Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1/*
   2 * Kernel-based Virtual Machine driver for Linux
   3 *
   4 * This module enables machines with Intel VT-x extensions to run virtual
   5 * machines without emulation or binary translation.
   6 *
   7 * MMU support
   8 *
   9 * Copyright (C) 2006 Qumranet, Inc.
  10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  11 *
  12 * Authors:
  13 *   Yaniv Kamay  <yaniv@qumranet.com>
  14 *   Avi Kivity   <avi@qumranet.com>
  15 *
  16 * This work is licensed under the terms of the GNU GPL, version 2.  See
  17 * the COPYING file in the top-level directory.
  18 *
  19 */
  20
  21#include "irq.h"
  22#include "mmu.h"
  23#include "x86.h"
  24#include "kvm_cache_regs.h"
  25#include "cpuid.h"
  26
  27#include <linux/kvm_host.h>
  28#include <linux/types.h>
  29#include <linux/string.h>
  30#include <linux/mm.h>
  31#include <linux/highmem.h>
  32#include <linux/moduleparam.h>
  33#include <linux/export.h>
  34#include <linux/swap.h>
  35#include <linux/hugetlb.h>
  36#include <linux/compiler.h>
  37#include <linux/srcu.h>
  38#include <linux/slab.h>
  39#include <linux/sched/signal.h>
  40#include <linux/uaccess.h>
  41#include <linux/hash.h>
  42#include <linux/kern_levels.h>
  43
  44#include <asm/page.h>
  45#include <asm/pat.h>
  46#include <asm/cmpxchg.h>
  47#include <asm/io.h>
  48#include <asm/vmx.h>
  49#include <asm/kvm_page_track.h>
  50#include "trace.h"
  51
  52/*
  53 * When setting this variable to true it enables Two-Dimensional-Paging
  54 * where the hardware walks 2 page tables:
  55 * 1. the guest-virtual to guest-physical
  56 * 2. while doing 1. it walks guest-physical to host-physical
  57 * If the hardware supports that we don't need to do shadow paging.
  58 */
  59bool tdp_enabled = false;
  60
  61enum {
  62	AUDIT_PRE_PAGE_FAULT,
  63	AUDIT_POST_PAGE_FAULT,
  64	AUDIT_PRE_PTE_WRITE,
  65	AUDIT_POST_PTE_WRITE,
  66	AUDIT_PRE_SYNC,
  67	AUDIT_POST_SYNC
  68};
  69
  70#undef MMU_DEBUG
  71
  72#ifdef MMU_DEBUG
  73static bool dbg = 0;
  74module_param(dbg, bool, 0644);
  75
  76#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  77#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  78#define MMU_WARN_ON(x) WARN_ON(x)
  79#else
  80#define pgprintk(x...) do { } while (0)
  81#define rmap_printk(x...) do { } while (0)
  82#define MMU_WARN_ON(x) do { } while (0)
  83#endif
  84
  85#define PTE_PREFETCH_NUM		8
  86
  87#define PT_FIRST_AVAIL_BITS_SHIFT 10
  88#define PT64_SECOND_AVAIL_BITS_SHIFT 52
  89
  90#define PT64_LEVEL_BITS 9
  91
  92#define PT64_LEVEL_SHIFT(level) \
  93		(PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  94
  95#define PT64_INDEX(address, level)\
  96	(((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  97
  98
  99#define PT32_LEVEL_BITS 10
 100
 101#define PT32_LEVEL_SHIFT(level) \
 102		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
 103
 104#define PT32_LVL_OFFSET_MASK(level) \
 105	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
 106						* PT32_LEVEL_BITS))) - 1))
 107
 108#define PT32_INDEX(address, level)\
 109	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
 110
 111
 112#define PT64_BASE_ADDR_MASK __sme_clr((((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1)))
 113#define PT64_DIR_BASE_ADDR_MASK \
 114	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
 115#define PT64_LVL_ADDR_MASK(level) \
 116	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
 117						* PT64_LEVEL_BITS))) - 1))
 118#define PT64_LVL_OFFSET_MASK(level) \
 119	(PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
 120						* PT64_LEVEL_BITS))) - 1))
 121
 122#define PT32_BASE_ADDR_MASK PAGE_MASK
 123#define PT32_DIR_BASE_ADDR_MASK \
 124	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
 125#define PT32_LVL_ADDR_MASK(level) \
 126	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
 127					    * PT32_LEVEL_BITS))) - 1))
 128
 129#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
 130			| shadow_x_mask | shadow_nx_mask | shadow_me_mask)
 131
 132#define ACC_EXEC_MASK    1
 133#define ACC_WRITE_MASK   PT_WRITABLE_MASK
 134#define ACC_USER_MASK    PT_USER_MASK
 135#define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
 136
 137/* The mask for the R/X bits in EPT PTEs */
 138#define PT64_EPT_READABLE_MASK			0x1ull
 139#define PT64_EPT_EXECUTABLE_MASK		0x4ull
 140
 141#include <trace/events/kvm.h>
 142
 143#define CREATE_TRACE_POINTS
 144#include "mmutrace.h"
 145
 146#define SPTE_HOST_WRITEABLE	(1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
 147#define SPTE_MMU_WRITEABLE	(1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
 148
 149#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
 150
 151/* make pte_list_desc fit well in cache line */
 152#define PTE_LIST_EXT 3
 153
 154/*
 155 * Return values of handle_mmio_page_fault and mmu.page_fault:
 156 * RET_PF_RETRY: let CPU fault again on the address.
 157 * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
 158 *
 159 * For handle_mmio_page_fault only:
 160 * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
 161 */
 162enum {
 163	RET_PF_RETRY = 0,
 164	RET_PF_EMULATE = 1,
 165	RET_PF_INVALID = 2,
 166};
 167
 168struct pte_list_desc {
 169	u64 *sptes[PTE_LIST_EXT];
 170	struct pte_list_desc *more;
 171};
 172
 173struct kvm_shadow_walk_iterator {
 174	u64 addr;
 175	hpa_t shadow_addr;
 176	u64 *sptep;
 177	int level;
 178	unsigned index;
 179};
 180
 181#define for_each_shadow_entry(_vcpu, _addr, _walker)    \
 182	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
 183	     shadow_walk_okay(&(_walker));			\
 184	     shadow_walk_next(&(_walker)))
 185
 186#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
 187	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
 188	     shadow_walk_okay(&(_walker)) &&				\
 189		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
 190	     __shadow_walk_next(&(_walker), spte))
 191
 192static struct kmem_cache *pte_list_desc_cache;
 193static struct kmem_cache *mmu_page_header_cache;
 194static struct percpu_counter kvm_total_used_mmu_pages;
 195
 196static u64 __read_mostly shadow_nx_mask;
 197static u64 __read_mostly shadow_x_mask;	/* mutual exclusive with nx_mask */
 198static u64 __read_mostly shadow_user_mask;
 199static u64 __read_mostly shadow_accessed_mask;
 200static u64 __read_mostly shadow_dirty_mask;
 201static u64 __read_mostly shadow_mmio_mask;
 202static u64 __read_mostly shadow_mmio_value;
 203static u64 __read_mostly shadow_present_mask;
 204static u64 __read_mostly shadow_me_mask;
 205
 206/*
 207 * SPTEs used by MMUs without A/D bits are marked with shadow_acc_track_value.
 208 * Non-present SPTEs with shadow_acc_track_value set are in place for access
 209 * tracking.
 210 */
 211static u64 __read_mostly shadow_acc_track_mask;
 212static const u64 shadow_acc_track_value = SPTE_SPECIAL_MASK;
 213
 214/*
 215 * The mask/shift to use for saving the original R/X bits when marking the PTE
 216 * as not-present for access tracking purposes. We do not save the W bit as the
 217 * PTEs being access tracked also need to be dirty tracked, so the W bit will be
 218 * restored only when a write is attempted to the page.
 219 */
 220static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
 221						    PT64_EPT_EXECUTABLE_MASK;
 222static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
 223
 224static void mmu_spte_set(u64 *sptep, u64 spte);
 225static void mmu_free_roots(struct kvm_vcpu *vcpu);
 226
 227void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value)
 228{
 229	BUG_ON((mmio_mask & mmio_value) != mmio_value);
 230	shadow_mmio_value = mmio_value | SPTE_SPECIAL_MASK;
 231	shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
 232}
 233EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
 234
 235static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
 236{
 237	return sp->role.ad_disabled;
 238}
 239
 240static inline bool spte_ad_enabled(u64 spte)
 241{
 242	MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
 243	return !(spte & shadow_acc_track_value);
 244}
 245
 246static inline u64 spte_shadow_accessed_mask(u64 spte)
 247{
 248	MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
 249	return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
 250}
 251
 252static inline u64 spte_shadow_dirty_mask(u64 spte)
 253{
 254	MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
 255	return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
 256}
 257
 258static inline bool is_access_track_spte(u64 spte)
 259{
 260	return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
 261}
 262
 263/*
 264 * the low bit of the generation number is always presumed to be zero.
 265 * This disables mmio caching during memslot updates.  The concept is
 266 * similar to a seqcount but instead of retrying the access we just punt
 267 * and ignore the cache.
 268 *
 269 * spte bits 3-11 are used as bits 1-9 of the generation number,
 270 * the bits 52-61 are used as bits 10-19 of the generation number.
 271 */
 272#define MMIO_SPTE_GEN_LOW_SHIFT		2
 273#define MMIO_SPTE_GEN_HIGH_SHIFT	52
 274
 275#define MMIO_GEN_SHIFT			20
 276#define MMIO_GEN_LOW_SHIFT		10
 277#define MMIO_GEN_LOW_MASK		((1 << MMIO_GEN_LOW_SHIFT) - 2)
 278#define MMIO_GEN_MASK			((1 << MMIO_GEN_SHIFT) - 1)
 279
 280static u64 generation_mmio_spte_mask(unsigned int gen)
 281{
 282	u64 mask;
 283
 284	WARN_ON(gen & ~MMIO_GEN_MASK);
 285
 286	mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
 287	mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
 288	return mask;
 289}
 290
 291static unsigned int get_mmio_spte_generation(u64 spte)
 292{
 293	unsigned int gen;
 294
 295	spte &= ~shadow_mmio_mask;
 296
 297	gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
 298	gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
 299	return gen;
 300}
 301
 302static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
 303{
 304	return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
 305}
 306
 307static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
 308			   unsigned access)
 309{
 310	unsigned int gen = kvm_current_mmio_generation(vcpu);
 311	u64 mask = generation_mmio_spte_mask(gen);
 312
 313	access &= ACC_WRITE_MASK | ACC_USER_MASK;
 314	mask |= shadow_mmio_value | access | gfn << PAGE_SHIFT;
 315
 316	trace_mark_mmio_spte(sptep, gfn, access, gen);
 317	mmu_spte_set(sptep, mask);
 318}
 319
 320static bool is_mmio_spte(u64 spte)
 321{
 322	return (spte & shadow_mmio_mask) == shadow_mmio_value;
 323}
 324
 325static gfn_t get_mmio_spte_gfn(u64 spte)
 326{
 327	u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
 328	return (spte & ~mask) >> PAGE_SHIFT;
 329}
 330
 331static unsigned get_mmio_spte_access(u64 spte)
 332{
 333	u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
 334	return (spte & ~mask) & ~PAGE_MASK;
 335}
 336
 337static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
 338			  kvm_pfn_t pfn, unsigned access)
 339{
 340	if (unlikely(is_noslot_pfn(pfn))) {
 341		mark_mmio_spte(vcpu, sptep, gfn, access);
 342		return true;
 343	}
 344
 345	return false;
 346}
 347
 348static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
 349{
 350	unsigned int kvm_gen, spte_gen;
 351
 352	kvm_gen = kvm_current_mmio_generation(vcpu);
 353	spte_gen = get_mmio_spte_generation(spte);
 354
 355	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
 356	return likely(kvm_gen == spte_gen);
 357}
 358
 359/*
 360 * Sets the shadow PTE masks used by the MMU.
 361 *
 362 * Assumptions:
 363 *  - Setting either @accessed_mask or @dirty_mask requires setting both
 364 *  - At least one of @accessed_mask or @acc_track_mask must be set
 365 */
 366void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
 367		u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
 368		u64 acc_track_mask, u64 me_mask)
 369{
 370	BUG_ON(!dirty_mask != !accessed_mask);
 371	BUG_ON(!accessed_mask && !acc_track_mask);
 372	BUG_ON(acc_track_mask & shadow_acc_track_value);
 373
 374	shadow_user_mask = user_mask;
 375	shadow_accessed_mask = accessed_mask;
 376	shadow_dirty_mask = dirty_mask;
 377	shadow_nx_mask = nx_mask;
 378	shadow_x_mask = x_mask;
 379	shadow_present_mask = p_mask;
 380	shadow_acc_track_mask = acc_track_mask;
 381	shadow_me_mask = me_mask;
 382}
 383EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
 384
 385static void kvm_mmu_clear_all_pte_masks(void)
 386{
 387	shadow_user_mask = 0;
 388	shadow_accessed_mask = 0;
 389	shadow_dirty_mask = 0;
 390	shadow_nx_mask = 0;
 391	shadow_x_mask = 0;
 392	shadow_mmio_mask = 0;
 393	shadow_present_mask = 0;
 394	shadow_acc_track_mask = 0;
 395}
 396
 397static int is_cpuid_PSE36(void)
 398{
 399	return 1;
 400}
 401
 402static int is_nx(struct kvm_vcpu *vcpu)
 403{
 404	return vcpu->arch.efer & EFER_NX;
 405}
 406
 407static int is_shadow_present_pte(u64 pte)
 408{
 409	return (pte != 0) && !is_mmio_spte(pte);
 410}
 411
 412static int is_large_pte(u64 pte)
 413{
 414	return pte & PT_PAGE_SIZE_MASK;
 415}
 416
 417static int is_last_spte(u64 pte, int level)
 418{
 419	if (level == PT_PAGE_TABLE_LEVEL)
 420		return 1;
 421	if (is_large_pte(pte))
 422		return 1;
 423	return 0;
 424}
 425
 426static bool is_executable_pte(u64 spte)
 427{
 428	return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
 429}
 430
 431static kvm_pfn_t spte_to_pfn(u64 pte)
 432{
 433	return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
 434}
 435
 436static gfn_t pse36_gfn_delta(u32 gpte)
 437{
 438	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
 439
 440	return (gpte & PT32_DIR_PSE36_MASK) << shift;
 441}
 442
 443#ifdef CONFIG_X86_64
 444static void __set_spte(u64 *sptep, u64 spte)
 445{
 446	WRITE_ONCE(*sptep, spte);
 447}
 448
 449static void __update_clear_spte_fast(u64 *sptep, u64 spte)
 450{
 451	WRITE_ONCE(*sptep, spte);
 452}
 453
 454static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
 455{
 456	return xchg(sptep, spte);
 457}
 458
 459static u64 __get_spte_lockless(u64 *sptep)
 460{
 461	return READ_ONCE(*sptep);
 462}
 463#else
 464union split_spte {
 465	struct {
 466		u32 spte_low;
 467		u32 spte_high;
 468	};
 469	u64 spte;
 470};
 471
 472static void count_spte_clear(u64 *sptep, u64 spte)
 473{
 474	struct kvm_mmu_page *sp =  page_header(__pa(sptep));
 475
 476	if (is_shadow_present_pte(spte))
 477		return;
 478
 479	/* Ensure the spte is completely set before we increase the count */
 480	smp_wmb();
 481	sp->clear_spte_count++;
 482}
 483
 484static void __set_spte(u64 *sptep, u64 spte)
 485{
 486	union split_spte *ssptep, sspte;
 487
 488	ssptep = (union split_spte *)sptep;
 489	sspte = (union split_spte)spte;
 490
 491	ssptep->spte_high = sspte.spte_high;
 492
 493	/*
 494	 * If we map the spte from nonpresent to present, We should store
 495	 * the high bits firstly, then set present bit, so cpu can not
 496	 * fetch this spte while we are setting the spte.
 497	 */
 498	smp_wmb();
 499
 500	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
 501}
 502
 503static void __update_clear_spte_fast(u64 *sptep, u64 spte)
 504{
 505	union split_spte *ssptep, sspte;
 506
 507	ssptep = (union split_spte *)sptep;
 508	sspte = (union split_spte)spte;
 509
 510	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
 511
 512	/*
 513	 * If we map the spte from present to nonpresent, we should clear
 514	 * present bit firstly to avoid vcpu fetch the old high bits.
 515	 */
 516	smp_wmb();
 517
 518	ssptep->spte_high = sspte.spte_high;
 519	count_spte_clear(sptep, spte);
 520}
 521
 522static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
 523{
 524	union split_spte *ssptep, sspte, orig;
 525
 526	ssptep = (union split_spte *)sptep;
 527	sspte = (union split_spte)spte;
 528
 529	/* xchg acts as a barrier before the setting of the high bits */
 530	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
 531	orig.spte_high = ssptep->spte_high;
 532	ssptep->spte_high = sspte.spte_high;
 533	count_spte_clear(sptep, spte);
 534
 535	return orig.spte;
 536}
 537
 538/*
 539 * The idea using the light way get the spte on x86_32 guest is from
 540 * gup_get_pte(arch/x86/mm/gup.c).
 541 *
 542 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
 543 * coalesces them and we are running out of the MMU lock.  Therefore
 544 * we need to protect against in-progress updates of the spte.
 545 *
 546 * Reading the spte while an update is in progress may get the old value
 547 * for the high part of the spte.  The race is fine for a present->non-present
 548 * change (because the high part of the spte is ignored for non-present spte),
 549 * but for a present->present change we must reread the spte.
 550 *
 551 * All such changes are done in two steps (present->non-present and
 552 * non-present->present), hence it is enough to count the number of
 553 * present->non-present updates: if it changed while reading the spte,
 554 * we might have hit the race.  This is done using clear_spte_count.
 555 */
 556static u64 __get_spte_lockless(u64 *sptep)
 557{
 558	struct kvm_mmu_page *sp =  page_header(__pa(sptep));
 559	union split_spte spte, *orig = (union split_spte *)sptep;
 560	int count;
 561
 562retry:
 563	count = sp->clear_spte_count;
 564	smp_rmb();
 565
 566	spte.spte_low = orig->spte_low;
 567	smp_rmb();
 568
 569	spte.spte_high = orig->spte_high;
 570	smp_rmb();
 571
 572	if (unlikely(spte.spte_low != orig->spte_low ||
 573	      count != sp->clear_spte_count))
 574		goto retry;
 575
 576	return spte.spte;
 577}
 578#endif
 579
 580static bool spte_can_locklessly_be_made_writable(u64 spte)
 581{
 582	return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
 583		(SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
 584}
 585
 586static bool spte_has_volatile_bits(u64 spte)
 587{
 588	if (!is_shadow_present_pte(spte))
 589		return false;
 590
 591	/*
 592	 * Always atomically update spte if it can be updated
 593	 * out of mmu-lock, it can ensure dirty bit is not lost,
 594	 * also, it can help us to get a stable is_writable_pte()
 595	 * to ensure tlb flush is not missed.
 596	 */
 597	if (spte_can_locklessly_be_made_writable(spte) ||
 598	    is_access_track_spte(spte))
 599		return true;
 600
 601	if (spte_ad_enabled(spte)) {
 602		if ((spte & shadow_accessed_mask) == 0 ||
 603	    	    (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
 604			return true;
 605	}
 606
 607	return false;
 608}
 609
 610static bool is_accessed_spte(u64 spte)
 611{
 612	u64 accessed_mask = spte_shadow_accessed_mask(spte);
 613
 614	return accessed_mask ? spte & accessed_mask
 615			     : !is_access_track_spte(spte);
 616}
 617
 618static bool is_dirty_spte(u64 spte)
 619{
 620	u64 dirty_mask = spte_shadow_dirty_mask(spte);
 621
 622	return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
 623}
 624
 625/* Rules for using mmu_spte_set:
 626 * Set the sptep from nonpresent to present.
 627 * Note: the sptep being assigned *must* be either not present
 628 * or in a state where the hardware will not attempt to update
 629 * the spte.
 630 */
 631static void mmu_spte_set(u64 *sptep, u64 new_spte)
 632{
 633	WARN_ON(is_shadow_present_pte(*sptep));
 634	__set_spte(sptep, new_spte);
 635}
 636
 637/*
 638 * Update the SPTE (excluding the PFN), but do not track changes in its
 639 * accessed/dirty status.
 640 */
 641static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
 642{
 643	u64 old_spte = *sptep;
 644
 645	WARN_ON(!is_shadow_present_pte(new_spte));
 646
 647	if (!is_shadow_present_pte(old_spte)) {
 648		mmu_spte_set(sptep, new_spte);
 649		return old_spte;
 650	}
 651
 652	if (!spte_has_volatile_bits(old_spte))
 653		__update_clear_spte_fast(sptep, new_spte);
 654	else
 655		old_spte = __update_clear_spte_slow(sptep, new_spte);
 656
 657	WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
 658
 659	return old_spte;
 660}
 661
 662/* Rules for using mmu_spte_update:
 663 * Update the state bits, it means the mapped pfn is not changed.
 664 *
 665 * Whenever we overwrite a writable spte with a read-only one we
 666 * should flush remote TLBs. Otherwise rmap_write_protect
 667 * will find a read-only spte, even though the writable spte
 668 * might be cached on a CPU's TLB, the return value indicates this
 669 * case.
 670 *
 671 * Returns true if the TLB needs to be flushed
 672 */
 673static bool mmu_spte_update(u64 *sptep, u64 new_spte)
 674{
 675	bool flush = false;
 676	u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
 677
 678	if (!is_shadow_present_pte(old_spte))
 679		return false;
 680
 681	/*
 682	 * For the spte updated out of mmu-lock is safe, since
 683	 * we always atomically update it, see the comments in
 684	 * spte_has_volatile_bits().
 685	 */
 686	if (spte_can_locklessly_be_made_writable(old_spte) &&
 687	      !is_writable_pte(new_spte))
 688		flush = true;
 689
 690	/*
 691	 * Flush TLB when accessed/dirty states are changed in the page tables,
 692	 * to guarantee consistency between TLB and page tables.
 693	 */
 694
 695	if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
 696		flush = true;
 697		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
 698	}
 699
 700	if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
 701		flush = true;
 702		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
 703	}
 704
 705	return flush;
 706}
 707
 708/*
 709 * Rules for using mmu_spte_clear_track_bits:
 710 * It sets the sptep from present to nonpresent, and track the
 711 * state bits, it is used to clear the last level sptep.
 712 * Returns non-zero if the PTE was previously valid.
 713 */
 714static int mmu_spte_clear_track_bits(u64 *sptep)
 715{
 716	kvm_pfn_t pfn;
 717	u64 old_spte = *sptep;
 718
 719	if (!spte_has_volatile_bits(old_spte))
 720		__update_clear_spte_fast(sptep, 0ull);
 721	else
 722		old_spte = __update_clear_spte_slow(sptep, 0ull);
 723
 724	if (!is_shadow_present_pte(old_spte))
 725		return 0;
 726
 727	pfn = spte_to_pfn(old_spte);
 728
 729	/*
 730	 * KVM does not hold the refcount of the page used by
 731	 * kvm mmu, before reclaiming the page, we should
 732	 * unmap it from mmu first.
 733	 */
 734	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
 735
 736	if (is_accessed_spte(old_spte))
 737		kvm_set_pfn_accessed(pfn);
 738
 739	if (is_dirty_spte(old_spte))
 740		kvm_set_pfn_dirty(pfn);
 741
 742	return 1;
 743}
 744
 745/*
 746 * Rules for using mmu_spte_clear_no_track:
 747 * Directly clear spte without caring the state bits of sptep,
 748 * it is used to set the upper level spte.
 749 */
 750static void mmu_spte_clear_no_track(u64 *sptep)
 751{
 752	__update_clear_spte_fast(sptep, 0ull);
 753}
 754
 755static u64 mmu_spte_get_lockless(u64 *sptep)
 756{
 757	return __get_spte_lockless(sptep);
 758}
 759
 760static u64 mark_spte_for_access_track(u64 spte)
 761{
 762	if (spte_ad_enabled(spte))
 763		return spte & ~shadow_accessed_mask;
 764
 765	if (is_access_track_spte(spte))
 766		return spte;
 767
 768	/*
 769	 * Making an Access Tracking PTE will result in removal of write access
 770	 * from the PTE. So, verify that we will be able to restore the write
 771	 * access in the fast page fault path later on.
 772	 */
 773	WARN_ONCE((spte & PT_WRITABLE_MASK) &&
 774		  !spte_can_locklessly_be_made_writable(spte),
 775		  "kvm: Writable SPTE is not locklessly dirty-trackable\n");
 776
 777	WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
 778			  shadow_acc_track_saved_bits_shift),
 779		  "kvm: Access Tracking saved bit locations are not zero\n");
 780
 781	spte |= (spte & shadow_acc_track_saved_bits_mask) <<
 782		shadow_acc_track_saved_bits_shift;
 783	spte &= ~shadow_acc_track_mask;
 784
 785	return spte;
 786}
 787
 788/* Restore an acc-track PTE back to a regular PTE */
 789static u64 restore_acc_track_spte(u64 spte)
 790{
 791	u64 new_spte = spte;
 792	u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
 793			 & shadow_acc_track_saved_bits_mask;
 794
 795	WARN_ON_ONCE(spte_ad_enabled(spte));
 796	WARN_ON_ONCE(!is_access_track_spte(spte));
 797
 798	new_spte &= ~shadow_acc_track_mask;
 799	new_spte &= ~(shadow_acc_track_saved_bits_mask <<
 800		      shadow_acc_track_saved_bits_shift);
 801	new_spte |= saved_bits;
 802
 803	return new_spte;
 804}
 805
 806/* Returns the Accessed status of the PTE and resets it at the same time. */
 807static bool mmu_spte_age(u64 *sptep)
 808{
 809	u64 spte = mmu_spte_get_lockless(sptep);
 810
 811	if (!is_accessed_spte(spte))
 812		return false;
 813
 814	if (spte_ad_enabled(spte)) {
 815		clear_bit((ffs(shadow_accessed_mask) - 1),
 816			  (unsigned long *)sptep);
 817	} else {
 818		/*
 819		 * Capture the dirty status of the page, so that it doesn't get
 820		 * lost when the SPTE is marked for access tracking.
 821		 */
 822		if (is_writable_pte(spte))
 823			kvm_set_pfn_dirty(spte_to_pfn(spte));
 824
 825		spte = mark_spte_for_access_track(spte);
 826		mmu_spte_update_no_track(sptep, spte);
 827	}
 828
 829	return true;
 830}
 831
 832static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
 833{
 834	/*
 835	 * Prevent page table teardown by making any free-er wait during
 836	 * kvm_flush_remote_tlbs() IPI to all active vcpus.
 837	 */
 838	local_irq_disable();
 839
 840	/*
 841	 * Make sure a following spte read is not reordered ahead of the write
 842	 * to vcpu->mode.
 843	 */
 844	smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
 845}
 846
 847static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
 848{
 849	/*
 850	 * Make sure the write to vcpu->mode is not reordered in front of
 851	 * reads to sptes.  If it does, kvm_commit_zap_page() can see us
 852	 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
 853	 */
 854	smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
 855	local_irq_enable();
 856}
 857
 858static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
 859				  struct kmem_cache *base_cache, int min)
 860{
 861	void *obj;
 862
 863	if (cache->nobjs >= min)
 864		return 0;
 865	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
 866		obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
 867		if (!obj)
 868			return -ENOMEM;
 869		cache->objects[cache->nobjs++] = obj;
 870	}
 871	return 0;
 872}
 873
 874static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
 875{
 876	return cache->nobjs;
 877}
 878
 879static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
 880				  struct kmem_cache *cache)
 881{
 882	while (mc->nobjs)
 883		kmem_cache_free(cache, mc->objects[--mc->nobjs]);
 884}
 885
 886static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
 887				       int min)
 888{
 889	void *page;
 890
 891	if (cache->nobjs >= min)
 892		return 0;
 893	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
 894		page = (void *)__get_free_page(GFP_KERNEL);
 895		if (!page)
 896			return -ENOMEM;
 897		cache->objects[cache->nobjs++] = page;
 898	}
 899	return 0;
 900}
 901
 902static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
 903{
 904	while (mc->nobjs)
 905		free_page((unsigned long)mc->objects[--mc->nobjs]);
 906}
 907
 908static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
 909{
 910	int r;
 911
 912	r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
 913				   pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
 914	if (r)
 915		goto out;
 916	r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
 917	if (r)
 918		goto out;
 919	r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
 920				   mmu_page_header_cache, 4);
 921out:
 922	return r;
 923}
 924
 925static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
 926{
 927	mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
 928				pte_list_desc_cache);
 929	mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
 930	mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
 931				mmu_page_header_cache);
 932}
 933
 934static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
 935{
 936	void *p;
 937
 938	BUG_ON(!mc->nobjs);
 939	p = mc->objects[--mc->nobjs];
 940	return p;
 941}
 942
 943static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
 944{
 945	return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
 946}
 947
 948static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
 949{
 950	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
 951}
 952
 953static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
 954{
 955	if (!sp->role.direct)
 956		return sp->gfns[index];
 957
 958	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
 959}
 960
 961static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
 962{
 963	if (sp->role.direct)
 964		BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
 965	else
 966		sp->gfns[index] = gfn;
 967}
 968
 969/*
 970 * Return the pointer to the large page information for a given gfn,
 971 * handling slots that are not large page aligned.
 972 */
 973static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
 974					      struct kvm_memory_slot *slot,
 975					      int level)
 976{
 977	unsigned long idx;
 978
 979	idx = gfn_to_index(gfn, slot->base_gfn, level);
 980	return &slot->arch.lpage_info[level - 2][idx];
 981}
 982
 983static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
 984					    gfn_t gfn, int count)
 985{
 986	struct kvm_lpage_info *linfo;
 987	int i;
 988
 989	for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
 990		linfo = lpage_info_slot(gfn, slot, i);
 991		linfo->disallow_lpage += count;
 992		WARN_ON(linfo->disallow_lpage < 0);
 993	}
 994}
 995
 996void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
 997{
 998	update_gfn_disallow_lpage_count(slot, gfn, 1);
 999}
1000
1001void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1002{
1003	update_gfn_disallow_lpage_count(slot, gfn, -1);
1004}
1005
1006static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1007{
1008	struct kvm_memslots *slots;
1009	struct kvm_memory_slot *slot;
1010	gfn_t gfn;
1011
1012	kvm->arch.indirect_shadow_pages++;
1013	gfn = sp->gfn;
1014	slots = kvm_memslots_for_spte_role(kvm, sp->role);
1015	slot = __gfn_to_memslot(slots, gfn);
1016
1017	/* the non-leaf shadow pages are keeping readonly. */
1018	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1019		return kvm_slot_page_track_add_page(kvm, slot, gfn,
1020						    KVM_PAGE_TRACK_WRITE);
1021
1022	kvm_mmu_gfn_disallow_lpage(slot, gfn);
1023}
1024
1025static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1026{
1027	struct kvm_memslots *slots;
1028	struct kvm_memory_slot *slot;
1029	gfn_t gfn;
1030
1031	kvm->arch.indirect_shadow_pages--;
1032	gfn = sp->gfn;
1033	slots = kvm_memslots_for_spte_role(kvm, sp->role);
1034	slot = __gfn_to_memslot(slots, gfn);
1035	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1036		return kvm_slot_page_track_remove_page(kvm, slot, gfn,
1037						       KVM_PAGE_TRACK_WRITE);
1038
1039	kvm_mmu_gfn_allow_lpage(slot, gfn);
1040}
1041
1042static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
1043					  struct kvm_memory_slot *slot)
1044{
1045	struct kvm_lpage_info *linfo;
1046
1047	if (slot) {
1048		linfo = lpage_info_slot(gfn, slot, level);
1049		return !!linfo->disallow_lpage;
1050	}
1051
1052	return true;
1053}
1054
1055static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
1056					int level)
1057{
1058	struct kvm_memory_slot *slot;
1059
1060	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1061	return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
1062}
1063
1064static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
1065{
1066	unsigned long page_size;
1067	int i, ret = 0;
1068
1069	page_size = kvm_host_page_size(kvm, gfn);
1070
1071	for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1072		if (page_size >= KVM_HPAGE_SIZE(i))
1073			ret = i;
1074		else
1075			break;
1076	}
1077
1078	return ret;
1079}
1080
1081static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
1082					  bool no_dirty_log)
1083{
1084	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1085		return false;
1086	if (no_dirty_log && slot->dirty_bitmap)
1087		return false;
1088
1089	return true;
1090}
1091
1092static struct kvm_memory_slot *
1093gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
1094			    bool no_dirty_log)
1095{
1096	struct kvm_memory_slot *slot;
1097
1098	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1099	if (!memslot_valid_for_gpte(slot, no_dirty_log))
1100		slot = NULL;
1101
1102	return slot;
1103}
1104
1105static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
1106			 bool *force_pt_level)
1107{
1108	int host_level, level, max_level;
1109	struct kvm_memory_slot *slot;
1110
1111	if (unlikely(*force_pt_level))
1112		return PT_PAGE_TABLE_LEVEL;
1113
1114	slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
1115	*force_pt_level = !memslot_valid_for_gpte(slot, true);
1116	if (unlikely(*force_pt_level))
1117		return PT_PAGE_TABLE_LEVEL;
1118
1119	host_level = host_mapping_level(vcpu->kvm, large_gfn);
1120
1121	if (host_level == PT_PAGE_TABLE_LEVEL)
1122		return host_level;
1123
1124	max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
1125
1126	for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
1127		if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
1128			break;
1129
1130	return level - 1;
1131}
1132
1133/*
1134 * About rmap_head encoding:
1135 *
1136 * If the bit zero of rmap_head->val is clear, then it points to the only spte
1137 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
1138 * pte_list_desc containing more mappings.
1139 */
1140
1141/*
1142 * Returns the number of pointers in the rmap chain, not counting the new one.
1143 */
1144static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
1145			struct kvm_rmap_head *rmap_head)
1146{
1147	struct pte_list_desc *desc;
1148	int i, count = 0;
1149
1150	if (!rmap_head->val) {
1151		rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
1152		rmap_head->val = (unsigned long)spte;
1153	} else if (!(rmap_head->val & 1)) {
1154		rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
1155		desc = mmu_alloc_pte_list_desc(vcpu);
1156		desc->sptes[0] = (u64 *)rmap_head->val;
1157		desc->sptes[1] = spte;
1158		rmap_head->val = (unsigned long)desc | 1;
1159		++count;
1160	} else {
1161		rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
1162		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1163		while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
1164			desc = desc->more;
1165			count += PTE_LIST_EXT;
1166		}
1167		if (desc->sptes[PTE_LIST_EXT-1]) {
1168			desc->more = mmu_alloc_pte_list_desc(vcpu);
1169			desc = desc->more;
1170		}
1171		for (i = 0; desc->sptes[i]; ++i)
1172			++count;
1173		desc->sptes[i] = spte;
1174	}
1175	return count;
1176}
1177
1178static void
1179pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
1180			   struct pte_list_desc *desc, int i,
1181			   struct pte_list_desc *prev_desc)
1182{
1183	int j;
1184
1185	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
1186		;
1187	desc->sptes[i] = desc->sptes[j];
1188	desc->sptes[j] = NULL;
1189	if (j != 0)
1190		return;
1191	if (!prev_desc && !desc->more)
1192		rmap_head->val = (unsigned long)desc->sptes[0];
1193	else
1194		if (prev_desc)
1195			prev_desc->more = desc->more;
1196		else
1197			rmap_head->val = (unsigned long)desc->more | 1;
1198	mmu_free_pte_list_desc(desc);
1199}
1200
1201static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1202{
1203	struct pte_list_desc *desc;
1204	struct pte_list_desc *prev_desc;
1205	int i;
1206
1207	if (!rmap_head->val) {
1208		printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
1209		BUG();
1210	} else if (!(rmap_head->val & 1)) {
1211		rmap_printk("pte_list_remove:  %p 1->0\n", spte);
1212		if ((u64 *)rmap_head->val != spte) {
1213			printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
1214			BUG();
1215		}
1216		rmap_head->val = 0;
1217	} else {
1218		rmap_printk("pte_list_remove:  %p many->many\n", spte);
1219		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1220		prev_desc = NULL;
1221		while (desc) {
1222			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
1223				if (desc->sptes[i] == spte) {
1224					pte_list_desc_remove_entry(rmap_head,
1225							desc, i, prev_desc);
1226					return;
1227				}
1228			}
1229			prev_desc = desc;
1230			desc = desc->more;
1231		}
1232		pr_err("pte_list_remove: %p many->many\n", spte);
1233		BUG();
1234	}
1235}
1236
1237static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1238					   struct kvm_memory_slot *slot)
1239{
1240	unsigned long idx;
1241
1242	idx = gfn_to_index(gfn, slot->base_gfn, level);
1243	return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1244}
1245
1246static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1247					 struct kvm_mmu_page *sp)
1248{
1249	struct kvm_memslots *slots;
1250	struct kvm_memory_slot *slot;
1251
1252	slots = kvm_memslots_for_spte_role(kvm, sp->role);
1253	slot = __gfn_to_memslot(slots, gfn);
1254	return __gfn_to_rmap(gfn, sp->role.level, slot);
1255}
1256
1257static bool rmap_can_add(struct kvm_vcpu *vcpu)
1258{
1259	struct kvm_mmu_memory_cache *cache;
1260
1261	cache = &vcpu->arch.mmu_pte_list_desc_cache;
1262	return mmu_memory_cache_free_objects(cache);
1263}
1264
1265static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1266{
1267	struct kvm_mmu_page *sp;
1268	struct kvm_rmap_head *rmap_head;
1269
1270	sp = page_header(__pa(spte));
1271	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1272	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1273	return pte_list_add(vcpu, spte, rmap_head);
1274}
1275
1276static void rmap_remove(struct kvm *kvm, u64 *spte)
1277{
1278	struct kvm_mmu_page *sp;
1279	gfn_t gfn;
1280	struct kvm_rmap_head *rmap_head;
1281
1282	sp = page_header(__pa(spte));
1283	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1284	rmap_head = gfn_to_rmap(kvm, gfn, sp);
1285	pte_list_remove(spte, rmap_head);
1286}
1287
1288/*
1289 * Used by the following functions to iterate through the sptes linked by a
1290 * rmap.  All fields are private and not assumed to be used outside.
1291 */
1292struct rmap_iterator {
1293	/* private fields */
1294	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
1295	int pos;			/* index of the sptep */
1296};
1297
1298/*
1299 * Iteration must be started by this function.  This should also be used after
1300 * removing/dropping sptes from the rmap link because in such cases the
1301 * information in the itererator may not be valid.
1302 *
1303 * Returns sptep if found, NULL otherwise.
1304 */
1305static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1306			   struct rmap_iterator *iter)
1307{
1308	u64 *sptep;
1309
1310	if (!rmap_head->val)
1311		return NULL;
1312
1313	if (!(rmap_head->val & 1)) {
1314		iter->desc = NULL;
1315		sptep = (u64 *)rmap_head->val;
1316		goto out;
1317	}
1318
1319	iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1320	iter->pos = 0;
1321	sptep = iter->desc->sptes[iter->pos];
1322out:
1323	BUG_ON(!is_shadow_present_pte(*sptep));
1324	return sptep;
1325}
1326
1327/*
1328 * Must be used with a valid iterator: e.g. after rmap_get_first().
1329 *
1330 * Returns sptep if found, NULL otherwise.
1331 */
1332static u64 *rmap_get_next(struct rmap_iterator *iter)
1333{
1334	u64 *sptep;
1335
1336	if (iter->desc) {
1337		if (iter->pos < PTE_LIST_EXT - 1) {
1338			++iter->pos;
1339			sptep = iter->desc->sptes[iter->pos];
1340			if (sptep)
1341				goto out;
1342		}
1343
1344		iter->desc = iter->desc->more;
1345
1346		if (iter->desc) {
1347			iter->pos = 0;
1348			/* desc->sptes[0] cannot be NULL */
1349			sptep = iter->desc->sptes[iter->pos];
1350			goto out;
1351		}
1352	}
1353
1354	return NULL;
1355out:
1356	BUG_ON(!is_shadow_present_pte(*sptep));
1357	return sptep;
1358}
1359
1360#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)			\
1361	for (_spte_ = rmap_get_first(_rmap_head_, _iter_);		\
1362	     _spte_; _spte_ = rmap_get_next(_iter_))
1363
1364static void drop_spte(struct kvm *kvm, u64 *sptep)
1365{
1366	if (mmu_spte_clear_track_bits(sptep))
1367		rmap_remove(kvm, sptep);
1368}
1369
1370
1371static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1372{
1373	if (is_large_pte(*sptep)) {
1374		WARN_ON(page_header(__pa(sptep))->role.level ==
1375			PT_PAGE_TABLE_LEVEL);
1376		drop_spte(kvm, sptep);
1377		--kvm->stat.lpages;
1378		return true;
1379	}
1380
1381	return false;
1382}
1383
1384static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1385{
1386	if (__drop_large_spte(vcpu->kvm, sptep))
1387		kvm_flush_remote_tlbs(vcpu->kvm);
1388}
1389
1390/*
1391 * Write-protect on the specified @sptep, @pt_protect indicates whether
1392 * spte write-protection is caused by protecting shadow page table.
1393 *
1394 * Note: write protection is difference between dirty logging and spte
1395 * protection:
1396 * - for dirty logging, the spte can be set to writable at anytime if
1397 *   its dirty bitmap is properly set.
1398 * - for spte protection, the spte can be writable only after unsync-ing
1399 *   shadow page.
1400 *
1401 * Return true if tlb need be flushed.
1402 */
1403static bool spte_write_protect(u64 *sptep, bool pt_protect)
1404{
1405	u64 spte = *sptep;
1406
1407	if (!is_writable_pte(spte) &&
1408	      !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1409		return false;
1410
1411	rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1412
1413	if (pt_protect)
1414		spte &= ~SPTE_MMU_WRITEABLE;
1415	spte = spte & ~PT_WRITABLE_MASK;
1416
1417	return mmu_spte_update(sptep, spte);
1418}
1419
1420static bool __rmap_write_protect(struct kvm *kvm,
1421				 struct kvm_rmap_head *rmap_head,
1422				 bool pt_protect)
1423{
1424	u64 *sptep;
1425	struct rmap_iterator iter;
1426	bool flush = false;
1427
1428	for_each_rmap_spte(rmap_head, &iter, sptep)
1429		flush |= spte_write_protect(sptep, pt_protect);
1430
1431	return flush;
1432}
1433
1434static bool spte_clear_dirty(u64 *sptep)
1435{
1436	u64 spte = *sptep;
1437
1438	rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1439
1440	spte &= ~shadow_dirty_mask;
1441
1442	return mmu_spte_update(sptep, spte);
1443}
1444
1445static bool wrprot_ad_disabled_spte(u64 *sptep)
1446{
1447	bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1448					       (unsigned long *)sptep);
1449	if (was_writable)
1450		kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1451
1452	return was_writable;
1453}
1454
1455/*
1456 * Gets the GFN ready for another round of dirty logging by clearing the
1457 *	- D bit on ad-enabled SPTEs, and
1458 *	- W bit on ad-disabled SPTEs.
1459 * Returns true iff any D or W bits were cleared.
1460 */
1461static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1462{
1463	u64 *sptep;
1464	struct rmap_iterator iter;
1465	bool flush = false;
1466
1467	for_each_rmap_spte(rmap_head, &iter, sptep)
1468		if (spte_ad_enabled(*sptep))
1469			flush |= spte_clear_dirty(sptep);
1470		else
1471			flush |= wrprot_ad_disabled_spte(sptep);
1472
1473	return flush;
1474}
1475
1476static bool spte_set_dirty(u64 *sptep)
1477{
1478	u64 spte = *sptep;
1479
1480	rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1481
1482	spte |= shadow_dirty_mask;
1483
1484	return mmu_spte_update(sptep, spte);
1485}
1486
1487static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1488{
1489	u64 *sptep;
1490	struct rmap_iterator iter;
1491	bool flush = false;
1492
1493	for_each_rmap_spte(rmap_head, &iter, sptep)
1494		if (spte_ad_enabled(*sptep))
1495			flush |= spte_set_dirty(sptep);
1496
1497	return flush;
1498}
1499
1500/**
1501 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1502 * @kvm: kvm instance
1503 * @slot: slot to protect
1504 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1505 * @mask: indicates which pages we should protect
1506 *
1507 * Used when we do not need to care about huge page mappings: e.g. during dirty
1508 * logging we do not have any such mappings.
1509 */
1510static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1511				     struct kvm_memory_slot *slot,
1512				     gfn_t gfn_offset, unsigned long mask)
1513{
1514	struct kvm_rmap_head *rmap_head;
1515
1516	while (mask) {
1517		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1518					  PT_PAGE_TABLE_LEVEL, slot);
1519		__rmap_write_protect(kvm, rmap_head, false);
1520
1521		/* clear the first set bit */
1522		mask &= mask - 1;
1523	}
1524}
1525
1526/**
1527 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1528 * protect the page if the D-bit isn't supported.
1529 * @kvm: kvm instance
1530 * @slot: slot to clear D-bit
1531 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1532 * @mask: indicates which pages we should clear D-bit
1533 *
1534 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1535 */
1536void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1537				     struct kvm_memory_slot *slot,
1538				     gfn_t gfn_offset, unsigned long mask)
1539{
1540	struct kvm_rmap_head *rmap_head;
1541
1542	while (mask) {
1543		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1544					  PT_PAGE_TABLE_LEVEL, slot);
1545		__rmap_clear_dirty(kvm, rmap_head);
1546
1547		/* clear the first set bit */
1548		mask &= mask - 1;
1549	}
1550}
1551EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1552
1553/**
1554 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1555 * PT level pages.
1556 *
1557 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1558 * enable dirty logging for them.
1559 *
1560 * Used when we do not need to care about huge page mappings: e.g. during dirty
1561 * logging we do not have any such mappings.
1562 */
1563void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1564				struct kvm_memory_slot *slot,
1565				gfn_t gfn_offset, unsigned long mask)
1566{
1567	if (kvm_x86_ops->enable_log_dirty_pt_masked)
1568		kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1569				mask);
1570	else
1571		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1572}
1573
1574/**
1575 * kvm_arch_write_log_dirty - emulate dirty page logging
1576 * @vcpu: Guest mode vcpu
1577 *
1578 * Emulate arch specific page modification logging for the
1579 * nested hypervisor
1580 */
1581int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu)
1582{
1583	if (kvm_x86_ops->write_log_dirty)
1584		return kvm_x86_ops->write_log_dirty(vcpu);
1585
1586	return 0;
1587}
1588
1589bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1590				    struct kvm_memory_slot *slot, u64 gfn)
1591{
1592	struct kvm_rmap_head *rmap_head;
1593	int i;
1594	bool write_protected = false;
1595
1596	for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1597		rmap_head = __gfn_to_rmap(gfn, i, slot);
1598		write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1599	}
1600
1601	return write_protected;
1602}
1603
1604static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1605{
1606	struct kvm_memory_slot *slot;
1607
1608	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1609	return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1610}
1611
1612static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1613{
1614	u64 *sptep;
1615	struct rmap_iterator iter;
1616	bool flush = false;
1617
1618	while ((sptep = rmap_get_first(rmap_head, &iter))) {
1619		rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1620
1621		drop_spte(kvm, sptep);
1622		flush = true;
1623	}
1624
1625	return flush;
1626}
1627
1628static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1629			   struct kvm_memory_slot *slot, gfn_t gfn, int level,
1630			   unsigned long data)
1631{
1632	return kvm_zap_rmapp(kvm, rmap_head);
1633}
1634
1635static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1636			     struct kvm_memory_slot *slot, gfn_t gfn, int level,
1637			     unsigned long data)
1638{
1639	u64 *sptep;
1640	struct rmap_iterator iter;
1641	int need_flush = 0;
1642	u64 new_spte;
1643	pte_t *ptep = (pte_t *)data;
1644	kvm_pfn_t new_pfn;
1645
1646	WARN_ON(pte_huge(*ptep));
1647	new_pfn = pte_pfn(*ptep);
1648
1649restart:
1650	for_each_rmap_spte(rmap_head, &iter, sptep) {
1651		rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1652			    sptep, *sptep, gfn, level);
1653
1654		need_flush = 1;
1655
1656		if (pte_write(*ptep)) {
1657			drop_spte(kvm, sptep);
1658			goto restart;
1659		} else {
1660			new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1661			new_spte |= (u64)new_pfn << PAGE_SHIFT;
1662
1663			new_spte &= ~PT_WRITABLE_MASK;
1664			new_spte &= ~SPTE_HOST_WRITEABLE;
1665
1666			new_spte = mark_spte_for_access_track(new_spte);
1667
1668			mmu_spte_clear_track_bits(sptep);
1669			mmu_spte_set(sptep, new_spte);
1670		}
1671	}
1672
1673	if (need_flush)
1674		kvm_flush_remote_tlbs(kvm);
1675
1676	return 0;
1677}
1678
1679struct slot_rmap_walk_iterator {
1680	/* input fields. */
1681	struct kvm_memory_slot *slot;
1682	gfn_t start_gfn;
1683	gfn_t end_gfn;
1684	int start_level;
1685	int end_level;
1686
1687	/* output fields. */
1688	gfn_t gfn;
1689	struct kvm_rmap_head *rmap;
1690	int level;
1691
1692	/* private field. */
1693	struct kvm_rmap_head *end_rmap;
1694};
1695
1696static void
1697rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1698{
1699	iterator->level = level;
1700	iterator->gfn = iterator->start_gfn;
1701	iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1702	iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1703					   iterator->slot);
1704}
1705
1706static void
1707slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1708		    struct kvm_memory_slot *slot, int start_level,
1709		    int end_level, gfn_t start_gfn, gfn_t end_gfn)
1710{
1711	iterator->slot = slot;
1712	iterator->start_level = start_level;
1713	iterator->end_level = end_level;
1714	iterator->start_gfn = start_gfn;
1715	iterator->end_gfn = end_gfn;
1716
1717	rmap_walk_init_level(iterator, iterator->start_level);
1718}
1719
1720static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1721{
1722	return !!iterator->rmap;
1723}
1724
1725static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1726{
1727	if (++iterator->rmap <= iterator->end_rmap) {
1728		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1729		return;
1730	}
1731
1732	if (++iterator->level > iterator->end_level) {
1733		iterator->rmap = NULL;
1734		return;
1735	}
1736
1737	rmap_walk_init_level(iterator, iterator->level);
1738}
1739
1740#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
1741	   _start_gfn, _end_gfn, _iter_)				\
1742	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
1743				 _end_level_, _start_gfn, _end_gfn);	\
1744	     slot_rmap_walk_okay(_iter_);				\
1745	     slot_rmap_walk_next(_iter_))
1746
1747static int kvm_handle_hva_range(struct kvm *kvm,
1748				unsigned long start,
1749				unsigned long end,
1750				unsigned long data,
1751				int (*handler)(struct kvm *kvm,
1752					       struct kvm_rmap_head *rmap_head,
1753					       struct kvm_memory_slot *slot,
1754					       gfn_t gfn,
1755					       int level,
1756					       unsigned long data))
1757{
1758	struct kvm_memslots *slots;
1759	struct kvm_memory_slot *memslot;
1760	struct slot_rmap_walk_iterator iterator;
1761	int ret = 0;
1762	int i;
1763
1764	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1765		slots = __kvm_memslots(kvm, i);
1766		kvm_for_each_memslot(memslot, slots) {
1767			unsigned long hva_start, hva_end;
1768			gfn_t gfn_start, gfn_end;
1769
1770			hva_start = max(start, memslot->userspace_addr);
1771			hva_end = min(end, memslot->userspace_addr +
1772				      (memslot->npages << PAGE_SHIFT));
1773			if (hva_start >= hva_end)
1774				continue;
1775			/*
1776			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1777			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1778			 */
1779			gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1780			gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1781
1782			for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1783						 PT_MAX_HUGEPAGE_LEVEL,
1784						 gfn_start, gfn_end - 1,
1785						 &iterator)
1786				ret |= handler(kvm, iterator.rmap, memslot,
1787					       iterator.gfn, iterator.level, data);
1788		}
1789	}
1790
1791	return ret;
1792}
1793
1794static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1795			  unsigned long data,
1796			  int (*handler)(struct kvm *kvm,
1797					 struct kvm_rmap_head *rmap_head,
1798					 struct kvm_memory_slot *slot,
1799					 gfn_t gfn, int level,
1800					 unsigned long data))
1801{
1802	return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1803}
1804
1805int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1806{
1807	return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1808}
1809
1810int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1811{
1812	return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1813}
1814
1815void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1816{
1817	kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1818}
1819
1820static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1821			 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1822			 unsigned long data)
1823{
1824	u64 *sptep;
1825	struct rmap_iterator uninitialized_var(iter);
1826	int young = 0;
1827
1828	for_each_rmap_spte(rmap_head, &iter, sptep)
1829		young |= mmu_spte_age(sptep);
1830
1831	trace_kvm_age_page(gfn, level, slot, young);
1832	return young;
1833}
1834
1835static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1836			      struct kvm_memory_slot *slot, gfn_t gfn,
1837			      int level, unsigned long data)
1838{
1839	u64 *sptep;
1840	struct rmap_iterator iter;
1841
1842	for_each_rmap_spte(rmap_head, &iter, sptep)
1843		if (is_accessed_spte(*sptep))
1844			return 1;
1845	return 0;
1846}
1847
1848#define RMAP_RECYCLE_THRESHOLD 1000
1849
1850static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1851{
1852	struct kvm_rmap_head *rmap_head;
1853	struct kvm_mmu_page *sp;
1854
1855	sp = page_header(__pa(spte));
1856
1857	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1858
1859	kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1860	kvm_flush_remote_tlbs(vcpu->kvm);
1861}
1862
1863int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1864{
1865	return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1866}
1867
1868int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1869{
1870	return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1871}
1872
1873#ifdef MMU_DEBUG
1874static int is_empty_shadow_page(u64 *spt)
1875{
1876	u64 *pos;
1877	u64 *end;
1878
1879	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1880		if (is_shadow_present_pte(*pos)) {
1881			printk(KERN_ERR "%s: %p %llx\n", __func__,
1882			       pos, *pos);
1883			return 0;
1884		}
1885	return 1;
1886}
1887#endif
1888
1889/*
1890 * This value is the sum of all of the kvm instances's
1891 * kvm->arch.n_used_mmu_pages values.  We need a global,
1892 * aggregate version in order to make the slab shrinker
1893 * faster
1894 */
1895static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1896{
1897	kvm->arch.n_used_mmu_pages += nr;
1898	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1899}
1900
1901static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1902{
1903	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1904	hlist_del(&sp->hash_link);
1905	list_del(&sp->link);
1906	free_page((unsigned long)sp->spt);
1907	if (!sp->role.direct)
1908		free_page((unsigned long)sp->gfns);
1909	kmem_cache_free(mmu_page_header_cache, sp);
1910}
1911
1912static unsigned kvm_page_table_hashfn(gfn_t gfn)
1913{
1914	return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1915}
1916
1917static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1918				    struct kvm_mmu_page *sp, u64 *parent_pte)
1919{
1920	if (!parent_pte)
1921		return;
1922
1923	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1924}
1925
1926static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1927				       u64 *parent_pte)
1928{
1929	pte_list_remove(parent_pte, &sp->parent_ptes);
1930}
1931
1932static void drop_parent_pte(struct kvm_mmu_page *sp,
1933			    u64 *parent_pte)
1934{
1935	mmu_page_remove_parent_pte(sp, parent_pte);
1936	mmu_spte_clear_no_track(parent_pte);
1937}
1938
1939static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1940{
1941	struct kvm_mmu_page *sp;
1942
1943	sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1944	sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1945	if (!direct)
1946		sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1947	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1948
1949	/*
1950	 * The active_mmu_pages list is the FIFO list, do not move the
1951	 * page until it is zapped. kvm_zap_obsolete_pages depends on
1952	 * this feature. See the comments in kvm_zap_obsolete_pages().
1953	 */
1954	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1955	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1956	return sp;
1957}
1958
1959static void mark_unsync(u64 *spte);
1960static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1961{
1962	u64 *sptep;
1963	struct rmap_iterator iter;
1964
1965	for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1966		mark_unsync(sptep);
1967	}
1968}
1969
1970static void mark_unsync(u64 *spte)
1971{
1972	struct kvm_mmu_page *sp;
1973	unsigned int index;
1974
1975	sp = page_header(__pa(spte));
1976	index = spte - sp->spt;
1977	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1978		return;
1979	if (sp->unsync_children++)
1980		return;
1981	kvm_mmu_mark_parents_unsync(sp);
1982}
1983
1984static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1985			       struct kvm_mmu_page *sp)
1986{
1987	return 0;
1988}
1989
1990static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1991{
1992}
1993
1994static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1995				 struct kvm_mmu_page *sp, u64 *spte,
1996				 const void *pte)
1997{
1998	WARN_ON(1);
1999}
2000
2001#define KVM_PAGE_ARRAY_NR 16
2002
2003struct kvm_mmu_pages {
2004	struct mmu_page_and_offset {
2005		struct kvm_mmu_page *sp;
2006		unsigned int idx;
2007	} page[KVM_PAGE_ARRAY_NR];
2008	unsigned int nr;
2009};
2010
2011static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
2012			 int idx)
2013{
2014	int i;
2015
2016	if (sp->unsync)
2017		for (i=0; i < pvec->nr; i++)
2018			if (pvec->page[i].sp == sp)
2019				return 0;
2020
2021	pvec->page[pvec->nr].sp = sp;
2022	pvec->page[pvec->nr].idx = idx;
2023	pvec->nr++;
2024	return (pvec->nr == KVM_PAGE_ARRAY_NR);
2025}
2026
2027static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
2028{
2029	--sp->unsync_children;
2030	WARN_ON((int)sp->unsync_children < 0);
2031	__clear_bit(idx, sp->unsync_child_bitmap);
2032}
2033
2034static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
2035			   struct kvm_mmu_pages *pvec)
2036{
2037	int i, ret, nr_unsync_leaf = 0;
2038
2039	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
2040		struct kvm_mmu_page *child;
2041		u64 ent = sp->spt[i];
2042
2043		if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
2044			clear_unsync_child_bit(sp, i);
2045			continue;
2046		}
2047
2048		child = page_header(ent & PT64_BASE_ADDR_MASK);
2049
2050		if (child->unsync_children) {
2051			if (mmu_pages_add(pvec, child, i))
2052				return -ENOSPC;
2053
2054			ret = __mmu_unsync_walk(child, pvec);
2055			if (!ret) {
2056				clear_unsync_child_bit(sp, i);
2057				continue;
2058			} else if (ret > 0) {
2059				nr_unsync_leaf += ret;
2060			} else
2061				return ret;
2062		} else if (child->unsync) {
2063			nr_unsync_leaf++;
2064			if (mmu_pages_add(pvec, child, i))
2065				return -ENOSPC;
2066		} else
2067			clear_unsync_child_bit(sp, i);
2068	}
2069
2070	return nr_unsync_leaf;
2071}
2072
2073#define INVALID_INDEX (-1)
2074
2075static int mmu_unsync_walk(struct kvm_mmu_page *sp,
2076			   struct kvm_mmu_pages *pvec)
2077{
2078	pvec->nr = 0;
2079	if (!sp->unsync_children)
2080		return 0;
2081
2082	mmu_pages_add(pvec, sp, INVALID_INDEX);
2083	return __mmu_unsync_walk(sp, pvec);
2084}
2085
2086static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2087{
2088	WARN_ON(!sp->unsync);
2089	trace_kvm_mmu_sync_page(sp);
2090	sp->unsync = 0;
2091	--kvm->stat.mmu_unsync;
2092}
2093
2094static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2095				    struct list_head *invalid_list);
2096static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2097				    struct list_head *invalid_list);
2098
2099/*
2100 * NOTE: we should pay more attention on the zapped-obsolete page
2101 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
2102 * since it has been deleted from active_mmu_pages but still can be found
2103 * at hast list.
2104 *
2105 * for_each_valid_sp() has skipped that kind of pages.
2106 */
2107#define for_each_valid_sp(_kvm, _sp, _gfn)				\
2108	hlist_for_each_entry(_sp,					\
2109	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
2110		if (is_obsolete_sp((_kvm), (_sp)) || (_sp)->role.invalid) {    \
2111		} else
2112
2113#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
2114	for_each_valid_sp(_kvm, _sp, _gfn)				\
2115		if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
2116
2117/* @sp->gfn should be write-protected at the call site */
2118static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2119			    struct list_head *invalid_list)
2120{
2121	if (sp->role.cr4_pae != !!is_pae(vcpu)) {
2122		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2123		return false;
2124	}
2125
2126	if (vcpu->arch.mmu.sync_page(vcpu, sp) == 0) {
2127		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2128		return false;
2129	}
2130
2131	return true;
2132}
2133
2134static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
2135				 struct list_head *invalid_list,
2136				 bool remote_flush, bool local_flush)
2137{
2138	if (!list_empty(invalid_list)) {
2139		kvm_mmu_commit_zap_page(vcpu->kvm, invalid_list);
2140		return;
2141	}
2142
2143	if (remote_flush)
2144		kvm_flush_remote_tlbs(vcpu->kvm);
2145	else if (local_flush)
2146		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2147}
2148
2149#ifdef CONFIG_KVM_MMU_AUDIT
2150#include "mmu_audit.c"
2151#else
2152static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
2153static void mmu_audit_disable(void) { }
2154#endif
2155
2156static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2157{
2158	return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2159}
2160
2161static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2162			 struct list_head *invalid_list)
2163{
2164	kvm_unlink_unsync_page(vcpu->kvm, sp);
2165	return __kvm_sync_page(vcpu, sp, invalid_list);
2166}
2167
2168/* @gfn should be write-protected at the call site */
2169static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
2170			   struct list_head *invalid_list)
2171{
2172	struct kvm_mmu_page *s;
2173	bool ret = false;
2174
2175	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2176		if (!s->unsync)
2177			continue;
2178
2179		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2180		ret |= kvm_sync_page(vcpu, s, invalid_list);
2181	}
2182
2183	return ret;
2184}
2185
2186struct mmu_page_path {
2187	struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
2188	unsigned int idx[PT64_ROOT_MAX_LEVEL];
2189};
2190
2191#define for_each_sp(pvec, sp, parents, i)			\
2192		for (i = mmu_pages_first(&pvec, &parents);	\
2193			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
2194			i = mmu_pages_next(&pvec, &parents, i))
2195
2196static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2197			  struct mmu_page_path *parents,
2198			  int i)
2199{
2200	int n;
2201
2202	for (n = i+1; n < pvec->nr; n++) {
2203		struct kvm_mmu_page *sp = pvec->page[n].sp;
2204		unsigned idx = pvec->page[n].idx;
2205		int level = sp->role.level;
2206
2207		parents->idx[level-1] = idx;
2208		if (level == PT_PAGE_TABLE_LEVEL)
2209			break;
2210
2211		parents->parent[level-2] = sp;
2212	}
2213
2214	return n;
2215}
2216
2217static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2218			   struct mmu_page_path *parents)
2219{
2220	struct kvm_mmu_page *sp;
2221	int level;
2222
2223	if (pvec->nr == 0)
2224		return 0;
2225
2226	WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2227
2228	sp = pvec->page[0].sp;
2229	level = sp->role.level;
2230	WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2231
2232	parents->parent[level-2] = sp;
2233
2234	/* Also set up a sentinel.  Further entries in pvec are all
2235	 * children of sp, so this element is never overwritten.
2236	 */
2237	parents->parent[level-1] = NULL;
2238	return mmu_pages_next(pvec, parents, 0);
2239}
2240
2241static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2242{
2243	struct kvm_mmu_page *sp;
2244	unsigned int level = 0;
2245
2246	do {
2247		unsigned int idx = parents->idx[level];
2248		sp = parents->parent[level];
2249		if (!sp)
2250			return;
2251
2252		WARN_ON(idx == INVALID_INDEX);
2253		clear_unsync_child_bit(sp, idx);
2254		level++;
2255	} while (!sp->unsync_children);
2256}
2257
2258static void mmu_sync_children(struct kvm_vcpu *vcpu,
2259			      struct kvm_mmu_page *parent)
2260{
2261	int i;
2262	struct kvm_mmu_page *sp;
2263	struct mmu_page_path parents;
2264	struct kvm_mmu_pages pages;
2265	LIST_HEAD(invalid_list);
2266	bool flush = false;
2267
2268	while (mmu_unsync_walk(parent, &pages)) {
2269		bool protected = false;
2270
2271		for_each_sp(pages, sp, parents, i)
2272			protected |= rmap_write_protect(vcpu, sp->gfn);
2273
2274		if (protected) {
2275			kvm_flush_remote_tlbs(vcpu->kvm);
2276			flush = false;
2277		}
2278
2279		for_each_sp(pages, sp, parents, i) {
2280			flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2281			mmu_pages_clear_parents(&parents);
2282		}
2283		if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2284			kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2285			cond_resched_lock(&vcpu->kvm->mmu_lock);
2286			flush = false;
2287		}
2288	}
2289
2290	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2291}
2292
2293static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2294{
2295	atomic_set(&sp->write_flooding_count,  0);
2296}
2297
2298static void clear_sp_write_flooding_count(u64 *spte)
2299{
2300	struct kvm_mmu_page *sp =  page_header(__pa(spte));
2301
2302	__clear_sp_write_flooding_count(sp);
2303}
2304
2305static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2306					     gfn_t gfn,
2307					     gva_t gaddr,
2308					     unsigned level,
2309					     int direct,
2310					     unsigned access)
2311{
2312	union kvm_mmu_page_role role;
2313	unsigned quadrant;
2314	struct kvm_mmu_page *sp;
2315	bool need_sync = false;
2316	bool flush = false;
2317	int collisions = 0;
2318	LIST_HEAD(invalid_list);
2319
2320	role = vcpu->arch.mmu.base_role;
2321	role.level = level;
2322	role.direct = direct;
2323	if (role.direct)
2324		role.cr4_pae = 0;
2325	role.access = access;
2326	if (!vcpu->arch.mmu.direct_map
2327	    && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
2328		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2329		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2330		role.quadrant = quadrant;
2331	}
2332	for_each_valid_sp(vcpu->kvm, sp, gfn) {
2333		if (sp->gfn != gfn) {
2334			collisions++;
2335			continue;
2336		}
2337
2338		if (!need_sync && sp->unsync)
2339			need_sync = true;
2340
2341		if (sp->role.word != role.word)
2342			continue;
2343
2344		if (sp->unsync) {
2345			/* The page is good, but __kvm_sync_page might still end
2346			 * up zapping it.  If so, break in order to rebuild it.
2347			 */
2348			if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2349				break;
2350
2351			WARN_ON(!list_empty(&invalid_list));
2352			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2353		}
2354
2355		if (sp->unsync_children)
2356			kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2357
2358		__clear_sp_write_flooding_count(sp);
2359		trace_kvm_mmu_get_page(sp, false);
2360		goto out;
2361	}
2362
2363	++vcpu->kvm->stat.mmu_cache_miss;
2364
2365	sp = kvm_mmu_alloc_page(vcpu, direct);
2366
2367	sp->gfn = gfn;
2368	sp->role = role;
2369	hlist_add_head(&sp->hash_link,
2370		&vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2371	if (!direct) {
2372		/*
2373		 * we should do write protection before syncing pages
2374		 * otherwise the content of the synced shadow page may
2375		 * be inconsistent with guest page table.
2376		 */
2377		account_shadowed(vcpu->kvm, sp);
2378		if (level == PT_PAGE_TABLE_LEVEL &&
2379		      rmap_write_protect(vcpu, gfn))
2380			kvm_flush_remote_tlbs(vcpu->kvm);
2381
2382		if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2383			flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2384	}
2385	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2386	clear_page(sp->spt);
2387	trace_kvm_mmu_get_page(sp, true);
2388
2389	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2390out:
2391	if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2392		vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2393	return sp;
2394}
2395
2396static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2397			     struct kvm_vcpu *vcpu, u64 addr)
2398{
2399	iterator->addr = addr;
2400	iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2401	iterator->level = vcpu->arch.mmu.shadow_root_level;
2402
2403	if (iterator->level == PT64_ROOT_4LEVEL &&
2404	    vcpu->arch.mmu.root_level < PT64_ROOT_4LEVEL &&
2405	    !vcpu->arch.mmu.direct_map)
2406		--iterator->level;
2407
2408	if (iterator->level == PT32E_ROOT_LEVEL) {
2409		iterator->shadow_addr
2410			= vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2411		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2412		--iterator->level;
2413		if (!iterator->shadow_addr)
2414			iterator->level = 0;
2415	}
2416}
2417
2418static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2419{
2420	if (iterator->level < PT_PAGE_TABLE_LEVEL)
2421		return false;
2422
2423	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2424	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2425	return true;
2426}
2427
2428static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2429			       u64 spte)
2430{
2431	if (is_last_spte(spte, iterator->level)) {
2432		iterator->level = 0;
2433		return;
2434	}
2435
2436	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2437	--iterator->level;
2438}
2439
2440static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2441{
2442	__shadow_walk_next(iterator, *iterator->sptep);
2443}
2444
2445static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2446			     struct kvm_mmu_page *sp)
2447{
2448	u64 spte;
2449
2450	BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2451
2452	spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
2453	       shadow_user_mask | shadow_x_mask | shadow_me_mask;
2454
2455	if (sp_ad_disabled(sp))
2456		spte |= shadow_acc_track_value;
2457	else
2458		spte |= shadow_accessed_mask;
2459
2460	mmu_spte_set(sptep, spte);
2461
2462	mmu_page_add_parent_pte(vcpu, sp, sptep);
2463
2464	if (sp->unsync_children || sp->unsync)
2465		mark_unsync(sptep);
2466}
2467
2468static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2469				   unsigned direct_access)
2470{
2471	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2472		struct kvm_mmu_page *child;
2473
2474		/*
2475		 * For the direct sp, if the guest pte's dirty bit
2476		 * changed form clean to dirty, it will corrupt the
2477		 * sp's access: allow writable in the read-only sp,
2478		 * so we should update the spte at this point to get
2479		 * a new sp with the correct access.
2480		 */
2481		child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2482		if (child->role.access == direct_access)
2483			return;
2484
2485		drop_parent_pte(child, sptep);
2486		kvm_flush_remote_tlbs(vcpu->kvm);
2487	}
2488}
2489
2490static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2491			     u64 *spte)
2492{
2493	u64 pte;
2494	struct kvm_mmu_page *child;
2495
2496	pte = *spte;
2497	if (is_shadow_present_pte(pte)) {
2498		if (is_last_spte(pte, sp->role.level)) {
2499			drop_spte(kvm, spte);
2500			if (is_large_pte(pte))
2501				--kvm->stat.lpages;
2502		} else {
2503			child = page_header(pte & PT64_BASE_ADDR_MASK);
2504			drop_parent_pte(child, spte);
2505		}
2506		return true;
2507	}
2508
2509	if (is_mmio_spte(pte))
2510		mmu_spte_clear_no_track(spte);
2511
2512	return false;
2513}
2514
2515static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2516					 struct kvm_mmu_page *sp)
2517{
2518	unsigned i;
2519
2520	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2521		mmu_page_zap_pte(kvm, sp, sp->spt + i);
2522}
2523
2524static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2525{
2526	u64 *sptep;
2527	struct rmap_iterator iter;
2528
2529	while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2530		drop_parent_pte(sp, sptep);
2531}
2532
2533static int mmu_zap_unsync_children(struct kvm *kvm,
2534				   struct kvm_mmu_page *parent,
2535				   struct list_head *invalid_list)
2536{
2537	int i, zapped = 0;
2538	struct mmu_page_path parents;
2539	struct kvm_mmu_pages pages;
2540
2541	if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2542		return 0;
2543
2544	while (mmu_unsync_walk(parent, &pages)) {
2545		struct kvm_mmu_page *sp;
2546
2547		for_each_sp(pages, sp, parents, i) {
2548			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2549			mmu_pages_clear_parents(&parents);
2550			zapped++;
2551		}
2552	}
2553
2554	return zapped;
2555}
2556
2557static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2558				    struct list_head *invalid_list)
2559{
2560	int ret;
2561
2562	trace_kvm_mmu_prepare_zap_page(sp);
2563	++kvm->stat.mmu_shadow_zapped;
2564	ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2565	kvm_mmu_page_unlink_children(kvm, sp);
2566	kvm_mmu_unlink_parents(kvm, sp);
2567
2568	if (!sp->role.invalid && !sp->role.direct)
2569		unaccount_shadowed(kvm, sp);
2570
2571	if (sp->unsync)
2572		kvm_unlink_unsync_page(kvm, sp);
2573	if (!sp->root_count) {
2574		/* Count self */
2575		ret++;
2576		list_move(&sp->link, invalid_list);
2577		kvm_mod_used_mmu_pages(kvm, -1);
2578	} else {
2579		list_move(&sp->link, &kvm->arch.active_mmu_pages);
2580
2581		/*
2582		 * The obsolete pages can not be used on any vcpus.
2583		 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2584		 */
2585		if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2586			kvm_reload_remote_mmus(kvm);
2587	}
2588
2589	sp->role.invalid = 1;
2590	return ret;
2591}
2592
2593static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2594				    struct list_head *invalid_list)
2595{
2596	struct kvm_mmu_page *sp, *nsp;
2597
2598	if (list_empty(invalid_list))
2599		return;
2600
2601	/*
2602	 * We need to make sure everyone sees our modifications to
2603	 * the page tables and see changes to vcpu->mode here. The barrier
2604	 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2605	 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2606	 *
2607	 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2608	 * guest mode and/or lockless shadow page table walks.
2609	 */
2610	kvm_flush_remote_tlbs(kvm);
2611
2612	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2613		WARN_ON(!sp->role.invalid || sp->root_count);
2614		kvm_mmu_free_page(sp);
2615	}
2616}
2617
2618static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2619					struct list_head *invalid_list)
2620{
2621	struct kvm_mmu_page *sp;
2622
2623	if (list_empty(&kvm->arch.active_mmu_pages))
2624		return false;
2625
2626	sp = list_last_entry(&kvm->arch.active_mmu_pages,
2627			     struct kvm_mmu_page, link);
2628	return kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2629}
2630
2631/*
2632 * Changing the number of mmu pages allocated to the vm
2633 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2634 */
2635void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2636{
2637	LIST_HEAD(invalid_list);
2638
2639	spin_lock(&kvm->mmu_lock);
2640
2641	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2642		/* Need to free some mmu pages to achieve the goal. */
2643		while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2644			if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2645				break;
2646
2647		kvm_mmu_commit_zap_page(kvm, &invalid_list);
2648		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2649	}
2650
2651	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2652
2653	spin_unlock(&kvm->mmu_lock);
2654}
2655
2656int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2657{
2658	struct kvm_mmu_page *sp;
2659	LIST_HEAD(invalid_list);
2660	int r;
2661
2662	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2663	r = 0;
2664	spin_lock(&kvm->mmu_lock);
2665	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2666		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2667			 sp->role.word);
2668		r = 1;
2669		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2670	}
2671	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2672	spin_unlock(&kvm->mmu_lock);
2673
2674	return r;
2675}
2676EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2677
2678static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2679{
2680	trace_kvm_mmu_unsync_page(sp);
2681	++vcpu->kvm->stat.mmu_unsync;
2682	sp->unsync = 1;
2683
2684	kvm_mmu_mark_parents_unsync(sp);
2685}
2686
2687static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2688				   bool can_unsync)
2689{
2690	struct kvm_mmu_page *sp;
2691
2692	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2693		return true;
2694
2695	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2696		if (!can_unsync)
2697			return true;
2698
2699		if (sp->unsync)
2700			continue;
2701
2702		WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2703		kvm_unsync_page(vcpu, sp);
2704	}
2705
2706	return false;
2707}
2708
2709static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2710{
2711	if (pfn_valid(pfn))
2712		return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
2713			/*
2714			 * Some reserved pages, such as those from NVDIMM
2715			 * DAX devices, are not for MMIO, and can be mapped
2716			 * with cached memory type for better performance.
2717			 * However, the above check misconceives those pages
2718			 * as MMIO, and results in KVM mapping them with UC
2719			 * memory type, which would hurt the performance.
2720			 * Therefore, we check the host memory type in addition
2721			 * and only treat UC/UC-/WC pages as MMIO.
2722			 */
2723			(!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
2724
2725	return true;
2726}
2727
2728static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2729		    unsigned pte_access, int level,
2730		    gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2731		    bool can_unsync, bool host_writable)
2732{
2733	u64 spte = 0;
2734	int ret = 0;
2735	struct kvm_mmu_page *sp;
2736
2737	if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2738		return 0;
2739
2740	sp = page_header(__pa(sptep));
2741	if (sp_ad_disabled(sp))
2742		spte |= shadow_acc_track_value;
2743
2744	/*
2745	 * For the EPT case, shadow_present_mask is 0 if hardware
2746	 * supports exec-only page table entries.  In that case,
2747	 * ACC_USER_MASK and shadow_user_mask are used to represent
2748	 * read access.  See FNAME(gpte_access) in paging_tmpl.h.
2749	 */
2750	spte |= shadow_present_mask;
2751	if (!speculative)
2752		spte |= spte_shadow_accessed_mask(spte);
2753
2754	if (pte_access & ACC_EXEC_MASK)
2755		spte |= shadow_x_mask;
2756	else
2757		spte |= shadow_nx_mask;
2758
2759	if (pte_access & ACC_USER_MASK)
2760		spte |= shadow_user_mask;
2761
2762	if (level > PT_PAGE_TABLE_LEVEL)
2763		spte |= PT_PAGE_SIZE_MASK;
2764	if (tdp_enabled)
2765		spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2766			kvm_is_mmio_pfn(pfn));
2767
2768	if (host_writable)
2769		spte |= SPTE_HOST_WRITEABLE;
2770	else
2771		pte_access &= ~ACC_WRITE_MASK;
2772
2773	if (!kvm_is_mmio_pfn(pfn))
2774		spte |= shadow_me_mask;
2775
2776	spte |= (u64)pfn << PAGE_SHIFT;
2777
2778	if (pte_access & ACC_WRITE_MASK) {
2779
2780		/*
2781		 * Other vcpu creates new sp in the window between
2782		 * mapping_level() and acquiring mmu-lock. We can
2783		 * allow guest to retry the access, the mapping can
2784		 * be fixed if guest refault.
2785		 */
2786		if (level > PT_PAGE_TABLE_LEVEL &&
2787		    mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
2788			goto done;
2789
2790		spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2791
2792		/*
2793		 * Optimization: for pte sync, if spte was writable the hash
2794		 * lookup is unnecessary (and expensive). Write protection
2795		 * is responsibility of mmu_get_page / kvm_sync_page.
2796		 * Same reasoning can be applied to dirty page accounting.
2797		 */
2798		if (!can_unsync && is_writable_pte(*sptep))
2799			goto set_pte;
2800
2801		if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2802			pgprintk("%s: found shadow page for %llx, marking ro\n",
2803				 __func__, gfn);
2804			ret = 1;
2805			pte_access &= ~ACC_WRITE_MASK;
2806			spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2807		}
2808	}
2809
2810	if (pte_access & ACC_WRITE_MASK) {
2811		kvm_vcpu_mark_page_dirty(vcpu, gfn);
2812		spte |= spte_shadow_dirty_mask(spte);
2813	}
2814
2815	if (speculative)
2816		spte = mark_spte_for_access_track(spte);
2817
2818set_pte:
2819	if (mmu_spte_update(sptep, spte))
2820		kvm_flush_remote_tlbs(vcpu->kvm);
2821done:
2822	return ret;
2823}
2824
2825static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
2826			int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
2827		       	bool speculative, bool host_writable)
2828{
2829	int was_rmapped = 0;
2830	int rmap_count;
2831	int ret = RET_PF_RETRY;
2832
2833	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2834		 *sptep, write_fault, gfn);
2835
2836	if (is_shadow_present_pte(*sptep)) {
2837		/*
2838		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2839		 * the parent of the now unreachable PTE.
2840		 */
2841		if (level > PT_PAGE_TABLE_LEVEL &&
2842		    !is_large_pte(*sptep)) {
2843			struct kvm_mmu_page *child;
2844			u64 pte = *sptep;
2845
2846			child = page_header(pte & PT64_BASE_ADDR_MASK);
2847			drop_parent_pte(child, sptep);
2848			kvm_flush_remote_tlbs(vcpu->kvm);
2849		} else if (pfn != spte_to_pfn(*sptep)) {
2850			pgprintk("hfn old %llx new %llx\n",
2851				 spte_to_pfn(*sptep), pfn);
2852			drop_spte(vcpu->kvm, sptep);
2853			kvm_flush_remote_tlbs(vcpu->kvm);
2854		} else
2855			was_rmapped = 1;
2856	}
2857
2858	if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2859	      true, host_writable)) {
2860		if (write_fault)
2861			ret = RET_PF_EMULATE;
2862		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2863	}
2864
2865	if (unlikely(is_mmio_spte(*sptep)))
2866		ret = RET_PF_EMULATE;
2867
2868	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2869	pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2870		 is_large_pte(*sptep)? "2MB" : "4kB",
2871		 *sptep & PT_WRITABLE_MASK ? "RW" : "R", gfn,
2872		 *sptep, sptep);
2873	if (!was_rmapped && is_large_pte(*sptep))
2874		++vcpu->kvm->stat.lpages;
2875
2876	if (is_shadow_present_pte(*sptep)) {
2877		if (!was_rmapped) {
2878			rmap_count = rmap_add(vcpu, sptep, gfn);
2879			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2880				rmap_recycle(vcpu, sptep, gfn);
2881		}
2882	}
2883
2884	kvm_release_pfn_clean(pfn);
2885
2886	return ret;
2887}
2888
2889static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2890				     bool no_dirty_log)
2891{
2892	struct kvm_memory_slot *slot;
2893
2894	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2895	if (!slot)
2896		return KVM_PFN_ERR_FAULT;
2897
2898	return gfn_to_pfn_memslot_atomic(slot, gfn);
2899}
2900
2901static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2902				    struct kvm_mmu_page *sp,
2903				    u64 *start, u64 *end)
2904{
2905	struct page *pages[PTE_PREFETCH_NUM];
2906	struct kvm_memory_slot *slot;
2907	unsigned access = sp->role.access;
2908	int i, ret;
2909	gfn_t gfn;
2910
2911	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2912	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2913	if (!slot)
2914		return -1;
2915
2916	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2917	if (ret <= 0)
2918		return -1;
2919
2920	for (i = 0; i < ret; i++, gfn++, start++)
2921		mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
2922			     page_to_pfn(pages[i]), true, true);
2923
2924	return 0;
2925}
2926
2927static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2928				  struct kvm_mmu_page *sp, u64 *sptep)
2929{
2930	u64 *spte, *start = NULL;
2931	int i;
2932
2933	WARN_ON(!sp->role.direct);
2934
2935	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2936	spte = sp->spt + i;
2937
2938	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2939		if (is_shadow_present_pte(*spte) || spte == sptep) {
2940			if (!start)
2941				continue;
2942			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2943				break;
2944			start = NULL;
2945		} else if (!start)
2946			start = spte;
2947	}
2948}
2949
2950static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2951{
2952	struct kvm_mmu_page *sp;
2953
2954	sp = page_header(__pa(sptep));
2955
2956	/*
2957	 * Without accessed bits, there's no way to distinguish between
2958	 * actually accessed translations and prefetched, so disable pte
2959	 * prefetch if accessed bits aren't available.
2960	 */
2961	if (sp_ad_disabled(sp))
2962		return;
2963
2964	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2965		return;
2966
2967	__direct_pte_prefetch(vcpu, sp, sptep);
2968}
2969
2970static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
2971			int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
2972{
2973	struct kvm_shadow_walk_iterator iterator;
2974	struct kvm_mmu_page *sp;
2975	int emulate = 0;
2976	gfn_t pseudo_gfn;
2977
2978	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2979		return 0;
2980
2981	for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2982		if (iterator.level == level) {
2983			emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2984					       write, level, gfn, pfn, prefault,
2985					       map_writable);
2986			direct_pte_prefetch(vcpu, iterator.sptep);
2987			++vcpu->stat.pf_fixed;
2988			break;
2989		}
2990
2991		drop_large_spte(vcpu, iterator.sptep);
2992		if (!is_shadow_present_pte(*iterator.sptep)) {
2993			u64 base_addr = iterator.addr;
2994
2995			base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2996			pseudo_gfn = base_addr >> PAGE_SHIFT;
2997			sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2998					      iterator.level - 1, 1, ACC_ALL);
2999
3000			link_shadow_page(vcpu, iterator.sptep, sp);
3001		}
3002	}
3003	return emulate;
3004}
3005
3006static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
3007{
3008	siginfo_t info;
3009
3010	info.si_signo	= SIGBUS;
3011	info.si_errno	= 0;
3012	info.si_code	= BUS_MCEERR_AR;
3013	info.si_addr	= (void __user *)address;
3014	info.si_addr_lsb = PAGE_SHIFT;
3015
3016	send_sig_info(SIGBUS, &info, tsk);
3017}
3018
3019static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
3020{
3021	/*
3022	 * Do not cache the mmio info caused by writing the readonly gfn
3023	 * into the spte otherwise read access on readonly gfn also can
3024	 * caused mmio page fault and treat it as mmio access.
3025	 */
3026	if (pfn == KVM_PFN_ERR_RO_FAULT)
3027		return RET_PF_EMULATE;
3028
3029	if (pfn == KVM_PFN_ERR_HWPOISON) {
3030		kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3031		return RET_PF_RETRY;
3032	}
3033
3034	return -EFAULT;
3035}
3036
3037static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
3038					gfn_t *gfnp, kvm_pfn_t *pfnp,
3039					int *levelp)
3040{
3041	kvm_pfn_t pfn = *pfnp;
3042	gfn_t gfn = *gfnp;
3043	int level = *levelp;
3044
3045	/*
3046	 * Check if it's a transparent hugepage. If this would be an
3047	 * hugetlbfs page, level wouldn't be set to
3048	 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
3049	 * here.
3050	 */
3051	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
3052	    level == PT_PAGE_TABLE_LEVEL &&
3053	    PageTransCompoundMap(pfn_to_page(pfn)) &&
3054	    !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
3055		unsigned long mask;
3056		/*
3057		 * mmu_notifier_retry was successful and we hold the
3058		 * mmu_lock here, so the pmd can't become splitting
3059		 * from under us, and in turn
3060		 * __split_huge_page_refcount() can't run from under
3061		 * us and we can safely transfer the refcount from
3062		 * PG_tail to PG_head as we switch the pfn to tail to
3063		 * head.
3064		 */
3065		*levelp = level = PT_DIRECTORY_LEVEL;
3066		mask = KVM_PAGES_PER_HPAGE(level) - 1;
3067		VM_BUG_ON((gfn & mask) != (pfn & mask));
3068		if (pfn & mask) {
3069			gfn &= ~mask;
3070			*gfnp = gfn;
3071			kvm_release_pfn_clean(pfn);
3072			pfn &= ~mask;
3073			kvm_get_pfn(pfn);
3074			*pfnp = pfn;
3075		}
3076	}
3077}
3078
3079static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
3080				kvm_pfn_t pfn, unsigned access, int *ret_val)
3081{
3082	/* The pfn is invalid, report the error! */
3083	if (unlikely(is_error_pfn(pfn))) {
3084		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
3085		return true;
3086	}
3087
3088	if (unlikely(is_noslot_pfn(pfn)))
3089		vcpu_cache_mmio_info(vcpu, gva, gfn, access);
3090
3091	return false;
3092}
3093
3094static bool page_fault_can_be_fast(u32 error_code)
3095{
3096	/*
3097	 * Do not fix the mmio spte with invalid generation number which
3098	 * need to be updated by slow page fault path.
3099	 */
3100	if (unlikely(error_code & PFERR_RSVD_MASK))
3101		return false;
3102
3103	/* See if the page fault is due to an NX violation */
3104	if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3105		      == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3106		return false;
3107
3108	/*
3109	 * #PF can be fast if:
3110	 * 1. The shadow page table entry is not present, which could mean that
3111	 *    the fault is potentially caused by access tracking (if enabled).
3112	 * 2. The shadow page table entry is present and the fault
3113	 *    is caused by write-protect, that means we just need change the W
3114	 *    bit of the spte which can be done out of mmu-lock.
3115	 *
3116	 * However, if access tracking is disabled we know that a non-present
3117	 * page must be a genuine page fault where we have to create a new SPTE.
3118	 * So, if access tracking is disabled, we return true only for write
3119	 * accesses to a present page.
3120	 */
3121
3122	return shadow_acc_track_mask != 0 ||
3123	       ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3124		== (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3125}
3126
3127/*
3128 * Returns true if the SPTE was fixed successfully. Otherwise,
3129 * someone else modified the SPTE from its original value.
3130 */
3131static bool
3132fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3133			u64 *sptep, u64 old_spte, u64 new_spte)
3134{
3135	gfn_t gfn;
3136
3137	WARN_ON(!sp->role.direct);
3138
3139	/*
3140	 * Theoretically we could also set dirty bit (and flush TLB) here in
3141	 * order to eliminate unnecessary PML logging. See comments in
3142	 * set_spte. But fast_page_fault is very unlikely to happen with PML
3143	 * enabled, so we do not do this. This might result in the same GPA
3144	 * to be logged in PML buffer again when the write really happens, and
3145	 * eventually to be called by mark_page_dirty twice. But it's also no
3146	 * harm. This also avoids the TLB flush needed after setting dirty bit
3147	 * so non-PML cases won't be impacted.
3148	 *
3149	 * Compare with set_spte where instead shadow_dirty_mask is set.
3150	 */
3151	if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3152		return false;
3153
3154	if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3155		/*
3156		 * The gfn of direct spte is stable since it is
3157		 * calculated by sp->gfn.
3158		 */
3159		gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3160		kvm_vcpu_mark_page_dirty(vcpu, gfn);
3161	}
3162
3163	return true;
3164}
3165
3166static bool is_access_allowed(u32 fault_err_code, u64 spte)
3167{
3168	if (fault_err_code & PFERR_FETCH_MASK)
3169		return is_executable_pte(spte);
3170
3171	if (fault_err_code & PFERR_WRITE_MASK)
3172		return is_writable_pte(spte);
3173
3174	/* Fault was on Read access */
3175	return spte & PT_PRESENT_MASK;
3176}
3177
3178/*
3179 * Return value:
3180 * - true: let the vcpu to access on the same address again.
3181 * - false: let the real page fault path to fix it.
3182 */
3183static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
3184			    u32 error_code)
3185{
3186	struct kvm_shadow_walk_iterator iterator;
3187	struct kvm_mmu_page *sp;
3188	bool fault_handled = false;
3189	u64 spte = 0ull;
3190	uint retry_count = 0;
3191
3192	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3193		return false;
3194
3195	if (!page_fault_can_be_fast(error_code))
3196		return false;
3197
3198	walk_shadow_page_lockless_begin(vcpu);
3199
3200	do {
3201		u64 new_spte;
3202
3203		for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
3204			if (!is_shadow_present_pte(spte) ||
3205			    iterator.level < level)
3206				break;
3207
3208		sp = page_header(__pa(iterator.sptep));
3209		if (!is_last_spte(spte, sp->role.level))
3210			break;
3211
3212		/*
3213		 * Check whether the memory access that caused the fault would
3214		 * still cause it if it were to be performed right now. If not,
3215		 * then this is a spurious fault caused by TLB lazily flushed,
3216		 * or some other CPU has already fixed the PTE after the
3217		 * current CPU took the fault.
3218		 *
3219		 * Need not check the access of upper level table entries since
3220		 * they are always ACC_ALL.
3221		 */
3222		if (is_access_allowed(error_code, spte)) {
3223			fault_handled = true;
3224			break;
3225		}
3226
3227		new_spte = spte;
3228
3229		if (is_access_track_spte(spte))
3230			new_spte = restore_acc_track_spte(new_spte);
3231
3232		/*
3233		 * Currently, to simplify the code, write-protection can
3234		 * be removed in the fast path only if the SPTE was
3235		 * write-protected for dirty-logging or access tracking.
3236		 */
3237		if ((error_code & PFERR_WRITE_MASK) &&
3238		    spte_can_locklessly_be_made_writable(spte))
3239		{
3240			new_spte |= PT_WRITABLE_MASK;
3241
3242			/*
3243			 * Do not fix write-permission on the large spte.  Since
3244			 * we only dirty the first page into the dirty-bitmap in
3245			 * fast_pf_fix_direct_spte(), other pages are missed
3246			 * if its slot has dirty logging enabled.
3247			 *
3248			 * Instead, we let the slow page fault path create a
3249			 * normal spte to fix the access.
3250			 *
3251			 * See the comments in kvm_arch_commit_memory_region().
3252			 */
3253			if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3254				break;
3255		}
3256
3257		/* Verify that the fault can be handled in the fast path */
3258		if (new_spte == spte ||
3259		    !is_access_allowed(error_code, new_spte))
3260			break;
3261
3262		/*
3263		 * Currently, fast page fault only works for direct mapping
3264		 * since the gfn is not stable for indirect shadow page. See
3265		 * Documentation/virtual/kvm/locking.txt to get more detail.
3266		 */
3267		fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
3268							iterator.sptep, spte,
3269							new_spte);
3270		if (fault_handled)
3271			break;
3272
3273		if (++retry_count > 4) {
3274			printk_once(KERN_WARNING
3275				"kvm: Fast #PF retrying more than 4 times.\n");
3276			break;
3277		}
3278
3279	} while (true);
3280
3281	trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
3282			      spte, fault_handled);
3283	walk_shadow_page_lockless_end(vcpu);
3284
3285	return fault_handled;
3286}
3287
3288static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3289			 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
3290static int make_mmu_pages_available(struct kvm_vcpu *vcpu);
3291
3292static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
3293			 gfn_t gfn, bool prefault)
3294{
3295	int r;
3296	int level;
3297	bool force_pt_level = false;
3298	kvm_pfn_t pfn;
3299	unsigned long mmu_seq;
3300	bool map_writable, write = error_code & PFERR_WRITE_MASK;
3301
3302	level = mapping_level(vcpu, gfn, &force_pt_level);
3303	if (likely(!force_pt_level)) {
3304		/*
3305		 * This path builds a PAE pagetable - so we can map
3306		 * 2mb pages at maximum. Therefore check if the level
3307		 * is larger than that.
3308		 */
3309		if (level > PT_DIRECTORY_LEVEL)
3310			level = PT_DIRECTORY_LEVEL;
3311
3312		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3313	}
3314
3315	if (fast_page_fault(vcpu, v, level, error_code))
3316		return RET_PF_RETRY;
3317
3318	mmu_seq = vcpu->kvm->mmu_notifier_seq;
3319	smp_rmb();
3320
3321	if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3322		return RET_PF_RETRY;
3323
3324	if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3325		return r;
3326
3327	spin_lock(&vcpu->kvm->mmu_lock);
3328	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3329		goto out_unlock;
3330	if (make_mmu_pages_available(vcpu) < 0)
3331		goto out_unlock;
3332	if (likely(!force_pt_level))
3333		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3334	r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3335	spin_unlock(&vcpu->kvm->mmu_lock);
3336
3337	return r;
3338
3339out_unlock:
3340	spin_unlock(&vcpu->kvm->mmu_lock);
3341	kvm_release_pfn_clean(pfn);
3342	return RET_PF_RETRY;
3343}
3344
3345
3346static void mmu_free_roots(struct kvm_vcpu *vcpu)
3347{
3348	int i;
3349	struct kvm_mmu_page *sp;
3350	LIST_HEAD(invalid_list);
3351
3352	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3353		return;
3354
3355	if (vcpu->arch.mmu.shadow_root_level >= PT64_ROOT_4LEVEL &&
3356	    (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL ||
3357	     vcpu->arch.mmu.direct_map)) {
3358		hpa_t root = vcpu->arch.mmu.root_hpa;
3359
3360		spin_lock(&vcpu->kvm->mmu_lock);
3361		sp = page_header(root);
3362		--sp->root_count;
3363		if (!sp->root_count && sp->role.invalid) {
3364			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3365			kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3366		}
3367		spin_unlock(&vcpu->kvm->mmu_lock);
3368		vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3369		return;
3370	}
3371
3372	spin_lock(&vcpu->kvm->mmu_lock);
3373	for (i = 0; i < 4; ++i) {
3374		hpa_t root = vcpu->arch.mmu.pae_root[i];
3375
3376		if (root) {
3377			root &= PT64_BASE_ADDR_MASK;
3378			sp = page_header(root);
3379			--sp->root_count;
3380			if (!sp->root_count && sp->role.invalid)
3381				kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3382							 &invalid_list);
3383		}
3384		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3385	}
3386	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3387	spin_unlock(&vcpu->kvm->mmu_lock);
3388	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3389}
3390
3391static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3392{
3393	int ret = 0;
3394
3395	if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3396		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3397		ret = 1;
3398	}
3399
3400	return ret;
3401}
3402
3403static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3404{
3405	struct kvm_mmu_page *sp;
3406	unsigned i;
3407
3408	if (vcpu->arch.mmu.shadow_root_level >= PT64_ROOT_4LEVEL) {
3409		spin_lock(&vcpu->kvm->mmu_lock);
3410		if(make_mmu_pages_available(vcpu) < 0) {
3411			spin_unlock(&vcpu->kvm->mmu_lock);
3412			return -ENOSPC;
3413		}
3414		sp = kvm_mmu_get_page(vcpu, 0, 0,
3415				vcpu->arch.mmu.shadow_root_level, 1, ACC_ALL);
3416		++sp->root_count;
3417		spin_unlock(&vcpu->kvm->mmu_lock);
3418		vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3419	} else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3420		for (i = 0; i < 4; ++i) {
3421			hpa_t root = vcpu->arch.mmu.pae_root[i];
3422
3423			MMU_WARN_ON(VALID_PAGE(root));
3424			spin_lock(&vcpu->kvm->mmu_lock);
3425			if (make_mmu_pages_available(vcpu) < 0) {
3426				spin_unlock(&vcpu->kvm->mmu_lock);
3427				return -ENOSPC;
3428			}
3429			sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3430					i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3431			root = __pa(sp->spt);
3432			++sp->root_count;
3433			spin_unlock(&vcpu->kvm->mmu_lock);
3434			vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
3435		}
3436		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3437	} else
3438		BUG();
3439
3440	return 0;
3441}
3442
3443static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3444{
3445	struct kvm_mmu_page *sp;
3446	u64 pdptr, pm_mask;
3447	gfn_t root_gfn;
3448	int i;
3449
3450	root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3451
3452	if (mmu_check_root(vcpu, root_gfn))
3453		return 1;
3454
3455	/*
3456	 * Do we shadow a long mode page table? If so we need to
3457	 * write-protect the guests page table root.
3458	 */
3459	if (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL) {
3460		hpa_t root = vcpu->arch.mmu.root_hpa;
3461
3462		MMU_WARN_ON(VALID_PAGE(root));
3463
3464		spin_lock(&vcpu->kvm->mmu_lock);
3465		if (make_mmu_pages_available(vcpu) < 0) {
3466			spin_unlock(&vcpu->kvm->mmu_lock);
3467			return -ENOSPC;
3468		}
3469		sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
3470				vcpu->arch.mmu.shadow_root_level, 0, ACC_ALL);
3471		root = __pa(sp->spt);
3472		++sp->root_count;
3473		spin_unlock(&vcpu->kvm->mmu_lock);
3474		vcpu->arch.mmu.root_hpa = root;
3475		return 0;
3476	}
3477
3478	/*
3479	 * We shadow a 32 bit page table. This may be a legacy 2-level
3480	 * or a PAE 3-level page table. In either case we need to be aware that
3481	 * the shadow page table may be a PAE or a long mode page table.
3482	 */
3483	pm_mask = PT_PRESENT_MASK;
3484	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_4LEVEL)
3485		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3486
3487	for (i = 0; i < 4; ++i) {
3488		hpa_t root = vcpu->arch.mmu.pae_root[i];
3489
3490		MMU_WARN_ON(VALID_PAGE(root));
3491		if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3492			pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3493			if (!(pdptr & PT_PRESENT_MASK)) {
3494				vcpu->arch.mmu.pae_root[i] = 0;
3495				continue;
3496			}
3497			root_gfn = pdptr >> PAGE_SHIFT;
3498			if (mmu_check_root(vcpu, root_gfn))
3499				return 1;
3500		}
3501		spin_lock(&vcpu->kvm->mmu_lock);
3502		if (make_mmu_pages_available(vcpu) < 0) {
3503			spin_unlock(&vcpu->kvm->mmu_lock);
3504			return -ENOSPC;
3505		}
3506		sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3507				      0, ACC_ALL);
3508		root = __pa(sp->spt);
3509		++sp->root_count;
3510		spin_unlock(&vcpu->kvm->mmu_lock);
3511
3512		vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3513	}
3514	vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3515
3516	/*
3517	 * If we shadow a 32 bit page table with a long mode page
3518	 * table we enter this path.
3519	 */
3520	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_4LEVEL) {
3521		if (vcpu->arch.mmu.lm_root == NULL) {
3522			/*
3523			 * The additional page necessary for this is only
3524			 * allocated on demand.
3525			 */
3526
3527			u64 *lm_root;
3528
3529			lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3530			if (lm_root == NULL)
3531				return 1;
3532
3533			lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3534
3535			vcpu->arch.mmu.lm_root = lm_root;
3536		}
3537
3538		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3539	}
3540
3541	return 0;
3542}
3543
3544static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3545{
3546	if (vcpu->arch.mmu.direct_map)
3547		return mmu_alloc_direct_roots(vcpu);
3548	else
3549		return mmu_alloc_shadow_roots(vcpu);
3550}
3551
3552static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3553{
3554	int i;
3555	struct kvm_mmu_page *sp;
3556
3557	if (vcpu->arch.mmu.direct_map)
3558		return;
3559
3560	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3561		return;
3562
3563	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3564	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3565	if (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL) {
3566		hpa_t root = vcpu->arch.mmu.root_hpa;
3567		sp = page_header(root);
3568		mmu_sync_children(vcpu, sp);
3569		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3570		return;
3571	}
3572	for (i = 0; i < 4; ++i) {
3573		hpa_t root = vcpu->arch.mmu.pae_root[i];
3574
3575		if (root && VALID_PAGE(root)) {
3576			root &= PT64_BASE_ADDR_MASK;
3577			sp = page_header(root);
3578			mmu_sync_children(vcpu, sp);
3579		}
3580	}
3581	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3582}
3583
3584void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3585{
3586	spin_lock(&vcpu->kvm->mmu_lock);
3587	mmu_sync_roots(vcpu);
3588	spin_unlock(&vcpu->kvm->mmu_lock);
3589}
3590EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3591
3592static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3593				  u32 access, struct x86_exception *exception)
3594{
3595	if (exception)
3596		exception->error_code = 0;
3597	return vaddr;
3598}
3599
3600static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3601					 u32 access,
3602					 struct x86_exception *exception)
3603{
3604	if (exception)
3605		exception->error_code = 0;
3606	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3607}
3608
3609static bool
3610__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3611{
3612	int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3613
3614	return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3615		((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3616}
3617
3618static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3619{
3620	return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3621}
3622
3623static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3624{
3625	return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3626}
3627
3628static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3629{
3630	/*
3631	 * A nested guest cannot use the MMIO cache if it is using nested
3632	 * page tables, because cr2 is a nGPA while the cache stores GPAs.
3633	 */
3634	if (mmu_is_nested(vcpu))
3635		return false;
3636
3637	if (direct)
3638		return vcpu_match_mmio_gpa(vcpu, addr);
3639
3640	return vcpu_match_mmio_gva(vcpu, addr);
3641}
3642
3643/* return true if reserved bit is detected on spte. */
3644static bool
3645walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3646{
3647	struct kvm_shadow_walk_iterator iterator;
3648	u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
3649	int root, leaf;
3650	bool reserved = false;
3651
3652	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3653		goto exit;
3654
3655	walk_shadow_page_lockless_begin(vcpu);
3656
3657	for (shadow_walk_init(&iterator, vcpu, addr),
3658		 leaf = root = iterator.level;
3659	     shadow_walk_okay(&iterator);
3660	     __shadow_walk_next(&iterator, spte)) {
3661		spte = mmu_spte_get_lockless(iterator.sptep);
3662
3663		sptes[leaf - 1] = spte;
3664		leaf--;
3665
3666		if (!is_shadow_present_pte(spte))
3667			break;
3668
3669		reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
3670						    iterator.level);
3671	}
3672
3673	walk_shadow_page_lockless_end(vcpu);
3674
3675	if (reserved) {
3676		pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3677		       __func__, addr);
3678		while (root > leaf) {
3679			pr_err("------ spte 0x%llx level %d.\n",
3680			       sptes[root - 1], root);
3681			root--;
3682		}
3683	}
3684exit:
3685	*sptep = spte;
3686	return reserved;
3687}
3688
3689static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3690{
3691	u64 spte;
3692	bool reserved;
3693
3694	if (mmio_info_in_cache(vcpu, addr, direct))
3695		return RET_PF_EMULATE;
3696
3697	reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3698	if (WARN_ON(reserved))
3699		return -EINVAL;
3700
3701	if (is_mmio_spte(spte)) {
3702		gfn_t gfn = get_mmio_spte_gfn(spte);
3703		unsigned access = get_mmio_spte_access(spte);
3704
3705		if (!check_mmio_spte(vcpu, spte))
3706			return RET_PF_INVALID;
3707
3708		if (direct)
3709			addr = 0;
3710
3711		trace_handle_mmio_page_fault(addr, gfn, access);
3712		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3713		return RET_PF_EMULATE;
3714	}
3715
3716	/*
3717	 * If the page table is zapped by other cpus, let CPU fault again on
3718	 * the address.
3719	 */
3720	return RET_PF_RETRY;
3721}
3722EXPORT_SYMBOL_GPL(handle_mmio_page_fault);
3723
3724static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3725					 u32 error_code, gfn_t gfn)
3726{
3727	if (unlikely(error_code & PFERR_RSVD_MASK))
3728		return false;
3729
3730	if (!(error_code & PFERR_PRESENT_MASK) ||
3731	      !(error_code & PFERR_WRITE_MASK))
3732		return false;
3733
3734	/*
3735	 * guest is writing the page which is write tracked which can
3736	 * not be fixed by page fault handler.
3737	 */
3738	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3739		return true;
3740
3741	return false;
3742}
3743
3744static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3745{
3746	struct kvm_shadow_walk_iterator iterator;
3747	u64 spte;
3748
3749	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3750		return;
3751
3752	walk_shadow_page_lockless_begin(vcpu);
3753	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3754		clear_sp_write_flooding_count(iterator.sptep);
3755		if (!is_shadow_present_pte(spte))
3756			break;
3757	}
3758	walk_shadow_page_lockless_end(vcpu);
3759}
3760
3761static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3762				u32 error_code, bool prefault)
3763{
3764	gfn_t gfn = gva >> PAGE_SHIFT;
3765	int r;
3766
3767	pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3768
3769	if (page_fault_handle_page_track(vcpu, error_code, gfn))
3770		return RET_PF_EMULATE;
3771
3772	r = mmu_topup_memory_caches(vcpu);
3773	if (r)
3774		return r;
3775
3776	MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3777
3778
3779	return nonpaging_map(vcpu, gva & PAGE_MASK,
3780			     error_code, gfn, prefault);
3781}
3782
3783static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3784{
3785	struct kvm_arch_async_pf arch;
3786
3787	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3788	arch.gfn = gfn;
3789	arch.direct_map = vcpu->arch.mmu.direct_map;
3790	arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3791
3792	return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3793}
3794
3795bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
3796{
3797	if (unlikely(!lapic_in_kernel(vcpu) ||
3798		     kvm_event_needs_reinjection(vcpu) ||
3799		     vcpu->arch.exception.pending))
3800		return false;
3801
3802	if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
3803		return false;
3804
3805	return kvm_x86_ops->interrupt_allowed(vcpu);
3806}
3807
3808static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3809			 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
3810{
3811	struct kvm_memory_slot *slot;
3812	bool async;
3813
3814	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3815	async = false;
3816	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3817	if (!async)
3818		return false; /* *pfn has correct page already */
3819
3820	if (!prefault && kvm_can_do_async_pf(vcpu)) {
3821		trace_kvm_try_async_get_page(gva, gfn);
3822		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3823			trace_kvm_async_pf_doublefault(gva, gfn);
3824			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3825			return true;
3826		} else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3827			return true;
3828	}
3829
3830	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3831	return false;
3832}
3833
3834int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
3835				u64 fault_address, char *insn, int insn_len)
3836{
3837	int r = 1;
3838
3839	switch (vcpu->arch.apf.host_apf_reason) {
3840	default:
3841		trace_kvm_page_fault(fault_address, error_code);
3842
3843		if (kvm_event_needs_reinjection(vcpu))
3844			kvm_mmu_unprotect_page_virt(vcpu, fault_address);
3845		r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
3846				insn_len);
3847		break;
3848	case KVM_PV_REASON_PAGE_NOT_PRESENT:
3849		vcpu->arch.apf.host_apf_reason = 0;
3850		local_irq_disable();
3851		kvm_async_pf_task_wait(fault_address, 0);
3852		local_irq_enable();
3853		break;
3854	case KVM_PV_REASON_PAGE_READY:
3855		vcpu->arch.apf.host_apf_reason = 0;
3856		local_irq_disable();
3857		kvm_async_pf_task_wake(fault_address);
3858		local_irq_enable();
3859		break;
3860	}
3861	return r;
3862}
3863EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
3864
3865static bool
3866check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
3867{
3868	int page_num = KVM_PAGES_PER_HPAGE(level);
3869
3870	gfn &= ~(page_num - 1);
3871
3872	return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
3873}
3874
3875static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3876			  bool prefault)
3877{
3878	kvm_pfn_t pfn;
3879	int r;
3880	int level;
3881	bool force_pt_level;
3882	gfn_t gfn = gpa >> PAGE_SHIFT;
3883	unsigned long mmu_seq;
3884	int write = error_code & PFERR_WRITE_MASK;
3885	bool map_writable;
3886
3887	MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3888
3889	if (page_fault_handle_page_track(vcpu, error_code, gfn))
3890		return RET_PF_EMULATE;
3891
3892	r = mmu_topup_memory_caches(vcpu);
3893	if (r)
3894		return r;
3895
3896	force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
3897							   PT_DIRECTORY_LEVEL);
3898	level = mapping_level(vcpu, gfn, &force_pt_level);
3899	if (likely(!force_pt_level)) {
3900		if (level > PT_DIRECTORY_LEVEL &&
3901		    !check_hugepage_cache_consistency(vcpu, gfn, level))
3902			level = PT_DIRECTORY_LEVEL;
3903		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3904	}
3905
3906	if (fast_page_fault(vcpu, gpa, level, error_code))
3907		return RET_PF_RETRY;
3908
3909	mmu_seq = vcpu->kvm->mmu_notifier_seq;
3910	smp_rmb();
3911
3912	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3913		return RET_PF_RETRY;
3914
3915	if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3916		return r;
3917
3918	spin_lock(&vcpu->kvm->mmu_lock);
3919	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3920		goto out_unlock;
3921	if (make_mmu_pages_available(vcpu) < 0)
3922		goto out_unlock;
3923	if (likely(!force_pt_level))
3924		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3925	r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3926	spin_unlock(&vcpu->kvm->mmu_lock);
3927
3928	return r;
3929
3930out_unlock:
3931	spin_unlock(&vcpu->kvm->mmu_lock);
3932	kvm_release_pfn_clean(pfn);
3933	return RET_PF_RETRY;
3934}
3935
3936static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3937				   struct kvm_mmu *context)
3938{
3939	context->page_fault = nonpaging_page_fault;
3940	context->gva_to_gpa = nonpaging_gva_to_gpa;
3941	context->sync_page = nonpaging_sync_page;
3942	context->invlpg = nonpaging_invlpg;
3943	context->update_pte = nonpaging_update_pte;
3944	context->root_level = 0;
3945	context->shadow_root_level = PT32E_ROOT_LEVEL;
3946	context->root_hpa = INVALID_PAGE;
3947	context->direct_map = true;
3948	context->nx = false;
3949}
3950
3951void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
3952{
3953	mmu_free_roots(vcpu);
3954}
3955
3956static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3957{
3958	return kvm_read_cr3(vcpu);
3959}
3960
3961static void inject_page_fault(struct kvm_vcpu *vcpu,
3962			      struct x86_exception *fault)
3963{
3964	vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3965}
3966
3967static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3968			   unsigned access, int *nr_present)
3969{
3970	if (unlikely(is_mmio_spte(*sptep))) {
3971		if (gfn != get_mmio_spte_gfn(*sptep)) {
3972			mmu_spte_clear_no_track(sptep);
3973			return true;
3974		}
3975
3976		(*nr_present)++;
3977		mark_mmio_spte(vcpu, sptep, gfn, access);
3978		return true;
3979	}
3980
3981	return false;
3982}
3983
3984static inline bool is_last_gpte(struct kvm_mmu *mmu,
3985				unsigned level, unsigned gpte)
3986{
3987	/*
3988	 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
3989	 * If it is clear, there are no large pages at this level, so clear
3990	 * PT_PAGE_SIZE_MASK in gpte if that is the case.
3991	 */
3992	gpte &= level - mmu->last_nonleaf_level;
3993
3994	/*
3995	 * PT_PAGE_TABLE_LEVEL always terminates.  The RHS has bit 7 set
3996	 * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
3997	 * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
3998	 */
3999	gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
4000
4001	return gpte & PT_PAGE_SIZE_MASK;
4002}
4003
4004#define PTTYPE_EPT 18 /* arbitrary */
4005#define PTTYPE PTTYPE_EPT
4006#include "paging_tmpl.h"
4007#undef PTTYPE
4008
4009#define PTTYPE 64
4010#include "paging_tmpl.h"
4011#undef PTTYPE
4012
4013#define PTTYPE 32
4014#include "paging_tmpl.h"
4015#undef PTTYPE
4016
4017static void
4018__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4019			struct rsvd_bits_validate *rsvd_check,
4020			int maxphyaddr, int level, bool nx, bool gbpages,
4021			bool pse, bool amd)
4022{
4023	u64 exb_bit_rsvd = 0;
4024	u64 gbpages_bit_rsvd = 0;
4025	u64 nonleaf_bit8_rsvd = 0;
4026
4027	rsvd_check->bad_mt_xwr = 0;
4028
4029	if (!nx)
4030		exb_bit_rsvd = rsvd_bits(63, 63);
4031	if (!gbpages)
4032		gbpages_bit_rsvd = rsvd_bits(7, 7);
4033
4034	/*
4035	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4036	 * leaf entries) on AMD CPUs only.
4037	 */
4038	if (amd)
4039		nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4040
4041	switch (level) {
4042	case PT32_ROOT_LEVEL:
4043		/* no rsvd bits for 2 level 4K page table entries */
4044		rsvd_check->rsvd_bits_mask[0][1] = 0;
4045		rsvd_check->rsvd_bits_mask[0][0] = 0;
4046		rsvd_check->rsvd_bits_mask[1][0] =
4047			rsvd_check->rsvd_bits_mask[0][0];
4048
4049		if (!pse) {
4050			rsvd_check->rsvd_bits_mask[1][1] = 0;
4051			break;
4052		}
4053
4054		if (is_cpuid_PSE36())
4055			/* 36bits PSE 4MB page */
4056			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4057		else
4058			/* 32 bits PSE 4MB page */
4059			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4060		break;
4061	case PT32E_ROOT_LEVEL:
4062		rsvd_check->rsvd_bits_mask[0][2] =
4063			rsvd_bits(maxphyaddr, 63) |
4064			rsvd_bits(5, 8) | rsvd_bits(1, 2);	/* PDPTE */
4065		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4066			rsvd_bits(maxphyaddr, 62);	/* PDE */
4067		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4068			rsvd_bits(maxphyaddr, 62); 	/* PTE */
4069		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4070			rsvd_bits(maxphyaddr, 62) |
4071			rsvd_bits(13, 20);		/* large page */
4072		rsvd_check->rsvd_bits_mask[1][0] =
4073			rsvd_check->rsvd_bits_mask[0][0];
4074		break;
4075	case PT64_ROOT_5LEVEL:
4076		rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
4077			nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4078			rsvd_bits(maxphyaddr, 51);
4079		rsvd_check->rsvd_bits_mask[1][4] =
4080			rsvd_check->rsvd_bits_mask[0][4];
4081	case PT64_ROOT_4LEVEL:
4082		rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4083			nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4084			rsvd_bits(maxphyaddr, 51);
4085		rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4086			nonleaf_bit8_rsvd | gbpages_bit_rsvd |
4087			rsvd_bits(maxphyaddr, 51);
4088		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4089			rsvd_bits(maxphyaddr, 51);
4090		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4091			rsvd_bits(maxphyaddr, 51);
4092		rsvd_check->rsvd_bits_mask[1][3] =
4093			rsvd_check->rsvd_bits_mask[0][3];
4094		rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
4095			gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
4096			rsvd_bits(13, 29);
4097		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4098			rsvd_bits(maxphyaddr, 51) |
4099			rsvd_bits(13, 20);		/* large page */
4100		rsvd_check->rsvd_bits_mask[1][0] =
4101			rsvd_check->rsvd_bits_mask[0][0];
4102		break;
4103	}
4104}
4105
4106static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4107				  struct kvm_mmu *context)
4108{
4109	__reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4110				cpuid_maxphyaddr(vcpu), context->root_level,
4111				context->nx,
4112				guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4113				is_pse(vcpu), guest_cpuid_is_amd(vcpu));
4114}
4115
4116static void
4117__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4118			    int maxphyaddr, bool execonly)
4119{
4120	u64 bad_mt_xwr;
4121
4122	rsvd_check->rsvd_bits_mask[0][4] =
4123		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4124	rsvd_check->rsvd_bits_mask[0][3] =
4125		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4126	rsvd_check->rsvd_bits_mask[0][2] =
4127		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4128	rsvd_check->rsvd_bits_mask[0][1] =
4129		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4130	rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
4131
4132	/* large page */
4133	rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4134	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4135	rsvd_check->rsvd_bits_mask[1][2] =
4136		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4137	rsvd_check->rsvd_bits_mask[1][1] =
4138		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4139	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4140
4141	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
4142	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
4143	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
4144	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
4145	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
4146	if (!execonly) {
4147		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
4148		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4149	}
4150	rsvd_check->bad_mt_xwr = bad_mt_xwr;
4151}
4152
4153static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4154		struct kvm_mmu *context, bool execonly)
4155{
4156	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4157				    cpuid_maxphyaddr(vcpu), execonly);
4158}
4159
4160/*
4161 * the page table on host is the shadow page table for the page
4162 * table in guest or amd nested guest, its mmu features completely
4163 * follow the features in guest.
4164 */
4165void
4166reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4167{
4168	bool uses_nx = context->nx || context->base_role.smep_andnot_wp;
4169	struct rsvd_bits_validate *shadow_zero_check;
4170	int i;
4171
4172	/*
4173	 * Passing "true" to the last argument is okay; it adds a check
4174	 * on bit 8 of the SPTEs which KVM doesn't use anyway.
4175	 */
4176	shadow_zero_check = &context->shadow_zero_check;
4177	__reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4178				boot_cpu_data.x86_phys_bits,
4179				context->shadow_root_level, uses_nx,
4180				guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4181				is_pse(vcpu), true);
4182
4183	if (!shadow_me_mask)
4184		return;
4185
4186	for (i = context->shadow_root_level; --i >= 0;) {
4187		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4188		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4189	}
4190
4191}
4192EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4193
4194static inline bool boot_cpu_is_amd(void)
4195{
4196	WARN_ON_ONCE(!tdp_enabled);
4197	return shadow_x_mask == 0;
4198}
4199
4200/*
4201 * the direct page table on host, use as much mmu features as
4202 * possible, however, kvm currently does not do execution-protection.
4203 */
4204static void
4205reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4206				struct kvm_mmu *context)
4207{
4208	struct rsvd_bits_validate *shadow_zero_check;
4209	int i;
4210
4211	shadow_zero_check = &context->shadow_zero_check;
4212
4213	if (boot_cpu_is_amd())
4214		__reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4215					boot_cpu_data.x86_phys_bits,
4216					context->shadow_root_level, false,
4217					boot_cpu_has(X86_FEATURE_GBPAGES),
4218					true, true);
4219	else
4220		__reset_rsvds_bits_mask_ept(shadow_zero_check,
4221					    boot_cpu_data.x86_phys_bits,
4222					    false);
4223
4224	if (!shadow_me_mask)
4225		return;
4226
4227	for (i = context->shadow_root_level; --i >= 0;) {
4228		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4229		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4230	}
4231}
4232
4233/*
4234 * as the comments in reset_shadow_zero_bits_mask() except it
4235 * is the shadow page table for intel nested guest.
4236 */
4237static void
4238reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4239				struct kvm_mmu *context, bool execonly)
4240{
4241	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4242				    boot_cpu_data.x86_phys_bits, execonly);
4243}
4244
4245#define BYTE_MASK(access) \
4246	((1 & (access) ? 2 : 0) | \
4247	 (2 & (access) ? 4 : 0) | \
4248	 (3 & (access) ? 8 : 0) | \
4249	 (4 & (access) ? 16 : 0) | \
4250	 (5 & (access) ? 32 : 0) | \
4251	 (6 & (access) ? 64 : 0) | \
4252	 (7 & (access) ? 128 : 0))
4253
4254
4255static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4256				      struct kvm_mmu *mmu, bool ept)
4257{
4258	unsigned byte;
4259
4260	const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4261	const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4262	const u8 u = BYTE_MASK(ACC_USER_MASK);
4263
4264	bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4265	bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4266	bool cr0_wp = is_write_protection(vcpu);
4267
4268	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4269		unsigned pfec = byte << 1;
4270
4271		/*
4272		 * Each "*f" variable has a 1 bit for each UWX value
4273		 * that causes a fault with the given PFEC.
4274		 */
4275
4276		/* Faults from writes to non-writable pages */
4277		u8 wf = (pfec & PFERR_WRITE_MASK) ? ~w : 0;
4278		/* Faults from user mode accesses to supervisor pages */
4279		u8 uf = (pfec & PFERR_USER_MASK) ? ~u : 0;
4280		/* Faults from fetches of non-executable pages*/
4281		u8 ff = (pfec & PFERR_FETCH_MASK) ? ~x : 0;
4282		/* Faults from kernel mode fetches of user pages */
4283		u8 smepf = 0;
4284		/* Faults from kernel mode accesses of user pages */
4285		u8 smapf = 0;
4286
4287		if (!ept) {
4288			/* Faults from kernel mode accesses to user pages */
4289			u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4290
4291			/* Not really needed: !nx will cause pte.nx to fault */
4292			if (!mmu->nx)
4293				ff = 0;
4294
4295			/* Allow supervisor writes if !cr0.wp */
4296			if (!cr0_wp)
4297				wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4298
4299			/* Disallow supervisor fetches of user code if cr4.smep */
4300			if (cr4_smep)
4301				smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4302
4303			/*
4304			 * SMAP:kernel-mode data accesses from user-mode
4305			 * mappings should fault. A fault is considered
4306			 * as a SMAP violation if all of the following
4307			 * conditions are ture:
4308			 *   - X86_CR4_SMAP is set in CR4
4309			 *   - A user page is accessed
4310			 *   - The access is not a fetch
4311			 *   - Page fault in kernel mode
4312			 *   - if CPL = 3 or X86_EFLAGS_AC is clear
4313			 *
4314			 * Here, we cover the first three conditions.
4315			 * The fourth is computed dynamically in permission_fault();
4316			 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4317			 * *not* subject to SMAP restrictions.
4318			 */
4319			if (cr4_smap)
4320				smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4321		}
4322
4323		mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4324	}
4325}
4326
4327/*
4328* PKU is an additional mechanism by which the paging controls access to
4329* user-mode addresses based on the value in the PKRU register.  Protection
4330* key violations are reported through a bit in the page fault error code.
4331* Unlike other bits of the error code, the PK bit is not known at the
4332* call site of e.g. gva_to_gpa; it must be computed directly in
4333* permission_fault based on two bits of PKRU, on some machine state (CR4,
4334* CR0, EFER, CPL), and on other bits of the error code and the page tables.
4335*
4336* In particular the following conditions come from the error code, the
4337* page tables and the machine state:
4338* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4339* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4340* - PK is always zero if U=0 in the page tables
4341* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4342*
4343* The PKRU bitmask caches the result of these four conditions.  The error
4344* code (minus the P bit) and the page table's U bit form an index into the
4345* PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
4346* with the two bits of the PKRU register corresponding to the protection key.
4347* For the first three conditions above the bits will be 00, thus masking
4348* away both AD and WD.  For all reads or if the last condition holds, WD
4349* only will be masked away.
4350*/
4351static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4352				bool ept)
4353{
4354	unsigned bit;
4355	bool wp;
4356
4357	if (ept) {
4358		mmu->pkru_mask = 0;
4359		return;
4360	}
4361
4362	/* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4363	if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4364		mmu->pkru_mask = 0;
4365		return;
4366	}
4367
4368	wp = is_write_protection(vcpu);
4369
4370	for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4371		unsigned pfec, pkey_bits;
4372		bool check_pkey, check_write, ff, uf, wf, pte_user;
4373
4374		pfec = bit << 1;
4375		ff = pfec & PFERR_FETCH_MASK;
4376		uf = pfec & PFERR_USER_MASK;
4377		wf = pfec & PFERR_WRITE_MASK;
4378
4379		/* PFEC.RSVD is replaced by ACC_USER_MASK. */
4380		pte_user = pfec & PFERR_RSVD_MASK;
4381
4382		/*
4383		 * Only need to check the access which is not an
4384		 * instruction fetch and is to a user page.
4385		 */
4386		check_pkey = (!ff && pte_user);
4387		/*
4388		 * write access is controlled by PKRU if it is a
4389		 * user access or CR0.WP = 1.
4390		 */
4391		check_write = check_pkey && wf && (uf || wp);
4392
4393		/* PKRU.AD stops both read and write access. */
4394		pkey_bits = !!check_pkey;
4395		/* PKRU.WD stops write access. */
4396		pkey_bits |= (!!check_write) << 1;
4397
4398		mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4399	}
4400}
4401
4402static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4403{
4404	unsigned root_level = mmu->root_level;
4405
4406	mmu->last_nonleaf_level = root_level;
4407	if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4408		mmu->last_nonleaf_level++;
4409}
4410
4411static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4412					 struct kvm_mmu *context,
4413					 int level)
4414{
4415	context->nx = is_nx(vcpu);
4416	context->root_level = level;
4417
4418	reset_rsvds_bits_mask(vcpu, context);
4419	update_permission_bitmask(vcpu, context, false);
4420	update_pkru_bitmask(vcpu, context, false);
4421	update_last_nonleaf_level(vcpu, context);
4422
4423	MMU_WARN_ON(!is_pae(vcpu));
4424	context->page_fault = paging64_page_fault;
4425	context->gva_to_gpa = paging64_gva_to_gpa;
4426	context->sync_page = paging64_sync_page;
4427	context->invlpg = paging64_invlpg;
4428	context->update_pte = paging64_update_pte;
4429	context->shadow_root_level = level;
4430	context->root_hpa = INVALID_PAGE;
4431	context->direct_map = false;
4432}
4433
4434static void paging64_init_context(struct kvm_vcpu *vcpu,
4435				  struct kvm_mmu *context)
4436{
4437	int root_level = is_la57_mode(vcpu) ?
4438			 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4439
4440	paging64_init_context_common(vcpu, context, root_level);
4441}
4442
4443static void paging32_init_context(struct kvm_vcpu *vcpu,
4444				  struct kvm_mmu *context)
4445{
4446	context->nx = false;
4447	context->root_level = PT32_ROOT_LEVEL;
4448
4449	reset_rsvds_bits_mask(vcpu, context);
4450	update_permission_bitmask(vcpu, context, false);
4451	update_pkru_bitmask(vcpu, context, false);
4452	update_last_nonleaf_level(vcpu, context);
4453
4454	context->page_fault = paging32_page_fault;
4455	context->gva_to_gpa = paging32_gva_to_gpa;
4456	context->sync_page = paging32_sync_page;
4457	context->invlpg = paging32_invlpg;
4458	context->update_pte = paging32_update_pte;
4459	context->shadow_root_level = PT32E_ROOT_LEVEL;
4460	context->root_hpa = INVALID_PAGE;
4461	context->direct_map = false;
4462}
4463
4464static void paging32E_init_context(struct kvm_vcpu *vcpu,
4465				   struct kvm_mmu *context)
4466{
4467	paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4468}
4469
4470static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4471{
4472	struct kvm_mmu *context = &vcpu->arch.mmu;
4473
4474	context->base_role.word = 0;
4475	context->base_role.smm = is_smm(vcpu);
4476	context->base_role.ad_disabled = (shadow_accessed_mask == 0);
4477	context->page_fault = tdp_page_fault;
4478	context->sync_page = nonpaging_sync_page;
4479	context->invlpg = nonpaging_invlpg;
4480	context->update_pte = nonpaging_update_pte;
4481	context->shadow_root_level = kvm_x86_ops->get_tdp_level(vcpu);
4482	context->root_hpa = INVALID_PAGE;
4483	context->direct_map = true;
4484	context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
4485	context->get_cr3 = get_cr3;
4486	context->get_pdptr = kvm_pdptr_read;
4487	context->inject_page_fault = kvm_inject_page_fault;
4488
4489	if (!is_paging(vcpu)) {
4490		context->nx = false;
4491		context->gva_to_gpa = nonpaging_gva_to_gpa;
4492		context->root_level = 0;
4493	} else if (is_long_mode(vcpu)) {
4494		context->nx = is_nx(vcpu);
4495		context->root_level = is_la57_mode(vcpu) ?
4496				PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4497		reset_rsvds_bits_mask(vcpu, context);
4498		context->gva_to_gpa = paging64_gva_to_gpa;
4499	} else if (is_pae(vcpu)) {
4500		context->nx = is_nx(vcpu);
4501		context->root_level = PT32E_ROOT_LEVEL;
4502		reset_rsvds_bits_mask(vcpu, context);
4503		context->gva_to_gpa = paging64_gva_to_gpa;
4504	} else {
4505		context->nx = false;
4506		context->root_level = PT32_ROOT_LEVEL;
4507		reset_rsvds_bits_mask(vcpu, context);
4508		context->gva_to_gpa = paging32_gva_to_gpa;
4509	}
4510
4511	update_permission_bitmask(vcpu, context, false);
4512	update_pkru_bitmask(vcpu, context, false);
4513	update_last_nonleaf_level(vcpu, context);
4514	reset_tdp_shadow_zero_bits_mask(vcpu, context);
4515}
4516
4517void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
4518{
4519	bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4520	bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4521	struct kvm_mmu *context = &vcpu->arch.mmu;
4522
4523	MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4524
4525	if (!is_paging(vcpu))
4526		nonpaging_init_context(vcpu, context);
4527	else if (is_long_mode(vcpu))
4528		paging64_init_context(vcpu, context);
4529	else if (is_pae(vcpu))
4530		paging32E_init_context(vcpu, context);
4531	else
4532		paging32_init_context(vcpu, context);
4533
4534	context->base_role.nxe = is_nx(vcpu);
4535	context->base_role.cr4_pae = !!is_pae(vcpu);
4536	context->base_role.cr0_wp  = is_write_protection(vcpu);
4537	context->base_role.smep_andnot_wp
4538		= smep && !is_write_protection(vcpu);
4539	context->base_role.smap_andnot_wp
4540		= smap && !is_write_protection(vcpu);
4541	context->base_role.smm = is_smm(vcpu);
4542	reset_shadow_zero_bits_mask(vcpu, context);
4543}
4544EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4545
4546void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4547			     bool accessed_dirty)
4548{
4549	struct kvm_mmu *context = &vcpu->arch.mmu;
4550
4551	MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4552
4553	context->shadow_root_level = PT64_ROOT_4LEVEL;
4554
4555	context->nx = true;
4556	context->ept_ad = accessed_dirty;
4557	context->page_fault = ept_page_fault;
4558	context->gva_to_gpa = ept_gva_to_gpa;
4559	context->sync_page = ept_sync_page;
4560	context->invlpg = ept_invlpg;
4561	context->update_pte = ept_update_pte;
4562	context->root_level = PT64_ROOT_4LEVEL;
4563	context->root_hpa = INVALID_PAGE;
4564	context->direct_map = false;
4565	context->base_role.ad_disabled = !accessed_dirty;
4566
4567	update_permission_bitmask(vcpu, context, true);
4568	update_pkru_bitmask(vcpu, context, true);
4569	update_last_nonleaf_level(vcpu, context);
4570	reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4571	reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4572}
4573EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4574
4575static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4576{
4577	struct kvm_mmu *context = &vcpu->arch.mmu;
4578
4579	kvm_init_shadow_mmu(vcpu);
4580	context->set_cr3           = kvm_x86_ops->set_cr3;
4581	context->get_cr3           = get_cr3;
4582	context->get_pdptr         = kvm_pdptr_read;
4583	context->inject_page_fault = kvm_inject_page_fault;
4584}
4585
4586static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4587{
4588	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4589
4590	g_context->get_cr3           = get_cr3;
4591	g_context->get_pdptr         = kvm_pdptr_read;
4592	g_context->inject_page_fault = kvm_inject_page_fault;
4593
4594	/*
4595	 * Note that arch.mmu.gva_to_gpa translates l2_gpa to l1_gpa using
4596	 * L1's nested page tables (e.g. EPT12). The nested translation
4597	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4598	 * L2's page tables as the first level of translation and L1's
4599	 * nested page tables as the second level of translation. Basically
4600	 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4601	 */
4602	if (!is_paging(vcpu)) {
4603		g_context->nx = false;
4604		g_context->root_level = 0;
4605		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4606	} else if (is_long_mode(vcpu)) {
4607		g_context->nx = is_nx(vcpu);
4608		g_context->root_level = is_la57_mode(vcpu) ?
4609					PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4610		reset_rsvds_bits_mask(vcpu, g_context);
4611		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4612	} else if (is_pae(vcpu)) {
4613		g_context->nx = is_nx(vcpu);
4614		g_context->root_level = PT32E_ROOT_LEVEL;
4615		reset_rsvds_bits_mask(vcpu, g_context);
4616		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4617	} else {
4618		g_context->nx = false;
4619		g_context->root_level = PT32_ROOT_LEVEL;
4620		reset_rsvds_bits_mask(vcpu, g_context);
4621		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4622	}
4623
4624	update_permission_bitmask(vcpu, g_context, false);
4625	update_pkru_bitmask(vcpu, g_context, false);
4626	update_last_nonleaf_level(vcpu, g_context);
4627}
4628
4629static void init_kvm_mmu(struct kvm_vcpu *vcpu)
4630{
4631	if (mmu_is_nested(vcpu))
4632		init_kvm_nested_mmu(vcpu);
4633	else if (tdp_enabled)
4634		init_kvm_tdp_mmu(vcpu);
4635	else
4636		init_kvm_softmmu(vcpu);
4637}
4638
4639void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4640{
4641	kvm_mmu_unload(vcpu);
4642	init_kvm_mmu(vcpu);
4643}
4644EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4645
4646int kvm_mmu_load(struct kvm_vcpu *vcpu)
4647{
4648	int r;
4649
4650	r = mmu_topup_memory_caches(vcpu);
4651	if (r)
4652		goto out;
4653	r = mmu_alloc_roots(vcpu);
4654	kvm_mmu_sync_roots(vcpu);
4655	if (r)
4656		goto out;
4657	/* set_cr3() should ensure TLB has been flushed */
4658	vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
4659out:
4660	return r;
4661}
4662EXPORT_SYMBOL_GPL(kvm_mmu_load);
4663
4664void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4665{
4666	mmu_free_roots(vcpu);
4667	WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4668}
4669EXPORT_SYMBOL_GPL(kvm_mmu_unload);
4670
4671static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4672				  struct kvm_mmu_page *sp, u64 *spte,
4673				  const void *new)
4674{
4675	if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
4676		++vcpu->kvm->stat.mmu_pde_zapped;
4677		return;
4678        }
4679
4680	++vcpu->kvm->stat.mmu_pte_updated;
4681	vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
4682}
4683
4684static bool need_remote_flush(u64 old, u64 new)
4685{
4686	if (!is_shadow_present_pte(old))
4687		return false;
4688	if (!is_shadow_present_pte(new))
4689		return true;
4690	if ((old ^ new) & PT64_BASE_ADDR_MASK)
4691		return true;
4692	old ^= shadow_nx_mask;
4693	new ^= shadow_nx_mask;
4694	return (old & ~new & PT64_PERM_MASK) != 0;
4695}
4696
4697static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4698				    const u8 *new, int *bytes)
4699{
4700	u64 gentry;
4701	int r;
4702
4703	/*
4704	 * Assume that the pte write on a page table of the same type
4705	 * as the current vcpu paging mode since we update the sptes only
4706	 * when they have the same mode.
4707	 */
4708	if (is_pae(vcpu) && *bytes == 4) {
4709		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4710		*gpa &= ~(gpa_t)7;
4711		*bytes = 8;
4712		r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
4713		if (r)
4714			gentry = 0;
4715		new = (const u8 *)&gentry;
4716	}
4717
4718	switch (*bytes) {
4719	case 4:
4720		gentry = *(const u32 *)new;
4721		break;
4722	case 8:
4723		gentry = *(const u64 *)new;
4724		break;
4725	default:
4726		gentry = 0;
4727		break;
4728	}
4729
4730	return gentry;
4731}
4732
4733/*
4734 * If we're seeing too many writes to a page, it may no longer be a page table,
4735 * or we may be forking, in which case it is better to unmap the page.
4736 */
4737static bool detect_write_flooding(struct kvm_mmu_page *sp)
4738{
4739	/*
4740	 * Skip write-flooding detected for the sp whose level is 1, because
4741	 * it can become unsync, then the guest page is not write-protected.
4742	 */
4743	if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4744		return false;
4745
4746	atomic_inc(&sp->write_flooding_count);
4747	return atomic_read(&sp->write_flooding_count) >= 3;
4748}
4749
4750/*
4751 * Misaligned accesses are too much trouble to fix up; also, they usually
4752 * indicate a page is not used as a page table.
4753 */
4754static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4755				    int bytes)
4756{
4757	unsigned offset, pte_size, misaligned;
4758
4759	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4760		 gpa, bytes, sp->role.word);
4761
4762	offset = offset_in_page(gpa);
4763	pte_size = sp->role.cr4_pae ? 8 : 4;
4764
4765	/*
4766	 * Sometimes, the OS only writes the last one bytes to update status
4767	 * bits, for example, in linux, andb instruction is used in clear_bit().
4768	 */
4769	if (!(offset & (pte_size - 1)) && bytes == 1)
4770		return false;
4771
4772	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4773	misaligned |= bytes < 4;
4774
4775	return misaligned;
4776}
4777
4778static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4779{
4780	unsigned page_offset, quadrant;
4781	u64 *spte;
4782	int level;
4783
4784	page_offset = offset_in_page(gpa);
4785	level = sp->role.level;
4786	*nspte = 1;
4787	if (!sp->role.cr4_pae) {
4788		page_offset <<= 1;	/* 32->64 */
4789		/*
4790		 * A 32-bit pde maps 4MB while the shadow pdes map
4791		 * only 2MB.  So we need to double the offset again
4792		 * and zap two pdes instead of one.
4793		 */
4794		if (level == PT32_ROOT_LEVEL) {
4795			page_offset &= ~7; /* kill rounding error */
4796			page_offset <<= 1;
4797			*nspte = 2;
4798		}
4799		quadrant = page_offset >> PAGE_SHIFT;
4800		page_offset &= ~PAGE_MASK;
4801		if (quadrant != sp->role.quadrant)
4802			return NULL;
4803	}
4804
4805	spte = &sp->spt[page_offset / sizeof(*spte)];
4806	return spte;
4807}
4808
4809static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4810			      const u8 *new, int bytes,
4811			      struct kvm_page_track_notifier_node *node)
4812{
4813	gfn_t gfn = gpa >> PAGE_SHIFT;
4814	struct kvm_mmu_page *sp;
4815	LIST_HEAD(invalid_list);
4816	u64 entry, gentry, *spte;
4817	int npte;
4818	bool remote_flush, local_flush;
4819	union kvm_mmu_page_role mask = { };
4820
4821	mask.cr0_wp = 1;
4822	mask.cr4_pae = 1;
4823	mask.nxe = 1;
4824	mask.smep_andnot_wp = 1;
4825	mask.smap_andnot_wp = 1;
4826	mask.smm = 1;
4827	mask.ad_disabled = 1;
4828
4829	/*
4830	 * If we don't have indirect shadow pages, it means no page is
4831	 * write-protected, so we can exit simply.
4832	 */
4833	if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4834		return;
4835
4836	remote_flush = local_flush = false;
4837
4838	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4839
4840	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4841
4842	/*
4843	 * No need to care whether allocation memory is successful
4844	 * or not since pte prefetch is skiped if it does not have
4845	 * enough objects in the cache.
4846	 */
4847	mmu_topup_memory_caches(vcpu);
4848
4849	spin_lock(&vcpu->kvm->mmu_lock);
4850	++vcpu->kvm->stat.mmu_pte_write;
4851	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4852
4853	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4854		if (detect_write_misaligned(sp, gpa, bytes) ||
4855		      detect_write_flooding(sp)) {
4856			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4857			++vcpu->kvm->stat.mmu_flooded;
4858			continue;
4859		}
4860
4861		spte = get_written_sptes(sp, gpa, &npte);
4862		if (!spte)
4863			continue;
4864
4865		local_flush = true;
4866		while (npte--) {
4867			entry = *spte;
4868			mmu_page_zap_pte(vcpu->kvm, sp, spte);
4869			if (gentry &&
4870			      !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4871			      & mask.word) && rmap_can_add(vcpu))
4872				mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4873			if (need_remote_flush(entry, *spte))
4874				remote_flush = true;
4875			++spte;
4876		}
4877	}
4878	kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
4879	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4880	spin_unlock(&vcpu->kvm->mmu_lock);
4881}
4882
4883int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4884{
4885	gpa_t gpa;
4886	int r;
4887
4888	if (vcpu->arch.mmu.direct_map)
4889		return 0;
4890
4891	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4892
4893	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4894
4895	return r;
4896}
4897EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4898
4899static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
4900{
4901	LIST_HEAD(invalid_list);
4902
4903	if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4904		return 0;
4905
4906	while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4907		if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4908			break;
4909
4910		++vcpu->kvm->stat.mmu_recycled;
4911	}
4912	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4913
4914	if (!kvm_mmu_available_pages(vcpu->kvm))
4915		return -ENOSPC;
4916	return 0;
4917}
4918
4919int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code,
4920		       void *insn, int insn_len)
4921{
4922	int r, emulation_type = EMULTYPE_RETRY;
4923	enum emulation_result er;
4924	bool direct = vcpu->arch.mmu.direct_map;
4925
4926	/* With shadow page tables, fault_address contains a GVA or nGPA.  */
4927	if (vcpu->arch.mmu.direct_map) {
4928		vcpu->arch.gpa_available = true;
4929		vcpu->arch.gpa_val = cr2;
4930	}
4931
4932	r = RET_PF_INVALID;
4933	if (unlikely(error_code & PFERR_RSVD_MASK)) {
4934		r = handle_mmio_page_fault(vcpu, cr2, direct);
4935		if (r == RET_PF_EMULATE) {
4936			emulation_type = 0;
4937			goto emulate;
4938		}
4939	}
4940
4941	if (r == RET_PF_INVALID) {
4942		r = vcpu->arch.mmu.page_fault(vcpu, cr2, lower_32_bits(error_code),
4943					      false);
4944		WARN_ON(r == RET_PF_INVALID);
4945	}
4946
4947	if (r == RET_PF_RETRY)
4948		return 1;
4949	if (r < 0)
4950		return r;
4951
4952	/*
4953	 * Before emulating the instruction, check if the error code
4954	 * was due to a RO violation while translating the guest page.
4955	 * This can occur when using nested virtualization with nested
4956	 * paging in both guests. If true, we simply unprotect the page
4957	 * and resume the guest.
4958	 */
4959	if (vcpu->arch.mmu.direct_map &&
4960	    (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
4961		kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2));
4962		return 1;
4963	}
4964
4965	if (mmio_info_in_cache(vcpu, cr2, direct))
4966		emulation_type = 0;
4967emulate:
4968	/*
4969	 * On AMD platforms, under certain conditions insn_len may be zero on #NPF.
4970	 * This can happen if a guest gets a page-fault on data access but the HW
4971	 * table walker is not able to read the instruction page (e.g instruction
4972	 * page is not present in memory). In those cases we simply restart the
4973	 * guest.
4974	 */
4975	if (unlikely(insn && !insn_len))
4976		return 1;
4977
4978	er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4979
4980	switch (er) {
4981	case EMULATE_DONE:
4982		return 1;
4983	case EMULATE_USER_EXIT:
4984		++vcpu->stat.mmio_exits;
4985		/* fall through */
4986	case EMULATE_FAIL:
4987		return 0;
4988	default:
4989		BUG();
4990	}
4991}
4992EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4993
4994void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4995{
4996	vcpu->arch.mmu.invlpg(vcpu, gva);
4997	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4998	++vcpu->stat.invlpg;
4999}
5000EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5001
5002void kvm_enable_tdp(void)
5003{
5004	tdp_enabled = true;
5005}
5006EXPORT_SYMBOL_GPL(kvm_enable_tdp);
5007
5008void kvm_disable_tdp(void)
5009{
5010	tdp_enabled = false;
5011}
5012EXPORT_SYMBOL_GPL(kvm_disable_tdp);
5013
5014static void free_mmu_pages(struct kvm_vcpu *vcpu)
5015{
5016	free_page((unsigned long)vcpu->arch.mmu.pae_root);
5017	free_page((unsigned long)vcpu->arch.mmu.lm_root);
5018}
5019
5020static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
5021{
5022	struct page *page;
5023	int i;
5024
5025	/*
5026	 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
5027	 * Therefore we need to allocate shadow page tables in the first
5028	 * 4GB of memory, which happens to fit the DMA32 zone.
5029	 */
5030	page = alloc_page(GFP_KERNEL | __GFP_DMA32);
5031	if (!page)
5032		return -ENOMEM;
5033
5034	vcpu->arch.mmu.pae_root = page_address(page);
5035	for (i = 0; i < 4; ++i)
5036		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
5037
5038	return 0;
5039}
5040
5041int kvm_mmu_create(struct kvm_vcpu *vcpu)
5042{
5043	vcpu->arch.walk_mmu = &vcpu->arch.mmu;
5044	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
5045	vcpu->arch.mmu.translate_gpa = translate_gpa;
5046	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5047
5048	return alloc_mmu_pages(vcpu);
5049}
5050
5051void kvm_mmu_setup(struct kvm_vcpu *vcpu)
5052{
5053	MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
5054
5055	init_kvm_mmu(vcpu);
5056}
5057
5058static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5059			struct kvm_memory_slot *slot,
5060			struct kvm_page_track_notifier_node *node)
5061{
5062	kvm_mmu_invalidate_zap_all_pages(kvm);
5063}
5064
5065void kvm_mmu_init_vm(struct kvm *kvm)
5066{
5067	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5068
5069	node->track_write = kvm_mmu_pte_write;
5070	node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5071	kvm_page_track_register_notifier(kvm, node);
5072}
5073
5074void kvm_mmu_uninit_vm(struct kvm *kvm)
5075{
5076	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5077
5078	kvm_page_track_unregister_notifier(kvm, node);
5079}
5080
5081/* The return value indicates if tlb flush on all vcpus is needed. */
5082typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5083
5084/* The caller should hold mmu-lock before calling this function. */
5085static __always_inline bool
5086slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5087			slot_level_handler fn, int start_level, int end_level,
5088			gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5089{
5090	struct slot_rmap_walk_iterator iterator;
5091	bool flush = false;
5092
5093	for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5094			end_gfn, &iterator) {
5095		if (iterator.rmap)
5096			flush |= fn(kvm, iterator.rmap);
5097
5098		if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5099			if (flush && lock_flush_tlb) {
5100				kvm_flush_remote_tlbs(kvm);
5101				flush = false;
5102			}
5103			cond_resched_lock(&kvm->mmu_lock);
5104		}
5105	}
5106
5107	if (flush && lock_flush_tlb) {
5108		kvm_flush_remote_tlbs(kvm);
5109		flush = false;
5110	}
5111
5112	return flush;
5113}
5114
5115static __always_inline bool
5116slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5117		  slot_level_handler fn, int start_level, int end_level,
5118		  bool lock_flush_tlb)
5119{
5120	return slot_handle_level_range(kvm, memslot, fn, start_level,
5121			end_level, memslot->base_gfn,
5122			memslot->base_gfn + memslot->npages - 1,
5123			lock_flush_tlb);
5124}
5125
5126static __always_inline bool
5127slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5128		      slot_level_handler fn, bool lock_flush_tlb)
5129{
5130	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5131				 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5132}
5133
5134static __always_inline bool
5135slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5136			slot_level_handler fn, bool lock_flush_tlb)
5137{
5138	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
5139				 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5140}
5141
5142static __always_inline bool
5143slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5144		 slot_level_handler fn, bool lock_flush_tlb)
5145{
5146	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5147				 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
5148}
5149
5150void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5151{
5152	struct kvm_memslots *slots;
5153	struct kvm_memory_slot *memslot;
5154	int i;
5155
5156	spin_lock(&kvm->mmu_lock);
5157	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5158		slots = __kvm_memslots(kvm, i);
5159		kvm_for_each_memslot(memslot, slots) {
5160			gfn_t start, end;
5161
5162			start = max(gfn_start, memslot->base_gfn);
5163			end = min(gfn_end, memslot->base_gfn + memslot->npages);
5164			if (start >= end)
5165				continue;
5166
5167			slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5168						PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
5169						start, end - 1, true);
5170		}
5171	}
5172
5173	spin_unlock(&kvm->mmu_lock);
5174}
5175
5176static bool slot_rmap_write_protect(struct kvm *kvm,
5177				    struct kvm_rmap_head *rmap_head)
5178{
5179	return __rmap_write_protect(kvm, rmap_head, false);
5180}
5181
5182void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5183				      struct kvm_memory_slot *memslot)
5184{
5185	bool flush;
5186
5187	spin_lock(&kvm->mmu_lock);
5188	flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
5189				      false);
5190	spin_unlock(&kvm->mmu_lock);
5191
5192	/*
5193	 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
5194	 * which do tlb flush out of mmu-lock should be serialized by
5195	 * kvm->slots_lock otherwise tlb flush would be missed.
5196	 */
5197	lockdep_assert_held(&kvm->slots_lock);
5198
5199	/*
5200	 * We can flush all the TLBs out of the mmu lock without TLB
5201	 * corruption since we just change the spte from writable to
5202	 * readonly so that we only need to care the case of changing
5203	 * spte from present to present (changing the spte from present
5204	 * to nonpresent will flush all the TLBs immediately), in other
5205	 * words, the only case we care is mmu_spte_update() where we
5206	 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5207	 * instead of PT_WRITABLE_MASK, that means it does not depend
5208	 * on PT_WRITABLE_MASK anymore.
5209	 */
5210	if (flush)
5211		kvm_flush_remote_tlbs(kvm);
5212}
5213
5214static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5215					 struct kvm_rmap_head *rmap_head)
5216{
5217	u64 *sptep;
5218	struct rmap_iterator iter;
5219	int need_tlb_flush = 0;
5220	kvm_pfn_t pfn;
5221	struct kvm_mmu_page *sp;
5222
5223restart:
5224	for_each_rmap_spte(rmap_head, &iter, sptep) {
5225		sp = page_header(__pa(sptep));
5226		pfn = spte_to_pfn(*sptep);
5227
5228		/*
5229		 * We cannot do huge page mapping for indirect shadow pages,
5230		 * which are found on the last rmap (level = 1) when not using
5231		 * tdp; such shadow pages are synced with the page table in
5232		 * the guest, and the guest page table is using 4K page size
5233		 * mapping if the indirect sp has level = 1.
5234		 */
5235		if (sp->role.direct &&
5236			!kvm_is_reserved_pfn(pfn) &&
5237			PageTransCompoundMap(pfn_to_page(pfn))) {
5238			drop_spte(kvm, sptep);
5239			need_tlb_flush = 1;
5240			goto restart;
5241		}
5242	}
5243
5244	return need_tlb_flush;
5245}
5246
5247void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5248				   const struct kvm_memory_slot *memslot)
5249{
5250	/* FIXME: const-ify all uses of struct kvm_memory_slot.  */
5251	spin_lock(&kvm->mmu_lock);
5252	slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5253			 kvm_mmu_zap_collapsible_spte, true);
5254	spin_unlock(&kvm->mmu_lock);
5255}
5256
5257void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5258				   struct kvm_memory_slot *memslot)
5259{
5260	bool flush;
5261
5262	spin_lock(&kvm->mmu_lock);
5263	flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5264	spin_unlock(&kvm->mmu_lock);
5265
5266	lockdep_assert_held(&kvm->slots_lock);
5267
5268	/*
5269	 * It's also safe to flush TLBs out of mmu lock here as currently this
5270	 * function is only used for dirty logging, in which case flushing TLB
5271	 * out of mmu lock also guarantees no dirty pages will be lost in
5272	 * dirty_bitmap.
5273	 */
5274	if (flush)
5275		kvm_flush_remote_tlbs(kvm);
5276}
5277EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5278
5279void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5280					struct kvm_memory_slot *memslot)
5281{
5282	bool flush;
5283
5284	spin_lock(&kvm->mmu_lock);
5285	flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5286					false);
5287	spin_unlock(&kvm->mmu_lock);
5288
5289	/* see kvm_mmu_slot_remove_write_access */
5290	lockdep_assert_held(&kvm->slots_lock);
5291
5292	if (flush)
5293		kvm_flush_remote_tlbs(kvm);
5294}
5295EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
5296
5297void kvm_mmu_slot_set_dirty(struct kvm *kvm,
5298			    struct kvm_memory_slot *memslot)
5299{
5300	bool flush;
5301
5302	spin_lock(&kvm->mmu_lock);
5303	flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
5304	spin_unlock(&kvm->mmu_lock);
5305
5306	lockdep_assert_held(&kvm->slots_lock);
5307
5308	/* see kvm_mmu_slot_leaf_clear_dirty */
5309	if (flush)
5310		kvm_flush_remote_tlbs(kvm);
5311}
5312EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
5313
5314#define BATCH_ZAP_PAGES	10
5315static void kvm_zap_obsolete_pages(struct kvm *kvm)
5316{
5317	struct kvm_mmu_page *sp, *node;
5318	int batch = 0;
5319
5320restart:
5321	list_for_each_entry_safe_reverse(sp, node,
5322	      &kvm->arch.active_mmu_pages, link) {
5323		int ret;
5324
5325		/*
5326		 * No obsolete page exists before new created page since
5327		 * active_mmu_pages is the FIFO list.
5328		 */
5329		if (!is_obsolete_sp(kvm, sp))
5330			break;
5331
5332		/*
5333		 * Since we are reversely walking the list and the invalid
5334		 * list will be moved to the head, skip the invalid page
5335		 * can help us to avoid the infinity list walking.
5336		 */
5337		if (sp->role.invalid)
5338			continue;
5339
5340		/*
5341		 * Need not flush tlb since we only zap the sp with invalid
5342		 * generation number.
5343		 */
5344		if (batch >= BATCH_ZAP_PAGES &&
5345		      cond_resched_lock(&kvm->mmu_lock)) {
5346			batch = 0;
5347			goto restart;
5348		}
5349
5350		ret = kvm_mmu_prepare_zap_page(kvm, sp,
5351				&kvm->arch.zapped_obsolete_pages);
5352		batch += ret;
5353
5354		if (ret)
5355			goto restart;
5356	}
5357
5358	/*
5359	 * Should flush tlb before free page tables since lockless-walking
5360	 * may use the pages.
5361	 */
5362	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5363}
5364
5365/*
5366 * Fast invalidate all shadow pages and use lock-break technique
5367 * to zap obsolete pages.
5368 *
5369 * It's required when memslot is being deleted or VM is being
5370 * destroyed, in these cases, we should ensure that KVM MMU does
5371 * not use any resource of the being-deleted slot or all slots
5372 * after calling the function.
5373 */
5374void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
5375{
5376	spin_lock(&kvm->mmu_lock);
5377	trace_kvm_mmu_invalidate_zap_all_pages(kvm);
5378	kvm->arch.mmu_valid_gen++;
5379
5380	/*
5381	 * Notify all vcpus to reload its shadow page table
5382	 * and flush TLB. Then all vcpus will switch to new
5383	 * shadow page table with the new mmu_valid_gen.
5384	 *
5385	 * Note: we should do this under the protection of
5386	 * mmu-lock, otherwise, vcpu would purge shadow page
5387	 * but miss tlb flush.
5388	 */
5389	kvm_reload_remote_mmus(kvm);
5390
5391	kvm_zap_obsolete_pages(kvm);
5392	spin_unlock(&kvm->mmu_lock);
5393}
5394
5395static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5396{
5397	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5398}
5399
5400void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
5401{
5402	/*
5403	 * The very rare case: if the generation-number is round,
5404	 * zap all shadow pages.
5405	 */
5406	if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
5407		kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5408		kvm_mmu_invalidate_zap_all_pages(kvm);
5409	}
5410}
5411
5412static unsigned long
5413mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5414{
5415	struct kvm *kvm;
5416	int nr_to_scan = sc->nr_to_scan;
5417	unsigned long freed = 0;
5418
5419	spin_lock(&kvm_lock);
5420
5421	list_for_each_entry(kvm, &vm_list, vm_list) {
5422		int idx;
5423		LIST_HEAD(invalid_list);
5424
5425		/*
5426		 * Never scan more than sc->nr_to_scan VM instances.
5427		 * Will not hit this condition practically since we do not try
5428		 * to shrink more than one VM and it is very unlikely to see
5429		 * !n_used_mmu_pages so many times.
5430		 */
5431		if (!nr_to_scan--)
5432			break;
5433		/*
5434		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5435		 * here. We may skip a VM instance errorneosly, but we do not
5436		 * want to shrink a VM that only started to populate its MMU
5437		 * anyway.
5438		 */
5439		if (!kvm->arch.n_used_mmu_pages &&
5440		      !kvm_has_zapped_obsolete_pages(kvm))
5441			continue;
5442
5443		idx = srcu_read_lock(&kvm->srcu);
5444		spin_lock(&kvm->mmu_lock);
5445
5446		if (kvm_has_zapped_obsolete_pages(kvm)) {
5447			kvm_mmu_commit_zap_page(kvm,
5448			      &kvm->arch.zapped_obsolete_pages);
5449			goto unlock;
5450		}
5451
5452		if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
5453			freed++;
5454		kvm_mmu_commit_zap_page(kvm, &invalid_list);
5455
5456unlock:
5457		spin_unlock(&kvm->mmu_lock);
5458		srcu_read_unlock(&kvm->srcu, idx);
5459
5460		/*
5461		 * unfair on small ones
5462		 * per-vm shrinkers cry out
5463		 * sadness comes quickly
5464		 */
5465		list_move_tail(&kvm->vm_list, &vm_list);
5466		break;
5467	}
5468
5469	spin_unlock(&kvm_lock);
5470	return freed;
5471}
5472
5473static unsigned long
5474mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5475{
5476	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5477}
5478
5479static struct shrinker mmu_shrinker = {
5480	.count_objects = mmu_shrink_count,
5481	.scan_objects = mmu_shrink_scan,
5482	.seeks = DEFAULT_SEEKS * 10,
5483};
5484
5485static void mmu_destroy_caches(void)
5486{
5487	kmem_cache_destroy(pte_list_desc_cache);
5488	kmem_cache_destroy(mmu_page_header_cache);
5489}
5490
5491int kvm_mmu_module_init(void)
5492{
5493	int ret = -ENOMEM;
5494
5495	kvm_mmu_clear_all_pte_masks();
5496
5497	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5498					    sizeof(struct pte_list_desc),
5499					    0, SLAB_ACCOUNT, NULL);
5500	if (!pte_list_desc_cache)
5501		goto out;
5502
5503	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5504						  sizeof(struct kvm_mmu_page),
5505						  0, SLAB_ACCOUNT, NULL);
5506	if (!mmu_page_header_cache)
5507		goto out;
5508
5509	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5510		goto out;
5511
5512	ret = register_shrinker(&mmu_shrinker);
5513	if (ret)
5514		goto out;
5515
5516	return 0;
5517
5518out:
5519	mmu_destroy_caches();
5520	return ret;
5521}
5522
5523/*
5524 * Caculate mmu pages needed for kvm.
5525 */
5526unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
5527{
5528	unsigned int nr_mmu_pages;
5529	unsigned int  nr_pages = 0;
5530	struct kvm_memslots *slots;
5531	struct kvm_memory_slot *memslot;
5532	int i;
5533
5534	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5535		slots = __kvm_memslots(kvm, i);
5536
5537		kvm_for_each_memslot(memslot, slots)
5538			nr_pages += memslot->npages;
5539	}
5540
5541	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5542	nr_mmu_pages = max(nr_mmu_pages,
5543			   (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
5544
5545	return nr_mmu_pages;
5546}
5547
5548void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5549{
5550	kvm_mmu_unload(vcpu);
5551	free_mmu_pages(vcpu);
5552	mmu_free_memory_caches(vcpu);
5553}
5554
5555void kvm_mmu_module_exit(void)
5556{
5557	mmu_destroy_caches();
5558	percpu_counter_destroy(&kvm_total_used_mmu_pages);
5559	unregister_shrinker(&mmu_shrinker);
5560	mmu_audit_disable();
5561}