Linux Audio

Check our new training course

Loading...
v4.17
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * This contains functions for filename crypto management
  4 *
  5 * Copyright (C) 2015, Google, Inc.
  6 * Copyright (C) 2015, Motorola Mobility
  7 *
  8 * Written by Uday Savagaonkar, 2014.
  9 * Modified by Jaegeuk Kim, 2015.
 10 *
 11 * This has not yet undergone a rigorous security audit.
 12 */
 13
 
 14#include <linux/scatterlist.h>
 15#include <linux/ratelimit.h>
 
 16#include <crypto/skcipher.h>
 17#include "fscrypt_private.h"
 18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 19static inline bool fscrypt_is_dot_dotdot(const struct qstr *str)
 20{
 21	if (str->len == 1 && str->name[0] == '.')
 22		return true;
 23
 24	if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
 25		return true;
 26
 27	return false;
 28}
 29
 30/**
 31 * fname_encrypt() - encrypt a filename
 32 *
 33 * The output buffer must be at least as large as the input buffer.
 34 * Any extra space is filled with NUL padding before encryption.
 
 
 
 
 35 *
 36 * Return: 0 on success, -errno on failure
 37 */
 38int fname_encrypt(struct inode *inode, const struct qstr *iname,
 39		  u8 *out, unsigned int olen)
 40{
 41	struct skcipher_request *req = NULL;
 42	DECLARE_CRYPTO_WAIT(wait);
 43	struct crypto_skcipher *tfm = inode->i_crypt_info->ci_ctfm;
 44	int res = 0;
 45	char iv[FS_CRYPTO_BLOCK_SIZE];
 46	struct scatterlist sg;
 
 47
 48	/*
 49	 * Copy the filename to the output buffer for encrypting in-place and
 50	 * pad it with the needed number of NUL bytes.
 51	 */
 52	if (WARN_ON(olen < iname->len))
 53		return -ENOBUFS;
 54	memcpy(out, iname->name, iname->len);
 55	memset(out + iname->len, 0, olen - iname->len);
 56
 57	/* Initialize the IV */
 58	memset(iv, 0, FS_CRYPTO_BLOCK_SIZE);
 59
 60	/* Set up the encryption request */
 61	req = skcipher_request_alloc(tfm, GFP_NOFS);
 62	if (!req) {
 63		printk_ratelimited(KERN_ERR
 64			"%s: skcipher_request_alloc() failed\n", __func__);
 65		return -ENOMEM;
 66	}
 67	skcipher_request_set_callback(req,
 68			CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
 69			crypto_req_done, &wait);
 70	sg_init_one(&sg, out, olen);
 71	skcipher_request_set_crypt(req, &sg, &sg, olen, iv);
 72
 73	/* Do the encryption */
 74	res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
 75	skcipher_request_free(req);
 76	if (res < 0) {
 77		printk_ratelimited(KERN_ERR
 78				"%s: Error (error code %d)\n", __func__, res);
 79		return res;
 80	}
 81
 82	return 0;
 83}
 
 84
 85/**
 86 * fname_decrypt() - decrypt a filename
 87 *
 88 * The caller must have allocated sufficient memory for the @oname string.
 
 
 
 89 *
 90 * Return: 0 on success, -errno on failure
 91 */
 92static int fname_decrypt(struct inode *inode,
 93				const struct fscrypt_str *iname,
 94				struct fscrypt_str *oname)
 95{
 96	struct skcipher_request *req = NULL;
 97	DECLARE_CRYPTO_WAIT(wait);
 98	struct scatterlist src_sg, dst_sg;
 99	struct fscrypt_info *ci = inode->i_crypt_info;
100	struct crypto_skcipher *tfm = ci->ci_ctfm;
101	int res = 0;
102	char iv[FS_CRYPTO_BLOCK_SIZE];
103	unsigned lim;
104
105	lim = inode->i_sb->s_cop->max_namelen(inode);
106	if (iname->len <= 0 || iname->len > lim)
107		return -EIO;
108
109	/* Allocate request */
110	req = skcipher_request_alloc(tfm, GFP_NOFS);
111	if (!req) {
112		printk_ratelimited(KERN_ERR
113			"%s: crypto_request_alloc() failed\n",  __func__);
114		return -ENOMEM;
115	}
116	skcipher_request_set_callback(req,
117		CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
118		crypto_req_done, &wait);
119
120	/* Initialize IV */
121	memset(iv, 0, FS_CRYPTO_BLOCK_SIZE);
122
123	/* Create decryption request */
124	sg_init_one(&src_sg, iname->name, iname->len);
125	sg_init_one(&dst_sg, oname->name, oname->len);
126	skcipher_request_set_crypt(req, &src_sg, &dst_sg, iname->len, iv);
127	res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait);
128	skcipher_request_free(req);
129	if (res < 0) {
130		printk_ratelimited(KERN_ERR
131				"%s: Error (error code %d)\n", __func__, res);
132		return res;
133	}
134
135	oname->len = strnlen(oname->name, iname->len);
136	return 0;
137}
138
139static const char *lookup_table =
140	"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+,";
141
142#define BASE64_CHARS(nbytes)	DIV_ROUND_UP((nbytes) * 4, 3)
143
144/**
145 * digest_encode() -
 
 
 
 
 
 
 
 
146 *
147 * Encodes the input digest using characters from the set [a-zA-Z0-9_+].
148 * The encoded string is roughly 4/3 times the size of the input string.
149 */
150static int digest_encode(const char *src, int len, char *dst)
151{
152	int i = 0, bits = 0, ac = 0;
 
 
153	char *cp = dst;
154
155	while (i < len) {
156		ac += (((unsigned char) src[i]) << bits);
157		bits += 8;
158		do {
159			*cp++ = lookup_table[ac & 0x3f];
160			ac >>= 6;
161			bits -= 6;
 
162		} while (bits >= 6);
163		i++;
164	}
165	if (bits)
166		*cp++ = lookup_table[ac & 0x3f];
167	return cp - dst;
168}
169
170static int digest_decode(const char *src, int len, char *dst)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
171{
172	int i = 0, bits = 0, ac = 0;
173	const char *p;
174	char *cp = dst;
 
 
 
 
175
176	while (i < len) {
177		p = strchr(lookup_table, src[i]);
178		if (p == NULL || src[i] == 0)
179			return -2;
180		ac += (p - lookup_table) << bits;
181		bits += 6;
182		if (bits >= 8) {
183			*cp++ = ac & 0xff;
184			ac >>= 8;
185			bits -= 8;
 
186		}
187		i++;
188	}
189	if (ac)
190		return -1;
191	return cp - dst;
192}
193
194bool fscrypt_fname_encrypted_size(const struct inode *inode, u32 orig_len,
195				  u32 max_len, u32 *encrypted_len_ret)
 
196{
197	int padding = 4 << (inode->i_crypt_info->ci_flags &
198			    FS_POLICY_FLAGS_PAD_MASK);
199	u32 encrypted_len;
200
201	if (orig_len > max_len)
202		return false;
203	encrypted_len = max(orig_len, (u32)FS_CRYPTO_BLOCK_SIZE);
204	encrypted_len = round_up(encrypted_len, padding);
205	*encrypted_len_ret = min(encrypted_len, max_len);
206	return true;
207}
208
209/**
210 * fscrypt_fname_alloc_buffer - allocate a buffer for presented filenames
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
211 *
212 * Allocate a buffer that is large enough to hold any decrypted or encoded
213 * filename (null-terminated), for the given maximum encrypted filename length.
214 *
215 * Return: 0 on success, -errno on failure
216 */
217int fscrypt_fname_alloc_buffer(const struct inode *inode,
218			       u32 max_encrypted_len,
219			       struct fscrypt_str *crypto_str)
220{
221	const u32 max_encoded_len =
222		max_t(u32, BASE64_CHARS(FSCRYPT_FNAME_MAX_UNDIGESTED_SIZE),
223		      1 + BASE64_CHARS(sizeof(struct fscrypt_digested_name)));
224	u32 max_presented_len;
225
226	max_presented_len = max(max_encoded_len, max_encrypted_len);
227
228	crypto_str->name = kmalloc(max_presented_len + 1, GFP_NOFS);
229	if (!crypto_str->name)
230		return -ENOMEM;
231	crypto_str->len = max_presented_len;
232	return 0;
233}
234EXPORT_SYMBOL(fscrypt_fname_alloc_buffer);
235
236/**
237 * fscrypt_fname_free_buffer - free the buffer for presented filenames
 
238 *
239 * Free the buffer allocated by fscrypt_fname_alloc_buffer().
240 */
241void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str)
242{
243	if (!crypto_str)
244		return;
245	kfree(crypto_str->name);
246	crypto_str->name = NULL;
247}
248EXPORT_SYMBOL(fscrypt_fname_free_buffer);
249
250/**
251 * fscrypt_fname_disk_to_usr() - converts a filename from disk space to user
252 * space
253 *
254 * The caller must have allocated sufficient memory for the @oname string.
255 *
256 * If the key is available, we'll decrypt the disk name; otherwise, we'll encode
257 * it for presentation.  Short names are directly base64-encoded, while long
258 * names are encoded in fscrypt_digested_name format.
 
 
 
 
 
 
 
 
 
259 *
260 * Return: 0 on success, -errno on failure
261 */
262int fscrypt_fname_disk_to_usr(struct inode *inode,
263			u32 hash, u32 minor_hash,
264			const struct fscrypt_str *iname,
265			struct fscrypt_str *oname)
266{
267	const struct qstr qname = FSTR_TO_QSTR(iname);
268	struct fscrypt_digested_name digested_name;
 
269
270	if (fscrypt_is_dot_dotdot(&qname)) {
271		oname->name[0] = '.';
272		oname->name[iname->len - 1] = '.';
273		oname->len = iname->len;
274		return 0;
275	}
276
277	if (iname->len < FS_CRYPTO_BLOCK_SIZE)
278		return -EUCLEAN;
279
280	if (inode->i_crypt_info)
281		return fname_decrypt(inode, iname, oname);
282
283	if (iname->len <= FSCRYPT_FNAME_MAX_UNDIGESTED_SIZE) {
284		oname->len = digest_encode(iname->name, iname->len,
285					   oname->name);
286		return 0;
287	}
288	if (hash) {
289		digested_name.hash = hash;
290		digested_name.minor_hash = minor_hash;
 
 
 
 
 
 
 
 
291	} else {
292		digested_name.hash = 0;
293		digested_name.minor_hash = 0;
 
 
 
 
294	}
295	memcpy(digested_name.digest,
296	       FSCRYPT_FNAME_DIGEST(iname->name, iname->len),
297	       FSCRYPT_FNAME_DIGEST_SIZE);
298	oname->name[0] = '_';
299	oname->len = 1 + digest_encode((const char *)&digested_name,
300				       sizeof(digested_name), oname->name + 1);
301	return 0;
302}
303EXPORT_SYMBOL(fscrypt_fname_disk_to_usr);
304
305/**
306 * fscrypt_setup_filename() - prepare to search a possibly encrypted directory
307 * @dir: the directory that will be searched
308 * @iname: the user-provided filename being searched for
309 * @lookup: 1 if we're allowed to proceed without the key because it's
310 *	->lookup() or we're finding the dir_entry for deletion; 0 if we cannot
311 *	proceed without the key because we're going to create the dir_entry.
312 * @fname: the filename information to be filled in
313 *
314 * Given a user-provided filename @iname, this function sets @fname->disk_name
315 * to the name that would be stored in the on-disk directory entry, if possible.
316 * If the directory is unencrypted this is simply @iname.  Else, if we have the
317 * directory's encryption key, then @iname is the plaintext, so we encrypt it to
318 * get the disk_name.
319 *
320 * Else, for keyless @lookup operations, @iname is the presented ciphertext, so
321 * we decode it to get either the ciphertext disk_name (for short names) or the
322 * fscrypt_digested_name (for long names).  Non-@lookup operations will be
323 * impossible in this case, so we fail them with ENOKEY.
324 *
325 * If successful, fscrypt_free_filename() must be called later to clean up.
326 *
327 * Return: 0 on success, -errno on failure
328 */
329int fscrypt_setup_filename(struct inode *dir, const struct qstr *iname,
330			      int lookup, struct fscrypt_name *fname)
331{
 
332	int ret;
333	int digested;
334
335	memset(fname, 0, sizeof(struct fscrypt_name));
336	fname->usr_fname = iname;
337
338	if (!IS_ENCRYPTED(dir) || fscrypt_is_dot_dotdot(iname)) {
339		fname->disk_name.name = (unsigned char *)iname->name;
340		fname->disk_name.len = iname->len;
341		return 0;
342	}
343	ret = fscrypt_get_encryption_info(dir);
344	if (ret && ret != -EOPNOTSUPP)
345		return ret;
346
347	if (dir->i_crypt_info) {
348		if (!fscrypt_fname_encrypted_size(dir, iname->len,
349						  dir->i_sb->s_cop->max_namelen(dir),
350						  &fname->crypto_buf.len))
351			return -ENAMETOOLONG;
352		fname->crypto_buf.name = kmalloc(fname->crypto_buf.len,
353						 GFP_NOFS);
354		if (!fname->crypto_buf.name)
355			return -ENOMEM;
356
357		ret = fname_encrypt(dir, iname, fname->crypto_buf.name,
358				    fname->crypto_buf.len);
359		if (ret)
360			goto errout;
361		fname->disk_name.name = fname->crypto_buf.name;
362		fname->disk_name.len = fname->crypto_buf.len;
363		return 0;
364	}
365	if (!lookup)
366		return -ENOKEY;
 
367
368	/*
369	 * We don't have the key and we are doing a lookup; decode the
370	 * user-supplied name
371	 */
372	if (iname->name[0] == '_') {
373		if (iname->len !=
374		    1 + BASE64_CHARS(sizeof(struct fscrypt_digested_name)))
375			return -ENOENT;
376		digested = 1;
377	} else {
378		if (iname->len >
379		    BASE64_CHARS(FSCRYPT_FNAME_MAX_UNDIGESTED_SIZE))
380			return -ENOENT;
381		digested = 0;
382	}
383
384	fname->crypto_buf.name =
385		kmalloc(max_t(size_t, FSCRYPT_FNAME_MAX_UNDIGESTED_SIZE,
386			      sizeof(struct fscrypt_digested_name)),
387			GFP_KERNEL);
388	if (fname->crypto_buf.name == NULL)
389		return -ENOMEM;
390
391	ret = digest_decode(iname->name + digested, iname->len - digested,
392				fname->crypto_buf.name);
393	if (ret < 0) {
 
 
394		ret = -ENOENT;
395		goto errout;
396	}
397	fname->crypto_buf.len = ret;
398	if (digested) {
399		const struct fscrypt_digested_name *n =
400			(const void *)fname->crypto_buf.name;
401		fname->hash = n->hash;
402		fname->minor_hash = n->minor_hash;
403	} else {
404		fname->disk_name.name = fname->crypto_buf.name;
405		fname->disk_name.len = fname->crypto_buf.len;
 
406	}
407	return 0;
408
409errout:
410	kfree(fname->crypto_buf.name);
411	return ret;
412}
413EXPORT_SYMBOL(fscrypt_setup_filename);
v6.8
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * This contains functions for filename crypto management
  4 *
  5 * Copyright (C) 2015, Google, Inc.
  6 * Copyright (C) 2015, Motorola Mobility
  7 *
  8 * Written by Uday Savagaonkar, 2014.
  9 * Modified by Jaegeuk Kim, 2015.
 10 *
 11 * This has not yet undergone a rigorous security audit.
 12 */
 13
 14#include <linux/namei.h>
 15#include <linux/scatterlist.h>
 16#include <crypto/hash.h>
 17#include <crypto/sha2.h>
 18#include <crypto/skcipher.h>
 19#include "fscrypt_private.h"
 20
 21/*
 22 * The minimum message length (input and output length), in bytes, for all
 23 * filenames encryption modes.  Filenames shorter than this will be zero-padded
 24 * before being encrypted.
 25 */
 26#define FSCRYPT_FNAME_MIN_MSG_LEN 16
 27
 28/*
 29 * struct fscrypt_nokey_name - identifier for directory entry when key is absent
 30 *
 31 * When userspace lists an encrypted directory without access to the key, the
 32 * filesystem must present a unique "no-key name" for each filename that allows
 33 * it to find the directory entry again if requested.  Naively, that would just
 34 * mean using the ciphertext filenames.  However, since the ciphertext filenames
 35 * can contain illegal characters ('\0' and '/'), they must be encoded in some
 36 * way.  We use base64url.  But that can cause names to exceed NAME_MAX (255
 37 * bytes), so we also need to use a strong hash to abbreviate long names.
 38 *
 39 * The filesystem may also need another kind of hash, the "dirhash", to quickly
 40 * find the directory entry.  Since filesystems normally compute the dirhash
 41 * over the on-disk filename (i.e. the ciphertext), it's not computable from
 42 * no-key names that abbreviate the ciphertext using the strong hash to fit in
 43 * NAME_MAX.  It's also not computable if it's a keyed hash taken over the
 44 * plaintext (but it may still be available in the on-disk directory entry);
 45 * casefolded directories use this type of dirhash.  At least in these cases,
 46 * each no-key name must include the name's dirhash too.
 47 *
 48 * To meet all these requirements, we base64url-encode the following
 49 * variable-length structure.  It contains the dirhash, or 0's if the filesystem
 50 * didn't provide one; up to 149 bytes of the ciphertext name; and for
 51 * ciphertexts longer than 149 bytes, also the SHA-256 of the remaining bytes.
 52 *
 53 * This ensures that each no-key name contains everything needed to find the
 54 * directory entry again, contains only legal characters, doesn't exceed
 55 * NAME_MAX, is unambiguous unless there's a SHA-256 collision, and that we only
 56 * take the performance hit of SHA-256 on very long filenames (which are rare).
 57 */
 58struct fscrypt_nokey_name {
 59	u32 dirhash[2];
 60	u8 bytes[149];
 61	u8 sha256[SHA256_DIGEST_SIZE];
 62}; /* 189 bytes => 252 bytes base64url-encoded, which is <= NAME_MAX (255) */
 63
 64/*
 65 * Decoded size of max-size no-key name, i.e. a name that was abbreviated using
 66 * the strong hash and thus includes the 'sha256' field.  This isn't simply
 67 * sizeof(struct fscrypt_nokey_name), as the padding at the end isn't included.
 68 */
 69#define FSCRYPT_NOKEY_NAME_MAX	offsetofend(struct fscrypt_nokey_name, sha256)
 70
 71/* Encoded size of max-size no-key name */
 72#define FSCRYPT_NOKEY_NAME_MAX_ENCODED \
 73		FSCRYPT_BASE64URL_CHARS(FSCRYPT_NOKEY_NAME_MAX)
 74
 75static inline bool fscrypt_is_dot_dotdot(const struct qstr *str)
 76{
 77	if (str->len == 1 && str->name[0] == '.')
 78		return true;
 79
 80	if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
 81		return true;
 82
 83	return false;
 84}
 85
 86/**
 87 * fscrypt_fname_encrypt() - encrypt a filename
 88 * @inode: inode of the parent directory (for regular filenames)
 89 *	   or of the symlink (for symlink targets). Key must already be
 90 *	   set up.
 91 * @iname: the filename to encrypt
 92 * @out: (output) the encrypted filename
 93 * @olen: size of the encrypted filename.  It must be at least @iname->len.
 94 *	  Any extra space is filled with NUL padding before encryption.
 95 *
 96 * Return: 0 on success, -errno on failure
 97 */
 98int fscrypt_fname_encrypt(const struct inode *inode, const struct qstr *iname,
 99			  u8 *out, unsigned int olen)
100{
101	struct skcipher_request *req = NULL;
102	DECLARE_CRYPTO_WAIT(wait);
103	const struct fscrypt_inode_info *ci = inode->i_crypt_info;
104	struct crypto_skcipher *tfm = ci->ci_enc_key.tfm;
105	union fscrypt_iv iv;
106	struct scatterlist sg;
107	int res;
108
109	/*
110	 * Copy the filename to the output buffer for encrypting in-place and
111	 * pad it with the needed number of NUL bytes.
112	 */
113	if (WARN_ON_ONCE(olen < iname->len))
114		return -ENOBUFS;
115	memcpy(out, iname->name, iname->len);
116	memset(out + iname->len, 0, olen - iname->len);
117
118	/* Initialize the IV */
119	fscrypt_generate_iv(&iv, 0, ci);
120
121	/* Set up the encryption request */
122	req = skcipher_request_alloc(tfm, GFP_NOFS);
123	if (!req)
 
 
124		return -ENOMEM;
 
125	skcipher_request_set_callback(req,
126			CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
127			crypto_req_done, &wait);
128	sg_init_one(&sg, out, olen);
129	skcipher_request_set_crypt(req, &sg, &sg, olen, &iv);
130
131	/* Do the encryption */
132	res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
133	skcipher_request_free(req);
134	if (res < 0) {
135		fscrypt_err(inode, "Filename encryption failed: %d", res);
 
136		return res;
137	}
138
139	return 0;
140}
141EXPORT_SYMBOL_GPL(fscrypt_fname_encrypt);
142
143/**
144 * fname_decrypt() - decrypt a filename
145 * @inode: inode of the parent directory (for regular filenames)
146 *	   or of the symlink (for symlink targets)
147 * @iname: the encrypted filename to decrypt
148 * @oname: (output) the decrypted filename.  The caller must have allocated
149 *	   enough space for this, e.g. using fscrypt_fname_alloc_buffer().
150 *
151 * Return: 0 on success, -errno on failure
152 */
153static int fname_decrypt(const struct inode *inode,
154			 const struct fscrypt_str *iname,
155			 struct fscrypt_str *oname)
156{
157	struct skcipher_request *req = NULL;
158	DECLARE_CRYPTO_WAIT(wait);
159	struct scatterlist src_sg, dst_sg;
160	const struct fscrypt_inode_info *ci = inode->i_crypt_info;
161	struct crypto_skcipher *tfm = ci->ci_enc_key.tfm;
162	union fscrypt_iv iv;
163	int res;
 
 
 
 
 
164
165	/* Allocate request */
166	req = skcipher_request_alloc(tfm, GFP_NOFS);
167	if (!req)
 
 
168		return -ENOMEM;
 
169	skcipher_request_set_callback(req,
170		CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
171		crypto_req_done, &wait);
172
173	/* Initialize IV */
174	fscrypt_generate_iv(&iv, 0, ci);
175
176	/* Create decryption request */
177	sg_init_one(&src_sg, iname->name, iname->len);
178	sg_init_one(&dst_sg, oname->name, oname->len);
179	skcipher_request_set_crypt(req, &src_sg, &dst_sg, iname->len, &iv);
180	res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait);
181	skcipher_request_free(req);
182	if (res < 0) {
183		fscrypt_err(inode, "Filename decryption failed: %d", res);
 
184		return res;
185	}
186
187	oname->len = strnlen(oname->name, iname->len);
188	return 0;
189}
190
191static const char base64url_table[65] =
192	"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_";
193
194#define FSCRYPT_BASE64URL_CHARS(nbytes)	DIV_ROUND_UP((nbytes) * 4, 3)
195
196/**
197 * fscrypt_base64url_encode() - base64url-encode some binary data
198 * @src: the binary data to encode
199 * @srclen: the length of @src in bytes
200 * @dst: (output) the base64url-encoded string.  Not NUL-terminated.
201 *
202 * Encodes data using base64url encoding, i.e. the "Base 64 Encoding with URL
203 * and Filename Safe Alphabet" specified by RFC 4648.  '='-padding isn't used,
204 * as it's unneeded and not required by the RFC.  base64url is used instead of
205 * base64 to avoid the '/' character, which isn't allowed in filenames.
206 *
207 * Return: the length of the resulting base64url-encoded string in bytes.
208 *	   This will be equal to FSCRYPT_BASE64URL_CHARS(srclen).
209 */
210static int fscrypt_base64url_encode(const u8 *src, int srclen, char *dst)
211{
212	u32 ac = 0;
213	int bits = 0;
214	int i;
215	char *cp = dst;
216
217	for (i = 0; i < srclen; i++) {
218		ac = (ac << 8) | src[i];
219		bits += 8;
220		do {
 
 
221			bits -= 6;
222			*cp++ = base64url_table[(ac >> bits) & 0x3f];
223		} while (bits >= 6);
 
224	}
225	if (bits)
226		*cp++ = base64url_table[(ac << (6 - bits)) & 0x3f];
227	return cp - dst;
228}
229
230/**
231 * fscrypt_base64url_decode() - base64url-decode a string
232 * @src: the string to decode.  Doesn't need to be NUL-terminated.
233 * @srclen: the length of @src in bytes
234 * @dst: (output) the decoded binary data
235 *
236 * Decodes a string using base64url encoding, i.e. the "Base 64 Encoding with
237 * URL and Filename Safe Alphabet" specified by RFC 4648.  '='-padding isn't
238 * accepted, nor are non-encoding characters such as whitespace.
239 *
240 * This implementation hasn't been optimized for performance.
241 *
242 * Return: the length of the resulting decoded binary data in bytes,
243 *	   or -1 if the string isn't a valid base64url string.
244 */
245static int fscrypt_base64url_decode(const char *src, int srclen, u8 *dst)
246{
247	u32 ac = 0;
248	int bits = 0;
249	int i;
250	u8 *bp = dst;
251
252	for (i = 0; i < srclen; i++) {
253		const char *p = strchr(base64url_table, src[i]);
254
 
 
255		if (p == NULL || src[i] == 0)
256			return -1;
257		ac = (ac << 6) | (p - base64url_table);
258		bits += 6;
259		if (bits >= 8) {
 
 
260			bits -= 8;
261			*bp++ = (u8)(ac >> bits);
262		}
 
263	}
264	if (ac & ((1 << bits) - 1))
265		return -1;
266	return bp - dst;
267}
268
269bool __fscrypt_fname_encrypted_size(const union fscrypt_policy *policy,
270				    u32 orig_len, u32 max_len,
271				    u32 *encrypted_len_ret)
272{
273	int padding = 4 << (fscrypt_policy_flags(policy) &
274			    FSCRYPT_POLICY_FLAGS_PAD_MASK);
275	u32 encrypted_len;
276
277	if (orig_len > max_len)
278		return false;
279	encrypted_len = max_t(u32, orig_len, FSCRYPT_FNAME_MIN_MSG_LEN);
280	encrypted_len = round_up(encrypted_len, padding);
281	*encrypted_len_ret = min(encrypted_len, max_len);
282	return true;
283}
284
285/**
286 * fscrypt_fname_encrypted_size() - calculate length of encrypted filename
287 * @inode:		parent inode of dentry name being encrypted. Key must
288 *			already be set up.
289 * @orig_len:		length of the original filename
290 * @max_len:		maximum length to return
291 * @encrypted_len_ret:	where calculated length should be returned (on success)
292 *
293 * Filenames that are shorter than the maximum length may have their lengths
294 * increased slightly by encryption, due to padding that is applied.
295 *
296 * Return: false if the orig_len is greater than max_len. Otherwise, true and
297 *	   fill out encrypted_len_ret with the length (up to max_len).
298 */
299bool fscrypt_fname_encrypted_size(const struct inode *inode, u32 orig_len,
300				  u32 max_len, u32 *encrypted_len_ret)
301{
302	return __fscrypt_fname_encrypted_size(&inode->i_crypt_info->ci_policy,
303					      orig_len, max_len,
304					      encrypted_len_ret);
305}
306EXPORT_SYMBOL_GPL(fscrypt_fname_encrypted_size);
307
308/**
309 * fscrypt_fname_alloc_buffer() - allocate a buffer for presented filenames
310 * @max_encrypted_len: maximum length of encrypted filenames the buffer will be
311 *		       used to present
312 * @crypto_str: (output) buffer to allocate
313 *
314 * Allocate a buffer that is large enough to hold any decrypted or encoded
315 * filename (null-terminated), for the given maximum encrypted filename length.
316 *
317 * Return: 0 on success, -errno on failure
318 */
319int fscrypt_fname_alloc_buffer(u32 max_encrypted_len,
 
320			       struct fscrypt_str *crypto_str)
321{
322	u32 max_presented_len = max_t(u32, FSCRYPT_NOKEY_NAME_MAX_ENCODED,
323				      max_encrypted_len);
 
 
 
 
324
325	crypto_str->name = kmalloc(max_presented_len + 1, GFP_NOFS);
326	if (!crypto_str->name)
327		return -ENOMEM;
328	crypto_str->len = max_presented_len;
329	return 0;
330}
331EXPORT_SYMBOL(fscrypt_fname_alloc_buffer);
332
333/**
334 * fscrypt_fname_free_buffer() - free a buffer for presented filenames
335 * @crypto_str: the buffer to free
336 *
337 * Free a buffer that was allocated by fscrypt_fname_alloc_buffer().
338 */
339void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str)
340{
341	if (!crypto_str)
342		return;
343	kfree(crypto_str->name);
344	crypto_str->name = NULL;
345}
346EXPORT_SYMBOL(fscrypt_fname_free_buffer);
347
348/**
349 * fscrypt_fname_disk_to_usr() - convert an encrypted filename to
350 *				 user-presentable form
351 * @inode: inode of the parent directory (for regular filenames)
352 *	   or of the symlink (for symlink targets)
353 * @hash: first part of the name's dirhash, if applicable.  This only needs to
354 *	  be provided if the filename is located in an indexed directory whose
355 *	  encryption key may be unavailable.  Not needed for symlink targets.
356 * @minor_hash: second part of the name's dirhash, if applicable
357 * @iname: encrypted filename to convert.  May also be "." or "..", which
358 *	   aren't actually encrypted.
359 * @oname: output buffer for the user-presentable filename.  The caller must
360 *	   have allocated enough space for this, e.g. using
361 *	   fscrypt_fname_alloc_buffer().
362 *
363 * If the key is available, we'll decrypt the disk name.  Otherwise, we'll
364 * encode it for presentation in fscrypt_nokey_name format.
365 * See struct fscrypt_nokey_name for details.
366 *
367 * Return: 0 on success, -errno on failure
368 */
369int fscrypt_fname_disk_to_usr(const struct inode *inode,
370			      u32 hash, u32 minor_hash,
371			      const struct fscrypt_str *iname,
372			      struct fscrypt_str *oname)
373{
374	const struct qstr qname = FSTR_TO_QSTR(iname);
375	struct fscrypt_nokey_name nokey_name;
376	u32 size; /* size of the unencoded no-key name */
377
378	if (fscrypt_is_dot_dotdot(&qname)) {
379		oname->name[0] = '.';
380		oname->name[iname->len - 1] = '.';
381		oname->len = iname->len;
382		return 0;
383	}
384
385	if (iname->len < FSCRYPT_FNAME_MIN_MSG_LEN)
386		return -EUCLEAN;
387
388	if (fscrypt_has_encryption_key(inode))
389		return fname_decrypt(inode, iname, oname);
390
391	/*
392	 * Sanity check that struct fscrypt_nokey_name doesn't have padding
393	 * between fields and that its encoded size never exceeds NAME_MAX.
394	 */
395	BUILD_BUG_ON(offsetofend(struct fscrypt_nokey_name, dirhash) !=
396		     offsetof(struct fscrypt_nokey_name, bytes));
397	BUILD_BUG_ON(offsetofend(struct fscrypt_nokey_name, bytes) !=
398		     offsetof(struct fscrypt_nokey_name, sha256));
399	BUILD_BUG_ON(FSCRYPT_NOKEY_NAME_MAX_ENCODED > NAME_MAX);
400
401	nokey_name.dirhash[0] = hash;
402	nokey_name.dirhash[1] = minor_hash;
403
404	if (iname->len <= sizeof(nokey_name.bytes)) {
405		memcpy(nokey_name.bytes, iname->name, iname->len);
406		size = offsetof(struct fscrypt_nokey_name, bytes[iname->len]);
407	} else {
408		memcpy(nokey_name.bytes, iname->name, sizeof(nokey_name.bytes));
409		/* Compute strong hash of remaining part of name. */
410		sha256(&iname->name[sizeof(nokey_name.bytes)],
411		       iname->len - sizeof(nokey_name.bytes),
412		       nokey_name.sha256);
413		size = FSCRYPT_NOKEY_NAME_MAX;
414	}
415	oname->len = fscrypt_base64url_encode((const u8 *)&nokey_name, size,
416					      oname->name);
 
 
 
 
417	return 0;
418}
419EXPORT_SYMBOL(fscrypt_fname_disk_to_usr);
420
421/**
422 * fscrypt_setup_filename() - prepare to search a possibly encrypted directory
423 * @dir: the directory that will be searched
424 * @iname: the user-provided filename being searched for
425 * @lookup: 1 if we're allowed to proceed without the key because it's
426 *	->lookup() or we're finding the dir_entry for deletion; 0 if we cannot
427 *	proceed without the key because we're going to create the dir_entry.
428 * @fname: the filename information to be filled in
429 *
430 * Given a user-provided filename @iname, this function sets @fname->disk_name
431 * to the name that would be stored in the on-disk directory entry, if possible.
432 * If the directory is unencrypted this is simply @iname.  Else, if we have the
433 * directory's encryption key, then @iname is the plaintext, so we encrypt it to
434 * get the disk_name.
435 *
436 * Else, for keyless @lookup operations, @iname should be a no-key name, so we
437 * decode it to get the struct fscrypt_nokey_name.  Non-@lookup operations will
438 * be impossible in this case, so we fail them with ENOKEY.
 
439 *
440 * If successful, fscrypt_free_filename() must be called later to clean up.
441 *
442 * Return: 0 on success, -errno on failure
443 */
444int fscrypt_setup_filename(struct inode *dir, const struct qstr *iname,
445			      int lookup, struct fscrypt_name *fname)
446{
447	struct fscrypt_nokey_name *nokey_name;
448	int ret;
 
449
450	memset(fname, 0, sizeof(struct fscrypt_name));
451	fname->usr_fname = iname;
452
453	if (!IS_ENCRYPTED(dir) || fscrypt_is_dot_dotdot(iname)) {
454		fname->disk_name.name = (unsigned char *)iname->name;
455		fname->disk_name.len = iname->len;
456		return 0;
457	}
458	ret = fscrypt_get_encryption_info(dir, lookup);
459	if (ret)
460		return ret;
461
462	if (fscrypt_has_encryption_key(dir)) {
463		if (!fscrypt_fname_encrypted_size(dir, iname->len, NAME_MAX,
 
464						  &fname->crypto_buf.len))
465			return -ENAMETOOLONG;
466		fname->crypto_buf.name = kmalloc(fname->crypto_buf.len,
467						 GFP_NOFS);
468		if (!fname->crypto_buf.name)
469			return -ENOMEM;
470
471		ret = fscrypt_fname_encrypt(dir, iname, fname->crypto_buf.name,
472					    fname->crypto_buf.len);
473		if (ret)
474			goto errout;
475		fname->disk_name.name = fname->crypto_buf.name;
476		fname->disk_name.len = fname->crypto_buf.len;
477		return 0;
478	}
479	if (!lookup)
480		return -ENOKEY;
481	fname->is_nokey_name = true;
482
483	/*
484	 * We don't have the key and we are doing a lookup; decode the
485	 * user-supplied name
486	 */
 
 
 
 
 
 
 
 
 
 
 
487
488	if (iname->len > FSCRYPT_NOKEY_NAME_MAX_ENCODED)
489		return -ENOENT;
490
491	fname->crypto_buf.name = kmalloc(FSCRYPT_NOKEY_NAME_MAX, GFP_KERNEL);
492	if (fname->crypto_buf.name == NULL)
493		return -ENOMEM;
494
495	ret = fscrypt_base64url_decode(iname->name, iname->len,
496				       fname->crypto_buf.name);
497	if (ret < (int)offsetof(struct fscrypt_nokey_name, bytes[1]) ||
498	    (ret > offsetof(struct fscrypt_nokey_name, sha256) &&
499	     ret != FSCRYPT_NOKEY_NAME_MAX)) {
500		ret = -ENOENT;
501		goto errout;
502	}
503	fname->crypto_buf.len = ret;
504
505	nokey_name = (void *)fname->crypto_buf.name;
506	fname->hash = nokey_name->dirhash[0];
507	fname->minor_hash = nokey_name->dirhash[1];
508	if (ret != FSCRYPT_NOKEY_NAME_MAX) {
509		/* The full ciphertext filename is available. */
510		fname->disk_name.name = nokey_name->bytes;
511		fname->disk_name.len =
512			ret - offsetof(struct fscrypt_nokey_name, bytes);
513	}
514	return 0;
515
516errout:
517	kfree(fname->crypto_buf.name);
518	return ret;
519}
520EXPORT_SYMBOL(fscrypt_setup_filename);
521
522/**
523 * fscrypt_match_name() - test whether the given name matches a directory entry
524 * @fname: the name being searched for
525 * @de_name: the name from the directory entry
526 * @de_name_len: the length of @de_name in bytes
527 *
528 * Normally @fname->disk_name will be set, and in that case we simply compare
529 * that to the name stored in the directory entry.  The only exception is that
530 * if we don't have the key for an encrypted directory and the name we're
531 * looking for is very long, then we won't have the full disk_name and instead
532 * we'll need to match against a fscrypt_nokey_name that includes a strong hash.
533 *
534 * Return: %true if the name matches, otherwise %false.
535 */
536bool fscrypt_match_name(const struct fscrypt_name *fname,
537			const u8 *de_name, u32 de_name_len)
538{
539	const struct fscrypt_nokey_name *nokey_name =
540		(const void *)fname->crypto_buf.name;
541	u8 digest[SHA256_DIGEST_SIZE];
542
543	if (likely(fname->disk_name.name)) {
544		if (de_name_len != fname->disk_name.len)
545			return false;
546		return !memcmp(de_name, fname->disk_name.name, de_name_len);
547	}
548	if (de_name_len <= sizeof(nokey_name->bytes))
549		return false;
550	if (memcmp(de_name, nokey_name->bytes, sizeof(nokey_name->bytes)))
551		return false;
552	sha256(&de_name[sizeof(nokey_name->bytes)],
553	       de_name_len - sizeof(nokey_name->bytes), digest);
554	return !memcmp(digest, nokey_name->sha256, sizeof(digest));
555}
556EXPORT_SYMBOL_GPL(fscrypt_match_name);
557
558/**
559 * fscrypt_fname_siphash() - calculate the SipHash of a filename
560 * @dir: the parent directory
561 * @name: the filename to calculate the SipHash of
562 *
563 * Given a plaintext filename @name and a directory @dir which uses SipHash as
564 * its dirhash method and has had its fscrypt key set up, this function
565 * calculates the SipHash of that name using the directory's secret dirhash key.
566 *
567 * Return: the SipHash of @name using the hash key of @dir
568 */
569u64 fscrypt_fname_siphash(const struct inode *dir, const struct qstr *name)
570{
571	const struct fscrypt_inode_info *ci = dir->i_crypt_info;
572
573	WARN_ON_ONCE(!ci->ci_dirhash_key_initialized);
574
575	return siphash(name->name, name->len, &ci->ci_dirhash_key);
576}
577EXPORT_SYMBOL_GPL(fscrypt_fname_siphash);
578
579/*
580 * Validate dentries in encrypted directories to make sure we aren't potentially
581 * caching stale dentries after a key has been added.
582 */
583int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags)
584{
585	struct dentry *dir;
586	int err;
587	int valid;
588
589	/*
590	 * Plaintext names are always valid, since fscrypt doesn't support
591	 * reverting to no-key names without evicting the directory's inode
592	 * -- which implies eviction of the dentries in the directory.
593	 */
594	if (!(dentry->d_flags & DCACHE_NOKEY_NAME))
595		return 1;
596
597	/*
598	 * No-key name; valid if the directory's key is still unavailable.
599	 *
600	 * Although fscrypt forbids rename() on no-key names, we still must use
601	 * dget_parent() here rather than use ->d_parent directly.  That's
602	 * because a corrupted fs image may contain directory hard links, which
603	 * the VFS handles by moving the directory's dentry tree in the dcache
604	 * each time ->lookup() finds the directory and it already has a dentry
605	 * elsewhere.  Thus ->d_parent can be changing, and we must safely grab
606	 * a reference to some ->d_parent to prevent it from being freed.
607	 */
608
609	if (flags & LOOKUP_RCU)
610		return -ECHILD;
611
612	dir = dget_parent(dentry);
613	/*
614	 * Pass allow_unsupported=true, so that files with an unsupported
615	 * encryption policy can be deleted.
616	 */
617	err = fscrypt_get_encryption_info(d_inode(dir), true);
618	valid = !fscrypt_has_encryption_key(d_inode(dir));
619	dput(dir);
620
621	if (err < 0)
622		return err;
623
624	return valid;
625}
626EXPORT_SYMBOL_GPL(fscrypt_d_revalidate);