Linux Audio

Check our new training course

Loading...
v4.17
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * This contains functions for filename crypto management
  4 *
  5 * Copyright (C) 2015, Google, Inc.
  6 * Copyright (C) 2015, Motorola Mobility
  7 *
  8 * Written by Uday Savagaonkar, 2014.
  9 * Modified by Jaegeuk Kim, 2015.
 10 *
 11 * This has not yet undergone a rigorous security audit.
 12 */
 13
 
 14#include <linux/scatterlist.h>
 15#include <linux/ratelimit.h>
 
 16#include <crypto/skcipher.h>
 17#include "fscrypt_private.h"
 18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 19static inline bool fscrypt_is_dot_dotdot(const struct qstr *str)
 20{
 21	if (str->len == 1 && str->name[0] == '.')
 22		return true;
 23
 24	if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
 25		return true;
 26
 27	return false;
 28}
 29
 30/**
 31 * fname_encrypt() - encrypt a filename
 32 *
 33 * The output buffer must be at least as large as the input buffer.
 34 * Any extra space is filled with NUL padding before encryption.
 
 
 
 35 *
 36 * Return: 0 on success, -errno on failure
 37 */
 38int fname_encrypt(struct inode *inode, const struct qstr *iname,
 39		  u8 *out, unsigned int olen)
 40{
 41	struct skcipher_request *req = NULL;
 42	DECLARE_CRYPTO_WAIT(wait);
 43	struct crypto_skcipher *tfm = inode->i_crypt_info->ci_ctfm;
 44	int res = 0;
 45	char iv[FS_CRYPTO_BLOCK_SIZE];
 46	struct scatterlist sg;
 
 47
 48	/*
 49	 * Copy the filename to the output buffer for encrypting in-place and
 50	 * pad it with the needed number of NUL bytes.
 51	 */
 52	if (WARN_ON(olen < iname->len))
 53		return -ENOBUFS;
 54	memcpy(out, iname->name, iname->len);
 55	memset(out + iname->len, 0, olen - iname->len);
 56
 57	/* Initialize the IV */
 58	memset(iv, 0, FS_CRYPTO_BLOCK_SIZE);
 59
 60	/* Set up the encryption request */
 61	req = skcipher_request_alloc(tfm, GFP_NOFS);
 62	if (!req) {
 63		printk_ratelimited(KERN_ERR
 64			"%s: skcipher_request_alloc() failed\n", __func__);
 65		return -ENOMEM;
 66	}
 67	skcipher_request_set_callback(req,
 68			CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
 69			crypto_req_done, &wait);
 70	sg_init_one(&sg, out, olen);
 71	skcipher_request_set_crypt(req, &sg, &sg, olen, iv);
 72
 73	/* Do the encryption */
 74	res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
 75	skcipher_request_free(req);
 76	if (res < 0) {
 77		printk_ratelimited(KERN_ERR
 78				"%s: Error (error code %d)\n", __func__, res);
 79		return res;
 80	}
 81
 82	return 0;
 83}
 84
 85/**
 86 * fname_decrypt() - decrypt a filename
 87 *
 88 * The caller must have allocated sufficient memory for the @oname string.
 
 
 
 89 *
 90 * Return: 0 on success, -errno on failure
 91 */
 92static int fname_decrypt(struct inode *inode,
 93				const struct fscrypt_str *iname,
 94				struct fscrypt_str *oname)
 95{
 96	struct skcipher_request *req = NULL;
 97	DECLARE_CRYPTO_WAIT(wait);
 98	struct scatterlist src_sg, dst_sg;
 99	struct fscrypt_info *ci = inode->i_crypt_info;
100	struct crypto_skcipher *tfm = ci->ci_ctfm;
101	int res = 0;
102	char iv[FS_CRYPTO_BLOCK_SIZE];
103	unsigned lim;
104
105	lim = inode->i_sb->s_cop->max_namelen(inode);
106	if (iname->len <= 0 || iname->len > lim)
107		return -EIO;
108
109	/* Allocate request */
110	req = skcipher_request_alloc(tfm, GFP_NOFS);
111	if (!req) {
112		printk_ratelimited(KERN_ERR
113			"%s: crypto_request_alloc() failed\n",  __func__);
114		return -ENOMEM;
115	}
116	skcipher_request_set_callback(req,
117		CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
118		crypto_req_done, &wait);
119
120	/* Initialize IV */
121	memset(iv, 0, FS_CRYPTO_BLOCK_SIZE);
122
123	/* Create decryption request */
124	sg_init_one(&src_sg, iname->name, iname->len);
125	sg_init_one(&dst_sg, oname->name, oname->len);
126	skcipher_request_set_crypt(req, &src_sg, &dst_sg, iname->len, iv);
127	res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait);
128	skcipher_request_free(req);
129	if (res < 0) {
130		printk_ratelimited(KERN_ERR
131				"%s: Error (error code %d)\n", __func__, res);
132		return res;
133	}
134
135	oname->len = strnlen(oname->name, iname->len);
136	return 0;
137}
138
139static const char *lookup_table =
140	"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+,";
141
142#define BASE64_CHARS(nbytes)	DIV_ROUND_UP((nbytes) * 4, 3)
143
144/**
145 * digest_encode() -
 
 
 
146 *
147 * Encodes the input digest using characters from the set [a-zA-Z0-9_+].
148 * The encoded string is roughly 4/3 times the size of the input string.
 
 
149 */
150static int digest_encode(const char *src, int len, char *dst)
151{
152	int i = 0, bits = 0, ac = 0;
153	char *cp = dst;
154
155	while (i < len) {
156		ac += (((unsigned char) src[i]) << bits);
157		bits += 8;
158		do {
159			*cp++ = lookup_table[ac & 0x3f];
160			ac >>= 6;
161			bits -= 6;
162		} while (bits >= 6);
163		i++;
164	}
165	if (bits)
166		*cp++ = lookup_table[ac & 0x3f];
167	return cp - dst;
168}
169
170static int digest_decode(const char *src, int len, char *dst)
171{
172	int i = 0, bits = 0, ac = 0;
173	const char *p;
174	char *cp = dst;
175
176	while (i < len) {
177		p = strchr(lookup_table, src[i]);
178		if (p == NULL || src[i] == 0)
179			return -2;
180		ac += (p - lookup_table) << bits;
181		bits += 6;
182		if (bits >= 8) {
183			*cp++ = ac & 0xff;
184			ac >>= 8;
185			bits -= 8;
186		}
187		i++;
188	}
189	if (ac)
190		return -1;
191	return cp - dst;
192}
193
194bool fscrypt_fname_encrypted_size(const struct inode *inode, u32 orig_len,
195				  u32 max_len, u32 *encrypted_len_ret)
 
196{
197	int padding = 4 << (inode->i_crypt_info->ci_flags &
198			    FS_POLICY_FLAGS_PAD_MASK);
199	u32 encrypted_len;
200
201	if (orig_len > max_len)
202		return false;
203	encrypted_len = max(orig_len, (u32)FS_CRYPTO_BLOCK_SIZE);
204	encrypted_len = round_up(encrypted_len, padding);
205	*encrypted_len_ret = min(encrypted_len, max_len);
206	return true;
207}
208
209/**
210 * fscrypt_fname_alloc_buffer - allocate a buffer for presented filenames
 
 
 
211 *
212 * Allocate a buffer that is large enough to hold any decrypted or encoded
213 * filename (null-terminated), for the given maximum encrypted filename length.
214 *
215 * Return: 0 on success, -errno on failure
216 */
217int fscrypt_fname_alloc_buffer(const struct inode *inode,
218			       u32 max_encrypted_len,
219			       struct fscrypt_str *crypto_str)
220{
221	const u32 max_encoded_len =
222		max_t(u32, BASE64_CHARS(FSCRYPT_FNAME_MAX_UNDIGESTED_SIZE),
223		      1 + BASE64_CHARS(sizeof(struct fscrypt_digested_name)));
224	u32 max_presented_len;
225
226	max_presented_len = max(max_encoded_len, max_encrypted_len);
227
228	crypto_str->name = kmalloc(max_presented_len + 1, GFP_NOFS);
229	if (!crypto_str->name)
230		return -ENOMEM;
231	crypto_str->len = max_presented_len;
232	return 0;
233}
234EXPORT_SYMBOL(fscrypt_fname_alloc_buffer);
235
236/**
237 * fscrypt_fname_free_buffer - free the buffer for presented filenames
 
238 *
239 * Free the buffer allocated by fscrypt_fname_alloc_buffer().
240 */
241void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str)
242{
243	if (!crypto_str)
244		return;
245	kfree(crypto_str->name);
246	crypto_str->name = NULL;
247}
248EXPORT_SYMBOL(fscrypt_fname_free_buffer);
249
250/**
251 * fscrypt_fname_disk_to_usr() - converts a filename from disk space to user
252 * space
253 *
254 * The caller must have allocated sufficient memory for the @oname string.
255 *
256 * If the key is available, we'll decrypt the disk name; otherwise, we'll encode
257 * it for presentation.  Short names are directly base64-encoded, while long
258 * names are encoded in fscrypt_digested_name format.
 
 
 
 
 
 
 
 
 
259 *
260 * Return: 0 on success, -errno on failure
261 */
262int fscrypt_fname_disk_to_usr(struct inode *inode,
263			u32 hash, u32 minor_hash,
264			const struct fscrypt_str *iname,
265			struct fscrypt_str *oname)
266{
267	const struct qstr qname = FSTR_TO_QSTR(iname);
268	struct fscrypt_digested_name digested_name;
 
269
270	if (fscrypt_is_dot_dotdot(&qname)) {
271		oname->name[0] = '.';
272		oname->name[iname->len - 1] = '.';
273		oname->len = iname->len;
274		return 0;
275	}
276
277	if (iname->len < FS_CRYPTO_BLOCK_SIZE)
278		return -EUCLEAN;
279
280	if (inode->i_crypt_info)
281		return fname_decrypt(inode, iname, oname);
282
283	if (iname->len <= FSCRYPT_FNAME_MAX_UNDIGESTED_SIZE) {
284		oname->len = digest_encode(iname->name, iname->len,
285					   oname->name);
286		return 0;
287	}
288	if (hash) {
289		digested_name.hash = hash;
290		digested_name.minor_hash = minor_hash;
 
 
 
 
 
 
 
 
291	} else {
292		digested_name.hash = 0;
293		digested_name.minor_hash = 0;
 
 
 
 
294	}
295	memcpy(digested_name.digest,
296	       FSCRYPT_FNAME_DIGEST(iname->name, iname->len),
297	       FSCRYPT_FNAME_DIGEST_SIZE);
298	oname->name[0] = '_';
299	oname->len = 1 + digest_encode((const char *)&digested_name,
300				       sizeof(digested_name), oname->name + 1);
301	return 0;
302}
303EXPORT_SYMBOL(fscrypt_fname_disk_to_usr);
304
305/**
306 * fscrypt_setup_filename() - prepare to search a possibly encrypted directory
307 * @dir: the directory that will be searched
308 * @iname: the user-provided filename being searched for
309 * @lookup: 1 if we're allowed to proceed without the key because it's
310 *	->lookup() or we're finding the dir_entry for deletion; 0 if we cannot
311 *	proceed without the key because we're going to create the dir_entry.
312 * @fname: the filename information to be filled in
313 *
314 * Given a user-provided filename @iname, this function sets @fname->disk_name
315 * to the name that would be stored in the on-disk directory entry, if possible.
316 * If the directory is unencrypted this is simply @iname.  Else, if we have the
317 * directory's encryption key, then @iname is the plaintext, so we encrypt it to
318 * get the disk_name.
319 *
320 * Else, for keyless @lookup operations, @iname is the presented ciphertext, so
321 * we decode it to get either the ciphertext disk_name (for short names) or the
322 * fscrypt_digested_name (for long names).  Non-@lookup operations will be
323 * impossible in this case, so we fail them with ENOKEY.
324 *
325 * If successful, fscrypt_free_filename() must be called later to clean up.
326 *
327 * Return: 0 on success, -errno on failure
328 */
329int fscrypt_setup_filename(struct inode *dir, const struct qstr *iname,
330			      int lookup, struct fscrypt_name *fname)
331{
 
332	int ret;
333	int digested;
334
335	memset(fname, 0, sizeof(struct fscrypt_name));
336	fname->usr_fname = iname;
337
338	if (!IS_ENCRYPTED(dir) || fscrypt_is_dot_dotdot(iname)) {
339		fname->disk_name.name = (unsigned char *)iname->name;
340		fname->disk_name.len = iname->len;
341		return 0;
342	}
343	ret = fscrypt_get_encryption_info(dir);
344	if (ret && ret != -EOPNOTSUPP)
345		return ret;
346
347	if (dir->i_crypt_info) {
348		if (!fscrypt_fname_encrypted_size(dir, iname->len,
349						  dir->i_sb->s_cop->max_namelen(dir),
 
350						  &fname->crypto_buf.len))
351			return -ENAMETOOLONG;
352		fname->crypto_buf.name = kmalloc(fname->crypto_buf.len,
353						 GFP_NOFS);
354		if (!fname->crypto_buf.name)
355			return -ENOMEM;
356
357		ret = fname_encrypt(dir, iname, fname->crypto_buf.name,
358				    fname->crypto_buf.len);
359		if (ret)
360			goto errout;
361		fname->disk_name.name = fname->crypto_buf.name;
362		fname->disk_name.len = fname->crypto_buf.len;
363		return 0;
364	}
365	if (!lookup)
366		return -ENOKEY;
 
367
368	/*
369	 * We don't have the key and we are doing a lookup; decode the
370	 * user-supplied name
371	 */
372	if (iname->name[0] == '_') {
373		if (iname->len !=
374		    1 + BASE64_CHARS(sizeof(struct fscrypt_digested_name)))
375			return -ENOENT;
376		digested = 1;
377	} else {
378		if (iname->len >
379		    BASE64_CHARS(FSCRYPT_FNAME_MAX_UNDIGESTED_SIZE))
380			return -ENOENT;
381		digested = 0;
382	}
383
384	fname->crypto_buf.name =
385		kmalloc(max_t(size_t, FSCRYPT_FNAME_MAX_UNDIGESTED_SIZE,
386			      sizeof(struct fscrypt_digested_name)),
387			GFP_KERNEL);
388	if (fname->crypto_buf.name == NULL)
389		return -ENOMEM;
390
391	ret = digest_decode(iname->name + digested, iname->len - digested,
392				fname->crypto_buf.name);
393	if (ret < 0) {
 
394		ret = -ENOENT;
395		goto errout;
396	}
397	fname->crypto_buf.len = ret;
398	if (digested) {
399		const struct fscrypt_digested_name *n =
400			(const void *)fname->crypto_buf.name;
401		fname->hash = n->hash;
402		fname->minor_hash = n->minor_hash;
403	} else {
404		fname->disk_name.name = fname->crypto_buf.name;
405		fname->disk_name.len = fname->crypto_buf.len;
 
406	}
407	return 0;
408
409errout:
410	kfree(fname->crypto_buf.name);
411	return ret;
412}
413EXPORT_SYMBOL(fscrypt_setup_filename);
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * This contains functions for filename crypto management
  4 *
  5 * Copyright (C) 2015, Google, Inc.
  6 * Copyright (C) 2015, Motorola Mobility
  7 *
  8 * Written by Uday Savagaonkar, 2014.
  9 * Modified by Jaegeuk Kim, 2015.
 10 *
 11 * This has not yet undergone a rigorous security audit.
 12 */
 13
 14#include <linux/namei.h>
 15#include <linux/scatterlist.h>
 16#include <crypto/hash.h>
 17#include <crypto/sha2.h>
 18#include <crypto/skcipher.h>
 19#include "fscrypt_private.h"
 20
 21/*
 22 * struct fscrypt_nokey_name - identifier for directory entry when key is absent
 23 *
 24 * When userspace lists an encrypted directory without access to the key, the
 25 * filesystem must present a unique "no-key name" for each filename that allows
 26 * it to find the directory entry again if requested.  Naively, that would just
 27 * mean using the ciphertext filenames.  However, since the ciphertext filenames
 28 * can contain illegal characters ('\0' and '/'), they must be encoded in some
 29 * way.  We use base64.  But that can cause names to exceed NAME_MAX (255
 30 * bytes), so we also need to use a strong hash to abbreviate long names.
 31 *
 32 * The filesystem may also need another kind of hash, the "dirhash", to quickly
 33 * find the directory entry.  Since filesystems normally compute the dirhash
 34 * over the on-disk filename (i.e. the ciphertext), it's not computable from
 35 * no-key names that abbreviate the ciphertext using the strong hash to fit in
 36 * NAME_MAX.  It's also not computable if it's a keyed hash taken over the
 37 * plaintext (but it may still be available in the on-disk directory entry);
 38 * casefolded directories use this type of dirhash.  At least in these cases,
 39 * each no-key name must include the name's dirhash too.
 40 *
 41 * To meet all these requirements, we base64-encode the following
 42 * variable-length structure.  It contains the dirhash, or 0's if the filesystem
 43 * didn't provide one; up to 149 bytes of the ciphertext name; and for
 44 * ciphertexts longer than 149 bytes, also the SHA-256 of the remaining bytes.
 45 *
 46 * This ensures that each no-key name contains everything needed to find the
 47 * directory entry again, contains only legal characters, doesn't exceed
 48 * NAME_MAX, is unambiguous unless there's a SHA-256 collision, and that we only
 49 * take the performance hit of SHA-256 on very long filenames (which are rare).
 50 */
 51struct fscrypt_nokey_name {
 52	u32 dirhash[2];
 53	u8 bytes[149];
 54	u8 sha256[SHA256_DIGEST_SIZE];
 55}; /* 189 bytes => 252 bytes base64-encoded, which is <= NAME_MAX (255) */
 56
 57/*
 58 * Decoded size of max-size nokey name, i.e. a name that was abbreviated using
 59 * the strong hash and thus includes the 'sha256' field.  This isn't simply
 60 * sizeof(struct fscrypt_nokey_name), as the padding at the end isn't included.
 61 */
 62#define FSCRYPT_NOKEY_NAME_MAX	offsetofend(struct fscrypt_nokey_name, sha256)
 63
 64static inline bool fscrypt_is_dot_dotdot(const struct qstr *str)
 65{
 66	if (str->len == 1 && str->name[0] == '.')
 67		return true;
 68
 69	if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
 70		return true;
 71
 72	return false;
 73}
 74
 75/**
 76 * fscrypt_fname_encrypt() - encrypt a filename
 77 * @inode: inode of the parent directory (for regular filenames)
 78 *	   or of the symlink (for symlink targets)
 79 * @iname: the filename to encrypt
 80 * @out: (output) the encrypted filename
 81 * @olen: size of the encrypted filename.  It must be at least @iname->len.
 82 *	  Any extra space is filled with NUL padding before encryption.
 83 *
 84 * Return: 0 on success, -errno on failure
 85 */
 86int fscrypt_fname_encrypt(const struct inode *inode, const struct qstr *iname,
 87			  u8 *out, unsigned int olen)
 88{
 89	struct skcipher_request *req = NULL;
 90	DECLARE_CRYPTO_WAIT(wait);
 91	const struct fscrypt_info *ci = inode->i_crypt_info;
 92	struct crypto_skcipher *tfm = ci->ci_enc_key.tfm;
 93	union fscrypt_iv iv;
 94	struct scatterlist sg;
 95	int res;
 96
 97	/*
 98	 * Copy the filename to the output buffer for encrypting in-place and
 99	 * pad it with the needed number of NUL bytes.
100	 */
101	if (WARN_ON(olen < iname->len))
102		return -ENOBUFS;
103	memcpy(out, iname->name, iname->len);
104	memset(out + iname->len, 0, olen - iname->len);
105
106	/* Initialize the IV */
107	fscrypt_generate_iv(&iv, 0, ci);
108
109	/* Set up the encryption request */
110	req = skcipher_request_alloc(tfm, GFP_NOFS);
111	if (!req)
 
 
112		return -ENOMEM;
 
113	skcipher_request_set_callback(req,
114			CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
115			crypto_req_done, &wait);
116	sg_init_one(&sg, out, olen);
117	skcipher_request_set_crypt(req, &sg, &sg, olen, &iv);
118
119	/* Do the encryption */
120	res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
121	skcipher_request_free(req);
122	if (res < 0) {
123		fscrypt_err(inode, "Filename encryption failed: %d", res);
 
124		return res;
125	}
126
127	return 0;
128}
129
130/**
131 * fname_decrypt() - decrypt a filename
132 * @inode: inode of the parent directory (for regular filenames)
133 *	   or of the symlink (for symlink targets)
134 * @iname: the encrypted filename to decrypt
135 * @oname: (output) the decrypted filename.  The caller must have allocated
136 *	   enough space for this, e.g. using fscrypt_fname_alloc_buffer().
137 *
138 * Return: 0 on success, -errno on failure
139 */
140static int fname_decrypt(const struct inode *inode,
141			 const struct fscrypt_str *iname,
142			 struct fscrypt_str *oname)
143{
144	struct skcipher_request *req = NULL;
145	DECLARE_CRYPTO_WAIT(wait);
146	struct scatterlist src_sg, dst_sg;
147	const struct fscrypt_info *ci = inode->i_crypt_info;
148	struct crypto_skcipher *tfm = ci->ci_enc_key.tfm;
149	union fscrypt_iv iv;
150	int res;
 
 
 
 
 
151
152	/* Allocate request */
153	req = skcipher_request_alloc(tfm, GFP_NOFS);
154	if (!req)
 
 
155		return -ENOMEM;
 
156	skcipher_request_set_callback(req,
157		CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
158		crypto_req_done, &wait);
159
160	/* Initialize IV */
161	fscrypt_generate_iv(&iv, 0, ci);
162
163	/* Create decryption request */
164	sg_init_one(&src_sg, iname->name, iname->len);
165	sg_init_one(&dst_sg, oname->name, oname->len);
166	skcipher_request_set_crypt(req, &src_sg, &dst_sg, iname->len, &iv);
167	res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait);
168	skcipher_request_free(req);
169	if (res < 0) {
170		fscrypt_err(inode, "Filename decryption failed: %d", res);
 
171		return res;
172	}
173
174	oname->len = strnlen(oname->name, iname->len);
175	return 0;
176}
177
178static const char lookup_table[65] =
179	"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+,";
180
181#define BASE64_CHARS(nbytes)	DIV_ROUND_UP((nbytes) * 4, 3)
182
183/**
184 * base64_encode() - base64-encode some bytes
185 * @src: the bytes to encode
186 * @len: number of bytes to encode
187 * @dst: (output) the base64-encoded string.  Not NUL-terminated.
188 *
189 * Encodes the input string using characters from the set [A-Za-z0-9+,].
190 * The encoded string is roughly 4/3 times the size of the input string.
191 *
192 * Return: length of the encoded string
193 */
194static int base64_encode(const u8 *src, int len, char *dst)
195{
196	int i, bits = 0, ac = 0;
197	char *cp = dst;
198
199	for (i = 0; i < len; i++) {
200		ac += src[i] << bits;
201		bits += 8;
202		do {
203			*cp++ = lookup_table[ac & 0x3f];
204			ac >>= 6;
205			bits -= 6;
206		} while (bits >= 6);
 
207	}
208	if (bits)
209		*cp++ = lookup_table[ac & 0x3f];
210	return cp - dst;
211}
212
213static int base64_decode(const char *src, int len, u8 *dst)
214{
215	int i, bits = 0, ac = 0;
216	const char *p;
217	u8 *cp = dst;
218
219	for (i = 0; i < len; i++) {
220		p = strchr(lookup_table, src[i]);
221		if (p == NULL || src[i] == 0)
222			return -2;
223		ac += (p - lookup_table) << bits;
224		bits += 6;
225		if (bits >= 8) {
226			*cp++ = ac & 0xff;
227			ac >>= 8;
228			bits -= 8;
229		}
 
230	}
231	if (ac)
232		return -1;
233	return cp - dst;
234}
235
236bool fscrypt_fname_encrypted_size(const union fscrypt_policy *policy,
237				  u32 orig_len, u32 max_len,
238				  u32 *encrypted_len_ret)
239{
240	int padding = 4 << (fscrypt_policy_flags(policy) &
241			    FSCRYPT_POLICY_FLAGS_PAD_MASK);
242	u32 encrypted_len;
243
244	if (orig_len > max_len)
245		return false;
246	encrypted_len = max(orig_len, (u32)FS_CRYPTO_BLOCK_SIZE);
247	encrypted_len = round_up(encrypted_len, padding);
248	*encrypted_len_ret = min(encrypted_len, max_len);
249	return true;
250}
251
252/**
253 * fscrypt_fname_alloc_buffer() - allocate a buffer for presented filenames
254 * @max_encrypted_len: maximum length of encrypted filenames the buffer will be
255 *		       used to present
256 * @crypto_str: (output) buffer to allocate
257 *
258 * Allocate a buffer that is large enough to hold any decrypted or encoded
259 * filename (null-terminated), for the given maximum encrypted filename length.
260 *
261 * Return: 0 on success, -errno on failure
262 */
263int fscrypt_fname_alloc_buffer(u32 max_encrypted_len,
 
264			       struct fscrypt_str *crypto_str)
265{
266	const u32 max_encoded_len = BASE64_CHARS(FSCRYPT_NOKEY_NAME_MAX);
 
 
267	u32 max_presented_len;
268
269	max_presented_len = max(max_encoded_len, max_encrypted_len);
270
271	crypto_str->name = kmalloc(max_presented_len + 1, GFP_NOFS);
272	if (!crypto_str->name)
273		return -ENOMEM;
274	crypto_str->len = max_presented_len;
275	return 0;
276}
277EXPORT_SYMBOL(fscrypt_fname_alloc_buffer);
278
279/**
280 * fscrypt_fname_free_buffer() - free a buffer for presented filenames
281 * @crypto_str: the buffer to free
282 *
283 * Free a buffer that was allocated by fscrypt_fname_alloc_buffer().
284 */
285void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str)
286{
287	if (!crypto_str)
288		return;
289	kfree(crypto_str->name);
290	crypto_str->name = NULL;
291}
292EXPORT_SYMBOL(fscrypt_fname_free_buffer);
293
294/**
295 * fscrypt_fname_disk_to_usr() - convert an encrypted filename to
296 *				 user-presentable form
297 * @inode: inode of the parent directory (for regular filenames)
298 *	   or of the symlink (for symlink targets)
299 * @hash: first part of the name's dirhash, if applicable.  This only needs to
300 *	  be provided if the filename is located in an indexed directory whose
301 *	  encryption key may be unavailable.  Not needed for symlink targets.
302 * @minor_hash: second part of the name's dirhash, if applicable
303 * @iname: encrypted filename to convert.  May also be "." or "..", which
304 *	   aren't actually encrypted.
305 * @oname: output buffer for the user-presentable filename.  The caller must
306 *	   have allocated enough space for this, e.g. using
307 *	   fscrypt_fname_alloc_buffer().
308 *
309 * If the key is available, we'll decrypt the disk name.  Otherwise, we'll
310 * encode it for presentation in fscrypt_nokey_name format.
311 * See struct fscrypt_nokey_name for details.
312 *
313 * Return: 0 on success, -errno on failure
314 */
315int fscrypt_fname_disk_to_usr(const struct inode *inode,
316			      u32 hash, u32 minor_hash,
317			      const struct fscrypt_str *iname,
318			      struct fscrypt_str *oname)
319{
320	const struct qstr qname = FSTR_TO_QSTR(iname);
321	struct fscrypt_nokey_name nokey_name;
322	u32 size; /* size of the unencoded no-key name */
323
324	if (fscrypt_is_dot_dotdot(&qname)) {
325		oname->name[0] = '.';
326		oname->name[iname->len - 1] = '.';
327		oname->len = iname->len;
328		return 0;
329	}
330
331	if (iname->len < FS_CRYPTO_BLOCK_SIZE)
332		return -EUCLEAN;
333
334	if (fscrypt_has_encryption_key(inode))
335		return fname_decrypt(inode, iname, oname);
336
337	/*
338	 * Sanity check that struct fscrypt_nokey_name doesn't have padding
339	 * between fields and that its encoded size never exceeds NAME_MAX.
340	 */
341	BUILD_BUG_ON(offsetofend(struct fscrypt_nokey_name, dirhash) !=
342		     offsetof(struct fscrypt_nokey_name, bytes));
343	BUILD_BUG_ON(offsetofend(struct fscrypt_nokey_name, bytes) !=
344		     offsetof(struct fscrypt_nokey_name, sha256));
345	BUILD_BUG_ON(BASE64_CHARS(FSCRYPT_NOKEY_NAME_MAX) > NAME_MAX);
346
347	nokey_name.dirhash[0] = hash;
348	nokey_name.dirhash[1] = minor_hash;
349
350	if (iname->len <= sizeof(nokey_name.bytes)) {
351		memcpy(nokey_name.bytes, iname->name, iname->len);
352		size = offsetof(struct fscrypt_nokey_name, bytes[iname->len]);
353	} else {
354		memcpy(nokey_name.bytes, iname->name, sizeof(nokey_name.bytes));
355		/* Compute strong hash of remaining part of name. */
356		sha256(&iname->name[sizeof(nokey_name.bytes)],
357		       iname->len - sizeof(nokey_name.bytes),
358		       nokey_name.sha256);
359		size = FSCRYPT_NOKEY_NAME_MAX;
360	}
361	oname->len = base64_encode((const u8 *)&nokey_name, size, oname->name);
 
 
 
 
 
362	return 0;
363}
364EXPORT_SYMBOL(fscrypt_fname_disk_to_usr);
365
366/**
367 * fscrypt_setup_filename() - prepare to search a possibly encrypted directory
368 * @dir: the directory that will be searched
369 * @iname: the user-provided filename being searched for
370 * @lookup: 1 if we're allowed to proceed without the key because it's
371 *	->lookup() or we're finding the dir_entry for deletion; 0 if we cannot
372 *	proceed without the key because we're going to create the dir_entry.
373 * @fname: the filename information to be filled in
374 *
375 * Given a user-provided filename @iname, this function sets @fname->disk_name
376 * to the name that would be stored in the on-disk directory entry, if possible.
377 * If the directory is unencrypted this is simply @iname.  Else, if we have the
378 * directory's encryption key, then @iname is the plaintext, so we encrypt it to
379 * get the disk_name.
380 *
381 * Else, for keyless @lookup operations, @iname should be a no-key name, so we
382 * decode it to get the struct fscrypt_nokey_name.  Non-@lookup operations will
383 * be impossible in this case, so we fail them with ENOKEY.
 
384 *
385 * If successful, fscrypt_free_filename() must be called later to clean up.
386 *
387 * Return: 0 on success, -errno on failure
388 */
389int fscrypt_setup_filename(struct inode *dir, const struct qstr *iname,
390			      int lookup, struct fscrypt_name *fname)
391{
392	struct fscrypt_nokey_name *nokey_name;
393	int ret;
 
394
395	memset(fname, 0, sizeof(struct fscrypt_name));
396	fname->usr_fname = iname;
397
398	if (!IS_ENCRYPTED(dir) || fscrypt_is_dot_dotdot(iname)) {
399		fname->disk_name.name = (unsigned char *)iname->name;
400		fname->disk_name.len = iname->len;
401		return 0;
402	}
403	ret = fscrypt_get_encryption_info(dir, lookup);
404	if (ret)
405		return ret;
406
407	if (fscrypt_has_encryption_key(dir)) {
408		if (!fscrypt_fname_encrypted_size(&dir->i_crypt_info->ci_policy,
409						  iname->len,
410						  dir->i_sb->s_cop->max_namelen,
411						  &fname->crypto_buf.len))
412			return -ENAMETOOLONG;
413		fname->crypto_buf.name = kmalloc(fname->crypto_buf.len,
414						 GFP_NOFS);
415		if (!fname->crypto_buf.name)
416			return -ENOMEM;
417
418		ret = fscrypt_fname_encrypt(dir, iname, fname->crypto_buf.name,
419					    fname->crypto_buf.len);
420		if (ret)
421			goto errout;
422		fname->disk_name.name = fname->crypto_buf.name;
423		fname->disk_name.len = fname->crypto_buf.len;
424		return 0;
425	}
426	if (!lookup)
427		return -ENOKEY;
428	fname->is_nokey_name = true;
429
430	/*
431	 * We don't have the key and we are doing a lookup; decode the
432	 * user-supplied name
433	 */
 
 
 
 
 
 
 
 
 
 
 
434
435	if (iname->len > BASE64_CHARS(FSCRYPT_NOKEY_NAME_MAX))
436		return -ENOENT;
437
438	fname->crypto_buf.name = kmalloc(FSCRYPT_NOKEY_NAME_MAX, GFP_KERNEL);
439	if (fname->crypto_buf.name == NULL)
440		return -ENOMEM;
441
442	ret = base64_decode(iname->name, iname->len, fname->crypto_buf.name);
443	if (ret < (int)offsetof(struct fscrypt_nokey_name, bytes[1]) ||
444	    (ret > offsetof(struct fscrypt_nokey_name, sha256) &&
445	     ret != FSCRYPT_NOKEY_NAME_MAX)) {
446		ret = -ENOENT;
447		goto errout;
448	}
449	fname->crypto_buf.len = ret;
450
451	nokey_name = (void *)fname->crypto_buf.name;
452	fname->hash = nokey_name->dirhash[0];
453	fname->minor_hash = nokey_name->dirhash[1];
454	if (ret != FSCRYPT_NOKEY_NAME_MAX) {
455		/* The full ciphertext filename is available. */
456		fname->disk_name.name = nokey_name->bytes;
457		fname->disk_name.len =
458			ret - offsetof(struct fscrypt_nokey_name, bytes);
459	}
460	return 0;
461
462errout:
463	kfree(fname->crypto_buf.name);
464	return ret;
465}
466EXPORT_SYMBOL(fscrypt_setup_filename);
467
468/**
469 * fscrypt_match_name() - test whether the given name matches a directory entry
470 * @fname: the name being searched for
471 * @de_name: the name from the directory entry
472 * @de_name_len: the length of @de_name in bytes
473 *
474 * Normally @fname->disk_name will be set, and in that case we simply compare
475 * that to the name stored in the directory entry.  The only exception is that
476 * if we don't have the key for an encrypted directory and the name we're
477 * looking for is very long, then we won't have the full disk_name and instead
478 * we'll need to match against a fscrypt_nokey_name that includes a strong hash.
479 *
480 * Return: %true if the name matches, otherwise %false.
481 */
482bool fscrypt_match_name(const struct fscrypt_name *fname,
483			const u8 *de_name, u32 de_name_len)
484{
485	const struct fscrypt_nokey_name *nokey_name =
486		(const void *)fname->crypto_buf.name;
487	u8 digest[SHA256_DIGEST_SIZE];
488
489	if (likely(fname->disk_name.name)) {
490		if (de_name_len != fname->disk_name.len)
491			return false;
492		return !memcmp(de_name, fname->disk_name.name, de_name_len);
493	}
494	if (de_name_len <= sizeof(nokey_name->bytes))
495		return false;
496	if (memcmp(de_name, nokey_name->bytes, sizeof(nokey_name->bytes)))
497		return false;
498	sha256(&de_name[sizeof(nokey_name->bytes)],
499	       de_name_len - sizeof(nokey_name->bytes), digest);
500	return !memcmp(digest, nokey_name->sha256, sizeof(digest));
501}
502EXPORT_SYMBOL_GPL(fscrypt_match_name);
503
504/**
505 * fscrypt_fname_siphash() - calculate the SipHash of a filename
506 * @dir: the parent directory
507 * @name: the filename to calculate the SipHash of
508 *
509 * Given a plaintext filename @name and a directory @dir which uses SipHash as
510 * its dirhash method and has had its fscrypt key set up, this function
511 * calculates the SipHash of that name using the directory's secret dirhash key.
512 *
513 * Return: the SipHash of @name using the hash key of @dir
514 */
515u64 fscrypt_fname_siphash(const struct inode *dir, const struct qstr *name)
516{
517	const struct fscrypt_info *ci = dir->i_crypt_info;
518
519	WARN_ON(!ci->ci_dirhash_key_initialized);
520
521	return siphash(name->name, name->len, &ci->ci_dirhash_key);
522}
523EXPORT_SYMBOL_GPL(fscrypt_fname_siphash);
524
525/*
526 * Validate dentries in encrypted directories to make sure we aren't potentially
527 * caching stale dentries after a key has been added.
528 */
529int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags)
530{
531	struct dentry *dir;
532	int err;
533	int valid;
534
535	/*
536	 * Plaintext names are always valid, since fscrypt doesn't support
537	 * reverting to no-key names without evicting the directory's inode
538	 * -- which implies eviction of the dentries in the directory.
539	 */
540	if (!(dentry->d_flags & DCACHE_NOKEY_NAME))
541		return 1;
542
543	/*
544	 * No-key name; valid if the directory's key is still unavailable.
545	 *
546	 * Although fscrypt forbids rename() on no-key names, we still must use
547	 * dget_parent() here rather than use ->d_parent directly.  That's
548	 * because a corrupted fs image may contain directory hard links, which
549	 * the VFS handles by moving the directory's dentry tree in the dcache
550	 * each time ->lookup() finds the directory and it already has a dentry
551	 * elsewhere.  Thus ->d_parent can be changing, and we must safely grab
552	 * a reference to some ->d_parent to prevent it from being freed.
553	 */
554
555	if (flags & LOOKUP_RCU)
556		return -ECHILD;
557
558	dir = dget_parent(dentry);
559	/*
560	 * Pass allow_unsupported=true, so that files with an unsupported
561	 * encryption policy can be deleted.
562	 */
563	err = fscrypt_get_encryption_info(d_inode(dir), true);
564	valid = !fscrypt_has_encryption_key(d_inode(dir));
565	dput(dir);
566
567	if (err < 0)
568		return err;
569
570	return valid;
571}
572EXPORT_SYMBOL_GPL(fscrypt_d_revalidate);