Loading...
1/*
2 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_shared.h"
21#include "xfs_format.h"
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
24#include "xfs_bit.h"
25#include "xfs_mount.h"
26#include "xfs_inode.h"
27#include "xfs_btree.h"
28#include "xfs_ialloc.h"
29#include "xfs_ialloc_btree.h"
30#include "xfs_alloc.h"
31#include "xfs_error.h"
32#include "xfs_trace.h"
33#include "xfs_cksum.h"
34#include "xfs_trans.h"
35#include "xfs_rmap.h"
36
37
38STATIC int
39xfs_inobt_get_minrecs(
40 struct xfs_btree_cur *cur,
41 int level)
42{
43 return cur->bc_mp->m_inobt_mnr[level != 0];
44}
45
46STATIC struct xfs_btree_cur *
47xfs_inobt_dup_cursor(
48 struct xfs_btree_cur *cur)
49{
50 return xfs_inobt_init_cursor(cur->bc_mp, cur->bc_tp,
51 cur->bc_private.a.agbp, cur->bc_private.a.agno,
52 cur->bc_btnum);
53}
54
55STATIC void
56xfs_inobt_set_root(
57 struct xfs_btree_cur *cur,
58 union xfs_btree_ptr *nptr,
59 int inc) /* level change */
60{
61 struct xfs_buf *agbp = cur->bc_private.a.agbp;
62 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
63
64 agi->agi_root = nptr->s;
65 be32_add_cpu(&agi->agi_level, inc);
66 xfs_ialloc_log_agi(cur->bc_tp, agbp, XFS_AGI_ROOT | XFS_AGI_LEVEL);
67}
68
69STATIC void
70xfs_finobt_set_root(
71 struct xfs_btree_cur *cur,
72 union xfs_btree_ptr *nptr,
73 int inc) /* level change */
74{
75 struct xfs_buf *agbp = cur->bc_private.a.agbp;
76 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
77
78 agi->agi_free_root = nptr->s;
79 be32_add_cpu(&agi->agi_free_level, inc);
80 xfs_ialloc_log_agi(cur->bc_tp, agbp,
81 XFS_AGI_FREE_ROOT | XFS_AGI_FREE_LEVEL);
82}
83
84STATIC int
85__xfs_inobt_alloc_block(
86 struct xfs_btree_cur *cur,
87 union xfs_btree_ptr *start,
88 union xfs_btree_ptr *new,
89 int *stat,
90 enum xfs_ag_resv_type resv)
91{
92 xfs_alloc_arg_t args; /* block allocation args */
93 int error; /* error return value */
94 xfs_agblock_t sbno = be32_to_cpu(start->s);
95
96 memset(&args, 0, sizeof(args));
97 args.tp = cur->bc_tp;
98 args.mp = cur->bc_mp;
99 xfs_rmap_ag_owner(&args.oinfo, XFS_RMAP_OWN_INOBT);
100 args.fsbno = XFS_AGB_TO_FSB(args.mp, cur->bc_private.a.agno, sbno);
101 args.minlen = 1;
102 args.maxlen = 1;
103 args.prod = 1;
104 args.type = XFS_ALLOCTYPE_NEAR_BNO;
105 args.resv = resv;
106
107 error = xfs_alloc_vextent(&args);
108 if (error)
109 return error;
110
111 if (args.fsbno == NULLFSBLOCK) {
112 *stat = 0;
113 return 0;
114 }
115 ASSERT(args.len == 1);
116
117 new->s = cpu_to_be32(XFS_FSB_TO_AGBNO(args.mp, args.fsbno));
118 *stat = 1;
119 return 0;
120}
121
122STATIC int
123xfs_inobt_alloc_block(
124 struct xfs_btree_cur *cur,
125 union xfs_btree_ptr *start,
126 union xfs_btree_ptr *new,
127 int *stat)
128{
129 return __xfs_inobt_alloc_block(cur, start, new, stat, XFS_AG_RESV_NONE);
130}
131
132STATIC int
133xfs_finobt_alloc_block(
134 struct xfs_btree_cur *cur,
135 union xfs_btree_ptr *start,
136 union xfs_btree_ptr *new,
137 int *stat)
138{
139 if (cur->bc_mp->m_inotbt_nores)
140 return xfs_inobt_alloc_block(cur, start, new, stat);
141 return __xfs_inobt_alloc_block(cur, start, new, stat,
142 XFS_AG_RESV_METADATA);
143}
144
145STATIC int
146__xfs_inobt_free_block(
147 struct xfs_btree_cur *cur,
148 struct xfs_buf *bp,
149 enum xfs_ag_resv_type resv)
150{
151 struct xfs_owner_info oinfo;
152
153 xfs_rmap_ag_owner(&oinfo, XFS_RMAP_OWN_INOBT);
154 return xfs_free_extent(cur->bc_tp,
155 XFS_DADDR_TO_FSB(cur->bc_mp, XFS_BUF_ADDR(bp)), 1,
156 &oinfo, resv);
157}
158
159STATIC int
160xfs_inobt_free_block(
161 struct xfs_btree_cur *cur,
162 struct xfs_buf *bp)
163{
164 return __xfs_inobt_free_block(cur, bp, XFS_AG_RESV_NONE);
165}
166
167STATIC int
168xfs_finobt_free_block(
169 struct xfs_btree_cur *cur,
170 struct xfs_buf *bp)
171{
172 if (cur->bc_mp->m_inotbt_nores)
173 return xfs_inobt_free_block(cur, bp);
174 return __xfs_inobt_free_block(cur, bp, XFS_AG_RESV_METADATA);
175}
176
177STATIC int
178xfs_inobt_get_maxrecs(
179 struct xfs_btree_cur *cur,
180 int level)
181{
182 return cur->bc_mp->m_inobt_mxr[level != 0];
183}
184
185STATIC void
186xfs_inobt_init_key_from_rec(
187 union xfs_btree_key *key,
188 union xfs_btree_rec *rec)
189{
190 key->inobt.ir_startino = rec->inobt.ir_startino;
191}
192
193STATIC void
194xfs_inobt_init_high_key_from_rec(
195 union xfs_btree_key *key,
196 union xfs_btree_rec *rec)
197{
198 __u32 x;
199
200 x = be32_to_cpu(rec->inobt.ir_startino);
201 x += XFS_INODES_PER_CHUNK - 1;
202 key->inobt.ir_startino = cpu_to_be32(x);
203}
204
205STATIC void
206xfs_inobt_init_rec_from_cur(
207 struct xfs_btree_cur *cur,
208 union xfs_btree_rec *rec)
209{
210 rec->inobt.ir_startino = cpu_to_be32(cur->bc_rec.i.ir_startino);
211 if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
212 rec->inobt.ir_u.sp.ir_holemask =
213 cpu_to_be16(cur->bc_rec.i.ir_holemask);
214 rec->inobt.ir_u.sp.ir_count = cur->bc_rec.i.ir_count;
215 rec->inobt.ir_u.sp.ir_freecount = cur->bc_rec.i.ir_freecount;
216 } else {
217 /* ir_holemask/ir_count not supported on-disk */
218 rec->inobt.ir_u.f.ir_freecount =
219 cpu_to_be32(cur->bc_rec.i.ir_freecount);
220 }
221 rec->inobt.ir_free = cpu_to_be64(cur->bc_rec.i.ir_free);
222}
223
224/*
225 * initial value of ptr for lookup
226 */
227STATIC void
228xfs_inobt_init_ptr_from_cur(
229 struct xfs_btree_cur *cur,
230 union xfs_btree_ptr *ptr)
231{
232 struct xfs_agi *agi = XFS_BUF_TO_AGI(cur->bc_private.a.agbp);
233
234 ASSERT(cur->bc_private.a.agno == be32_to_cpu(agi->agi_seqno));
235
236 ptr->s = agi->agi_root;
237}
238
239STATIC void
240xfs_finobt_init_ptr_from_cur(
241 struct xfs_btree_cur *cur,
242 union xfs_btree_ptr *ptr)
243{
244 struct xfs_agi *agi = XFS_BUF_TO_AGI(cur->bc_private.a.agbp);
245
246 ASSERT(cur->bc_private.a.agno == be32_to_cpu(agi->agi_seqno));
247 ptr->s = agi->agi_free_root;
248}
249
250STATIC int64_t
251xfs_inobt_key_diff(
252 struct xfs_btree_cur *cur,
253 union xfs_btree_key *key)
254{
255 return (int64_t)be32_to_cpu(key->inobt.ir_startino) -
256 cur->bc_rec.i.ir_startino;
257}
258
259STATIC int64_t
260xfs_inobt_diff_two_keys(
261 struct xfs_btree_cur *cur,
262 union xfs_btree_key *k1,
263 union xfs_btree_key *k2)
264{
265 return (int64_t)be32_to_cpu(k1->inobt.ir_startino) -
266 be32_to_cpu(k2->inobt.ir_startino);
267}
268
269static xfs_failaddr_t
270xfs_inobt_verify(
271 struct xfs_buf *bp)
272{
273 struct xfs_mount *mp = bp->b_target->bt_mount;
274 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
275 xfs_failaddr_t fa;
276 unsigned int level;
277
278 /*
279 * During growfs operations, we can't verify the exact owner as the
280 * perag is not fully initialised and hence not attached to the buffer.
281 *
282 * Similarly, during log recovery we will have a perag structure
283 * attached, but the agi information will not yet have been initialised
284 * from the on disk AGI. We don't currently use any of this information,
285 * but beware of the landmine (i.e. need to check pag->pagi_init) if we
286 * ever do.
287 */
288 switch (block->bb_magic) {
289 case cpu_to_be32(XFS_IBT_CRC_MAGIC):
290 case cpu_to_be32(XFS_FIBT_CRC_MAGIC):
291 fa = xfs_btree_sblock_v5hdr_verify(bp);
292 if (fa)
293 return fa;
294 /* fall through */
295 case cpu_to_be32(XFS_IBT_MAGIC):
296 case cpu_to_be32(XFS_FIBT_MAGIC):
297 break;
298 default:
299 return NULL;
300 }
301
302 /* level verification */
303 level = be16_to_cpu(block->bb_level);
304 if (level >= mp->m_in_maxlevels)
305 return __this_address;
306
307 return xfs_btree_sblock_verify(bp, mp->m_inobt_mxr[level != 0]);
308}
309
310static void
311xfs_inobt_read_verify(
312 struct xfs_buf *bp)
313{
314 xfs_failaddr_t fa;
315
316 if (!xfs_btree_sblock_verify_crc(bp))
317 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
318 else {
319 fa = xfs_inobt_verify(bp);
320 if (fa)
321 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
322 }
323
324 if (bp->b_error)
325 trace_xfs_btree_corrupt(bp, _RET_IP_);
326}
327
328static void
329xfs_inobt_write_verify(
330 struct xfs_buf *bp)
331{
332 xfs_failaddr_t fa;
333
334 fa = xfs_inobt_verify(bp);
335 if (fa) {
336 trace_xfs_btree_corrupt(bp, _RET_IP_);
337 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
338 return;
339 }
340 xfs_btree_sblock_calc_crc(bp);
341
342}
343
344const struct xfs_buf_ops xfs_inobt_buf_ops = {
345 .name = "xfs_inobt",
346 .verify_read = xfs_inobt_read_verify,
347 .verify_write = xfs_inobt_write_verify,
348 .verify_struct = xfs_inobt_verify,
349};
350
351STATIC int
352xfs_inobt_keys_inorder(
353 struct xfs_btree_cur *cur,
354 union xfs_btree_key *k1,
355 union xfs_btree_key *k2)
356{
357 return be32_to_cpu(k1->inobt.ir_startino) <
358 be32_to_cpu(k2->inobt.ir_startino);
359}
360
361STATIC int
362xfs_inobt_recs_inorder(
363 struct xfs_btree_cur *cur,
364 union xfs_btree_rec *r1,
365 union xfs_btree_rec *r2)
366{
367 return be32_to_cpu(r1->inobt.ir_startino) + XFS_INODES_PER_CHUNK <=
368 be32_to_cpu(r2->inobt.ir_startino);
369}
370
371static const struct xfs_btree_ops xfs_inobt_ops = {
372 .rec_len = sizeof(xfs_inobt_rec_t),
373 .key_len = sizeof(xfs_inobt_key_t),
374
375 .dup_cursor = xfs_inobt_dup_cursor,
376 .set_root = xfs_inobt_set_root,
377 .alloc_block = xfs_inobt_alloc_block,
378 .free_block = xfs_inobt_free_block,
379 .get_minrecs = xfs_inobt_get_minrecs,
380 .get_maxrecs = xfs_inobt_get_maxrecs,
381 .init_key_from_rec = xfs_inobt_init_key_from_rec,
382 .init_high_key_from_rec = xfs_inobt_init_high_key_from_rec,
383 .init_rec_from_cur = xfs_inobt_init_rec_from_cur,
384 .init_ptr_from_cur = xfs_inobt_init_ptr_from_cur,
385 .key_diff = xfs_inobt_key_diff,
386 .buf_ops = &xfs_inobt_buf_ops,
387 .diff_two_keys = xfs_inobt_diff_two_keys,
388 .keys_inorder = xfs_inobt_keys_inorder,
389 .recs_inorder = xfs_inobt_recs_inorder,
390};
391
392static const struct xfs_btree_ops xfs_finobt_ops = {
393 .rec_len = sizeof(xfs_inobt_rec_t),
394 .key_len = sizeof(xfs_inobt_key_t),
395
396 .dup_cursor = xfs_inobt_dup_cursor,
397 .set_root = xfs_finobt_set_root,
398 .alloc_block = xfs_finobt_alloc_block,
399 .free_block = xfs_finobt_free_block,
400 .get_minrecs = xfs_inobt_get_minrecs,
401 .get_maxrecs = xfs_inobt_get_maxrecs,
402 .init_key_from_rec = xfs_inobt_init_key_from_rec,
403 .init_high_key_from_rec = xfs_inobt_init_high_key_from_rec,
404 .init_rec_from_cur = xfs_inobt_init_rec_from_cur,
405 .init_ptr_from_cur = xfs_finobt_init_ptr_from_cur,
406 .key_diff = xfs_inobt_key_diff,
407 .buf_ops = &xfs_inobt_buf_ops,
408 .diff_two_keys = xfs_inobt_diff_two_keys,
409 .keys_inorder = xfs_inobt_keys_inorder,
410 .recs_inorder = xfs_inobt_recs_inorder,
411};
412
413/*
414 * Allocate a new inode btree cursor.
415 */
416struct xfs_btree_cur * /* new inode btree cursor */
417xfs_inobt_init_cursor(
418 struct xfs_mount *mp, /* file system mount point */
419 struct xfs_trans *tp, /* transaction pointer */
420 struct xfs_buf *agbp, /* buffer for agi structure */
421 xfs_agnumber_t agno, /* allocation group number */
422 xfs_btnum_t btnum) /* ialloc or free ino btree */
423{
424 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
425 struct xfs_btree_cur *cur;
426
427 cur = kmem_zone_zalloc(xfs_btree_cur_zone, KM_NOFS);
428
429 cur->bc_tp = tp;
430 cur->bc_mp = mp;
431 cur->bc_btnum = btnum;
432 if (btnum == XFS_BTNUM_INO) {
433 cur->bc_nlevels = be32_to_cpu(agi->agi_level);
434 cur->bc_ops = &xfs_inobt_ops;
435 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_ibt_2);
436 } else {
437 cur->bc_nlevels = be32_to_cpu(agi->agi_free_level);
438 cur->bc_ops = &xfs_finobt_ops;
439 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_fibt_2);
440 }
441
442 cur->bc_blocklog = mp->m_sb.sb_blocklog;
443
444 if (xfs_sb_version_hascrc(&mp->m_sb))
445 cur->bc_flags |= XFS_BTREE_CRC_BLOCKS;
446
447 cur->bc_private.a.agbp = agbp;
448 cur->bc_private.a.agno = agno;
449
450 return cur;
451}
452
453/*
454 * Calculate number of records in an inobt btree block.
455 */
456int
457xfs_inobt_maxrecs(
458 struct xfs_mount *mp,
459 int blocklen,
460 int leaf)
461{
462 blocklen -= XFS_INOBT_BLOCK_LEN(mp);
463
464 if (leaf)
465 return blocklen / sizeof(xfs_inobt_rec_t);
466 return blocklen / (sizeof(xfs_inobt_key_t) + sizeof(xfs_inobt_ptr_t));
467}
468
469/*
470 * Convert the inode record holemask to an inode allocation bitmap. The inode
471 * allocation bitmap is inode granularity and specifies whether an inode is
472 * physically allocated on disk (not whether the inode is considered allocated
473 * or free by the fs).
474 *
475 * A bit value of 1 means the inode is allocated, a value of 0 means it is free.
476 */
477uint64_t
478xfs_inobt_irec_to_allocmask(
479 struct xfs_inobt_rec_incore *rec)
480{
481 uint64_t bitmap = 0;
482 uint64_t inodespbit;
483 int nextbit;
484 uint allocbitmap;
485
486 /*
487 * The holemask has 16-bits for a 64 inode record. Therefore each
488 * holemask bit represents multiple inodes. Create a mask of bits to set
489 * in the allocmask for each holemask bit.
490 */
491 inodespbit = (1 << XFS_INODES_PER_HOLEMASK_BIT) - 1;
492
493 /*
494 * Allocated inodes are represented by 0 bits in holemask. Invert the 0
495 * bits to 1 and convert to a uint so we can use xfs_next_bit(). Mask
496 * anything beyond the 16 holemask bits since this casts to a larger
497 * type.
498 */
499 allocbitmap = ~rec->ir_holemask & ((1 << XFS_INOBT_HOLEMASK_BITS) - 1);
500
501 /*
502 * allocbitmap is the inverted holemask so every set bit represents
503 * allocated inodes. To expand from 16-bit holemask granularity to
504 * 64-bit (e.g., bit-per-inode), set inodespbit bits in the target
505 * bitmap for every holemask bit.
506 */
507 nextbit = xfs_next_bit(&allocbitmap, 1, 0);
508 while (nextbit != -1) {
509 ASSERT(nextbit < (sizeof(rec->ir_holemask) * NBBY));
510
511 bitmap |= (inodespbit <<
512 (nextbit * XFS_INODES_PER_HOLEMASK_BIT));
513
514 nextbit = xfs_next_bit(&allocbitmap, 1, nextbit + 1);
515 }
516
517 return bitmap;
518}
519
520#if defined(DEBUG) || defined(XFS_WARN)
521/*
522 * Verify that an in-core inode record has a valid inode count.
523 */
524int
525xfs_inobt_rec_check_count(
526 struct xfs_mount *mp,
527 struct xfs_inobt_rec_incore *rec)
528{
529 int inocount = 0;
530 int nextbit = 0;
531 uint64_t allocbmap;
532 int wordsz;
533
534 wordsz = sizeof(allocbmap) / sizeof(unsigned int);
535 allocbmap = xfs_inobt_irec_to_allocmask(rec);
536
537 nextbit = xfs_next_bit((uint *) &allocbmap, wordsz, nextbit);
538 while (nextbit != -1) {
539 inocount++;
540 nextbit = xfs_next_bit((uint *) &allocbmap, wordsz,
541 nextbit + 1);
542 }
543
544 if (inocount != rec->ir_count)
545 return -EFSCORRUPTED;
546
547 return 0;
548}
549#endif /* DEBUG */
550
551static xfs_extlen_t
552xfs_inobt_max_size(
553 struct xfs_mount *mp)
554{
555 /* Bail out if we're uninitialized, which can happen in mkfs. */
556 if (mp->m_inobt_mxr[0] == 0)
557 return 0;
558
559 return xfs_btree_calc_size(mp->m_inobt_mnr,
560 (uint64_t)mp->m_sb.sb_agblocks * mp->m_sb.sb_inopblock /
561 XFS_INODES_PER_CHUNK);
562}
563
564static int
565xfs_inobt_count_blocks(
566 struct xfs_mount *mp,
567 xfs_agnumber_t agno,
568 xfs_btnum_t btnum,
569 xfs_extlen_t *tree_blocks)
570{
571 struct xfs_buf *agbp;
572 struct xfs_btree_cur *cur;
573 int error;
574
575 error = xfs_ialloc_read_agi(mp, NULL, agno, &agbp);
576 if (error)
577 return error;
578
579 cur = xfs_inobt_init_cursor(mp, NULL, agbp, agno, btnum);
580 error = xfs_btree_count_blocks(cur, tree_blocks);
581 xfs_btree_del_cursor(cur, error ? XFS_BTREE_ERROR : XFS_BTREE_NOERROR);
582 xfs_buf_relse(agbp);
583
584 return error;
585}
586
587/*
588 * Figure out how many blocks to reserve and how many are used by this btree.
589 */
590int
591xfs_finobt_calc_reserves(
592 struct xfs_mount *mp,
593 xfs_agnumber_t agno,
594 xfs_extlen_t *ask,
595 xfs_extlen_t *used)
596{
597 xfs_extlen_t tree_len = 0;
598 int error;
599
600 if (!xfs_sb_version_hasfinobt(&mp->m_sb))
601 return 0;
602
603 error = xfs_inobt_count_blocks(mp, agno, XFS_BTNUM_FINO, &tree_len);
604 if (error)
605 return error;
606
607 *ask += xfs_inobt_max_size(mp);
608 *used += tree_len;
609 return 0;
610}
1/*
2 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_shared.h"
21#include "xfs_format.h"
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
24#include "xfs_bit.h"
25#include "xfs_mount.h"
26#include "xfs_inode.h"
27#include "xfs_btree.h"
28#include "xfs_ialloc.h"
29#include "xfs_ialloc_btree.h"
30#include "xfs_alloc.h"
31#include "xfs_error.h"
32#include "xfs_trace.h"
33#include "xfs_cksum.h"
34#include "xfs_trans.h"
35
36
37STATIC int
38xfs_inobt_get_minrecs(
39 struct xfs_btree_cur *cur,
40 int level)
41{
42 return cur->bc_mp->m_inobt_mnr[level != 0];
43}
44
45STATIC struct xfs_btree_cur *
46xfs_inobt_dup_cursor(
47 struct xfs_btree_cur *cur)
48{
49 return xfs_inobt_init_cursor(cur->bc_mp, cur->bc_tp,
50 cur->bc_private.a.agbp, cur->bc_private.a.agno,
51 cur->bc_btnum);
52}
53
54STATIC void
55xfs_inobt_set_root(
56 struct xfs_btree_cur *cur,
57 union xfs_btree_ptr *nptr,
58 int inc) /* level change */
59{
60 struct xfs_buf *agbp = cur->bc_private.a.agbp;
61 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
62
63 agi->agi_root = nptr->s;
64 be32_add_cpu(&agi->agi_level, inc);
65 xfs_ialloc_log_agi(cur->bc_tp, agbp, XFS_AGI_ROOT | XFS_AGI_LEVEL);
66}
67
68STATIC void
69xfs_finobt_set_root(
70 struct xfs_btree_cur *cur,
71 union xfs_btree_ptr *nptr,
72 int inc) /* level change */
73{
74 struct xfs_buf *agbp = cur->bc_private.a.agbp;
75 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
76
77 agi->agi_free_root = nptr->s;
78 be32_add_cpu(&agi->agi_free_level, inc);
79 xfs_ialloc_log_agi(cur->bc_tp, agbp,
80 XFS_AGI_FREE_ROOT | XFS_AGI_FREE_LEVEL);
81}
82
83STATIC int
84xfs_inobt_alloc_block(
85 struct xfs_btree_cur *cur,
86 union xfs_btree_ptr *start,
87 union xfs_btree_ptr *new,
88 int *stat)
89{
90 xfs_alloc_arg_t args; /* block allocation args */
91 int error; /* error return value */
92 xfs_agblock_t sbno = be32_to_cpu(start->s);
93
94 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
95
96 memset(&args, 0, sizeof(args));
97 args.tp = cur->bc_tp;
98 args.mp = cur->bc_mp;
99 args.fsbno = XFS_AGB_TO_FSB(args.mp, cur->bc_private.a.agno, sbno);
100 args.minlen = 1;
101 args.maxlen = 1;
102 args.prod = 1;
103 args.type = XFS_ALLOCTYPE_NEAR_BNO;
104
105 error = xfs_alloc_vextent(&args);
106 if (error) {
107 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
108 return error;
109 }
110 if (args.fsbno == NULLFSBLOCK) {
111 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
112 *stat = 0;
113 return 0;
114 }
115 ASSERT(args.len == 1);
116 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
117
118 new->s = cpu_to_be32(XFS_FSB_TO_AGBNO(args.mp, args.fsbno));
119 *stat = 1;
120 return 0;
121}
122
123STATIC int
124xfs_inobt_free_block(
125 struct xfs_btree_cur *cur,
126 struct xfs_buf *bp)
127{
128 return xfs_free_extent(cur->bc_tp,
129 XFS_DADDR_TO_FSB(cur->bc_mp, XFS_BUF_ADDR(bp)), 1);
130}
131
132STATIC int
133xfs_inobt_get_maxrecs(
134 struct xfs_btree_cur *cur,
135 int level)
136{
137 return cur->bc_mp->m_inobt_mxr[level != 0];
138}
139
140STATIC void
141xfs_inobt_init_key_from_rec(
142 union xfs_btree_key *key,
143 union xfs_btree_rec *rec)
144{
145 key->inobt.ir_startino = rec->inobt.ir_startino;
146}
147
148STATIC void
149xfs_inobt_init_rec_from_key(
150 union xfs_btree_key *key,
151 union xfs_btree_rec *rec)
152{
153 rec->inobt.ir_startino = key->inobt.ir_startino;
154}
155
156STATIC void
157xfs_inobt_init_rec_from_cur(
158 struct xfs_btree_cur *cur,
159 union xfs_btree_rec *rec)
160{
161 rec->inobt.ir_startino = cpu_to_be32(cur->bc_rec.i.ir_startino);
162 if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
163 rec->inobt.ir_u.sp.ir_holemask =
164 cpu_to_be16(cur->bc_rec.i.ir_holemask);
165 rec->inobt.ir_u.sp.ir_count = cur->bc_rec.i.ir_count;
166 rec->inobt.ir_u.sp.ir_freecount = cur->bc_rec.i.ir_freecount;
167 } else {
168 /* ir_holemask/ir_count not supported on-disk */
169 rec->inobt.ir_u.f.ir_freecount =
170 cpu_to_be32(cur->bc_rec.i.ir_freecount);
171 }
172 rec->inobt.ir_free = cpu_to_be64(cur->bc_rec.i.ir_free);
173}
174
175/*
176 * initial value of ptr for lookup
177 */
178STATIC void
179xfs_inobt_init_ptr_from_cur(
180 struct xfs_btree_cur *cur,
181 union xfs_btree_ptr *ptr)
182{
183 struct xfs_agi *agi = XFS_BUF_TO_AGI(cur->bc_private.a.agbp);
184
185 ASSERT(cur->bc_private.a.agno == be32_to_cpu(agi->agi_seqno));
186
187 ptr->s = agi->agi_root;
188}
189
190STATIC void
191xfs_finobt_init_ptr_from_cur(
192 struct xfs_btree_cur *cur,
193 union xfs_btree_ptr *ptr)
194{
195 struct xfs_agi *agi = XFS_BUF_TO_AGI(cur->bc_private.a.agbp);
196
197 ASSERT(cur->bc_private.a.agno == be32_to_cpu(agi->agi_seqno));
198 ptr->s = agi->agi_free_root;
199}
200
201STATIC __int64_t
202xfs_inobt_key_diff(
203 struct xfs_btree_cur *cur,
204 union xfs_btree_key *key)
205{
206 return (__int64_t)be32_to_cpu(key->inobt.ir_startino) -
207 cur->bc_rec.i.ir_startino;
208}
209
210static int
211xfs_inobt_verify(
212 struct xfs_buf *bp)
213{
214 struct xfs_mount *mp = bp->b_target->bt_mount;
215 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
216 unsigned int level;
217
218 /*
219 * During growfs operations, we can't verify the exact owner as the
220 * perag is not fully initialised and hence not attached to the buffer.
221 *
222 * Similarly, during log recovery we will have a perag structure
223 * attached, but the agi information will not yet have been initialised
224 * from the on disk AGI. We don't currently use any of this information,
225 * but beware of the landmine (i.e. need to check pag->pagi_init) if we
226 * ever do.
227 */
228 switch (block->bb_magic) {
229 case cpu_to_be32(XFS_IBT_CRC_MAGIC):
230 case cpu_to_be32(XFS_FIBT_CRC_MAGIC):
231 if (!xfs_btree_sblock_v5hdr_verify(bp))
232 return false;
233 /* fall through */
234 case cpu_to_be32(XFS_IBT_MAGIC):
235 case cpu_to_be32(XFS_FIBT_MAGIC):
236 break;
237 default:
238 return 0;
239 }
240
241 /* level verification */
242 level = be16_to_cpu(block->bb_level);
243 if (level >= mp->m_in_maxlevels)
244 return false;
245
246 return xfs_btree_sblock_verify(bp, mp->m_inobt_mxr[level != 0]);
247}
248
249static void
250xfs_inobt_read_verify(
251 struct xfs_buf *bp)
252{
253 if (!xfs_btree_sblock_verify_crc(bp))
254 xfs_buf_ioerror(bp, -EFSBADCRC);
255 else if (!xfs_inobt_verify(bp))
256 xfs_buf_ioerror(bp, -EFSCORRUPTED);
257
258 if (bp->b_error) {
259 trace_xfs_btree_corrupt(bp, _RET_IP_);
260 xfs_verifier_error(bp);
261 }
262}
263
264static void
265xfs_inobt_write_verify(
266 struct xfs_buf *bp)
267{
268 if (!xfs_inobt_verify(bp)) {
269 trace_xfs_btree_corrupt(bp, _RET_IP_);
270 xfs_buf_ioerror(bp, -EFSCORRUPTED);
271 xfs_verifier_error(bp);
272 return;
273 }
274 xfs_btree_sblock_calc_crc(bp);
275
276}
277
278const struct xfs_buf_ops xfs_inobt_buf_ops = {
279 .name = "xfs_inobt",
280 .verify_read = xfs_inobt_read_verify,
281 .verify_write = xfs_inobt_write_verify,
282};
283
284#if defined(DEBUG) || defined(XFS_WARN)
285STATIC int
286xfs_inobt_keys_inorder(
287 struct xfs_btree_cur *cur,
288 union xfs_btree_key *k1,
289 union xfs_btree_key *k2)
290{
291 return be32_to_cpu(k1->inobt.ir_startino) <
292 be32_to_cpu(k2->inobt.ir_startino);
293}
294
295STATIC int
296xfs_inobt_recs_inorder(
297 struct xfs_btree_cur *cur,
298 union xfs_btree_rec *r1,
299 union xfs_btree_rec *r2)
300{
301 return be32_to_cpu(r1->inobt.ir_startino) + XFS_INODES_PER_CHUNK <=
302 be32_to_cpu(r2->inobt.ir_startino);
303}
304#endif /* DEBUG */
305
306static const struct xfs_btree_ops xfs_inobt_ops = {
307 .rec_len = sizeof(xfs_inobt_rec_t),
308 .key_len = sizeof(xfs_inobt_key_t),
309
310 .dup_cursor = xfs_inobt_dup_cursor,
311 .set_root = xfs_inobt_set_root,
312 .alloc_block = xfs_inobt_alloc_block,
313 .free_block = xfs_inobt_free_block,
314 .get_minrecs = xfs_inobt_get_minrecs,
315 .get_maxrecs = xfs_inobt_get_maxrecs,
316 .init_key_from_rec = xfs_inobt_init_key_from_rec,
317 .init_rec_from_key = xfs_inobt_init_rec_from_key,
318 .init_rec_from_cur = xfs_inobt_init_rec_from_cur,
319 .init_ptr_from_cur = xfs_inobt_init_ptr_from_cur,
320 .key_diff = xfs_inobt_key_diff,
321 .buf_ops = &xfs_inobt_buf_ops,
322#if defined(DEBUG) || defined(XFS_WARN)
323 .keys_inorder = xfs_inobt_keys_inorder,
324 .recs_inorder = xfs_inobt_recs_inorder,
325#endif
326};
327
328static const struct xfs_btree_ops xfs_finobt_ops = {
329 .rec_len = sizeof(xfs_inobt_rec_t),
330 .key_len = sizeof(xfs_inobt_key_t),
331
332 .dup_cursor = xfs_inobt_dup_cursor,
333 .set_root = xfs_finobt_set_root,
334 .alloc_block = xfs_inobt_alloc_block,
335 .free_block = xfs_inobt_free_block,
336 .get_minrecs = xfs_inobt_get_minrecs,
337 .get_maxrecs = xfs_inobt_get_maxrecs,
338 .init_key_from_rec = xfs_inobt_init_key_from_rec,
339 .init_rec_from_key = xfs_inobt_init_rec_from_key,
340 .init_rec_from_cur = xfs_inobt_init_rec_from_cur,
341 .init_ptr_from_cur = xfs_finobt_init_ptr_from_cur,
342 .key_diff = xfs_inobt_key_diff,
343 .buf_ops = &xfs_inobt_buf_ops,
344#if defined(DEBUG) || defined(XFS_WARN)
345 .keys_inorder = xfs_inobt_keys_inorder,
346 .recs_inorder = xfs_inobt_recs_inorder,
347#endif
348};
349
350/*
351 * Allocate a new inode btree cursor.
352 */
353struct xfs_btree_cur * /* new inode btree cursor */
354xfs_inobt_init_cursor(
355 struct xfs_mount *mp, /* file system mount point */
356 struct xfs_trans *tp, /* transaction pointer */
357 struct xfs_buf *agbp, /* buffer for agi structure */
358 xfs_agnumber_t agno, /* allocation group number */
359 xfs_btnum_t btnum) /* ialloc or free ino btree */
360{
361 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
362 struct xfs_btree_cur *cur;
363
364 cur = kmem_zone_zalloc(xfs_btree_cur_zone, KM_SLEEP);
365
366 cur->bc_tp = tp;
367 cur->bc_mp = mp;
368 cur->bc_btnum = btnum;
369 if (btnum == XFS_BTNUM_INO) {
370 cur->bc_nlevels = be32_to_cpu(agi->agi_level);
371 cur->bc_ops = &xfs_inobt_ops;
372 } else {
373 cur->bc_nlevels = be32_to_cpu(agi->agi_free_level);
374 cur->bc_ops = &xfs_finobt_ops;
375 }
376
377 cur->bc_blocklog = mp->m_sb.sb_blocklog;
378
379 if (xfs_sb_version_hascrc(&mp->m_sb))
380 cur->bc_flags |= XFS_BTREE_CRC_BLOCKS;
381
382 cur->bc_private.a.agbp = agbp;
383 cur->bc_private.a.agno = agno;
384
385 return cur;
386}
387
388/*
389 * Calculate number of records in an inobt btree block.
390 */
391int
392xfs_inobt_maxrecs(
393 struct xfs_mount *mp,
394 int blocklen,
395 int leaf)
396{
397 blocklen -= XFS_INOBT_BLOCK_LEN(mp);
398
399 if (leaf)
400 return blocklen / sizeof(xfs_inobt_rec_t);
401 return blocklen / (sizeof(xfs_inobt_key_t) + sizeof(xfs_inobt_ptr_t));
402}
403
404/*
405 * Convert the inode record holemask to an inode allocation bitmap. The inode
406 * allocation bitmap is inode granularity and specifies whether an inode is
407 * physically allocated on disk (not whether the inode is considered allocated
408 * or free by the fs).
409 *
410 * A bit value of 1 means the inode is allocated, a value of 0 means it is free.
411 */
412uint64_t
413xfs_inobt_irec_to_allocmask(
414 struct xfs_inobt_rec_incore *rec)
415{
416 uint64_t bitmap = 0;
417 uint64_t inodespbit;
418 int nextbit;
419 uint allocbitmap;
420
421 /*
422 * The holemask has 16-bits for a 64 inode record. Therefore each
423 * holemask bit represents multiple inodes. Create a mask of bits to set
424 * in the allocmask for each holemask bit.
425 */
426 inodespbit = (1 << XFS_INODES_PER_HOLEMASK_BIT) - 1;
427
428 /*
429 * Allocated inodes are represented by 0 bits in holemask. Invert the 0
430 * bits to 1 and convert to a uint so we can use xfs_next_bit(). Mask
431 * anything beyond the 16 holemask bits since this casts to a larger
432 * type.
433 */
434 allocbitmap = ~rec->ir_holemask & ((1 << XFS_INOBT_HOLEMASK_BITS) - 1);
435
436 /*
437 * allocbitmap is the inverted holemask so every set bit represents
438 * allocated inodes. To expand from 16-bit holemask granularity to
439 * 64-bit (e.g., bit-per-inode), set inodespbit bits in the target
440 * bitmap for every holemask bit.
441 */
442 nextbit = xfs_next_bit(&allocbitmap, 1, 0);
443 while (nextbit != -1) {
444 ASSERT(nextbit < (sizeof(rec->ir_holemask) * NBBY));
445
446 bitmap |= (inodespbit <<
447 (nextbit * XFS_INODES_PER_HOLEMASK_BIT));
448
449 nextbit = xfs_next_bit(&allocbitmap, 1, nextbit + 1);
450 }
451
452 return bitmap;
453}
454
455#if defined(DEBUG) || defined(XFS_WARN)
456/*
457 * Verify that an in-core inode record has a valid inode count.
458 */
459int
460xfs_inobt_rec_check_count(
461 struct xfs_mount *mp,
462 struct xfs_inobt_rec_incore *rec)
463{
464 int inocount = 0;
465 int nextbit = 0;
466 uint64_t allocbmap;
467 int wordsz;
468
469 wordsz = sizeof(allocbmap) / sizeof(unsigned int);
470 allocbmap = xfs_inobt_irec_to_allocmask(rec);
471
472 nextbit = xfs_next_bit((uint *) &allocbmap, wordsz, nextbit);
473 while (nextbit != -1) {
474 inocount++;
475 nextbit = xfs_next_bit((uint *) &allocbmap, wordsz,
476 nextbit + 1);
477 }
478
479 if (inocount != rec->ir_count)
480 return -EFSCORRUPTED;
481
482 return 0;
483}
484#endif /* DEBUG */