
5128 * We use a number of factors to determine which is the next node that should
5129 * appear on a given node's fallback list.  The node should not have appeared
5130 * already in @node's fallback list, and it should be the next closest node
5131 * according to the distance array (which contains arbitrary distance values
5132 * from each node to each node in the system), and should also prefer nodes
5133 * with no CPUs, since presumably they'll have very little allocation pressure
5134 * on them otherwise.
5135 * It returns -1 if no node is found.
5136 */
5137static int find_next_best_node(int node, nodemask_t *used_node_mask)
5138{
5139	int n, val;
5140	int min_val = INT_MAX;
5141	int best_node = NUMA_NO_NODE;
5142	const struct cpumask *tmp = cpumask_of_node(0);
5143
5144	/* Use the local node if we haven't already */
5145	if (!node_isset(node, *used_node_mask)) {
5146		node_set(node, *used_node_mask);
5147		return node;
5148	}
5149
5150	for_each_node_state(n, N_MEMORY) {
5151
5152		/* Don't want a node to appear more than once */
5153		if (node_isset(n, *used_node_mask))
5154			continue;
5155
5156		/* Use the distance array to find the distance */
5157		val = node_distance(node, n);
5158
5159		/* Penalize nodes under us ("prefer the next node") */
5160		val += (n < node);
5161
5162		/* Give preference to headless and unused nodes */
5163		tmp = cpumask_of_node(n);
5164		if (!cpumask_empty(tmp))
5165			val += PENALTY_FOR_NODE_WITH_CPUS;
5166
5167		/* Slight preference for less loaded node */
5168		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5169		val += node_load[n];
5170
5171		if (val < min_val) {
5172			min_val = val;
5173			best_node = n;
5174		}
5175	}
5176
5177	if (best_node >= 0)
5178		node_set(best_node, *used_node_mask);
5179
5180	return best_node;
5181}
5182
5183
5184/*
5185 * Build zonelists ordered by node and zones within node.
5186 * This results in maximum locality--normal zone overflows into local
5187 * DMA zone, if any--but risks exhausting DMA zone.
5188 */
5189static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5190		unsigned nr_nodes)
5191{
5192	struct zoneref *zonerefs;
5193	int i;
5194
5195	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5196
5197	for (i = 0; i < nr_nodes; i++) {
5198		int nr_zones;
5199
5200		pg_data_t *node = NODE_DATA(node_order[i]);
5201
5202		nr_zones = build_zonerefs_node(node, zonerefs);
5203		zonerefs += nr_zones;
5204	}
5205	zonerefs->zone = NULL;
5206	zonerefs->zone_idx = 0;
 
5207}
5208
5209/*
5210 * Build gfp_thisnode zonelists
5211 */
5212static void build_thisnode_zonelists(pg_data_t *pgdat)
5213{
5214	struct zoneref *zonerefs;
5215	int nr_zones;
5216
5217	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5218	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5219	zonerefs += nr_zones;
5220	zonerefs->zone = NULL;
5221	zonerefs->zone_idx = 0;
5222}
5223
5224/*
5225 * Build zonelists ordered by zone and nodes within zones.
5226 * This results in conserving DMA zone[s] until all Normal memory is
5227 * exhausted, but results in overflowing to remote node while memory
5228 * may still exist in local DMA zone.
5229 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5230
5231static void build_zonelists(pg_data_t *pgdat)
5232{
5233	static int node_order[MAX_NUMNODES];
5234	int node, load, nr_nodes = 0;
5235	nodemask_t used_mask;
5236	int local_node, prev_node;
 
 
 
 
 
 
 
 
 
5237
5238	/* NUMA-aware ordering of nodes */
5239	local_node = pgdat->node_id;
5240	load = nr_online_nodes;
5241	prev_node = local_node;
5242	nodes_clear(used_mask);
5243
5244	memset(node_order, 0, sizeof(node_order));
 
 
5245	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5246		/*
5247		 * We don't want to pressure a particular node.
5248		 * So adding penalty to the first node in same
5249		 * distance group to make it round-robin.
5250		 */
5251		if (node_distance(local_node, node) !=
5252		    node_distance(local_node, prev_node))
5253			node_load[node] = load;
5254
5255		node_order[nr_nodes++] = node;
5256		prev_node = node;
5257		load--;
 
 
 
 
 
 
 
 
 
5258	}
5259
5260	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5261	build_thisnode_zonelists(pgdat);
5262}
5263
5264#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5265/*
5266 * Return node id of node used for "local" allocations.
5267 * I.e., first node id of first zone in arg node's generic zonelist.
5268 * Used for initializing percpu 'numa_mem', which is used primarily
5269 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5270 */
5271int local_memory_node(int node)
5272{
5273	struct zoneref *z;
5274
5275	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5276				   gfp_zone(GFP_KERNEL),
5277				   NULL);
5278	return z->zone->node;
 
5279}
5280#endif
5281
5282static void setup_min_unmapped_ratio(void);
5283static void setup_min_slab_ratio(void);
5284#else	/* CONFIG_NUMA */
5285
 
 
 
 
 
5286static void build_zonelists(pg_data_t *pgdat)
5287{
5288	int node, local_node;
5289	struct zoneref *zonerefs;
5290	int nr_zones;
5291
5292	local_node = pgdat->node_id;
5293
5294	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5295	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5296	zonerefs += nr_zones;
5297
5298	/*
5299	 * Now we build the zonelist so that it contains the zones
5300	 * of all the other nodes.
5301	 * We don't want to pressure a particular node, so when
5302	 * building the zones for node N, we make sure that the
5303	 * zones coming right after the local ones are those from
5304	 * node N+1 (modulo N)
5305	 */
5306	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5307		if (!node_online(node))
5308			continue;
5309		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5310		zonerefs += nr_zones;
5311	}
5312	for (node = 0; node < local_node; node++) {
5313		if (!node_online(node))
5314			continue;
5315		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5316		zonerefs += nr_zones;
5317	}
5318
5319	zonerefs->zone = NULL;
5320	zonerefs->zone_idx = 0;
5321}
5322
5323#endif	/* CONFIG_NUMA */
5324
5325/*
5326 * Boot pageset table. One per cpu which is going to be used for all
5327 * zones and all nodes. The parameters will be set in such a way
5328 * that an item put on a list will immediately be handed over to
5329 * the buddy list. This is safe since pageset manipulation is done
5330 * with interrupts disabled.
5331 *
5332 * The boot_pagesets must be kept even after bootup is complete for
5333 * unused processors and/or zones. They do play a role for bootstrapping
5334 * hotplugged processors.
5335 *
5336 * zoneinfo_show() and maybe other functions do
5337 * not check if the processor is online before following the pageset pointer.
5338 * Other parts of the kernel may not check if the zone is available.
5339 */
5340static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5341static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5342static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
 
 
 
 
 
 
5343
5344static void __build_all_zonelists(void *data)
 
5345{
5346	int nid;
5347	int __maybe_unused cpu;
5348	pg_data_t *self = data;
5349	static DEFINE_SPINLOCK(lock);
5350
5351	spin_lock(&lock);
5352
5353#ifdef CONFIG_NUMA
5354	memset(node_load, 0, sizeof(node_load));
5355#endif
5356
5357	/*
5358	 * This node is hotadded and no memory is yet present.   So just
5359	 * building zonelists is fine - no need to touch other nodes.
5360	 */
5361	if (self && !node_online(self->node_id)) {
5362		build_zonelists(self);
5363	} else {
5364		for_each_online_node(nid) {
5365			pg_data_t *pgdat = NODE_DATA(nid);
5366
5367			build_zonelists(pgdat);
5368		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5369
5370#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5371		/*
5372		 * We now know the "local memory node" for each node--
5373		 * i.e., the node of the first zone in the generic zonelist.
5374		 * Set up numa_mem percpu variable for on-line cpus.  During
5375		 * boot, only the boot cpu should be on-line;  we'll init the
5376		 * secondary cpus' numa_mem as they come on-line.  During
5377		 * node/memory hotplug, we'll fixup all on-line cpus.
5378		 */
5379		for_each_online_cpu(cpu)
5380			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5381#endif
5382	}
5383
5384	spin_unlock(&lock);
5385}
5386
5387static noinline void __init
5388build_all_zonelists_init(void)
5389{
5390	int cpu;
5391
5392	__build_all_zonelists(NULL);
5393
5394	/*
5395	 * Initialize the boot_pagesets that are going to be used
5396	 * for bootstrapping processors. The real pagesets for
5397	 * each zone will be allocated later when the per cpu
5398	 * allocator is available.
5399	 *
5400	 * boot_pagesets are used also for bootstrapping offline
5401	 * cpus if the system is already booted because the pagesets
5402	 * are needed to initialize allocators on a specific cpu too.
5403	 * F.e. the percpu allocator needs the page allocator which
5404	 * needs the percpu allocator in order to allocate its pagesets
5405	 * (a chicken-egg dilemma).
5406	 */
5407	for_each_possible_cpu(cpu)
5408		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5409
5410	mminit_verify_zonelist();
5411	cpuset_init_current_mems_allowed();
5412}
5413
5414/*
 
5415 * unless system_state == SYSTEM_BOOTING.
5416 *
5417 * __ref due to call of __init annotated helper build_all_zonelists_init
 
 
5418 * [protected by SYSTEM_BOOTING].
5419 */
5420void __ref build_all_zonelists(pg_data_t *pgdat)
5421{
 
 
5422	if (system_state == SYSTEM_BOOTING) {
5423		build_all_zonelists_init();
5424	} else {
5425		__build_all_zonelists(pgdat);
 
 
 
 
 
 
5426		/* cpuset refresh routine should be here */
5427	}
5428	vm_total_pages = nr_free_pagecache_pages();
5429	/*
5430	 * Disable grouping by mobility if the number of pages in the
5431	 * system is too low to allow the mechanism to work. It would be
5432	 * more accurate, but expensive to check per-zone. This check is
5433	 * made on memory-hotadd so a system can start with mobility
5434	 * disabled and enable it later
5435	 */
5436	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5437		page_group_by_mobility_disabled = 1;
5438	else
5439		page_group_by_mobility_disabled = 0;
5440
5441	pr_info("Built %i zonelists, mobility grouping %s.  Total pages: %ld\n",
5442		nr_online_nodes,
 
5443		page_group_by_mobility_disabled ? "off" : "on",
5444		vm_total_pages);
5445#ifdef CONFIG_NUMA
5446	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5447#endif
5448}
5449
5450/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5451 * Initially all pages are reserved - free ones are freed
5452 * up by free_all_bootmem() once the early boot process is
5453 * done. Non-atomic initialization, single-pass.
5454 */
5455void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5456		unsigned long start_pfn, enum memmap_context context,
5457		struct vmem_altmap *altmap)
5458{
 
5459	unsigned long end_pfn = start_pfn + size;
5460	pg_data_t *pgdat = NODE_DATA(nid);
5461	unsigned long pfn;
5462	unsigned long nr_initialised = 0;
5463	struct page *page;
5464#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5465	struct memblock_region *r = NULL, *tmp;
5466#endif
5467
5468	if (highest_memmap_pfn < end_pfn - 1)
5469		highest_memmap_pfn = end_pfn - 1;
5470
5471	/*
5472	 * Honor reservation requested by the driver for this ZONE_DEVICE
5473	 * memory
5474	 */
5475	if (altmap && start_pfn == altmap->base_pfn)
5476		start_pfn += altmap->reserve;
5477
5478	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5479		/*
5480		 * There can be holes in boot-time mem_map[]s handed to this
5481		 * function.  They do not exist on hotplugged memory.
5482		 */
5483		if (context != MEMMAP_EARLY)
5484			goto not_early;
5485
5486		if (!early_pfn_valid(pfn))
5487			continue;
5488		if (!early_pfn_in_nid(pfn, nid))
5489			continue;
5490		if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5491			break;
5492
5493#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5494		/*
 
 
 
 
 
 
 
 
 
5495		 * Check given memblock attribute by firmware which can affect
5496		 * kernel memory layout.  If zone==ZONE_MOVABLE but memory is
5497		 * mirrored, it's an overlapped memmap init. skip it.
5498		 */
5499		if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5500			if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5501				for_each_memblock(memory, tmp)
5502					if (pfn < memblock_region_memory_end_pfn(tmp))
5503						break;
5504				r = tmp;
5505			}
5506			if (pfn >= memblock_region_memory_base_pfn(r) &&
5507			    memblock_is_mirror(r)) {
5508				/* already initialized as NORMAL */
5509				pfn = memblock_region_memory_end_pfn(r);
5510				continue;
5511			}
5512		}
5513#endif
5514
5515not_early:
5516		page = pfn_to_page(pfn);
5517		__init_single_page(page, pfn, zone, nid);
5518		if (context == MEMMAP_HOTPLUG)
5519			SetPageReserved(page);
5520
5521		/*
5522		 * Mark the block movable so that blocks are reserved for
5523		 * movable at startup. This will force kernel allocations
5524		 * to reserve their blocks rather than leaking throughout
5525		 * the address space during boot when many long-lived
5526		 * kernel allocations are made.
5527		 *
5528		 * bitmap is created for zone's valid pfn range. but memmap
5529		 * can be created for invalid pages (for alignment)
5530		 * check here not to call set_pageblock_migratetype() against
5531		 * pfn out of zone.
5532		 *
5533		 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
5534		 * because this is done early in sparse_add_one_section
5535		 */
5536		if (!(pfn & (pageblock_nr_pages - 1))) {
 
 
 
5537			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5538			cond_resched();
 
5539		}
5540	}
5541}
5542
5543static void __meminit zone_init_free_lists(struct zone *zone)
5544{
5545	unsigned int order, t;
5546	for_each_migratetype_order(order, t) {
5547		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5548		zone->free_area[order].nr_free = 0;
5549	}
5550}
5551
5552#ifndef __HAVE_ARCH_MEMMAP_INIT
5553#define memmap_init(size, nid, zone, start_pfn) \
5554	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY, NULL)
5555#endif
5556
5557static int zone_batchsize(struct zone *zone)
5558{
5559#ifdef CONFIG_MMU
5560	int batch;
5561
5562	/*
5563	 * The per-cpu-pages pools are set to around 1000th of the
5564	 * size of the zone.  But no more than 1/2 of a meg.
5565	 *
5566	 * OK, so we don't know how big the cache is.  So guess.
5567	 */
5568	batch = zone->managed_pages / 1024;
5569	if (batch * PAGE_SIZE > 512 * 1024)
5570		batch = (512 * 1024) / PAGE_SIZE;
5571	batch /= 4;		/* We effectively *= 4 below */
5572	if (batch < 1)
5573		batch = 1;
5574
5575	/*
5576	 * Clamp the batch to a 2^n - 1 value. Having a power
5577	 * of 2 value was found to be more likely to have
5578	 * suboptimal cache aliasing properties in some cases.
5579	 *
5580	 * For example if 2 tasks are alternately allocating
5581	 * batches of pages, one task can end up with a lot
5582	 * of pages of one half of the possible page colors
5583	 * and the other with pages of the other colors.
5584	 */
5585	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5586
5587	return batch;
5588
5589#else
5590	/* The deferral and batching of frees should be suppressed under NOMMU
5591	 * conditions.
5592	 *
5593	 * The problem is that NOMMU needs to be able to allocate large chunks
5594	 * of contiguous memory as there's no hardware page translation to
5595	 * assemble apparent contiguous memory from discontiguous pages.
5596	 *
5597	 * Queueing large contiguous runs of pages for batching, however,
5598	 * causes the pages to actually be freed in smaller chunks.  As there
5599	 * can be a significant delay between the individual batches being
5600	 * recycled, this leads to the once large chunks of space being
5601	 * fragmented and becoming unavailable for high-order allocations.
5602	 */
5603	return 0;
5604#endif
5605}
5606
5607/*
5608 * pcp->high and pcp->batch values are related and dependent on one another:
5609 * ->batch must never be higher then ->high.
5610 * The following function updates them in a safe manner without read side
5611 * locking.
5612 *
5613 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5614 * those fields changing asynchronously (acording the the above rule).
5615 *
5616 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5617 * outside of boot time (or some other assurance that no concurrent updaters
5618 * exist).
5619 */
5620static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5621		unsigned long batch)
5622{
5623       /* start with a fail safe value for batch */
5624	pcp->batch = 1;
5625	smp_wmb();
5626
5627       /* Update high, then batch, in order */
5628	pcp->high = high;
5629	smp_wmb();
5630
5631	pcp->batch = batch;
5632}
5633
5634/* a companion to pageset_set_high() */
5635static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5636{
5637	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5638}
5639
5640static void pageset_init(struct per_cpu_pageset *p)
5641{
5642	struct per_cpu_pages *pcp;
5643	int migratetype;
5644
5645	memset(p, 0, sizeof(*p));
5646
5647	pcp = &p->pcp;
5648	pcp->count = 0;
5649	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5650		INIT_LIST_HEAD(&pcp->lists[migratetype]);
5651}
5652
5653static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5654{
5655	pageset_init(p);
5656	pageset_set_batch(p, batch);
5657}
5658
5659/*
5660 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5661 * to the value high for the pageset p.
5662 */
5663static void pageset_set_high(struct per_cpu_pageset *p,
5664				unsigned long high)
5665{
5666	unsigned long batch = max(1UL, high / 4);
5667	if ((high / 4) > (PAGE_SHIFT * 8))
5668		batch = PAGE_SHIFT * 8;
5669
5670	pageset_update(&p->pcp, high, batch);
5671}
5672
5673static void pageset_set_high_and_batch(struct zone *zone,
5674				       struct per_cpu_pageset *pcp)
5675{
5676	if (percpu_pagelist_fraction)
5677		pageset_set_high(pcp,
5678			(zone->managed_pages /
5679				percpu_pagelist_fraction));
5680	else
5681		pageset_set_batch(pcp, zone_batchsize(zone));
5682}
5683
5684static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5685{
5686	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5687
5688	pageset_init(pcp);
5689	pageset_set_high_and_batch(zone, pcp);
5690}
5691
5692void __meminit setup_zone_pageset(struct zone *zone)
5693{
5694	int cpu;
5695	zone->pageset = alloc_percpu(struct per_cpu_pageset);
5696	for_each_possible_cpu(cpu)
5697		zone_pageset_init(zone, cpu);
5698}
5699
5700/*
5701 * Allocate per cpu pagesets and initialize them.
5702 * Before this call only boot pagesets were available.
5703 */
5704void __init setup_per_cpu_pageset(void)
5705{
5706	struct pglist_data *pgdat;
5707	struct zone *zone;
5708
5709	for_each_populated_zone(zone)
5710		setup_zone_pageset(zone);
 
 
 
 
 
 
 
5711
5712	for_each_online_pgdat(pgdat)
5713		pgdat->per_cpu_nodestats =
5714			alloc_percpu(struct per_cpu_nodestat);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5715}
5716
5717static __meminit void zone_pcp_init(struct zone *zone)
5718{
5719	/*
5720	 * per cpu subsystem is not up at this point. The following code
5721	 * relies on the ability of the linker to provide the
5722	 * offset of a (static) per cpu variable into the per cpu area.
5723	 */
5724	zone->pageset = &boot_pageset;
5725
5726	if (populated_zone(zone))
5727		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
5728			zone->name, zone->present_pages,
5729					 zone_batchsize(zone));
5730}
5731
5732void __meminit init_currently_empty_zone(struct zone *zone,
5733					unsigned long zone_start_pfn,
5734					unsigned long size)
5735{
5736	struct pglist_data *pgdat = zone->zone_pgdat;
5737
 
 
 
5738	pgdat->nr_zones = zone_idx(zone) + 1;
5739
5740	zone->zone_start_pfn = zone_start_pfn;
5741
5742	mminit_dprintk(MMINIT_TRACE, "memmap_init",
5743			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
5744			pgdat->node_id,
5745			(unsigned long)zone_idx(zone),
5746			zone_start_pfn, (zone_start_pfn + size));
5747
5748	zone_init_free_lists(zone);
5749	zone->initialized = 1;
 
5750}
5751
5752#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5753#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5754
5755/*
5756 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5757 */
5758int __meminit __early_pfn_to_nid(unsigned long pfn,
5759					struct mminit_pfnnid_cache *state)
5760{
5761	unsigned long start_pfn, end_pfn;
5762	int nid;
5763
5764	if (state->last_start <= pfn && pfn < state->last_end)
5765		return state->last_nid;
5766
5767	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5768	if (nid != -1) {
5769		state->last_start = start_pfn;
5770		state->last_end = end_pfn;
5771		state->last_nid = nid;
5772	}
5773
5774	return nid;
5775}
5776#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5777
5778/**
5779 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5780 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5781 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5782 *
5783 * If an architecture guarantees that all ranges registered contain no holes
5784 * and may be freed, this this function may be used instead of calling
5785 * memblock_free_early_nid() manually.
5786 */
5787void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5788{
5789	unsigned long start_pfn, end_pfn;
5790	int i, this_nid;
5791
5792	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5793		start_pfn = min(start_pfn, max_low_pfn);
5794		end_pfn = min(end_pfn, max_low_pfn);
5795
5796		if (start_pfn < end_pfn)
5797			memblock_free_early_nid(PFN_PHYS(start_pfn),
5798					(end_pfn - start_pfn) << PAGE_SHIFT,
5799					this_nid);
5800	}
5801}
5802
5803/**
5804 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5805 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5806 *
5807 * If an architecture guarantees that all ranges registered contain no holes and may
5808 * be freed, this function may be used instead of calling memory_present() manually.
5809 */
5810void __init sparse_memory_present_with_active_regions(int nid)
5811{
5812	unsigned long start_pfn, end_pfn;
5813	int i, this_nid;
5814
5815	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5816		memory_present(this_nid, start_pfn, end_pfn);
5817}
5818
5819/**
5820 * get_pfn_range_for_nid - Return the start and end page frames for a node
5821 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5822 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5823 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5824 *
5825 * It returns the start and end page frame of a node based on information
5826 * provided by memblock_set_node(). If called for a node
5827 * with no available memory, a warning is printed and the start and end
5828 * PFNs will be 0.
5829 */
5830void __meminit get_pfn_range_for_nid(unsigned int nid,
5831			unsigned long *start_pfn, unsigned long *end_pfn)
5832{
5833	unsigned long this_start_pfn, this_end_pfn;
5834	int i;
5835
5836	*start_pfn = -1UL;
5837	*end_pfn = 0;
5838
5839	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5840		*start_pfn = min(*start_pfn, this_start_pfn);
5841		*end_pfn = max(*end_pfn, this_end_pfn);
5842	}
5843
5844	if (*start_pfn == -1UL)
5845		*start_pfn = 0;
5846}
5847
5848/*
5849 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5850 * assumption is made that zones within a node are ordered in monotonic
5851 * increasing memory addresses so that the "highest" populated zone is used
5852 */
5853static void __init find_usable_zone_for_movable(void)
5854{
5855	int zone_index;
5856	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5857		if (zone_index == ZONE_MOVABLE)
5858			continue;
5859
5860		if (arch_zone_highest_possible_pfn[zone_index] >
5861				arch_zone_lowest_possible_pfn[zone_index])
5862			break;
5863	}
5864
5865	VM_BUG_ON(zone_index == -1);
5866	movable_zone = zone_index;
5867}
5868
5869/*
5870 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5871 * because it is sized independent of architecture. Unlike the other zones,
5872 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5873 * in each node depending on the size of each node and how evenly kernelcore
5874 * is distributed. This helper function adjusts the zone ranges
5875 * provided by the architecture for a given node by using the end of the
5876 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5877 * zones within a node are in order of monotonic increases memory addresses
5878 */
5879static void __meminit adjust_zone_range_for_zone_movable(int nid,
5880					unsigned long zone_type,
5881					unsigned long node_start_pfn,
5882					unsigned long node_end_pfn,
5883					unsigned long *zone_start_pfn,
5884					unsigned long *zone_end_pfn)
5885{
5886	/* Only adjust if ZONE_MOVABLE is on this node */
5887	if (zone_movable_pfn[nid]) {
5888		/* Size ZONE_MOVABLE */
5889		if (zone_type == ZONE_MOVABLE) {
5890			*zone_start_pfn = zone_movable_pfn[nid];
5891			*zone_end_pfn = min(node_end_pfn,
5892				arch_zone_highest_possible_pfn[movable_zone]);
5893
5894		/* Adjust for ZONE_MOVABLE starting within this range */
5895		} else if (!mirrored_kernelcore &&
5896			*zone_start_pfn < zone_movable_pfn[nid] &&
5897			*zone_end_pfn > zone_movable_pfn[nid]) {
5898			*zone_end_pfn = zone_movable_pfn[nid];
5899
5900		/* Check if this whole range is within ZONE_MOVABLE */
5901		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
5902			*zone_start_pfn = *zone_end_pfn;
5903	}
5904}
5905
5906/*
5907 * Return the number of pages a zone spans in a node, including holes
5908 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5909 */
5910static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5911					unsigned long zone_type,
5912					unsigned long node_start_pfn,
5913					unsigned long node_end_pfn,
5914					unsigned long *zone_start_pfn,
5915					unsigned long *zone_end_pfn,
5916					unsigned long *ignored)
5917{
5918	/* When hotadd a new node from cpu_up(), the node should be empty */
5919	if (!node_start_pfn && !node_end_pfn)
5920		return 0;
5921
5922	/* Get the start and end of the zone */
5923	*zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5924	*zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5925	adjust_zone_range_for_zone_movable(nid, zone_type,
5926				node_start_pfn, node_end_pfn,
5927				zone_start_pfn, zone_end_pfn);
5928
5929	/* Check that this node has pages within the zone's required range */
5930	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5931		return 0;
5932
5933	/* Move the zone boundaries inside the node if necessary */
5934	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5935	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5936
5937	/* Return the spanned pages */
5938	return *zone_end_pfn - *zone_start_pfn;
5939}
5940
5941/*
5942 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5943 * then all holes in the requested range will be accounted for.
5944 */
5945unsigned long __meminit __absent_pages_in_range(int nid,
5946				unsigned long range_start_pfn,
5947				unsigned long range_end_pfn)
5948{
5949	unsigned long nr_absent = range_end_pfn - range_start_pfn;
5950	unsigned long start_pfn, end_pfn;
5951	int i;
5952
5953	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5954		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5955		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5956		nr_absent -= end_pfn - start_pfn;
5957	}
5958	return nr_absent;
5959}
5960
5961/**
5962 * absent_pages_in_range - Return number of page frames in holes within a range
5963 * @start_pfn: The start PFN to start searching for holes
5964 * @end_pfn: The end PFN to stop searching for holes
5965 *
5966 * It returns the number of pages frames in memory holes within a range.
5967 */
5968unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5969							unsigned long end_pfn)
5970{
5971	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5972}
5973
5974/* Return the number of page frames in holes in a zone on a node */
5975static unsigned long __meminit zone_absent_pages_in_node(int nid,
5976					unsigned long zone_type,
5977					unsigned long node_start_pfn,
5978					unsigned long node_end_pfn,
5979					unsigned long *ignored)
5980{
5981	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5982	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5983	unsigned long zone_start_pfn, zone_end_pfn;
5984	unsigned long nr_absent;
5985
5986	/* When hotadd a new node from cpu_up(), the node should be empty */
5987	if (!node_start_pfn && !node_end_pfn)
5988		return 0;
5989
5990	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5991	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5992
5993	adjust_zone_range_for_zone_movable(nid, zone_type,
5994			node_start_pfn, node_end_pfn,
5995			&zone_start_pfn, &zone_end_pfn);
5996	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5997
5998	/*
5999	 * ZONE_MOVABLE handling.
6000	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6001	 * and vice versa.
6002	 */
6003	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6004		unsigned long start_pfn, end_pfn;
6005		struct memblock_region *r;
6006
6007		for_each_memblock(memory, r) {
6008			start_pfn = clamp(memblock_region_memory_base_pfn(r),
6009					  zone_start_pfn, zone_end_pfn);
6010			end_pfn = clamp(memblock_region_memory_end_pfn(r),
6011					zone_start_pfn, zone_end_pfn);
6012
6013			if (zone_type == ZONE_MOVABLE &&
6014			    memblock_is_mirror(r))
6015				nr_absent += end_pfn - start_pfn;
6016
6017			if (zone_type == ZONE_NORMAL &&
6018			    !memblock_is_mirror(r))
6019				nr_absent += end_pfn - start_pfn;
 
 
 
 
 
6020		}
6021	}
6022
6023	return nr_absent;
6024}
6025
6026#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6027static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
6028					unsigned long zone_type,
6029					unsigned long node_start_pfn,
6030					unsigned long node_end_pfn,
6031					unsigned long *zone_start_pfn,
6032					unsigned long *zone_end_pfn,
6033					unsigned long *zones_size)
6034{
6035	unsigned int zone;
6036
6037	*zone_start_pfn = node_start_pfn;
6038	for (zone = 0; zone < zone_type; zone++)
6039		*zone_start_pfn += zones_size[zone];
6040
6041	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6042
6043	return zones_size[zone_type];
6044}
6045
6046static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
6047						unsigned long zone_type,
6048						unsigned long node_start_pfn,
6049						unsigned long node_end_pfn,
6050						unsigned long *zholes_size)
6051{
6052	if (!zholes_size)
6053		return 0;
6054
6055	return zholes_size[zone_type];
6056}
6057
6058#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6059
6060static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
6061						unsigned long node_start_pfn,
6062						unsigned long node_end_pfn,
6063						unsigned long *zones_size,
6064						unsigned long *zholes_size)
6065{
6066	unsigned long realtotalpages = 0, totalpages = 0;
6067	enum zone_type i;
6068
6069	for (i = 0; i < MAX_NR_ZONES; i++) {
6070		struct zone *zone = pgdat->node_zones + i;
6071		unsigned long zone_start_pfn, zone_end_pfn;
6072		unsigned long size, real_size;
6073
6074		size = zone_spanned_pages_in_node(pgdat->node_id, i,
6075						  node_start_pfn,
6076						  node_end_pfn,
6077						  &zone_start_pfn,
6078						  &zone_end_pfn,
6079						  zones_size);
6080		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6081						  node_start_pfn, node_end_pfn,
6082						  zholes_size);
6083		if (size)
6084			zone->zone_start_pfn = zone_start_pfn;
6085		else
6086			zone->zone_start_pfn = 0;
6087		zone->spanned_pages = size;
6088		zone->present_pages = real_size;
6089
6090		totalpages += size;
6091		realtotalpages += real_size;
6092	}
6093
6094	pgdat->node_spanned_pages = totalpages;
6095	pgdat->node_present_pages = realtotalpages;
6096	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6097							realtotalpages);
6098}
6099
6100#ifndef CONFIG_SPARSEMEM
6101/*
6102 * Calculate the size of the zone->blockflags rounded to an unsigned long
6103 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6104 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6105 * round what is now in bits to nearest long in bits, then return it in
6106 * bytes.
6107 */
6108static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6109{
6110	unsigned long usemapsize;
6111
6112	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6113	usemapsize = roundup(zonesize, pageblock_nr_pages);
6114	usemapsize = usemapsize >> pageblock_order;
6115	usemapsize *= NR_PAGEBLOCK_BITS;
6116	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6117
6118	return usemapsize / 8;
6119}
6120
6121static void __init setup_usemap(struct pglist_data *pgdat,
6122				struct zone *zone,
6123				unsigned long zone_start_pfn,
6124				unsigned long zonesize)
6125{
6126	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6127	zone->pageblock_flags = NULL;
6128	if (usemapsize)
6129		zone->pageblock_flags =
6130			memblock_virt_alloc_node_nopanic(usemapsize,
6131							 pgdat->node_id);
6132}
6133#else
6134static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6135				unsigned long zone_start_pfn, unsigned long zonesize) {}
6136#endif /* CONFIG_SPARSEMEM */
6137
6138#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6139
6140/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6141void __paginginit set_pageblock_order(void)
6142{
6143	unsigned int order;
6144
6145	/* Check that pageblock_nr_pages has not already been setup */
6146	if (pageblock_order)
6147		return;
6148
6149	if (HPAGE_SHIFT > PAGE_SHIFT)
6150		order = HUGETLB_PAGE_ORDER;
6151	else
6152		order = MAX_ORDER - 1;
6153
6154	/*
6155	 * Assume the largest contiguous order of interest is a huge page.
6156	 * This value may be variable depending on boot parameters on IA64 and
6157	 * powerpc.
6158	 */
6159	pageblock_order = order;
6160}
6161#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6162
6163/*
6164 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6165 * is unused as pageblock_order is set at compile-time. See
6166 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6167 * the kernel config
6168 */
6169void __paginginit set_pageblock_order(void)
6170{
6171}
6172
6173#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6174
6175static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
6176						   unsigned long present_pages)
6177{
6178	unsigned long pages = spanned_pages;
6179
6180	/*
6181	 * Provide a more accurate estimation if there are holes within
6182	 * the zone and SPARSEMEM is in use. If there are holes within the
6183	 * zone, each populated memory region may cost us one or two extra
6184	 * memmap pages due to alignment because memmap pages for each
6185	 * populated regions may not be naturally aligned on page boundary.
6186	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6187	 */
6188	if (spanned_pages > present_pages + (present_pages >> 4) &&
6189	    IS_ENABLED(CONFIG_SPARSEMEM))
6190		pages = present_pages;
6191
6192	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6193}
6194
6195/*
6196 * Set up the zone data structures:
6197 *   - mark all pages reserved
6198 *   - mark all memory queues empty
6199 *   - clear the memory bitmaps
6200 *
6201 * NOTE: pgdat should get zeroed by caller.
6202 */
6203static void __paginginit free_area_init_core(struct pglist_data *pgdat)
6204{
6205	enum zone_type j;
6206	int nid = pgdat->node_id;
 
6207
6208	pgdat_resize_init(pgdat);
6209#ifdef CONFIG_NUMA_BALANCING
6210	spin_lock_init(&pgdat->numabalancing_migrate_lock);
6211	pgdat->numabalancing_migrate_nr_pages = 0;
6212	pgdat->numabalancing_migrate_next_window = jiffies;
6213#endif
6214#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6215	spin_lock_init(&pgdat->split_queue_lock);
6216	INIT_LIST_HEAD(&pgdat->split_queue);
6217	pgdat->split_queue_len = 0;
6218#endif
6219	init_waitqueue_head(&pgdat->kswapd_wait);
6220	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6221#ifdef CONFIG_COMPACTION
6222	init_waitqueue_head(&pgdat->kcompactd_wait);
6223#endif
6224	pgdat_page_ext_init(pgdat);
6225	spin_lock_init(&pgdat->lru_lock);
6226	lruvec_init(node_lruvec(pgdat));
6227
6228	pgdat->per_cpu_nodestats = &boot_nodestats;
6229
6230	for (j = 0; j < MAX_NR_ZONES; j++) {
6231		struct zone *zone = pgdat->node_zones + j;
6232		unsigned long size, realsize, freesize, memmap_pages;
6233		unsigned long zone_start_pfn = zone->zone_start_pfn;
6234
6235		size = zone->spanned_pages;
6236		realsize = freesize = zone->present_pages;
6237
6238		/*
6239		 * Adjust freesize so that it accounts for how much memory
6240		 * is used by this zone for memmap. This affects the watermark
6241		 * and per-cpu initialisations
6242		 */
6243		memmap_pages = calc_memmap_size(size, realsize);
6244		if (!is_highmem_idx(j)) {
6245			if (freesize >= memmap_pages) {
6246				freesize -= memmap_pages;
6247				if (memmap_pages)
6248					printk(KERN_DEBUG
6249					       "  %s zone: %lu pages used for memmap\n",
6250					       zone_names[j], memmap_pages);
6251			} else
6252				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6253					zone_names[j], memmap_pages, freesize);
6254		}
6255
6256		/* Account for reserved pages */
6257		if (j == 0 && freesize > dma_reserve) {
6258			freesize -= dma_reserve;
6259			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6260					zone_names[0], dma_reserve);
6261		}
6262
6263		if (!is_highmem_idx(j))
6264			nr_kernel_pages += freesize;
6265		/* Charge for highmem memmap if there are enough kernel pages */
6266		else if (nr_kernel_pages > memmap_pages * 2)
6267			nr_kernel_pages -= memmap_pages;
6268		nr_all_pages += freesize;
6269
6270		/*
6271		 * Set an approximate value for lowmem here, it will be adjusted
6272		 * when the bootmem allocator frees pages into the buddy system.
6273		 * And all highmem pages will be managed by the buddy system.
6274		 */
6275		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
6276#ifdef CONFIG_NUMA
6277		zone->node = nid;
 
 
 
6278#endif
6279		zone->name = zone_names[j];
6280		zone->zone_pgdat = pgdat;
6281		spin_lock_init(&zone->lock);
 
6282		zone_seqlock_init(zone);
 
6283		zone_pcp_init(zone);
6284
 
 
 
 
6285		if (!size)
6286			continue;
6287
6288		set_pageblock_order();
6289		setup_usemap(pgdat, zone, zone_start_pfn, size);
6290		init_currently_empty_zone(zone, zone_start_pfn, size);
 
6291		memmap_init(size, nid, j, zone_start_pfn);
6292	}
6293}
6294
6295#ifdef CONFIG_FLAT_NODE_MEM_MAP
6296static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6297{
6298	unsigned long __maybe_unused start = 0;
6299	unsigned long __maybe_unused offset = 0;
6300
6301	/* Skip empty nodes */
6302	if (!pgdat->node_spanned_pages)
6303		return;
6304
 
6305	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6306	offset = pgdat->node_start_pfn - start;
6307	/* ia64 gets its own node_mem_map, before this, without bootmem */
6308	if (!pgdat->node_mem_map) {
6309		unsigned long size, end;
6310		struct page *map;
6311
6312		/*
6313		 * The zone's endpoints aren't required to be MAX_ORDER
6314		 * aligned but the node_mem_map endpoints must be in order
6315		 * for the buddy allocator to function correctly.
6316		 */
6317		end = pgdat_end_pfn(pgdat);
6318		end = ALIGN(end, MAX_ORDER_NR_PAGES);
6319		size =  (end - start) * sizeof(struct page);
6320		map = memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
 
 
 
6321		pgdat->node_mem_map = map + offset;
6322	}
6323	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6324				__func__, pgdat->node_id, (unsigned long)pgdat,
6325				(unsigned long)pgdat->node_mem_map);
6326#ifndef CONFIG_NEED_MULTIPLE_NODES
6327	/*
6328	 * With no DISCONTIG, the global mem_map is just set as node 0's
6329	 */
6330	if (pgdat == NODE_DATA(0)) {
6331		mem_map = NODE_DATA(0)->node_mem_map;
6332#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6333		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6334			mem_map -= offset;
6335#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6336	}
6337#endif
6338}
6339#else
6340static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6341#endif /* CONFIG_FLAT_NODE_MEM_MAP */
 
6342
6343void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6344		unsigned long node_start_pfn, unsigned long *zholes_size)
6345{
6346	pg_data_t *pgdat = NODE_DATA(nid);
6347	unsigned long start_pfn = 0;
6348	unsigned long end_pfn = 0;
6349
6350	/* pg_data_t should be reset to zero when it's allocated */
6351	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6352
 
6353	pgdat->node_id = nid;
6354	pgdat->node_start_pfn = node_start_pfn;
6355	pgdat->per_cpu_nodestats = NULL;
6356#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6357	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6358	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6359		(u64)start_pfn << PAGE_SHIFT,
6360		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6361#else
6362	start_pfn = node_start_pfn;
6363#endif
6364	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6365				  zones_size, zholes_size);
6366
6367	alloc_node_mem_map(pgdat);
6368
6369#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6370	/*
6371	 * We start only with one section of pages, more pages are added as
6372	 * needed until the rest of deferred pages are initialized.
6373	 */
6374	pgdat->static_init_pgcnt = min_t(unsigned long, PAGES_PER_SECTION,
6375					 pgdat->node_spanned_pages);
6376	pgdat->first_deferred_pfn = ULONG_MAX;
6377#endif
6378	free_area_init_core(pgdat);
6379}
6380
6381#ifdef CONFIG_HAVE_MEMBLOCK
6382/*
6383 * Only struct pages that are backed by physical memory are zeroed and
6384 * initialized by going through __init_single_page(). But, there are some
6385 * struct pages which are reserved in memblock allocator and their fields
6386 * may be accessed (for example page_to_pfn() on some configuration accesses
6387 * flags). We must explicitly zero those struct pages.
6388 */
6389void __paginginit zero_resv_unavail(void)
6390{
6391	phys_addr_t start, end;
6392	unsigned long pfn;
6393	u64 i, pgcnt;
6394
6395	/*
6396	 * Loop through ranges that are reserved, but do not have reported
6397	 * physical memory backing.
6398	 */
6399	pgcnt = 0;
6400	for_each_resv_unavail_range(i, &start, &end) {
6401		for (pfn = PFN_DOWN(start); pfn < PFN_UP(end); pfn++) {
6402			if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages)))
6403				continue;
6404			mm_zero_struct_page(pfn_to_page(pfn));
6405			pgcnt++;
6406		}
6407	}
6408
6409	/*
6410	 * Struct pages that do not have backing memory. This could be because
6411	 * firmware is using some of this memory, or for some other reasons.
6412	 * Once memblock is changed so such behaviour is not allowed: i.e.
6413	 * list of "reserved" memory must be a subset of list of "memory", then
6414	 * this code can be removed.
6415	 */
6416	if (pgcnt)
6417		pr_info("Reserved but unavailable: %lld pages", pgcnt);
6418}
6419#endif /* CONFIG_HAVE_MEMBLOCK */
6420
6421#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6422
6423#if MAX_NUMNODES > 1
6424/*
6425 * Figure out the number of possible node ids.
6426 */
6427void __init setup_nr_node_ids(void)
6428{
6429	unsigned int highest;
6430
6431	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6432	nr_node_ids = highest + 1;
6433}
6434#endif
6435
6436/**
6437 * node_map_pfn_alignment - determine the maximum internode alignment
6438 *
6439 * This function should be called after node map is populated and sorted.
6440 * It calculates the maximum power of two alignment which can distinguish
6441 * all the nodes.
6442 *
6443 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6444 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
6445 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
6446 * shifted, 1GiB is enough and this function will indicate so.
6447 *
6448 * This is used to test whether pfn -> nid mapping of the chosen memory
6449 * model has fine enough granularity to avoid incorrect mapping for the
6450 * populated node map.
6451 *
6452 * Returns the determined alignment in pfn's.  0 if there is no alignment
6453 * requirement (single node).
6454 */
6455unsigned long __init node_map_pfn_alignment(void)
6456{
6457	unsigned long accl_mask = 0, last_end = 0;
6458	unsigned long start, end, mask;
6459	int last_nid = -1;
6460	int i, nid;
6461
6462	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6463		if (!start || last_nid < 0 || last_nid == nid) {
6464			last_nid = nid;
6465			last_end = end;
6466			continue;
6467		}
6468
6469		/*
6470		 * Start with a mask granular enough to pin-point to the
6471		 * start pfn and tick off bits one-by-one until it becomes
6472		 * too coarse to separate the current node from the last.
6473		 */
6474		mask = ~((1 << __ffs(start)) - 1);
6475		while (mask && last_end <= (start & (mask << 1)))
6476			mask <<= 1;
6477
6478		/* accumulate all internode masks */
6479		accl_mask |= mask;
6480	}
6481
6482	/* convert mask to number of pages */
6483	return ~accl_mask + 1;
6484}
6485
6486/* Find the lowest pfn for a node */
6487static unsigned long __init find_min_pfn_for_node(int nid)
6488{
6489	unsigned long min_pfn = ULONG_MAX;
6490	unsigned long start_pfn;
6491	int i;
6492
6493	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6494		min_pfn = min(min_pfn, start_pfn);
6495
6496	if (min_pfn == ULONG_MAX) {
6497		pr_warn("Could not find start_pfn for node %d\n", nid);
6498		return 0;
6499	}
6500
6501	return min_pfn;
6502}
6503
6504/**
6505 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6506 *
6507 * It returns the minimum PFN based on information provided via
6508 * memblock_set_node().
6509 */
6510unsigned long __init find_min_pfn_with_active_regions(void)
6511{
6512	return find_min_pfn_for_node(MAX_NUMNODES);
6513}
6514
6515/*
6516 * early_calculate_totalpages()
6517 * Sum pages in active regions for movable zone.
6518 * Populate N_MEMORY for calculating usable_nodes.
6519 */
6520static unsigned long __init early_calculate_totalpages(void)
6521{
6522	unsigned long totalpages = 0;
6523	unsigned long start_pfn, end_pfn;
6524	int i, nid;
6525
6526	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6527		unsigned long pages = end_pfn - start_pfn;
6528
6529		totalpages += pages;
6530		if (pages)
6531			node_set_state(nid, N_MEMORY);
6532	}
6533	return totalpages;
6534}
6535
6536/*
6537 * Find the PFN the Movable zone begins in each node. Kernel memory
6538 * is spread evenly between nodes as long as the nodes have enough
6539 * memory. When they don't, some nodes will have more kernelcore than
6540 * others
6541 */
6542static void __init find_zone_movable_pfns_for_nodes(void)
6543{
6544	int i, nid;
6545	unsigned long usable_startpfn;
6546	unsigned long kernelcore_node, kernelcore_remaining;
6547	/* save the state before borrow the nodemask */
6548	nodemask_t saved_node_state = node_states[N_MEMORY];
6549	unsigned long totalpages = early_calculate_totalpages();
6550	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6551	struct memblock_region *r;
6552
6553	/* Need to find movable_zone earlier when movable_node is specified. */
6554	find_usable_zone_for_movable();
6555
6556	/*
6557	 * If movable_node is specified, ignore kernelcore and movablecore
6558	 * options.
6559	 */
6560	if (movable_node_is_enabled()) {
6561		for_each_memblock(memory, r) {
6562			if (!memblock_is_hotpluggable(r))
6563				continue;
6564
6565			nid = r->nid;
6566
6567			usable_startpfn = PFN_DOWN(r->base);
6568			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6569				min(usable_startpfn, zone_movable_pfn[nid]) :
6570				usable_startpfn;
6571		}
6572
6573		goto out2;
6574	}
6575
6576	/*
6577	 * If kernelcore=mirror is specified, ignore movablecore option
6578	 */
6579	if (mirrored_kernelcore) {
6580		bool mem_below_4gb_not_mirrored = false;
6581
6582		for_each_memblock(memory, r) {
6583			if (memblock_is_mirror(r))
6584				continue;
6585
6586			nid = r->nid;
6587
6588			usable_startpfn = memblock_region_memory_base_pfn(r);
6589
6590			if (usable_startpfn < 0x100000) {
6591				mem_below_4gb_not_mirrored = true;
6592				continue;
6593			}
6594
6595			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6596				min(usable_startpfn, zone_movable_pfn[nid]) :
6597				usable_startpfn;
6598		}
6599
6600		if (mem_below_4gb_not_mirrored)
6601			pr_warn("This configuration results in unmirrored kernel memory.");
6602
6603		goto out2;
6604	}
6605
6606	/*
6607	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
6608	 * amount of necessary memory.
6609	 */
6610	if (required_kernelcore_percent)
6611		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
6612				       10000UL;
6613	if (required_movablecore_percent)
6614		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
6615					10000UL;
6616
6617	/*
6618	 * If movablecore= was specified, calculate what size of
6619	 * kernelcore that corresponds so that memory usable for
6620	 * any allocation type is evenly spread. If both kernelcore
6621	 * and movablecore are specified, then the value of kernelcore
6622	 * will be used for required_kernelcore if it's greater than
6623	 * what movablecore would have allowed.
6624	 */
6625	if (required_movablecore) {
6626		unsigned long corepages;
6627
6628		/*
6629		 * Round-up so that ZONE_MOVABLE is at least as large as what
6630		 * was requested by the user
6631		 */
6632		required_movablecore =
6633			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6634		required_movablecore = min(totalpages, required_movablecore);
6635		corepages = totalpages - required_movablecore;
6636
6637		required_kernelcore = max(required_kernelcore, corepages);
6638	}
6639
6640	/*
6641	 * If kernelcore was not specified or kernelcore size is larger
6642	 * than totalpages, there is no ZONE_MOVABLE.
6643	 */
6644	if (!required_kernelcore || required_kernelcore >= totalpages)
6645		goto out;
6646
6647	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6648	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6649
6650restart:
6651	/* Spread kernelcore memory as evenly as possible throughout nodes */
6652	kernelcore_node = required_kernelcore / usable_nodes;
6653	for_each_node_state(nid, N_MEMORY) {
6654		unsigned long start_pfn, end_pfn;
6655
6656		/*
6657		 * Recalculate kernelcore_node if the division per node
6658		 * now exceeds what is necessary to satisfy the requested
6659		 * amount of memory for the kernel
6660		 */
6661		if (required_kernelcore < kernelcore_node)
6662			kernelcore_node = required_kernelcore / usable_nodes;
6663
6664		/*
6665		 * As the map is walked, we track how much memory is usable
6666		 * by the kernel using kernelcore_remaining. When it is
6667		 * 0, the rest of the node is usable by ZONE_MOVABLE
6668		 */
6669		kernelcore_remaining = kernelcore_node;
6670
6671		/* Go through each range of PFNs within this node */
6672		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6673			unsigned long size_pages;
6674
6675			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6676			if (start_pfn >= end_pfn)
6677				continue;
6678
6679			/* Account for what is only usable for kernelcore */
6680			if (start_pfn < usable_startpfn) {
6681				unsigned long kernel_pages;
6682				kernel_pages = min(end_pfn, usable_startpfn)
6683								- start_pfn;
6684
6685				kernelcore_remaining -= min(kernel_pages,
6686							kernelcore_remaining);
6687				required_kernelcore -= min(kernel_pages,
6688							required_kernelcore);
6689
6690				/* Continue if range is now fully accounted */
6691				if (end_pfn <= usable_startpfn) {
6692
6693					/*
6694					 * Push zone_movable_pfn to the end so
6695					 * that if we have to rebalance
6696					 * kernelcore across nodes, we will
6697					 * not double account here
6698					 */
6699					zone_movable_pfn[nid] = end_pfn;
6700					continue;
6701				}
6702				start_pfn = usable_startpfn;
6703			}
6704
6705			/*
6706			 * The usable PFN range for ZONE_MOVABLE is from
6707			 * start_pfn->end_pfn. Calculate size_pages as the
6708			 * number of pages used as kernelcore
6709			 */
6710			size_pages = end_pfn - start_pfn;
6711			if (size_pages > kernelcore_remaining)
6712				size_pages = kernelcore_remaining;
6713			zone_movable_pfn[nid] = start_pfn + size_pages;
6714
6715			/*
6716			 * Some kernelcore has been met, update counts and
6717			 * break if the kernelcore for this node has been
6718			 * satisfied
6719			 */
6720			required_kernelcore -= min(required_kernelcore,
6721								size_pages);
6722			kernelcore_remaining -= size_pages;
6723			if (!kernelcore_remaining)
6724				break;
6725		}
6726	}
6727
6728	/*
6729	 * If there is still required_kernelcore, we do another pass with one
6730	 * less node in the count. This will push zone_movable_pfn[nid] further
6731	 * along on the nodes that still have memory until kernelcore is
6732	 * satisfied
6733	 */
6734	usable_nodes--;
6735	if (usable_nodes && required_kernelcore > usable_nodes)
6736		goto restart;
6737
6738out2:
6739	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6740	for (nid = 0; nid < MAX_NUMNODES; nid++)
6741		zone_movable_pfn[nid] =
6742			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6743
6744out:
6745	/* restore the node_state */
6746	node_states[N_MEMORY] = saved_node_state;
6747}
6748
6749/* Any regular or high memory on that node ? */
6750static void check_for_memory(pg_data_t *pgdat, int nid)
6751{
6752	enum zone_type zone_type;
6753
6754	if (N_MEMORY == N_NORMAL_MEMORY)
6755		return;
6756
6757	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6758		struct zone *zone = &pgdat->node_zones[zone_type];
6759		if (populated_zone(zone)) {
6760			node_set_state(nid, N_HIGH_MEMORY);
6761			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6762			    zone_type <= ZONE_NORMAL)
6763				node_set_state(nid, N_NORMAL_MEMORY);
6764			break;
6765		}
6766	}
6767}
6768
6769/**
6770 * free_area_init_nodes - Initialise all pg_data_t and zone data
6771 * @max_zone_pfn: an array of max PFNs for each zone
6772 *
6773 * This will call free_area_init_node() for each active node in the system.
6774 * Using the page ranges provided by memblock_set_node(), the size of each
6775 * zone in each node and their holes is calculated. If the maximum PFN
6776 * between two adjacent zones match, it is assumed that the zone is empty.
6777 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6778 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6779 * starts where the previous one ended. For example, ZONE_DMA32 starts
6780 * at arch_max_dma_pfn.
6781 */
6782void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6783{
6784	unsigned long start_pfn, end_pfn;
6785	int i, nid;
6786
6787	/* Record where the zone boundaries are */
6788	memset(arch_zone_lowest_possible_pfn, 0,
6789				sizeof(arch_zone_lowest_possible_pfn));
6790	memset(arch_zone_highest_possible_pfn, 0,
6791				sizeof(arch_zone_highest_possible_pfn));
6792
6793	start_pfn = find_min_pfn_with_active_regions();
6794
6795	for (i = 0; i < MAX_NR_ZONES; i++) {
6796		if (i == ZONE_MOVABLE)
6797			continue;
6798
6799		end_pfn = max(max_zone_pfn[i], start_pfn);
6800		arch_zone_lowest_possible_pfn[i] = start_pfn;
6801		arch_zone_highest_possible_pfn[i] = end_pfn;
6802
6803		start_pfn = end_pfn;
6804	}
 
 
6805
6806	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
6807	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6808	find_zone_movable_pfns_for_nodes();
6809
6810	/* Print out the zone ranges */
6811	pr_info("Zone ranges:\n");
6812	for (i = 0; i < MAX_NR_ZONES; i++) {
6813		if (i == ZONE_MOVABLE)
6814			continue;
6815		pr_info("  %-8s ", zone_names[i]);
6816		if (arch_zone_lowest_possible_pfn[i] ==
6817				arch_zone_highest_possible_pfn[i])
6818			pr_cont("empty\n");
6819		else
6820			pr_cont("[mem %#018Lx-%#018Lx]\n",
6821				(u64)arch_zone_lowest_possible_pfn[i]
6822					<< PAGE_SHIFT,
6823				((u64)arch_zone_highest_possible_pfn[i]
6824					<< PAGE_SHIFT) - 1);
6825	}
6826
6827	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
6828	pr_info("Movable zone start for each node\n");
6829	for (i = 0; i < MAX_NUMNODES; i++) {
6830		if (zone_movable_pfn[i])
6831			pr_info("  Node %d: %#018Lx\n", i,
6832			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6833	}
6834
6835	/* Print out the early node map */
6836	pr_info("Early memory node ranges\n");
6837	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6838		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6839			(u64)start_pfn << PAGE_SHIFT,
6840			((u64)end_pfn << PAGE_SHIFT) - 1);
6841
6842	/* Initialise every node */
6843	mminit_verify_pageflags_layout();
6844	setup_nr_node_ids();
6845	for_each_online_node(nid) {
6846		pg_data_t *pgdat = NODE_DATA(nid);
6847		free_area_init_node(nid, NULL,
6848				find_min_pfn_for_node(nid), NULL);
6849
6850		/* Any memory on that node */
6851		if (pgdat->node_present_pages)
6852			node_set_state(nid, N_MEMORY);
6853		check_for_memory(pgdat, nid);
6854	}
6855	zero_resv_unavail();
6856}
6857
6858static int __init cmdline_parse_core(char *p, unsigned long *core,
6859				     unsigned long *percent)
6860{
6861	unsigned long long coremem;
6862	char *endptr;
6863
6864	if (!p)
6865		return -EINVAL;
6866
6867	/* Value may be a percentage of total memory, otherwise bytes */
6868	coremem = simple_strtoull(p, &endptr, 0);
6869	if (*endptr == '%') {
6870		/* Paranoid check for percent values greater than 100 */
6871		WARN_ON(coremem > 100);
6872
6873		*percent = coremem;
6874	} else {
6875		coremem = memparse(p, &p);
6876		/* Paranoid check that UL is enough for the coremem value */
6877		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6878
6879		*core = coremem >> PAGE_SHIFT;
6880		*percent = 0UL;
6881	}
6882	return 0;
6883}
6884
6885/*
6886 * kernelcore=size sets the amount of memory for use for allocations that
6887 * cannot be reclaimed or migrated.
6888 */
6889static int __init cmdline_parse_kernelcore(char *p)
6890{
6891	/* parse kernelcore=mirror */
6892	if (parse_option_str(p, "mirror")) {
6893		mirrored_kernelcore = true;
6894		return 0;
6895	}
6896
6897	return cmdline_parse_core(p, &required_kernelcore,
6898				  &required_kernelcore_percent);
6899}
6900
6901/*
6902 * movablecore=size sets the amount of memory for use for allocations that
6903 * can be reclaimed or migrated.
6904 */
6905static int __init cmdline_parse_movablecore(char *p)
6906{
6907	return cmdline_parse_core(p, &required_movablecore,
6908				  &required_movablecore_percent);
6909}
6910
6911early_param("kernelcore", cmdline_parse_kernelcore);
6912early_param("movablecore", cmdline_parse_movablecore);
6913
6914#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6915
6916void adjust_managed_page_count(struct page *page, long count)
6917{
6918	spin_lock(&managed_page_count_lock);
6919	page_zone(page)->managed_pages += count;
6920	totalram_pages += count;
6921#ifdef CONFIG_HIGHMEM
6922	if (PageHighMem(page))
6923		totalhigh_pages += count;
6924#endif
6925	spin_unlock(&managed_page_count_lock);
6926}
6927EXPORT_SYMBOL(adjust_managed_page_count);
6928
6929unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6930{
6931	void *pos;
6932	unsigned long pages = 0;
6933
6934	start = (void *)PAGE_ALIGN((unsigned long)start);
6935	end = (void *)((unsigned long)end & PAGE_MASK);
6936	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6937		if ((unsigned int)poison <= 0xFF)
6938			memset(pos, poison, PAGE_SIZE);
6939		free_reserved_page(virt_to_page(pos));
6940	}
6941
6942	if (pages && s)
6943		pr_info("Freeing %s memory: %ldK\n",
6944			s, pages << (PAGE_SHIFT - 10));
6945
6946	return pages;
6947}
6948EXPORT_SYMBOL(free_reserved_area);
6949
6950#ifdef	CONFIG_HIGHMEM
6951void free_highmem_page(struct page *page)
6952{
6953	__free_reserved_page(page);
6954	totalram_pages++;
6955	page_zone(page)->managed_pages++;
6956	totalhigh_pages++;
6957}
6958#endif
6959
6960
6961void __init mem_init_print_info(const char *str)
6962{
6963	unsigned long physpages, codesize, datasize, rosize, bss_size;
6964	unsigned long init_code_size, init_data_size;
6965
6966	physpages = get_num_physpages();
6967	codesize = _etext - _stext;
6968	datasize = _edata - _sdata;
6969	rosize = __end_rodata - __start_rodata;
6970	bss_size = __bss_stop - __bss_start;
6971	init_data_size = __init_end - __init_begin;
6972	init_code_size = _einittext - _sinittext;
6973
6974	/*
6975	 * Detect special cases and adjust section sizes accordingly:
6976	 * 1) .init.* may be embedded into .data sections
6977	 * 2) .init.text.* may be out of [__init_begin, __init_end],
6978	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
6979	 * 3) .rodata.* may be embedded into .text or .data sections.
6980	 */
6981#define adj_init_size(start, end, size, pos, adj) \
6982	do { \
6983		if (start <= pos && pos < end && size > adj) \
6984			size -= adj; \
6985	} while (0)
6986
6987	adj_init_size(__init_begin, __init_end, init_data_size,
6988		     _sinittext, init_code_size);
6989	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6990	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6991	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6992	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6993
6994#undef	adj_init_size
6995
6996	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6997#ifdef	CONFIG_HIGHMEM
6998		", %luK highmem"
6999#endif
7000		"%s%s)\n",
7001		nr_free_pages() << (PAGE_SHIFT - 10),
7002		physpages << (PAGE_SHIFT - 10),
7003		codesize >> 10, datasize >> 10, rosize >> 10,
7004		(init_data_size + init_code_size) >> 10, bss_size >> 10,
7005		(physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
7006		totalcma_pages << (PAGE_SHIFT - 10),
7007#ifdef	CONFIG_HIGHMEM
7008		totalhigh_pages << (PAGE_SHIFT - 10),
7009#endif
7010		str ? ", " : "", str ? str : "");
7011}
7012
7013/**
7014 * set_dma_reserve - set the specified number of pages reserved in the first zone
7015 * @new_dma_reserve: The number of pages to mark reserved
7016 *
7017 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7018 * In the DMA zone, a significant percentage may be consumed by kernel image
7019 * and other unfreeable allocations which can skew the watermarks badly. This
7020 * function may optionally be used to account for unfreeable pages in the
7021 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7022 * smaller per-cpu batchsize.
7023 */
7024void __init set_dma_reserve(unsigned long new_dma_reserve)
7025{
7026	dma_reserve = new_dma_reserve;
7027}
7028
7029void __init free_area_init(unsigned long *zones_size)
7030{
7031	free_area_init_node(0, zones_size,
7032			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7033	zero_resv_unavail();
7034}
7035
7036static int page_alloc_cpu_dead(unsigned int cpu)
 
7037{
 
7038
7039	lru_add_drain_cpu(cpu);
7040	drain_pages(cpu);
 
7041
7042	/*
7043	 * Spill the event counters of the dead processor
7044	 * into the current processors event counters.
7045	 * This artificially elevates the count of the current
7046	 * processor.
7047	 */
7048	vm_events_fold_cpu(cpu);
7049
7050	/*
7051	 * Zero the differential counters of the dead processor
7052	 * so that the vm statistics are consistent.
7053	 *
7054	 * This is only okay since the processor is dead and cannot
7055	 * race with what we are doing.
7056	 */
7057	cpu_vm_stats_fold(cpu);
7058	return 0;
 
7059}
7060
7061void __init page_alloc_init(void)
7062{
7063	int ret;
7064
7065	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7066					"mm/page_alloc:dead", NULL,
7067					page_alloc_cpu_dead);
7068	WARN_ON(ret < 0);
7069}
7070
7071/*
7072 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7073 *	or min_free_kbytes changes.
7074 */
7075static void calculate_totalreserve_pages(void)
7076{
7077	struct pglist_data *pgdat;
7078	unsigned long reserve_pages = 0;
7079	enum zone_type i, j;
7080
7081	for_each_online_pgdat(pgdat) {
7082
7083		pgdat->totalreserve_pages = 0;
7084
7085		for (i = 0; i < MAX_NR_ZONES; i++) {
7086			struct zone *zone = pgdat->node_zones + i;
7087			long max = 0;
7088
7089			/* Find valid and maximum lowmem_reserve in the zone */
7090			for (j = i; j < MAX_NR_ZONES; j++) {
7091				if (zone->lowmem_reserve[j] > max)
7092					max = zone->lowmem_reserve[j];
7093			}
7094
7095			/* we treat the high watermark as reserved pages. */
7096			max += high_wmark_pages(zone);
7097
7098			if (max > zone->managed_pages)
7099				max = zone->managed_pages;
7100
7101			pgdat->totalreserve_pages += max;
7102
7103			reserve_pages += max;
7104		}
7105	}
7106	totalreserve_pages = reserve_pages;
7107}
7108
7109/*
7110 * setup_per_zone_lowmem_reserve - called whenever
7111 *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
7112 *	has a correct pages reserved value, so an adequate number of
7113 *	pages are left in the zone after a successful __alloc_pages().
7114 */
7115static void setup_per_zone_lowmem_reserve(void)
7116{
7117	struct pglist_data *pgdat;
7118	enum zone_type j, idx;
7119
7120	for_each_online_pgdat(pgdat) {
7121		for (j = 0; j < MAX_NR_ZONES; j++) {
7122			struct zone *zone = pgdat->node_zones + j;
7123			unsigned long managed_pages = zone->managed_pages;
7124
7125			zone->lowmem_reserve[j] = 0;
7126
7127			idx = j;
7128			while (idx) {
7129				struct zone *lower_zone;
7130
7131				idx--;
7132				lower_zone = pgdat->node_zones + idx;
7133
7134				if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7135					sysctl_lowmem_reserve_ratio[idx] = 0;
7136					lower_zone->lowmem_reserve[j] = 0;
7137				} else {
7138					lower_zone->lowmem_reserve[j] =
7139						managed_pages / sysctl_lowmem_reserve_ratio[idx];
7140				}
7141				managed_pages += lower_zone->managed_pages;
7142			}
7143		}
7144	}
7145
7146	/* update totalreserve_pages */
7147	calculate_totalreserve_pages();
7148}
7149
7150static void __setup_per_zone_wmarks(void)
7151{
7152	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7153	unsigned long lowmem_pages = 0;
7154	struct zone *zone;
7155	unsigned long flags;
7156
7157	/* Calculate total number of !ZONE_HIGHMEM pages */
7158	for_each_zone(zone) {
7159		if (!is_highmem(zone))
7160			lowmem_pages += zone->managed_pages;
7161	}
7162
7163	for_each_zone(zone) {
7164		u64 tmp;
7165
7166		spin_lock_irqsave(&zone->lock, flags);
7167		tmp = (u64)pages_min * zone->managed_pages;
7168		do_div(tmp, lowmem_pages);
7169		if (is_highmem(zone)) {
7170			/*
7171			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7172			 * need highmem pages, so cap pages_min to a small
7173			 * value here.
7174			 *
7175			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7176			 * deltas control asynch page reclaim, and so should
7177			 * not be capped for highmem.
7178			 */
7179			unsigned long min_pages;
7180
7181			min_pages = zone->managed_pages / 1024;
7182			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7183			zone->watermark[WMARK_MIN] = min_pages;
7184		} else {
7185			/*
7186			 * If it's a lowmem zone, reserve a number of pages
7187			 * proportionate to the zone's size.
7188			 */
7189			zone->watermark[WMARK_MIN] = tmp;
7190		}
7191
7192		/*
7193		 * Set the kswapd watermarks distance according to the
7194		 * scale factor in proportion to available memory, but
7195		 * ensure a minimum size on small systems.
7196		 */
7197		tmp = max_t(u64, tmp >> 2,
7198			    mult_frac(zone->managed_pages,
7199				      watermark_scale_factor, 10000));
7200
7201		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
7202		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7203
 
 
 
 
7204		spin_unlock_irqrestore(&zone->lock, flags);
7205	}
7206
7207	/* update totalreserve_pages */
7208	calculate_totalreserve_pages();
7209}
7210
7211/**
7212 * setup_per_zone_wmarks - called when min_free_kbytes changes
7213 * or when memory is hot-{added|removed}
7214 *
7215 * Ensures that the watermark[min,low,high] values for each zone are set
7216 * correctly with respect to min_free_kbytes.
7217 */
7218void setup_per_zone_wmarks(void)
7219{
7220	static DEFINE_SPINLOCK(lock);
7221
7222	spin_lock(&lock);
7223	__setup_per_zone_wmarks();
7224	spin_unlock(&lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7225}
7226
7227/*
7228 * Initialise min_free_kbytes.
7229 *
7230 * For small machines we want it small (128k min).  For large machines
7231 * we want it large (64MB max).  But it is not linear, because network
7232 * bandwidth does not increase linearly with machine size.  We use
7233 *
7234 *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7235 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
7236 *
7237 * which yields
7238 *
7239 * 16MB:	512k
7240 * 32MB:	724k
7241 * 64MB:	1024k
7242 * 128MB:	1448k
7243 * 256MB:	2048k
7244 * 512MB:	2896k
7245 * 1024MB:	4096k
7246 * 2048MB:	5792k
7247 * 4096MB:	8192k
7248 * 8192MB:	11584k
7249 * 16384MB:	16384k
7250 */
7251int __meminit init_per_zone_wmark_min(void)
7252{
7253	unsigned long lowmem_kbytes;
7254	int new_min_free_kbytes;
7255
7256	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7257	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7258
7259	if (new_min_free_kbytes > user_min_free_kbytes) {
7260		min_free_kbytes = new_min_free_kbytes;
7261		if (min_free_kbytes < 128)
7262			min_free_kbytes = 128;
7263		if (min_free_kbytes > 65536)
7264			min_free_kbytes = 65536;
7265	} else {
7266		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7267				new_min_free_kbytes, user_min_free_kbytes);
7268	}
7269	setup_per_zone_wmarks();
7270	refresh_zone_stat_thresholds();
7271	setup_per_zone_lowmem_reserve();
7272
7273#ifdef CONFIG_NUMA
7274	setup_min_unmapped_ratio();
7275	setup_min_slab_ratio();
7276#endif
7277
7278	return 0;
7279}
7280core_initcall(init_per_zone_wmark_min)
7281
7282/*
7283 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7284 *	that we can call two helper functions whenever min_free_kbytes
7285 *	changes.
7286 */
7287int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7288	void __user *buffer, size_t *length, loff_t *ppos)
7289{
7290	int rc;
7291
7292	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7293	if (rc)
7294		return rc;
7295
7296	if (write) {
7297		user_min_free_kbytes = min_free_kbytes;
7298		setup_per_zone_wmarks();
7299	}
7300	return 0;
7301}
7302
7303int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7304	void __user *buffer, size_t *length, loff_t *ppos)
7305{
7306	int rc;
7307
7308	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7309	if (rc)
7310		return rc;
7311
7312	if (write)
7313		setup_per_zone_wmarks();
7314
7315	return 0;
7316}
7317
7318#ifdef CONFIG_NUMA
7319static void setup_min_unmapped_ratio(void)
7320{
7321	pg_data_t *pgdat;
7322	struct zone *zone;
7323
7324	for_each_online_pgdat(pgdat)
7325		pgdat->min_unmapped_pages = 0;
7326
7327	for_each_zone(zone)
7328		zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7329				sysctl_min_unmapped_ratio) / 100;
7330}
7331
7332
7333int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7334	void __user *buffer, size_t *length, loff_t *ppos)
7335{
 
7336	int rc;
7337
7338	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7339	if (rc)
7340		return rc;
7341
7342	setup_min_unmapped_ratio();
7343
7344	return 0;
7345}
7346
7347static void setup_min_slab_ratio(void)
7348{
7349	pg_data_t *pgdat;
7350	struct zone *zone;
7351
7352	for_each_online_pgdat(pgdat)
7353		pgdat->min_slab_pages = 0;
7354
7355	for_each_zone(zone)
7356		zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7357				sysctl_min_slab_ratio) / 100;
 
7358}
7359
7360int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7361	void __user *buffer, size_t *length, loff_t *ppos)
7362{
 
7363	int rc;
7364
7365	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7366	if (rc)
7367		return rc;
7368
7369	setup_min_slab_ratio();
7370
 
7371	return 0;
7372}
7373#endif
7374
7375/*
7376 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7377 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7378 *	whenever sysctl_lowmem_reserve_ratio changes.
7379 *
7380 * The reserve ratio obviously has absolutely no relation with the
7381 * minimum watermarks. The lowmem reserve ratio can only make sense
7382 * if in function of the boot time zone sizes.
7383 */
7384int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7385	void __user *buffer, size_t *length, loff_t *ppos)
7386{
7387	proc_dointvec_minmax(table, write, buffer, length, ppos);
7388	setup_per_zone_lowmem_reserve();
7389	return 0;
7390}
7391
7392/*
7393 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7394 * cpu.  It is the fraction of total pages in each zone that a hot per cpu
7395 * pagelist can have before it gets flushed back to buddy allocator.
7396 */
7397int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7398	void __user *buffer, size_t *length, loff_t *ppos)
7399{
7400	struct zone *zone;
7401	int old_percpu_pagelist_fraction;
7402	int ret;
7403
7404	mutex_lock(&pcp_batch_high_lock);
7405	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7406
7407	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7408	if (!write || ret < 0)
7409		goto out;
7410
7411	/* Sanity checking to avoid pcp imbalance */
7412	if (percpu_pagelist_fraction &&
7413	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7414		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7415		ret = -EINVAL;
7416		goto out;
7417	}
7418
7419	/* No change? */
7420	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7421		goto out;
7422
7423	for_each_populated_zone(zone) {
7424		unsigned int cpu;
7425
7426		for_each_possible_cpu(cpu)
7427			pageset_set_high_and_batch(zone,
7428					per_cpu_ptr(zone->pageset, cpu));
7429	}
7430out:
7431	mutex_unlock(&pcp_batch_high_lock);
7432	return ret;
7433}
7434
7435#ifdef CONFIG_NUMA
7436int hashdist = HASHDIST_DEFAULT;
7437
7438static int __init set_hashdist(char *str)
7439{
7440	if (!str)
7441		return 0;
7442	hashdist = simple_strtoul(str, &str, 0);
7443	return 1;
7444}
7445__setup("hashdist=", set_hashdist);
7446#endif
7447
7448#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7449/*
7450 * Returns the number of pages that arch has reserved but
7451 * is not known to alloc_large_system_hash().
7452 */
7453static unsigned long __init arch_reserved_kernel_pages(void)
7454{
7455	return 0;
7456}
7457#endif
7458
7459/*
7460 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7461 * machines. As memory size is increased the scale is also increased but at
7462 * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
7463 * quadruples the scale is increased by one, which means the size of hash table
7464 * only doubles, instead of quadrupling as well.
7465 * Because 32-bit systems cannot have large physical memory, where this scaling
7466 * makes sense, it is disabled on such platforms.
7467 */
7468#if __BITS_PER_LONG > 32
7469#define ADAPT_SCALE_BASE	(64ul << 30)
7470#define ADAPT_SCALE_SHIFT	2
7471#define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
7472#endif
7473
7474/*
7475 * allocate a large system hash table from bootmem
7476 * - it is assumed that the hash table must contain an exact power-of-2
7477 *   quantity of entries
7478 * - limit is the number of hash buckets, not the total allocation size
7479 */
7480void *__init alloc_large_system_hash(const char *tablename,
7481				     unsigned long bucketsize,
7482				     unsigned long numentries,
7483				     int scale,
7484				     int flags,
7485				     unsigned int *_hash_shift,
7486				     unsigned int *_hash_mask,
7487				     unsigned long low_limit,
7488				     unsigned long high_limit)
7489{
7490	unsigned long long max = high_limit;
7491	unsigned long log2qty, size;
7492	void *table = NULL;
7493	gfp_t gfp_flags;
7494
7495	/* allow the kernel cmdline to have a say */
7496	if (!numentries) {
7497		/* round applicable memory size up to nearest megabyte */
7498		numentries = nr_kernel_pages;
7499		numentries -= arch_reserved_kernel_pages();
7500
7501		/* It isn't necessary when PAGE_SIZE >= 1MB */
7502		if (PAGE_SHIFT < 20)
7503			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7504
7505#if __BITS_PER_LONG > 32
7506		if (!high_limit) {
7507			unsigned long adapt;
7508
7509			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7510			     adapt <<= ADAPT_SCALE_SHIFT)
7511				scale++;
7512		}
7513#endif
7514
7515		/* limit to 1 bucket per 2^scale bytes of low memory */
7516		if (scale > PAGE_SHIFT)
7517			numentries >>= (scale - PAGE_SHIFT);
7518		else
7519			numentries <<= (PAGE_SHIFT - scale);
7520
7521		/* Make sure we've got at least a 0-order allocation.. */
7522		if (unlikely(flags & HASH_SMALL)) {
7523			/* Makes no sense without HASH_EARLY */
7524			WARN_ON(!(flags & HASH_EARLY));
7525			if (!(numentries >> *_hash_shift)) {
7526				numentries = 1UL << *_hash_shift;
7527				BUG_ON(!numentries);
7528			}
7529		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7530			numentries = PAGE_SIZE / bucketsize;
7531	}
7532	numentries = roundup_pow_of_two(numentries);
7533
7534	/* limit allocation size to 1/16 total memory by default */
7535	if (max == 0) {
7536		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7537		do_div(max, bucketsize);
7538	}
7539	max = min(max, 0x80000000ULL);
7540
7541	if (numentries < low_limit)
7542		numentries = low_limit;
7543	if (numentries > max)
7544		numentries = max;
7545
7546	log2qty = ilog2(numentries);
7547
7548	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
7549	do {
7550		size = bucketsize << log2qty;
7551		if (flags & HASH_EARLY) {
7552			if (flags & HASH_ZERO)
7553				table = memblock_virt_alloc_nopanic(size, 0);
7554			else
7555				table = memblock_virt_alloc_raw(size, 0);
7556		} else if (hashdist) {
7557			table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
7558		} else {
7559			/*
7560			 * If bucketsize is not a power-of-two, we may free
7561			 * some pages at the end of hash table which
7562			 * alloc_pages_exact() automatically does
7563			 */
7564			if (get_order(size) < MAX_ORDER) {
7565				table = alloc_pages_exact(size, gfp_flags);
7566				kmemleak_alloc(table, size, 1, gfp_flags);
7567			}
7568		}
7569	} while (!table && size > PAGE_SIZE && --log2qty);
7570
7571	if (!table)
7572		panic("Failed to allocate %s hash table\n", tablename);
7573
7574	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7575		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7576
7577	if (_hash_shift)
7578		*_hash_shift = log2qty;
7579	if (_hash_mask)
7580		*_hash_mask = (1 << log2qty) - 1;
7581
7582	return table;
7583}
7584
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7585/*
7586 * This function checks whether pageblock includes unmovable pages or not.
7587 * If @count is not zero, it is okay to include less @count unmovable pages
7588 *
7589 * PageLRU check without isolation or lru_lock could race so that
7590 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7591 * check without lock_page also may miss some movable non-lru pages at
7592 * race condition. So you can't expect this function should be exact.
7593 */
7594bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7595			 int migratetype,
7596			 bool skip_hwpoisoned_pages)
7597{
7598	unsigned long pfn, iter, found;
 
7599
7600	/*
7601	 * TODO we could make this much more efficient by not checking every
7602	 * page in the range if we know all of them are in MOVABLE_ZONE and
7603	 * that the movable zone guarantees that pages are migratable but
7604	 * the later is not the case right now unfortunatelly. E.g. movablecore
7605	 * can still lead to having bootmem allocations in zone_movable.
7606	 */
7607
7608	/*
7609	 * CMA allocations (alloc_contig_range) really need to mark isolate
7610	 * CMA pageblocks even when they are not movable in fact so consider
7611	 * them movable here.
7612	 */
7613	if (is_migrate_cma(migratetype) &&
7614			is_migrate_cma(get_pageblock_migratetype(page)))
 
 
7615		return false;
7616
7617	pfn = page_to_pfn(page);
7618	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7619		unsigned long check = pfn + iter;
7620
7621		if (!pfn_valid_within(check))
7622			continue;
7623
7624		page = pfn_to_page(check);
7625
7626		if (PageReserved(page))
7627			goto unmovable;
7628
7629		/*
7630		 * Hugepages are not in LRU lists, but they're movable.
7631		 * We need not scan over tail pages bacause we don't
7632		 * handle each tail page individually in migration.
7633		 */
7634		if (PageHuge(page)) {
7635			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7636			continue;
7637		}
7638
7639		/*
7640		 * We can't use page_count without pin a page
7641		 * because another CPU can free compound page.
7642		 * This check already skips compound tails of THP
7643		 * because their page->_refcount is zero at all time.
7644		 */
7645		if (!page_ref_count(page)) {
7646			if (PageBuddy(page))
7647				iter += (1 << page_order(page)) - 1;
7648			continue;
7649		}
7650
7651		/*
7652		 * The HWPoisoned page may be not in buddy system, and
7653		 * page_count() is not 0.
7654		 */
7655		if (skip_hwpoisoned_pages && PageHWPoison(page))
7656			continue;
7657
7658		if (__PageMovable(page))
7659			continue;
7660
7661		if (!PageLRU(page))
7662			found++;
7663		/*
7664		 * If there are RECLAIMABLE pages, we need to check
7665		 * it.  But now, memory offline itself doesn't call
7666		 * shrink_node_slabs() and it still to be fixed.
7667		 */
7668		/*
7669		 * If the page is not RAM, page_count()should be 0.
7670		 * we don't need more check. This is an _used_ not-movable page.
7671		 *
7672		 * The problematic thing here is PG_reserved pages. PG_reserved
7673		 * is set to both of a memory hole page and a _used_ kernel
7674		 * page at boot.
7675		 */
7676		if (found > count)
7677			goto unmovable;
7678	}
7679	return false;
7680unmovable:
7681	WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
7682	return true;
7683}
7684
7685bool is_pageblock_removable_nolock(struct page *page)
7686{
7687	struct zone *zone;
7688	unsigned long pfn;
7689
7690	/*
7691	 * We have to be careful here because we are iterating over memory
7692	 * sections which are not zone aware so we might end up outside of
7693	 * the zone but still within the section.
7694	 * We have to take care about the node as well. If the node is offline
7695	 * its NODE_DATA will be NULL - see page_zone.
7696	 */
7697	if (!node_online(page_to_nid(page)))
7698		return false;
7699
7700	zone = page_zone(page);
7701	pfn = page_to_pfn(page);
7702	if (!zone_spans_pfn(zone, pfn))
7703		return false;
7704
7705	return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, true);
7706}
7707
7708#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7709
7710static unsigned long pfn_max_align_down(unsigned long pfn)
7711{
7712	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7713			     pageblock_nr_pages) - 1);
7714}
7715
7716static unsigned long pfn_max_align_up(unsigned long pfn)
7717{
7718	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7719				pageblock_nr_pages));
7720}
7721
7722/* [start, end) must belong to a single zone. */
7723static int __alloc_contig_migrate_range(struct compact_control *cc,
7724					unsigned long start, unsigned long end)
7725{
7726	/* This function is based on compact_zone() from compaction.c. */
7727	unsigned long nr_reclaimed;
7728	unsigned long pfn = start;
7729	unsigned int tries = 0;
7730	int ret = 0;
7731
7732	migrate_prep();
7733
7734	while (pfn < end || !list_empty(&cc->migratepages)) {
7735		if (fatal_signal_pending(current)) {
7736			ret = -EINTR;
7737			break;
7738		}
7739
7740		if (list_empty(&cc->migratepages)) {
7741			cc->nr_migratepages = 0;
7742			pfn = isolate_migratepages_range(cc, pfn, end);
7743			if (!pfn) {
7744				ret = -EINTR;
7745				break;
7746			}
7747			tries = 0;
7748		} else if (++tries == 5) {
7749			ret = ret < 0 ? ret : -EBUSY;
7750			break;
7751		}
7752
7753		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7754							&cc->migratepages);
7755		cc->nr_migratepages -= nr_reclaimed;
7756
7757		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7758				    NULL, 0, cc->mode, MR_CONTIG_RANGE);
7759	}
7760	if (ret < 0) {
7761		putback_movable_pages(&cc->migratepages);
7762		return ret;
7763	}
7764	return 0;
7765}
7766
7767/**
7768 * alloc_contig_range() -- tries to allocate given range of pages
7769 * @start:	start PFN to allocate
7770 * @end:	one-past-the-last PFN to allocate
7771 * @migratetype:	migratetype of the underlaying pageblocks (either
7772 *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
7773 *			in range must have the same migratetype and it must
7774 *			be either of the two.
7775 * @gfp_mask:	GFP mask to use during compaction
7776 *
7777 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7778 * aligned.  The PFN range must belong to a single zone.
 
 
7779 *
7780 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
7781 * pageblocks in the range.  Once isolated, the pageblocks should not
7782 * be modified by others.
7783 *
7784 * Returns zero on success or negative error code.  On success all
7785 * pages which PFN is in [start, end) are allocated for the caller and
7786 * need to be freed with free_contig_range().
7787 */
7788int alloc_contig_range(unsigned long start, unsigned long end,
7789		       unsigned migratetype, gfp_t gfp_mask)
7790{
7791	unsigned long outer_start, outer_end;
7792	unsigned int order;
7793	int ret = 0;
7794
7795	struct compact_control cc = {
7796		.nr_migratepages = 0,
7797		.order = -1,
7798		.zone = page_zone(pfn_to_page(start)),
7799		.mode = MIGRATE_SYNC,
7800		.ignore_skip_hint = true,
7801		.no_set_skip_hint = true,
7802		.gfp_mask = current_gfp_context(gfp_mask),
7803	};
7804	INIT_LIST_HEAD(&cc.migratepages);
7805
7806	/*
7807	 * What we do here is we mark all pageblocks in range as
7808	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
7809	 * have different sizes, and due to the way page allocator
7810	 * work, we align the range to biggest of the two pages so
7811	 * that page allocator won't try to merge buddies from
7812	 * different pageblocks and change MIGRATE_ISOLATE to some
7813	 * other migration type.
7814	 *
7815	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7816	 * migrate the pages from an unaligned range (ie. pages that
7817	 * we are interested in).  This will put all the pages in
7818	 * range back to page allocator as MIGRATE_ISOLATE.
7819	 *
7820	 * When this is done, we take the pages in range from page
7821	 * allocator removing them from the buddy system.  This way
7822	 * page allocator will never consider using them.
7823	 *
7824	 * This lets us mark the pageblocks back as
7825	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7826	 * aligned range but not in the unaligned, original range are
7827	 * put back to page allocator so that buddy can use them.
7828	 */
7829
7830	ret = start_isolate_page_range(pfn_max_align_down(start),
7831				       pfn_max_align_up(end), migratetype,
7832				       false);
7833	if (ret)
7834		return ret;
7835
7836	/*
7837	 * In case of -EBUSY, we'd like to know which page causes problem.
7838	 * So, just fall through. test_pages_isolated() has a tracepoint
7839	 * which will report the busy page.
7840	 *
7841	 * It is possible that busy pages could become available before
7842	 * the call to test_pages_isolated, and the range will actually be
7843	 * allocated.  So, if we fall through be sure to clear ret so that
7844	 * -EBUSY is not accidentally used or returned to caller.
7845	 */
7846	ret = __alloc_contig_migrate_range(&cc, start, end);
7847	if (ret && ret != -EBUSY)
7848		goto done;
7849	ret =0;
7850
7851	/*
7852	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7853	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
7854	 * more, all pages in [start, end) are free in page allocator.
7855	 * What we are going to do is to allocate all pages from
7856	 * [start, end) (that is remove them from page allocator).
7857	 *
7858	 * The only problem is that pages at the beginning and at the
7859	 * end of interesting range may be not aligned with pages that
7860	 * page allocator holds, ie. they can be part of higher order
7861	 * pages.  Because of this, we reserve the bigger range and
7862	 * once this is done free the pages we are not interested in.
7863	 *
7864	 * We don't have to hold zone->lock here because the pages are
7865	 * isolated thus they won't get removed from buddy.
7866	 */
7867
7868	lru_add_drain_all();
7869	drain_all_pages(cc.zone);
7870
7871	order = 0;
7872	outer_start = start;
7873	while (!PageBuddy(pfn_to_page(outer_start))) {
7874		if (++order >= MAX_ORDER) {
7875			outer_start = start;
7876			break;
7877		}
7878		outer_start &= ~0UL << order;
7879	}
7880
7881	if (outer_start != start) {
7882		order = page_order(pfn_to_page(outer_start));
7883
7884		/*
7885		 * outer_start page could be small order buddy page and
7886		 * it doesn't include start page. Adjust outer_start
7887		 * in this case to report failed page properly
7888		 * on tracepoint in test_pages_isolated()
7889		 */
7890		if (outer_start + (1UL << order) <= start)
7891			outer_start = start;
7892	}
7893
7894	/* Make sure the range is really isolated. */
7895	if (test_pages_isolated(outer_start, end, false)) {
7896		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
7897			__func__, outer_start, end);
7898		ret = -EBUSY;
7899		goto done;
7900	}
7901
7902	/* Grab isolated pages from freelists. */
7903	outer_end = isolate_freepages_range(&cc, outer_start, end);
7904	if (!outer_end) {
7905		ret = -EBUSY;
7906		goto done;
7907	}
7908
7909	/* Free head and tail (if any) */
7910	if (start != outer_start)
7911		free_contig_range(outer_start, start - outer_start);
7912	if (end != outer_end)
7913		free_contig_range(end, outer_end - end);
7914
7915done:
7916	undo_isolate_page_range(pfn_max_align_down(start),
7917				pfn_max_align_up(end), migratetype);
7918	return ret;
7919}
7920
7921void free_contig_range(unsigned long pfn, unsigned nr_pages)
7922{
7923	unsigned int count = 0;
7924
7925	for (; nr_pages--; pfn++) {
7926		struct page *page = pfn_to_page(pfn);
7927
7928		count += page_count(page) != 1;
7929		__free_page(page);
7930	}
7931	WARN(count != 0, "%d pages are still in use!\n", count);
7932}
7933#endif
7934
7935#ifdef CONFIG_MEMORY_HOTPLUG
7936/*
7937 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7938 * page high values need to be recalulated.
7939 */
7940void __meminit zone_pcp_update(struct zone *zone)
7941{
7942	unsigned cpu;
7943	mutex_lock(&pcp_batch_high_lock);
7944	for_each_possible_cpu(cpu)
7945		pageset_set_high_and_batch(zone,
7946				per_cpu_ptr(zone->pageset, cpu));
7947	mutex_unlock(&pcp_batch_high_lock);
7948}
7949#endif
7950
7951void zone_pcp_reset(struct zone *zone)
7952{
7953	unsigned long flags;
7954	int cpu;
7955	struct per_cpu_pageset *pset;
7956
7957	/* avoid races with drain_pages()  */
7958	local_irq_save(flags);
7959	if (zone->pageset != &boot_pageset) {
7960		for_each_online_cpu(cpu) {
7961			pset = per_cpu_ptr(zone->pageset, cpu);
7962			drain_zonestat(zone, pset);
7963		}
7964		free_percpu(zone->pageset);
7965		zone->pageset = &boot_pageset;
7966	}
7967	local_irq_restore(flags);
7968}
7969
7970#ifdef CONFIG_MEMORY_HOTREMOVE
7971/*
7972 * All pages in the range must be in a single zone and isolated
7973 * before calling this.
7974 */
7975void
7976__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7977{
7978	struct page *page;
7979	struct zone *zone;
7980	unsigned int order, i;
7981	unsigned long pfn;
7982	unsigned long flags;
7983	/* find the first valid pfn */
7984	for (pfn = start_pfn; pfn < end_pfn; pfn++)
7985		if (pfn_valid(pfn))
7986			break;
7987	if (pfn == end_pfn)
7988		return;
7989	offline_mem_sections(pfn, end_pfn);
7990	zone = page_zone(pfn_to_page(pfn));
7991	spin_lock_irqsave(&zone->lock, flags);
7992	pfn = start_pfn;
7993	while (pfn < end_pfn) {
7994		if (!pfn_valid(pfn)) {
7995			pfn++;
7996			continue;
7997		}
7998		page = pfn_to_page(pfn);
7999		/*
8000		 * The HWPoisoned page may be not in buddy system, and
8001		 * page_count() is not 0.
8002		 */
8003		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8004			pfn++;
8005			SetPageReserved(page);
8006			continue;
8007		}
8008
8009		BUG_ON(page_count(page));
8010		BUG_ON(!PageBuddy(page));
8011		order = page_order(page);
8012#ifdef CONFIG_DEBUG_VM
8013		pr_info("remove from free list %lx %d %lx\n",
8014			pfn, 1 << order, end_pfn);
8015#endif
8016		list_del(&page->lru);
8017		rmv_page_order(page);
8018		zone->free_area[order].nr_free--;
8019		for (i = 0; i < (1 << order); i++)
8020			SetPageReserved((page+i));
8021		pfn += (1 << order);
8022	}
8023	spin_unlock_irqrestore(&zone->lock, flags);
8024}
8025#endif
8026
8027bool is_free_buddy_page(struct page *page)
8028{
8029	struct zone *zone = page_zone(page);
8030	unsigned long pfn = page_to_pfn(page);
8031	unsigned long flags;
8032	unsigned int order;
8033
8034	spin_lock_irqsave(&zone->lock, flags);
8035	for (order = 0; order < MAX_ORDER; order++) {
8036		struct page *page_head = page - (pfn & ((1 << order) - 1));
8037
8038		if (PageBuddy(page_head) && page_order(page_head) >= order)
8039			break;
8040	}
8041	spin_unlock_irqrestore(&zone->lock, flags);
8042
8043	return order < MAX_ORDER;
8044}
v4.6
   1/*
   2 *  linux/mm/page_alloc.c
   3 *
   4 *  Manages the free list, the system allocates free pages here.
   5 *  Note that kmalloc() lives in slab.c
   6 *
   7 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   8 *  Swap reorganised 29.12.95, Stephen Tweedie
   9 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15 */
  16
  17#include <linux/stddef.h>
  18#include <linux/mm.h>
  19#include <linux/swap.h>
  20#include <linux/interrupt.h>
  21#include <linux/pagemap.h>
  22#include <linux/jiffies.h>
  23#include <linux/bootmem.h>
  24#include <linux/memblock.h>
  25#include <linux/compiler.h>
  26#include <linux/kernel.h>
  27#include <linux/kmemcheck.h>
  28#include <linux/kasan.h>
  29#include <linux/module.h>
  30#include <linux/suspend.h>
  31#include <linux/pagevec.h>
  32#include <linux/blkdev.h>
  33#include <linux/slab.h>
  34#include <linux/ratelimit.h>
  35#include <linux/oom.h>
  36#include <linux/notifier.h>
  37#include <linux/topology.h>
  38#include <linux/sysctl.h>
  39#include <linux/cpu.h>
  40#include <linux/cpuset.h>
  41#include <linux/memory_hotplug.h>
  42#include <linux/nodemask.h>
  43#include <linux/vmalloc.h>
  44#include <linux/vmstat.h>
  45#include <linux/mempolicy.h>
  46#include <linux/memremap.h>
  47#include <linux/stop_machine.h>
  48#include <linux/sort.h>
  49#include <linux/pfn.h>
  50#include <linux/backing-dev.h>
  51#include <linux/fault-inject.h>
  52#include <linux/page-isolation.h>
  53#include <linux/page_ext.h>
  54#include <linux/debugobjects.h>
  55#include <linux/kmemleak.h>
  56#include <linux/compaction.h>
  57#include <trace/events/kmem.h>
 
  58#include <linux/prefetch.h>
  59#include <linux/mm_inline.h>
  60#include <linux/migrate.h>
  61#include <linux/page_ext.h>
  62#include <linux/hugetlb.h>
  63#include <linux/sched/rt.h>
 
  64#include <linux/page_owner.h>
  65#include <linux/kthread.h>
 
 
 
 
  66
  67#include <asm/sections.h>
  68#include <asm/tlbflush.h>
  69#include <asm/div64.h>
  70#include "internal.h"
  71
  72/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
  73static DEFINE_MUTEX(pcp_batch_high_lock);
  74#define MIN_PERCPU_PAGELIST_FRACTION	(8)
  75
  76#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
  77DEFINE_PER_CPU(int, numa_node);
  78EXPORT_PER_CPU_SYMBOL(numa_node);
  79#endif
  80
 
 
  81#ifdef CONFIG_HAVE_MEMORYLESS_NODES
  82/*
  83 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
  84 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
  85 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
  86 * defined in <linux/topology.h>.
  87 */
  88DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
  89EXPORT_PER_CPU_SYMBOL(_numa_mem_);
  90int _node_numa_mem_[MAX_NUMNODES];
  91#endif
  92
 
 
 
 
 
 
 
 
 
  93/*
  94 * Array of node states.
  95 */
  96nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  97	[N_POSSIBLE] = NODE_MASK_ALL,
  98	[N_ONLINE] = { { [0] = 1UL } },
  99#ifndef CONFIG_NUMA
 100	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
 101#ifdef CONFIG_HIGHMEM
 102	[N_HIGH_MEMORY] = { { [0] = 1UL } },
 103#endif
 104#ifdef CONFIG_MOVABLE_NODE
 105	[N_MEMORY] = { { [0] = 1UL } },
 106#endif
 107	[N_CPU] = { { [0] = 1UL } },
 108#endif	/* NUMA */
 109};
 110EXPORT_SYMBOL(node_states);
 111
 112/* Protect totalram_pages and zone->managed_pages */
 113static DEFINE_SPINLOCK(managed_page_count_lock);
 114
 115unsigned long totalram_pages __read_mostly;
 116unsigned long totalreserve_pages __read_mostly;
 117unsigned long totalcma_pages __read_mostly;
 118
 119int percpu_pagelist_fraction;
 120gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
 121
 122/*
 123 * A cached value of the page's pageblock's migratetype, used when the page is
 124 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
 125 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
 126 * Also the migratetype set in the page does not necessarily match the pcplist
 127 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
 128 * other index - this ensures that it will be put on the correct CMA freelist.
 129 */
 130static inline int get_pcppage_migratetype(struct page *page)
 131{
 132	return page->index;
 133}
 134
 135static inline void set_pcppage_migratetype(struct page *page, int migratetype)
 136{
 137	page->index = migratetype;
 138}
 139
 140#ifdef CONFIG_PM_SLEEP
 141/*
 142 * The following functions are used by the suspend/hibernate code to temporarily
 143 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
 144 * while devices are suspended.  To avoid races with the suspend/hibernate code,
 145 * they should always be called with pm_mutex held (gfp_allowed_mask also should
 146 * only be modified with pm_mutex held, unless the suspend/hibernate code is
 147 * guaranteed not to run in parallel with that modification).
 148 */
 149
 150static gfp_t saved_gfp_mask;
 151
 152void pm_restore_gfp_mask(void)
 153{
 154	WARN_ON(!mutex_is_locked(&pm_mutex));
 155	if (saved_gfp_mask) {
 156		gfp_allowed_mask = saved_gfp_mask;
 157		saved_gfp_mask = 0;
 158	}
 159}
 160
 161void pm_restrict_gfp_mask(void)
 162{
 163	WARN_ON(!mutex_is_locked(&pm_mutex));
 164	WARN_ON(saved_gfp_mask);
 165	saved_gfp_mask = gfp_allowed_mask;
 166	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
 167}
 168
 169bool pm_suspended_storage(void)
 170{
 171	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
 172		return false;
 173	return true;
 174}
 175#endif /* CONFIG_PM_SLEEP */
 176
 177#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
 178unsigned int pageblock_order __read_mostly;
 179#endif
 180
 181static void __free_pages_ok(struct page *page, unsigned int order);
 182
 183/*
 184 * results with 256, 32 in the lowmem_reserve sysctl:
 185 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 186 *	1G machine -> (16M dma, 784M normal, 224M high)
 187 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 188 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
 189 *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
 190 *
 191 * TBD: should special case ZONE_DMA32 machines here - in those we normally
 192 * don't need any ZONE_NORMAL reservation
 193 */
 194int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
 195#ifdef CONFIG_ZONE_DMA
 196	 256,
 197#endif
 198#ifdef CONFIG_ZONE_DMA32
 199	 256,
 200#endif
 
 201#ifdef CONFIG_HIGHMEM
 202	 32,
 203#endif
 204	 32,
 205};
 206
 207EXPORT_SYMBOL(totalram_pages);
 208
 209static char * const zone_names[MAX_NR_ZONES] = {
 210#ifdef CONFIG_ZONE_DMA
 211	 "DMA",
 212#endif
 213#ifdef CONFIG_ZONE_DMA32
 214	 "DMA32",
 215#endif
 216	 "Normal",
 217#ifdef CONFIG_HIGHMEM
 218	 "HighMem",
 219#endif
 220	 "Movable",
 221#ifdef CONFIG_ZONE_DEVICE
 222	 "Device",
 223#endif
 224};
 225
 226char * const migratetype_names[MIGRATE_TYPES] = {
 227	"Unmovable",
 228	"Movable",
 229	"Reclaimable",
 230	"HighAtomic",
 231#ifdef CONFIG_CMA
 232	"CMA",
 233#endif
 234#ifdef CONFIG_MEMORY_ISOLATION
 235	"Isolate",
 236#endif
 237};
 238
 239compound_page_dtor * const compound_page_dtors[] = {
 240	NULL,
 241	free_compound_page,
 242#ifdef CONFIG_HUGETLB_PAGE
 243	free_huge_page,
 244#endif
 245#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 246	free_transhuge_page,
 247#endif
 248};
 249
 250int min_free_kbytes = 1024;
 251int user_min_free_kbytes = -1;
 252int watermark_scale_factor = 10;
 253
 254static unsigned long __meminitdata nr_kernel_pages;
 255static unsigned long __meminitdata nr_all_pages;
 256static unsigned long __meminitdata dma_reserve;
 257
 258#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
 259static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
 260static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
 261static unsigned long __initdata required_kernelcore;
 262static unsigned long __initdata required_movablecore;
 263static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
 264static bool mirrored_kernelcore;
 
 
 265
 266/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
 267int movable_zone;
 268EXPORT_SYMBOL(movable_zone);
 269#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
 270
 271#if MAX_NUMNODES > 1
 272int nr_node_ids __read_mostly = MAX_NUMNODES;
 273int nr_online_nodes __read_mostly = 1;
 274EXPORT_SYMBOL(nr_node_ids);
 275EXPORT_SYMBOL(nr_online_nodes);
 276#endif
 277
 278int page_group_by_mobility_disabled __read_mostly;
 279
 280#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
 281static inline void reset_deferred_meminit(pg_data_t *pgdat)
 282{
 283	pgdat->first_deferred_pfn = ULONG_MAX;
 284}
 285
 286/* Returns true if the struct page for the pfn is uninitialised */
 287static inline bool __meminit early_page_uninitialised(unsigned long pfn)
 288{
 289	if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
 290		return true;
 291
 292	return false;
 293}
 294
 295static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
 296{
 297	if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
 298		return true;
 299
 300	return false;
 301}
 302
 303/*
 304 * Returns false when the remaining initialisation should be deferred until
 305 * later in the boot cycle when it can be parallelised.
 306 */
 307static inline bool update_defer_init(pg_data_t *pgdat,
 308				unsigned long pfn, unsigned long zone_end,
 309				unsigned long *nr_initialised)
 310{
 311	unsigned long max_initialise;
 312
 313	/* Always populate low zones for address-contrained allocations */
 314	if (zone_end < pgdat_end_pfn(pgdat))
 315		return true;
 316	/*
 317	 * Initialise at least 2G of a node but also take into account that
 318	 * two large system hashes that can take up 1GB for 0.25TB/node.
 319	 */
 320	max_initialise = max(2UL << (30 - PAGE_SHIFT),
 321		(pgdat->node_spanned_pages >> 8));
 322
 323	(*nr_initialised)++;
 324	if ((*nr_initialised > max_initialise) &&
 325	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
 326		pgdat->first_deferred_pfn = pfn;
 327		return false;
 328	}
 329
 330	return true;
 331}
 332#else
 333static inline void reset_deferred_meminit(pg_data_t *pgdat)
 334{
 335}
 336
 337static inline bool early_page_uninitialised(unsigned long pfn)
 338{
 339	return false;
 340}
 341
 342static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
 343{
 344	return false;
 345}
 346
 347static inline bool update_defer_init(pg_data_t *pgdat,
 348				unsigned long pfn, unsigned long zone_end,
 349				unsigned long *nr_initialised)
 350{
 351	return true;
 352}
 353#endif
 354
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 355
 356void set_pageblock_migratetype(struct page *page, int migratetype)
 357{
 358	if (unlikely(page_group_by_mobility_disabled &&
 359		     migratetype < MIGRATE_PCPTYPES))
 360		migratetype = MIGRATE_UNMOVABLE;
 361
 362	set_pageblock_flags_group(page, (unsigned long)migratetype,
 363					PB_migrate, PB_migrate_end);
 364}
 365
 366#ifdef CONFIG_DEBUG_VM
 367static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
 368{
 369	int ret = 0;
 370	unsigned seq;
 371	unsigned long pfn = page_to_pfn(page);
 372	unsigned long sp, start_pfn;
 373
 374	do {
 375		seq = zone_span_seqbegin(zone);
 376		start_pfn = zone->zone_start_pfn;
 377		sp = zone->spanned_pages;
 378		if (!zone_spans_pfn(zone, pfn))
 379			ret = 1;
 380	} while (zone_span_seqretry(zone, seq));
 381
 382	if (ret)
 383		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
 384			pfn, zone_to_nid(zone), zone->name,
 385			start_pfn, start_pfn + sp);
 386
 387	return ret;
 388}
 389
 390static int page_is_consistent(struct zone *zone, struct page *page)
 391{
 392	if (!pfn_valid_within(page_to_pfn(page)))
 393		return 0;
 394	if (zone != page_zone(page))
 395		return 0;
 396
 397	return 1;
 398}
 399/*
 400 * Temporary debugging check for pages not lying within a given zone.
 401 */
 402static int bad_range(struct zone *zone, struct page *page)
 403{
 404	if (page_outside_zone_boundaries(zone, page))
 405		return 1;
 406	if (!page_is_consistent(zone, page))
 407		return 1;
 408
 409	return 0;
 410}
 411#else
 412static inline int bad_range(struct zone *zone, struct page *page)
 413{
 414	return 0;
 415}
 416#endif
 417
 418static void bad_page(struct page *page, const char *reason,
 419		unsigned long bad_flags)
 420{
 421	static unsigned long resume;
 422	static unsigned long nr_shown;
 423	static unsigned long nr_unshown;
 424
 425	/* Don't complain about poisoned pages */
 426	if (PageHWPoison(page)) {
 427		page_mapcount_reset(page); /* remove PageBuddy */
 428		return;
 429	}
 430
 431	/*
 432	 * Allow a burst of 60 reports, then keep quiet for that minute;
 433	 * or allow a steady drip of one report per second.
 434	 */
 435	if (nr_shown == 60) {
 436		if (time_before(jiffies, resume)) {
 437			nr_unshown++;
 438			goto out;
 439		}
 440		if (nr_unshown) {
 441			pr_alert(
 442			      "BUG: Bad page state: %lu messages suppressed\n",
 443				nr_unshown);
 444			nr_unshown = 0;
 445		}
 446		nr_shown = 0;
 447	}
 448	if (nr_shown++ == 0)
 449		resume = jiffies + 60 * HZ;
 450
 451	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
 452		current->comm, page_to_pfn(page));
 453	__dump_page(page, reason);
 454	bad_flags &= page->flags;
 455	if (bad_flags)
 456		pr_alert("bad because of flags: %#lx(%pGp)\n",
 457						bad_flags, &bad_flags);
 458	dump_page_owner(page);
 459
 460	print_modules();
 461	dump_stack();
 462out:
 463	/* Leave bad fields for debug, except PageBuddy could make trouble */
 464	page_mapcount_reset(page); /* remove PageBuddy */
 465	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 466}
 467
 468/*
 469 * Higher-order pages are called "compound pages".  They are structured thusly:
 470 *
 471 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
 472 *
 473 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
 474 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
 475 *
 476 * The first tail page's ->compound_dtor holds the offset in array of compound
 477 * page destructors. See compound_page_dtors.
 478 *
 479 * The first tail page's ->compound_order holds the order of allocation.
 480 * This usage means that zero-order pages may not be compound.
 481 */
 482
 483void free_compound_page(struct page *page)
 484{
 485	__free_pages_ok(page, compound_order(page));
 486}
 487
 488void prep_compound_page(struct page *page, unsigned int order)
 489{
 490	int i;
 491	int nr_pages = 1 << order;
 492
 493	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
 494	set_compound_order(page, order);
 495	__SetPageHead(page);
 496	for (i = 1; i < nr_pages; i++) {
 497		struct page *p = page + i;
 498		set_page_count(p, 0);
 499		p->mapping = TAIL_MAPPING;
 500		set_compound_head(p, page);
 501	}
 502	atomic_set(compound_mapcount_ptr(page), -1);
 503}
 504
 505#ifdef CONFIG_DEBUG_PAGEALLOC
 506unsigned int _debug_guardpage_minorder;
 507bool _debug_pagealloc_enabled __read_mostly
 508			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
 509EXPORT_SYMBOL(_debug_pagealloc_enabled);
 510bool _debug_guardpage_enabled __read_mostly;
 511
 512static int __init early_debug_pagealloc(char *buf)
 513{
 514	if (!buf)
 515		return -EINVAL;
 516
 517	if (strcmp(buf, "on") == 0)
 518		_debug_pagealloc_enabled = true;
 519
 520	if (strcmp(buf, "off") == 0)
 521		_debug_pagealloc_enabled = false;
 522
 523	return 0;
 524}
 525early_param("debug_pagealloc", early_debug_pagealloc);
 526
 527static bool need_debug_guardpage(void)
 528{
 529	/* If we don't use debug_pagealloc, we don't need guard page */
 530	if (!debug_pagealloc_enabled())
 531		return false;
 532
 
 
 
 533	return true;
 534}
 535
 536static void init_debug_guardpage(void)
 537{
 538	if (!debug_pagealloc_enabled())
 539		return;
 540
 
 
 
 541	_debug_guardpage_enabled = true;
 542}
 543
 544struct page_ext_operations debug_guardpage_ops = {
 545	.need = need_debug_guardpage,
 546	.init = init_debug_guardpage,
 547};
 548
 549static int __init debug_guardpage_minorder_setup(char *buf)
 550{
 551	unsigned long res;
 552
 553	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
 554		pr_err("Bad debug_guardpage_minorder value\n");
 555		return 0;
 556	}
 557	_debug_guardpage_minorder = res;
 558	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
 559	return 0;
 560}
 561__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
 562
 563static inline void set_page_guard(struct zone *zone, struct page *page,
 564				unsigned int order, int migratetype)
 565{
 566	struct page_ext *page_ext;
 567
 568	if (!debug_guardpage_enabled())
 569		return;
 
 
 
 570
 571	page_ext = lookup_page_ext(page);
 
 
 
 572	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
 573
 574	INIT_LIST_HEAD(&page->lru);
 575	set_page_private(page, order);
 576	/* Guard pages are not available for any usage */
 577	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
 
 
 578}
 579
 580static inline void clear_page_guard(struct zone *zone, struct page *page,
 581				unsigned int order, int migratetype)
 582{
 583	struct page_ext *page_ext;
 584
 585	if (!debug_guardpage_enabled())
 586		return;
 587
 588	page_ext = lookup_page_ext(page);
 
 
 
 589	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
 590
 591	set_page_private(page, 0);
 592	if (!is_migrate_isolate(migratetype))
 593		__mod_zone_freepage_state(zone, (1 << order), migratetype);
 594}
 595#else
 596struct page_ext_operations debug_guardpage_ops = { NULL, };
 597static inline void set_page_guard(struct zone *zone, struct page *page,
 598				unsigned int order, int migratetype) {}
 599static inline void clear_page_guard(struct zone *zone, struct page *page,
 600				unsigned int order, int migratetype) {}
 601#endif
 602
 603static inline void set_page_order(struct page *page, unsigned int order)
 604{
 605	set_page_private(page, order);
 606	__SetPageBuddy(page);
 607}
 608
 609static inline void rmv_page_order(struct page *page)
 610{
 611	__ClearPageBuddy(page);
 612	set_page_private(page, 0);
 613}
 614
 615/*
 616 * This function checks whether a page is free && is the buddy
 617 * we can do coalesce a page and its buddy if
 618 * (a) the buddy is not in a hole &&
 619 * (b) the buddy is in the buddy system &&
 620 * (c) a page and its buddy have the same order &&
 621 * (d) a page and its buddy are in the same zone.
 622 *
 623 * For recording whether a page is in the buddy system, we set ->_mapcount
 624 * PAGE_BUDDY_MAPCOUNT_VALUE.
 625 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
 626 * serialized by zone->lock.
 627 *
 628 * For recording page's order, we use page_private(page).
 629 */
 630static inline int page_is_buddy(struct page *page, struct page *buddy,
 631							unsigned int order)
 632{
 633	if (!pfn_valid_within(page_to_pfn(buddy)))
 634		return 0;
 635
 636	if (page_is_guard(buddy) && page_order(buddy) == order) {
 637		if (page_zone_id(page) != page_zone_id(buddy))
 638			return 0;
 639
 640		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
 641
 642		return 1;
 643	}
 644
 645	if (PageBuddy(buddy) && page_order(buddy) == order) {
 646		/*
 647		 * zone check is done late to avoid uselessly
 648		 * calculating zone/node ids for pages that could
 649		 * never merge.
 650		 */
 651		if (page_zone_id(page) != page_zone_id(buddy))
 652			return 0;
 653
 654		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
 655
 656		return 1;
 657	}
 658	return 0;
 659}
 660
 661/*
 662 * Freeing function for a buddy system allocator.
 663 *
 664 * The concept of a buddy system is to maintain direct-mapped table
 665 * (containing bit values) for memory blocks of various "orders".
 666 * The bottom level table contains the map for the smallest allocatable
 667 * units of memory (here, pages), and each level above it describes
 668 * pairs of units from the levels below, hence, "buddies".
 669 * At a high level, all that happens here is marking the table entry
 670 * at the bottom level available, and propagating the changes upward
 671 * as necessary, plus some accounting needed to play nicely with other
 672 * parts of the VM system.
 673 * At each level, we keep a list of pages, which are heads of continuous
 674 * free pages of length of (1 << order) and marked with _mapcount
 675 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
 676 * field.
 677 * So when we are allocating or freeing one, we can derive the state of the
 678 * other.  That is, if we allocate a small block, and both were
 679 * free, the remainder of the region must be split into blocks.
 680 * If a block is freed, and its buddy is also free, then this
 681 * triggers coalescing into a block of larger size.
 682 *
 683 * -- nyc
 684 */
 685
 686static inline void __free_one_page(struct page *page,
 687		unsigned long pfn,
 688		struct zone *zone, unsigned int order,
 689		int migratetype)
 690{
 691	unsigned long page_idx;
 692	unsigned long combined_idx;
 693	unsigned long uninitialized_var(buddy_idx);
 694	struct page *buddy;
 695	unsigned int max_order;
 696
 697	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
 698
 699	VM_BUG_ON(!zone_is_initialized(zone));
 700	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
 701
 702	VM_BUG_ON(migratetype == -1);
 703	if (likely(!is_migrate_isolate(migratetype)))
 704		__mod_zone_freepage_state(zone, 1 << order, migratetype);
 705
 706	page_idx = pfn & ((1 << MAX_ORDER) - 1);
 707
 708	VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
 709	VM_BUG_ON_PAGE(bad_range(zone, page), page);
 710
 711continue_merging:
 712	while (order < max_order - 1) {
 713		buddy_idx = __find_buddy_index(page_idx, order);
 714		buddy = page + (buddy_idx - page_idx);
 
 
 
 715		if (!page_is_buddy(page, buddy, order))
 716			goto done_merging;
 717		/*
 718		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
 719		 * merge with it and move up one order.
 720		 */
 721		if (page_is_guard(buddy)) {
 722			clear_page_guard(zone, buddy, order, migratetype);
 723		} else {
 724			list_del(&buddy->lru);
 725			zone->free_area[order].nr_free--;
 726			rmv_page_order(buddy);
 727		}
 728		combined_idx = buddy_idx & page_idx;
 729		page = page + (combined_idx - page_idx);
 730		page_idx = combined_idx;
 731		order++;
 732	}
 733	if (max_order < MAX_ORDER) {
 734		/* If we are here, it means order is >= pageblock_order.
 735		 * We want to prevent merge between freepages on isolate
 736		 * pageblock and normal pageblock. Without this, pageblock
 737		 * isolation could cause incorrect freepage or CMA accounting.
 738		 *
 739		 * We don't want to hit this code for the more frequent
 740		 * low-order merging.
 741		 */
 742		if (unlikely(has_isolate_pageblock(zone))) {
 743			int buddy_mt;
 744
 745			buddy_idx = __find_buddy_index(page_idx, order);
 746			buddy = page + (buddy_idx - page_idx);
 747			buddy_mt = get_pageblock_migratetype(buddy);
 748
 749			if (migratetype != buddy_mt
 750					&& (is_migrate_isolate(migratetype) ||
 751						is_migrate_isolate(buddy_mt)))
 752				goto done_merging;
 753		}
 754		max_order++;
 755		goto continue_merging;
 756	}
 757
 758done_merging:
 759	set_page_order(page, order);
 760
 761	/*
 762	 * If this is not the largest possible page, check if the buddy
 763	 * of the next-highest order is free. If it is, it's possible
 764	 * that pages are being freed that will coalesce soon. In case,
 765	 * that is happening, add the free page to the tail of the list
 766	 * so it's less likely to be used soon and more likely to be merged
 767	 * as a higher order page
 768	 */
 769	if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
 770		struct page *higher_page, *higher_buddy;
 771		combined_idx = buddy_idx & page_idx;
 772		higher_page = page + (combined_idx - page_idx);
 773		buddy_idx = __find_buddy_index(combined_idx, order + 1);
 774		higher_buddy = higher_page + (buddy_idx - combined_idx);
 775		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
 
 776			list_add_tail(&page->lru,
 777				&zone->free_area[order].free_list[migratetype]);
 778			goto out;
 779		}
 780	}
 781
 782	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
 783out:
 784	zone->free_area[order].nr_free++;
 785}
 786
 787static inline int free_pages_check(struct page *page)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 788{
 789	const char *bad_reason = NULL;
 790	unsigned long bad_flags = 0;
 
 
 
 791
 792	if (unlikely(atomic_read(&page->_mapcount) != -1))
 793		bad_reason = "nonzero mapcount";
 794	if (unlikely(page->mapping != NULL))
 795		bad_reason = "non-NULL mapping";
 796	if (unlikely(page_ref_count(page) != 0))
 797		bad_reason = "nonzero _count";
 798	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
 799		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
 800		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
 801	}
 802#ifdef CONFIG_MEMCG
 803	if (unlikely(page->mem_cgroup))
 804		bad_reason = "page still charged to cgroup";
 805#endif
 806	if (unlikely(bad_reason)) {
 807		bad_page(page, bad_reason, bad_flags);
 808		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 809	}
 
 
 
 
 
 
 
 
 
 810	page_cpupid_reset_last(page);
 811	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
 812		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
 813	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 814}
 815
 816/*
 817 * Frees a number of pages from the PCP lists
 818 * Assumes all pages on list are in same zone, and of same order.
 819 * count is the number of pages to free.
 820 *
 821 * If the zone was previously in an "all pages pinned" state then look to
 822 * see if this freeing clears that state.
 823 *
 824 * And clear the zone's pages_scanned counter, to hold off the "all pages are
 825 * pinned" detection logic.
 826 */
 827static void free_pcppages_bulk(struct zone *zone, int count,
 828					struct per_cpu_pages *pcp)
 829{
 830	int migratetype = 0;
 831	int batch_free = 0;
 832	int to_free = count;
 833	unsigned long nr_scanned;
 834
 835	spin_lock(&zone->lock);
 836	nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
 837	if (nr_scanned)
 838		__mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
 839
 840	while (to_free) {
 841		struct page *page;
 842		struct list_head *list;
 843
 844		/*
 845		 * Remove pages from lists in a round-robin fashion. A
 846		 * batch_free count is maintained that is incremented when an
 847		 * empty list is encountered.  This is so more pages are freed
 848		 * off fuller lists instead of spinning excessively around empty
 849		 * lists
 850		 */
 851		do {
 852			batch_free++;
 853			if (++migratetype == MIGRATE_PCPTYPES)
 854				migratetype = 0;
 855			list = &pcp->lists[migratetype];
 856		} while (list_empty(list));
 857
 858		/* This is the only non-empty list. Free them all. */
 859		if (batch_free == MIGRATE_PCPTYPES)
 860			batch_free = to_free;
 861
 862		do {
 863			int mt;	/* migratetype of the to-be-freed page */
 864
 865			page = list_last_entry(list, struct page, lru);
 866			/* must delete as __free_one_page list manipulates */
 867			list_del(&page->lru);
 
 
 
 
 868
 869			mt = get_pcppage_migratetype(page);
 870			/* MIGRATE_ISOLATE page should not go to pcplists */
 871			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
 872			/* Pageblock could have been isolated meanwhile */
 873			if (unlikely(has_isolate_pageblock(zone)))
 874				mt = get_pageblock_migratetype(page);
 875
 876			__free_one_page(page, page_to_pfn(page), zone, 0, mt);
 877			trace_mm_page_pcpu_drain(page, 0, mt);
 878		} while (--to_free && --batch_free && !list_empty(list));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 879	}
 880	spin_unlock(&zone->lock);
 881}
 882
 883static void free_one_page(struct zone *zone,
 884				struct page *page, unsigned long pfn,
 885				unsigned int order,
 886				int migratetype)
 887{
 888	unsigned long nr_scanned;
 889	spin_lock(&zone->lock);
 890	nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
 891	if (nr_scanned)
 892		__mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
 893
 894	if (unlikely(has_isolate_pageblock(zone) ||
 895		is_migrate_isolate(migratetype))) {
 896		migratetype = get_pfnblock_migratetype(page, pfn);
 897	}
 898	__free_one_page(page, pfn, zone, order, migratetype);
 899	spin_unlock(&zone->lock);
 900}
 901
 902static int free_tail_pages_check(struct page *head_page, struct page *page)
 903{
 904	int ret = 1;
 905
 906	/*
 907	 * We rely page->lru.next never has bit 0 set, unless the page
 908	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
 909	 */
 910	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
 911
 912	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
 913		ret = 0;
 914		goto out;
 915	}
 916	switch (page - head_page) {
 917	case 1:
 918		/* the first tail page: ->mapping is compound_mapcount() */
 919		if (unlikely(compound_mapcount(page))) {
 920			bad_page(page, "nonzero compound_mapcount", 0);
 921			goto out;
 922		}
 923		break;
 924	case 2:
 925		/*
 926		 * the second tail page: ->mapping is
 927		 * page_deferred_list().next -- ignore value.
 928		 */
 929		break;
 930	default:
 931		if (page->mapping != TAIL_MAPPING) {
 932			bad_page(page, "corrupted mapping in tail page", 0);
 933			goto out;
 934		}
 935		break;
 936	}
 937	if (unlikely(!PageTail(page))) {
 938		bad_page(page, "PageTail not set", 0);
 939		goto out;
 940	}
 941	if (unlikely(compound_head(page) != head_page)) {
 942		bad_page(page, "compound_head not consistent", 0);
 943		goto out;
 944	}
 945	ret = 0;
 946out:
 947	page->mapping = NULL;
 948	clear_compound_head(page);
 949	return ret;
 950}
 951
 952static void __meminit __init_single_page(struct page *page, unsigned long pfn,
 953				unsigned long zone, int nid)
 954{
 
 955	set_page_links(page, zone, nid, pfn);
 956	init_page_count(page);
 957	page_mapcount_reset(page);
 958	page_cpupid_reset_last(page);
 959
 960	INIT_LIST_HEAD(&page->lru);
 961#ifdef WANT_PAGE_VIRTUAL
 962	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
 963	if (!is_highmem_idx(zone))
 964		set_page_address(page, __va(pfn << PAGE_SHIFT));
 965#endif
 966}
 967
 968static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
 969					int nid)
 970{
 971	return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
 972}
 973
 974#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
 975static void init_reserved_page(unsigned long pfn)
 976{
 977	pg_data_t *pgdat;
 978	int nid, zid;
 979
 980	if (!early_page_uninitialised(pfn))
 981		return;
 982
 983	nid = early_pfn_to_nid(pfn);
 984	pgdat = NODE_DATA(nid);
 985
 986	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
 987		struct zone *zone = &pgdat->node_zones[zid];
 988
 989		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
 990			break;
 991	}
 992	__init_single_pfn(pfn, zid, nid);
 993}
 994#else
 995static inline void init_reserved_page(unsigned long pfn)
 996{
 997}
 998#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
 999
1000/*
1001 * Initialised pages do not have PageReserved set. This function is
1002 * called for each range allocated by the bootmem allocator and
1003 * marks the pages PageReserved. The remaining valid pages are later
1004 * sent to the buddy page allocator.
1005 */
1006void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
1007{
1008	unsigned long start_pfn = PFN_DOWN(start);
1009	unsigned long end_pfn = PFN_UP(end);
1010
1011	for (; start_pfn < end_pfn; start_pfn++) {
1012		if (pfn_valid(start_pfn)) {
1013			struct page *page = pfn_to_page(start_pfn);
1014
1015			init_reserved_page(start_pfn);
1016
1017			/* Avoid false-positive PageTail() */
1018			INIT_LIST_HEAD(&page->lru);
1019
1020			SetPageReserved(page);
1021		}
1022	}
1023}
1024
1025static bool free_pages_prepare(struct page *page, unsigned int order)
1026{
1027	bool compound = PageCompound(page);
1028	int i, bad = 0;
1029
1030	VM_BUG_ON_PAGE(PageTail(page), page);
1031	VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1032
1033	trace_mm_page_free(page, order);
1034	kmemcheck_free_shadow(page, order);
1035	kasan_free_pages(page, order);
1036
1037	if (PageAnon(page))
1038		page->mapping = NULL;
1039	bad += free_pages_check(page);
1040	for (i = 1; i < (1 << order); i++) {
1041		if (compound)
1042			bad += free_tail_pages_check(page, page + i);
1043		bad += free_pages_check(page + i);
1044	}
1045	if (bad)
1046		return false;
1047
1048	reset_page_owner(page, order);
1049
1050	if (!PageHighMem(page)) {
1051		debug_check_no_locks_freed(page_address(page),
1052					   PAGE_SIZE << order);
1053		debug_check_no_obj_freed(page_address(page),
1054					   PAGE_SIZE << order);
1055	}
1056	arch_free_page(page, order);
1057	kernel_poison_pages(page, 1 << order, 0);
1058	kernel_map_pages(page, 1 << order, 0);
1059
1060	return true;
1061}
1062
1063static void __free_pages_ok(struct page *page, unsigned int order)
1064{
1065	unsigned long flags;
1066	int migratetype;
1067	unsigned long pfn = page_to_pfn(page);
1068
1069	if (!free_pages_prepare(page, order))
1070		return;
1071
1072	migratetype = get_pfnblock_migratetype(page, pfn);
1073	local_irq_save(flags);
1074	__count_vm_events(PGFREE, 1 << order);
1075	free_one_page(page_zone(page), page, pfn, order, migratetype);
1076	local_irq_restore(flags);
1077}
1078
1079static void __init __free_pages_boot_core(struct page *page,
1080					unsigned long pfn, unsigned int order)
1081{
1082	unsigned int nr_pages = 1 << order;
1083	struct page *p = page;
1084	unsigned int loop;
1085
1086	prefetchw(p);
1087	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1088		prefetchw(p + 1);
1089		__ClearPageReserved(p);
1090		set_page_count(p, 0);
1091	}
1092	__ClearPageReserved(p);
1093	set_page_count(p, 0);
1094
1095	page_zone(page)->managed_pages += nr_pages;
1096	set_page_refcounted(page);
1097	__free_pages(page, order);
1098}
1099
1100#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1101	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1102
1103static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1104
1105int __meminit early_pfn_to_nid(unsigned long pfn)
1106{
1107	static DEFINE_SPINLOCK(early_pfn_lock);
1108	int nid;
1109
1110	spin_lock(&early_pfn_lock);
1111	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1112	if (nid < 0)
1113		nid = 0;
1114	spin_unlock(&early_pfn_lock);
1115
1116	return nid;
1117}
1118#endif
1119
1120#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1121static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1122					struct mminit_pfnnid_cache *state)
 
1123{
1124	int nid;
1125
1126	nid = __early_pfn_to_nid(pfn, state);
1127	if (nid >= 0 && nid != node)
1128		return false;
1129	return true;
1130}
1131
1132/* Only safe to use early in boot when initialisation is single-threaded */
1133static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1134{
1135	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1136}
1137
1138#else
1139
1140static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1141{
1142	return true;
1143}
1144static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1145					struct mminit_pfnnid_cache *state)
 
1146{
1147	return true;
1148}
1149#endif
1150
1151
1152void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1153							unsigned int order)
1154{
1155	if (early_page_uninitialised(pfn))
1156		return;
1157	return __free_pages_boot_core(page, pfn, order);
1158}
1159
1160/*
1161 * Check that the whole (or subset of) a pageblock given by the interval of
1162 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1163 * with the migration of free compaction scanner. The scanners then need to
1164 * use only pfn_valid_within() check for arches that allow holes within
1165 * pageblocks.
1166 *
1167 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1168 *
1169 * It's possible on some configurations to have a setup like node0 node1 node0
1170 * i.e. it's possible that all pages within a zones range of pages do not
1171 * belong to a single zone. We assume that a border between node0 and node1
1172 * can occur within a single pageblock, but not a node0 node1 node0
1173 * interleaving within a single pageblock. It is therefore sufficient to check
1174 * the first and last page of a pageblock and avoid checking each individual
1175 * page in a pageblock.
1176 */
1177struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1178				     unsigned long end_pfn, struct zone *zone)
1179{
1180	struct page *start_page;
1181	struct page *end_page;
1182
1183	/* end_pfn is one past the range we are checking */
1184	end_pfn--;
1185
1186	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1187		return NULL;
1188
1189	start_page = pfn_to_page(start_pfn);
 
 
1190
1191	if (page_zone(start_page) != zone)
1192		return NULL;
1193
1194	end_page = pfn_to_page(end_pfn);
1195
1196	/* This gives a shorter code than deriving page_zone(end_page) */
1197	if (page_zone_id(start_page) != page_zone_id(end_page))
1198		return NULL;
1199
1200	return start_page;
1201}
1202
1203void set_zone_contiguous(struct zone *zone)
1204{
1205	unsigned long block_start_pfn = zone->zone_start_pfn;
1206	unsigned long block_end_pfn;
1207
1208	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1209	for (; block_start_pfn < zone_end_pfn(zone);
1210			block_start_pfn = block_end_pfn,
1211			 block_end_pfn += pageblock_nr_pages) {
1212
1213		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1214
1215		if (!__pageblock_pfn_to_page(block_start_pfn,
1216					     block_end_pfn, zone))
1217			return;
1218	}
1219
1220	/* We confirm that there is no hole */
1221	zone->contiguous = true;
1222}
1223
1224void clear_zone_contiguous(struct zone *zone)
1225{
1226	zone->contiguous = false;
1227}
1228
1229#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1230static void __init deferred_free_range(struct page *page,
1231					unsigned long pfn, int nr_pages)
1232{
1233	int i;
 
1234
1235	if (!page)
1236		return;
1237
 
 
1238	/* Free a large naturally-aligned chunk if possible */
1239	if (nr_pages == MAX_ORDER_NR_PAGES &&
1240	    (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
1241		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1242		__free_pages_boot_core(page, pfn, MAX_ORDER-1);
1243		return;
1244	}
1245
1246	for (i = 0; i < nr_pages; i++, page++, pfn++)
1247		__free_pages_boot_core(page, pfn, 0);
 
 
 
1248}
1249
1250/* Completion tracking for deferred_init_memmap() threads */
1251static atomic_t pgdat_init_n_undone __initdata;
1252static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1253
1254static inline void __init pgdat_init_report_one_done(void)
1255{
1256	if (atomic_dec_and_test(&pgdat_init_n_undone))
1257		complete(&pgdat_init_all_done_comp);
1258}
1259
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1260/* Initialise remaining memory on a node */
1261static int __init deferred_init_memmap(void *data)
1262{
1263	pg_data_t *pgdat = data;
1264	int nid = pgdat->node_id;
1265	struct mminit_pfnnid_cache nid_init_state = { };
1266	unsigned long start = jiffies;
1267	unsigned long nr_pages = 0;
1268	unsigned long walk_start, walk_end;
1269	int i, zid;
 
1270	struct zone *zone;
1271	unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1272	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
 
1273
 
 
 
 
 
 
1274	if (first_init_pfn == ULONG_MAX) {
 
1275		pgdat_init_report_one_done();
1276		return 0;
1277	}
1278
1279	/* Bind memory initialisation thread to a local node if possible */
1280	if (!cpumask_empty(cpumask))
1281		set_cpus_allowed_ptr(current, cpumask);
1282
1283	/* Sanity check boundaries */
1284	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1285	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1286	pgdat->first_deferred_pfn = ULONG_MAX;
1287
1288	/* Only the highest zone is deferred so find it */
1289	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1290		zone = pgdat->node_zones + zid;
1291		if (first_init_pfn < zone_end_pfn(zone))
1292			break;
1293	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1294
1295	for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1296		unsigned long pfn, end_pfn;
1297		struct page *page = NULL;
1298		struct page *free_base_page = NULL;
1299		unsigned long free_base_pfn = 0;
1300		int nr_to_free = 0;
1301
1302		end_pfn = min(walk_end, zone_end_pfn(zone));
1303		pfn = first_init_pfn;
1304		if (pfn < walk_start)
1305			pfn = walk_start;
1306		if (pfn < zone->zone_start_pfn)
1307			pfn = zone->zone_start_pfn;
1308
1309		for (; pfn < end_pfn; pfn++) {
1310			if (!pfn_valid_within(pfn))
1311				goto free_range;
1312
1313			/*
1314			 * Ensure pfn_valid is checked every
1315			 * MAX_ORDER_NR_PAGES for memory holes
1316			 */
1317			if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1318				if (!pfn_valid(pfn)) {
1319					page = NULL;
1320					goto free_range;
1321				}
1322			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1323
1324			if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1325				page = NULL;
1326				goto free_range;
1327			}
1328
1329			/* Minimise pfn page lookups and scheduler checks */
1330			if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1331				page++;
1332			} else {
1333				nr_pages += nr_to_free;
1334				deferred_free_range(free_base_page,
1335						free_base_pfn, nr_to_free);
1336				free_base_page = NULL;
1337				free_base_pfn = nr_to_free = 0;
 
1338
1339				page = pfn_to_page(pfn);
1340				cond_resched();
1341			}
 
 
 
 
 
1342
1343			if (page->flags) {
1344				VM_BUG_ON(page_zone(page) != zone);
1345				goto free_range;
1346			}
1347
1348			__init_single_page(page, pfn, zid, nid);
1349			if (!free_base_page) {
1350				free_base_page = page;
1351				free_base_pfn = pfn;
1352				nr_to_free = 0;
1353			}
1354			nr_to_free++;
1355
1356			/* Where possible, batch up pages for a single free */
1357			continue;
1358free_range:
1359			/* Free the current block of pages to allocator */
1360			nr_pages += nr_to_free;
1361			deferred_free_range(free_base_page, free_base_pfn,
1362								nr_to_free);
1363			free_base_page = NULL;
1364			free_base_pfn = nr_to_free = 0;
 
1365		}
1366
1367		first_init_pfn = max(end_pfn, first_init_pfn);
 
1368	}
1369
1370	/* Sanity check that the next zone really is unpopulated */
1371	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
 
 
 
 
 
 
 
 
1372
1373	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1374					jiffies_to_msecs(jiffies - start));
1375
1376	pgdat_init_report_one_done();
1377	return 0;
 
 
 
 
 
 
 
 
1378}
 
1379#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1380
1381void __init page_alloc_init_late(void)
1382{
1383	struct zone *zone;
1384
1385#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1386	int nid;
1387
1388	/* There will be num_node_state(N_MEMORY) threads */
1389	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1390	for_each_node_state(nid, N_MEMORY) {
1391		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1392	}
1393
1394	/* Block until all are initialised */
1395	wait_for_completion(&pgdat_init_all_done_comp);
1396
 
 
 
 
 
 
1397	/* Reinit limits that are based on free pages after the kernel is up */
1398	files_maxfiles_init();
1399#endif
 
 
 
 
1400
1401	for_each_populated_zone(zone)
1402		set_zone_contiguous(zone);
1403}
1404
1405#ifdef CONFIG_CMA
1406/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1407void __init init_cma_reserved_pageblock(struct page *page)
1408{
1409	unsigned i = pageblock_nr_pages;
1410	struct page *p = page;
1411
1412	do {
1413		__ClearPageReserved(p);
1414		set_page_count(p, 0);
1415	} while (++p, --i);
1416
1417	set_pageblock_migratetype(page, MIGRATE_CMA);
1418
1419	if (pageblock_order >= MAX_ORDER) {
1420		i = pageblock_nr_pages;
1421		p = page;
1422		do {
1423			set_page_refcounted(p);
1424			__free_pages(p, MAX_ORDER - 1);
1425			p += MAX_ORDER_NR_PAGES;
1426		} while (i -= MAX_ORDER_NR_PAGES);
1427	} else {
1428		set_page_refcounted(page);
1429		__free_pages(page, pageblock_order);
1430	}
1431
1432	adjust_managed_page_count(page, pageblock_nr_pages);
1433}
1434#endif
1435
1436/*
1437 * The order of subdivision here is critical for the IO subsystem.
1438 * Please do not alter this order without good reasons and regression
1439 * testing. Specifically, as large blocks of memory are subdivided,
1440 * the order in which smaller blocks are delivered depends on the order
1441 * they're subdivided in this function. This is the primary factor
1442 * influencing the order in which pages are delivered to the IO
1443 * subsystem according to empirical testing, and this is also justified
1444 * by considering the behavior of a buddy system containing a single
1445 * large block of memory acted on by a series of small allocations.
1446 * This behavior is a critical factor in sglist merging's success.
1447 *
1448 * -- nyc
1449 */
1450static inline void expand(struct zone *zone, struct page *page,
1451	int low, int high, struct free_area *area,
1452	int migratetype)
1453{
1454	unsigned long size = 1 << high;
1455
1456	while (high > low) {
1457		area--;
1458		high--;
1459		size >>= 1;
1460		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1461
1462		if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
1463			debug_guardpage_enabled() &&
1464			high < debug_guardpage_minorder()) {
1465			/*
1466			 * Mark as guard pages (or page), that will allow to
1467			 * merge back to allocator when buddy will be freed.
1468			 * Corresponding page table entries will not be touched,
1469			 * pages will stay not present in virtual address space
1470			 */
1471			set_page_guard(zone, &page[size], high, migratetype);
1472			continue;
1473		}
1474		list_add(&page[size].lru, &area->free_list[migratetype]);
1475		area->nr_free++;
1476		set_page_order(&page[size], high);
1477	}
1478}
1479
1480/*
1481 * This page is about to be returned from the page allocator
1482 */
1483static inline int check_new_page(struct page *page)
1484{
1485	const char *bad_reason = NULL;
1486	unsigned long bad_flags = 0;
1487
1488	if (unlikely(atomic_read(&page->_mapcount) != -1))
1489		bad_reason = "nonzero mapcount";
1490	if (unlikely(page->mapping != NULL))
1491		bad_reason = "non-NULL mapping";
1492	if (unlikely(page_ref_count(page) != 0))
1493		bad_reason = "nonzero _count";
1494	if (unlikely(page->flags & __PG_HWPOISON)) {
1495		bad_reason = "HWPoisoned (hardware-corrupted)";
1496		bad_flags = __PG_HWPOISON;
 
 
 
1497	}
1498	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1499		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1500		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1501	}
1502#ifdef CONFIG_MEMCG
1503	if (unlikely(page->mem_cgroup))
1504		bad_reason = "page still charged to cgroup";
1505#endif
1506	if (unlikely(bad_reason)) {
1507		bad_page(page, bad_reason, bad_flags);
1508		return 1;
1509	}
1510	return 0;
 
 
 
 
 
 
 
 
 
1511}
1512
1513static inline bool free_pages_prezeroed(bool poisoned)
1514{
1515	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1516		page_poisoning_enabled() && poisoned;
 
 
 
 
 
 
1517}
1518
1519static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1520								int alloc_flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1521{
1522	int i;
1523	bool poisoned = true;
1524
1525	for (i = 0; i < (1 << order); i++) {
1526		struct page *p = page + i;
 
1527		if (unlikely(check_new_page(p)))
1528			return 1;
1529		if (poisoned)
1530			poisoned &= page_is_poisoned(p);
1531	}
1532
 
 
 
 
 
 
1533	set_page_private(page, 0);
1534	set_page_refcounted(page);
1535
1536	arch_alloc_page(page, order);
1537	kernel_map_pages(page, 1 << order, 1);
1538	kernel_poison_pages(page, 1 << order, 1);
1539	kasan_alloc_pages(page, order);
 
 
1540
1541	if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
 
 
 
 
 
 
 
1542		for (i = 0; i < (1 << order); i++)
1543			clear_highpage(page + i);
1544
1545	if (order && (gfp_flags & __GFP_COMP))
1546		prep_compound_page(page, order);
1547
1548	set_page_owner(page, order, gfp_flags);
1549
1550	/*
1551	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1552	 * allocate the page. The expectation is that the caller is taking
1553	 * steps that will free more memory. The caller should avoid the page
1554	 * being used for !PFMEMALLOC purposes.
1555	 */
1556	if (alloc_flags & ALLOC_NO_WATERMARKS)
1557		set_page_pfmemalloc(page);
1558	else
1559		clear_page_pfmemalloc(page);
1560
1561	return 0;
1562}
1563
1564/*
1565 * Go through the free lists for the given migratetype and remove
1566 * the smallest available page from the freelists
1567 */
1568static inline
1569struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1570						int migratetype)
1571{
1572	unsigned int current_order;
1573	struct free_area *area;
1574	struct page *page;
1575
1576	/* Find a page of the appropriate size in the preferred list */
1577	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1578		area = &(zone->free_area[current_order]);
1579		page = list_first_entry_or_null(&area->free_list[migratetype],
1580							struct page, lru);
1581		if (!page)
1582			continue;
1583		list_del(&page->lru);
1584		rmv_page_order(page);
1585		area->nr_free--;
1586		expand(zone, page, order, current_order, area, migratetype);
1587		set_pcppage_migratetype(page, migratetype);
1588		return page;
1589	}
1590
1591	return NULL;
1592}
1593
1594
1595/*
1596 * This array describes the order lists are fallen back to when
1597 * the free lists for the desirable migrate type are depleted
1598 */
1599static int fallbacks[MIGRATE_TYPES][4] = {
1600	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
1601	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
1602	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1603#ifdef CONFIG_CMA
1604	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
1605#endif
1606#ifdef CONFIG_MEMORY_ISOLATION
1607	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
1608#endif
1609};
1610
1611#ifdef CONFIG_CMA
1612static struct page *__rmqueue_cma_fallback(struct zone *zone,
1613					unsigned int order)
1614{
1615	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1616}
1617#else
1618static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1619					unsigned int order) { return NULL; }
1620#endif
1621
1622/*
1623 * Move the free pages in a range to the free lists of the requested type.
1624 * Note that start_page and end_pages are not aligned on a pageblock
1625 * boundary. If alignment is required, use move_freepages_block()
1626 */
1627int move_freepages(struct zone *zone,
1628			  struct page *start_page, struct page *end_page,
1629			  int migratetype)
1630{
1631	struct page *page;
1632	unsigned int order;
1633	int pages_moved = 0;
1634
1635#ifndef CONFIG_HOLES_IN_ZONE
1636	/*
1637	 * page_zone is not safe to call in this context when
1638	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1639	 * anyway as we check zone boundaries in move_freepages_block().
1640	 * Remove at a later date when no bug reports exist related to
1641	 * grouping pages by mobility
1642	 */
1643	VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
 
 
1644#endif
1645
 
 
 
1646	for (page = start_page; page <= end_page;) {
1647		/* Make sure we are not inadvertently changing nodes */
1648		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1649
1650		if (!pfn_valid_within(page_to_pfn(page))) {
1651			page++;
1652			continue;
1653		}
1654
 
 
 
1655		if (!PageBuddy(page)) {
 
 
 
 
 
 
 
 
 
1656			page++;
1657			continue;
1658		}
1659
1660		order = page_order(page);
1661		list_move(&page->lru,
1662			  &zone->free_area[order].free_list[migratetype]);
1663		page += 1 << order;
1664		pages_moved += 1 << order;
1665	}
1666
1667	return pages_moved;
1668}
1669
1670int move_freepages_block(struct zone *zone, struct page *page,
1671				int migratetype)
1672{
1673	unsigned long start_pfn, end_pfn;
1674	struct page *start_page, *end_page;
1675
1676	start_pfn = page_to_pfn(page);
1677	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1678	start_page = pfn_to_page(start_pfn);
1679	end_page = start_page + pageblock_nr_pages - 1;
1680	end_pfn = start_pfn + pageblock_nr_pages - 1;
1681
1682	/* Do not cross zone boundaries */
1683	if (!zone_spans_pfn(zone, start_pfn))
1684		start_page = page;
1685	if (!zone_spans_pfn(zone, end_pfn))
1686		return 0;
1687
1688	return move_freepages(zone, start_page, end_page, migratetype);
 
1689}
1690
1691static void change_pageblock_range(struct page *pageblock_page,
1692					int start_order, int migratetype)
1693{
1694	int nr_pageblocks = 1 << (start_order - pageblock_order);
1695
1696	while (nr_pageblocks--) {
1697		set_pageblock_migratetype(pageblock_page, migratetype);
1698		pageblock_page += pageblock_nr_pages;
1699	}
1700}
1701
1702/*
1703 * When we are falling back to another migratetype during allocation, try to
1704 * steal extra free pages from the same pageblocks to satisfy further
1705 * allocations, instead of polluting multiple pageblocks.
1706 *
1707 * If we are stealing a relatively large buddy page, it is likely there will
1708 * be more free pages in the pageblock, so try to steal them all. For
1709 * reclaimable and unmovable allocations, we steal regardless of page size,
1710 * as fragmentation caused by those allocations polluting movable pageblocks
1711 * is worse than movable allocations stealing from unmovable and reclaimable
1712 * pageblocks.
1713 */
1714static bool can_steal_fallback(unsigned int order, int start_mt)
1715{
1716	/*
1717	 * Leaving this order check is intended, although there is
1718	 * relaxed order check in next check. The reason is that
1719	 * we can actually steal whole pageblock if this condition met,
1720	 * but, below check doesn't guarantee it and that is just heuristic
1721	 * so could be changed anytime.
1722	 */
1723	if (order >= pageblock_order)
1724		return true;
1725
1726	if (order >= pageblock_order / 2 ||
1727		start_mt == MIGRATE_RECLAIMABLE ||
1728		start_mt == MIGRATE_UNMOVABLE ||
1729		page_group_by_mobility_disabled)
1730		return true;
1731
1732	return false;
1733}
1734
1735/*
1736 * This function implements actual steal behaviour. If order is large enough,
1737 * we can steal whole pageblock. If not, we first move freepages in this
1738 * pageblock and check whether half of pages are moved or not. If half of
1739 * pages are moved, we can change migratetype of pageblock and permanently
1740 * use it's pages as requested migratetype in the future.
 
1741 */
1742static void steal_suitable_fallback(struct zone *zone, struct page *page,
1743							  int start_type)
1744{
1745	unsigned int current_order = page_order(page);
1746	int pages;
 
 
 
 
 
 
 
 
 
 
 
1747
1748	/* Take ownership for orders >= pageblock_order */
1749	if (current_order >= pageblock_order) {
1750		change_pageblock_range(page, current_order, start_type);
1751		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1752	}
1753
1754	pages = move_freepages_block(zone, page, start_type);
 
 
1755
1756	/* Claim the whole block if over half of it is free */
1757	if (pages >= (1 << (pageblock_order-1)) ||
 
 
 
1758			page_group_by_mobility_disabled)
1759		set_pageblock_migratetype(page, start_type);
 
 
 
 
 
 
1760}
1761
1762/*
1763 * Check whether there is a suitable fallback freepage with requested order.
1764 * If only_stealable is true, this function returns fallback_mt only if
1765 * we can steal other freepages all together. This would help to reduce
1766 * fragmentation due to mixed migratetype pages in one pageblock.
1767 */
1768int find_suitable_fallback(struct free_area *area, unsigned int order,
1769			int migratetype, bool only_stealable, bool *can_steal)
1770{
1771	int i;
1772	int fallback_mt;
1773
1774	if (area->nr_free == 0)
1775		return -1;
1776
1777	*can_steal = false;
1778	for (i = 0;; i++) {
1779		fallback_mt = fallbacks[migratetype][i];
1780		if (fallback_mt == MIGRATE_TYPES)
1781			break;
1782
1783		if (list_empty(&area->free_list[fallback_mt]))
1784			continue;
1785
1786		if (can_steal_fallback(order, migratetype))
1787			*can_steal = true;
1788
1789		if (!only_stealable)
1790			return fallback_mt;
1791
1792		if (*can_steal)
1793			return fallback_mt;
1794	}
1795
1796	return -1;
1797}
1798
1799/*
1800 * Reserve a pageblock for exclusive use of high-order atomic allocations if
1801 * there are no empty page blocks that contain a page with a suitable order
1802 */
1803static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
1804				unsigned int alloc_order)
1805{
1806	int mt;
1807	unsigned long max_managed, flags;
1808
1809	/*
1810	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1811	 * Check is race-prone but harmless.
1812	 */
1813	max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
1814	if (zone->nr_reserved_highatomic >= max_managed)
1815		return;
1816
1817	spin_lock_irqsave(&zone->lock, flags);
1818
1819	/* Recheck the nr_reserved_highatomic limit under the lock */
1820	if (zone->nr_reserved_highatomic >= max_managed)
1821		goto out_unlock;
1822
1823	/* Yoink! */
1824	mt = get_pageblock_migratetype(page);
1825	if (mt != MIGRATE_HIGHATOMIC &&
1826			!is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
1827		zone->nr_reserved_highatomic += pageblock_nr_pages;
1828		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1829		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
1830	}
1831
1832out_unlock:
1833	spin_unlock_irqrestore(&zone->lock, flags);
1834}
1835
1836/*
1837 * Used when an allocation is about to fail under memory pressure. This
1838 * potentially hurts the reliability of high-order allocations when under
1839 * intense memory pressure but failed atomic allocations should be easier
1840 * to recover from than an OOM.
 
 
 
1841 */
1842static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
 
1843{
1844	struct zonelist *zonelist = ac->zonelist;
1845	unsigned long flags;
1846	struct zoneref *z;
1847	struct zone *zone;
1848	struct page *page;
1849	int order;
 
1850
1851	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
1852								ac->nodemask) {
1853		/* Preserve at least one pageblock */
1854		if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
 
 
 
 
1855			continue;
1856
1857		spin_lock_irqsave(&zone->lock, flags);
1858		for (order = 0; order < MAX_ORDER; order++) {
1859			struct free_area *area = &(zone->free_area[order]);
1860
1861			page = list_first_entry_or_null(
1862					&area->free_list[MIGRATE_HIGHATOMIC],
1863					struct page, lru);
1864			if (!page)
1865				continue;
1866
1867			/*
1868			 * It should never happen but changes to locking could
1869			 * inadvertently allow a per-cpu drain to add pages
1870			 * to MIGRATE_HIGHATOMIC while unreserving so be safe
1871			 * and watch for underflows.
 
1872			 */
1873			zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
1874				zone->nr_reserved_highatomic);
 
 
 
 
 
 
 
 
 
 
1875
1876			/*
1877			 * Convert to ac->migratetype and avoid the normal
1878			 * pageblock stealing heuristics. Minimally, the caller
1879			 * is doing the work and needs the pages. More
1880			 * importantly, if the block was always converted to
1881			 * MIGRATE_UNMOVABLE or another type then the number
1882			 * of pageblocks that cannot be completely freed
1883			 * may increase.
1884			 */
1885			set_pageblock_migratetype(page, ac->migratetype);
1886			move_freepages_block(zone, page, ac->migratetype);
1887			spin_unlock_irqrestore(&zone->lock, flags);
1888			return;
 
 
 
1889		}
1890		spin_unlock_irqrestore(&zone->lock, flags);
1891	}
 
 
1892}
1893
1894/* Remove an element from the buddy allocator from the fallback list */
1895static inline struct page *
1896__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
 
 
 
 
 
 
 
 
 
1897{
1898	struct free_area *area;
1899	unsigned int current_order;
1900	struct page *page;
1901	int fallback_mt;
1902	bool can_steal;
1903
1904	/* Find the largest possible block of pages in the other list */
1905	for (current_order = MAX_ORDER-1;
1906				current_order >= order && current_order <= MAX_ORDER-1;
 
 
 
1907				--current_order) {
1908		area = &(zone->free_area[current_order]);
1909		fallback_mt = find_suitable_fallback(area, current_order,
1910				start_migratetype, false, &can_steal);
1911		if (fallback_mt == -1)
1912			continue;
1913
1914		page = list_first_entry(&area->free_list[fallback_mt],
1915						struct page, lru);
1916		if (can_steal)
1917			steal_suitable_fallback(zone, page, start_migratetype);
 
 
 
 
 
 
 
 
 
 
 
 
1918
1919		/* Remove the page from the freelists */
1920		area->nr_free--;
1921		list_del(&page->lru);
1922		rmv_page_order(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1923
1924		expand(zone, page, order, current_order, area,
1925					start_migratetype);
1926		/*
1927		 * The pcppage_migratetype may differ from pageblock's
1928		 * migratetype depending on the decisions in
1929		 * find_suitable_fallback(). This is OK as long as it does not
1930		 * differ for MIGRATE_CMA pageblocks. Those can be used as
1931		 * fallback only via special __rmqueue_cma_fallback() function
1932		 */
1933		set_pcppage_migratetype(page, start_migratetype);
1934
1935		trace_mm_page_alloc_extfrag(page, order, current_order,
1936			start_migratetype, fallback_mt);
1937
1938		return page;
1939	}
1940
1941	return NULL;
1942}
1943
1944/*
1945 * Do the hard work of removing an element from the buddy allocator.
1946 * Call me with the zone->lock already held.
1947 */
1948static struct page *__rmqueue(struct zone *zone, unsigned int order,
1949				int migratetype)
1950{
1951	struct page *page;
1952
 
1953	page = __rmqueue_smallest(zone, order, migratetype);
1954	if (unlikely(!page)) {
1955		if (migratetype == MIGRATE_MOVABLE)
1956			page = __rmqueue_cma_fallback(zone, order);
1957
1958		if (!page)
1959			page = __rmqueue_fallback(zone, order, migratetype);
1960	}
1961
1962	trace_mm_page_alloc_zone_locked(page, order, migratetype);
1963	return page;
1964}
1965
1966/*
1967 * Obtain a specified number of elements from the buddy allocator, all under
1968 * a single hold of the lock, for efficiency.  Add them to the supplied list.
1969 * Returns the number of new pages which were placed at *list.
1970 */
1971static int rmqueue_bulk(struct zone *zone, unsigned int order,
1972			unsigned long count, struct list_head *list,
1973			int migratetype, bool cold)
1974{
1975	int i;
1976
1977	spin_lock(&zone->lock);
1978	for (i = 0; i < count; ++i) {
1979		struct page *page = __rmqueue(zone, order, migratetype);
1980		if (unlikely(page == NULL))
1981			break;
1982
 
 
 
1983		/*
1984		 * Split buddy pages returned by expand() are received here
1985		 * in physical page order. The page is added to the callers and
1986		 * list and the list head then moves forward. From the callers
1987		 * perspective, the linked list is ordered by page number in
1988		 * some conditions. This is useful for IO devices that can
1989		 * merge IO requests if the physical pages are ordered
1990		 * properly.
 
1991		 */
1992		if (likely(!cold))
1993			list_add(&page->lru, list);
1994		else
1995			list_add_tail(&page->lru, list);
1996		list = &page->lru;
1997		if (is_migrate_cma(get_pcppage_migratetype(page)))
1998			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1999					      -(1 << order));
2000	}
 
 
 
 
 
 
 
2001	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2002	spin_unlock(&zone->lock);
2003	return i;
2004}
2005
2006#ifdef CONFIG_NUMA
2007/*
2008 * Called from the vmstat counter updater to drain pagesets of this
2009 * currently executing processor on remote nodes after they have
2010 * expired.
2011 *
2012 * Note that this function must be called with the thread pinned to
2013 * a single processor.
2014 */
2015void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2016{
2017	unsigned long flags;
2018	int to_drain, batch;
2019
2020	local_irq_save(flags);
2021	batch = READ_ONCE(pcp->batch);
2022	to_drain = min(pcp->count, batch);
2023	if (to_drain > 0) {
2024		free_pcppages_bulk(zone, to_drain, pcp);
2025		pcp->count -= to_drain;
2026	}
2027	local_irq_restore(flags);
2028}
2029#endif
2030
2031/*
2032 * Drain pcplists of the indicated processor and zone.
2033 *
2034 * The processor must either be the current processor and the
2035 * thread pinned to the current processor or a processor that
2036 * is not online.
2037 */
2038static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2039{
2040	unsigned long flags;
2041	struct per_cpu_pageset *pset;
2042	struct per_cpu_pages *pcp;
2043
2044	local_irq_save(flags);
2045	pset = per_cpu_ptr(zone->pageset, cpu);
2046
2047	pcp = &pset->pcp;
2048	if (pcp->count) {
2049		free_pcppages_bulk(zone, pcp->count, pcp);
2050		pcp->count = 0;
2051	}
2052	local_irq_restore(flags);
2053}
2054
2055/*
2056 * Drain pcplists of all zones on the indicated processor.
2057 *
2058 * The processor must either be the current processor and the
2059 * thread pinned to the current processor or a processor that
2060 * is not online.
2061 */
2062static void drain_pages(unsigned int cpu)
2063{
2064	struct zone *zone;
2065
2066	for_each_populated_zone(zone) {
2067		drain_pages_zone(cpu, zone);
2068	}
2069}
2070
2071/*
2072 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2073 *
2074 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2075 * the single zone's pages.
2076 */
2077void drain_local_pages(struct zone *zone)
2078{
2079	int cpu = smp_processor_id();
2080
2081	if (zone)
2082		drain_pages_zone(cpu, zone);
2083	else
2084		drain_pages(cpu);
2085}
2086
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2087/*
2088 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2089 *
2090 * When zone parameter is non-NULL, spill just the single zone's pages.
2091 *
2092 * Note that this code is protected against sending an IPI to an offline
2093 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2094 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2095 * nothing keeps CPUs from showing up after we populated the cpumask and
2096 * before the call to on_each_cpu_mask().
2097 */
2098void drain_all_pages(struct zone *zone)
2099{
2100	int cpu;
2101
2102	/*
2103	 * Allocate in the BSS so we wont require allocation in
2104	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2105	 */
2106	static cpumask_t cpus_with_pcps;
2107
2108	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2109	 * We don't care about racing with CPU hotplug event
2110	 * as offline notification will cause the notified
2111	 * cpu to drain that CPU pcps and on_each_cpu_mask
2112	 * disables preemption as part of its processing
2113	 */
2114	for_each_online_cpu(cpu) {
2115		struct per_cpu_pageset *pcp;
2116		struct zone *z;
2117		bool has_pcps = false;
2118
2119		if (zone) {
2120			pcp = per_cpu_ptr(zone->pageset, cpu);
2121			if (pcp->pcp.count)
2122				has_pcps = true;
2123		} else {
2124			for_each_populated_zone(z) {
2125				pcp = per_cpu_ptr(z->pageset, cpu);
2126				if (pcp->pcp.count) {
2127					has_pcps = true;
2128					break;
2129				}
2130			}
2131		}
2132
2133		if (has_pcps)
2134			cpumask_set_cpu(cpu, &cpus_with_pcps);
2135		else
2136			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2137	}
2138	on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2139								zone, 1);
 
 
 
 
 
 
 
 
2140}
2141
2142#ifdef CONFIG_HIBERNATION
2143
 
 
 
 
 
2144void mark_free_pages(struct zone *zone)
2145{
2146	unsigned long pfn, max_zone_pfn;
2147	unsigned long flags;
2148	unsigned int order, t;
2149	struct page *page;
2150
2151	if (zone_is_empty(zone))
2152		return;
2153
2154	spin_lock_irqsave(&zone->lock, flags);
2155
2156	max_zone_pfn = zone_end_pfn(zone);
2157	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2158		if (pfn_valid(pfn)) {
2159			page = pfn_to_page(pfn);
 
 
 
 
 
 
 
 
 
2160			if (!swsusp_page_is_forbidden(page))
2161				swsusp_unset_page_free(page);
2162		}
2163
2164	for_each_migratetype_order(order, t) {
2165		list_for_each_entry(page,
2166				&zone->free_area[order].free_list[t], lru) {
2167			unsigned long i;
2168
2169			pfn = page_to_pfn(page);
2170			for (i = 0; i < (1UL << order); i++)
 
 
 
 
2171				swsusp_set_page_free(pfn_to_page(pfn + i));
 
2172		}
2173	}
2174	spin_unlock_irqrestore(&zone->lock, flags);
2175}
2176#endif /* CONFIG_PM */
2177
2178/*
2179 * Free a 0-order page
2180 * cold == true ? free a cold page : free a hot page
2181 */
2182void free_hot_cold_page(struct page *page, bool cold)
2183{
2184	struct zone *zone = page_zone(page);
2185	struct per_cpu_pages *pcp;
2186	unsigned long flags;
2187	unsigned long pfn = page_to_pfn(page);
2188	int migratetype;
2189
2190	if (!free_pages_prepare(page, 0))
2191		return;
2192
2193	migratetype = get_pfnblock_migratetype(page, pfn);
2194	set_pcppage_migratetype(page, migratetype);
2195	local_irq_save(flags);
 
 
 
 
 
 
 
 
 
2196	__count_vm_event(PGFREE);
2197
2198	/*
2199	 * We only track unmovable, reclaimable and movable on pcp lists.
2200	 * Free ISOLATE pages back to the allocator because they are being
2201	 * offlined but treat RESERVE as movable pages so we can get those
2202	 * areas back if necessary. Otherwise, we may have to free
2203	 * excessively into the page allocator
2204	 */
2205	if (migratetype >= MIGRATE_PCPTYPES) {
2206		if (unlikely(is_migrate_isolate(migratetype))) {
2207			free_one_page(zone, page, pfn, 0, migratetype);
2208			goto out;
2209		}
2210		migratetype = MIGRATE_MOVABLE;
2211	}
2212
2213	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2214	if (!cold)
2215		list_add(&page->lru, &pcp->lists[migratetype]);
2216	else
2217		list_add_tail(&page->lru, &pcp->lists[migratetype]);
2218	pcp->count++;
2219	if (pcp->count >= pcp->high) {
2220		unsigned long batch = READ_ONCE(pcp->batch);
2221		free_pcppages_bulk(zone, batch, pcp);
2222		pcp->count -= batch;
2223	}
 
 
 
 
 
 
 
 
 
 
 
 
2224
2225out:
 
2226	local_irq_restore(flags);
2227}
2228
2229/*
2230 * Free a list of 0-order pages
2231 */
2232void free_hot_cold_page_list(struct list_head *list, bool cold)
2233{
2234	struct page *page, *next;
 
 
 
 
 
 
 
 
 
 
2235
 
2236	list_for_each_entry_safe(page, next, list, lru) {
2237		trace_mm_page_free_batched(page, cold);
2238		free_hot_cold_page(page, cold);
 
 
 
 
 
 
 
 
 
 
 
 
 
2239	}
 
2240}
2241
2242/*
2243 * split_page takes a non-compound higher-order page, and splits it into
2244 * n (1<<order) sub-pages: page[0..n]
2245 * Each sub-page must be freed individually.
2246 *
2247 * Note: this is probably too low level an operation for use in drivers.
2248 * Please consult with lkml before using this in your driver.
2249 */
2250void split_page(struct page *page, unsigned int order)
2251{
2252	int i;
2253	gfp_t gfp_mask;
2254
2255	VM_BUG_ON_PAGE(PageCompound(page), page);
2256	VM_BUG_ON_PAGE(!page_count(page), page);
2257
2258#ifdef CONFIG_KMEMCHECK
2259	/*
2260	 * Split shadow pages too, because free(page[0]) would
2261	 * otherwise free the whole shadow.
2262	 */
2263	if (kmemcheck_page_is_tracked(page))
2264		split_page(virt_to_page(page[0].shadow), order);
2265#endif
2266
2267	gfp_mask = get_page_owner_gfp(page);
2268	set_page_owner(page, 0, gfp_mask);
2269	for (i = 1; i < (1 << order); i++) {
2270		set_page_refcounted(page + i);
2271		set_page_owner(page + i, 0, gfp_mask);
2272	}
2273}
2274EXPORT_SYMBOL_GPL(split_page);
2275
2276int __isolate_free_page(struct page *page, unsigned int order)
2277{
2278	unsigned long watermark;
2279	struct zone *zone;
2280	int mt;
2281
2282	BUG_ON(!PageBuddy(page));
2283
2284	zone = page_zone(page);
2285	mt = get_pageblock_migratetype(page);
2286
2287	if (!is_migrate_isolate(mt)) {
2288		/* Obey watermarks as if the page was being allocated */
2289		watermark = low_wmark_pages(zone) + (1 << order);
2290		if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
 
 
 
 
 
2291			return 0;
2292
2293		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2294	}
2295
2296	/* Remove page from free list */
2297	list_del(&page->lru);
2298	zone->free_area[order].nr_free--;
2299	rmv_page_order(page);
2300
2301	set_page_owner(page, order, __GFP_MOVABLE);
2302
2303	/* Set the pageblock if the isolated page is at least a pageblock */
 
2304	if (order >= pageblock_order - 1) {
2305		struct page *endpage = page + (1 << order) - 1;
2306		for (; page < endpage; page += pageblock_nr_pages) {
2307			int mt = get_pageblock_migratetype(page);
2308			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
 
2309				set_pageblock_migratetype(page,
2310							  MIGRATE_MOVABLE);
2311		}
2312	}
2313
2314
2315	return 1UL << order;
2316}
2317
2318/*
2319 * Similar to split_page except the page is already free. As this is only
2320 * being used for migration, the migratetype of the block also changes.
2321 * As this is called with interrupts disabled, the caller is responsible
2322 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2323 * are enabled.
2324 *
2325 * Note: this is probably too low level an operation for use in drivers.
2326 * Please consult with lkml before using this in your driver.
2327 */
2328int split_free_page(struct page *page)
2329{
2330	unsigned int order;
2331	int nr_pages;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2332
2333	order = page_order(page);
 
2334
2335	nr_pages = __isolate_free_page(page, order);
2336	if (!nr_pages)
2337		return 0;
 
 
 
 
 
 
2338
2339	/* Split into individual pages */
2340	set_page_refcounted(page);
2341	split_page(page, order);
2342	return nr_pages;
 
 
 
 
 
 
2343}
2344
2345/*
2346 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2347 */
2348static inline
2349struct page *buffered_rmqueue(struct zone *preferred_zone,
2350			struct zone *zone, unsigned int order,
2351			gfp_t gfp_flags, int alloc_flags, int migratetype)
 
2352{
2353	unsigned long flags;
2354	struct page *page;
2355	bool cold = ((gfp_flags & __GFP_COLD) != 0);
2356
2357	if (likely(order == 0)) {
2358		struct per_cpu_pages *pcp;
2359		struct list_head *list;
 
 
2360
2361		local_irq_save(flags);
2362		pcp = &this_cpu_ptr(zone->pageset)->pcp;
2363		list = &pcp->lists[migratetype];
2364		if (list_empty(list)) {
2365			pcp->count += rmqueue_bulk(zone, 0,
2366					pcp->batch, list,
2367					migratetype, cold);
2368			if (unlikely(list_empty(list)))
2369				goto failed;
2370		}
2371
2372		if (cold)
2373			page = list_last_entry(list, struct page, lru);
2374		else
2375			page = list_first_entry(list, struct page, lru);
2376
2377		list_del(&page->lru);
2378		pcp->count--;
2379	} else {
2380		/*
2381		 * We most definitely don't want callers attempting to
2382		 * allocate greater than order-1 page units with __GFP_NOFAIL.
2383		 */
2384		WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2385		spin_lock_irqsave(&zone->lock, flags);
2386
 
2387		page = NULL;
2388		if (alloc_flags & ALLOC_HARDER) {
2389			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2390			if (page)
2391				trace_mm_page_alloc_zone_locked(page, order, migratetype);
2392		}
2393		if (!page)
2394			page = __rmqueue(zone, order, migratetype);
2395		spin_unlock(&zone->lock);
2396		if (!page)
2397			goto failed;
2398		__mod_zone_freepage_state(zone, -(1 << order),
2399					  get_pcppage_migratetype(page));
2400	}
2401
2402	__mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
2403	if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
2404	    !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2405		set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2406
2407	__count_zone_vm_events(PGALLOC, zone, 1 << order);
2408	zone_statistics(preferred_zone, zone, gfp_flags);
2409	local_irq_restore(flags);
2410
2411	VM_BUG_ON_PAGE(bad_range(zone, page), page);
 
2412	return page;
2413
2414failed:
2415	local_irq_restore(flags);
2416	return NULL;
2417}
2418
2419#ifdef CONFIG_FAIL_PAGE_ALLOC
2420
2421static struct {
2422	struct fault_attr attr;
2423
2424	bool ignore_gfp_highmem;
2425	bool ignore_gfp_reclaim;
2426	u32 min_order;
2427} fail_page_alloc = {
2428	.attr = FAULT_ATTR_INITIALIZER,
2429	.ignore_gfp_reclaim = true,
2430	.ignore_gfp_highmem = true,
2431	.min_order = 1,
2432};
2433
2434static int __init setup_fail_page_alloc(char *str)
2435{
2436	return setup_fault_attr(&fail_page_alloc.attr, str);
2437}
2438__setup("fail_page_alloc=", setup_fail_page_alloc);
2439
2440static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2441{
2442	if (order < fail_page_alloc.min_order)
2443		return false;
2444	if (gfp_mask & __GFP_NOFAIL)
2445		return false;
2446	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2447		return false;
2448	if (fail_page_alloc.ignore_gfp_reclaim &&
2449			(gfp_mask & __GFP_DIRECT_RECLAIM))
2450		return false;
2451
2452	return should_fail(&fail_page_alloc.attr, 1 << order);
2453}
2454
2455#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2456
2457static int __init fail_page_alloc_debugfs(void)
2458{
2459	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2460	struct dentry *dir;
2461
2462	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2463					&fail_page_alloc.attr);
2464	if (IS_ERR(dir))
2465		return PTR_ERR(dir);
2466
2467	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2468				&fail_page_alloc.ignore_gfp_reclaim))
2469		goto fail;
2470	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2471				&fail_page_alloc.ignore_gfp_highmem))
2472		goto fail;
2473	if (!debugfs_create_u32("min-order", mode, dir,
2474				&fail_page_alloc.min_order))
2475		goto fail;
2476
2477	return 0;
2478fail:
2479	debugfs_remove_recursive(dir);
2480
2481	return -ENOMEM;
2482}
2483
2484late_initcall(fail_page_alloc_debugfs);
2485
2486#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2487
2488#else /* CONFIG_FAIL_PAGE_ALLOC */
2489
2490static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2491{
2492	return false;
2493}
2494
2495#endif /* CONFIG_FAIL_PAGE_ALLOC */
2496
2497/*
2498 * Return true if free base pages are above 'mark'. For high-order checks it
2499 * will return true of the order-0 watermark is reached and there is at least
2500 * one free page of a suitable size. Checking now avoids taking the zone lock
2501 * to check in the allocation paths if no pages are free.
2502 */
2503static bool __zone_watermark_ok(struct zone *z, unsigned int order,
2504			unsigned long mark, int classzone_idx, int alloc_flags,
2505			long free_pages)
2506{
2507	long min = mark;
2508	int o;
2509	const int alloc_harder = (alloc_flags & ALLOC_HARDER);
2510
2511	/* free_pages may go negative - that's OK */
2512	free_pages -= (1 << order) - 1;
2513
2514	if (alloc_flags & ALLOC_HIGH)
2515		min -= min / 2;
2516
2517	/*
2518	 * If the caller does not have rights to ALLOC_HARDER then subtract
2519	 * the high-atomic reserves. This will over-estimate the size of the
2520	 * atomic reserve but it avoids a search.
2521	 */
2522	if (likely(!alloc_harder))
2523		free_pages -= z->nr_reserved_highatomic;
2524	else
2525		min -= min / 4;
 
 
 
 
 
 
 
 
 
 
 
2526
2527#ifdef CONFIG_CMA
2528	/* If allocation can't use CMA areas don't use free CMA pages */
2529	if (!(alloc_flags & ALLOC_CMA))
2530		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2531#endif
2532
2533	/*
2534	 * Check watermarks for an order-0 allocation request. If these
2535	 * are not met, then a high-order request also cannot go ahead
2536	 * even if a suitable page happened to be free.
2537	 */
2538	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2539		return false;
2540
2541	/* If this is an order-0 request then the watermark is fine */
2542	if (!order)
2543		return true;
2544
2545	/* For a high-order request, check at least one suitable page is free */
2546	for (o = order; o < MAX_ORDER; o++) {
2547		struct free_area *area = &z->free_area[o];
2548		int mt;
2549
2550		if (!area->nr_free)
2551			continue;
2552
2553		if (alloc_harder)
2554			return true;
2555
2556		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2557			if (!list_empty(&area->free_list[mt]))
2558				return true;
2559		}
2560
2561#ifdef CONFIG_CMA
2562		if ((alloc_flags & ALLOC_CMA) &&
2563		    !list_empty(&area->free_list[MIGRATE_CMA])) {
2564			return true;
2565		}
2566#endif
 
 
 
2567	}
2568	return false;
2569}
2570
2571bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2572		      int classzone_idx, int alloc_flags)
2573{
2574	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2575					zone_page_state(z, NR_FREE_PAGES));
2576}
2577
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2578bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2579			unsigned long mark, int classzone_idx)
2580{
2581	long free_pages = zone_page_state(z, NR_FREE_PAGES);
2582
2583	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2584		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2585
2586	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2587								free_pages);
2588}
2589
2590#ifdef CONFIG_NUMA
2591static bool zone_local(struct zone *local_zone, struct zone *zone)
2592{
2593	return local_zone->node == zone->node;
2594}
2595
2596static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2597{
2598	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2599				RECLAIM_DISTANCE;
2600}
2601#else	/* CONFIG_NUMA */
2602static bool zone_local(struct zone *local_zone, struct zone *zone)
2603{
2604	return true;
2605}
2606
2607static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2608{
2609	return true;
2610}
2611#endif	/* CONFIG_NUMA */
2612
2613static void reset_alloc_batches(struct zone *preferred_zone)
2614{
2615	struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2616
2617	do {
2618		mod_zone_page_state(zone, NR_ALLOC_BATCH,
2619			high_wmark_pages(zone) - low_wmark_pages(zone) -
2620			atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2621		clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2622	} while (zone++ != preferred_zone);
2623}
2624
2625/*
2626 * get_page_from_freelist goes through the zonelist trying to allocate
2627 * a page.
2628 */
2629static struct page *
2630get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2631						const struct alloc_context *ac)
2632{
2633	struct zonelist *zonelist = ac->zonelist;
2634	struct zoneref *z;
2635	struct page *page = NULL;
2636	struct zone *zone;
2637	int nr_fair_skipped = 0;
2638	bool zonelist_rescan;
2639
2640zonelist_scan:
2641	zonelist_rescan = false;
2642
2643	/*
2644	 * Scan zonelist, looking for a zone with enough free.
2645	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2646	 */
2647	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2648								ac->nodemask) {
 
2649		unsigned long mark;
2650
2651		if (cpusets_enabled() &&
2652			(alloc_flags & ALLOC_CPUSET) &&
2653			!cpuset_zone_allowed(zone, gfp_mask))
2654				continue;
2655		/*
2656		 * Distribute pages in proportion to the individual
2657		 * zone size to ensure fair page aging.  The zone a
2658		 * page was allocated in should have no effect on the
2659		 * time the page has in memory before being reclaimed.
2660		 */
2661		if (alloc_flags & ALLOC_FAIR) {
2662			if (!zone_local(ac->preferred_zone, zone))
2663				break;
2664			if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
2665				nr_fair_skipped++;
2666				continue;
2667			}
2668		}
2669		/*
2670		 * When allocating a page cache page for writing, we
2671		 * want to get it from a zone that is within its dirty
2672		 * limit, such that no single zone holds more than its
2673		 * proportional share of globally allowed dirty pages.
2674		 * The dirty limits take into account the zone's
2675		 * lowmem reserves and high watermark so that kswapd
2676		 * should be able to balance it without having to
2677		 * write pages from its LRU list.
2678		 *
2679		 * This may look like it could increase pressure on
2680		 * lower zones by failing allocations in higher zones
2681		 * before they are full.  But the pages that do spill
2682		 * over are limited as the lower zones are protected
2683		 * by this very same mechanism.  It should not become
2684		 * a practical burden to them.
2685		 *
2686		 * XXX: For now, allow allocations to potentially
2687		 * exceed the per-zone dirty limit in the slowpath
2688		 * (spread_dirty_pages unset) before going into reclaim,
2689		 * which is important when on a NUMA setup the allowed
2690		 * zones are together not big enough to reach the
2691		 * global limit.  The proper fix for these situations
2692		 * will require awareness of zones in the
2693		 * dirty-throttling and the flusher threads.
2694		 */
2695		if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
2696			continue;
 
 
 
 
 
 
 
2697
2698		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2699		if (!zone_watermark_ok(zone, order, mark,
2700				       ac->classzone_idx, alloc_flags)) {
2701			int ret;
2702
 
 
 
 
 
 
 
 
 
 
2703			/* Checked here to keep the fast path fast */
2704			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2705			if (alloc_flags & ALLOC_NO_WATERMARKS)
2706				goto try_this_zone;
2707
2708			if (zone_reclaim_mode == 0 ||
2709			    !zone_allows_reclaim(ac->preferred_zone, zone))
2710				continue;
2711
2712			ret = zone_reclaim(zone, gfp_mask, order);
2713			switch (ret) {
2714			case ZONE_RECLAIM_NOSCAN:
2715				/* did not scan */
2716				continue;
2717			case ZONE_RECLAIM_FULL:
2718				/* scanned but unreclaimable */
2719				continue;
2720			default:
2721				/* did we reclaim enough */
2722				if (zone_watermark_ok(zone, order, mark,
2723						ac->classzone_idx, alloc_flags))
2724					goto try_this_zone;
2725
2726				continue;
2727			}
2728		}
2729
2730try_this_zone:
2731		page = buffered_rmqueue(ac->preferred_zone, zone, order,
2732				gfp_mask, alloc_flags, ac->migratetype);
2733		if (page) {
2734			if (prep_new_page(page, order, gfp_mask, alloc_flags))
2735				goto try_this_zone;
2736
2737			/*
2738			 * If this is a high-order atomic allocation then check
2739			 * if the pageblock should be reserved for the future
2740			 */
2741			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2742				reserve_highatomic_pageblock(page, zone, order);
2743
2744			return page;
 
 
 
 
 
 
 
 
2745		}
2746	}
2747
2748	/*
2749	 * The first pass makes sure allocations are spread fairly within the
2750	 * local node.  However, the local node might have free pages left
2751	 * after the fairness batches are exhausted, and remote zones haven't
2752	 * even been considered yet.  Try once more without fairness, and
2753	 * include remote zones now, before entering the slowpath and waking
2754	 * kswapd: prefer spilling to a remote zone over swapping locally.
2755	 */
2756	if (alloc_flags & ALLOC_FAIR) {
2757		alloc_flags &= ~ALLOC_FAIR;
2758		if (nr_fair_skipped) {
2759			zonelist_rescan = true;
2760			reset_alloc_batches(ac->preferred_zone);
2761		}
2762		if (nr_online_nodes > 1)
2763			zonelist_rescan = true;
2764	}
2765
2766	if (zonelist_rescan)
2767		goto zonelist_scan;
2768
2769	return NULL;
2770}
2771
2772/*
2773 * Large machines with many possible nodes should not always dump per-node
2774 * meminfo in irq context.
2775 */
2776static inline bool should_suppress_show_mem(void)
2777{
2778	bool ret = false;
2779
2780#if NODES_SHIFT > 8
2781	ret = in_interrupt();
2782#endif
2783	return ret;
2784}
2785
2786static DEFINE_RATELIMIT_STATE(nopage_rs,
2787		DEFAULT_RATELIMIT_INTERVAL,
2788		DEFAULT_RATELIMIT_BURST);
2789
2790void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
2791{
2792	unsigned int filter = SHOW_MEM_FILTER_NODES;
 
2793
2794	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2795	    debug_guardpage_minorder() > 0)
2796		return;
2797
2798	/*
2799	 * This documents exceptions given to allocations in certain
2800	 * contexts that are allowed to allocate outside current's set
2801	 * of allowed nodes.
2802	 */
2803	if (!(gfp_mask & __GFP_NOMEMALLOC))
2804		if (test_thread_flag(TIF_MEMDIE) ||
2805		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
2806			filter &= ~SHOW_MEM_FILTER_NODES;
2807	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
2808		filter &= ~SHOW_MEM_FILTER_NODES;
2809
2810	if (fmt) {
2811		struct va_format vaf;
2812		va_list args;
2813
2814		va_start(args, fmt);
 
 
 
 
 
2815
2816		vaf.fmt = fmt;
2817		vaf.va = &args;
2818
2819		pr_warn("%pV", &vaf);
 
 
 
 
 
 
2820
2821		va_end(args);
2822	}
2823
2824	pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
2825		current->comm, order, gfp_mask, &gfp_mask);
2826	dump_stack();
2827	if (!should_suppress_show_mem())
2828		show_mem(filter);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2829}
2830
2831static inline struct page *
2832__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2833	const struct alloc_context *ac, unsigned long *did_some_progress)
2834{
2835	struct oom_control oc = {
2836		.zonelist = ac->zonelist,
2837		.nodemask = ac->nodemask,
 
2838		.gfp_mask = gfp_mask,
2839		.order = order,
2840	};
2841	struct page *page;
2842
2843	*did_some_progress = 0;
2844
2845	/*
2846	 * Acquire the oom lock.  If that fails, somebody else is
2847	 * making progress for us.
2848	 */
2849	if (!mutex_trylock(&oom_lock)) {
2850		*did_some_progress = 1;
2851		schedule_timeout_uninterruptible(1);
2852		return NULL;
2853	}
2854
2855	/*
2856	 * Go through the zonelist yet one more time, keep very high watermark
2857	 * here, this is only to catch a parallel oom killing, we must fail if
2858	 * we're still under heavy pressure.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2859	 */
2860	page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2861					ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
2862	if (page)
2863		goto out;
2864
2865	if (!(gfp_mask & __GFP_NOFAIL)) {
2866		/* Coredumps can quickly deplete all memory reserves */
2867		if (current->flags & PF_DUMPCORE)
2868			goto out;
2869		/* The OOM killer will not help higher order allocs */
2870		if (order > PAGE_ALLOC_COSTLY_ORDER)
2871			goto out;
2872		/* The OOM killer does not needlessly kill tasks for lowmem */
2873		if (ac->high_zoneidx < ZONE_NORMAL)
2874			goto out;
2875		/* The OOM killer does not compensate for IO-less reclaim */
2876		if (!(gfp_mask & __GFP_FS)) {
2877			/*
2878			 * XXX: Page reclaim didn't yield anything,
2879			 * and the OOM killer can't be invoked, but
2880			 * keep looping as per tradition.
2881			 *
2882			 * But do not keep looping if oom_killer_disable()
2883			 * was already called, for the system is trying to
2884			 * enter a quiescent state during suspend.
2885			 */
2886			*did_some_progress = !oom_killer_disabled;
2887			goto out;
2888		}
2889		if (pm_suspended_storage())
2890			goto out;
2891		/* The OOM killer may not free memory on a specific node */
2892		if (gfp_mask & __GFP_THISNODE)
2893			goto out;
2894	}
2895	/* Exhausted what can be done so it's blamo time */
2896	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
2897		*did_some_progress = 1;
2898
2899		if (gfp_mask & __GFP_NOFAIL) {
2900			page = get_page_from_freelist(gfp_mask, order,
2901					ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
2902			/*
2903			 * fallback to ignore cpuset restriction if our nodes
2904			 * are depleted
2905			 */
2906			if (!page)
2907				page = get_page_from_freelist(gfp_mask, order,
2908					ALLOC_NO_WATERMARKS, ac);
2909		}
2910	}
2911out:
2912	mutex_unlock(&oom_lock);
2913	return page;
2914}
2915
 
 
 
 
 
 
2916#ifdef CONFIG_COMPACTION
2917/* Try memory compaction for high-order allocations before reclaim */
2918static struct page *
2919__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2920		int alloc_flags, const struct alloc_context *ac,
2921		enum migrate_mode mode, int *contended_compaction,
2922		bool *deferred_compaction)
2923{
2924	unsigned long compact_result;
2925	struct page *page;
 
2926
2927	if (!order)
2928		return NULL;
2929
2930	current->flags |= PF_MEMALLOC;
2931	compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2932						mode, contended_compaction);
2933	current->flags &= ~PF_MEMALLOC;
2934
2935	switch (compact_result) {
2936	case COMPACT_DEFERRED:
2937		*deferred_compaction = true;
2938		/* fall-through */
2939	case COMPACT_SKIPPED:
2940		return NULL;
2941	default:
2942		break;
2943	}
2944
2945	/*
2946	 * At least in one zone compaction wasn't deferred or skipped, so let's
2947	 * count a compaction stall
2948	 */
2949	count_vm_event(COMPACTSTALL);
2950
2951	page = get_page_from_freelist(gfp_mask, order,
2952					alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2953
2954	if (page) {
2955		struct zone *zone = page_zone(page);
2956
2957		zone->compact_blockskip_flush = false;
2958		compaction_defer_reset(zone, order, true);
2959		count_vm_event(COMPACTSUCCESS);
2960		return page;
2961	}
2962
2963	/*
2964	 * It's bad if compaction run occurs and fails. The most likely reason
2965	 * is that pages exist, but not enough to satisfy watermarks.
2966	 */
2967	count_vm_event(COMPACTFAIL);
2968
2969	cond_resched();
2970
2971	return NULL;
2972}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2973#else
2974static inline struct page *
2975__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2976		int alloc_flags, const struct alloc_context *ac,
2977		enum migrate_mode mode, int *contended_compaction,
2978		bool *deferred_compaction)
2979{
 
2980	return NULL;
2981}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2982#endif /* CONFIG_COMPACTION */
2983
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2984/* Perform direct synchronous page reclaim */
2985static int
2986__perform_reclaim(gfp_t gfp_mask, unsigned int order,
2987					const struct alloc_context *ac)
2988{
2989	struct reclaim_state reclaim_state;
2990	int progress;
 
2991
2992	cond_resched();
2993
2994	/* We now go into synchronous reclaim */
2995	cpuset_memory_pressure_bump();
2996	current->flags |= PF_MEMALLOC;
2997	lockdep_set_current_reclaim_state(gfp_mask);
2998	reclaim_state.reclaimed_slab = 0;
2999	current->reclaim_state = &reclaim_state;
3000
3001	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3002								ac->nodemask);
3003
3004	current->reclaim_state = NULL;
3005	lockdep_clear_current_reclaim_state();
3006	current->flags &= ~PF_MEMALLOC;
3007
3008	cond_resched();
3009
3010	return progress;
3011}
3012
3013/* The really slow allocator path where we enter direct reclaim */
3014static inline struct page *
3015__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3016		int alloc_flags, const struct alloc_context *ac,
3017		unsigned long *did_some_progress)
3018{
3019	struct page *page = NULL;
3020	bool drained = false;
3021
3022	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3023	if (unlikely(!(*did_some_progress)))
3024		return NULL;
3025
3026retry:
3027	page = get_page_from_freelist(gfp_mask, order,
3028					alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
3029
3030	/*
3031	 * If an allocation failed after direct reclaim, it could be because
3032	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3033	 * Shrink them them and try again
3034	 */
3035	if (!page && !drained) {
3036		unreserve_highatomic_pageblock(ac);
3037		drain_all_pages(NULL);
3038		drained = true;
3039		goto retry;
3040	}
3041
3042	return page;
3043}
3044
3045static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
 
3046{
3047	struct zoneref *z;
3048	struct zone *zone;
 
 
3049
3050	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3051						ac->high_zoneidx, ac->nodemask)
3052		wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
 
 
 
3053}
3054
3055static inline int
3056gfp_to_alloc_flags(gfp_t gfp_mask)
3057{
3058	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3059
3060	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3061	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3062
3063	/*
3064	 * The caller may dip into page reserves a bit more if the caller
3065	 * cannot run direct reclaim, or if the caller has realtime scheduling
3066	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3067	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3068	 */
3069	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3070
3071	if (gfp_mask & __GFP_ATOMIC) {
3072		/*
3073		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3074		 * if it can't schedule.
3075		 */
3076		if (!(gfp_mask & __GFP_NOMEMALLOC))
3077			alloc_flags |= ALLOC_HARDER;
3078		/*
3079		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3080		 * comment for __cpuset_node_allowed().
3081		 */
3082		alloc_flags &= ~ALLOC_CPUSET;
3083	} else if (unlikely(rt_task(current)) && !in_interrupt())
3084		alloc_flags |= ALLOC_HARDER;
3085
3086	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
3087		if (gfp_mask & __GFP_MEMALLOC)
3088			alloc_flags |= ALLOC_NO_WATERMARKS;
3089		else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3090			alloc_flags |= ALLOC_NO_WATERMARKS;
3091		else if (!in_interrupt() &&
3092				((current->flags & PF_MEMALLOC) ||
3093				 unlikely(test_thread_flag(TIF_MEMDIE))))
3094			alloc_flags |= ALLOC_NO_WATERMARKS;
3095	}
3096#ifdef CONFIG_CMA
3097	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3098		alloc_flags |= ALLOC_CMA;
3099#endif
3100	return alloc_flags;
3101}
3102
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3103bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3104{
3105	return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3106}
3107
3108static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
 
3109{
3110	return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3111}
3112
3113static inline struct page *
3114__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3115						struct alloc_context *ac)
3116{
3117	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
 
3118	struct page *page = NULL;
3119	int alloc_flags;
3120	unsigned long pages_reclaimed = 0;
3121	unsigned long did_some_progress;
3122	enum migrate_mode migration_mode = MIGRATE_ASYNC;
3123	bool deferred_compaction = false;
3124	int contended_compaction = COMPACT_CONTENDED_NONE;
 
 
 
3125
3126	/*
3127	 * In the slowpath, we sanity check order to avoid ever trying to
3128	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3129	 * be using allocators in order of preference for an area that is
3130	 * too large.
3131	 */
3132	if (order >= MAX_ORDER) {
3133		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3134		return NULL;
3135	}
3136
3137	/*
3138	 * We also sanity check to catch abuse of atomic reserves being used by
3139	 * callers that are not in atomic context.
3140	 */
3141	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3142				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3143		gfp_mask &= ~__GFP_ATOMIC;
3144
3145retry:
3146	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3147		wake_all_kswapds(order, ac);
 
 
3148
3149	/*
3150	 * OK, we're below the kswapd watermark and have kicked background
3151	 * reclaim. Now things get more complex, so set up alloc_flags according
3152	 * to how we want to proceed.
3153	 */
3154	alloc_flags = gfp_to_alloc_flags(gfp_mask);
3155
3156	/*
3157	 * Find the true preferred zone if the allocation is unconstrained by
3158	 * cpusets.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3159	 */
3160	if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
3161		struct zoneref *preferred_zoneref;
3162		preferred_zoneref = first_zones_zonelist(ac->zonelist,
3163				ac->high_zoneidx, NULL, &ac->preferred_zone);
3164		ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
3165	}
3166
3167	/* This is the last chance, in general, before the goto nopage. */
3168	page = get_page_from_freelist(gfp_mask, order,
3169				alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
3170	if (page)
3171		goto got_pg;
3172
3173	/* Allocate without watermarks if the context allows */
3174	if (alloc_flags & ALLOC_NO_WATERMARKS) {
3175		/*
3176		 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3177		 * the allocation is high priority and these type of
3178		 * allocations are system rather than user orientated
3179		 */
3180		ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3181		page = get_page_from_freelist(gfp_mask, order,
3182						ALLOC_NO_WATERMARKS, ac);
 
 
 
 
 
 
 
3183		if (page)
3184			goto got_pg;
3185	}
3186
3187	/* Caller is not willing to reclaim, we can't balance anything */
3188	if (!can_direct_reclaim) {
3189		/*
3190		 * All existing users of the __GFP_NOFAIL are blockable, so warn
3191		 * of any new users that actually allow this type of allocation
3192		 * to fail.
3193		 */
3194		WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
3195		goto nopage;
3196	}
 
 
 
 
 
 
 
 
3197
3198	/* Avoid recursion of direct reclaim */
3199	if (current->flags & PF_MEMALLOC) {
3200		/*
3201		 * __GFP_NOFAIL request from this context is rather bizarre
3202		 * because we cannot reclaim anything and only can loop waiting
3203		 * for somebody to do a work for us.
3204		 */
3205		if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3206			cond_resched();
3207			goto retry;
3208		}
3209		goto nopage;
3210	}
3211
3212	/* Avoid allocations with no watermarks from looping endlessly */
3213	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3214		goto nopage;
 
 
 
 
 
3215
3216	/*
3217	 * Try direct compaction. The first pass is asynchronous. Subsequent
3218	 * attempts after direct reclaim are synchronous
 
3219	 */
3220	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3221					migration_mode,
3222					&contended_compaction,
3223					&deferred_compaction);
 
 
 
 
3224	if (page)
3225		goto got_pg;
3226
3227	/* Checks for THP-specific high-order allocations */
3228	if (is_thp_gfp_mask(gfp_mask)) {
3229		/*
3230		 * If compaction is deferred for high-order allocations, it is
3231		 * because sync compaction recently failed. If this is the case
3232		 * and the caller requested a THP allocation, we do not want
3233		 * to heavily disrupt the system, so we fail the allocation
3234		 * instead of entering direct reclaim.
3235		 */
3236		if (deferred_compaction)
3237			goto nopage;
3238
3239		/*
3240		 * In all zones where compaction was attempted (and not
3241		 * deferred or skipped), lock contention has been detected.
3242		 * For THP allocation we do not want to disrupt the others
3243		 * so we fallback to base pages instead.
3244		 */
3245		if (contended_compaction == COMPACT_CONTENDED_LOCK)
3246			goto nopage;
3247
3248		/*
3249		 * If compaction was aborted due to need_resched(), we do not
3250		 * want to further increase allocation latency, unless it is
3251		 * khugepaged trying to collapse.
3252		 */
3253		if (contended_compaction == COMPACT_CONTENDED_SCHED
3254			&& !(current->flags & PF_KTHREAD))
3255			goto nopage;
3256	}
3257
3258	/*
3259	 * It can become very expensive to allocate transparent hugepages at
3260	 * fault, so use asynchronous memory compaction for THP unless it is
3261	 * khugepaged trying to collapse.
3262	 */
3263	if (!is_thp_gfp_mask(gfp_mask) || (current->flags & PF_KTHREAD))
3264		migration_mode = MIGRATE_SYNC_LIGHT;
3265
3266	/* Try direct reclaim and then allocating */
3267	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3268							&did_some_progress);
3269	if (page)
3270		goto got_pg;
3271
 
 
 
 
 
 
3272	/* Do not loop if specifically requested */
3273	if (gfp_mask & __GFP_NORETRY)
3274		goto noretry;
 
 
 
 
 
 
 
3275
3276	/* Keep reclaiming pages as long as there is reasonable progress */
3277	pages_reclaimed += did_some_progress;
3278	if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
3279	    ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
3280		/* Wait for some write requests to complete then retry */
3281		wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
3282		goto retry;
3283	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3284
3285	/* Reclaim has failed us, start killing things */
3286	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3287	if (page)
3288		goto got_pg;
3289
 
 
 
 
 
 
3290	/* Retry as long as the OOM killer is making progress */
3291	if (did_some_progress)
 
3292		goto retry;
 
 
 
 
 
 
3293
3294noretry:
3295	/*
3296	 * High-order allocations do not necessarily loop after
3297	 * direct reclaim and reclaim/compaction depends on compaction
3298	 * being called after reclaim so call directly if necessary
3299	 */
3300	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3301					    ac, migration_mode,
3302					    &contended_compaction,
3303					    &deferred_compaction);
3304	if (page)
3305		goto got_pg;
3306nopage:
3307	warn_alloc_failed(gfp_mask, order, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3308got_pg:
3309	return page;
3310}
3311
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3312/*
3313 * This is the 'heart' of the zoned buddy allocator.
3314 */
3315struct page *
3316__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3317			struct zonelist *zonelist, nodemask_t *nodemask)
3318{
3319	struct zoneref *preferred_zoneref;
3320	struct page *page = NULL;
3321	unsigned int cpuset_mems_cookie;
3322	int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
3323	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
3324	struct alloc_context ac = {
3325		.high_zoneidx = gfp_zone(gfp_mask),
3326		.nodemask = nodemask,
3327		.migratetype = gfpflags_to_migratetype(gfp_mask),
3328	};
3329
3330	gfp_mask &= gfp_allowed_mask;
 
 
 
3331
3332	lockdep_trace_alloc(gfp_mask);
3333
3334	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
 
 
 
3335
3336	if (should_fail_alloc_page(gfp_mask, order))
3337		return NULL;
 
 
 
 
 
 
3338
3339	/*
3340	 * Check the zones suitable for the gfp_mask contain at least one
3341	 * valid zone. It's possible to have an empty zonelist as a result
3342	 * of __GFP_THISNODE and a memoryless node
3343	 */
3344	if (unlikely(!zonelist->_zonerefs->zone))
3345		return NULL;
3346
3347	if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
3348		alloc_flags |= ALLOC_CMA;
3349
3350retry_cpuset:
3351	cpuset_mems_cookie = read_mems_allowed_begin();
3352
3353	/* We set it here, as __alloc_pages_slowpath might have changed it */
3354	ac.zonelist = zonelist;
3355
3356	/* Dirty zone balancing only done in the fast path */
3357	ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3358
3359	/* The preferred zone is used for statistics later */
3360	preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
3361				ac.nodemask ? : &cpuset_current_mems_allowed,
3362				&ac.preferred_zone);
3363	if (!ac.preferred_zone)
3364		goto out;
3365	ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
3366
3367	/* First allocation attempt */
3368	alloc_mask = gfp_mask|__GFP_HARDWALL;
3369	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3370	if (unlikely(!page)) {
3371		/*
3372		 * Runtime PM, block IO and its error handling path
3373		 * can deadlock because I/O on the device might not
3374		 * complete.
3375		 */
3376		alloc_mask = memalloc_noio_flags(gfp_mask);
3377		ac.spread_dirty_pages = false;
3378
3379		page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3380	}
3381
3382	if (kmemcheck_enabled && page)
3383		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3384
3385	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3386
3387out:
3388	/*
3389	 * When updating a task's mems_allowed, it is possible to race with
3390	 * parallel threads in such a way that an allocation can fail while
3391	 * the mask is being updated. If a page allocation is about to fail,
3392	 * check if the cpuset changed during allocation and if so, retry.
3393	 */
3394	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
3395		goto retry_cpuset;
3396
3397	return page;
3398}
3399EXPORT_SYMBOL(__alloc_pages_nodemask);
3400
3401/*
3402 * Common helper functions.
3403 */
3404unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
3405{
3406	struct page *page;
3407
3408	/*
3409	 * __get_free_pages() returns a 32-bit address, which cannot represent
3410	 * a highmem page
3411	 */
3412	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3413
3414	page = alloc_pages(gfp_mask, order);
3415	if (!page)
3416		return 0;
3417	return (unsigned long) page_address(page);
3418}
3419EXPORT_SYMBOL(__get_free_pages);
3420
3421unsigned long get_zeroed_page(gfp_t gfp_mask)
3422{
3423	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
3424}
3425EXPORT_SYMBOL(get_zeroed_page);
3426
3427void __free_pages(struct page *page, unsigned int order)
3428{
3429	if (put_page_testzero(page)) {
3430		if (order == 0)
3431			free_hot_cold_page(page, false);
3432		else
3433			__free_pages_ok(page, order);
3434	}
3435}
3436
3437EXPORT_SYMBOL(__free_pages);
3438
3439void free_pages(unsigned long addr, unsigned int order)
3440{
3441	if (addr != 0) {
3442		VM_BUG_ON(!virt_addr_valid((void *)addr));
3443		__free_pages(virt_to_page((void *)addr), order);
3444	}
3445}
3446
3447EXPORT_SYMBOL(free_pages);
3448
3449/*
3450 * Page Fragment:
3451 *  An arbitrary-length arbitrary-offset area of memory which resides
3452 *  within a 0 or higher order page.  Multiple fragments within that page
3453 *  are individually refcounted, in the page's reference counter.
3454 *
3455 * The page_frag functions below provide a simple allocation framework for
3456 * page fragments.  This is used by the network stack and network device
3457 * drivers to provide a backing region of memory for use as either an
3458 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3459 */
3460static struct page *__page_frag_refill(struct page_frag_cache *nc,
3461				       gfp_t gfp_mask)
3462{
3463	struct page *page = NULL;
3464	gfp_t gfp = gfp_mask;
3465
3466#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3467	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3468		    __GFP_NOMEMALLOC;
3469	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3470				PAGE_FRAG_CACHE_MAX_ORDER);
3471	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3472#endif
3473	if (unlikely(!page))
3474		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3475
3476	nc->va = page ? page_address(page) : NULL;
3477
3478	return page;
3479}
3480
3481void *__alloc_page_frag(struct page_frag_cache *nc,
3482			unsigned int fragsz, gfp_t gfp_mask)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3483{
3484	unsigned int size = PAGE_SIZE;
3485	struct page *page;
3486	int offset;
3487
3488	if (unlikely(!nc->va)) {
3489refill:
3490		page = __page_frag_refill(nc, gfp_mask);
3491		if (!page)
3492			return NULL;
3493
3494#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3495		/* if size can vary use size else just use PAGE_SIZE */
3496		size = nc->size;
3497#endif
3498		/* Even if we own the page, we do not use atomic_set().
3499		 * This would break get_page_unless_zero() users.
3500		 */
3501		page_ref_add(page, size - 1);
3502
3503		/* reset page count bias and offset to start of new frag */
3504		nc->pfmemalloc = page_is_pfmemalloc(page);
3505		nc->pagecnt_bias = size;
3506		nc->offset = size;
3507	}
3508
3509	offset = nc->offset - fragsz;
3510	if (unlikely(offset < 0)) {
3511		page = virt_to_page(nc->va);
3512
3513		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
3514			goto refill;
3515
3516#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3517		/* if size can vary use size else just use PAGE_SIZE */
3518		size = nc->size;
3519#endif
3520		/* OK, page count is 0, we can safely set it */
3521		set_page_count(page, size);
3522
3523		/* reset page count bias and offset to start of new frag */
3524		nc->pagecnt_bias = size;
3525		offset = size - fragsz;
3526	}
3527
3528	nc->pagecnt_bias--;
3529	nc->offset = offset;
3530
3531	return nc->va + offset;
3532}
3533EXPORT_SYMBOL(__alloc_page_frag);
3534
3535/*
3536 * Frees a page fragment allocated out of either a compound or order 0 page.
3537 */
3538void __free_page_frag(void *addr)
3539{
3540	struct page *page = virt_to_head_page(addr);
3541
3542	if (unlikely(put_page_testzero(page)))
3543		__free_pages_ok(page, compound_order(page));
3544}
3545EXPORT_SYMBOL(__free_page_frag);
3546
3547/*
3548 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
3549 * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is
3550 * equivalent to alloc_pages.
3551 *
3552 * It should be used when the caller would like to use kmalloc, but since the
3553 * allocation is large, it has to fall back to the page allocator.
3554 */
3555struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3556{
3557	struct page *page;
3558
3559	page = alloc_pages(gfp_mask, order);
3560	if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3561		__free_pages(page, order);
3562		page = NULL;
3563	}
3564	return page;
3565}
3566
3567struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3568{
3569	struct page *page;
3570
3571	page = alloc_pages_node(nid, gfp_mask, order);
3572	if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3573		__free_pages(page, order);
3574		page = NULL;
3575	}
3576	return page;
3577}
3578
3579/*
3580 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3581 * alloc_kmem_pages.
3582 */
3583void __free_kmem_pages(struct page *page, unsigned int order)
3584{
3585	memcg_kmem_uncharge(page, order);
3586	__free_pages(page, order);
3587}
3588
3589void free_kmem_pages(unsigned long addr, unsigned int order)
3590{
3591	if (addr != 0) {
3592		VM_BUG_ON(!virt_addr_valid((void *)addr));
3593		__free_kmem_pages(virt_to_page((void *)addr), order);
3594	}
3595}
3596
3597static void *make_alloc_exact(unsigned long addr, unsigned int order,
3598		size_t size)
3599{
3600	if (addr) {
3601		unsigned long alloc_end = addr + (PAGE_SIZE << order);
3602		unsigned long used = addr + PAGE_ALIGN(size);
3603
3604		split_page(virt_to_page((void *)addr), order);
3605		while (used < alloc_end) {
3606			free_page(used);
3607			used += PAGE_SIZE;
3608		}
3609	}
3610	return (void *)addr;
3611}
3612
3613/**
3614 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3615 * @size: the number of bytes to allocate
3616 * @gfp_mask: GFP flags for the allocation
3617 *
3618 * This function is similar to alloc_pages(), except that it allocates the
3619 * minimum number of pages to satisfy the request.  alloc_pages() can only
3620 * allocate memory in power-of-two pages.
3621 *
3622 * This function is also limited by MAX_ORDER.
3623 *
3624 * Memory allocated by this function must be released by free_pages_exact().
3625 */
3626void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3627{
3628	unsigned int order = get_order(size);
3629	unsigned long addr;
3630
3631	addr = __get_free_pages(gfp_mask, order);
3632	return make_alloc_exact(addr, order, size);
3633}
3634EXPORT_SYMBOL(alloc_pages_exact);
3635
3636/**
3637 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3638 *			   pages on a node.
3639 * @nid: the preferred node ID where memory should be allocated
3640 * @size: the number of bytes to allocate
3641 * @gfp_mask: GFP flags for the allocation
3642 *
3643 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3644 * back.
3645 */
3646void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3647{
3648	unsigned int order = get_order(size);
3649	struct page *p = alloc_pages_node(nid, gfp_mask, order);
3650	if (!p)
3651		return NULL;
3652	return make_alloc_exact((unsigned long)page_address(p), order, size);
3653}
3654
3655/**
3656 * free_pages_exact - release memory allocated via alloc_pages_exact()
3657 * @virt: the value returned by alloc_pages_exact.
3658 * @size: size of allocation, same value as passed to alloc_pages_exact().
3659 *
3660 * Release the memory allocated by a previous call to alloc_pages_exact.
3661 */
3662void free_pages_exact(void *virt, size_t size)
3663{
3664	unsigned long addr = (unsigned long)virt;
3665	unsigned long end = addr + PAGE_ALIGN(size);
3666
3667	while (addr < end) {
3668		free_page(addr);
3669		addr += PAGE_SIZE;
3670	}
3671}
3672EXPORT_SYMBOL(free_pages_exact);
3673
3674/**
3675 * nr_free_zone_pages - count number of pages beyond high watermark
3676 * @offset: The zone index of the highest zone
3677 *
3678 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3679 * high watermark within all zones at or below a given zone index.  For each
3680 * zone, the number of pages is calculated as:
3681 *     managed_pages - high_pages
 
3682 */
3683static unsigned long nr_free_zone_pages(int offset)
3684{
3685	struct zoneref *z;
3686	struct zone *zone;
3687
3688	/* Just pick one node, since fallback list is circular */
3689	unsigned long sum = 0;
3690
3691	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3692
3693	for_each_zone_zonelist(zone, z, zonelist, offset) {
3694		unsigned long size = zone->managed_pages;
3695		unsigned long high = high_wmark_pages(zone);
3696		if (size > high)
3697			sum += size - high;
3698	}
3699
3700	return sum;
3701}
3702
3703/**
3704 * nr_free_buffer_pages - count number of pages beyond high watermark
3705 *
3706 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3707 * watermark within ZONE_DMA and ZONE_NORMAL.
3708 */
3709unsigned long nr_free_buffer_pages(void)
3710{
3711	return nr_free_zone_pages(gfp_zone(GFP_USER));
3712}
3713EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3714
3715/**
3716 * nr_free_pagecache_pages - count number of pages beyond high watermark
3717 *
3718 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3719 * high watermark within all zones.
3720 */
3721unsigned long nr_free_pagecache_pages(void)
3722{
3723	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3724}
3725
3726static inline void show_node(struct zone *zone)
3727{
3728	if (IS_ENABLED(CONFIG_NUMA))
3729		printk("Node %d ", zone_to_nid(zone));
3730}
3731
3732long si_mem_available(void)
3733{
3734	long available;
3735	unsigned long pagecache;
3736	unsigned long wmark_low = 0;
3737	unsigned long pages[NR_LRU_LISTS];
3738	struct zone *zone;
3739	int lru;
3740
3741	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
3742		pages[lru] = global_page_state(NR_LRU_BASE + lru);
3743
3744	for_each_zone(zone)
3745		wmark_low += zone->watermark[WMARK_LOW];
3746
3747	/*
3748	 * Estimate the amount of memory available for userspace allocations,
3749	 * without causing swapping.
3750	 */
3751	available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
3752
3753	/*
3754	 * Not all the page cache can be freed, otherwise the system will
3755	 * start swapping. Assume at least half of the page cache, or the
3756	 * low watermark worth of cache, needs to stay.
3757	 */
3758	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
3759	pagecache -= min(pagecache / 2, wmark_low);
3760	available += pagecache;
3761
3762	/*
3763	 * Part of the reclaimable slab consists of items that are in use,
3764	 * and cannot be freed. Cap this estimate at the low watermark.
3765	 */
3766	available += global_page_state(NR_SLAB_RECLAIMABLE) -
3767		     min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
 
 
 
 
 
 
 
 
3768
3769	if (available < 0)
3770		available = 0;
3771	return available;
3772}
3773EXPORT_SYMBOL_GPL(si_mem_available);
3774
3775void si_meminfo(struct sysinfo *val)
3776{
3777	val->totalram = totalram_pages;
3778	val->sharedram = global_page_state(NR_SHMEM);
3779	val->freeram = global_page_state(NR_FREE_PAGES);
3780	val->bufferram = nr_blockdev_pages();
3781	val->totalhigh = totalhigh_pages;
3782	val->freehigh = nr_free_highpages();
3783	val->mem_unit = PAGE_SIZE;
3784}
3785
3786EXPORT_SYMBOL(si_meminfo);
3787
3788#ifdef CONFIG_NUMA
3789void si_meminfo_node(struct sysinfo *val, int nid)
3790{
3791	int zone_type;		/* needs to be signed */
3792	unsigned long managed_pages = 0;
 
 
3793	pg_data_t *pgdat = NODE_DATA(nid);
3794
3795	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3796		managed_pages += pgdat->node_zones[zone_type].managed_pages;
3797	val->totalram = managed_pages;
3798	val->sharedram = node_page_state(nid, NR_SHMEM);
3799	val->freeram = node_page_state(nid, NR_FREE_PAGES);
3800#ifdef CONFIG_HIGHMEM
3801	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3802	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3803			NR_FREE_PAGES);
 
 
 
 
 
 
 
3804#else
3805	val->totalhigh = 0;
3806	val->freehigh = 0;
3807#endif
3808	val->mem_unit = PAGE_SIZE;
3809}
3810#endif
3811
3812/*
3813 * Determine whether the node should be displayed or not, depending on whether
3814 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3815 */
3816bool skip_free_areas_node(unsigned int flags, int nid)
3817{
3818	bool ret = false;
3819	unsigned int cpuset_mems_cookie;
3820
3821	if (!(flags & SHOW_MEM_FILTER_NODES))
3822		goto out;
 
 
 
 
 
3823
3824	do {
3825		cpuset_mems_cookie = read_mems_allowed_begin();
3826		ret = !node_isset(nid, cpuset_current_mems_allowed);
3827	} while (read_mems_allowed_retry(cpuset_mems_cookie));
3828out:
3829	return ret;
3830}
3831
3832#define K(x) ((x) << (PAGE_SHIFT-10))
3833
3834static void show_migration_types(unsigned char type)
3835{
3836	static const char types[MIGRATE_TYPES] = {
3837		[MIGRATE_UNMOVABLE]	= 'U',
3838		[MIGRATE_MOVABLE]	= 'M',
3839		[MIGRATE_RECLAIMABLE]	= 'E',
3840		[MIGRATE_HIGHATOMIC]	= 'H',
3841#ifdef CONFIG_CMA
3842		[MIGRATE_CMA]		= 'C',
3843#endif
3844#ifdef CONFIG_MEMORY_ISOLATION
3845		[MIGRATE_ISOLATE]	= 'I',
3846#endif
3847	};
3848	char tmp[MIGRATE_TYPES + 1];
3849	char *p = tmp;
3850	int i;
3851
3852	for (i = 0; i < MIGRATE_TYPES; i++) {
3853		if (type & (1 << i))
3854			*p++ = types[i];
3855	}
3856
3857	*p = '\0';
3858	printk("(%s) ", tmp);
3859}
3860
3861/*
3862 * Show free area list (used inside shift_scroll-lock stuff)
3863 * We also calculate the percentage fragmentation. We do this by counting the
3864 * memory on each free list with the exception of the first item on the list.
3865 *
3866 * Bits in @filter:
3867 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3868 *   cpuset.
3869 */
3870void show_free_areas(unsigned int filter)
3871{
3872	unsigned long free_pcp = 0;
3873	int cpu;
3874	struct zone *zone;
 
3875
3876	for_each_populated_zone(zone) {
3877		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3878			continue;
3879
3880		for_each_online_cpu(cpu)
3881			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3882	}
3883
3884	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3885		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3886		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3887		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3888		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3889		" free:%lu free_pcp:%lu free_cma:%lu\n",
3890		global_page_state(NR_ACTIVE_ANON),
3891		global_page_state(NR_INACTIVE_ANON),
3892		global_page_state(NR_ISOLATED_ANON),
3893		global_page_state(NR_ACTIVE_FILE),
3894		global_page_state(NR_INACTIVE_FILE),
3895		global_page_state(NR_ISOLATED_FILE),
3896		global_page_state(NR_UNEVICTABLE),
3897		global_page_state(NR_FILE_DIRTY),
3898		global_page_state(NR_WRITEBACK),
3899		global_page_state(NR_UNSTABLE_NFS),
3900		global_page_state(NR_SLAB_RECLAIMABLE),
3901		global_page_state(NR_SLAB_UNRECLAIMABLE),
3902		global_page_state(NR_FILE_MAPPED),
3903		global_page_state(NR_SHMEM),
3904		global_page_state(NR_PAGETABLE),
3905		global_page_state(NR_BOUNCE),
3906		global_page_state(NR_FREE_PAGES),
3907		free_pcp,
3908		global_page_state(NR_FREE_CMA_PAGES));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3909
3910	for_each_populated_zone(zone) {
3911		int i;
3912
3913		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3914			continue;
3915
3916		free_pcp = 0;
3917		for_each_online_cpu(cpu)
3918			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3919
3920		show_node(zone);
3921		printk("%s"
 
3922			" free:%lukB"
3923			" min:%lukB"
3924			" low:%lukB"
3925			" high:%lukB"
3926			" active_anon:%lukB"
3927			" inactive_anon:%lukB"
3928			" active_file:%lukB"
3929			" inactive_file:%lukB"
3930			" unevictable:%lukB"
3931			" isolated(anon):%lukB"
3932			" isolated(file):%lukB"
3933			" present:%lukB"
3934			" managed:%lukB"
3935			" mlocked:%lukB"
3936			" dirty:%lukB"
3937			" writeback:%lukB"
3938			" mapped:%lukB"
3939			" shmem:%lukB"
3940			" slab_reclaimable:%lukB"
3941			" slab_unreclaimable:%lukB"
3942			" kernel_stack:%lukB"
3943			" pagetables:%lukB"
3944			" unstable:%lukB"
3945			" bounce:%lukB"
3946			" free_pcp:%lukB"
3947			" local_pcp:%ukB"
3948			" free_cma:%lukB"
3949			" writeback_tmp:%lukB"
3950			" pages_scanned:%lu"
3951			" all_unreclaimable? %s"
3952			"\n",
3953			zone->name,
3954			K(zone_page_state(zone, NR_FREE_PAGES)),
3955			K(min_wmark_pages(zone)),
3956			K(low_wmark_pages(zone)),
3957			K(high_wmark_pages(zone)),
3958			K(zone_page_state(zone, NR_ACTIVE_ANON)),
3959			K(zone_page_state(zone, NR_INACTIVE_ANON)),
3960			K(zone_page_state(zone, NR_ACTIVE_FILE)),
3961			K(zone_page_state(zone, NR_INACTIVE_FILE)),
3962			K(zone_page_state(zone, NR_UNEVICTABLE)),
3963			K(zone_page_state(zone, NR_ISOLATED_ANON)),
3964			K(zone_page_state(zone, NR_ISOLATED_FILE)),
3965			K(zone->present_pages),
3966			K(zone->managed_pages),
3967			K(zone_page_state(zone, NR_MLOCK)),
3968			K(zone_page_state(zone, NR_FILE_DIRTY)),
3969			K(zone_page_state(zone, NR_WRITEBACK)),
3970			K(zone_page_state(zone, NR_FILE_MAPPED)),
3971			K(zone_page_state(zone, NR_SHMEM)),
3972			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3973			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3974			zone_page_state(zone, NR_KERNEL_STACK) *
3975				THREAD_SIZE / 1024,
3976			K(zone_page_state(zone, NR_PAGETABLE)),
3977			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3978			K(zone_page_state(zone, NR_BOUNCE)),
3979			K(free_pcp),
3980			K(this_cpu_read(zone->pageset->pcp.count)),
3981			K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3982			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3983			K(zone_page_state(zone, NR_PAGES_SCANNED)),
3984			(!zone_reclaimable(zone) ? "yes" : "no")
3985			);
3986		printk("lowmem_reserve[]:");
3987		for (i = 0; i < MAX_NR_ZONES; i++)
3988			printk(" %ld", zone->lowmem_reserve[i]);
3989		printk("\n");
3990	}
3991
3992	for_each_populated_zone(zone) {
3993		unsigned int order;
3994		unsigned long nr[MAX_ORDER], flags, total = 0;
3995		unsigned char types[MAX_ORDER];
3996
3997		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3998			continue;
3999		show_node(zone);
4000		printk("%s: ", zone->name);
4001
4002		spin_lock_irqsave(&zone->lock, flags);
4003		for (order = 0; order < MAX_ORDER; order++) {
4004			struct free_area *area = &zone->free_area[order];
4005			int type;
4006
4007			nr[order] = area->nr_free;
4008			total += nr[order] << order;
4009
4010			types[order] = 0;
4011			for (type = 0; type < MIGRATE_TYPES; type++) {
4012				if (!list_empty(&area->free_list[type]))
4013					types[order] |= 1 << type;
4014			}
4015		}
4016		spin_unlock_irqrestore(&zone->lock, flags);
4017		for (order = 0; order < MAX_ORDER; order++) {
4018			printk("%lu*%lukB ", nr[order], K(1UL) << order);
 
4019			if (nr[order])
4020				show_migration_types(types[order]);
4021		}
4022		printk("= %lukB\n", K(total));
4023	}
4024
4025	hugetlb_show_meminfo();
4026
4027	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
4028
4029	show_swap_cache_info();
4030}
4031
4032static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4033{
4034	zoneref->zone = zone;
4035	zoneref->zone_idx = zone_idx(zone);
4036}
4037
4038/*
4039 * Builds allocation fallback zone lists.
4040 *
4041 * Add all populated zones of a node to the zonelist.
4042 */
4043static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
4044				int nr_zones)
4045{
4046	struct zone *zone;
4047	enum zone_type zone_type = MAX_NR_ZONES;
 
4048
4049	do {
4050		zone_type--;
4051		zone = pgdat->node_zones + zone_type;
4052		if (populated_zone(zone)) {
4053			zoneref_set_zone(zone,
4054				&zonelist->_zonerefs[nr_zones++]);
4055			check_highest_zone(zone_type);
4056		}
4057	} while (zone_type);
4058
4059	return nr_zones;
4060}
4061
4062
4063/*
4064 *  zonelist_order:
4065 *  0 = automatic detection of better ordering.
4066 *  1 = order by ([node] distance, -zonetype)
4067 *  2 = order by (-zonetype, [node] distance)
4068 *
4069 *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4070 *  the same zonelist. So only NUMA can configure this param.
4071 */
4072#define ZONELIST_ORDER_DEFAULT  0
4073#define ZONELIST_ORDER_NODE     1
4074#define ZONELIST_ORDER_ZONE     2
4075
4076/* zonelist order in the kernel.
4077 * set_zonelist_order() will set this to NODE or ZONE.
4078 */
4079static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4080static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4081
4082
4083#ifdef CONFIG_NUMA
4084/* The value user specified ....changed by config */
4085static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4086/* string for sysctl */
4087#define NUMA_ZONELIST_ORDER_LEN	16
4088char numa_zonelist_order[16] = "default";
4089
4090/*
4091 * interface for configure zonelist ordering.
4092 * command line option "numa_zonelist_order"
4093 *	= "[dD]efault	- default, automatic configuration.
4094 *	= "[nN]ode 	- order by node locality, then by zone within node
4095 *	= "[zZ]one      - order by zone, then by locality within zone
4096 */
4097
4098static int __parse_numa_zonelist_order(char *s)
4099{
4100	if (*s == 'd' || *s == 'D') {
4101		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4102	} else if (*s == 'n' || *s == 'N') {
4103		user_zonelist_order = ZONELIST_ORDER_NODE;
4104	} else if (*s == 'z' || *s == 'Z') {
4105		user_zonelist_order = ZONELIST_ORDER_ZONE;
4106	} else {
4107		pr_warn("Ignoring invalid numa_zonelist_order value:  %s\n", s);
4108		return -EINVAL;
4109	}
4110	return 0;
4111}
4112
4113static __init int setup_numa_zonelist_order(char *s)
4114{
4115	int ret;
4116
4117	if (!s)
4118		return 0;
4119
4120	ret = __parse_numa_zonelist_order(s);
4121	if (ret == 0)
4122		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4123
4124	return ret;
4125}
4126early_param("numa_zonelist_order", setup_numa_zonelist_order);
4127
 
 
4128/*
4129 * sysctl handler for numa_zonelist_order
4130 */
4131int numa_zonelist_order_handler(struct ctl_table *table, int write,
4132		void __user *buffer, size_t *length,
4133		loff_t *ppos)
4134{
4135	char saved_string[NUMA_ZONELIST_ORDER_LEN];
4136	int ret;
4137	static DEFINE_MUTEX(zl_order_mutex);
4138
4139	mutex_lock(&zl_order_mutex);
4140	if (write) {
4141		if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4142			ret = -EINVAL;
4143			goto out;
4144		}
4145		strcpy(saved_string, (char *)table->data);
4146	}
4147	ret = proc_dostring(table, write, buffer, length, ppos);
4148	if (ret)
4149		goto out;
4150	if (write) {
4151		int oldval = user_zonelist_order;
4152
4153		ret = __parse_numa_zonelist_order((char *)table->data);
4154		if (ret) {
4155			/*
4156			 * bogus value.  restore saved string
4157			 */
4158			strncpy((char *)table->data, saved_string,
4159				NUMA_ZONELIST_ORDER_LEN);
4160			user_zonelist_order = oldval;
4161		} else if (oldval != user_zonelist_order) {
4162			mutex_lock(&zonelists_mutex);
4163			build_all_zonelists(NULL, NULL);
4164			mutex_unlock(&zonelists_mutex);
4165		}
4166	}
4167out:
4168	mutex_unlock(&zl_order_mutex);
4169	return ret;
4170}
4171
4172
4173#define MAX_NODE_LOAD (nr_online_nodes)
4174static int node_load[MAX_NUMNODES];
4175
4176/**
4177 * find_next_best_node - find the next node that should appear in a given node's fallback list
4178 * @node: node whose fallback list we're appending
4179 * @used_node_mask: nodemask_t of already used nodes
4180 *
4181 * We use a number of factors to determine which is the next node that should
4182 * appear on a given node's fallback list.  The node should not have appeared
4183 * already in @node's fallback list, and it should be the next closest node
4184 * according to the distance array (which contains arbitrary distance values
4185 * from each node to each node in the system), and should also prefer nodes
4186 * with no CPUs, since presumably they'll have very little allocation pressure
4187 * on them otherwise.
4188 * It returns -1 if no node is found.
4189 */
4190static int find_next_best_node(int node, nodemask_t *used_node_mask)
4191{
4192	int n, val;
4193	int min_val = INT_MAX;
4194	int best_node = NUMA_NO_NODE;
4195	const struct cpumask *tmp = cpumask_of_node(0);
4196
4197	/* Use the local node if we haven't already */
4198	if (!node_isset(node, *used_node_mask)) {
4199		node_set(node, *used_node_mask);
4200		return node;
4201	}
4202
4203	for_each_node_state(n, N_MEMORY) {
4204
4205		/* Don't want a node to appear more than once */
4206		if (node_isset(n, *used_node_mask))
4207			continue;
4208
4209		/* Use the distance array to find the distance */
4210		val = node_distance(node, n);
4211
4212		/* Penalize nodes under us ("prefer the next node") */
4213		val += (n < node);
4214
4215		/* Give preference to headless and unused nodes */
4216		tmp = cpumask_of_node(n);
4217		if (!cpumask_empty(tmp))
4218			val += PENALTY_FOR_NODE_WITH_CPUS;
4219
4220		/* Slight preference for less loaded node */
4221		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4222		val += node_load[n];
4223
4224		if (val < min_val) {
4225			min_val = val;
4226			best_node = n;
4227		}
4228	}
4229
4230	if (best_node >= 0)
4231		node_set(best_node, *used_node_mask);
4232
4233	return best_node;
4234}
4235
4236
4237/*
4238 * Build zonelists ordered by node and zones within node.
4239 * This results in maximum locality--normal zone overflows into local
4240 * DMA zone, if any--but risks exhausting DMA zone.
4241 */
4242static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
 
4243{
4244	int j;
4245	struct zonelist *zonelist;
 
 
 
 
 
 
 
4246
4247	zonelist = &pgdat->node_zonelists[0];
4248	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4249		;
4250	j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4251	zonelist->_zonerefs[j].zone = NULL;
4252	zonelist->_zonerefs[j].zone_idx = 0;
4253}
4254
4255/*
4256 * Build gfp_thisnode zonelists
4257 */
4258static void build_thisnode_zonelists(pg_data_t *pgdat)
4259{
4260	int j;
4261	struct zonelist *zonelist;
4262
4263	zonelist = &pgdat->node_zonelists[1];
4264	j = build_zonelists_node(pgdat, zonelist, 0);
4265	zonelist->_zonerefs[j].zone = NULL;
4266	zonelist->_zonerefs[j].zone_idx = 0;
 
4267}
4268
4269/*
4270 * Build zonelists ordered by zone and nodes within zones.
4271 * This results in conserving DMA zone[s] until all Normal memory is
4272 * exhausted, but results in overflowing to remote node while memory
4273 * may still exist in local DMA zone.
4274 */
4275static int node_order[MAX_NUMNODES];
4276
4277static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4278{
4279	int pos, j, node;
4280	int zone_type;		/* needs to be signed */
4281	struct zone *z;
4282	struct zonelist *zonelist;
4283
4284	zonelist = &pgdat->node_zonelists[0];
4285	pos = 0;
4286	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4287		for (j = 0; j < nr_nodes; j++) {
4288			node = node_order[j];
4289			z = &NODE_DATA(node)->node_zones[zone_type];
4290			if (populated_zone(z)) {
4291				zoneref_set_zone(z,
4292					&zonelist->_zonerefs[pos++]);
4293				check_highest_zone(zone_type);
4294			}
4295		}
4296	}
4297	zonelist->_zonerefs[pos].zone = NULL;
4298	zonelist->_zonerefs[pos].zone_idx = 0;
4299}
4300
4301#if defined(CONFIG_64BIT)
4302/*
4303 * Devices that require DMA32/DMA are relatively rare and do not justify a
4304 * penalty to every machine in case the specialised case applies. Default
4305 * to Node-ordering on 64-bit NUMA machines
4306 */
4307static int default_zonelist_order(void)
4308{
4309	return ZONELIST_ORDER_NODE;
4310}
4311#else
4312/*
4313 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4314 * by the kernel. If processes running on node 0 deplete the low memory zone
4315 * then reclaim will occur more frequency increasing stalls and potentially
4316 * be easier to OOM if a large percentage of the zone is under writeback or
4317 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4318 * Hence, default to zone ordering on 32-bit.
4319 */
4320static int default_zonelist_order(void)
4321{
4322	return ZONELIST_ORDER_ZONE;
4323}
4324#endif /* CONFIG_64BIT */
4325
4326static void set_zonelist_order(void)
4327{
4328	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4329		current_zonelist_order = default_zonelist_order();
4330	else
4331		current_zonelist_order = user_zonelist_order;
4332}
4333
4334static void build_zonelists(pg_data_t *pgdat)
4335{
4336	int i, node, load;
 
4337	nodemask_t used_mask;
4338	int local_node, prev_node;
4339	struct zonelist *zonelist;
4340	unsigned int order = current_zonelist_order;
4341
4342	/* initialize zonelists */
4343	for (i = 0; i < MAX_ZONELISTS; i++) {
4344		zonelist = pgdat->node_zonelists + i;
4345		zonelist->_zonerefs[0].zone = NULL;
4346		zonelist->_zonerefs[0].zone_idx = 0;
4347	}
4348
4349	/* NUMA-aware ordering of nodes */
4350	local_node = pgdat->node_id;
4351	load = nr_online_nodes;
4352	prev_node = local_node;
4353	nodes_clear(used_mask);
4354
4355	memset(node_order, 0, sizeof(node_order));
4356	i = 0;
4357
4358	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4359		/*
4360		 * We don't want to pressure a particular node.
4361		 * So adding penalty to the first node in same
4362		 * distance group to make it round-robin.
4363		 */
4364		if (node_distance(local_node, node) !=
4365		    node_distance(local_node, prev_node))
4366			node_load[node] = load;
4367
 
4368		prev_node = node;
4369		load--;
4370		if (order == ZONELIST_ORDER_NODE)
4371			build_zonelists_in_node_order(pgdat, node);
4372		else
4373			node_order[i++] = node;	/* remember order */
4374	}
4375
4376	if (order == ZONELIST_ORDER_ZONE) {
4377		/* calculate node order -- i.e., DMA last! */
4378		build_zonelists_in_zone_order(pgdat, i);
4379	}
4380
 
4381	build_thisnode_zonelists(pgdat);
4382}
4383
4384#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4385/*
4386 * Return node id of node used for "local" allocations.
4387 * I.e., first node id of first zone in arg node's generic zonelist.
4388 * Used for initializing percpu 'numa_mem', which is used primarily
4389 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4390 */
4391int local_memory_node(int node)
4392{
4393	struct zone *zone;
4394
4395	(void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4396				   gfp_zone(GFP_KERNEL),
4397				   NULL,
4398				   &zone);
4399	return zone->node;
4400}
4401#endif
4402
 
 
4403#else	/* CONFIG_NUMA */
4404
4405static void set_zonelist_order(void)
4406{
4407	current_zonelist_order = ZONELIST_ORDER_ZONE;
4408}
4409
4410static void build_zonelists(pg_data_t *pgdat)
4411{
4412	int node, local_node;
4413	enum zone_type j;
4414	struct zonelist *zonelist;
4415
4416	local_node = pgdat->node_id;
4417
4418	zonelist = &pgdat->node_zonelists[0];
4419	j = build_zonelists_node(pgdat, zonelist, 0);
 
4420
4421	/*
4422	 * Now we build the zonelist so that it contains the zones
4423	 * of all the other nodes.
4424	 * We don't want to pressure a particular node, so when
4425	 * building the zones for node N, we make sure that the
4426	 * zones coming right after the local ones are those from
4427	 * node N+1 (modulo N)
4428	 */
4429	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4430		if (!node_online(node))
4431			continue;
4432		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
 
4433	}
4434	for (node = 0; node < local_node; node++) {
4435		if (!node_online(node))
4436			continue;
4437		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
 
4438	}
4439
4440	zonelist->_zonerefs[j].zone = NULL;
4441	zonelist->_zonerefs[j].zone_idx = 0;
4442}
4443
4444#endif	/* CONFIG_NUMA */
4445
4446/*
4447 * Boot pageset table. One per cpu which is going to be used for all
4448 * zones and all nodes. The parameters will be set in such a way
4449 * that an item put on a list will immediately be handed over to
4450 * the buddy list. This is safe since pageset manipulation is done
4451 * with interrupts disabled.
4452 *
4453 * The boot_pagesets must be kept even after bootup is complete for
4454 * unused processors and/or zones. They do play a role for bootstrapping
4455 * hotplugged processors.
4456 *
4457 * zoneinfo_show() and maybe other functions do
4458 * not check if the processor is online before following the pageset pointer.
4459 * Other parts of the kernel may not check if the zone is available.
4460 */
4461static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4462static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
4463static void setup_zone_pageset(struct zone *zone);
4464
4465/*
4466 * Global mutex to protect against size modification of zonelists
4467 * as well as to serialize pageset setup for the new populated zone.
4468 */
4469DEFINE_MUTEX(zonelists_mutex);
4470
4471/* return values int ....just for stop_machine() */
4472static int __build_all_zonelists(void *data)
4473{
4474	int nid;
4475	int cpu;
4476	pg_data_t *self = data;
 
 
 
4477
4478#ifdef CONFIG_NUMA
4479	memset(node_load, 0, sizeof(node_load));
4480#endif
4481
 
 
 
 
4482	if (self && !node_online(self->node_id)) {
4483		build_zonelists(self);
4484	}
 
 
4485
4486	for_each_online_node(nid) {
4487		pg_data_t *pgdat = NODE_DATA(nid);
4488
4489		build_zonelists(pgdat);
4490	}
4491
4492	/*
4493	 * Initialize the boot_pagesets that are going to be used
4494	 * for bootstrapping processors. The real pagesets for
4495	 * each zone will be allocated later when the per cpu
4496	 * allocator is available.
4497	 *
4498	 * boot_pagesets are used also for bootstrapping offline
4499	 * cpus if the system is already booted because the pagesets
4500	 * are needed to initialize allocators on a specific cpu too.
4501	 * F.e. the percpu allocator needs the page allocator which
4502	 * needs the percpu allocator in order to allocate its pagesets
4503	 * (a chicken-egg dilemma).
4504	 */
4505	for_each_possible_cpu(cpu) {
4506		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4507
4508#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4509		/*
4510		 * We now know the "local memory node" for each node--
4511		 * i.e., the node of the first zone in the generic zonelist.
4512		 * Set up numa_mem percpu variable for on-line cpus.  During
4513		 * boot, only the boot cpu should be on-line;  we'll init the
4514		 * secondary cpus' numa_mem as they come on-line.  During
4515		 * node/memory hotplug, we'll fixup all on-line cpus.
4516		 */
4517		if (cpu_online(cpu))
4518			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4519#endif
4520	}
4521
4522	return 0;
4523}
4524
4525static noinline void __init
4526build_all_zonelists_init(void)
4527{
 
 
4528	__build_all_zonelists(NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4529	mminit_verify_zonelist();
4530	cpuset_init_current_mems_allowed();
4531}
4532
4533/*
4534 * Called with zonelists_mutex held always
4535 * unless system_state == SYSTEM_BOOTING.
4536 *
4537 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4538 * [we're only called with non-NULL zone through __meminit paths] and
4539 * (2) call of __init annotated helper build_all_zonelists_init
4540 * [protected by SYSTEM_BOOTING].
4541 */
4542void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
4543{
4544	set_zonelist_order();
4545
4546	if (system_state == SYSTEM_BOOTING) {
4547		build_all_zonelists_init();
4548	} else {
4549#ifdef CONFIG_MEMORY_HOTPLUG
4550		if (zone)
4551			setup_zone_pageset(zone);
4552#endif
4553		/* we have to stop all cpus to guarantee there is no user
4554		   of zonelist */
4555		stop_machine(__build_all_zonelists, pgdat, NULL);
4556		/* cpuset refresh routine should be here */
4557	}
4558	vm_total_pages = nr_free_pagecache_pages();
4559	/*
4560	 * Disable grouping by mobility if the number of pages in the
4561	 * system is too low to allow the mechanism to work. It would be
4562	 * more accurate, but expensive to check per-zone. This check is
4563	 * made on memory-hotadd so a system can start with mobility
4564	 * disabled and enable it later
4565	 */
4566	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
4567		page_group_by_mobility_disabled = 1;
4568	else
4569		page_group_by_mobility_disabled = 0;
4570
4571	pr_info("Built %i zonelists in %s order, mobility grouping %s.  Total pages: %ld\n",
4572		nr_online_nodes,
4573		zonelist_order_name[current_zonelist_order],
4574		page_group_by_mobility_disabled ? "off" : "on",
4575		vm_total_pages);
4576#ifdef CONFIG_NUMA
4577	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
4578#endif
4579}
4580
4581/*
4582 * Helper functions to size the waitqueue hash table.
4583 * Essentially these want to choose hash table sizes sufficiently
4584 * large so that collisions trying to wait on pages are rare.
4585 * But in fact, the number of active page waitqueues on typical
4586 * systems is ridiculously low, less than 200. So this is even
4587 * conservative, even though it seems large.
4588 *
4589 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4590 * waitqueues, i.e. the size of the waitq table given the number of pages.
4591 */
4592#define PAGES_PER_WAITQUEUE	256
4593
4594#ifndef CONFIG_MEMORY_HOTPLUG
4595static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4596{
4597	unsigned long size = 1;
4598
4599	pages /= PAGES_PER_WAITQUEUE;
4600
4601	while (size < pages)
4602		size <<= 1;
4603
4604	/*
4605	 * Once we have dozens or even hundreds of threads sleeping
4606	 * on IO we've got bigger problems than wait queue collision.
4607	 * Limit the size of the wait table to a reasonable size.
4608	 */
4609	size = min(size, 4096UL);
4610
4611	return max(size, 4UL);
4612}
4613#else
4614/*
4615 * A zone's size might be changed by hot-add, so it is not possible to determine
4616 * a suitable size for its wait_table.  So we use the maximum size now.
4617 *
4618 * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
4619 *
4620 *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
4621 *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4622 *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
4623 *
4624 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4625 * or more by the traditional way. (See above).  It equals:
4626 *
4627 *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
4628 *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
4629 *    powerpc (64K page size)             : =  (32G +16M)byte.
4630 */
4631static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4632{
4633	return 4096UL;
4634}
4635#endif
4636
4637/*
4638 * This is an integer logarithm so that shifts can be used later
4639 * to extract the more random high bits from the multiplicative
4640 * hash function before the remainder is taken.
4641 */
4642static inline unsigned long wait_table_bits(unsigned long size)
4643{
4644	return ffz(~size);
4645}
4646
4647/*
4648 * Initially all pages are reserved - free ones are freed
4649 * up by free_all_bootmem() once the early boot process is
4650 * done. Non-atomic initialization, single-pass.
4651 */
4652void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4653		unsigned long start_pfn, enum memmap_context context)
 
4654{
4655	struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
4656	unsigned long end_pfn = start_pfn + size;
4657	pg_data_t *pgdat = NODE_DATA(nid);
4658	unsigned long pfn;
4659	unsigned long nr_initialised = 0;
 
4660#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4661	struct memblock_region *r = NULL, *tmp;
4662#endif
4663
4664	if (highest_memmap_pfn < end_pfn - 1)
4665		highest_memmap_pfn = end_pfn - 1;
4666
4667	/*
4668	 * Honor reservation requested by the driver for this ZONE_DEVICE
4669	 * memory
4670	 */
4671	if (altmap && start_pfn == altmap->base_pfn)
4672		start_pfn += altmap->reserve;
4673
4674	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4675		/*
4676		 * There can be holes in boot-time mem_map[]s handed to this
4677		 * function.  They do not exist on hotplugged memory.
4678		 */
4679		if (context != MEMMAP_EARLY)
4680			goto not_early;
4681
4682		if (!early_pfn_valid(pfn))
4683			continue;
4684		if (!early_pfn_in_nid(pfn, nid))
4685			continue;
4686		if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
4687			break;
4688
4689#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4690		/*
4691		 * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
4692		 * from zone_movable_pfn[nid] to end of each node should be
4693		 * ZONE_MOVABLE not ZONE_NORMAL. skip it.
4694		 */
4695		if (!mirrored_kernelcore && zone_movable_pfn[nid])
4696			if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid])
4697				continue;
4698
4699		/*
4700		 * Check given memblock attribute by firmware which can affect
4701		 * kernel memory layout.  If zone==ZONE_MOVABLE but memory is
4702		 * mirrored, it's an overlapped memmap init. skip it.
4703		 */
4704		if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
4705			if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
4706				for_each_memblock(memory, tmp)
4707					if (pfn < memblock_region_memory_end_pfn(tmp))
4708						break;
4709				r = tmp;
4710			}
4711			if (pfn >= memblock_region_memory_base_pfn(r) &&
4712			    memblock_is_mirror(r)) {
4713				/* already initialized as NORMAL */
4714				pfn = memblock_region_memory_end_pfn(r);
4715				continue;
4716			}
4717		}
4718#endif
4719
4720not_early:
 
 
 
 
 
4721		/*
4722		 * Mark the block movable so that blocks are reserved for
4723		 * movable at startup. This will force kernel allocations
4724		 * to reserve their blocks rather than leaking throughout
4725		 * the address space during boot when many long-lived
4726		 * kernel allocations are made.
4727		 *
4728		 * bitmap is created for zone's valid pfn range. but memmap
4729		 * can be created for invalid pages (for alignment)
4730		 * check here not to call set_pageblock_migratetype() against
4731		 * pfn out of zone.
 
 
 
4732		 */
4733		if (!(pfn & (pageblock_nr_pages - 1))) {
4734			struct page *page = pfn_to_page(pfn);
4735
4736			__init_single_page(page, pfn, zone, nid);
4737			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4738		} else {
4739			__init_single_pfn(pfn, zone, nid);
4740		}
4741	}
4742}
4743
4744static void __meminit zone_init_free_lists(struct zone *zone)
4745{
4746	unsigned int order, t;
4747	for_each_migratetype_order(order, t) {
4748		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4749		zone->free_area[order].nr_free = 0;
4750	}
4751}
4752
4753#ifndef __HAVE_ARCH_MEMMAP_INIT
4754#define memmap_init(size, nid, zone, start_pfn) \
4755	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4756#endif
4757
4758static int zone_batchsize(struct zone *zone)
4759{
4760#ifdef CONFIG_MMU
4761	int batch;
4762
4763	/*
4764	 * The per-cpu-pages pools are set to around 1000th of the
4765	 * size of the zone.  But no more than 1/2 of a meg.
4766	 *
4767	 * OK, so we don't know how big the cache is.  So guess.
4768	 */
4769	batch = zone->managed_pages / 1024;
4770	if (batch * PAGE_SIZE > 512 * 1024)
4771		batch = (512 * 1024) / PAGE_SIZE;
4772	batch /= 4;		/* We effectively *= 4 below */
4773	if (batch < 1)
4774		batch = 1;
4775
4776	/*
4777	 * Clamp the batch to a 2^n - 1 value. Having a power
4778	 * of 2 value was found to be more likely to have
4779	 * suboptimal cache aliasing properties in some cases.
4780	 *
4781	 * For example if 2 tasks are alternately allocating
4782	 * batches of pages, one task can end up with a lot
4783	 * of pages of one half of the possible page colors
4784	 * and the other with pages of the other colors.
4785	 */
4786	batch = rounddown_pow_of_two(batch + batch/2) - 1;
4787
4788	return batch;
4789
4790#else
4791	/* The deferral and batching of frees should be suppressed under NOMMU
4792	 * conditions.
4793	 *
4794	 * The problem is that NOMMU needs to be able to allocate large chunks
4795	 * of contiguous memory as there's no hardware page translation to
4796	 * assemble apparent contiguous memory from discontiguous pages.
4797	 *
4798	 * Queueing large contiguous runs of pages for batching, however,
4799	 * causes the pages to actually be freed in smaller chunks.  As there
4800	 * can be a significant delay between the individual batches being
4801	 * recycled, this leads to the once large chunks of space being
4802	 * fragmented and becoming unavailable for high-order allocations.
4803	 */
4804	return 0;
4805#endif
4806}
4807
4808/*
4809 * pcp->high and pcp->batch values are related and dependent on one another:
4810 * ->batch must never be higher then ->high.
4811 * The following function updates them in a safe manner without read side
4812 * locking.
4813 *
4814 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4815 * those fields changing asynchronously (acording the the above rule).
4816 *
4817 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4818 * outside of boot time (or some other assurance that no concurrent updaters
4819 * exist).
4820 */
4821static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4822		unsigned long batch)
4823{
4824       /* start with a fail safe value for batch */
4825	pcp->batch = 1;
4826	smp_wmb();
4827
4828       /* Update high, then batch, in order */
4829	pcp->high = high;
4830	smp_wmb();
4831
4832	pcp->batch = batch;
4833}
4834
4835/* a companion to pageset_set_high() */
4836static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4837{
4838	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4839}
4840
4841static void pageset_init(struct per_cpu_pageset *p)
4842{
4843	struct per_cpu_pages *pcp;
4844	int migratetype;
4845
4846	memset(p, 0, sizeof(*p));
4847
4848	pcp = &p->pcp;
4849	pcp->count = 0;
4850	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4851		INIT_LIST_HEAD(&pcp->lists[migratetype]);
4852}
4853
4854static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4855{
4856	pageset_init(p);
4857	pageset_set_batch(p, batch);
4858}
4859
4860/*
4861 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4862 * to the value high for the pageset p.
4863 */
4864static void pageset_set_high(struct per_cpu_pageset *p,
4865				unsigned long high)
4866{
4867	unsigned long batch = max(1UL, high / 4);
4868	if ((high / 4) > (PAGE_SHIFT * 8))
4869		batch = PAGE_SHIFT * 8;
4870
4871	pageset_update(&p->pcp, high, batch);
4872}
4873
4874static void pageset_set_high_and_batch(struct zone *zone,
4875				       struct per_cpu_pageset *pcp)
4876{
4877	if (percpu_pagelist_fraction)
4878		pageset_set_high(pcp,
4879			(zone->managed_pages /
4880				percpu_pagelist_fraction));
4881	else
4882		pageset_set_batch(pcp, zone_batchsize(zone));
4883}
4884
4885static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4886{
4887	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4888
4889	pageset_init(pcp);
4890	pageset_set_high_and_batch(zone, pcp);
4891}
4892
4893static void __meminit setup_zone_pageset(struct zone *zone)
4894{
4895	int cpu;
4896	zone->pageset = alloc_percpu(struct per_cpu_pageset);
4897	for_each_possible_cpu(cpu)
4898		zone_pageset_init(zone, cpu);
4899}
4900
4901/*
4902 * Allocate per cpu pagesets and initialize them.
4903 * Before this call only boot pagesets were available.
4904 */
4905void __init setup_per_cpu_pageset(void)
4906{
 
4907	struct zone *zone;
4908
4909	for_each_populated_zone(zone)
4910		setup_zone_pageset(zone);
4911}
4912
4913static noinline __init_refok
4914int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4915{
4916	int i;
4917	size_t alloc_size;
4918
4919	/*
4920	 * The per-page waitqueue mechanism uses hashed waitqueues
4921	 * per zone.
4922	 */
4923	zone->wait_table_hash_nr_entries =
4924		 wait_table_hash_nr_entries(zone_size_pages);
4925	zone->wait_table_bits =
4926		wait_table_bits(zone->wait_table_hash_nr_entries);
4927	alloc_size = zone->wait_table_hash_nr_entries
4928					* sizeof(wait_queue_head_t);
4929
4930	if (!slab_is_available()) {
4931		zone->wait_table = (wait_queue_head_t *)
4932			memblock_virt_alloc_node_nopanic(
4933				alloc_size, zone->zone_pgdat->node_id);
4934	} else {
4935		/*
4936		 * This case means that a zone whose size was 0 gets new memory
4937		 * via memory hot-add.
4938		 * But it may be the case that a new node was hot-added.  In
4939		 * this case vmalloc() will not be able to use this new node's
4940		 * memory - this wait_table must be initialized to use this new
4941		 * node itself as well.
4942		 * To use this new node's memory, further consideration will be
4943		 * necessary.
4944		 */
4945		zone->wait_table = vmalloc(alloc_size);
4946	}
4947	if (!zone->wait_table)
4948		return -ENOMEM;
4949
4950	for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4951		init_waitqueue_head(zone->wait_table + i);
4952
4953	return 0;
4954}
4955
4956static __meminit void zone_pcp_init(struct zone *zone)
4957{
4958	/*
4959	 * per cpu subsystem is not up at this point. The following code
4960	 * relies on the ability of the linker to provide the
4961	 * offset of a (static) per cpu variable into the per cpu area.
4962	 */
4963	zone->pageset = &boot_pageset;
4964
4965	if (populated_zone(zone))
4966		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
4967			zone->name, zone->present_pages,
4968					 zone_batchsize(zone));
4969}
4970
4971int __meminit init_currently_empty_zone(struct zone *zone,
4972					unsigned long zone_start_pfn,
4973					unsigned long size)
4974{
4975	struct pglist_data *pgdat = zone->zone_pgdat;
4976	int ret;
4977	ret = zone_wait_table_init(zone, size);
4978	if (ret)
4979		return ret;
4980	pgdat->nr_zones = zone_idx(zone) + 1;
4981
4982	zone->zone_start_pfn = zone_start_pfn;
4983
4984	mminit_dprintk(MMINIT_TRACE, "memmap_init",
4985			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
4986			pgdat->node_id,
4987			(unsigned long)zone_idx(zone),
4988			zone_start_pfn, (zone_start_pfn + size));
4989
4990	zone_init_free_lists(zone);
4991
4992	return 0;
4993}
4994
4995#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4996#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4997
4998/*
4999 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5000 */
5001int __meminit __early_pfn_to_nid(unsigned long pfn,
5002					struct mminit_pfnnid_cache *state)
5003{
5004	unsigned long start_pfn, end_pfn;
5005	int nid;
5006
5007	if (state->last_start <= pfn && pfn < state->last_end)
5008		return state->last_nid;
5009
5010	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5011	if (nid != -1) {
5012		state->last_start = start_pfn;
5013		state->last_end = end_pfn;
5014		state->last_nid = nid;
5015	}
5016
5017	return nid;
5018}
5019#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5020
5021/**
5022 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5023 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5024 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5025 *
5026 * If an architecture guarantees that all ranges registered contain no holes
5027 * and may be freed, this this function may be used instead of calling
5028 * memblock_free_early_nid() manually.
5029 */
5030void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5031{
5032	unsigned long start_pfn, end_pfn;
5033	int i, this_nid;
5034
5035	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5036		start_pfn = min(start_pfn, max_low_pfn);
5037		end_pfn = min(end_pfn, max_low_pfn);
5038
5039		if (start_pfn < end_pfn)
5040			memblock_free_early_nid(PFN_PHYS(start_pfn),
5041					(end_pfn - start_pfn) << PAGE_SHIFT,
5042					this_nid);
5043	}
5044}
5045
5046/**
5047 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5048 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5049 *
5050 * If an architecture guarantees that all ranges registered contain no holes and may
5051 * be freed, this function may be used instead of calling memory_present() manually.
5052 */
5053void __init sparse_memory_present_with_active_regions(int nid)
5054{
5055	unsigned long start_pfn, end_pfn;
5056	int i, this_nid;
5057
5058	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5059		memory_present(this_nid, start_pfn, end_pfn);
5060}
5061
5062/**
5063 * get_pfn_range_for_nid - Return the start and end page frames for a node
5064 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5065 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5066 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5067 *
5068 * It returns the start and end page frame of a node based on information
5069 * provided by memblock_set_node(). If called for a node
5070 * with no available memory, a warning is printed and the start and end
5071 * PFNs will be 0.
5072 */
5073void __meminit get_pfn_range_for_nid(unsigned int nid,
5074			unsigned long *start_pfn, unsigned long *end_pfn)
5075{
5076	unsigned long this_start_pfn, this_end_pfn;
5077	int i;
5078
5079	*start_pfn = -1UL;
5080	*end_pfn = 0;
5081
5082	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5083		*start_pfn = min(*start_pfn, this_start_pfn);
5084		*end_pfn = max(*end_pfn, this_end_pfn);
5085	}
5086
5087	if (*start_pfn == -1UL)
5088		*start_pfn = 0;
5089}
5090
5091/*
5092 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5093 * assumption is made that zones within a node are ordered in monotonic
5094 * increasing memory addresses so that the "highest" populated zone is used
5095 */
5096static void __init find_usable_zone_for_movable(void)
5097{
5098	int zone_index;
5099	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5100		if (zone_index == ZONE_MOVABLE)
5101			continue;
5102
5103		if (arch_zone_highest_possible_pfn[zone_index] >
5104				arch_zone_lowest_possible_pfn[zone_index])
5105			break;
5106	}
5107
5108	VM_BUG_ON(zone_index == -1);
5109	movable_zone = zone_index;
5110}
5111
5112/*
5113 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5114 * because it is sized independent of architecture. Unlike the other zones,
5115 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5116 * in each node depending on the size of each node and how evenly kernelcore
5117 * is distributed. This helper function adjusts the zone ranges
5118 * provided by the architecture for a given node by using the end of the
5119 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5120 * zones within a node are in order of monotonic increases memory addresses
5121 */
5122static void __meminit adjust_zone_range_for_zone_movable(int nid,
5123					unsigned long zone_type,
5124					unsigned long node_start_pfn,
5125					unsigned long node_end_pfn,
5126					unsigned long *zone_start_pfn,
5127					unsigned long *zone_end_pfn)
5128{
5129	/* Only adjust if ZONE_MOVABLE is on this node */
5130	if (zone_movable_pfn[nid]) {
5131		/* Size ZONE_MOVABLE */
5132		if (zone_type == ZONE_MOVABLE) {
5133			*zone_start_pfn = zone_movable_pfn[nid];
5134			*zone_end_pfn = min(node_end_pfn,
5135				arch_zone_highest_possible_pfn[movable_zone]);
5136
 
 
 
 
 
 
5137		/* Check if this whole range is within ZONE_MOVABLE */
5138		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
5139			*zone_start_pfn = *zone_end_pfn;
5140	}
5141}
5142
5143/*
5144 * Return the number of pages a zone spans in a node, including holes
5145 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5146 */
5147static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5148					unsigned long zone_type,
5149					unsigned long node_start_pfn,
5150					unsigned long node_end_pfn,
5151					unsigned long *zone_start_pfn,
5152					unsigned long *zone_end_pfn,
5153					unsigned long *ignored)
5154{
5155	/* When hotadd a new node from cpu_up(), the node should be empty */
5156	if (!node_start_pfn && !node_end_pfn)
5157		return 0;
5158
5159	/* Get the start and end of the zone */
5160	*zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5161	*zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5162	adjust_zone_range_for_zone_movable(nid, zone_type,
5163				node_start_pfn, node_end_pfn,
5164				zone_start_pfn, zone_end_pfn);
5165
5166	/* Check that this node has pages within the zone's required range */
5167	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5168		return 0;
5169
5170	/* Move the zone boundaries inside the node if necessary */
5171	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5172	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5173
5174	/* Return the spanned pages */
5175	return *zone_end_pfn - *zone_start_pfn;
5176}
5177
5178/*
5179 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5180 * then all holes in the requested range will be accounted for.
5181 */
5182unsigned long __meminit __absent_pages_in_range(int nid,
5183				unsigned long range_start_pfn,
5184				unsigned long range_end_pfn)
5185{
5186	unsigned long nr_absent = range_end_pfn - range_start_pfn;
5187	unsigned long start_pfn, end_pfn;
5188	int i;
5189
5190	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5191		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5192		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5193		nr_absent -= end_pfn - start_pfn;
5194	}
5195	return nr_absent;
5196}
5197
5198/**
5199 * absent_pages_in_range - Return number of page frames in holes within a range
5200 * @start_pfn: The start PFN to start searching for holes
5201 * @end_pfn: The end PFN to stop searching for holes
5202 *
5203 * It returns the number of pages frames in memory holes within a range.
5204 */
5205unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5206							unsigned long end_pfn)
5207{
5208	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5209}
5210
5211/* Return the number of page frames in holes in a zone on a node */
5212static unsigned long __meminit zone_absent_pages_in_node(int nid,
5213					unsigned long zone_type,
5214					unsigned long node_start_pfn,
5215					unsigned long node_end_pfn,
5216					unsigned long *ignored)
5217{
5218	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5219	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5220	unsigned long zone_start_pfn, zone_end_pfn;
5221	unsigned long nr_absent;
5222
5223	/* When hotadd a new node from cpu_up(), the node should be empty */
5224	if (!node_start_pfn && !node_end_pfn)
5225		return 0;
5226
5227	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5228	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5229
5230	adjust_zone_range_for_zone_movable(nid, zone_type,
5231			node_start_pfn, node_end_pfn,
5232			&zone_start_pfn, &zone_end_pfn);
5233	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5234
5235	/*
5236	 * ZONE_MOVABLE handling.
5237	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5238	 * and vice versa.
5239	 */
5240	if (zone_movable_pfn[nid]) {
5241		if (mirrored_kernelcore) {
5242			unsigned long start_pfn, end_pfn;
5243			struct memblock_region *r;
5244
5245			for_each_memblock(memory, r) {
5246				start_pfn = clamp(memblock_region_memory_base_pfn(r),
5247						  zone_start_pfn, zone_end_pfn);
5248				end_pfn = clamp(memblock_region_memory_end_pfn(r),
5249						zone_start_pfn, zone_end_pfn);
5250
5251				if (zone_type == ZONE_MOVABLE &&
5252				    memblock_is_mirror(r))
5253					nr_absent += end_pfn - start_pfn;
5254
5255				if (zone_type == ZONE_NORMAL &&
5256				    !memblock_is_mirror(r))
5257					nr_absent += end_pfn - start_pfn;
5258			}
5259		} else {
5260			if (zone_type == ZONE_NORMAL)
5261				nr_absent += node_end_pfn - zone_movable_pfn[nid];
5262		}
5263	}
5264
5265	return nr_absent;
5266}
5267
5268#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5269static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5270					unsigned long zone_type,
5271					unsigned long node_start_pfn,
5272					unsigned long node_end_pfn,
5273					unsigned long *zone_start_pfn,
5274					unsigned long *zone_end_pfn,
5275					unsigned long *zones_size)
5276{
5277	unsigned int zone;
5278
5279	*zone_start_pfn = node_start_pfn;
5280	for (zone = 0; zone < zone_type; zone++)
5281		*zone_start_pfn += zones_size[zone];
5282
5283	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5284
5285	return zones_size[zone_type];
5286}
5287
5288static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5289						unsigned long zone_type,
5290						unsigned long node_start_pfn,
5291						unsigned long node_end_pfn,
5292						unsigned long *zholes_size)
5293{
5294	if (!zholes_size)
5295		return 0;
5296
5297	return zholes_size[zone_type];
5298}
5299
5300#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5301
5302static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5303						unsigned long node_start_pfn,
5304						unsigned long node_end_pfn,
5305						unsigned long *zones_size,
5306						unsigned long *zholes_size)
5307{
5308	unsigned long realtotalpages = 0, totalpages = 0;
5309	enum zone_type i;
5310
5311	for (i = 0; i < MAX_NR_ZONES; i++) {
5312		struct zone *zone = pgdat->node_zones + i;
5313		unsigned long zone_start_pfn, zone_end_pfn;
5314		unsigned long size, real_size;
5315
5316		size = zone_spanned_pages_in_node(pgdat->node_id, i,
5317						  node_start_pfn,
5318						  node_end_pfn,
5319						  &zone_start_pfn,
5320						  &zone_end_pfn,
5321						  zones_size);
5322		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5323						  node_start_pfn, node_end_pfn,
5324						  zholes_size);
5325		if (size)
5326			zone->zone_start_pfn = zone_start_pfn;
5327		else
5328			zone->zone_start_pfn = 0;
5329		zone->spanned_pages = size;
5330		zone->present_pages = real_size;
5331
5332		totalpages += size;
5333		realtotalpages += real_size;
5334	}
5335
5336	pgdat->node_spanned_pages = totalpages;
5337	pgdat->node_present_pages = realtotalpages;
5338	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5339							realtotalpages);
5340}
5341
5342#ifndef CONFIG_SPARSEMEM
5343/*
5344 * Calculate the size of the zone->blockflags rounded to an unsigned long
5345 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5346 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5347 * round what is now in bits to nearest long in bits, then return it in
5348 * bytes.
5349 */
5350static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5351{
5352	unsigned long usemapsize;
5353
5354	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5355	usemapsize = roundup(zonesize, pageblock_nr_pages);
5356	usemapsize = usemapsize >> pageblock_order;
5357	usemapsize *= NR_PAGEBLOCK_BITS;
5358	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5359
5360	return usemapsize / 8;
5361}
5362
5363static void __init setup_usemap(struct pglist_data *pgdat,
5364				struct zone *zone,
5365				unsigned long zone_start_pfn,
5366				unsigned long zonesize)
5367{
5368	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5369	zone->pageblock_flags = NULL;
5370	if (usemapsize)
5371		zone->pageblock_flags =
5372			memblock_virt_alloc_node_nopanic(usemapsize,
5373							 pgdat->node_id);
5374}
5375#else
5376static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5377				unsigned long zone_start_pfn, unsigned long zonesize) {}
5378#endif /* CONFIG_SPARSEMEM */
5379
5380#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5381
5382/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5383void __paginginit set_pageblock_order(void)
5384{
5385	unsigned int order;
5386
5387	/* Check that pageblock_nr_pages has not already been setup */
5388	if (pageblock_order)
5389		return;
5390
5391	if (HPAGE_SHIFT > PAGE_SHIFT)
5392		order = HUGETLB_PAGE_ORDER;
5393	else
5394		order = MAX_ORDER - 1;
5395
5396	/*
5397	 * Assume the largest contiguous order of interest is a huge page.
5398	 * This value may be variable depending on boot parameters on IA64 and
5399	 * powerpc.
5400	 */
5401	pageblock_order = order;
5402}
5403#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5404
5405/*
5406 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5407 * is unused as pageblock_order is set at compile-time. See
5408 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5409 * the kernel config
5410 */
5411void __paginginit set_pageblock_order(void)
5412{
5413}
5414
5415#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5416
5417static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5418						   unsigned long present_pages)
5419{
5420	unsigned long pages = spanned_pages;
5421
5422	/*
5423	 * Provide a more accurate estimation if there are holes within
5424	 * the zone and SPARSEMEM is in use. If there are holes within the
5425	 * zone, each populated memory region may cost us one or two extra
5426	 * memmap pages due to alignment because memmap pages for each
5427	 * populated regions may not naturally algined on page boundary.
5428	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5429	 */
5430	if (spanned_pages > present_pages + (present_pages >> 4) &&
5431	    IS_ENABLED(CONFIG_SPARSEMEM))
5432		pages = present_pages;
5433
5434	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5435}
5436
5437/*
5438 * Set up the zone data structures:
5439 *   - mark all pages reserved
5440 *   - mark all memory queues empty
5441 *   - clear the memory bitmaps
5442 *
5443 * NOTE: pgdat should get zeroed by caller.
5444 */
5445static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5446{
5447	enum zone_type j;
5448	int nid = pgdat->node_id;
5449	int ret;
5450
5451	pgdat_resize_init(pgdat);
5452#ifdef CONFIG_NUMA_BALANCING
5453	spin_lock_init(&pgdat->numabalancing_migrate_lock);
5454	pgdat->numabalancing_migrate_nr_pages = 0;
5455	pgdat->numabalancing_migrate_next_window = jiffies;
5456#endif
5457#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5458	spin_lock_init(&pgdat->split_queue_lock);
5459	INIT_LIST_HEAD(&pgdat->split_queue);
5460	pgdat->split_queue_len = 0;
5461#endif
5462	init_waitqueue_head(&pgdat->kswapd_wait);
5463	init_waitqueue_head(&pgdat->pfmemalloc_wait);
5464#ifdef CONFIG_COMPACTION
5465	init_waitqueue_head(&pgdat->kcompactd_wait);
5466#endif
5467	pgdat_page_ext_init(pgdat);
 
 
 
 
5468
5469	for (j = 0; j < MAX_NR_ZONES; j++) {
5470		struct zone *zone = pgdat->node_zones + j;
5471		unsigned long size, realsize, freesize, memmap_pages;
5472		unsigned long zone_start_pfn = zone->zone_start_pfn;
5473
5474		size = zone->spanned_pages;
5475		realsize = freesize = zone->present_pages;
5476
5477		/*
5478		 * Adjust freesize so that it accounts for how much memory
5479		 * is used by this zone for memmap. This affects the watermark
5480		 * and per-cpu initialisations
5481		 */
5482		memmap_pages = calc_memmap_size(size, realsize);
5483		if (!is_highmem_idx(j)) {
5484			if (freesize >= memmap_pages) {
5485				freesize -= memmap_pages;
5486				if (memmap_pages)
5487					printk(KERN_DEBUG
5488					       "  %s zone: %lu pages used for memmap\n",
5489					       zone_names[j], memmap_pages);
5490			} else
5491				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
5492					zone_names[j], memmap_pages, freesize);
5493		}
5494
5495		/* Account for reserved pages */
5496		if (j == 0 && freesize > dma_reserve) {
5497			freesize -= dma_reserve;
5498			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
5499					zone_names[0], dma_reserve);
5500		}
5501
5502		if (!is_highmem_idx(j))
5503			nr_kernel_pages += freesize;
5504		/* Charge for highmem memmap if there are enough kernel pages */
5505		else if (nr_kernel_pages > memmap_pages * 2)
5506			nr_kernel_pages -= memmap_pages;
5507		nr_all_pages += freesize;
5508
5509		/*
5510		 * Set an approximate value for lowmem here, it will be adjusted
5511		 * when the bootmem allocator frees pages into the buddy system.
5512		 * And all highmem pages will be managed by the buddy system.
5513		 */
5514		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
5515#ifdef CONFIG_NUMA
5516		zone->node = nid;
5517		zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
5518						/ 100;
5519		zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
5520#endif
5521		zone->name = zone_names[j];
 
5522		spin_lock_init(&zone->lock);
5523		spin_lock_init(&zone->lru_lock);
5524		zone_seqlock_init(zone);
5525		zone->zone_pgdat = pgdat;
5526		zone_pcp_init(zone);
5527
5528		/* For bootup, initialized properly in watermark setup */
5529		mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5530
5531		lruvec_init(&zone->lruvec);
5532		if (!size)
5533			continue;
5534
5535		set_pageblock_order();
5536		setup_usemap(pgdat, zone, zone_start_pfn, size);
5537		ret = init_currently_empty_zone(zone, zone_start_pfn, size);
5538		BUG_ON(ret);
5539		memmap_init(size, nid, j, zone_start_pfn);
5540	}
5541}
5542
5543static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
 
5544{
5545	unsigned long __maybe_unused start = 0;
5546	unsigned long __maybe_unused offset = 0;
5547
5548	/* Skip empty nodes */
5549	if (!pgdat->node_spanned_pages)
5550		return;
5551
5552#ifdef CONFIG_FLAT_NODE_MEM_MAP
5553	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5554	offset = pgdat->node_start_pfn - start;
5555	/* ia64 gets its own node_mem_map, before this, without bootmem */
5556	if (!pgdat->node_mem_map) {
5557		unsigned long size, end;
5558		struct page *map;
5559
5560		/*
5561		 * The zone's endpoints aren't required to be MAX_ORDER
5562		 * aligned but the node_mem_map endpoints must be in order
5563		 * for the buddy allocator to function correctly.
5564		 */
5565		end = pgdat_end_pfn(pgdat);
5566		end = ALIGN(end, MAX_ORDER_NR_PAGES);
5567		size =  (end - start) * sizeof(struct page);
5568		map = alloc_remap(pgdat->node_id, size);
5569		if (!map)
5570			map = memblock_virt_alloc_node_nopanic(size,
5571							       pgdat->node_id);
5572		pgdat->node_mem_map = map + offset;
5573	}
 
 
 
5574#ifndef CONFIG_NEED_MULTIPLE_NODES
5575	/*
5576	 * With no DISCONTIG, the global mem_map is just set as node 0's
5577	 */
5578	if (pgdat == NODE_DATA(0)) {
5579		mem_map = NODE_DATA(0)->node_mem_map;
5580#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
5581		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
5582			mem_map -= offset;
5583#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5584	}
5585#endif
 
 
 
5586#endif /* CONFIG_FLAT_NODE_MEM_MAP */
5587}
5588
5589void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5590		unsigned long node_start_pfn, unsigned long *zholes_size)
5591{
5592	pg_data_t *pgdat = NODE_DATA(nid);
5593	unsigned long start_pfn = 0;
5594	unsigned long end_pfn = 0;
5595
5596	/* pg_data_t should be reset to zero when it's allocated */
5597	WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
5598
5599	reset_deferred_meminit(pgdat);
5600	pgdat->node_id = nid;
5601	pgdat->node_start_pfn = node_start_pfn;
 
5602#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5603	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5604	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5605		(u64)start_pfn << PAGE_SHIFT,
5606		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
5607#else
5608	start_pfn = node_start_pfn;
5609#endif
5610	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5611				  zones_size, zholes_size);
5612
5613	alloc_node_mem_map(pgdat);
5614#ifdef CONFIG_FLAT_NODE_MEM_MAP
5615	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5616		nid, (unsigned long)pgdat,
5617		(unsigned long)pgdat->node_mem_map);
 
 
 
 
 
5618#endif
 
 
5619
5620	free_area_init_core(pgdat);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5621}
 
5622
5623#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5624
5625#if MAX_NUMNODES > 1
5626/*
5627 * Figure out the number of possible node ids.
5628 */
5629void __init setup_nr_node_ids(void)
5630{
5631	unsigned int highest;
5632
5633	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
5634	nr_node_ids = highest + 1;
5635}
5636#endif
5637
5638/**
5639 * node_map_pfn_alignment - determine the maximum internode alignment
5640 *
5641 * This function should be called after node map is populated and sorted.
5642 * It calculates the maximum power of two alignment which can distinguish
5643 * all the nodes.
5644 *
5645 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5646 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
5647 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
5648 * shifted, 1GiB is enough and this function will indicate so.
5649 *
5650 * This is used to test whether pfn -> nid mapping of the chosen memory
5651 * model has fine enough granularity to avoid incorrect mapping for the
5652 * populated node map.
5653 *
5654 * Returns the determined alignment in pfn's.  0 if there is no alignment
5655 * requirement (single node).
5656 */
5657unsigned long __init node_map_pfn_alignment(void)
5658{
5659	unsigned long accl_mask = 0, last_end = 0;
5660	unsigned long start, end, mask;
5661	int last_nid = -1;
5662	int i, nid;
5663
5664	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5665		if (!start || last_nid < 0 || last_nid == nid) {
5666			last_nid = nid;
5667			last_end = end;
5668			continue;
5669		}
5670
5671		/*
5672		 * Start with a mask granular enough to pin-point to the
5673		 * start pfn and tick off bits one-by-one until it becomes
5674		 * too coarse to separate the current node from the last.
5675		 */
5676		mask = ~((1 << __ffs(start)) - 1);
5677		while (mask && last_end <= (start & (mask << 1)))
5678			mask <<= 1;
5679
5680		/* accumulate all internode masks */
5681		accl_mask |= mask;
5682	}
5683
5684	/* convert mask to number of pages */
5685	return ~accl_mask + 1;
5686}
5687
5688/* Find the lowest pfn for a node */
5689static unsigned long __init find_min_pfn_for_node(int nid)
5690{
5691	unsigned long min_pfn = ULONG_MAX;
5692	unsigned long start_pfn;
5693	int i;
5694
5695	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5696		min_pfn = min(min_pfn, start_pfn);
5697
5698	if (min_pfn == ULONG_MAX) {
5699		pr_warn("Could not find start_pfn for node %d\n", nid);
5700		return 0;
5701	}
5702
5703	return min_pfn;
5704}
5705
5706/**
5707 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5708 *
5709 * It returns the minimum PFN based on information provided via
5710 * memblock_set_node().
5711 */
5712unsigned long __init find_min_pfn_with_active_regions(void)
5713{
5714	return find_min_pfn_for_node(MAX_NUMNODES);
5715}
5716
5717/*
5718 * early_calculate_totalpages()
5719 * Sum pages in active regions for movable zone.
5720 * Populate N_MEMORY for calculating usable_nodes.
5721 */
5722static unsigned long __init early_calculate_totalpages(void)
5723{
5724	unsigned long totalpages = 0;
5725	unsigned long start_pfn, end_pfn;
5726	int i, nid;
5727
5728	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5729		unsigned long pages = end_pfn - start_pfn;
5730
5731		totalpages += pages;
5732		if (pages)
5733			node_set_state(nid, N_MEMORY);
5734	}
5735	return totalpages;
5736}
5737
5738/*
5739 * Find the PFN the Movable zone begins in each node. Kernel memory
5740 * is spread evenly between nodes as long as the nodes have enough
5741 * memory. When they don't, some nodes will have more kernelcore than
5742 * others
5743 */
5744static void __init find_zone_movable_pfns_for_nodes(void)
5745{
5746	int i, nid;
5747	unsigned long usable_startpfn;
5748	unsigned long kernelcore_node, kernelcore_remaining;
5749	/* save the state before borrow the nodemask */
5750	nodemask_t saved_node_state = node_states[N_MEMORY];
5751	unsigned long totalpages = early_calculate_totalpages();
5752	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5753	struct memblock_region *r;
5754
5755	/* Need to find movable_zone earlier when movable_node is specified. */
5756	find_usable_zone_for_movable();
5757
5758	/*
5759	 * If movable_node is specified, ignore kernelcore and movablecore
5760	 * options.
5761	 */
5762	if (movable_node_is_enabled()) {
5763		for_each_memblock(memory, r) {
5764			if (!memblock_is_hotpluggable(r))
5765				continue;
5766
5767			nid = r->nid;
5768
5769			usable_startpfn = PFN_DOWN(r->base);
5770			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5771				min(usable_startpfn, zone_movable_pfn[nid]) :
5772				usable_startpfn;
5773		}
5774
5775		goto out2;
5776	}
5777
5778	/*
5779	 * If kernelcore=mirror is specified, ignore movablecore option
5780	 */
5781	if (mirrored_kernelcore) {
5782		bool mem_below_4gb_not_mirrored = false;
5783
5784		for_each_memblock(memory, r) {
5785			if (memblock_is_mirror(r))
5786				continue;
5787
5788			nid = r->nid;
5789
5790			usable_startpfn = memblock_region_memory_base_pfn(r);
5791
5792			if (usable_startpfn < 0x100000) {
5793				mem_below_4gb_not_mirrored = true;
5794				continue;
5795			}
5796
5797			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5798				min(usable_startpfn, zone_movable_pfn[nid]) :
5799				usable_startpfn;
5800		}
5801
5802		if (mem_below_4gb_not_mirrored)
5803			pr_warn("This configuration results in unmirrored kernel memory.");
5804
5805		goto out2;
5806	}
5807
5808	/*
5809	 * If movablecore=nn[KMG] was specified, calculate what size of
 
 
 
 
 
 
 
 
 
 
 
5810	 * kernelcore that corresponds so that memory usable for
5811	 * any allocation type is evenly spread. If both kernelcore
5812	 * and movablecore are specified, then the value of kernelcore
5813	 * will be used for required_kernelcore if it's greater than
5814	 * what movablecore would have allowed.
5815	 */
5816	if (required_movablecore) {
5817		unsigned long corepages;
5818
5819		/*
5820		 * Round-up so that ZONE_MOVABLE is at least as large as what
5821		 * was requested by the user
5822		 */
5823		required_movablecore =
5824			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5825		required_movablecore = min(totalpages, required_movablecore);
5826		corepages = totalpages - required_movablecore;
5827
5828		required_kernelcore = max(required_kernelcore, corepages);
5829	}
5830
5831	/*
5832	 * If kernelcore was not specified or kernelcore size is larger
5833	 * than totalpages, there is no ZONE_MOVABLE.
5834	 */
5835	if (!required_kernelcore || required_kernelcore >= totalpages)
5836		goto out;
5837
5838	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5839	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5840
5841restart:
5842	/* Spread kernelcore memory as evenly as possible throughout nodes */
5843	kernelcore_node = required_kernelcore / usable_nodes;
5844	for_each_node_state(nid, N_MEMORY) {
5845		unsigned long start_pfn, end_pfn;
5846
5847		/*
5848		 * Recalculate kernelcore_node if the division per node
5849		 * now exceeds what is necessary to satisfy the requested
5850		 * amount of memory for the kernel
5851		 */
5852		if (required_kernelcore < kernelcore_node)
5853			kernelcore_node = required_kernelcore / usable_nodes;
5854
5855		/*
5856		 * As the map is walked, we track how much memory is usable
5857		 * by the kernel using kernelcore_remaining. When it is
5858		 * 0, the rest of the node is usable by ZONE_MOVABLE
5859		 */
5860		kernelcore_remaining = kernelcore_node;
5861
5862		/* Go through each range of PFNs within this node */
5863		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5864			unsigned long size_pages;
5865
5866			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5867			if (start_pfn >= end_pfn)
5868				continue;
5869
5870			/* Account for what is only usable for kernelcore */
5871			if (start_pfn < usable_startpfn) {
5872				unsigned long kernel_pages;
5873				kernel_pages = min(end_pfn, usable_startpfn)
5874								- start_pfn;
5875
5876				kernelcore_remaining -= min(kernel_pages,
5877							kernelcore_remaining);
5878				required_kernelcore -= min(kernel_pages,
5879							required_kernelcore);
5880
5881				/* Continue if range is now fully accounted */
5882				if (end_pfn <= usable_startpfn) {
5883
5884					/*
5885					 * Push zone_movable_pfn to the end so
5886					 * that if we have to rebalance
5887					 * kernelcore across nodes, we will
5888					 * not double account here
5889					 */
5890					zone_movable_pfn[nid] = end_pfn;
5891					continue;
5892				}
5893				start_pfn = usable_startpfn;
5894			}
5895
5896			/*
5897			 * The usable PFN range for ZONE_MOVABLE is from
5898			 * start_pfn->end_pfn. Calculate size_pages as the
5899			 * number of pages used as kernelcore
5900			 */
5901			size_pages = end_pfn - start_pfn;
5902			if (size_pages > kernelcore_remaining)
5903				size_pages = kernelcore_remaining;
5904			zone_movable_pfn[nid] = start_pfn + size_pages;
5905
5906			/*
5907			 * Some kernelcore has been met, update counts and
5908			 * break if the kernelcore for this node has been
5909			 * satisfied
5910			 */
5911			required_kernelcore -= min(required_kernelcore,
5912								size_pages);
5913			kernelcore_remaining -= size_pages;
5914			if (!kernelcore_remaining)
5915				break;
5916		}
5917	}
5918
5919	/*
5920	 * If there is still required_kernelcore, we do another pass with one
5921	 * less node in the count. This will push zone_movable_pfn[nid] further
5922	 * along on the nodes that still have memory until kernelcore is
5923	 * satisfied
5924	 */
5925	usable_nodes--;
5926	if (usable_nodes && required_kernelcore > usable_nodes)
5927		goto restart;
5928
5929out2:
5930	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5931	for (nid = 0; nid < MAX_NUMNODES; nid++)
5932		zone_movable_pfn[nid] =
5933			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5934
5935out:
5936	/* restore the node_state */
5937	node_states[N_MEMORY] = saved_node_state;
5938}
5939
5940/* Any regular or high memory on that node ? */
5941static void check_for_memory(pg_data_t *pgdat, int nid)
5942{
5943	enum zone_type zone_type;
5944
5945	if (N_MEMORY == N_NORMAL_MEMORY)
5946		return;
5947
5948	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5949		struct zone *zone = &pgdat->node_zones[zone_type];
5950		if (populated_zone(zone)) {
5951			node_set_state(nid, N_HIGH_MEMORY);
5952			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5953			    zone_type <= ZONE_NORMAL)
5954				node_set_state(nid, N_NORMAL_MEMORY);
5955			break;
5956		}
5957	}
5958}
5959
5960/**
5961 * free_area_init_nodes - Initialise all pg_data_t and zone data
5962 * @max_zone_pfn: an array of max PFNs for each zone
5963 *
5964 * This will call free_area_init_node() for each active node in the system.
5965 * Using the page ranges provided by memblock_set_node(), the size of each
5966 * zone in each node and their holes is calculated. If the maximum PFN
5967 * between two adjacent zones match, it is assumed that the zone is empty.
5968 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5969 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5970 * starts where the previous one ended. For example, ZONE_DMA32 starts
5971 * at arch_max_dma_pfn.
5972 */
5973void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5974{
5975	unsigned long start_pfn, end_pfn;
5976	int i, nid;
5977
5978	/* Record where the zone boundaries are */
5979	memset(arch_zone_lowest_possible_pfn, 0,
5980				sizeof(arch_zone_lowest_possible_pfn));
5981	memset(arch_zone_highest_possible_pfn, 0,
5982				sizeof(arch_zone_highest_possible_pfn));
5983	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5984	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5985	for (i = 1; i < MAX_NR_ZONES; i++) {
 
5986		if (i == ZONE_MOVABLE)
5987			continue;
5988		arch_zone_lowest_possible_pfn[i] =
5989			arch_zone_highest_possible_pfn[i-1];
5990		arch_zone_highest_possible_pfn[i] =
5991			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
 
 
5992	}
5993	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5994	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5995
5996	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
5997	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5998	find_zone_movable_pfns_for_nodes();
5999
6000	/* Print out the zone ranges */
6001	pr_info("Zone ranges:\n");
6002	for (i = 0; i < MAX_NR_ZONES; i++) {
6003		if (i == ZONE_MOVABLE)
6004			continue;
6005		pr_info("  %-8s ", zone_names[i]);
6006		if (arch_zone_lowest_possible_pfn[i] ==
6007				arch_zone_highest_possible_pfn[i])
6008			pr_cont("empty\n");
6009		else
6010			pr_cont("[mem %#018Lx-%#018Lx]\n",
6011				(u64)arch_zone_lowest_possible_pfn[i]
6012					<< PAGE_SHIFT,
6013				((u64)arch_zone_highest_possible_pfn[i]
6014					<< PAGE_SHIFT) - 1);
6015	}
6016
6017	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
6018	pr_info("Movable zone start for each node\n");
6019	for (i = 0; i < MAX_NUMNODES; i++) {
6020		if (zone_movable_pfn[i])
6021			pr_info("  Node %d: %#018Lx\n", i,
6022			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6023	}
6024
6025	/* Print out the early node map */
6026	pr_info("Early memory node ranges\n");
6027	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6028		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6029			(u64)start_pfn << PAGE_SHIFT,
6030			((u64)end_pfn << PAGE_SHIFT) - 1);
6031
6032	/* Initialise every node */
6033	mminit_verify_pageflags_layout();
6034	setup_nr_node_ids();
6035	for_each_online_node(nid) {
6036		pg_data_t *pgdat = NODE_DATA(nid);
6037		free_area_init_node(nid, NULL,
6038				find_min_pfn_for_node(nid), NULL);
6039
6040		/* Any memory on that node */
6041		if (pgdat->node_present_pages)
6042			node_set_state(nid, N_MEMORY);
6043		check_for_memory(pgdat, nid);
6044	}
 
6045}
6046
6047static int __init cmdline_parse_core(char *p, unsigned long *core)
 
6048{
6049	unsigned long long coremem;
 
 
6050	if (!p)
6051		return -EINVAL;
6052
6053	coremem = memparse(p, &p);
6054	*core = coremem >> PAGE_SHIFT;
 
 
 
6055
6056	/* Paranoid check that UL is enough for the coremem value */
6057	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
 
 
 
6058
 
 
 
6059	return 0;
6060}
6061
6062/*
6063 * kernelcore=size sets the amount of memory for use for allocations that
6064 * cannot be reclaimed or migrated.
6065 */
6066static int __init cmdline_parse_kernelcore(char *p)
6067{
6068	/* parse kernelcore=mirror */
6069	if (parse_option_str(p, "mirror")) {
6070		mirrored_kernelcore = true;
6071		return 0;
6072	}
6073
6074	return cmdline_parse_core(p, &required_kernelcore);
 
6075}
6076
6077/*
6078 * movablecore=size sets the amount of memory for use for allocations that
6079 * can be reclaimed or migrated.
6080 */
6081static int __init cmdline_parse_movablecore(char *p)
6082{
6083	return cmdline_parse_core(p, &required_movablecore);
 
6084}
6085
6086early_param("kernelcore", cmdline_parse_kernelcore);
6087early_param("movablecore", cmdline_parse_movablecore);
6088
6089#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6090
6091void adjust_managed_page_count(struct page *page, long count)
6092{
6093	spin_lock(&managed_page_count_lock);
6094	page_zone(page)->managed_pages += count;
6095	totalram_pages += count;
6096#ifdef CONFIG_HIGHMEM
6097	if (PageHighMem(page))
6098		totalhigh_pages += count;
6099#endif
6100	spin_unlock(&managed_page_count_lock);
6101}
6102EXPORT_SYMBOL(adjust_managed_page_count);
6103
6104unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6105{
6106	void *pos;
6107	unsigned long pages = 0;
6108
6109	start = (void *)PAGE_ALIGN((unsigned long)start);
6110	end = (void *)((unsigned long)end & PAGE_MASK);
6111	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6112		if ((unsigned int)poison <= 0xFF)
6113			memset(pos, poison, PAGE_SIZE);
6114		free_reserved_page(virt_to_page(pos));
6115	}
6116
6117	if (pages && s)
6118		pr_info("Freeing %s memory: %ldK (%p - %p)\n",
6119			s, pages << (PAGE_SHIFT - 10), start, end);
6120
6121	return pages;
6122}
6123EXPORT_SYMBOL(free_reserved_area);
6124
6125#ifdef	CONFIG_HIGHMEM
6126void free_highmem_page(struct page *page)
6127{
6128	__free_reserved_page(page);
6129	totalram_pages++;
6130	page_zone(page)->managed_pages++;
6131	totalhigh_pages++;
6132}
6133#endif
6134
6135
6136void __init mem_init_print_info(const char *str)
6137{
6138	unsigned long physpages, codesize, datasize, rosize, bss_size;
6139	unsigned long init_code_size, init_data_size;
6140
6141	physpages = get_num_physpages();
6142	codesize = _etext - _stext;
6143	datasize = _edata - _sdata;
6144	rosize = __end_rodata - __start_rodata;
6145	bss_size = __bss_stop - __bss_start;
6146	init_data_size = __init_end - __init_begin;
6147	init_code_size = _einittext - _sinittext;
6148
6149	/*
6150	 * Detect special cases and adjust section sizes accordingly:
6151	 * 1) .init.* may be embedded into .data sections
6152	 * 2) .init.text.* may be out of [__init_begin, __init_end],
6153	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
6154	 * 3) .rodata.* may be embedded into .text or .data sections.
6155	 */
6156#define adj_init_size(start, end, size, pos, adj) \
6157	do { \
6158		if (start <= pos && pos < end && size > adj) \
6159			size -= adj; \
6160	} while (0)
6161
6162	adj_init_size(__init_begin, __init_end, init_data_size,
6163		     _sinittext, init_code_size);
6164	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6165	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6166	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6167	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6168
6169#undef	adj_init_size
6170
6171	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6172#ifdef	CONFIG_HIGHMEM
6173		", %luK highmem"
6174#endif
6175		"%s%s)\n",
6176		nr_free_pages() << (PAGE_SHIFT - 10),
6177		physpages << (PAGE_SHIFT - 10),
6178		codesize >> 10, datasize >> 10, rosize >> 10,
6179		(init_data_size + init_code_size) >> 10, bss_size >> 10,
6180		(physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6181		totalcma_pages << (PAGE_SHIFT - 10),
6182#ifdef	CONFIG_HIGHMEM
6183		totalhigh_pages << (PAGE_SHIFT - 10),
6184#endif
6185		str ? ", " : "", str ? str : "");
6186}
6187
6188/**
6189 * set_dma_reserve - set the specified number of pages reserved in the first zone
6190 * @new_dma_reserve: The number of pages to mark reserved
6191 *
6192 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6193 * In the DMA zone, a significant percentage may be consumed by kernel image
6194 * and other unfreeable allocations which can skew the watermarks badly. This
6195 * function may optionally be used to account for unfreeable pages in the
6196 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6197 * smaller per-cpu batchsize.
6198 */
6199void __init set_dma_reserve(unsigned long new_dma_reserve)
6200{
6201	dma_reserve = new_dma_reserve;
6202}
6203
6204void __init free_area_init(unsigned long *zones_size)
6205{
6206	free_area_init_node(0, zones_size,
6207			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
 
6208}
6209
6210static int page_alloc_cpu_notify(struct notifier_block *self,
6211				 unsigned long action, void *hcpu)
6212{
6213	int cpu = (unsigned long)hcpu;
6214
6215	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
6216		lru_add_drain_cpu(cpu);
6217		drain_pages(cpu);
6218
6219		/*
6220		 * Spill the event counters of the dead processor
6221		 * into the current processors event counters.
6222		 * This artificially elevates the count of the current
6223		 * processor.
6224		 */
6225		vm_events_fold_cpu(cpu);
6226
6227		/*
6228		 * Zero the differential counters of the dead processor
6229		 * so that the vm statistics are consistent.
6230		 *
6231		 * This is only okay since the processor is dead and cannot
6232		 * race with what we are doing.
6233		 */
6234		cpu_vm_stats_fold(cpu);
6235	}
6236	return NOTIFY_OK;
6237}
6238
6239void __init page_alloc_init(void)
6240{
6241	hotcpu_notifier(page_alloc_cpu_notify, 0);
 
 
 
 
 
6242}
6243
6244/*
6245 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6246 *	or min_free_kbytes changes.
6247 */
6248static void calculate_totalreserve_pages(void)
6249{
6250	struct pglist_data *pgdat;
6251	unsigned long reserve_pages = 0;
6252	enum zone_type i, j;
6253
6254	for_each_online_pgdat(pgdat) {
 
 
 
6255		for (i = 0; i < MAX_NR_ZONES; i++) {
6256			struct zone *zone = pgdat->node_zones + i;
6257			long max = 0;
6258
6259			/* Find valid and maximum lowmem_reserve in the zone */
6260			for (j = i; j < MAX_NR_ZONES; j++) {
6261				if (zone->lowmem_reserve[j] > max)
6262					max = zone->lowmem_reserve[j];
6263			}
6264
6265			/* we treat the high watermark as reserved pages. */
6266			max += high_wmark_pages(zone);
6267
6268			if (max > zone->managed_pages)
6269				max = zone->managed_pages;
6270
6271			zone->totalreserve_pages = max;
6272
6273			reserve_pages += max;
6274		}
6275	}
6276	totalreserve_pages = reserve_pages;
6277}
6278
6279/*
6280 * setup_per_zone_lowmem_reserve - called whenever
6281 *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
6282 *	has a correct pages reserved value, so an adequate number of
6283 *	pages are left in the zone after a successful __alloc_pages().
6284 */
6285static void setup_per_zone_lowmem_reserve(void)
6286{
6287	struct pglist_data *pgdat;
6288	enum zone_type j, idx;
6289
6290	for_each_online_pgdat(pgdat) {
6291		for (j = 0; j < MAX_NR_ZONES; j++) {
6292			struct zone *zone = pgdat->node_zones + j;
6293			unsigned long managed_pages = zone->managed_pages;
6294
6295			zone->lowmem_reserve[j] = 0;
6296
6297			idx = j;
6298			while (idx) {
6299				struct zone *lower_zone;
6300
6301				idx--;
 
6302
6303				if (sysctl_lowmem_reserve_ratio[idx] < 1)
6304					sysctl_lowmem_reserve_ratio[idx] = 1;
6305
6306				lower_zone = pgdat->node_zones + idx;
6307				lower_zone->lowmem_reserve[j] = managed_pages /
6308					sysctl_lowmem_reserve_ratio[idx];
 
6309				managed_pages += lower_zone->managed_pages;
6310			}
6311		}
6312	}
6313
6314	/* update totalreserve_pages */
6315	calculate_totalreserve_pages();
6316}
6317
6318static void __setup_per_zone_wmarks(void)
6319{
6320	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6321	unsigned long lowmem_pages = 0;
6322	struct zone *zone;
6323	unsigned long flags;
6324
6325	/* Calculate total number of !ZONE_HIGHMEM pages */
6326	for_each_zone(zone) {
6327		if (!is_highmem(zone))
6328			lowmem_pages += zone->managed_pages;
6329	}
6330
6331	for_each_zone(zone) {
6332		u64 tmp;
6333
6334		spin_lock_irqsave(&zone->lock, flags);
6335		tmp = (u64)pages_min * zone->managed_pages;
6336		do_div(tmp, lowmem_pages);
6337		if (is_highmem(zone)) {
6338			/*
6339			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6340			 * need highmem pages, so cap pages_min to a small
6341			 * value here.
6342			 *
6343			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6344			 * deltas control asynch page reclaim, and so should
6345			 * not be capped for highmem.
6346			 */
6347			unsigned long min_pages;
6348
6349			min_pages = zone->managed_pages / 1024;
6350			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6351			zone->watermark[WMARK_MIN] = min_pages;
6352		} else {
6353			/*
6354			 * If it's a lowmem zone, reserve a number of pages
6355			 * proportionate to the zone's size.
6356			 */
6357			zone->watermark[WMARK_MIN] = tmp;
6358		}
6359
6360		/*
6361		 * Set the kswapd watermarks distance according to the
6362		 * scale factor in proportion to available memory, but
6363		 * ensure a minimum size on small systems.
6364		 */
6365		tmp = max_t(u64, tmp >> 2,
6366			    mult_frac(zone->managed_pages,
6367				      watermark_scale_factor, 10000));
6368
6369		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
6370		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
6371
6372		__mod_zone_page_state(zone, NR_ALLOC_BATCH,
6373			high_wmark_pages(zone) - low_wmark_pages(zone) -
6374			atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
6375
6376		spin_unlock_irqrestore(&zone->lock, flags);
6377	}
6378
6379	/* update totalreserve_pages */
6380	calculate_totalreserve_pages();
6381}
6382
6383/**
6384 * setup_per_zone_wmarks - called when min_free_kbytes changes
6385 * or when memory is hot-{added|removed}
6386 *
6387 * Ensures that the watermark[min,low,high] values for each zone are set
6388 * correctly with respect to min_free_kbytes.
6389 */
6390void setup_per_zone_wmarks(void)
6391{
6392	mutex_lock(&zonelists_mutex);
 
 
6393	__setup_per_zone_wmarks();
6394	mutex_unlock(&zonelists_mutex);
6395}
6396
6397/*
6398 * The inactive anon list should be small enough that the VM never has to
6399 * do too much work, but large enough that each inactive page has a chance
6400 * to be referenced again before it is swapped out.
6401 *
6402 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6403 * INACTIVE_ANON pages on this zone's LRU, maintained by the
6404 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6405 * the anonymous pages are kept on the inactive list.
6406 *
6407 * total     target    max
6408 * memory    ratio     inactive anon
6409 * -------------------------------------
6410 *   10MB       1         5MB
6411 *  100MB       1        50MB
6412 *    1GB       3       250MB
6413 *   10GB      10       0.9GB
6414 *  100GB      31         3GB
6415 *    1TB     101        10GB
6416 *   10TB     320        32GB
6417 */
6418static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
6419{
6420	unsigned int gb, ratio;
6421
6422	/* Zone size in gigabytes */
6423	gb = zone->managed_pages >> (30 - PAGE_SHIFT);
6424	if (gb)
6425		ratio = int_sqrt(10 * gb);
6426	else
6427		ratio = 1;
6428
6429	zone->inactive_ratio = ratio;
6430}
6431
6432static void __meminit setup_per_zone_inactive_ratio(void)
6433{
6434	struct zone *zone;
6435
6436	for_each_zone(zone)
6437		calculate_zone_inactive_ratio(zone);
6438}
6439
6440/*
6441 * Initialise min_free_kbytes.
6442 *
6443 * For small machines we want it small (128k min).  For large machines
6444 * we want it large (64MB max).  But it is not linear, because network
6445 * bandwidth does not increase linearly with machine size.  We use
6446 *
6447 *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6448 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
6449 *
6450 * which yields
6451 *
6452 * 16MB:	512k
6453 * 32MB:	724k
6454 * 64MB:	1024k
6455 * 128MB:	1448k
6456 * 256MB:	2048k
6457 * 512MB:	2896k
6458 * 1024MB:	4096k
6459 * 2048MB:	5792k
6460 * 4096MB:	8192k
6461 * 8192MB:	11584k
6462 * 16384MB:	16384k
6463 */
6464int __meminit init_per_zone_wmark_min(void)
6465{
6466	unsigned long lowmem_kbytes;
6467	int new_min_free_kbytes;
6468
6469	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6470	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6471
6472	if (new_min_free_kbytes > user_min_free_kbytes) {
6473		min_free_kbytes = new_min_free_kbytes;
6474		if (min_free_kbytes < 128)
6475			min_free_kbytes = 128;
6476		if (min_free_kbytes > 65536)
6477			min_free_kbytes = 65536;
6478	} else {
6479		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6480				new_min_free_kbytes, user_min_free_kbytes);
6481	}
6482	setup_per_zone_wmarks();
6483	refresh_zone_stat_thresholds();
6484	setup_per_zone_lowmem_reserve();
6485	setup_per_zone_inactive_ratio();
 
 
 
 
 
6486	return 0;
6487}
6488core_initcall(init_per_zone_wmark_min)
6489
6490/*
6491 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6492 *	that we can call two helper functions whenever min_free_kbytes
6493 *	changes.
6494 */
6495int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6496	void __user *buffer, size_t *length, loff_t *ppos)
6497{
6498	int rc;
6499
6500	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6501	if (rc)
6502		return rc;
6503
6504	if (write) {
6505		user_min_free_kbytes = min_free_kbytes;
6506		setup_per_zone_wmarks();
6507	}
6508	return 0;
6509}
6510
6511int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6512	void __user *buffer, size_t *length, loff_t *ppos)
6513{
6514	int rc;
6515
6516	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6517	if (rc)
6518		return rc;
6519
6520	if (write)
6521		setup_per_zone_wmarks();
6522
6523	return 0;
6524}
6525
6526#ifdef CONFIG_NUMA
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6527int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6528	void __user *buffer, size_t *length, loff_t *ppos)
6529{
6530	struct zone *zone;
6531	int rc;
6532
6533	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6534	if (rc)
6535		return rc;
6536
 
 
 
 
 
 
 
 
 
 
 
 
 
6537	for_each_zone(zone)
6538		zone->min_unmapped_pages = (zone->managed_pages *
6539				sysctl_min_unmapped_ratio) / 100;
6540	return 0;
6541}
6542
6543int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6544	void __user *buffer, size_t *length, loff_t *ppos)
6545{
6546	struct zone *zone;
6547	int rc;
6548
6549	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6550	if (rc)
6551		return rc;
6552
6553	for_each_zone(zone)
6554		zone->min_slab_pages = (zone->managed_pages *
6555				sysctl_min_slab_ratio) / 100;
6556	return 0;
6557}
6558#endif
6559
6560/*
6561 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6562 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6563 *	whenever sysctl_lowmem_reserve_ratio changes.
6564 *
6565 * The reserve ratio obviously has absolutely no relation with the
6566 * minimum watermarks. The lowmem reserve ratio can only make sense
6567 * if in function of the boot time zone sizes.
6568 */
6569int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
6570	void __user *buffer, size_t *length, loff_t *ppos)
6571{
6572	proc_dointvec_minmax(table, write, buffer, length, ppos);
6573	setup_per_zone_lowmem_reserve();
6574	return 0;
6575}
6576
6577/*
6578 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
6579 * cpu.  It is the fraction of total pages in each zone that a hot per cpu
6580 * pagelist can have before it gets flushed back to buddy allocator.
6581 */
6582int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
6583	void __user *buffer, size_t *length, loff_t *ppos)
6584{
6585	struct zone *zone;
6586	int old_percpu_pagelist_fraction;
6587	int ret;
6588
6589	mutex_lock(&pcp_batch_high_lock);
6590	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6591
6592	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6593	if (!write || ret < 0)
6594		goto out;
6595
6596	/* Sanity checking to avoid pcp imbalance */
6597	if (percpu_pagelist_fraction &&
6598	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6599		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6600		ret = -EINVAL;
6601		goto out;
6602	}
6603
6604	/* No change? */
6605	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6606		goto out;
6607
6608	for_each_populated_zone(zone) {
6609		unsigned int cpu;
6610
6611		for_each_possible_cpu(cpu)
6612			pageset_set_high_and_batch(zone,
6613					per_cpu_ptr(zone->pageset, cpu));
6614	}
6615out:
6616	mutex_unlock(&pcp_batch_high_lock);
6617	return ret;
6618}
6619
6620#ifdef CONFIG_NUMA
6621int hashdist = HASHDIST_DEFAULT;
6622
6623static int __init set_hashdist(char *str)
6624{
6625	if (!str)
6626		return 0;
6627	hashdist = simple_strtoul(str, &str, 0);
6628	return 1;
6629}
6630__setup("hashdist=", set_hashdist);
6631#endif
6632
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6633/*
6634 * allocate a large system hash table from bootmem
6635 * - it is assumed that the hash table must contain an exact power-of-2
6636 *   quantity of entries
6637 * - limit is the number of hash buckets, not the total allocation size
6638 */
6639void *__init alloc_large_system_hash(const char *tablename,
6640				     unsigned long bucketsize,
6641				     unsigned long numentries,
6642				     int scale,
6643				     int flags,
6644				     unsigned int *_hash_shift,
6645				     unsigned int *_hash_mask,
6646				     unsigned long low_limit,
6647				     unsigned long high_limit)
6648{
6649	unsigned long long max = high_limit;
6650	unsigned long log2qty, size;
6651	void *table = NULL;
 
6652
6653	/* allow the kernel cmdline to have a say */
6654	if (!numentries) {
6655		/* round applicable memory size up to nearest megabyte */
6656		numentries = nr_kernel_pages;
 
6657
6658		/* It isn't necessary when PAGE_SIZE >= 1MB */
6659		if (PAGE_SHIFT < 20)
6660			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
6661
 
 
 
 
 
 
 
 
 
 
6662		/* limit to 1 bucket per 2^scale bytes of low memory */
6663		if (scale > PAGE_SHIFT)
6664			numentries >>= (scale - PAGE_SHIFT);
6665		else
6666			numentries <<= (PAGE_SHIFT - scale);
6667
6668		/* Make sure we've got at least a 0-order allocation.. */
6669		if (unlikely(flags & HASH_SMALL)) {
6670			/* Makes no sense without HASH_EARLY */
6671			WARN_ON(!(flags & HASH_EARLY));
6672			if (!(numentries >> *_hash_shift)) {
6673				numentries = 1UL << *_hash_shift;
6674				BUG_ON(!numentries);
6675			}
6676		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
6677			numentries = PAGE_SIZE / bucketsize;
6678	}
6679	numentries = roundup_pow_of_two(numentries);
6680
6681	/* limit allocation size to 1/16 total memory by default */
6682	if (max == 0) {
6683		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6684		do_div(max, bucketsize);
6685	}
6686	max = min(max, 0x80000000ULL);
6687
6688	if (numentries < low_limit)
6689		numentries = low_limit;
6690	if (numentries > max)
6691		numentries = max;
6692
6693	log2qty = ilog2(numentries);
6694
 
6695	do {
6696		size = bucketsize << log2qty;
6697		if (flags & HASH_EARLY)
6698			table = memblock_virt_alloc_nopanic(size, 0);
6699		else if (hashdist)
6700			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6701		else {
 
 
 
6702			/*
6703			 * If bucketsize is not a power-of-two, we may free
6704			 * some pages at the end of hash table which
6705			 * alloc_pages_exact() automatically does
6706			 */
6707			if (get_order(size) < MAX_ORDER) {
6708				table = alloc_pages_exact(size, GFP_ATOMIC);
6709				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6710			}
6711		}
6712	} while (!table && size > PAGE_SIZE && --log2qty);
6713
6714	if (!table)
6715		panic("Failed to allocate %s hash table\n", tablename);
6716
6717	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
6718		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
6719
6720	if (_hash_shift)
6721		*_hash_shift = log2qty;
6722	if (_hash_mask)
6723		*_hash_mask = (1 << log2qty) - 1;
6724
6725	return table;
6726}
6727
6728/* Return a pointer to the bitmap storing bits affecting a block of pages */
6729static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6730							unsigned long pfn)
6731{
6732#ifdef CONFIG_SPARSEMEM
6733	return __pfn_to_section(pfn)->pageblock_flags;
6734#else
6735	return zone->pageblock_flags;
6736#endif /* CONFIG_SPARSEMEM */
6737}
6738
6739static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6740{
6741#ifdef CONFIG_SPARSEMEM
6742	pfn &= (PAGES_PER_SECTION-1);
6743	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6744#else
6745	pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6746	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6747#endif /* CONFIG_SPARSEMEM */
6748}
6749
6750/**
6751 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6752 * @page: The page within the block of interest
6753 * @pfn: The target page frame number
6754 * @end_bitidx: The last bit of interest to retrieve
6755 * @mask: mask of bits that the caller is interested in
6756 *
6757 * Return: pageblock_bits flags
6758 */
6759unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
6760					unsigned long end_bitidx,
6761					unsigned long mask)
6762{
6763	struct zone *zone;
6764	unsigned long *bitmap;
6765	unsigned long bitidx, word_bitidx;
6766	unsigned long word;
6767
6768	zone = page_zone(page);
6769	bitmap = get_pageblock_bitmap(zone, pfn);
6770	bitidx = pfn_to_bitidx(zone, pfn);
6771	word_bitidx = bitidx / BITS_PER_LONG;
6772	bitidx &= (BITS_PER_LONG-1);
6773
6774	word = bitmap[word_bitidx];
6775	bitidx += end_bitidx;
6776	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
6777}
6778
6779/**
6780 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6781 * @page: The page within the block of interest
6782 * @flags: The flags to set
6783 * @pfn: The target page frame number
6784 * @end_bitidx: The last bit of interest
6785 * @mask: mask of bits that the caller is interested in
6786 */
6787void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6788					unsigned long pfn,
6789					unsigned long end_bitidx,
6790					unsigned long mask)
6791{
6792	struct zone *zone;
6793	unsigned long *bitmap;
6794	unsigned long bitidx, word_bitidx;
6795	unsigned long old_word, word;
6796
6797	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
6798
6799	zone = page_zone(page);
6800	bitmap = get_pageblock_bitmap(zone, pfn);
6801	bitidx = pfn_to_bitidx(zone, pfn);
6802	word_bitidx = bitidx / BITS_PER_LONG;
6803	bitidx &= (BITS_PER_LONG-1);
6804
6805	VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6806
6807	bitidx += end_bitidx;
6808	mask <<= (BITS_PER_LONG - bitidx - 1);
6809	flags <<= (BITS_PER_LONG - bitidx - 1);
6810
6811	word = READ_ONCE(bitmap[word_bitidx]);
6812	for (;;) {
6813		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6814		if (word == old_word)
6815			break;
6816		word = old_word;
6817	}
6818}
6819
6820/*
6821 * This function checks whether pageblock includes unmovable pages or not.
6822 * If @count is not zero, it is okay to include less @count unmovable pages
6823 *
6824 * PageLRU check without isolation or lru_lock could race so that
6825 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6826 * expect this function should be exact.
 
6827 */
6828bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
 
6829			 bool skip_hwpoisoned_pages)
6830{
6831	unsigned long pfn, iter, found;
6832	int mt;
6833
6834	/*
6835	 * For avoiding noise data, lru_add_drain_all() should be called
6836	 * If ZONE_MOVABLE, the zone never contains unmovable pages
 
 
 
 
 
 
 
 
 
6837	 */
6838	if (zone_idx(zone) == ZONE_MOVABLE)
6839		return false;
6840	mt = get_pageblock_migratetype(page);
6841	if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6842		return false;
6843
6844	pfn = page_to_pfn(page);
6845	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6846		unsigned long check = pfn + iter;
6847
6848		if (!pfn_valid_within(check))
6849			continue;
6850
6851		page = pfn_to_page(check);
6852
 
 
 
6853		/*
6854		 * Hugepages are not in LRU lists, but they're movable.
6855		 * We need not scan over tail pages bacause we don't
6856		 * handle each tail page individually in migration.
6857		 */
6858		if (PageHuge(page)) {
6859			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6860			continue;
6861		}
6862
6863		/*
6864		 * We can't use page_count without pin a page
6865		 * because another CPU can free compound page.
6866		 * This check already skips compound tails of THP
6867		 * because their page->_count is zero at all time.
6868		 */
6869		if (!page_ref_count(page)) {
6870			if (PageBuddy(page))
6871				iter += (1 << page_order(page)) - 1;
6872			continue;
6873		}
6874
6875		/*
6876		 * The HWPoisoned page may be not in buddy system, and
6877		 * page_count() is not 0.
6878		 */
6879		if (skip_hwpoisoned_pages && PageHWPoison(page))
6880			continue;
6881
 
 
 
6882		if (!PageLRU(page))
6883			found++;
6884		/*
6885		 * If there are RECLAIMABLE pages, we need to check
6886		 * it.  But now, memory offline itself doesn't call
6887		 * shrink_node_slabs() and it still to be fixed.
6888		 */
6889		/*
6890		 * If the page is not RAM, page_count()should be 0.
6891		 * we don't need more check. This is an _used_ not-movable page.
6892		 *
6893		 * The problematic thing here is PG_reserved pages. PG_reserved
6894		 * is set to both of a memory hole page and a _used_ kernel
6895		 * page at boot.
6896		 */
6897		if (found > count)
6898			return true;
6899	}
6900	return false;
 
 
 
6901}
6902
6903bool is_pageblock_removable_nolock(struct page *page)
6904{
6905	struct zone *zone;
6906	unsigned long pfn;
6907
6908	/*
6909	 * We have to be careful here because we are iterating over memory
6910	 * sections which are not zone aware so we might end up outside of
6911	 * the zone but still within the section.
6912	 * We have to take care about the node as well. If the node is offline
6913	 * its NODE_DATA will be NULL - see page_zone.
6914	 */
6915	if (!node_online(page_to_nid(page)))
6916		return false;
6917
6918	zone = page_zone(page);
6919	pfn = page_to_pfn(page);
6920	if (!zone_spans_pfn(zone, pfn))
6921		return false;
6922
6923	return !has_unmovable_pages(zone, page, 0, true);
6924}
6925
6926#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
6927
6928static unsigned long pfn_max_align_down(unsigned long pfn)
6929{
6930	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6931			     pageblock_nr_pages) - 1);
6932}
6933
6934static unsigned long pfn_max_align_up(unsigned long pfn)
6935{
6936	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6937				pageblock_nr_pages));
6938}
6939
6940/* [start, end) must belong to a single zone. */
6941static int __alloc_contig_migrate_range(struct compact_control *cc,
6942					unsigned long start, unsigned long end)
6943{
6944	/* This function is based on compact_zone() from compaction.c. */
6945	unsigned long nr_reclaimed;
6946	unsigned long pfn = start;
6947	unsigned int tries = 0;
6948	int ret = 0;
6949
6950	migrate_prep();
6951
6952	while (pfn < end || !list_empty(&cc->migratepages)) {
6953		if (fatal_signal_pending(current)) {
6954			ret = -EINTR;
6955			break;
6956		}
6957
6958		if (list_empty(&cc->migratepages)) {
6959			cc->nr_migratepages = 0;
6960			pfn = isolate_migratepages_range(cc, pfn, end);
6961			if (!pfn) {
6962				ret = -EINTR;
6963				break;
6964			}
6965			tries = 0;
6966		} else if (++tries == 5) {
6967			ret = ret < 0 ? ret : -EBUSY;
6968			break;
6969		}
6970
6971		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6972							&cc->migratepages);
6973		cc->nr_migratepages -= nr_reclaimed;
6974
6975		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6976				    NULL, 0, cc->mode, MR_CMA);
6977	}
6978	if (ret < 0) {
6979		putback_movable_pages(&cc->migratepages);
6980		return ret;
6981	}
6982	return 0;
6983}
6984
6985/**
6986 * alloc_contig_range() -- tries to allocate given range of pages
6987 * @start:	start PFN to allocate
6988 * @end:	one-past-the-last PFN to allocate
6989 * @migratetype:	migratetype of the underlaying pageblocks (either
6990 *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6991 *			in range must have the same migratetype and it must
6992 *			be either of the two.
 
6993 *
6994 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6995 * aligned, however it's the caller's responsibility to guarantee that
6996 * we are the only thread that changes migrate type of pageblocks the
6997 * pages fall in.
6998 *
6999 * The PFN range must belong to a single zone.
 
 
7000 *
7001 * Returns zero on success or negative error code.  On success all
7002 * pages which PFN is in [start, end) are allocated for the caller and
7003 * need to be freed with free_contig_range().
7004 */
7005int alloc_contig_range(unsigned long start, unsigned long end,
7006		       unsigned migratetype)
7007{
7008	unsigned long outer_start, outer_end;
7009	unsigned int order;
7010	int ret = 0;
7011
7012	struct compact_control cc = {
7013		.nr_migratepages = 0,
7014		.order = -1,
7015		.zone = page_zone(pfn_to_page(start)),
7016		.mode = MIGRATE_SYNC,
7017		.ignore_skip_hint = true,
 
 
7018	};
7019	INIT_LIST_HEAD(&cc.migratepages);
7020
7021	/*
7022	 * What we do here is we mark all pageblocks in range as
7023	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
7024	 * have different sizes, and due to the way page allocator
7025	 * work, we align the range to biggest of the two pages so
7026	 * that page allocator won't try to merge buddies from
7027	 * different pageblocks and change MIGRATE_ISOLATE to some
7028	 * other migration type.
7029	 *
7030	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7031	 * migrate the pages from an unaligned range (ie. pages that
7032	 * we are interested in).  This will put all the pages in
7033	 * range back to page allocator as MIGRATE_ISOLATE.
7034	 *
7035	 * When this is done, we take the pages in range from page
7036	 * allocator removing them from the buddy system.  This way
7037	 * page allocator will never consider using them.
7038	 *
7039	 * This lets us mark the pageblocks back as
7040	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7041	 * aligned range but not in the unaligned, original range are
7042	 * put back to page allocator so that buddy can use them.
7043	 */
7044
7045	ret = start_isolate_page_range(pfn_max_align_down(start),
7046				       pfn_max_align_up(end), migratetype,
7047				       false);
7048	if (ret)
7049		return ret;
7050
7051	/*
7052	 * In case of -EBUSY, we'd like to know which page causes problem.
7053	 * So, just fall through. We will check it in test_pages_isolated().
 
 
 
 
 
 
7054	 */
7055	ret = __alloc_contig_migrate_range(&cc, start, end);
7056	if (ret && ret != -EBUSY)
7057		goto done;
 
7058
7059	/*
7060	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7061	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
7062	 * more, all pages in [start, end) are free in page allocator.
7063	 * What we are going to do is to allocate all pages from
7064	 * [start, end) (that is remove them from page allocator).
7065	 *
7066	 * The only problem is that pages at the beginning and at the
7067	 * end of interesting range may be not aligned with pages that
7068	 * page allocator holds, ie. they can be part of higher order
7069	 * pages.  Because of this, we reserve the bigger range and
7070	 * once this is done free the pages we are not interested in.
7071	 *
7072	 * We don't have to hold zone->lock here because the pages are
7073	 * isolated thus they won't get removed from buddy.
7074	 */
7075
7076	lru_add_drain_all();
7077	drain_all_pages(cc.zone);
7078
7079	order = 0;
7080	outer_start = start;
7081	while (!PageBuddy(pfn_to_page(outer_start))) {
7082		if (++order >= MAX_ORDER) {
7083			outer_start = start;
7084			break;
7085		}
7086		outer_start &= ~0UL << order;
7087	}
7088
7089	if (outer_start != start) {
7090		order = page_order(pfn_to_page(outer_start));
7091
7092		/*
7093		 * outer_start page could be small order buddy page and
7094		 * it doesn't include start page. Adjust outer_start
7095		 * in this case to report failed page properly
7096		 * on tracepoint in test_pages_isolated()
7097		 */
7098		if (outer_start + (1UL << order) <= start)
7099			outer_start = start;
7100	}
7101
7102	/* Make sure the range is really isolated. */
7103	if (test_pages_isolated(outer_start, end, false)) {
7104		pr_info("%s: [%lx, %lx) PFNs busy\n",
7105			__func__, outer_start, end);
7106		ret = -EBUSY;
7107		goto done;
7108	}
7109
7110	/* Grab isolated pages from freelists. */
7111	outer_end = isolate_freepages_range(&cc, outer_start, end);
7112	if (!outer_end) {
7113		ret = -EBUSY;
7114		goto done;
7115	}
7116
7117	/* Free head and tail (if any) */
7118	if (start != outer_start)
7119		free_contig_range(outer_start, start - outer_start);
7120	if (end != outer_end)
7121		free_contig_range(end, outer_end - end);
7122
7123done:
7124	undo_isolate_page_range(pfn_max_align_down(start),
7125				pfn_max_align_up(end), migratetype);
7126	return ret;
7127}
7128
7129void free_contig_range(unsigned long pfn, unsigned nr_pages)
7130{
7131	unsigned int count = 0;
7132
7133	for (; nr_pages--; pfn++) {
7134		struct page *page = pfn_to_page(pfn);
7135
7136		count += page_count(page) != 1;
7137		__free_page(page);
7138	}
7139	WARN(count != 0, "%d pages are still in use!\n", count);
7140}
7141#endif
7142
7143#ifdef CONFIG_MEMORY_HOTPLUG
7144/*
7145 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7146 * page high values need to be recalulated.
7147 */
7148void __meminit zone_pcp_update(struct zone *zone)
7149{
7150	unsigned cpu;
7151	mutex_lock(&pcp_batch_high_lock);
7152	for_each_possible_cpu(cpu)
7153		pageset_set_high_and_batch(zone,
7154				per_cpu_ptr(zone->pageset, cpu));
7155	mutex_unlock(&pcp_batch_high_lock);
7156}
7157#endif
7158
7159void zone_pcp_reset(struct zone *zone)
7160{
7161	unsigned long flags;
7162	int cpu;
7163	struct per_cpu_pageset *pset;
7164
7165	/* avoid races with drain_pages()  */
7166	local_irq_save(flags);
7167	if (zone->pageset != &boot_pageset) {
7168		for_each_online_cpu(cpu) {
7169			pset = per_cpu_ptr(zone->pageset, cpu);
7170			drain_zonestat(zone, pset);
7171		}
7172		free_percpu(zone->pageset);
7173		zone->pageset = &boot_pageset;
7174	}
7175	local_irq_restore(flags);
7176}
7177
7178#ifdef CONFIG_MEMORY_HOTREMOVE
7179/*
7180 * All pages in the range must be isolated before calling this.
 
7181 */
7182void
7183__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7184{
7185	struct page *page;
7186	struct zone *zone;
7187	unsigned int order, i;
7188	unsigned long pfn;
7189	unsigned long flags;
7190	/* find the first valid pfn */
7191	for (pfn = start_pfn; pfn < end_pfn; pfn++)
7192		if (pfn_valid(pfn))
7193			break;
7194	if (pfn == end_pfn)
7195		return;
 
7196	zone = page_zone(pfn_to_page(pfn));
7197	spin_lock_irqsave(&zone->lock, flags);
7198	pfn = start_pfn;
7199	while (pfn < end_pfn) {
7200		if (!pfn_valid(pfn)) {
7201			pfn++;
7202			continue;
7203		}
7204		page = pfn_to_page(pfn);
7205		/*
7206		 * The HWPoisoned page may be not in buddy system, and
7207		 * page_count() is not 0.
7208		 */
7209		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7210			pfn++;
7211			SetPageReserved(page);
7212			continue;
7213		}
7214
7215		BUG_ON(page_count(page));
7216		BUG_ON(!PageBuddy(page));
7217		order = page_order(page);
7218#ifdef CONFIG_DEBUG_VM
7219		pr_info("remove from free list %lx %d %lx\n",
7220			pfn, 1 << order, end_pfn);
7221#endif
7222		list_del(&page->lru);
7223		rmv_page_order(page);
7224		zone->free_area[order].nr_free--;
7225		for (i = 0; i < (1 << order); i++)
7226			SetPageReserved((page+i));
7227		pfn += (1 << order);
7228	}
7229	spin_unlock_irqrestore(&zone->lock, flags);
7230}
7231#endif
7232
7233bool is_free_buddy_page(struct page *page)
7234{
7235	struct zone *zone = page_zone(page);
7236	unsigned long pfn = page_to_pfn(page);
7237	unsigned long flags;
7238	unsigned int order;
7239
7240	spin_lock_irqsave(&zone->lock, flags);
7241	for (order = 0; order < MAX_ORDER; order++) {
7242		struct page *page_head = page - (pfn & ((1 << order) - 1));
7243
7244		if (PageBuddy(page_head) && page_order(page_head) >= order)
7245			break;
7246	}
7247	spin_unlock_irqrestore(&zone->lock, flags);
7248
7249	return order < MAX_ORDER;
7250}