Loading...
1/*
2 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_shared.h"
21#include "xfs_format.h"
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
24#include "xfs_bit.h"
25#include "xfs_mount.h"
26#include "xfs_inode.h"
27#include "xfs_btree.h"
28#include "xfs_ialloc.h"
29#include "xfs_ialloc_btree.h"
30#include "xfs_alloc.h"
31#include "xfs_error.h"
32#include "xfs_trace.h"
33#include "xfs_cksum.h"
34#include "xfs_trans.h"
35#include "xfs_rmap.h"
36
37
38STATIC int
39xfs_inobt_get_minrecs(
40 struct xfs_btree_cur *cur,
41 int level)
42{
43 return cur->bc_mp->m_inobt_mnr[level != 0];
44}
45
46STATIC struct xfs_btree_cur *
47xfs_inobt_dup_cursor(
48 struct xfs_btree_cur *cur)
49{
50 return xfs_inobt_init_cursor(cur->bc_mp, cur->bc_tp,
51 cur->bc_private.a.agbp, cur->bc_private.a.agno,
52 cur->bc_btnum);
53}
54
55STATIC void
56xfs_inobt_set_root(
57 struct xfs_btree_cur *cur,
58 union xfs_btree_ptr *nptr,
59 int inc) /* level change */
60{
61 struct xfs_buf *agbp = cur->bc_private.a.agbp;
62 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
63
64 agi->agi_root = nptr->s;
65 be32_add_cpu(&agi->agi_level, inc);
66 xfs_ialloc_log_agi(cur->bc_tp, agbp, XFS_AGI_ROOT | XFS_AGI_LEVEL);
67}
68
69STATIC void
70xfs_finobt_set_root(
71 struct xfs_btree_cur *cur,
72 union xfs_btree_ptr *nptr,
73 int inc) /* level change */
74{
75 struct xfs_buf *agbp = cur->bc_private.a.agbp;
76 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
77
78 agi->agi_free_root = nptr->s;
79 be32_add_cpu(&agi->agi_free_level, inc);
80 xfs_ialloc_log_agi(cur->bc_tp, agbp,
81 XFS_AGI_FREE_ROOT | XFS_AGI_FREE_LEVEL);
82}
83
84STATIC int
85__xfs_inobt_alloc_block(
86 struct xfs_btree_cur *cur,
87 union xfs_btree_ptr *start,
88 union xfs_btree_ptr *new,
89 int *stat,
90 enum xfs_ag_resv_type resv)
91{
92 xfs_alloc_arg_t args; /* block allocation args */
93 int error; /* error return value */
94 xfs_agblock_t sbno = be32_to_cpu(start->s);
95
96 memset(&args, 0, sizeof(args));
97 args.tp = cur->bc_tp;
98 args.mp = cur->bc_mp;
99 xfs_rmap_ag_owner(&args.oinfo, XFS_RMAP_OWN_INOBT);
100 args.fsbno = XFS_AGB_TO_FSB(args.mp, cur->bc_private.a.agno, sbno);
101 args.minlen = 1;
102 args.maxlen = 1;
103 args.prod = 1;
104 args.type = XFS_ALLOCTYPE_NEAR_BNO;
105 args.resv = resv;
106
107 error = xfs_alloc_vextent(&args);
108 if (error)
109 return error;
110
111 if (args.fsbno == NULLFSBLOCK) {
112 *stat = 0;
113 return 0;
114 }
115 ASSERT(args.len == 1);
116
117 new->s = cpu_to_be32(XFS_FSB_TO_AGBNO(args.mp, args.fsbno));
118 *stat = 1;
119 return 0;
120}
121
122STATIC int
123xfs_inobt_alloc_block(
124 struct xfs_btree_cur *cur,
125 union xfs_btree_ptr *start,
126 union xfs_btree_ptr *new,
127 int *stat)
128{
129 return __xfs_inobt_alloc_block(cur, start, new, stat, XFS_AG_RESV_NONE);
130}
131
132STATIC int
133xfs_finobt_alloc_block(
134 struct xfs_btree_cur *cur,
135 union xfs_btree_ptr *start,
136 union xfs_btree_ptr *new,
137 int *stat)
138{
139 if (cur->bc_mp->m_inotbt_nores)
140 return xfs_inobt_alloc_block(cur, start, new, stat);
141 return __xfs_inobt_alloc_block(cur, start, new, stat,
142 XFS_AG_RESV_METADATA);
143}
144
145STATIC int
146__xfs_inobt_free_block(
147 struct xfs_btree_cur *cur,
148 struct xfs_buf *bp,
149 enum xfs_ag_resv_type resv)
150{
151 struct xfs_owner_info oinfo;
152
153 xfs_rmap_ag_owner(&oinfo, XFS_RMAP_OWN_INOBT);
154 return xfs_free_extent(cur->bc_tp,
155 XFS_DADDR_TO_FSB(cur->bc_mp, XFS_BUF_ADDR(bp)), 1,
156 &oinfo, resv);
157}
158
159STATIC int
160xfs_inobt_free_block(
161 struct xfs_btree_cur *cur,
162 struct xfs_buf *bp)
163{
164 return __xfs_inobt_free_block(cur, bp, XFS_AG_RESV_NONE);
165}
166
167STATIC int
168xfs_finobt_free_block(
169 struct xfs_btree_cur *cur,
170 struct xfs_buf *bp)
171{
172 if (cur->bc_mp->m_inotbt_nores)
173 return xfs_inobt_free_block(cur, bp);
174 return __xfs_inobt_free_block(cur, bp, XFS_AG_RESV_METADATA);
175}
176
177STATIC int
178xfs_inobt_get_maxrecs(
179 struct xfs_btree_cur *cur,
180 int level)
181{
182 return cur->bc_mp->m_inobt_mxr[level != 0];
183}
184
185STATIC void
186xfs_inobt_init_key_from_rec(
187 union xfs_btree_key *key,
188 union xfs_btree_rec *rec)
189{
190 key->inobt.ir_startino = rec->inobt.ir_startino;
191}
192
193STATIC void
194xfs_inobt_init_high_key_from_rec(
195 union xfs_btree_key *key,
196 union xfs_btree_rec *rec)
197{
198 __u32 x;
199
200 x = be32_to_cpu(rec->inobt.ir_startino);
201 x += XFS_INODES_PER_CHUNK - 1;
202 key->inobt.ir_startino = cpu_to_be32(x);
203}
204
205STATIC void
206xfs_inobt_init_rec_from_cur(
207 struct xfs_btree_cur *cur,
208 union xfs_btree_rec *rec)
209{
210 rec->inobt.ir_startino = cpu_to_be32(cur->bc_rec.i.ir_startino);
211 if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
212 rec->inobt.ir_u.sp.ir_holemask =
213 cpu_to_be16(cur->bc_rec.i.ir_holemask);
214 rec->inobt.ir_u.sp.ir_count = cur->bc_rec.i.ir_count;
215 rec->inobt.ir_u.sp.ir_freecount = cur->bc_rec.i.ir_freecount;
216 } else {
217 /* ir_holemask/ir_count not supported on-disk */
218 rec->inobt.ir_u.f.ir_freecount =
219 cpu_to_be32(cur->bc_rec.i.ir_freecount);
220 }
221 rec->inobt.ir_free = cpu_to_be64(cur->bc_rec.i.ir_free);
222}
223
224/*
225 * initial value of ptr for lookup
226 */
227STATIC void
228xfs_inobt_init_ptr_from_cur(
229 struct xfs_btree_cur *cur,
230 union xfs_btree_ptr *ptr)
231{
232 struct xfs_agi *agi = XFS_BUF_TO_AGI(cur->bc_private.a.agbp);
233
234 ASSERT(cur->bc_private.a.agno == be32_to_cpu(agi->agi_seqno));
235
236 ptr->s = agi->agi_root;
237}
238
239STATIC void
240xfs_finobt_init_ptr_from_cur(
241 struct xfs_btree_cur *cur,
242 union xfs_btree_ptr *ptr)
243{
244 struct xfs_agi *agi = XFS_BUF_TO_AGI(cur->bc_private.a.agbp);
245
246 ASSERT(cur->bc_private.a.agno == be32_to_cpu(agi->agi_seqno));
247 ptr->s = agi->agi_free_root;
248}
249
250STATIC int64_t
251xfs_inobt_key_diff(
252 struct xfs_btree_cur *cur,
253 union xfs_btree_key *key)
254{
255 return (int64_t)be32_to_cpu(key->inobt.ir_startino) -
256 cur->bc_rec.i.ir_startino;
257}
258
259STATIC int64_t
260xfs_inobt_diff_two_keys(
261 struct xfs_btree_cur *cur,
262 union xfs_btree_key *k1,
263 union xfs_btree_key *k2)
264{
265 return (int64_t)be32_to_cpu(k1->inobt.ir_startino) -
266 be32_to_cpu(k2->inobt.ir_startino);
267}
268
269static xfs_failaddr_t
270xfs_inobt_verify(
271 struct xfs_buf *bp)
272{
273 struct xfs_mount *mp = bp->b_target->bt_mount;
274 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
275 xfs_failaddr_t fa;
276 unsigned int level;
277
278 /*
279 * During growfs operations, we can't verify the exact owner as the
280 * perag is not fully initialised and hence not attached to the buffer.
281 *
282 * Similarly, during log recovery we will have a perag structure
283 * attached, but the agi information will not yet have been initialised
284 * from the on disk AGI. We don't currently use any of this information,
285 * but beware of the landmine (i.e. need to check pag->pagi_init) if we
286 * ever do.
287 */
288 switch (block->bb_magic) {
289 case cpu_to_be32(XFS_IBT_CRC_MAGIC):
290 case cpu_to_be32(XFS_FIBT_CRC_MAGIC):
291 fa = xfs_btree_sblock_v5hdr_verify(bp);
292 if (fa)
293 return fa;
294 /* fall through */
295 case cpu_to_be32(XFS_IBT_MAGIC):
296 case cpu_to_be32(XFS_FIBT_MAGIC):
297 break;
298 default:
299 return NULL;
300 }
301
302 /* level verification */
303 level = be16_to_cpu(block->bb_level);
304 if (level >= mp->m_in_maxlevels)
305 return __this_address;
306
307 return xfs_btree_sblock_verify(bp, mp->m_inobt_mxr[level != 0]);
308}
309
310static void
311xfs_inobt_read_verify(
312 struct xfs_buf *bp)
313{
314 xfs_failaddr_t fa;
315
316 if (!xfs_btree_sblock_verify_crc(bp))
317 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
318 else {
319 fa = xfs_inobt_verify(bp);
320 if (fa)
321 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
322 }
323
324 if (bp->b_error)
325 trace_xfs_btree_corrupt(bp, _RET_IP_);
326}
327
328static void
329xfs_inobt_write_verify(
330 struct xfs_buf *bp)
331{
332 xfs_failaddr_t fa;
333
334 fa = xfs_inobt_verify(bp);
335 if (fa) {
336 trace_xfs_btree_corrupt(bp, _RET_IP_);
337 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
338 return;
339 }
340 xfs_btree_sblock_calc_crc(bp);
341
342}
343
344const struct xfs_buf_ops xfs_inobt_buf_ops = {
345 .name = "xfs_inobt",
346 .verify_read = xfs_inobt_read_verify,
347 .verify_write = xfs_inobt_write_verify,
348 .verify_struct = xfs_inobt_verify,
349};
350
351STATIC int
352xfs_inobt_keys_inorder(
353 struct xfs_btree_cur *cur,
354 union xfs_btree_key *k1,
355 union xfs_btree_key *k2)
356{
357 return be32_to_cpu(k1->inobt.ir_startino) <
358 be32_to_cpu(k2->inobt.ir_startino);
359}
360
361STATIC int
362xfs_inobt_recs_inorder(
363 struct xfs_btree_cur *cur,
364 union xfs_btree_rec *r1,
365 union xfs_btree_rec *r2)
366{
367 return be32_to_cpu(r1->inobt.ir_startino) + XFS_INODES_PER_CHUNK <=
368 be32_to_cpu(r2->inobt.ir_startino);
369}
370
371static const struct xfs_btree_ops xfs_inobt_ops = {
372 .rec_len = sizeof(xfs_inobt_rec_t),
373 .key_len = sizeof(xfs_inobt_key_t),
374
375 .dup_cursor = xfs_inobt_dup_cursor,
376 .set_root = xfs_inobt_set_root,
377 .alloc_block = xfs_inobt_alloc_block,
378 .free_block = xfs_inobt_free_block,
379 .get_minrecs = xfs_inobt_get_minrecs,
380 .get_maxrecs = xfs_inobt_get_maxrecs,
381 .init_key_from_rec = xfs_inobt_init_key_from_rec,
382 .init_high_key_from_rec = xfs_inobt_init_high_key_from_rec,
383 .init_rec_from_cur = xfs_inobt_init_rec_from_cur,
384 .init_ptr_from_cur = xfs_inobt_init_ptr_from_cur,
385 .key_diff = xfs_inobt_key_diff,
386 .buf_ops = &xfs_inobt_buf_ops,
387 .diff_two_keys = xfs_inobt_diff_two_keys,
388 .keys_inorder = xfs_inobt_keys_inorder,
389 .recs_inorder = xfs_inobt_recs_inorder,
390};
391
392static const struct xfs_btree_ops xfs_finobt_ops = {
393 .rec_len = sizeof(xfs_inobt_rec_t),
394 .key_len = sizeof(xfs_inobt_key_t),
395
396 .dup_cursor = xfs_inobt_dup_cursor,
397 .set_root = xfs_finobt_set_root,
398 .alloc_block = xfs_finobt_alloc_block,
399 .free_block = xfs_finobt_free_block,
400 .get_minrecs = xfs_inobt_get_minrecs,
401 .get_maxrecs = xfs_inobt_get_maxrecs,
402 .init_key_from_rec = xfs_inobt_init_key_from_rec,
403 .init_high_key_from_rec = xfs_inobt_init_high_key_from_rec,
404 .init_rec_from_cur = xfs_inobt_init_rec_from_cur,
405 .init_ptr_from_cur = xfs_finobt_init_ptr_from_cur,
406 .key_diff = xfs_inobt_key_diff,
407 .buf_ops = &xfs_inobt_buf_ops,
408 .diff_two_keys = xfs_inobt_diff_two_keys,
409 .keys_inorder = xfs_inobt_keys_inorder,
410 .recs_inorder = xfs_inobt_recs_inorder,
411};
412
413/*
414 * Allocate a new inode btree cursor.
415 */
416struct xfs_btree_cur * /* new inode btree cursor */
417xfs_inobt_init_cursor(
418 struct xfs_mount *mp, /* file system mount point */
419 struct xfs_trans *tp, /* transaction pointer */
420 struct xfs_buf *agbp, /* buffer for agi structure */
421 xfs_agnumber_t agno, /* allocation group number */
422 xfs_btnum_t btnum) /* ialloc or free ino btree */
423{
424 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
425 struct xfs_btree_cur *cur;
426
427 cur = kmem_zone_zalloc(xfs_btree_cur_zone, KM_NOFS);
428
429 cur->bc_tp = tp;
430 cur->bc_mp = mp;
431 cur->bc_btnum = btnum;
432 if (btnum == XFS_BTNUM_INO) {
433 cur->bc_nlevels = be32_to_cpu(agi->agi_level);
434 cur->bc_ops = &xfs_inobt_ops;
435 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_ibt_2);
436 } else {
437 cur->bc_nlevels = be32_to_cpu(agi->agi_free_level);
438 cur->bc_ops = &xfs_finobt_ops;
439 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_fibt_2);
440 }
441
442 cur->bc_blocklog = mp->m_sb.sb_blocklog;
443
444 if (xfs_sb_version_hascrc(&mp->m_sb))
445 cur->bc_flags |= XFS_BTREE_CRC_BLOCKS;
446
447 cur->bc_private.a.agbp = agbp;
448 cur->bc_private.a.agno = agno;
449
450 return cur;
451}
452
453/*
454 * Calculate number of records in an inobt btree block.
455 */
456int
457xfs_inobt_maxrecs(
458 struct xfs_mount *mp,
459 int blocklen,
460 int leaf)
461{
462 blocklen -= XFS_INOBT_BLOCK_LEN(mp);
463
464 if (leaf)
465 return blocklen / sizeof(xfs_inobt_rec_t);
466 return blocklen / (sizeof(xfs_inobt_key_t) + sizeof(xfs_inobt_ptr_t));
467}
468
469/*
470 * Convert the inode record holemask to an inode allocation bitmap. The inode
471 * allocation bitmap is inode granularity and specifies whether an inode is
472 * physically allocated on disk (not whether the inode is considered allocated
473 * or free by the fs).
474 *
475 * A bit value of 1 means the inode is allocated, a value of 0 means it is free.
476 */
477uint64_t
478xfs_inobt_irec_to_allocmask(
479 struct xfs_inobt_rec_incore *rec)
480{
481 uint64_t bitmap = 0;
482 uint64_t inodespbit;
483 int nextbit;
484 uint allocbitmap;
485
486 /*
487 * The holemask has 16-bits for a 64 inode record. Therefore each
488 * holemask bit represents multiple inodes. Create a mask of bits to set
489 * in the allocmask for each holemask bit.
490 */
491 inodespbit = (1 << XFS_INODES_PER_HOLEMASK_BIT) - 1;
492
493 /*
494 * Allocated inodes are represented by 0 bits in holemask. Invert the 0
495 * bits to 1 and convert to a uint so we can use xfs_next_bit(). Mask
496 * anything beyond the 16 holemask bits since this casts to a larger
497 * type.
498 */
499 allocbitmap = ~rec->ir_holemask & ((1 << XFS_INOBT_HOLEMASK_BITS) - 1);
500
501 /*
502 * allocbitmap is the inverted holemask so every set bit represents
503 * allocated inodes. To expand from 16-bit holemask granularity to
504 * 64-bit (e.g., bit-per-inode), set inodespbit bits in the target
505 * bitmap for every holemask bit.
506 */
507 nextbit = xfs_next_bit(&allocbitmap, 1, 0);
508 while (nextbit != -1) {
509 ASSERT(nextbit < (sizeof(rec->ir_holemask) * NBBY));
510
511 bitmap |= (inodespbit <<
512 (nextbit * XFS_INODES_PER_HOLEMASK_BIT));
513
514 nextbit = xfs_next_bit(&allocbitmap, 1, nextbit + 1);
515 }
516
517 return bitmap;
518}
519
520#if defined(DEBUG) || defined(XFS_WARN)
521/*
522 * Verify that an in-core inode record has a valid inode count.
523 */
524int
525xfs_inobt_rec_check_count(
526 struct xfs_mount *mp,
527 struct xfs_inobt_rec_incore *rec)
528{
529 int inocount = 0;
530 int nextbit = 0;
531 uint64_t allocbmap;
532 int wordsz;
533
534 wordsz = sizeof(allocbmap) / sizeof(unsigned int);
535 allocbmap = xfs_inobt_irec_to_allocmask(rec);
536
537 nextbit = xfs_next_bit((uint *) &allocbmap, wordsz, nextbit);
538 while (nextbit != -1) {
539 inocount++;
540 nextbit = xfs_next_bit((uint *) &allocbmap, wordsz,
541 nextbit + 1);
542 }
543
544 if (inocount != rec->ir_count)
545 return -EFSCORRUPTED;
546
547 return 0;
548}
549#endif /* DEBUG */
550
551static xfs_extlen_t
552xfs_inobt_max_size(
553 struct xfs_mount *mp)
554{
555 /* Bail out if we're uninitialized, which can happen in mkfs. */
556 if (mp->m_inobt_mxr[0] == 0)
557 return 0;
558
559 return xfs_btree_calc_size(mp->m_inobt_mnr,
560 (uint64_t)mp->m_sb.sb_agblocks * mp->m_sb.sb_inopblock /
561 XFS_INODES_PER_CHUNK);
562}
563
564static int
565xfs_inobt_count_blocks(
566 struct xfs_mount *mp,
567 xfs_agnumber_t agno,
568 xfs_btnum_t btnum,
569 xfs_extlen_t *tree_blocks)
570{
571 struct xfs_buf *agbp;
572 struct xfs_btree_cur *cur;
573 int error;
574
575 error = xfs_ialloc_read_agi(mp, NULL, agno, &agbp);
576 if (error)
577 return error;
578
579 cur = xfs_inobt_init_cursor(mp, NULL, agbp, agno, btnum);
580 error = xfs_btree_count_blocks(cur, tree_blocks);
581 xfs_btree_del_cursor(cur, error ? XFS_BTREE_ERROR : XFS_BTREE_NOERROR);
582 xfs_buf_relse(agbp);
583
584 return error;
585}
586
587/*
588 * Figure out how many blocks to reserve and how many are used by this btree.
589 */
590int
591xfs_finobt_calc_reserves(
592 struct xfs_mount *mp,
593 xfs_agnumber_t agno,
594 xfs_extlen_t *ask,
595 xfs_extlen_t *used)
596{
597 xfs_extlen_t tree_len = 0;
598 int error;
599
600 if (!xfs_sb_version_hasfinobt(&mp->m_sb))
601 return 0;
602
603 error = xfs_inobt_count_blocks(mp, agno, XFS_BTNUM_FINO, &tree_len);
604 if (error)
605 return error;
606
607 *ask += xfs_inobt_max_size(mp);
608 *used += tree_len;
609 return 0;
610}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_bit.h"
13#include "xfs_mount.h"
14#include "xfs_btree.h"
15#include "xfs_btree_staging.h"
16#include "xfs_ialloc.h"
17#include "xfs_ialloc_btree.h"
18#include "xfs_alloc.h"
19#include "xfs_error.h"
20#include "xfs_trace.h"
21#include "xfs_trans.h"
22#include "xfs_rmap.h"
23#include "xfs_ag.h"
24
25static struct kmem_cache *xfs_inobt_cur_cache;
26
27STATIC int
28xfs_inobt_get_minrecs(
29 struct xfs_btree_cur *cur,
30 int level)
31{
32 return M_IGEO(cur->bc_mp)->inobt_mnr[level != 0];
33}
34
35STATIC struct xfs_btree_cur *
36xfs_inobt_dup_cursor(
37 struct xfs_btree_cur *cur)
38{
39 return xfs_inobt_init_cursor(cur->bc_ag.pag, cur->bc_tp,
40 cur->bc_ag.agbp, cur->bc_btnum);
41}
42
43STATIC void
44xfs_inobt_set_root(
45 struct xfs_btree_cur *cur,
46 const union xfs_btree_ptr *nptr,
47 int inc) /* level change */
48{
49 struct xfs_buf *agbp = cur->bc_ag.agbp;
50 struct xfs_agi *agi = agbp->b_addr;
51
52 agi->agi_root = nptr->s;
53 be32_add_cpu(&agi->agi_level, inc);
54 xfs_ialloc_log_agi(cur->bc_tp, agbp, XFS_AGI_ROOT | XFS_AGI_LEVEL);
55}
56
57STATIC void
58xfs_finobt_set_root(
59 struct xfs_btree_cur *cur,
60 const union xfs_btree_ptr *nptr,
61 int inc) /* level change */
62{
63 struct xfs_buf *agbp = cur->bc_ag.agbp;
64 struct xfs_agi *agi = agbp->b_addr;
65
66 agi->agi_free_root = nptr->s;
67 be32_add_cpu(&agi->agi_free_level, inc);
68 xfs_ialloc_log_agi(cur->bc_tp, agbp,
69 XFS_AGI_FREE_ROOT | XFS_AGI_FREE_LEVEL);
70}
71
72/* Update the inode btree block counter for this btree. */
73static inline void
74xfs_inobt_mod_blockcount(
75 struct xfs_btree_cur *cur,
76 int howmuch)
77{
78 struct xfs_buf *agbp = cur->bc_ag.agbp;
79 struct xfs_agi *agi = agbp->b_addr;
80
81 if (!xfs_has_inobtcounts(cur->bc_mp))
82 return;
83
84 if (cur->bc_btnum == XFS_BTNUM_FINO)
85 be32_add_cpu(&agi->agi_fblocks, howmuch);
86 else if (cur->bc_btnum == XFS_BTNUM_INO)
87 be32_add_cpu(&agi->agi_iblocks, howmuch);
88 xfs_ialloc_log_agi(cur->bc_tp, agbp, XFS_AGI_IBLOCKS);
89}
90
91STATIC int
92__xfs_inobt_alloc_block(
93 struct xfs_btree_cur *cur,
94 const union xfs_btree_ptr *start,
95 union xfs_btree_ptr *new,
96 int *stat,
97 enum xfs_ag_resv_type resv)
98{
99 xfs_alloc_arg_t args; /* block allocation args */
100 int error; /* error return value */
101 xfs_agblock_t sbno = be32_to_cpu(start->s);
102
103 memset(&args, 0, sizeof(args));
104 args.tp = cur->bc_tp;
105 args.mp = cur->bc_mp;
106 args.pag = cur->bc_ag.pag;
107 args.oinfo = XFS_RMAP_OINFO_INOBT;
108 args.minlen = 1;
109 args.maxlen = 1;
110 args.prod = 1;
111 args.resv = resv;
112
113 error = xfs_alloc_vextent_near_bno(&args,
114 XFS_AGB_TO_FSB(args.mp, args.pag->pag_agno, sbno));
115 if (error)
116 return error;
117
118 if (args.fsbno == NULLFSBLOCK) {
119 *stat = 0;
120 return 0;
121 }
122 ASSERT(args.len == 1);
123
124 new->s = cpu_to_be32(XFS_FSB_TO_AGBNO(args.mp, args.fsbno));
125 *stat = 1;
126 xfs_inobt_mod_blockcount(cur, 1);
127 return 0;
128}
129
130STATIC int
131xfs_inobt_alloc_block(
132 struct xfs_btree_cur *cur,
133 const union xfs_btree_ptr *start,
134 union xfs_btree_ptr *new,
135 int *stat)
136{
137 return __xfs_inobt_alloc_block(cur, start, new, stat, XFS_AG_RESV_NONE);
138}
139
140STATIC int
141xfs_finobt_alloc_block(
142 struct xfs_btree_cur *cur,
143 const union xfs_btree_ptr *start,
144 union xfs_btree_ptr *new,
145 int *stat)
146{
147 if (cur->bc_mp->m_finobt_nores)
148 return xfs_inobt_alloc_block(cur, start, new, stat);
149 return __xfs_inobt_alloc_block(cur, start, new, stat,
150 XFS_AG_RESV_METADATA);
151}
152
153STATIC int
154__xfs_inobt_free_block(
155 struct xfs_btree_cur *cur,
156 struct xfs_buf *bp,
157 enum xfs_ag_resv_type resv)
158{
159 xfs_fsblock_t fsbno;
160
161 xfs_inobt_mod_blockcount(cur, -1);
162 fsbno = XFS_DADDR_TO_FSB(cur->bc_mp, xfs_buf_daddr(bp));
163 return xfs_free_extent_later(cur->bc_tp, fsbno, 1,
164 &XFS_RMAP_OINFO_INOBT, resv, false);
165}
166
167STATIC int
168xfs_inobt_free_block(
169 struct xfs_btree_cur *cur,
170 struct xfs_buf *bp)
171{
172 return __xfs_inobt_free_block(cur, bp, XFS_AG_RESV_NONE);
173}
174
175STATIC int
176xfs_finobt_free_block(
177 struct xfs_btree_cur *cur,
178 struct xfs_buf *bp)
179{
180 if (cur->bc_mp->m_finobt_nores)
181 return xfs_inobt_free_block(cur, bp);
182 return __xfs_inobt_free_block(cur, bp, XFS_AG_RESV_METADATA);
183}
184
185STATIC int
186xfs_inobt_get_maxrecs(
187 struct xfs_btree_cur *cur,
188 int level)
189{
190 return M_IGEO(cur->bc_mp)->inobt_mxr[level != 0];
191}
192
193STATIC void
194xfs_inobt_init_key_from_rec(
195 union xfs_btree_key *key,
196 const union xfs_btree_rec *rec)
197{
198 key->inobt.ir_startino = rec->inobt.ir_startino;
199}
200
201STATIC void
202xfs_inobt_init_high_key_from_rec(
203 union xfs_btree_key *key,
204 const union xfs_btree_rec *rec)
205{
206 __u32 x;
207
208 x = be32_to_cpu(rec->inobt.ir_startino);
209 x += XFS_INODES_PER_CHUNK - 1;
210 key->inobt.ir_startino = cpu_to_be32(x);
211}
212
213STATIC void
214xfs_inobt_init_rec_from_cur(
215 struct xfs_btree_cur *cur,
216 union xfs_btree_rec *rec)
217{
218 rec->inobt.ir_startino = cpu_to_be32(cur->bc_rec.i.ir_startino);
219 if (xfs_has_sparseinodes(cur->bc_mp)) {
220 rec->inobt.ir_u.sp.ir_holemask =
221 cpu_to_be16(cur->bc_rec.i.ir_holemask);
222 rec->inobt.ir_u.sp.ir_count = cur->bc_rec.i.ir_count;
223 rec->inobt.ir_u.sp.ir_freecount = cur->bc_rec.i.ir_freecount;
224 } else {
225 /* ir_holemask/ir_count not supported on-disk */
226 rec->inobt.ir_u.f.ir_freecount =
227 cpu_to_be32(cur->bc_rec.i.ir_freecount);
228 }
229 rec->inobt.ir_free = cpu_to_be64(cur->bc_rec.i.ir_free);
230}
231
232/*
233 * initial value of ptr for lookup
234 */
235STATIC void
236xfs_inobt_init_ptr_from_cur(
237 struct xfs_btree_cur *cur,
238 union xfs_btree_ptr *ptr)
239{
240 struct xfs_agi *agi = cur->bc_ag.agbp->b_addr;
241
242 ASSERT(cur->bc_ag.pag->pag_agno == be32_to_cpu(agi->agi_seqno));
243
244 ptr->s = agi->agi_root;
245}
246
247STATIC void
248xfs_finobt_init_ptr_from_cur(
249 struct xfs_btree_cur *cur,
250 union xfs_btree_ptr *ptr)
251{
252 struct xfs_agi *agi = cur->bc_ag.agbp->b_addr;
253
254 ASSERT(cur->bc_ag.pag->pag_agno == be32_to_cpu(agi->agi_seqno));
255 ptr->s = agi->agi_free_root;
256}
257
258STATIC int64_t
259xfs_inobt_key_diff(
260 struct xfs_btree_cur *cur,
261 const union xfs_btree_key *key)
262{
263 return (int64_t)be32_to_cpu(key->inobt.ir_startino) -
264 cur->bc_rec.i.ir_startino;
265}
266
267STATIC int64_t
268xfs_inobt_diff_two_keys(
269 struct xfs_btree_cur *cur,
270 const union xfs_btree_key *k1,
271 const union xfs_btree_key *k2,
272 const union xfs_btree_key *mask)
273{
274 ASSERT(!mask || mask->inobt.ir_startino);
275
276 return (int64_t)be32_to_cpu(k1->inobt.ir_startino) -
277 be32_to_cpu(k2->inobt.ir_startino);
278}
279
280static xfs_failaddr_t
281xfs_inobt_verify(
282 struct xfs_buf *bp)
283{
284 struct xfs_mount *mp = bp->b_mount;
285 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
286 xfs_failaddr_t fa;
287 unsigned int level;
288
289 if (!xfs_verify_magic(bp, block->bb_magic))
290 return __this_address;
291
292 /*
293 * During growfs operations, we can't verify the exact owner as the
294 * perag is not fully initialised and hence not attached to the buffer.
295 *
296 * Similarly, during log recovery we will have a perag structure
297 * attached, but the agi information will not yet have been initialised
298 * from the on disk AGI. We don't currently use any of this information,
299 * but beware of the landmine (i.e. need to check
300 * xfs_perag_initialised_agi(pag)) if we ever do.
301 */
302 if (xfs_has_crc(mp)) {
303 fa = xfs_btree_sblock_v5hdr_verify(bp);
304 if (fa)
305 return fa;
306 }
307
308 /* level verification */
309 level = be16_to_cpu(block->bb_level);
310 if (level >= M_IGEO(mp)->inobt_maxlevels)
311 return __this_address;
312
313 return xfs_btree_sblock_verify(bp,
314 M_IGEO(mp)->inobt_mxr[level != 0]);
315}
316
317static void
318xfs_inobt_read_verify(
319 struct xfs_buf *bp)
320{
321 xfs_failaddr_t fa;
322
323 if (!xfs_btree_sblock_verify_crc(bp))
324 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
325 else {
326 fa = xfs_inobt_verify(bp);
327 if (fa)
328 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
329 }
330
331 if (bp->b_error)
332 trace_xfs_btree_corrupt(bp, _RET_IP_);
333}
334
335static void
336xfs_inobt_write_verify(
337 struct xfs_buf *bp)
338{
339 xfs_failaddr_t fa;
340
341 fa = xfs_inobt_verify(bp);
342 if (fa) {
343 trace_xfs_btree_corrupt(bp, _RET_IP_);
344 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
345 return;
346 }
347 xfs_btree_sblock_calc_crc(bp);
348
349}
350
351const struct xfs_buf_ops xfs_inobt_buf_ops = {
352 .name = "xfs_inobt",
353 .magic = { cpu_to_be32(XFS_IBT_MAGIC), cpu_to_be32(XFS_IBT_CRC_MAGIC) },
354 .verify_read = xfs_inobt_read_verify,
355 .verify_write = xfs_inobt_write_verify,
356 .verify_struct = xfs_inobt_verify,
357};
358
359const struct xfs_buf_ops xfs_finobt_buf_ops = {
360 .name = "xfs_finobt",
361 .magic = { cpu_to_be32(XFS_FIBT_MAGIC),
362 cpu_to_be32(XFS_FIBT_CRC_MAGIC) },
363 .verify_read = xfs_inobt_read_verify,
364 .verify_write = xfs_inobt_write_verify,
365 .verify_struct = xfs_inobt_verify,
366};
367
368STATIC int
369xfs_inobt_keys_inorder(
370 struct xfs_btree_cur *cur,
371 const union xfs_btree_key *k1,
372 const union xfs_btree_key *k2)
373{
374 return be32_to_cpu(k1->inobt.ir_startino) <
375 be32_to_cpu(k2->inobt.ir_startino);
376}
377
378STATIC int
379xfs_inobt_recs_inorder(
380 struct xfs_btree_cur *cur,
381 const union xfs_btree_rec *r1,
382 const union xfs_btree_rec *r2)
383{
384 return be32_to_cpu(r1->inobt.ir_startino) + XFS_INODES_PER_CHUNK <=
385 be32_to_cpu(r2->inobt.ir_startino);
386}
387
388STATIC enum xbtree_key_contig
389xfs_inobt_keys_contiguous(
390 struct xfs_btree_cur *cur,
391 const union xfs_btree_key *key1,
392 const union xfs_btree_key *key2,
393 const union xfs_btree_key *mask)
394{
395 ASSERT(!mask || mask->inobt.ir_startino);
396
397 return xbtree_key_contig(be32_to_cpu(key1->inobt.ir_startino),
398 be32_to_cpu(key2->inobt.ir_startino));
399}
400
401static const struct xfs_btree_ops xfs_inobt_ops = {
402 .rec_len = sizeof(xfs_inobt_rec_t),
403 .key_len = sizeof(xfs_inobt_key_t),
404
405 .dup_cursor = xfs_inobt_dup_cursor,
406 .set_root = xfs_inobt_set_root,
407 .alloc_block = xfs_inobt_alloc_block,
408 .free_block = xfs_inobt_free_block,
409 .get_minrecs = xfs_inobt_get_minrecs,
410 .get_maxrecs = xfs_inobt_get_maxrecs,
411 .init_key_from_rec = xfs_inobt_init_key_from_rec,
412 .init_high_key_from_rec = xfs_inobt_init_high_key_from_rec,
413 .init_rec_from_cur = xfs_inobt_init_rec_from_cur,
414 .init_ptr_from_cur = xfs_inobt_init_ptr_from_cur,
415 .key_diff = xfs_inobt_key_diff,
416 .buf_ops = &xfs_inobt_buf_ops,
417 .diff_two_keys = xfs_inobt_diff_two_keys,
418 .keys_inorder = xfs_inobt_keys_inorder,
419 .recs_inorder = xfs_inobt_recs_inorder,
420 .keys_contiguous = xfs_inobt_keys_contiguous,
421};
422
423static const struct xfs_btree_ops xfs_finobt_ops = {
424 .rec_len = sizeof(xfs_inobt_rec_t),
425 .key_len = sizeof(xfs_inobt_key_t),
426
427 .dup_cursor = xfs_inobt_dup_cursor,
428 .set_root = xfs_finobt_set_root,
429 .alloc_block = xfs_finobt_alloc_block,
430 .free_block = xfs_finobt_free_block,
431 .get_minrecs = xfs_inobt_get_minrecs,
432 .get_maxrecs = xfs_inobt_get_maxrecs,
433 .init_key_from_rec = xfs_inobt_init_key_from_rec,
434 .init_high_key_from_rec = xfs_inobt_init_high_key_from_rec,
435 .init_rec_from_cur = xfs_inobt_init_rec_from_cur,
436 .init_ptr_from_cur = xfs_finobt_init_ptr_from_cur,
437 .key_diff = xfs_inobt_key_diff,
438 .buf_ops = &xfs_finobt_buf_ops,
439 .diff_two_keys = xfs_inobt_diff_two_keys,
440 .keys_inorder = xfs_inobt_keys_inorder,
441 .recs_inorder = xfs_inobt_recs_inorder,
442 .keys_contiguous = xfs_inobt_keys_contiguous,
443};
444
445/*
446 * Initialize a new inode btree cursor.
447 */
448static struct xfs_btree_cur *
449xfs_inobt_init_common(
450 struct xfs_perag *pag,
451 struct xfs_trans *tp, /* transaction pointer */
452 xfs_btnum_t btnum) /* ialloc or free ino btree */
453{
454 struct xfs_mount *mp = pag->pag_mount;
455 struct xfs_btree_cur *cur;
456
457 cur = xfs_btree_alloc_cursor(mp, tp, btnum,
458 M_IGEO(mp)->inobt_maxlevels, xfs_inobt_cur_cache);
459 if (btnum == XFS_BTNUM_INO) {
460 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_ibt_2);
461 cur->bc_ops = &xfs_inobt_ops;
462 } else {
463 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_fibt_2);
464 cur->bc_ops = &xfs_finobt_ops;
465 }
466
467 if (xfs_has_crc(mp))
468 cur->bc_flags |= XFS_BTREE_CRC_BLOCKS;
469
470 cur->bc_ag.pag = xfs_perag_hold(pag);
471 return cur;
472}
473
474/* Create an inode btree cursor. */
475struct xfs_btree_cur *
476xfs_inobt_init_cursor(
477 struct xfs_perag *pag,
478 struct xfs_trans *tp,
479 struct xfs_buf *agbp,
480 xfs_btnum_t btnum)
481{
482 struct xfs_btree_cur *cur;
483 struct xfs_agi *agi = agbp->b_addr;
484
485 cur = xfs_inobt_init_common(pag, tp, btnum);
486 if (btnum == XFS_BTNUM_INO)
487 cur->bc_nlevels = be32_to_cpu(agi->agi_level);
488 else
489 cur->bc_nlevels = be32_to_cpu(agi->agi_free_level);
490 cur->bc_ag.agbp = agbp;
491 return cur;
492}
493
494/* Create an inode btree cursor with a fake root for staging. */
495struct xfs_btree_cur *
496xfs_inobt_stage_cursor(
497 struct xfs_perag *pag,
498 struct xbtree_afakeroot *afake,
499 xfs_btnum_t btnum)
500{
501 struct xfs_btree_cur *cur;
502
503 cur = xfs_inobt_init_common(pag, NULL, btnum);
504 xfs_btree_stage_afakeroot(cur, afake);
505 return cur;
506}
507
508/*
509 * Install a new inobt btree root. Caller is responsible for invalidating
510 * and freeing the old btree blocks.
511 */
512void
513xfs_inobt_commit_staged_btree(
514 struct xfs_btree_cur *cur,
515 struct xfs_trans *tp,
516 struct xfs_buf *agbp)
517{
518 struct xfs_agi *agi = agbp->b_addr;
519 struct xbtree_afakeroot *afake = cur->bc_ag.afake;
520 int fields;
521
522 ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
523
524 if (cur->bc_btnum == XFS_BTNUM_INO) {
525 fields = XFS_AGI_ROOT | XFS_AGI_LEVEL;
526 agi->agi_root = cpu_to_be32(afake->af_root);
527 agi->agi_level = cpu_to_be32(afake->af_levels);
528 if (xfs_has_inobtcounts(cur->bc_mp)) {
529 agi->agi_iblocks = cpu_to_be32(afake->af_blocks);
530 fields |= XFS_AGI_IBLOCKS;
531 }
532 xfs_ialloc_log_agi(tp, agbp, fields);
533 xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_inobt_ops);
534 } else {
535 fields = XFS_AGI_FREE_ROOT | XFS_AGI_FREE_LEVEL;
536 agi->agi_free_root = cpu_to_be32(afake->af_root);
537 agi->agi_free_level = cpu_to_be32(afake->af_levels);
538 if (xfs_has_inobtcounts(cur->bc_mp)) {
539 agi->agi_fblocks = cpu_to_be32(afake->af_blocks);
540 fields |= XFS_AGI_IBLOCKS;
541 }
542 xfs_ialloc_log_agi(tp, agbp, fields);
543 xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_finobt_ops);
544 }
545}
546
547/* Calculate number of records in an inode btree block. */
548static inline unsigned int
549xfs_inobt_block_maxrecs(
550 unsigned int blocklen,
551 bool leaf)
552{
553 if (leaf)
554 return blocklen / sizeof(xfs_inobt_rec_t);
555 return blocklen / (sizeof(xfs_inobt_key_t) + sizeof(xfs_inobt_ptr_t));
556}
557
558/*
559 * Calculate number of records in an inobt btree block.
560 */
561int
562xfs_inobt_maxrecs(
563 struct xfs_mount *mp,
564 int blocklen,
565 int leaf)
566{
567 blocklen -= XFS_INOBT_BLOCK_LEN(mp);
568 return xfs_inobt_block_maxrecs(blocklen, leaf);
569}
570
571/*
572 * Maximum number of inode btree records per AG. Pretend that we can fill an
573 * entire AG completely full of inodes except for the AG headers.
574 */
575#define XFS_MAX_INODE_RECORDS \
576 ((XFS_MAX_AG_BYTES - (4 * BBSIZE)) / XFS_DINODE_MIN_SIZE) / \
577 XFS_INODES_PER_CHUNK
578
579/* Compute the max possible height for the inode btree. */
580static inline unsigned int
581xfs_inobt_maxlevels_ondisk(void)
582{
583 unsigned int minrecs[2];
584 unsigned int blocklen;
585
586 blocklen = min(XFS_MIN_BLOCKSIZE - XFS_BTREE_SBLOCK_LEN,
587 XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN);
588
589 minrecs[0] = xfs_inobt_block_maxrecs(blocklen, true) / 2;
590 minrecs[1] = xfs_inobt_block_maxrecs(blocklen, false) / 2;
591
592 return xfs_btree_compute_maxlevels(minrecs, XFS_MAX_INODE_RECORDS);
593}
594
595/* Compute the max possible height for the free inode btree. */
596static inline unsigned int
597xfs_finobt_maxlevels_ondisk(void)
598{
599 unsigned int minrecs[2];
600 unsigned int blocklen;
601
602 blocklen = XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN;
603
604 minrecs[0] = xfs_inobt_block_maxrecs(blocklen, true) / 2;
605 minrecs[1] = xfs_inobt_block_maxrecs(blocklen, false) / 2;
606
607 return xfs_btree_compute_maxlevels(minrecs, XFS_MAX_INODE_RECORDS);
608}
609
610/* Compute the max possible height for either inode btree. */
611unsigned int
612xfs_iallocbt_maxlevels_ondisk(void)
613{
614 return max(xfs_inobt_maxlevels_ondisk(),
615 xfs_finobt_maxlevels_ondisk());
616}
617
618/*
619 * Convert the inode record holemask to an inode allocation bitmap. The inode
620 * allocation bitmap is inode granularity and specifies whether an inode is
621 * physically allocated on disk (not whether the inode is considered allocated
622 * or free by the fs).
623 *
624 * A bit value of 1 means the inode is allocated, a value of 0 means it is free.
625 */
626uint64_t
627xfs_inobt_irec_to_allocmask(
628 const struct xfs_inobt_rec_incore *rec)
629{
630 uint64_t bitmap = 0;
631 uint64_t inodespbit;
632 int nextbit;
633 uint allocbitmap;
634
635 /*
636 * The holemask has 16-bits for a 64 inode record. Therefore each
637 * holemask bit represents multiple inodes. Create a mask of bits to set
638 * in the allocmask for each holemask bit.
639 */
640 inodespbit = (1 << XFS_INODES_PER_HOLEMASK_BIT) - 1;
641
642 /*
643 * Allocated inodes are represented by 0 bits in holemask. Invert the 0
644 * bits to 1 and convert to a uint so we can use xfs_next_bit(). Mask
645 * anything beyond the 16 holemask bits since this casts to a larger
646 * type.
647 */
648 allocbitmap = ~rec->ir_holemask & ((1 << XFS_INOBT_HOLEMASK_BITS) - 1);
649
650 /*
651 * allocbitmap is the inverted holemask so every set bit represents
652 * allocated inodes. To expand from 16-bit holemask granularity to
653 * 64-bit (e.g., bit-per-inode), set inodespbit bits in the target
654 * bitmap for every holemask bit.
655 */
656 nextbit = xfs_next_bit(&allocbitmap, 1, 0);
657 while (nextbit != -1) {
658 ASSERT(nextbit < (sizeof(rec->ir_holemask) * NBBY));
659
660 bitmap |= (inodespbit <<
661 (nextbit * XFS_INODES_PER_HOLEMASK_BIT));
662
663 nextbit = xfs_next_bit(&allocbitmap, 1, nextbit + 1);
664 }
665
666 return bitmap;
667}
668
669#if defined(DEBUG) || defined(XFS_WARN)
670/*
671 * Verify that an in-core inode record has a valid inode count.
672 */
673int
674xfs_inobt_rec_check_count(
675 struct xfs_mount *mp,
676 struct xfs_inobt_rec_incore *rec)
677{
678 int inocount = 0;
679 int nextbit = 0;
680 uint64_t allocbmap;
681 int wordsz;
682
683 wordsz = sizeof(allocbmap) / sizeof(unsigned int);
684 allocbmap = xfs_inobt_irec_to_allocmask(rec);
685
686 nextbit = xfs_next_bit((uint *) &allocbmap, wordsz, nextbit);
687 while (nextbit != -1) {
688 inocount++;
689 nextbit = xfs_next_bit((uint *) &allocbmap, wordsz,
690 nextbit + 1);
691 }
692
693 if (inocount != rec->ir_count)
694 return -EFSCORRUPTED;
695
696 return 0;
697}
698#endif /* DEBUG */
699
700static xfs_extlen_t
701xfs_inobt_max_size(
702 struct xfs_perag *pag)
703{
704 struct xfs_mount *mp = pag->pag_mount;
705 xfs_agblock_t agblocks = pag->block_count;
706
707 /* Bail out if we're uninitialized, which can happen in mkfs. */
708 if (M_IGEO(mp)->inobt_mxr[0] == 0)
709 return 0;
710
711 /*
712 * The log is permanently allocated, so the space it occupies will
713 * never be available for the kinds of things that would require btree
714 * expansion. We therefore can pretend the space isn't there.
715 */
716 if (xfs_ag_contains_log(mp, pag->pag_agno))
717 agblocks -= mp->m_sb.sb_logblocks;
718
719 return xfs_btree_calc_size(M_IGEO(mp)->inobt_mnr,
720 (uint64_t)agblocks * mp->m_sb.sb_inopblock /
721 XFS_INODES_PER_CHUNK);
722}
723
724/* Read AGI and create inobt cursor. */
725int
726xfs_inobt_cur(
727 struct xfs_perag *pag,
728 struct xfs_trans *tp,
729 xfs_btnum_t which,
730 struct xfs_btree_cur **curpp,
731 struct xfs_buf **agi_bpp)
732{
733 struct xfs_btree_cur *cur;
734 int error;
735
736 ASSERT(*agi_bpp == NULL);
737 ASSERT(*curpp == NULL);
738
739 error = xfs_ialloc_read_agi(pag, tp, agi_bpp);
740 if (error)
741 return error;
742
743 cur = xfs_inobt_init_cursor(pag, tp, *agi_bpp, which);
744 *curpp = cur;
745 return 0;
746}
747
748static int
749xfs_inobt_count_blocks(
750 struct xfs_perag *pag,
751 struct xfs_trans *tp,
752 xfs_btnum_t btnum,
753 xfs_extlen_t *tree_blocks)
754{
755 struct xfs_buf *agbp = NULL;
756 struct xfs_btree_cur *cur = NULL;
757 int error;
758
759 error = xfs_inobt_cur(pag, tp, btnum, &cur, &agbp);
760 if (error)
761 return error;
762
763 error = xfs_btree_count_blocks(cur, tree_blocks);
764 xfs_btree_del_cursor(cur, error);
765 xfs_trans_brelse(tp, agbp);
766
767 return error;
768}
769
770/* Read finobt block count from AGI header. */
771static int
772xfs_finobt_read_blocks(
773 struct xfs_perag *pag,
774 struct xfs_trans *tp,
775 xfs_extlen_t *tree_blocks)
776{
777 struct xfs_buf *agbp;
778 struct xfs_agi *agi;
779 int error;
780
781 error = xfs_ialloc_read_agi(pag, tp, &agbp);
782 if (error)
783 return error;
784
785 agi = agbp->b_addr;
786 *tree_blocks = be32_to_cpu(agi->agi_fblocks);
787 xfs_trans_brelse(tp, agbp);
788 return 0;
789}
790
791/*
792 * Figure out how many blocks to reserve and how many are used by this btree.
793 */
794int
795xfs_finobt_calc_reserves(
796 struct xfs_perag *pag,
797 struct xfs_trans *tp,
798 xfs_extlen_t *ask,
799 xfs_extlen_t *used)
800{
801 xfs_extlen_t tree_len = 0;
802 int error;
803
804 if (!xfs_has_finobt(pag->pag_mount))
805 return 0;
806
807 if (xfs_has_inobtcounts(pag->pag_mount))
808 error = xfs_finobt_read_blocks(pag, tp, &tree_len);
809 else
810 error = xfs_inobt_count_blocks(pag, tp, XFS_BTNUM_FINO,
811 &tree_len);
812 if (error)
813 return error;
814
815 *ask += xfs_inobt_max_size(pag);
816 *used += tree_len;
817 return 0;
818}
819
820/* Calculate the inobt btree size for some records. */
821xfs_extlen_t
822xfs_iallocbt_calc_size(
823 struct xfs_mount *mp,
824 unsigned long long len)
825{
826 return xfs_btree_calc_size(M_IGEO(mp)->inobt_mnr, len);
827}
828
829int __init
830xfs_inobt_init_cur_cache(void)
831{
832 xfs_inobt_cur_cache = kmem_cache_create("xfs_inobt_cur",
833 xfs_btree_cur_sizeof(xfs_inobt_maxlevels_ondisk()),
834 0, 0, NULL);
835
836 if (!xfs_inobt_cur_cache)
837 return -ENOMEM;
838 return 0;
839}
840
841void
842xfs_inobt_destroy_cur_cache(void)
843{
844 kmem_cache_destroy(xfs_inobt_cur_cache);
845 xfs_inobt_cur_cache = NULL;
846}