Loading...
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21#include "irq.h"
22#include "mmu.h"
23#include "x86.h"
24#include "kvm_cache_regs.h"
25#include "cpuid.h"
26
27#include <linux/kvm_host.h>
28#include <linux/types.h>
29#include <linux/string.h>
30#include <linux/mm.h>
31#include <linux/highmem.h>
32#include <linux/moduleparam.h>
33#include <linux/export.h>
34#include <linux/swap.h>
35#include <linux/hugetlb.h>
36#include <linux/compiler.h>
37#include <linux/srcu.h>
38#include <linux/slab.h>
39#include <linux/sched/signal.h>
40#include <linux/uaccess.h>
41#include <linux/hash.h>
42#include <linux/kern_levels.h>
43
44#include <asm/page.h>
45#include <asm/pat.h>
46#include <asm/cmpxchg.h>
47#include <asm/io.h>
48#include <asm/vmx.h>
49#include <asm/kvm_page_track.h>
50#include "trace.h"
51
52/*
53 * When setting this variable to true it enables Two-Dimensional-Paging
54 * where the hardware walks 2 page tables:
55 * 1. the guest-virtual to guest-physical
56 * 2. while doing 1. it walks guest-physical to host-physical
57 * If the hardware supports that we don't need to do shadow paging.
58 */
59bool tdp_enabled = false;
60
61enum {
62 AUDIT_PRE_PAGE_FAULT,
63 AUDIT_POST_PAGE_FAULT,
64 AUDIT_PRE_PTE_WRITE,
65 AUDIT_POST_PTE_WRITE,
66 AUDIT_PRE_SYNC,
67 AUDIT_POST_SYNC
68};
69
70#undef MMU_DEBUG
71
72#ifdef MMU_DEBUG
73static bool dbg = 0;
74module_param(dbg, bool, 0644);
75
76#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
77#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
78#define MMU_WARN_ON(x) WARN_ON(x)
79#else
80#define pgprintk(x...) do { } while (0)
81#define rmap_printk(x...) do { } while (0)
82#define MMU_WARN_ON(x) do { } while (0)
83#endif
84
85#define PTE_PREFETCH_NUM 8
86
87#define PT_FIRST_AVAIL_BITS_SHIFT 10
88#define PT64_SECOND_AVAIL_BITS_SHIFT 52
89
90#define PT64_LEVEL_BITS 9
91
92#define PT64_LEVEL_SHIFT(level) \
93 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
94
95#define PT64_INDEX(address, level)\
96 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
97
98
99#define PT32_LEVEL_BITS 10
100
101#define PT32_LEVEL_SHIFT(level) \
102 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
103
104#define PT32_LVL_OFFSET_MASK(level) \
105 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
106 * PT32_LEVEL_BITS))) - 1))
107
108#define PT32_INDEX(address, level)\
109 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
110
111
112#define PT64_BASE_ADDR_MASK __sme_clr((((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1)))
113#define PT64_DIR_BASE_ADDR_MASK \
114 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
115#define PT64_LVL_ADDR_MASK(level) \
116 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
117 * PT64_LEVEL_BITS))) - 1))
118#define PT64_LVL_OFFSET_MASK(level) \
119 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
120 * PT64_LEVEL_BITS))) - 1))
121
122#define PT32_BASE_ADDR_MASK PAGE_MASK
123#define PT32_DIR_BASE_ADDR_MASK \
124 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
125#define PT32_LVL_ADDR_MASK(level) \
126 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
127 * PT32_LEVEL_BITS))) - 1))
128
129#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
130 | shadow_x_mask | shadow_nx_mask | shadow_me_mask)
131
132#define ACC_EXEC_MASK 1
133#define ACC_WRITE_MASK PT_WRITABLE_MASK
134#define ACC_USER_MASK PT_USER_MASK
135#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
136
137/* The mask for the R/X bits in EPT PTEs */
138#define PT64_EPT_READABLE_MASK 0x1ull
139#define PT64_EPT_EXECUTABLE_MASK 0x4ull
140
141#include <trace/events/kvm.h>
142
143#define CREATE_TRACE_POINTS
144#include "mmutrace.h"
145
146#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
147#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
148
149#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
150
151/* make pte_list_desc fit well in cache line */
152#define PTE_LIST_EXT 3
153
154/*
155 * Return values of handle_mmio_page_fault and mmu.page_fault:
156 * RET_PF_RETRY: let CPU fault again on the address.
157 * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
158 *
159 * For handle_mmio_page_fault only:
160 * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
161 */
162enum {
163 RET_PF_RETRY = 0,
164 RET_PF_EMULATE = 1,
165 RET_PF_INVALID = 2,
166};
167
168struct pte_list_desc {
169 u64 *sptes[PTE_LIST_EXT];
170 struct pte_list_desc *more;
171};
172
173struct kvm_shadow_walk_iterator {
174 u64 addr;
175 hpa_t shadow_addr;
176 u64 *sptep;
177 int level;
178 unsigned index;
179};
180
181#define for_each_shadow_entry(_vcpu, _addr, _walker) \
182 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
183 shadow_walk_okay(&(_walker)); \
184 shadow_walk_next(&(_walker)))
185
186#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
187 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
188 shadow_walk_okay(&(_walker)) && \
189 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
190 __shadow_walk_next(&(_walker), spte))
191
192static struct kmem_cache *pte_list_desc_cache;
193static struct kmem_cache *mmu_page_header_cache;
194static struct percpu_counter kvm_total_used_mmu_pages;
195
196static u64 __read_mostly shadow_nx_mask;
197static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
198static u64 __read_mostly shadow_user_mask;
199static u64 __read_mostly shadow_accessed_mask;
200static u64 __read_mostly shadow_dirty_mask;
201static u64 __read_mostly shadow_mmio_mask;
202static u64 __read_mostly shadow_mmio_value;
203static u64 __read_mostly shadow_present_mask;
204static u64 __read_mostly shadow_me_mask;
205
206/*
207 * SPTEs used by MMUs without A/D bits are marked with shadow_acc_track_value.
208 * Non-present SPTEs with shadow_acc_track_value set are in place for access
209 * tracking.
210 */
211static u64 __read_mostly shadow_acc_track_mask;
212static const u64 shadow_acc_track_value = SPTE_SPECIAL_MASK;
213
214/*
215 * The mask/shift to use for saving the original R/X bits when marking the PTE
216 * as not-present for access tracking purposes. We do not save the W bit as the
217 * PTEs being access tracked also need to be dirty tracked, so the W bit will be
218 * restored only when a write is attempted to the page.
219 */
220static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
221 PT64_EPT_EXECUTABLE_MASK;
222static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
223
224static void mmu_spte_set(u64 *sptep, u64 spte);
225static void mmu_free_roots(struct kvm_vcpu *vcpu);
226
227void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value)
228{
229 BUG_ON((mmio_mask & mmio_value) != mmio_value);
230 shadow_mmio_value = mmio_value | SPTE_SPECIAL_MASK;
231 shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
232}
233EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
234
235static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
236{
237 return sp->role.ad_disabled;
238}
239
240static inline bool spte_ad_enabled(u64 spte)
241{
242 MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
243 return !(spte & shadow_acc_track_value);
244}
245
246static inline u64 spte_shadow_accessed_mask(u64 spte)
247{
248 MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
249 return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
250}
251
252static inline u64 spte_shadow_dirty_mask(u64 spte)
253{
254 MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
255 return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
256}
257
258static inline bool is_access_track_spte(u64 spte)
259{
260 return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
261}
262
263/*
264 * the low bit of the generation number is always presumed to be zero.
265 * This disables mmio caching during memslot updates. The concept is
266 * similar to a seqcount but instead of retrying the access we just punt
267 * and ignore the cache.
268 *
269 * spte bits 3-11 are used as bits 1-9 of the generation number,
270 * the bits 52-61 are used as bits 10-19 of the generation number.
271 */
272#define MMIO_SPTE_GEN_LOW_SHIFT 2
273#define MMIO_SPTE_GEN_HIGH_SHIFT 52
274
275#define MMIO_GEN_SHIFT 20
276#define MMIO_GEN_LOW_SHIFT 10
277#define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2)
278#define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
279
280static u64 generation_mmio_spte_mask(unsigned int gen)
281{
282 u64 mask;
283
284 WARN_ON(gen & ~MMIO_GEN_MASK);
285
286 mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
287 mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
288 return mask;
289}
290
291static unsigned int get_mmio_spte_generation(u64 spte)
292{
293 unsigned int gen;
294
295 spte &= ~shadow_mmio_mask;
296
297 gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
298 gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
299 return gen;
300}
301
302static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
303{
304 return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
305}
306
307static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
308 unsigned access)
309{
310 unsigned int gen = kvm_current_mmio_generation(vcpu);
311 u64 mask = generation_mmio_spte_mask(gen);
312
313 access &= ACC_WRITE_MASK | ACC_USER_MASK;
314 mask |= shadow_mmio_value | access | gfn << PAGE_SHIFT;
315
316 trace_mark_mmio_spte(sptep, gfn, access, gen);
317 mmu_spte_set(sptep, mask);
318}
319
320static bool is_mmio_spte(u64 spte)
321{
322 return (spte & shadow_mmio_mask) == shadow_mmio_value;
323}
324
325static gfn_t get_mmio_spte_gfn(u64 spte)
326{
327 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
328 return (spte & ~mask) >> PAGE_SHIFT;
329}
330
331static unsigned get_mmio_spte_access(u64 spte)
332{
333 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
334 return (spte & ~mask) & ~PAGE_MASK;
335}
336
337static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
338 kvm_pfn_t pfn, unsigned access)
339{
340 if (unlikely(is_noslot_pfn(pfn))) {
341 mark_mmio_spte(vcpu, sptep, gfn, access);
342 return true;
343 }
344
345 return false;
346}
347
348static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
349{
350 unsigned int kvm_gen, spte_gen;
351
352 kvm_gen = kvm_current_mmio_generation(vcpu);
353 spte_gen = get_mmio_spte_generation(spte);
354
355 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
356 return likely(kvm_gen == spte_gen);
357}
358
359/*
360 * Sets the shadow PTE masks used by the MMU.
361 *
362 * Assumptions:
363 * - Setting either @accessed_mask or @dirty_mask requires setting both
364 * - At least one of @accessed_mask or @acc_track_mask must be set
365 */
366void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
367 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
368 u64 acc_track_mask, u64 me_mask)
369{
370 BUG_ON(!dirty_mask != !accessed_mask);
371 BUG_ON(!accessed_mask && !acc_track_mask);
372 BUG_ON(acc_track_mask & shadow_acc_track_value);
373
374 shadow_user_mask = user_mask;
375 shadow_accessed_mask = accessed_mask;
376 shadow_dirty_mask = dirty_mask;
377 shadow_nx_mask = nx_mask;
378 shadow_x_mask = x_mask;
379 shadow_present_mask = p_mask;
380 shadow_acc_track_mask = acc_track_mask;
381 shadow_me_mask = me_mask;
382}
383EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
384
385static void kvm_mmu_clear_all_pte_masks(void)
386{
387 shadow_user_mask = 0;
388 shadow_accessed_mask = 0;
389 shadow_dirty_mask = 0;
390 shadow_nx_mask = 0;
391 shadow_x_mask = 0;
392 shadow_mmio_mask = 0;
393 shadow_present_mask = 0;
394 shadow_acc_track_mask = 0;
395}
396
397static int is_cpuid_PSE36(void)
398{
399 return 1;
400}
401
402static int is_nx(struct kvm_vcpu *vcpu)
403{
404 return vcpu->arch.efer & EFER_NX;
405}
406
407static int is_shadow_present_pte(u64 pte)
408{
409 return (pte != 0) && !is_mmio_spte(pte);
410}
411
412static int is_large_pte(u64 pte)
413{
414 return pte & PT_PAGE_SIZE_MASK;
415}
416
417static int is_last_spte(u64 pte, int level)
418{
419 if (level == PT_PAGE_TABLE_LEVEL)
420 return 1;
421 if (is_large_pte(pte))
422 return 1;
423 return 0;
424}
425
426static bool is_executable_pte(u64 spte)
427{
428 return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
429}
430
431static kvm_pfn_t spte_to_pfn(u64 pte)
432{
433 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
434}
435
436static gfn_t pse36_gfn_delta(u32 gpte)
437{
438 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
439
440 return (gpte & PT32_DIR_PSE36_MASK) << shift;
441}
442
443#ifdef CONFIG_X86_64
444static void __set_spte(u64 *sptep, u64 spte)
445{
446 WRITE_ONCE(*sptep, spte);
447}
448
449static void __update_clear_spte_fast(u64 *sptep, u64 spte)
450{
451 WRITE_ONCE(*sptep, spte);
452}
453
454static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
455{
456 return xchg(sptep, spte);
457}
458
459static u64 __get_spte_lockless(u64 *sptep)
460{
461 return READ_ONCE(*sptep);
462}
463#else
464union split_spte {
465 struct {
466 u32 spte_low;
467 u32 spte_high;
468 };
469 u64 spte;
470};
471
472static void count_spte_clear(u64 *sptep, u64 spte)
473{
474 struct kvm_mmu_page *sp = page_header(__pa(sptep));
475
476 if (is_shadow_present_pte(spte))
477 return;
478
479 /* Ensure the spte is completely set before we increase the count */
480 smp_wmb();
481 sp->clear_spte_count++;
482}
483
484static void __set_spte(u64 *sptep, u64 spte)
485{
486 union split_spte *ssptep, sspte;
487
488 ssptep = (union split_spte *)sptep;
489 sspte = (union split_spte)spte;
490
491 ssptep->spte_high = sspte.spte_high;
492
493 /*
494 * If we map the spte from nonpresent to present, We should store
495 * the high bits firstly, then set present bit, so cpu can not
496 * fetch this spte while we are setting the spte.
497 */
498 smp_wmb();
499
500 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
501}
502
503static void __update_clear_spte_fast(u64 *sptep, u64 spte)
504{
505 union split_spte *ssptep, sspte;
506
507 ssptep = (union split_spte *)sptep;
508 sspte = (union split_spte)spte;
509
510 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
511
512 /*
513 * If we map the spte from present to nonpresent, we should clear
514 * present bit firstly to avoid vcpu fetch the old high bits.
515 */
516 smp_wmb();
517
518 ssptep->spte_high = sspte.spte_high;
519 count_spte_clear(sptep, spte);
520}
521
522static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
523{
524 union split_spte *ssptep, sspte, orig;
525
526 ssptep = (union split_spte *)sptep;
527 sspte = (union split_spte)spte;
528
529 /* xchg acts as a barrier before the setting of the high bits */
530 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
531 orig.spte_high = ssptep->spte_high;
532 ssptep->spte_high = sspte.spte_high;
533 count_spte_clear(sptep, spte);
534
535 return orig.spte;
536}
537
538/*
539 * The idea using the light way get the spte on x86_32 guest is from
540 * gup_get_pte(arch/x86/mm/gup.c).
541 *
542 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
543 * coalesces them and we are running out of the MMU lock. Therefore
544 * we need to protect against in-progress updates of the spte.
545 *
546 * Reading the spte while an update is in progress may get the old value
547 * for the high part of the spte. The race is fine for a present->non-present
548 * change (because the high part of the spte is ignored for non-present spte),
549 * but for a present->present change we must reread the spte.
550 *
551 * All such changes are done in two steps (present->non-present and
552 * non-present->present), hence it is enough to count the number of
553 * present->non-present updates: if it changed while reading the spte,
554 * we might have hit the race. This is done using clear_spte_count.
555 */
556static u64 __get_spte_lockless(u64 *sptep)
557{
558 struct kvm_mmu_page *sp = page_header(__pa(sptep));
559 union split_spte spte, *orig = (union split_spte *)sptep;
560 int count;
561
562retry:
563 count = sp->clear_spte_count;
564 smp_rmb();
565
566 spte.spte_low = orig->spte_low;
567 smp_rmb();
568
569 spte.spte_high = orig->spte_high;
570 smp_rmb();
571
572 if (unlikely(spte.spte_low != orig->spte_low ||
573 count != sp->clear_spte_count))
574 goto retry;
575
576 return spte.spte;
577}
578#endif
579
580static bool spte_can_locklessly_be_made_writable(u64 spte)
581{
582 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
583 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
584}
585
586static bool spte_has_volatile_bits(u64 spte)
587{
588 if (!is_shadow_present_pte(spte))
589 return false;
590
591 /*
592 * Always atomically update spte if it can be updated
593 * out of mmu-lock, it can ensure dirty bit is not lost,
594 * also, it can help us to get a stable is_writable_pte()
595 * to ensure tlb flush is not missed.
596 */
597 if (spte_can_locklessly_be_made_writable(spte) ||
598 is_access_track_spte(spte))
599 return true;
600
601 if (spte_ad_enabled(spte)) {
602 if ((spte & shadow_accessed_mask) == 0 ||
603 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
604 return true;
605 }
606
607 return false;
608}
609
610static bool is_accessed_spte(u64 spte)
611{
612 u64 accessed_mask = spte_shadow_accessed_mask(spte);
613
614 return accessed_mask ? spte & accessed_mask
615 : !is_access_track_spte(spte);
616}
617
618static bool is_dirty_spte(u64 spte)
619{
620 u64 dirty_mask = spte_shadow_dirty_mask(spte);
621
622 return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
623}
624
625/* Rules for using mmu_spte_set:
626 * Set the sptep from nonpresent to present.
627 * Note: the sptep being assigned *must* be either not present
628 * or in a state where the hardware will not attempt to update
629 * the spte.
630 */
631static void mmu_spte_set(u64 *sptep, u64 new_spte)
632{
633 WARN_ON(is_shadow_present_pte(*sptep));
634 __set_spte(sptep, new_spte);
635}
636
637/*
638 * Update the SPTE (excluding the PFN), but do not track changes in its
639 * accessed/dirty status.
640 */
641static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
642{
643 u64 old_spte = *sptep;
644
645 WARN_ON(!is_shadow_present_pte(new_spte));
646
647 if (!is_shadow_present_pte(old_spte)) {
648 mmu_spte_set(sptep, new_spte);
649 return old_spte;
650 }
651
652 if (!spte_has_volatile_bits(old_spte))
653 __update_clear_spte_fast(sptep, new_spte);
654 else
655 old_spte = __update_clear_spte_slow(sptep, new_spte);
656
657 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
658
659 return old_spte;
660}
661
662/* Rules for using mmu_spte_update:
663 * Update the state bits, it means the mapped pfn is not changed.
664 *
665 * Whenever we overwrite a writable spte with a read-only one we
666 * should flush remote TLBs. Otherwise rmap_write_protect
667 * will find a read-only spte, even though the writable spte
668 * might be cached on a CPU's TLB, the return value indicates this
669 * case.
670 *
671 * Returns true if the TLB needs to be flushed
672 */
673static bool mmu_spte_update(u64 *sptep, u64 new_spte)
674{
675 bool flush = false;
676 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
677
678 if (!is_shadow_present_pte(old_spte))
679 return false;
680
681 /*
682 * For the spte updated out of mmu-lock is safe, since
683 * we always atomically update it, see the comments in
684 * spte_has_volatile_bits().
685 */
686 if (spte_can_locklessly_be_made_writable(old_spte) &&
687 !is_writable_pte(new_spte))
688 flush = true;
689
690 /*
691 * Flush TLB when accessed/dirty states are changed in the page tables,
692 * to guarantee consistency between TLB and page tables.
693 */
694
695 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
696 flush = true;
697 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
698 }
699
700 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
701 flush = true;
702 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
703 }
704
705 return flush;
706}
707
708/*
709 * Rules for using mmu_spte_clear_track_bits:
710 * It sets the sptep from present to nonpresent, and track the
711 * state bits, it is used to clear the last level sptep.
712 * Returns non-zero if the PTE was previously valid.
713 */
714static int mmu_spte_clear_track_bits(u64 *sptep)
715{
716 kvm_pfn_t pfn;
717 u64 old_spte = *sptep;
718
719 if (!spte_has_volatile_bits(old_spte))
720 __update_clear_spte_fast(sptep, 0ull);
721 else
722 old_spte = __update_clear_spte_slow(sptep, 0ull);
723
724 if (!is_shadow_present_pte(old_spte))
725 return 0;
726
727 pfn = spte_to_pfn(old_spte);
728
729 /*
730 * KVM does not hold the refcount of the page used by
731 * kvm mmu, before reclaiming the page, we should
732 * unmap it from mmu first.
733 */
734 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
735
736 if (is_accessed_spte(old_spte))
737 kvm_set_pfn_accessed(pfn);
738
739 if (is_dirty_spte(old_spte))
740 kvm_set_pfn_dirty(pfn);
741
742 return 1;
743}
744
745/*
746 * Rules for using mmu_spte_clear_no_track:
747 * Directly clear spte without caring the state bits of sptep,
748 * it is used to set the upper level spte.
749 */
750static void mmu_spte_clear_no_track(u64 *sptep)
751{
752 __update_clear_spte_fast(sptep, 0ull);
753}
754
755static u64 mmu_spte_get_lockless(u64 *sptep)
756{
757 return __get_spte_lockless(sptep);
758}
759
760static u64 mark_spte_for_access_track(u64 spte)
761{
762 if (spte_ad_enabled(spte))
763 return spte & ~shadow_accessed_mask;
764
765 if (is_access_track_spte(spte))
766 return spte;
767
768 /*
769 * Making an Access Tracking PTE will result in removal of write access
770 * from the PTE. So, verify that we will be able to restore the write
771 * access in the fast page fault path later on.
772 */
773 WARN_ONCE((spte & PT_WRITABLE_MASK) &&
774 !spte_can_locklessly_be_made_writable(spte),
775 "kvm: Writable SPTE is not locklessly dirty-trackable\n");
776
777 WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
778 shadow_acc_track_saved_bits_shift),
779 "kvm: Access Tracking saved bit locations are not zero\n");
780
781 spte |= (spte & shadow_acc_track_saved_bits_mask) <<
782 shadow_acc_track_saved_bits_shift;
783 spte &= ~shadow_acc_track_mask;
784
785 return spte;
786}
787
788/* Restore an acc-track PTE back to a regular PTE */
789static u64 restore_acc_track_spte(u64 spte)
790{
791 u64 new_spte = spte;
792 u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
793 & shadow_acc_track_saved_bits_mask;
794
795 WARN_ON_ONCE(spte_ad_enabled(spte));
796 WARN_ON_ONCE(!is_access_track_spte(spte));
797
798 new_spte &= ~shadow_acc_track_mask;
799 new_spte &= ~(shadow_acc_track_saved_bits_mask <<
800 shadow_acc_track_saved_bits_shift);
801 new_spte |= saved_bits;
802
803 return new_spte;
804}
805
806/* Returns the Accessed status of the PTE and resets it at the same time. */
807static bool mmu_spte_age(u64 *sptep)
808{
809 u64 spte = mmu_spte_get_lockless(sptep);
810
811 if (!is_accessed_spte(spte))
812 return false;
813
814 if (spte_ad_enabled(spte)) {
815 clear_bit((ffs(shadow_accessed_mask) - 1),
816 (unsigned long *)sptep);
817 } else {
818 /*
819 * Capture the dirty status of the page, so that it doesn't get
820 * lost when the SPTE is marked for access tracking.
821 */
822 if (is_writable_pte(spte))
823 kvm_set_pfn_dirty(spte_to_pfn(spte));
824
825 spte = mark_spte_for_access_track(spte);
826 mmu_spte_update_no_track(sptep, spte);
827 }
828
829 return true;
830}
831
832static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
833{
834 /*
835 * Prevent page table teardown by making any free-er wait during
836 * kvm_flush_remote_tlbs() IPI to all active vcpus.
837 */
838 local_irq_disable();
839
840 /*
841 * Make sure a following spte read is not reordered ahead of the write
842 * to vcpu->mode.
843 */
844 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
845}
846
847static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
848{
849 /*
850 * Make sure the write to vcpu->mode is not reordered in front of
851 * reads to sptes. If it does, kvm_commit_zap_page() can see us
852 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
853 */
854 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
855 local_irq_enable();
856}
857
858static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
859 struct kmem_cache *base_cache, int min)
860{
861 void *obj;
862
863 if (cache->nobjs >= min)
864 return 0;
865 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
866 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
867 if (!obj)
868 return -ENOMEM;
869 cache->objects[cache->nobjs++] = obj;
870 }
871 return 0;
872}
873
874static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
875{
876 return cache->nobjs;
877}
878
879static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
880 struct kmem_cache *cache)
881{
882 while (mc->nobjs)
883 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
884}
885
886static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
887 int min)
888{
889 void *page;
890
891 if (cache->nobjs >= min)
892 return 0;
893 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
894 page = (void *)__get_free_page(GFP_KERNEL);
895 if (!page)
896 return -ENOMEM;
897 cache->objects[cache->nobjs++] = page;
898 }
899 return 0;
900}
901
902static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
903{
904 while (mc->nobjs)
905 free_page((unsigned long)mc->objects[--mc->nobjs]);
906}
907
908static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
909{
910 int r;
911
912 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
913 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
914 if (r)
915 goto out;
916 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
917 if (r)
918 goto out;
919 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
920 mmu_page_header_cache, 4);
921out:
922 return r;
923}
924
925static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
926{
927 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
928 pte_list_desc_cache);
929 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
930 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
931 mmu_page_header_cache);
932}
933
934static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
935{
936 void *p;
937
938 BUG_ON(!mc->nobjs);
939 p = mc->objects[--mc->nobjs];
940 return p;
941}
942
943static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
944{
945 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
946}
947
948static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
949{
950 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
951}
952
953static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
954{
955 if (!sp->role.direct)
956 return sp->gfns[index];
957
958 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
959}
960
961static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
962{
963 if (sp->role.direct)
964 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
965 else
966 sp->gfns[index] = gfn;
967}
968
969/*
970 * Return the pointer to the large page information for a given gfn,
971 * handling slots that are not large page aligned.
972 */
973static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
974 struct kvm_memory_slot *slot,
975 int level)
976{
977 unsigned long idx;
978
979 idx = gfn_to_index(gfn, slot->base_gfn, level);
980 return &slot->arch.lpage_info[level - 2][idx];
981}
982
983static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
984 gfn_t gfn, int count)
985{
986 struct kvm_lpage_info *linfo;
987 int i;
988
989 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
990 linfo = lpage_info_slot(gfn, slot, i);
991 linfo->disallow_lpage += count;
992 WARN_ON(linfo->disallow_lpage < 0);
993 }
994}
995
996void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
997{
998 update_gfn_disallow_lpage_count(slot, gfn, 1);
999}
1000
1001void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1002{
1003 update_gfn_disallow_lpage_count(slot, gfn, -1);
1004}
1005
1006static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1007{
1008 struct kvm_memslots *slots;
1009 struct kvm_memory_slot *slot;
1010 gfn_t gfn;
1011
1012 kvm->arch.indirect_shadow_pages++;
1013 gfn = sp->gfn;
1014 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1015 slot = __gfn_to_memslot(slots, gfn);
1016
1017 /* the non-leaf shadow pages are keeping readonly. */
1018 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1019 return kvm_slot_page_track_add_page(kvm, slot, gfn,
1020 KVM_PAGE_TRACK_WRITE);
1021
1022 kvm_mmu_gfn_disallow_lpage(slot, gfn);
1023}
1024
1025static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1026{
1027 struct kvm_memslots *slots;
1028 struct kvm_memory_slot *slot;
1029 gfn_t gfn;
1030
1031 kvm->arch.indirect_shadow_pages--;
1032 gfn = sp->gfn;
1033 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1034 slot = __gfn_to_memslot(slots, gfn);
1035 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1036 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
1037 KVM_PAGE_TRACK_WRITE);
1038
1039 kvm_mmu_gfn_allow_lpage(slot, gfn);
1040}
1041
1042static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
1043 struct kvm_memory_slot *slot)
1044{
1045 struct kvm_lpage_info *linfo;
1046
1047 if (slot) {
1048 linfo = lpage_info_slot(gfn, slot, level);
1049 return !!linfo->disallow_lpage;
1050 }
1051
1052 return true;
1053}
1054
1055static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
1056 int level)
1057{
1058 struct kvm_memory_slot *slot;
1059
1060 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1061 return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
1062}
1063
1064static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
1065{
1066 unsigned long page_size;
1067 int i, ret = 0;
1068
1069 page_size = kvm_host_page_size(kvm, gfn);
1070
1071 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1072 if (page_size >= KVM_HPAGE_SIZE(i))
1073 ret = i;
1074 else
1075 break;
1076 }
1077
1078 return ret;
1079}
1080
1081static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
1082 bool no_dirty_log)
1083{
1084 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1085 return false;
1086 if (no_dirty_log && slot->dirty_bitmap)
1087 return false;
1088
1089 return true;
1090}
1091
1092static struct kvm_memory_slot *
1093gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
1094 bool no_dirty_log)
1095{
1096 struct kvm_memory_slot *slot;
1097
1098 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1099 if (!memslot_valid_for_gpte(slot, no_dirty_log))
1100 slot = NULL;
1101
1102 return slot;
1103}
1104
1105static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
1106 bool *force_pt_level)
1107{
1108 int host_level, level, max_level;
1109 struct kvm_memory_slot *slot;
1110
1111 if (unlikely(*force_pt_level))
1112 return PT_PAGE_TABLE_LEVEL;
1113
1114 slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
1115 *force_pt_level = !memslot_valid_for_gpte(slot, true);
1116 if (unlikely(*force_pt_level))
1117 return PT_PAGE_TABLE_LEVEL;
1118
1119 host_level = host_mapping_level(vcpu->kvm, large_gfn);
1120
1121 if (host_level == PT_PAGE_TABLE_LEVEL)
1122 return host_level;
1123
1124 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
1125
1126 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
1127 if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
1128 break;
1129
1130 return level - 1;
1131}
1132
1133/*
1134 * About rmap_head encoding:
1135 *
1136 * If the bit zero of rmap_head->val is clear, then it points to the only spte
1137 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
1138 * pte_list_desc containing more mappings.
1139 */
1140
1141/*
1142 * Returns the number of pointers in the rmap chain, not counting the new one.
1143 */
1144static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
1145 struct kvm_rmap_head *rmap_head)
1146{
1147 struct pte_list_desc *desc;
1148 int i, count = 0;
1149
1150 if (!rmap_head->val) {
1151 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
1152 rmap_head->val = (unsigned long)spte;
1153 } else if (!(rmap_head->val & 1)) {
1154 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
1155 desc = mmu_alloc_pte_list_desc(vcpu);
1156 desc->sptes[0] = (u64 *)rmap_head->val;
1157 desc->sptes[1] = spte;
1158 rmap_head->val = (unsigned long)desc | 1;
1159 ++count;
1160 } else {
1161 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
1162 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1163 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
1164 desc = desc->more;
1165 count += PTE_LIST_EXT;
1166 }
1167 if (desc->sptes[PTE_LIST_EXT-1]) {
1168 desc->more = mmu_alloc_pte_list_desc(vcpu);
1169 desc = desc->more;
1170 }
1171 for (i = 0; desc->sptes[i]; ++i)
1172 ++count;
1173 desc->sptes[i] = spte;
1174 }
1175 return count;
1176}
1177
1178static void
1179pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
1180 struct pte_list_desc *desc, int i,
1181 struct pte_list_desc *prev_desc)
1182{
1183 int j;
1184
1185 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
1186 ;
1187 desc->sptes[i] = desc->sptes[j];
1188 desc->sptes[j] = NULL;
1189 if (j != 0)
1190 return;
1191 if (!prev_desc && !desc->more)
1192 rmap_head->val = (unsigned long)desc->sptes[0];
1193 else
1194 if (prev_desc)
1195 prev_desc->more = desc->more;
1196 else
1197 rmap_head->val = (unsigned long)desc->more | 1;
1198 mmu_free_pte_list_desc(desc);
1199}
1200
1201static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1202{
1203 struct pte_list_desc *desc;
1204 struct pte_list_desc *prev_desc;
1205 int i;
1206
1207 if (!rmap_head->val) {
1208 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
1209 BUG();
1210 } else if (!(rmap_head->val & 1)) {
1211 rmap_printk("pte_list_remove: %p 1->0\n", spte);
1212 if ((u64 *)rmap_head->val != spte) {
1213 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
1214 BUG();
1215 }
1216 rmap_head->val = 0;
1217 } else {
1218 rmap_printk("pte_list_remove: %p many->many\n", spte);
1219 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1220 prev_desc = NULL;
1221 while (desc) {
1222 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
1223 if (desc->sptes[i] == spte) {
1224 pte_list_desc_remove_entry(rmap_head,
1225 desc, i, prev_desc);
1226 return;
1227 }
1228 }
1229 prev_desc = desc;
1230 desc = desc->more;
1231 }
1232 pr_err("pte_list_remove: %p many->many\n", spte);
1233 BUG();
1234 }
1235}
1236
1237static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1238 struct kvm_memory_slot *slot)
1239{
1240 unsigned long idx;
1241
1242 idx = gfn_to_index(gfn, slot->base_gfn, level);
1243 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1244}
1245
1246static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1247 struct kvm_mmu_page *sp)
1248{
1249 struct kvm_memslots *slots;
1250 struct kvm_memory_slot *slot;
1251
1252 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1253 slot = __gfn_to_memslot(slots, gfn);
1254 return __gfn_to_rmap(gfn, sp->role.level, slot);
1255}
1256
1257static bool rmap_can_add(struct kvm_vcpu *vcpu)
1258{
1259 struct kvm_mmu_memory_cache *cache;
1260
1261 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1262 return mmu_memory_cache_free_objects(cache);
1263}
1264
1265static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1266{
1267 struct kvm_mmu_page *sp;
1268 struct kvm_rmap_head *rmap_head;
1269
1270 sp = page_header(__pa(spte));
1271 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1272 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1273 return pte_list_add(vcpu, spte, rmap_head);
1274}
1275
1276static void rmap_remove(struct kvm *kvm, u64 *spte)
1277{
1278 struct kvm_mmu_page *sp;
1279 gfn_t gfn;
1280 struct kvm_rmap_head *rmap_head;
1281
1282 sp = page_header(__pa(spte));
1283 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1284 rmap_head = gfn_to_rmap(kvm, gfn, sp);
1285 pte_list_remove(spte, rmap_head);
1286}
1287
1288/*
1289 * Used by the following functions to iterate through the sptes linked by a
1290 * rmap. All fields are private and not assumed to be used outside.
1291 */
1292struct rmap_iterator {
1293 /* private fields */
1294 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1295 int pos; /* index of the sptep */
1296};
1297
1298/*
1299 * Iteration must be started by this function. This should also be used after
1300 * removing/dropping sptes from the rmap link because in such cases the
1301 * information in the itererator may not be valid.
1302 *
1303 * Returns sptep if found, NULL otherwise.
1304 */
1305static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1306 struct rmap_iterator *iter)
1307{
1308 u64 *sptep;
1309
1310 if (!rmap_head->val)
1311 return NULL;
1312
1313 if (!(rmap_head->val & 1)) {
1314 iter->desc = NULL;
1315 sptep = (u64 *)rmap_head->val;
1316 goto out;
1317 }
1318
1319 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1320 iter->pos = 0;
1321 sptep = iter->desc->sptes[iter->pos];
1322out:
1323 BUG_ON(!is_shadow_present_pte(*sptep));
1324 return sptep;
1325}
1326
1327/*
1328 * Must be used with a valid iterator: e.g. after rmap_get_first().
1329 *
1330 * Returns sptep if found, NULL otherwise.
1331 */
1332static u64 *rmap_get_next(struct rmap_iterator *iter)
1333{
1334 u64 *sptep;
1335
1336 if (iter->desc) {
1337 if (iter->pos < PTE_LIST_EXT - 1) {
1338 ++iter->pos;
1339 sptep = iter->desc->sptes[iter->pos];
1340 if (sptep)
1341 goto out;
1342 }
1343
1344 iter->desc = iter->desc->more;
1345
1346 if (iter->desc) {
1347 iter->pos = 0;
1348 /* desc->sptes[0] cannot be NULL */
1349 sptep = iter->desc->sptes[iter->pos];
1350 goto out;
1351 }
1352 }
1353
1354 return NULL;
1355out:
1356 BUG_ON(!is_shadow_present_pte(*sptep));
1357 return sptep;
1358}
1359
1360#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1361 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
1362 _spte_; _spte_ = rmap_get_next(_iter_))
1363
1364static void drop_spte(struct kvm *kvm, u64 *sptep)
1365{
1366 if (mmu_spte_clear_track_bits(sptep))
1367 rmap_remove(kvm, sptep);
1368}
1369
1370
1371static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1372{
1373 if (is_large_pte(*sptep)) {
1374 WARN_ON(page_header(__pa(sptep))->role.level ==
1375 PT_PAGE_TABLE_LEVEL);
1376 drop_spte(kvm, sptep);
1377 --kvm->stat.lpages;
1378 return true;
1379 }
1380
1381 return false;
1382}
1383
1384static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1385{
1386 if (__drop_large_spte(vcpu->kvm, sptep))
1387 kvm_flush_remote_tlbs(vcpu->kvm);
1388}
1389
1390/*
1391 * Write-protect on the specified @sptep, @pt_protect indicates whether
1392 * spte write-protection is caused by protecting shadow page table.
1393 *
1394 * Note: write protection is difference between dirty logging and spte
1395 * protection:
1396 * - for dirty logging, the spte can be set to writable at anytime if
1397 * its dirty bitmap is properly set.
1398 * - for spte protection, the spte can be writable only after unsync-ing
1399 * shadow page.
1400 *
1401 * Return true if tlb need be flushed.
1402 */
1403static bool spte_write_protect(u64 *sptep, bool pt_protect)
1404{
1405 u64 spte = *sptep;
1406
1407 if (!is_writable_pte(spte) &&
1408 !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1409 return false;
1410
1411 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1412
1413 if (pt_protect)
1414 spte &= ~SPTE_MMU_WRITEABLE;
1415 spte = spte & ~PT_WRITABLE_MASK;
1416
1417 return mmu_spte_update(sptep, spte);
1418}
1419
1420static bool __rmap_write_protect(struct kvm *kvm,
1421 struct kvm_rmap_head *rmap_head,
1422 bool pt_protect)
1423{
1424 u64 *sptep;
1425 struct rmap_iterator iter;
1426 bool flush = false;
1427
1428 for_each_rmap_spte(rmap_head, &iter, sptep)
1429 flush |= spte_write_protect(sptep, pt_protect);
1430
1431 return flush;
1432}
1433
1434static bool spte_clear_dirty(u64 *sptep)
1435{
1436 u64 spte = *sptep;
1437
1438 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1439
1440 spte &= ~shadow_dirty_mask;
1441
1442 return mmu_spte_update(sptep, spte);
1443}
1444
1445static bool wrprot_ad_disabled_spte(u64 *sptep)
1446{
1447 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1448 (unsigned long *)sptep);
1449 if (was_writable)
1450 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1451
1452 return was_writable;
1453}
1454
1455/*
1456 * Gets the GFN ready for another round of dirty logging by clearing the
1457 * - D bit on ad-enabled SPTEs, and
1458 * - W bit on ad-disabled SPTEs.
1459 * Returns true iff any D or W bits were cleared.
1460 */
1461static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1462{
1463 u64 *sptep;
1464 struct rmap_iterator iter;
1465 bool flush = false;
1466
1467 for_each_rmap_spte(rmap_head, &iter, sptep)
1468 if (spte_ad_enabled(*sptep))
1469 flush |= spte_clear_dirty(sptep);
1470 else
1471 flush |= wrprot_ad_disabled_spte(sptep);
1472
1473 return flush;
1474}
1475
1476static bool spte_set_dirty(u64 *sptep)
1477{
1478 u64 spte = *sptep;
1479
1480 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1481
1482 spte |= shadow_dirty_mask;
1483
1484 return mmu_spte_update(sptep, spte);
1485}
1486
1487static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1488{
1489 u64 *sptep;
1490 struct rmap_iterator iter;
1491 bool flush = false;
1492
1493 for_each_rmap_spte(rmap_head, &iter, sptep)
1494 if (spte_ad_enabled(*sptep))
1495 flush |= spte_set_dirty(sptep);
1496
1497 return flush;
1498}
1499
1500/**
1501 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1502 * @kvm: kvm instance
1503 * @slot: slot to protect
1504 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1505 * @mask: indicates which pages we should protect
1506 *
1507 * Used when we do not need to care about huge page mappings: e.g. during dirty
1508 * logging we do not have any such mappings.
1509 */
1510static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1511 struct kvm_memory_slot *slot,
1512 gfn_t gfn_offset, unsigned long mask)
1513{
1514 struct kvm_rmap_head *rmap_head;
1515
1516 while (mask) {
1517 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1518 PT_PAGE_TABLE_LEVEL, slot);
1519 __rmap_write_protect(kvm, rmap_head, false);
1520
1521 /* clear the first set bit */
1522 mask &= mask - 1;
1523 }
1524}
1525
1526/**
1527 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1528 * protect the page if the D-bit isn't supported.
1529 * @kvm: kvm instance
1530 * @slot: slot to clear D-bit
1531 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1532 * @mask: indicates which pages we should clear D-bit
1533 *
1534 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1535 */
1536void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1537 struct kvm_memory_slot *slot,
1538 gfn_t gfn_offset, unsigned long mask)
1539{
1540 struct kvm_rmap_head *rmap_head;
1541
1542 while (mask) {
1543 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1544 PT_PAGE_TABLE_LEVEL, slot);
1545 __rmap_clear_dirty(kvm, rmap_head);
1546
1547 /* clear the first set bit */
1548 mask &= mask - 1;
1549 }
1550}
1551EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1552
1553/**
1554 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1555 * PT level pages.
1556 *
1557 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1558 * enable dirty logging for them.
1559 *
1560 * Used when we do not need to care about huge page mappings: e.g. during dirty
1561 * logging we do not have any such mappings.
1562 */
1563void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1564 struct kvm_memory_slot *slot,
1565 gfn_t gfn_offset, unsigned long mask)
1566{
1567 if (kvm_x86_ops->enable_log_dirty_pt_masked)
1568 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1569 mask);
1570 else
1571 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1572}
1573
1574/**
1575 * kvm_arch_write_log_dirty - emulate dirty page logging
1576 * @vcpu: Guest mode vcpu
1577 *
1578 * Emulate arch specific page modification logging for the
1579 * nested hypervisor
1580 */
1581int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu)
1582{
1583 if (kvm_x86_ops->write_log_dirty)
1584 return kvm_x86_ops->write_log_dirty(vcpu);
1585
1586 return 0;
1587}
1588
1589bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1590 struct kvm_memory_slot *slot, u64 gfn)
1591{
1592 struct kvm_rmap_head *rmap_head;
1593 int i;
1594 bool write_protected = false;
1595
1596 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1597 rmap_head = __gfn_to_rmap(gfn, i, slot);
1598 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1599 }
1600
1601 return write_protected;
1602}
1603
1604static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1605{
1606 struct kvm_memory_slot *slot;
1607
1608 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1609 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1610}
1611
1612static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1613{
1614 u64 *sptep;
1615 struct rmap_iterator iter;
1616 bool flush = false;
1617
1618 while ((sptep = rmap_get_first(rmap_head, &iter))) {
1619 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1620
1621 drop_spte(kvm, sptep);
1622 flush = true;
1623 }
1624
1625 return flush;
1626}
1627
1628static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1629 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1630 unsigned long data)
1631{
1632 return kvm_zap_rmapp(kvm, rmap_head);
1633}
1634
1635static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1636 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1637 unsigned long data)
1638{
1639 u64 *sptep;
1640 struct rmap_iterator iter;
1641 int need_flush = 0;
1642 u64 new_spte;
1643 pte_t *ptep = (pte_t *)data;
1644 kvm_pfn_t new_pfn;
1645
1646 WARN_ON(pte_huge(*ptep));
1647 new_pfn = pte_pfn(*ptep);
1648
1649restart:
1650 for_each_rmap_spte(rmap_head, &iter, sptep) {
1651 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1652 sptep, *sptep, gfn, level);
1653
1654 need_flush = 1;
1655
1656 if (pte_write(*ptep)) {
1657 drop_spte(kvm, sptep);
1658 goto restart;
1659 } else {
1660 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1661 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1662
1663 new_spte &= ~PT_WRITABLE_MASK;
1664 new_spte &= ~SPTE_HOST_WRITEABLE;
1665
1666 new_spte = mark_spte_for_access_track(new_spte);
1667
1668 mmu_spte_clear_track_bits(sptep);
1669 mmu_spte_set(sptep, new_spte);
1670 }
1671 }
1672
1673 if (need_flush)
1674 kvm_flush_remote_tlbs(kvm);
1675
1676 return 0;
1677}
1678
1679struct slot_rmap_walk_iterator {
1680 /* input fields. */
1681 struct kvm_memory_slot *slot;
1682 gfn_t start_gfn;
1683 gfn_t end_gfn;
1684 int start_level;
1685 int end_level;
1686
1687 /* output fields. */
1688 gfn_t gfn;
1689 struct kvm_rmap_head *rmap;
1690 int level;
1691
1692 /* private field. */
1693 struct kvm_rmap_head *end_rmap;
1694};
1695
1696static void
1697rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1698{
1699 iterator->level = level;
1700 iterator->gfn = iterator->start_gfn;
1701 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1702 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1703 iterator->slot);
1704}
1705
1706static void
1707slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1708 struct kvm_memory_slot *slot, int start_level,
1709 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1710{
1711 iterator->slot = slot;
1712 iterator->start_level = start_level;
1713 iterator->end_level = end_level;
1714 iterator->start_gfn = start_gfn;
1715 iterator->end_gfn = end_gfn;
1716
1717 rmap_walk_init_level(iterator, iterator->start_level);
1718}
1719
1720static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1721{
1722 return !!iterator->rmap;
1723}
1724
1725static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1726{
1727 if (++iterator->rmap <= iterator->end_rmap) {
1728 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1729 return;
1730 }
1731
1732 if (++iterator->level > iterator->end_level) {
1733 iterator->rmap = NULL;
1734 return;
1735 }
1736
1737 rmap_walk_init_level(iterator, iterator->level);
1738}
1739
1740#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1741 _start_gfn, _end_gfn, _iter_) \
1742 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1743 _end_level_, _start_gfn, _end_gfn); \
1744 slot_rmap_walk_okay(_iter_); \
1745 slot_rmap_walk_next(_iter_))
1746
1747static int kvm_handle_hva_range(struct kvm *kvm,
1748 unsigned long start,
1749 unsigned long end,
1750 unsigned long data,
1751 int (*handler)(struct kvm *kvm,
1752 struct kvm_rmap_head *rmap_head,
1753 struct kvm_memory_slot *slot,
1754 gfn_t gfn,
1755 int level,
1756 unsigned long data))
1757{
1758 struct kvm_memslots *slots;
1759 struct kvm_memory_slot *memslot;
1760 struct slot_rmap_walk_iterator iterator;
1761 int ret = 0;
1762 int i;
1763
1764 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1765 slots = __kvm_memslots(kvm, i);
1766 kvm_for_each_memslot(memslot, slots) {
1767 unsigned long hva_start, hva_end;
1768 gfn_t gfn_start, gfn_end;
1769
1770 hva_start = max(start, memslot->userspace_addr);
1771 hva_end = min(end, memslot->userspace_addr +
1772 (memslot->npages << PAGE_SHIFT));
1773 if (hva_start >= hva_end)
1774 continue;
1775 /*
1776 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1777 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1778 */
1779 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1780 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1781
1782 for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1783 PT_MAX_HUGEPAGE_LEVEL,
1784 gfn_start, gfn_end - 1,
1785 &iterator)
1786 ret |= handler(kvm, iterator.rmap, memslot,
1787 iterator.gfn, iterator.level, data);
1788 }
1789 }
1790
1791 return ret;
1792}
1793
1794static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1795 unsigned long data,
1796 int (*handler)(struct kvm *kvm,
1797 struct kvm_rmap_head *rmap_head,
1798 struct kvm_memory_slot *slot,
1799 gfn_t gfn, int level,
1800 unsigned long data))
1801{
1802 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1803}
1804
1805int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1806{
1807 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1808}
1809
1810int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1811{
1812 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1813}
1814
1815void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1816{
1817 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1818}
1819
1820static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1821 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1822 unsigned long data)
1823{
1824 u64 *sptep;
1825 struct rmap_iterator uninitialized_var(iter);
1826 int young = 0;
1827
1828 for_each_rmap_spte(rmap_head, &iter, sptep)
1829 young |= mmu_spte_age(sptep);
1830
1831 trace_kvm_age_page(gfn, level, slot, young);
1832 return young;
1833}
1834
1835static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1836 struct kvm_memory_slot *slot, gfn_t gfn,
1837 int level, unsigned long data)
1838{
1839 u64 *sptep;
1840 struct rmap_iterator iter;
1841
1842 for_each_rmap_spte(rmap_head, &iter, sptep)
1843 if (is_accessed_spte(*sptep))
1844 return 1;
1845 return 0;
1846}
1847
1848#define RMAP_RECYCLE_THRESHOLD 1000
1849
1850static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1851{
1852 struct kvm_rmap_head *rmap_head;
1853 struct kvm_mmu_page *sp;
1854
1855 sp = page_header(__pa(spte));
1856
1857 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1858
1859 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1860 kvm_flush_remote_tlbs(vcpu->kvm);
1861}
1862
1863int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1864{
1865 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1866}
1867
1868int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1869{
1870 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1871}
1872
1873#ifdef MMU_DEBUG
1874static int is_empty_shadow_page(u64 *spt)
1875{
1876 u64 *pos;
1877 u64 *end;
1878
1879 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1880 if (is_shadow_present_pte(*pos)) {
1881 printk(KERN_ERR "%s: %p %llx\n", __func__,
1882 pos, *pos);
1883 return 0;
1884 }
1885 return 1;
1886}
1887#endif
1888
1889/*
1890 * This value is the sum of all of the kvm instances's
1891 * kvm->arch.n_used_mmu_pages values. We need a global,
1892 * aggregate version in order to make the slab shrinker
1893 * faster
1894 */
1895static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1896{
1897 kvm->arch.n_used_mmu_pages += nr;
1898 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1899}
1900
1901static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1902{
1903 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1904 hlist_del(&sp->hash_link);
1905 list_del(&sp->link);
1906 free_page((unsigned long)sp->spt);
1907 if (!sp->role.direct)
1908 free_page((unsigned long)sp->gfns);
1909 kmem_cache_free(mmu_page_header_cache, sp);
1910}
1911
1912static unsigned kvm_page_table_hashfn(gfn_t gfn)
1913{
1914 return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1915}
1916
1917static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1918 struct kvm_mmu_page *sp, u64 *parent_pte)
1919{
1920 if (!parent_pte)
1921 return;
1922
1923 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1924}
1925
1926static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1927 u64 *parent_pte)
1928{
1929 pte_list_remove(parent_pte, &sp->parent_ptes);
1930}
1931
1932static void drop_parent_pte(struct kvm_mmu_page *sp,
1933 u64 *parent_pte)
1934{
1935 mmu_page_remove_parent_pte(sp, parent_pte);
1936 mmu_spte_clear_no_track(parent_pte);
1937}
1938
1939static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1940{
1941 struct kvm_mmu_page *sp;
1942
1943 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1944 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1945 if (!direct)
1946 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1947 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1948
1949 /*
1950 * The active_mmu_pages list is the FIFO list, do not move the
1951 * page until it is zapped. kvm_zap_obsolete_pages depends on
1952 * this feature. See the comments in kvm_zap_obsolete_pages().
1953 */
1954 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1955 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1956 return sp;
1957}
1958
1959static void mark_unsync(u64 *spte);
1960static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1961{
1962 u64 *sptep;
1963 struct rmap_iterator iter;
1964
1965 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1966 mark_unsync(sptep);
1967 }
1968}
1969
1970static void mark_unsync(u64 *spte)
1971{
1972 struct kvm_mmu_page *sp;
1973 unsigned int index;
1974
1975 sp = page_header(__pa(spte));
1976 index = spte - sp->spt;
1977 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1978 return;
1979 if (sp->unsync_children++)
1980 return;
1981 kvm_mmu_mark_parents_unsync(sp);
1982}
1983
1984static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1985 struct kvm_mmu_page *sp)
1986{
1987 return 0;
1988}
1989
1990static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1991{
1992}
1993
1994static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1995 struct kvm_mmu_page *sp, u64 *spte,
1996 const void *pte)
1997{
1998 WARN_ON(1);
1999}
2000
2001#define KVM_PAGE_ARRAY_NR 16
2002
2003struct kvm_mmu_pages {
2004 struct mmu_page_and_offset {
2005 struct kvm_mmu_page *sp;
2006 unsigned int idx;
2007 } page[KVM_PAGE_ARRAY_NR];
2008 unsigned int nr;
2009};
2010
2011static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
2012 int idx)
2013{
2014 int i;
2015
2016 if (sp->unsync)
2017 for (i=0; i < pvec->nr; i++)
2018 if (pvec->page[i].sp == sp)
2019 return 0;
2020
2021 pvec->page[pvec->nr].sp = sp;
2022 pvec->page[pvec->nr].idx = idx;
2023 pvec->nr++;
2024 return (pvec->nr == KVM_PAGE_ARRAY_NR);
2025}
2026
2027static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
2028{
2029 --sp->unsync_children;
2030 WARN_ON((int)sp->unsync_children < 0);
2031 __clear_bit(idx, sp->unsync_child_bitmap);
2032}
2033
2034static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
2035 struct kvm_mmu_pages *pvec)
2036{
2037 int i, ret, nr_unsync_leaf = 0;
2038
2039 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
2040 struct kvm_mmu_page *child;
2041 u64 ent = sp->spt[i];
2042
2043 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
2044 clear_unsync_child_bit(sp, i);
2045 continue;
2046 }
2047
2048 child = page_header(ent & PT64_BASE_ADDR_MASK);
2049
2050 if (child->unsync_children) {
2051 if (mmu_pages_add(pvec, child, i))
2052 return -ENOSPC;
2053
2054 ret = __mmu_unsync_walk(child, pvec);
2055 if (!ret) {
2056 clear_unsync_child_bit(sp, i);
2057 continue;
2058 } else if (ret > 0) {
2059 nr_unsync_leaf += ret;
2060 } else
2061 return ret;
2062 } else if (child->unsync) {
2063 nr_unsync_leaf++;
2064 if (mmu_pages_add(pvec, child, i))
2065 return -ENOSPC;
2066 } else
2067 clear_unsync_child_bit(sp, i);
2068 }
2069
2070 return nr_unsync_leaf;
2071}
2072
2073#define INVALID_INDEX (-1)
2074
2075static int mmu_unsync_walk(struct kvm_mmu_page *sp,
2076 struct kvm_mmu_pages *pvec)
2077{
2078 pvec->nr = 0;
2079 if (!sp->unsync_children)
2080 return 0;
2081
2082 mmu_pages_add(pvec, sp, INVALID_INDEX);
2083 return __mmu_unsync_walk(sp, pvec);
2084}
2085
2086static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2087{
2088 WARN_ON(!sp->unsync);
2089 trace_kvm_mmu_sync_page(sp);
2090 sp->unsync = 0;
2091 --kvm->stat.mmu_unsync;
2092}
2093
2094static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2095 struct list_head *invalid_list);
2096static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2097 struct list_head *invalid_list);
2098
2099/*
2100 * NOTE: we should pay more attention on the zapped-obsolete page
2101 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
2102 * since it has been deleted from active_mmu_pages but still can be found
2103 * at hast list.
2104 *
2105 * for_each_valid_sp() has skipped that kind of pages.
2106 */
2107#define for_each_valid_sp(_kvm, _sp, _gfn) \
2108 hlist_for_each_entry(_sp, \
2109 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
2110 if (is_obsolete_sp((_kvm), (_sp)) || (_sp)->role.invalid) { \
2111 } else
2112
2113#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
2114 for_each_valid_sp(_kvm, _sp, _gfn) \
2115 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
2116
2117/* @sp->gfn should be write-protected at the call site */
2118static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2119 struct list_head *invalid_list)
2120{
2121 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
2122 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2123 return false;
2124 }
2125
2126 if (vcpu->arch.mmu.sync_page(vcpu, sp) == 0) {
2127 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2128 return false;
2129 }
2130
2131 return true;
2132}
2133
2134static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
2135 struct list_head *invalid_list,
2136 bool remote_flush, bool local_flush)
2137{
2138 if (!list_empty(invalid_list)) {
2139 kvm_mmu_commit_zap_page(vcpu->kvm, invalid_list);
2140 return;
2141 }
2142
2143 if (remote_flush)
2144 kvm_flush_remote_tlbs(vcpu->kvm);
2145 else if (local_flush)
2146 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2147}
2148
2149#ifdef CONFIG_KVM_MMU_AUDIT
2150#include "mmu_audit.c"
2151#else
2152static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
2153static void mmu_audit_disable(void) { }
2154#endif
2155
2156static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2157{
2158 return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2159}
2160
2161static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2162 struct list_head *invalid_list)
2163{
2164 kvm_unlink_unsync_page(vcpu->kvm, sp);
2165 return __kvm_sync_page(vcpu, sp, invalid_list);
2166}
2167
2168/* @gfn should be write-protected at the call site */
2169static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
2170 struct list_head *invalid_list)
2171{
2172 struct kvm_mmu_page *s;
2173 bool ret = false;
2174
2175 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2176 if (!s->unsync)
2177 continue;
2178
2179 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2180 ret |= kvm_sync_page(vcpu, s, invalid_list);
2181 }
2182
2183 return ret;
2184}
2185
2186struct mmu_page_path {
2187 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
2188 unsigned int idx[PT64_ROOT_MAX_LEVEL];
2189};
2190
2191#define for_each_sp(pvec, sp, parents, i) \
2192 for (i = mmu_pages_first(&pvec, &parents); \
2193 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
2194 i = mmu_pages_next(&pvec, &parents, i))
2195
2196static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2197 struct mmu_page_path *parents,
2198 int i)
2199{
2200 int n;
2201
2202 for (n = i+1; n < pvec->nr; n++) {
2203 struct kvm_mmu_page *sp = pvec->page[n].sp;
2204 unsigned idx = pvec->page[n].idx;
2205 int level = sp->role.level;
2206
2207 parents->idx[level-1] = idx;
2208 if (level == PT_PAGE_TABLE_LEVEL)
2209 break;
2210
2211 parents->parent[level-2] = sp;
2212 }
2213
2214 return n;
2215}
2216
2217static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2218 struct mmu_page_path *parents)
2219{
2220 struct kvm_mmu_page *sp;
2221 int level;
2222
2223 if (pvec->nr == 0)
2224 return 0;
2225
2226 WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2227
2228 sp = pvec->page[0].sp;
2229 level = sp->role.level;
2230 WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2231
2232 parents->parent[level-2] = sp;
2233
2234 /* Also set up a sentinel. Further entries in pvec are all
2235 * children of sp, so this element is never overwritten.
2236 */
2237 parents->parent[level-1] = NULL;
2238 return mmu_pages_next(pvec, parents, 0);
2239}
2240
2241static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2242{
2243 struct kvm_mmu_page *sp;
2244 unsigned int level = 0;
2245
2246 do {
2247 unsigned int idx = parents->idx[level];
2248 sp = parents->parent[level];
2249 if (!sp)
2250 return;
2251
2252 WARN_ON(idx == INVALID_INDEX);
2253 clear_unsync_child_bit(sp, idx);
2254 level++;
2255 } while (!sp->unsync_children);
2256}
2257
2258static void mmu_sync_children(struct kvm_vcpu *vcpu,
2259 struct kvm_mmu_page *parent)
2260{
2261 int i;
2262 struct kvm_mmu_page *sp;
2263 struct mmu_page_path parents;
2264 struct kvm_mmu_pages pages;
2265 LIST_HEAD(invalid_list);
2266 bool flush = false;
2267
2268 while (mmu_unsync_walk(parent, &pages)) {
2269 bool protected = false;
2270
2271 for_each_sp(pages, sp, parents, i)
2272 protected |= rmap_write_protect(vcpu, sp->gfn);
2273
2274 if (protected) {
2275 kvm_flush_remote_tlbs(vcpu->kvm);
2276 flush = false;
2277 }
2278
2279 for_each_sp(pages, sp, parents, i) {
2280 flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2281 mmu_pages_clear_parents(&parents);
2282 }
2283 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2284 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2285 cond_resched_lock(&vcpu->kvm->mmu_lock);
2286 flush = false;
2287 }
2288 }
2289
2290 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2291}
2292
2293static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2294{
2295 atomic_set(&sp->write_flooding_count, 0);
2296}
2297
2298static void clear_sp_write_flooding_count(u64 *spte)
2299{
2300 struct kvm_mmu_page *sp = page_header(__pa(spte));
2301
2302 __clear_sp_write_flooding_count(sp);
2303}
2304
2305static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2306 gfn_t gfn,
2307 gva_t gaddr,
2308 unsigned level,
2309 int direct,
2310 unsigned access)
2311{
2312 union kvm_mmu_page_role role;
2313 unsigned quadrant;
2314 struct kvm_mmu_page *sp;
2315 bool need_sync = false;
2316 bool flush = false;
2317 int collisions = 0;
2318 LIST_HEAD(invalid_list);
2319
2320 role = vcpu->arch.mmu.base_role;
2321 role.level = level;
2322 role.direct = direct;
2323 if (role.direct)
2324 role.cr4_pae = 0;
2325 role.access = access;
2326 if (!vcpu->arch.mmu.direct_map
2327 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
2328 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2329 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2330 role.quadrant = quadrant;
2331 }
2332 for_each_valid_sp(vcpu->kvm, sp, gfn) {
2333 if (sp->gfn != gfn) {
2334 collisions++;
2335 continue;
2336 }
2337
2338 if (!need_sync && sp->unsync)
2339 need_sync = true;
2340
2341 if (sp->role.word != role.word)
2342 continue;
2343
2344 if (sp->unsync) {
2345 /* The page is good, but __kvm_sync_page might still end
2346 * up zapping it. If so, break in order to rebuild it.
2347 */
2348 if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2349 break;
2350
2351 WARN_ON(!list_empty(&invalid_list));
2352 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2353 }
2354
2355 if (sp->unsync_children)
2356 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2357
2358 __clear_sp_write_flooding_count(sp);
2359 trace_kvm_mmu_get_page(sp, false);
2360 goto out;
2361 }
2362
2363 ++vcpu->kvm->stat.mmu_cache_miss;
2364
2365 sp = kvm_mmu_alloc_page(vcpu, direct);
2366
2367 sp->gfn = gfn;
2368 sp->role = role;
2369 hlist_add_head(&sp->hash_link,
2370 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2371 if (!direct) {
2372 /*
2373 * we should do write protection before syncing pages
2374 * otherwise the content of the synced shadow page may
2375 * be inconsistent with guest page table.
2376 */
2377 account_shadowed(vcpu->kvm, sp);
2378 if (level == PT_PAGE_TABLE_LEVEL &&
2379 rmap_write_protect(vcpu, gfn))
2380 kvm_flush_remote_tlbs(vcpu->kvm);
2381
2382 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2383 flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2384 }
2385 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2386 clear_page(sp->spt);
2387 trace_kvm_mmu_get_page(sp, true);
2388
2389 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2390out:
2391 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2392 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2393 return sp;
2394}
2395
2396static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2397 struct kvm_vcpu *vcpu, u64 addr)
2398{
2399 iterator->addr = addr;
2400 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2401 iterator->level = vcpu->arch.mmu.shadow_root_level;
2402
2403 if (iterator->level == PT64_ROOT_4LEVEL &&
2404 vcpu->arch.mmu.root_level < PT64_ROOT_4LEVEL &&
2405 !vcpu->arch.mmu.direct_map)
2406 --iterator->level;
2407
2408 if (iterator->level == PT32E_ROOT_LEVEL) {
2409 iterator->shadow_addr
2410 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2411 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2412 --iterator->level;
2413 if (!iterator->shadow_addr)
2414 iterator->level = 0;
2415 }
2416}
2417
2418static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2419{
2420 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2421 return false;
2422
2423 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2424 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2425 return true;
2426}
2427
2428static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2429 u64 spte)
2430{
2431 if (is_last_spte(spte, iterator->level)) {
2432 iterator->level = 0;
2433 return;
2434 }
2435
2436 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2437 --iterator->level;
2438}
2439
2440static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2441{
2442 __shadow_walk_next(iterator, *iterator->sptep);
2443}
2444
2445static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2446 struct kvm_mmu_page *sp)
2447{
2448 u64 spte;
2449
2450 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2451
2452 spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
2453 shadow_user_mask | shadow_x_mask | shadow_me_mask;
2454
2455 if (sp_ad_disabled(sp))
2456 spte |= shadow_acc_track_value;
2457 else
2458 spte |= shadow_accessed_mask;
2459
2460 mmu_spte_set(sptep, spte);
2461
2462 mmu_page_add_parent_pte(vcpu, sp, sptep);
2463
2464 if (sp->unsync_children || sp->unsync)
2465 mark_unsync(sptep);
2466}
2467
2468static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2469 unsigned direct_access)
2470{
2471 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2472 struct kvm_mmu_page *child;
2473
2474 /*
2475 * For the direct sp, if the guest pte's dirty bit
2476 * changed form clean to dirty, it will corrupt the
2477 * sp's access: allow writable in the read-only sp,
2478 * so we should update the spte at this point to get
2479 * a new sp with the correct access.
2480 */
2481 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2482 if (child->role.access == direct_access)
2483 return;
2484
2485 drop_parent_pte(child, sptep);
2486 kvm_flush_remote_tlbs(vcpu->kvm);
2487 }
2488}
2489
2490static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2491 u64 *spte)
2492{
2493 u64 pte;
2494 struct kvm_mmu_page *child;
2495
2496 pte = *spte;
2497 if (is_shadow_present_pte(pte)) {
2498 if (is_last_spte(pte, sp->role.level)) {
2499 drop_spte(kvm, spte);
2500 if (is_large_pte(pte))
2501 --kvm->stat.lpages;
2502 } else {
2503 child = page_header(pte & PT64_BASE_ADDR_MASK);
2504 drop_parent_pte(child, spte);
2505 }
2506 return true;
2507 }
2508
2509 if (is_mmio_spte(pte))
2510 mmu_spte_clear_no_track(spte);
2511
2512 return false;
2513}
2514
2515static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2516 struct kvm_mmu_page *sp)
2517{
2518 unsigned i;
2519
2520 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2521 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2522}
2523
2524static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2525{
2526 u64 *sptep;
2527 struct rmap_iterator iter;
2528
2529 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2530 drop_parent_pte(sp, sptep);
2531}
2532
2533static int mmu_zap_unsync_children(struct kvm *kvm,
2534 struct kvm_mmu_page *parent,
2535 struct list_head *invalid_list)
2536{
2537 int i, zapped = 0;
2538 struct mmu_page_path parents;
2539 struct kvm_mmu_pages pages;
2540
2541 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2542 return 0;
2543
2544 while (mmu_unsync_walk(parent, &pages)) {
2545 struct kvm_mmu_page *sp;
2546
2547 for_each_sp(pages, sp, parents, i) {
2548 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2549 mmu_pages_clear_parents(&parents);
2550 zapped++;
2551 }
2552 }
2553
2554 return zapped;
2555}
2556
2557static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2558 struct list_head *invalid_list)
2559{
2560 int ret;
2561
2562 trace_kvm_mmu_prepare_zap_page(sp);
2563 ++kvm->stat.mmu_shadow_zapped;
2564 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2565 kvm_mmu_page_unlink_children(kvm, sp);
2566 kvm_mmu_unlink_parents(kvm, sp);
2567
2568 if (!sp->role.invalid && !sp->role.direct)
2569 unaccount_shadowed(kvm, sp);
2570
2571 if (sp->unsync)
2572 kvm_unlink_unsync_page(kvm, sp);
2573 if (!sp->root_count) {
2574 /* Count self */
2575 ret++;
2576 list_move(&sp->link, invalid_list);
2577 kvm_mod_used_mmu_pages(kvm, -1);
2578 } else {
2579 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2580
2581 /*
2582 * The obsolete pages can not be used on any vcpus.
2583 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2584 */
2585 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2586 kvm_reload_remote_mmus(kvm);
2587 }
2588
2589 sp->role.invalid = 1;
2590 return ret;
2591}
2592
2593static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2594 struct list_head *invalid_list)
2595{
2596 struct kvm_mmu_page *sp, *nsp;
2597
2598 if (list_empty(invalid_list))
2599 return;
2600
2601 /*
2602 * We need to make sure everyone sees our modifications to
2603 * the page tables and see changes to vcpu->mode here. The barrier
2604 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2605 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2606 *
2607 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2608 * guest mode and/or lockless shadow page table walks.
2609 */
2610 kvm_flush_remote_tlbs(kvm);
2611
2612 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2613 WARN_ON(!sp->role.invalid || sp->root_count);
2614 kvm_mmu_free_page(sp);
2615 }
2616}
2617
2618static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2619 struct list_head *invalid_list)
2620{
2621 struct kvm_mmu_page *sp;
2622
2623 if (list_empty(&kvm->arch.active_mmu_pages))
2624 return false;
2625
2626 sp = list_last_entry(&kvm->arch.active_mmu_pages,
2627 struct kvm_mmu_page, link);
2628 return kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2629}
2630
2631/*
2632 * Changing the number of mmu pages allocated to the vm
2633 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2634 */
2635void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2636{
2637 LIST_HEAD(invalid_list);
2638
2639 spin_lock(&kvm->mmu_lock);
2640
2641 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2642 /* Need to free some mmu pages to achieve the goal. */
2643 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2644 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2645 break;
2646
2647 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2648 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2649 }
2650
2651 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2652
2653 spin_unlock(&kvm->mmu_lock);
2654}
2655
2656int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2657{
2658 struct kvm_mmu_page *sp;
2659 LIST_HEAD(invalid_list);
2660 int r;
2661
2662 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2663 r = 0;
2664 spin_lock(&kvm->mmu_lock);
2665 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2666 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2667 sp->role.word);
2668 r = 1;
2669 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2670 }
2671 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2672 spin_unlock(&kvm->mmu_lock);
2673
2674 return r;
2675}
2676EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2677
2678static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2679{
2680 trace_kvm_mmu_unsync_page(sp);
2681 ++vcpu->kvm->stat.mmu_unsync;
2682 sp->unsync = 1;
2683
2684 kvm_mmu_mark_parents_unsync(sp);
2685}
2686
2687static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2688 bool can_unsync)
2689{
2690 struct kvm_mmu_page *sp;
2691
2692 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2693 return true;
2694
2695 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2696 if (!can_unsync)
2697 return true;
2698
2699 if (sp->unsync)
2700 continue;
2701
2702 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2703 kvm_unsync_page(vcpu, sp);
2704 }
2705
2706 return false;
2707}
2708
2709static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2710{
2711 if (pfn_valid(pfn))
2712 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
2713 /*
2714 * Some reserved pages, such as those from NVDIMM
2715 * DAX devices, are not for MMIO, and can be mapped
2716 * with cached memory type for better performance.
2717 * However, the above check misconceives those pages
2718 * as MMIO, and results in KVM mapping them with UC
2719 * memory type, which would hurt the performance.
2720 * Therefore, we check the host memory type in addition
2721 * and only treat UC/UC-/WC pages as MMIO.
2722 */
2723 (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
2724
2725 return true;
2726}
2727
2728static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2729 unsigned pte_access, int level,
2730 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2731 bool can_unsync, bool host_writable)
2732{
2733 u64 spte = 0;
2734 int ret = 0;
2735 struct kvm_mmu_page *sp;
2736
2737 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2738 return 0;
2739
2740 sp = page_header(__pa(sptep));
2741 if (sp_ad_disabled(sp))
2742 spte |= shadow_acc_track_value;
2743
2744 /*
2745 * For the EPT case, shadow_present_mask is 0 if hardware
2746 * supports exec-only page table entries. In that case,
2747 * ACC_USER_MASK and shadow_user_mask are used to represent
2748 * read access. See FNAME(gpte_access) in paging_tmpl.h.
2749 */
2750 spte |= shadow_present_mask;
2751 if (!speculative)
2752 spte |= spte_shadow_accessed_mask(spte);
2753
2754 if (pte_access & ACC_EXEC_MASK)
2755 spte |= shadow_x_mask;
2756 else
2757 spte |= shadow_nx_mask;
2758
2759 if (pte_access & ACC_USER_MASK)
2760 spte |= shadow_user_mask;
2761
2762 if (level > PT_PAGE_TABLE_LEVEL)
2763 spte |= PT_PAGE_SIZE_MASK;
2764 if (tdp_enabled)
2765 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2766 kvm_is_mmio_pfn(pfn));
2767
2768 if (host_writable)
2769 spte |= SPTE_HOST_WRITEABLE;
2770 else
2771 pte_access &= ~ACC_WRITE_MASK;
2772
2773 if (!kvm_is_mmio_pfn(pfn))
2774 spte |= shadow_me_mask;
2775
2776 spte |= (u64)pfn << PAGE_SHIFT;
2777
2778 if (pte_access & ACC_WRITE_MASK) {
2779
2780 /*
2781 * Other vcpu creates new sp in the window between
2782 * mapping_level() and acquiring mmu-lock. We can
2783 * allow guest to retry the access, the mapping can
2784 * be fixed if guest refault.
2785 */
2786 if (level > PT_PAGE_TABLE_LEVEL &&
2787 mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
2788 goto done;
2789
2790 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2791
2792 /*
2793 * Optimization: for pte sync, if spte was writable the hash
2794 * lookup is unnecessary (and expensive). Write protection
2795 * is responsibility of mmu_get_page / kvm_sync_page.
2796 * Same reasoning can be applied to dirty page accounting.
2797 */
2798 if (!can_unsync && is_writable_pte(*sptep))
2799 goto set_pte;
2800
2801 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2802 pgprintk("%s: found shadow page for %llx, marking ro\n",
2803 __func__, gfn);
2804 ret = 1;
2805 pte_access &= ~ACC_WRITE_MASK;
2806 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2807 }
2808 }
2809
2810 if (pte_access & ACC_WRITE_MASK) {
2811 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2812 spte |= spte_shadow_dirty_mask(spte);
2813 }
2814
2815 if (speculative)
2816 spte = mark_spte_for_access_track(spte);
2817
2818set_pte:
2819 if (mmu_spte_update(sptep, spte))
2820 kvm_flush_remote_tlbs(vcpu->kvm);
2821done:
2822 return ret;
2823}
2824
2825static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
2826 int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
2827 bool speculative, bool host_writable)
2828{
2829 int was_rmapped = 0;
2830 int rmap_count;
2831 int ret = RET_PF_RETRY;
2832
2833 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2834 *sptep, write_fault, gfn);
2835
2836 if (is_shadow_present_pte(*sptep)) {
2837 /*
2838 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2839 * the parent of the now unreachable PTE.
2840 */
2841 if (level > PT_PAGE_TABLE_LEVEL &&
2842 !is_large_pte(*sptep)) {
2843 struct kvm_mmu_page *child;
2844 u64 pte = *sptep;
2845
2846 child = page_header(pte & PT64_BASE_ADDR_MASK);
2847 drop_parent_pte(child, sptep);
2848 kvm_flush_remote_tlbs(vcpu->kvm);
2849 } else if (pfn != spte_to_pfn(*sptep)) {
2850 pgprintk("hfn old %llx new %llx\n",
2851 spte_to_pfn(*sptep), pfn);
2852 drop_spte(vcpu->kvm, sptep);
2853 kvm_flush_remote_tlbs(vcpu->kvm);
2854 } else
2855 was_rmapped = 1;
2856 }
2857
2858 if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2859 true, host_writable)) {
2860 if (write_fault)
2861 ret = RET_PF_EMULATE;
2862 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2863 }
2864
2865 if (unlikely(is_mmio_spte(*sptep)))
2866 ret = RET_PF_EMULATE;
2867
2868 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2869 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2870 is_large_pte(*sptep)? "2MB" : "4kB",
2871 *sptep & PT_WRITABLE_MASK ? "RW" : "R", gfn,
2872 *sptep, sptep);
2873 if (!was_rmapped && is_large_pte(*sptep))
2874 ++vcpu->kvm->stat.lpages;
2875
2876 if (is_shadow_present_pte(*sptep)) {
2877 if (!was_rmapped) {
2878 rmap_count = rmap_add(vcpu, sptep, gfn);
2879 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2880 rmap_recycle(vcpu, sptep, gfn);
2881 }
2882 }
2883
2884 kvm_release_pfn_clean(pfn);
2885
2886 return ret;
2887}
2888
2889static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2890 bool no_dirty_log)
2891{
2892 struct kvm_memory_slot *slot;
2893
2894 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2895 if (!slot)
2896 return KVM_PFN_ERR_FAULT;
2897
2898 return gfn_to_pfn_memslot_atomic(slot, gfn);
2899}
2900
2901static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2902 struct kvm_mmu_page *sp,
2903 u64 *start, u64 *end)
2904{
2905 struct page *pages[PTE_PREFETCH_NUM];
2906 struct kvm_memory_slot *slot;
2907 unsigned access = sp->role.access;
2908 int i, ret;
2909 gfn_t gfn;
2910
2911 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2912 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2913 if (!slot)
2914 return -1;
2915
2916 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2917 if (ret <= 0)
2918 return -1;
2919
2920 for (i = 0; i < ret; i++, gfn++, start++)
2921 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
2922 page_to_pfn(pages[i]), true, true);
2923
2924 return 0;
2925}
2926
2927static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2928 struct kvm_mmu_page *sp, u64 *sptep)
2929{
2930 u64 *spte, *start = NULL;
2931 int i;
2932
2933 WARN_ON(!sp->role.direct);
2934
2935 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2936 spte = sp->spt + i;
2937
2938 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2939 if (is_shadow_present_pte(*spte) || spte == sptep) {
2940 if (!start)
2941 continue;
2942 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2943 break;
2944 start = NULL;
2945 } else if (!start)
2946 start = spte;
2947 }
2948}
2949
2950static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2951{
2952 struct kvm_mmu_page *sp;
2953
2954 sp = page_header(__pa(sptep));
2955
2956 /*
2957 * Without accessed bits, there's no way to distinguish between
2958 * actually accessed translations and prefetched, so disable pte
2959 * prefetch if accessed bits aren't available.
2960 */
2961 if (sp_ad_disabled(sp))
2962 return;
2963
2964 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2965 return;
2966
2967 __direct_pte_prefetch(vcpu, sp, sptep);
2968}
2969
2970static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
2971 int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
2972{
2973 struct kvm_shadow_walk_iterator iterator;
2974 struct kvm_mmu_page *sp;
2975 int emulate = 0;
2976 gfn_t pseudo_gfn;
2977
2978 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2979 return 0;
2980
2981 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2982 if (iterator.level == level) {
2983 emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2984 write, level, gfn, pfn, prefault,
2985 map_writable);
2986 direct_pte_prefetch(vcpu, iterator.sptep);
2987 ++vcpu->stat.pf_fixed;
2988 break;
2989 }
2990
2991 drop_large_spte(vcpu, iterator.sptep);
2992 if (!is_shadow_present_pte(*iterator.sptep)) {
2993 u64 base_addr = iterator.addr;
2994
2995 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2996 pseudo_gfn = base_addr >> PAGE_SHIFT;
2997 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2998 iterator.level - 1, 1, ACC_ALL);
2999
3000 link_shadow_page(vcpu, iterator.sptep, sp);
3001 }
3002 }
3003 return emulate;
3004}
3005
3006static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
3007{
3008 siginfo_t info;
3009
3010 info.si_signo = SIGBUS;
3011 info.si_errno = 0;
3012 info.si_code = BUS_MCEERR_AR;
3013 info.si_addr = (void __user *)address;
3014 info.si_addr_lsb = PAGE_SHIFT;
3015
3016 send_sig_info(SIGBUS, &info, tsk);
3017}
3018
3019static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
3020{
3021 /*
3022 * Do not cache the mmio info caused by writing the readonly gfn
3023 * into the spte otherwise read access on readonly gfn also can
3024 * caused mmio page fault and treat it as mmio access.
3025 */
3026 if (pfn == KVM_PFN_ERR_RO_FAULT)
3027 return RET_PF_EMULATE;
3028
3029 if (pfn == KVM_PFN_ERR_HWPOISON) {
3030 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3031 return RET_PF_RETRY;
3032 }
3033
3034 return -EFAULT;
3035}
3036
3037static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
3038 gfn_t *gfnp, kvm_pfn_t *pfnp,
3039 int *levelp)
3040{
3041 kvm_pfn_t pfn = *pfnp;
3042 gfn_t gfn = *gfnp;
3043 int level = *levelp;
3044
3045 /*
3046 * Check if it's a transparent hugepage. If this would be an
3047 * hugetlbfs page, level wouldn't be set to
3048 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
3049 * here.
3050 */
3051 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
3052 level == PT_PAGE_TABLE_LEVEL &&
3053 PageTransCompoundMap(pfn_to_page(pfn)) &&
3054 !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
3055 unsigned long mask;
3056 /*
3057 * mmu_notifier_retry was successful and we hold the
3058 * mmu_lock here, so the pmd can't become splitting
3059 * from under us, and in turn
3060 * __split_huge_page_refcount() can't run from under
3061 * us and we can safely transfer the refcount from
3062 * PG_tail to PG_head as we switch the pfn to tail to
3063 * head.
3064 */
3065 *levelp = level = PT_DIRECTORY_LEVEL;
3066 mask = KVM_PAGES_PER_HPAGE(level) - 1;
3067 VM_BUG_ON((gfn & mask) != (pfn & mask));
3068 if (pfn & mask) {
3069 gfn &= ~mask;
3070 *gfnp = gfn;
3071 kvm_release_pfn_clean(pfn);
3072 pfn &= ~mask;
3073 kvm_get_pfn(pfn);
3074 *pfnp = pfn;
3075 }
3076 }
3077}
3078
3079static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
3080 kvm_pfn_t pfn, unsigned access, int *ret_val)
3081{
3082 /* The pfn is invalid, report the error! */
3083 if (unlikely(is_error_pfn(pfn))) {
3084 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
3085 return true;
3086 }
3087
3088 if (unlikely(is_noslot_pfn(pfn)))
3089 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
3090
3091 return false;
3092}
3093
3094static bool page_fault_can_be_fast(u32 error_code)
3095{
3096 /*
3097 * Do not fix the mmio spte with invalid generation number which
3098 * need to be updated by slow page fault path.
3099 */
3100 if (unlikely(error_code & PFERR_RSVD_MASK))
3101 return false;
3102
3103 /* See if the page fault is due to an NX violation */
3104 if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3105 == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3106 return false;
3107
3108 /*
3109 * #PF can be fast if:
3110 * 1. The shadow page table entry is not present, which could mean that
3111 * the fault is potentially caused by access tracking (if enabled).
3112 * 2. The shadow page table entry is present and the fault
3113 * is caused by write-protect, that means we just need change the W
3114 * bit of the spte which can be done out of mmu-lock.
3115 *
3116 * However, if access tracking is disabled we know that a non-present
3117 * page must be a genuine page fault where we have to create a new SPTE.
3118 * So, if access tracking is disabled, we return true only for write
3119 * accesses to a present page.
3120 */
3121
3122 return shadow_acc_track_mask != 0 ||
3123 ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3124 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3125}
3126
3127/*
3128 * Returns true if the SPTE was fixed successfully. Otherwise,
3129 * someone else modified the SPTE from its original value.
3130 */
3131static bool
3132fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3133 u64 *sptep, u64 old_spte, u64 new_spte)
3134{
3135 gfn_t gfn;
3136
3137 WARN_ON(!sp->role.direct);
3138
3139 /*
3140 * Theoretically we could also set dirty bit (and flush TLB) here in
3141 * order to eliminate unnecessary PML logging. See comments in
3142 * set_spte. But fast_page_fault is very unlikely to happen with PML
3143 * enabled, so we do not do this. This might result in the same GPA
3144 * to be logged in PML buffer again when the write really happens, and
3145 * eventually to be called by mark_page_dirty twice. But it's also no
3146 * harm. This also avoids the TLB flush needed after setting dirty bit
3147 * so non-PML cases won't be impacted.
3148 *
3149 * Compare with set_spte where instead shadow_dirty_mask is set.
3150 */
3151 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3152 return false;
3153
3154 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3155 /*
3156 * The gfn of direct spte is stable since it is
3157 * calculated by sp->gfn.
3158 */
3159 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3160 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3161 }
3162
3163 return true;
3164}
3165
3166static bool is_access_allowed(u32 fault_err_code, u64 spte)
3167{
3168 if (fault_err_code & PFERR_FETCH_MASK)
3169 return is_executable_pte(spte);
3170
3171 if (fault_err_code & PFERR_WRITE_MASK)
3172 return is_writable_pte(spte);
3173
3174 /* Fault was on Read access */
3175 return spte & PT_PRESENT_MASK;
3176}
3177
3178/*
3179 * Return value:
3180 * - true: let the vcpu to access on the same address again.
3181 * - false: let the real page fault path to fix it.
3182 */
3183static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
3184 u32 error_code)
3185{
3186 struct kvm_shadow_walk_iterator iterator;
3187 struct kvm_mmu_page *sp;
3188 bool fault_handled = false;
3189 u64 spte = 0ull;
3190 uint retry_count = 0;
3191
3192 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3193 return false;
3194
3195 if (!page_fault_can_be_fast(error_code))
3196 return false;
3197
3198 walk_shadow_page_lockless_begin(vcpu);
3199
3200 do {
3201 u64 new_spte;
3202
3203 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
3204 if (!is_shadow_present_pte(spte) ||
3205 iterator.level < level)
3206 break;
3207
3208 sp = page_header(__pa(iterator.sptep));
3209 if (!is_last_spte(spte, sp->role.level))
3210 break;
3211
3212 /*
3213 * Check whether the memory access that caused the fault would
3214 * still cause it if it were to be performed right now. If not,
3215 * then this is a spurious fault caused by TLB lazily flushed,
3216 * or some other CPU has already fixed the PTE after the
3217 * current CPU took the fault.
3218 *
3219 * Need not check the access of upper level table entries since
3220 * they are always ACC_ALL.
3221 */
3222 if (is_access_allowed(error_code, spte)) {
3223 fault_handled = true;
3224 break;
3225 }
3226
3227 new_spte = spte;
3228
3229 if (is_access_track_spte(spte))
3230 new_spte = restore_acc_track_spte(new_spte);
3231
3232 /*
3233 * Currently, to simplify the code, write-protection can
3234 * be removed in the fast path only if the SPTE was
3235 * write-protected for dirty-logging or access tracking.
3236 */
3237 if ((error_code & PFERR_WRITE_MASK) &&
3238 spte_can_locklessly_be_made_writable(spte))
3239 {
3240 new_spte |= PT_WRITABLE_MASK;
3241
3242 /*
3243 * Do not fix write-permission on the large spte. Since
3244 * we only dirty the first page into the dirty-bitmap in
3245 * fast_pf_fix_direct_spte(), other pages are missed
3246 * if its slot has dirty logging enabled.
3247 *
3248 * Instead, we let the slow page fault path create a
3249 * normal spte to fix the access.
3250 *
3251 * See the comments in kvm_arch_commit_memory_region().
3252 */
3253 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3254 break;
3255 }
3256
3257 /* Verify that the fault can be handled in the fast path */
3258 if (new_spte == spte ||
3259 !is_access_allowed(error_code, new_spte))
3260 break;
3261
3262 /*
3263 * Currently, fast page fault only works for direct mapping
3264 * since the gfn is not stable for indirect shadow page. See
3265 * Documentation/virtual/kvm/locking.txt to get more detail.
3266 */
3267 fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
3268 iterator.sptep, spte,
3269 new_spte);
3270 if (fault_handled)
3271 break;
3272
3273 if (++retry_count > 4) {
3274 printk_once(KERN_WARNING
3275 "kvm: Fast #PF retrying more than 4 times.\n");
3276 break;
3277 }
3278
3279 } while (true);
3280
3281 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
3282 spte, fault_handled);
3283 walk_shadow_page_lockless_end(vcpu);
3284
3285 return fault_handled;
3286}
3287
3288static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3289 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
3290static int make_mmu_pages_available(struct kvm_vcpu *vcpu);
3291
3292static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
3293 gfn_t gfn, bool prefault)
3294{
3295 int r;
3296 int level;
3297 bool force_pt_level = false;
3298 kvm_pfn_t pfn;
3299 unsigned long mmu_seq;
3300 bool map_writable, write = error_code & PFERR_WRITE_MASK;
3301
3302 level = mapping_level(vcpu, gfn, &force_pt_level);
3303 if (likely(!force_pt_level)) {
3304 /*
3305 * This path builds a PAE pagetable - so we can map
3306 * 2mb pages at maximum. Therefore check if the level
3307 * is larger than that.
3308 */
3309 if (level > PT_DIRECTORY_LEVEL)
3310 level = PT_DIRECTORY_LEVEL;
3311
3312 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3313 }
3314
3315 if (fast_page_fault(vcpu, v, level, error_code))
3316 return RET_PF_RETRY;
3317
3318 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3319 smp_rmb();
3320
3321 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3322 return RET_PF_RETRY;
3323
3324 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3325 return r;
3326
3327 spin_lock(&vcpu->kvm->mmu_lock);
3328 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3329 goto out_unlock;
3330 if (make_mmu_pages_available(vcpu) < 0)
3331 goto out_unlock;
3332 if (likely(!force_pt_level))
3333 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3334 r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3335 spin_unlock(&vcpu->kvm->mmu_lock);
3336
3337 return r;
3338
3339out_unlock:
3340 spin_unlock(&vcpu->kvm->mmu_lock);
3341 kvm_release_pfn_clean(pfn);
3342 return RET_PF_RETRY;
3343}
3344
3345
3346static void mmu_free_roots(struct kvm_vcpu *vcpu)
3347{
3348 int i;
3349 struct kvm_mmu_page *sp;
3350 LIST_HEAD(invalid_list);
3351
3352 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3353 return;
3354
3355 if (vcpu->arch.mmu.shadow_root_level >= PT64_ROOT_4LEVEL &&
3356 (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL ||
3357 vcpu->arch.mmu.direct_map)) {
3358 hpa_t root = vcpu->arch.mmu.root_hpa;
3359
3360 spin_lock(&vcpu->kvm->mmu_lock);
3361 sp = page_header(root);
3362 --sp->root_count;
3363 if (!sp->root_count && sp->role.invalid) {
3364 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3365 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3366 }
3367 spin_unlock(&vcpu->kvm->mmu_lock);
3368 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3369 return;
3370 }
3371
3372 spin_lock(&vcpu->kvm->mmu_lock);
3373 for (i = 0; i < 4; ++i) {
3374 hpa_t root = vcpu->arch.mmu.pae_root[i];
3375
3376 if (root) {
3377 root &= PT64_BASE_ADDR_MASK;
3378 sp = page_header(root);
3379 --sp->root_count;
3380 if (!sp->root_count && sp->role.invalid)
3381 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3382 &invalid_list);
3383 }
3384 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3385 }
3386 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3387 spin_unlock(&vcpu->kvm->mmu_lock);
3388 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3389}
3390
3391static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3392{
3393 int ret = 0;
3394
3395 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3396 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3397 ret = 1;
3398 }
3399
3400 return ret;
3401}
3402
3403static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3404{
3405 struct kvm_mmu_page *sp;
3406 unsigned i;
3407
3408 if (vcpu->arch.mmu.shadow_root_level >= PT64_ROOT_4LEVEL) {
3409 spin_lock(&vcpu->kvm->mmu_lock);
3410 if(make_mmu_pages_available(vcpu) < 0) {
3411 spin_unlock(&vcpu->kvm->mmu_lock);
3412 return -ENOSPC;
3413 }
3414 sp = kvm_mmu_get_page(vcpu, 0, 0,
3415 vcpu->arch.mmu.shadow_root_level, 1, ACC_ALL);
3416 ++sp->root_count;
3417 spin_unlock(&vcpu->kvm->mmu_lock);
3418 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3419 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3420 for (i = 0; i < 4; ++i) {
3421 hpa_t root = vcpu->arch.mmu.pae_root[i];
3422
3423 MMU_WARN_ON(VALID_PAGE(root));
3424 spin_lock(&vcpu->kvm->mmu_lock);
3425 if (make_mmu_pages_available(vcpu) < 0) {
3426 spin_unlock(&vcpu->kvm->mmu_lock);
3427 return -ENOSPC;
3428 }
3429 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3430 i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3431 root = __pa(sp->spt);
3432 ++sp->root_count;
3433 spin_unlock(&vcpu->kvm->mmu_lock);
3434 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
3435 }
3436 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3437 } else
3438 BUG();
3439
3440 return 0;
3441}
3442
3443static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3444{
3445 struct kvm_mmu_page *sp;
3446 u64 pdptr, pm_mask;
3447 gfn_t root_gfn;
3448 int i;
3449
3450 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3451
3452 if (mmu_check_root(vcpu, root_gfn))
3453 return 1;
3454
3455 /*
3456 * Do we shadow a long mode page table? If so we need to
3457 * write-protect the guests page table root.
3458 */
3459 if (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL) {
3460 hpa_t root = vcpu->arch.mmu.root_hpa;
3461
3462 MMU_WARN_ON(VALID_PAGE(root));
3463
3464 spin_lock(&vcpu->kvm->mmu_lock);
3465 if (make_mmu_pages_available(vcpu) < 0) {
3466 spin_unlock(&vcpu->kvm->mmu_lock);
3467 return -ENOSPC;
3468 }
3469 sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
3470 vcpu->arch.mmu.shadow_root_level, 0, ACC_ALL);
3471 root = __pa(sp->spt);
3472 ++sp->root_count;
3473 spin_unlock(&vcpu->kvm->mmu_lock);
3474 vcpu->arch.mmu.root_hpa = root;
3475 return 0;
3476 }
3477
3478 /*
3479 * We shadow a 32 bit page table. This may be a legacy 2-level
3480 * or a PAE 3-level page table. In either case we need to be aware that
3481 * the shadow page table may be a PAE or a long mode page table.
3482 */
3483 pm_mask = PT_PRESENT_MASK;
3484 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_4LEVEL)
3485 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3486
3487 for (i = 0; i < 4; ++i) {
3488 hpa_t root = vcpu->arch.mmu.pae_root[i];
3489
3490 MMU_WARN_ON(VALID_PAGE(root));
3491 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3492 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3493 if (!(pdptr & PT_PRESENT_MASK)) {
3494 vcpu->arch.mmu.pae_root[i] = 0;
3495 continue;
3496 }
3497 root_gfn = pdptr >> PAGE_SHIFT;
3498 if (mmu_check_root(vcpu, root_gfn))
3499 return 1;
3500 }
3501 spin_lock(&vcpu->kvm->mmu_lock);
3502 if (make_mmu_pages_available(vcpu) < 0) {
3503 spin_unlock(&vcpu->kvm->mmu_lock);
3504 return -ENOSPC;
3505 }
3506 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3507 0, ACC_ALL);
3508 root = __pa(sp->spt);
3509 ++sp->root_count;
3510 spin_unlock(&vcpu->kvm->mmu_lock);
3511
3512 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3513 }
3514 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3515
3516 /*
3517 * If we shadow a 32 bit page table with a long mode page
3518 * table we enter this path.
3519 */
3520 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_4LEVEL) {
3521 if (vcpu->arch.mmu.lm_root == NULL) {
3522 /*
3523 * The additional page necessary for this is only
3524 * allocated on demand.
3525 */
3526
3527 u64 *lm_root;
3528
3529 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3530 if (lm_root == NULL)
3531 return 1;
3532
3533 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3534
3535 vcpu->arch.mmu.lm_root = lm_root;
3536 }
3537
3538 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3539 }
3540
3541 return 0;
3542}
3543
3544static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3545{
3546 if (vcpu->arch.mmu.direct_map)
3547 return mmu_alloc_direct_roots(vcpu);
3548 else
3549 return mmu_alloc_shadow_roots(vcpu);
3550}
3551
3552static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3553{
3554 int i;
3555 struct kvm_mmu_page *sp;
3556
3557 if (vcpu->arch.mmu.direct_map)
3558 return;
3559
3560 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3561 return;
3562
3563 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3564 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3565 if (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL) {
3566 hpa_t root = vcpu->arch.mmu.root_hpa;
3567 sp = page_header(root);
3568 mmu_sync_children(vcpu, sp);
3569 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3570 return;
3571 }
3572 for (i = 0; i < 4; ++i) {
3573 hpa_t root = vcpu->arch.mmu.pae_root[i];
3574
3575 if (root && VALID_PAGE(root)) {
3576 root &= PT64_BASE_ADDR_MASK;
3577 sp = page_header(root);
3578 mmu_sync_children(vcpu, sp);
3579 }
3580 }
3581 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3582}
3583
3584void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3585{
3586 spin_lock(&vcpu->kvm->mmu_lock);
3587 mmu_sync_roots(vcpu);
3588 spin_unlock(&vcpu->kvm->mmu_lock);
3589}
3590EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3591
3592static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3593 u32 access, struct x86_exception *exception)
3594{
3595 if (exception)
3596 exception->error_code = 0;
3597 return vaddr;
3598}
3599
3600static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3601 u32 access,
3602 struct x86_exception *exception)
3603{
3604 if (exception)
3605 exception->error_code = 0;
3606 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3607}
3608
3609static bool
3610__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3611{
3612 int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3613
3614 return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3615 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3616}
3617
3618static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3619{
3620 return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3621}
3622
3623static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3624{
3625 return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3626}
3627
3628static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3629{
3630 /*
3631 * A nested guest cannot use the MMIO cache if it is using nested
3632 * page tables, because cr2 is a nGPA while the cache stores GPAs.
3633 */
3634 if (mmu_is_nested(vcpu))
3635 return false;
3636
3637 if (direct)
3638 return vcpu_match_mmio_gpa(vcpu, addr);
3639
3640 return vcpu_match_mmio_gva(vcpu, addr);
3641}
3642
3643/* return true if reserved bit is detected on spte. */
3644static bool
3645walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3646{
3647 struct kvm_shadow_walk_iterator iterator;
3648 u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
3649 int root, leaf;
3650 bool reserved = false;
3651
3652 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3653 goto exit;
3654
3655 walk_shadow_page_lockless_begin(vcpu);
3656
3657 for (shadow_walk_init(&iterator, vcpu, addr),
3658 leaf = root = iterator.level;
3659 shadow_walk_okay(&iterator);
3660 __shadow_walk_next(&iterator, spte)) {
3661 spte = mmu_spte_get_lockless(iterator.sptep);
3662
3663 sptes[leaf - 1] = spte;
3664 leaf--;
3665
3666 if (!is_shadow_present_pte(spte))
3667 break;
3668
3669 reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
3670 iterator.level);
3671 }
3672
3673 walk_shadow_page_lockless_end(vcpu);
3674
3675 if (reserved) {
3676 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3677 __func__, addr);
3678 while (root > leaf) {
3679 pr_err("------ spte 0x%llx level %d.\n",
3680 sptes[root - 1], root);
3681 root--;
3682 }
3683 }
3684exit:
3685 *sptep = spte;
3686 return reserved;
3687}
3688
3689static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3690{
3691 u64 spte;
3692 bool reserved;
3693
3694 if (mmio_info_in_cache(vcpu, addr, direct))
3695 return RET_PF_EMULATE;
3696
3697 reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3698 if (WARN_ON(reserved))
3699 return -EINVAL;
3700
3701 if (is_mmio_spte(spte)) {
3702 gfn_t gfn = get_mmio_spte_gfn(spte);
3703 unsigned access = get_mmio_spte_access(spte);
3704
3705 if (!check_mmio_spte(vcpu, spte))
3706 return RET_PF_INVALID;
3707
3708 if (direct)
3709 addr = 0;
3710
3711 trace_handle_mmio_page_fault(addr, gfn, access);
3712 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3713 return RET_PF_EMULATE;
3714 }
3715
3716 /*
3717 * If the page table is zapped by other cpus, let CPU fault again on
3718 * the address.
3719 */
3720 return RET_PF_RETRY;
3721}
3722EXPORT_SYMBOL_GPL(handle_mmio_page_fault);
3723
3724static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3725 u32 error_code, gfn_t gfn)
3726{
3727 if (unlikely(error_code & PFERR_RSVD_MASK))
3728 return false;
3729
3730 if (!(error_code & PFERR_PRESENT_MASK) ||
3731 !(error_code & PFERR_WRITE_MASK))
3732 return false;
3733
3734 /*
3735 * guest is writing the page which is write tracked which can
3736 * not be fixed by page fault handler.
3737 */
3738 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3739 return true;
3740
3741 return false;
3742}
3743
3744static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3745{
3746 struct kvm_shadow_walk_iterator iterator;
3747 u64 spte;
3748
3749 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3750 return;
3751
3752 walk_shadow_page_lockless_begin(vcpu);
3753 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3754 clear_sp_write_flooding_count(iterator.sptep);
3755 if (!is_shadow_present_pte(spte))
3756 break;
3757 }
3758 walk_shadow_page_lockless_end(vcpu);
3759}
3760
3761static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3762 u32 error_code, bool prefault)
3763{
3764 gfn_t gfn = gva >> PAGE_SHIFT;
3765 int r;
3766
3767 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3768
3769 if (page_fault_handle_page_track(vcpu, error_code, gfn))
3770 return RET_PF_EMULATE;
3771
3772 r = mmu_topup_memory_caches(vcpu);
3773 if (r)
3774 return r;
3775
3776 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3777
3778
3779 return nonpaging_map(vcpu, gva & PAGE_MASK,
3780 error_code, gfn, prefault);
3781}
3782
3783static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3784{
3785 struct kvm_arch_async_pf arch;
3786
3787 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3788 arch.gfn = gfn;
3789 arch.direct_map = vcpu->arch.mmu.direct_map;
3790 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3791
3792 return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3793}
3794
3795bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
3796{
3797 if (unlikely(!lapic_in_kernel(vcpu) ||
3798 kvm_event_needs_reinjection(vcpu) ||
3799 vcpu->arch.exception.pending))
3800 return false;
3801
3802 if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
3803 return false;
3804
3805 return kvm_x86_ops->interrupt_allowed(vcpu);
3806}
3807
3808static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3809 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
3810{
3811 struct kvm_memory_slot *slot;
3812 bool async;
3813
3814 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3815 async = false;
3816 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3817 if (!async)
3818 return false; /* *pfn has correct page already */
3819
3820 if (!prefault && kvm_can_do_async_pf(vcpu)) {
3821 trace_kvm_try_async_get_page(gva, gfn);
3822 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3823 trace_kvm_async_pf_doublefault(gva, gfn);
3824 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3825 return true;
3826 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3827 return true;
3828 }
3829
3830 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3831 return false;
3832}
3833
3834int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
3835 u64 fault_address, char *insn, int insn_len)
3836{
3837 int r = 1;
3838
3839 switch (vcpu->arch.apf.host_apf_reason) {
3840 default:
3841 trace_kvm_page_fault(fault_address, error_code);
3842
3843 if (kvm_event_needs_reinjection(vcpu))
3844 kvm_mmu_unprotect_page_virt(vcpu, fault_address);
3845 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
3846 insn_len);
3847 break;
3848 case KVM_PV_REASON_PAGE_NOT_PRESENT:
3849 vcpu->arch.apf.host_apf_reason = 0;
3850 local_irq_disable();
3851 kvm_async_pf_task_wait(fault_address, 0);
3852 local_irq_enable();
3853 break;
3854 case KVM_PV_REASON_PAGE_READY:
3855 vcpu->arch.apf.host_apf_reason = 0;
3856 local_irq_disable();
3857 kvm_async_pf_task_wake(fault_address);
3858 local_irq_enable();
3859 break;
3860 }
3861 return r;
3862}
3863EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
3864
3865static bool
3866check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
3867{
3868 int page_num = KVM_PAGES_PER_HPAGE(level);
3869
3870 gfn &= ~(page_num - 1);
3871
3872 return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
3873}
3874
3875static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3876 bool prefault)
3877{
3878 kvm_pfn_t pfn;
3879 int r;
3880 int level;
3881 bool force_pt_level;
3882 gfn_t gfn = gpa >> PAGE_SHIFT;
3883 unsigned long mmu_seq;
3884 int write = error_code & PFERR_WRITE_MASK;
3885 bool map_writable;
3886
3887 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3888
3889 if (page_fault_handle_page_track(vcpu, error_code, gfn))
3890 return RET_PF_EMULATE;
3891
3892 r = mmu_topup_memory_caches(vcpu);
3893 if (r)
3894 return r;
3895
3896 force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
3897 PT_DIRECTORY_LEVEL);
3898 level = mapping_level(vcpu, gfn, &force_pt_level);
3899 if (likely(!force_pt_level)) {
3900 if (level > PT_DIRECTORY_LEVEL &&
3901 !check_hugepage_cache_consistency(vcpu, gfn, level))
3902 level = PT_DIRECTORY_LEVEL;
3903 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3904 }
3905
3906 if (fast_page_fault(vcpu, gpa, level, error_code))
3907 return RET_PF_RETRY;
3908
3909 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3910 smp_rmb();
3911
3912 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3913 return RET_PF_RETRY;
3914
3915 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3916 return r;
3917
3918 spin_lock(&vcpu->kvm->mmu_lock);
3919 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3920 goto out_unlock;
3921 if (make_mmu_pages_available(vcpu) < 0)
3922 goto out_unlock;
3923 if (likely(!force_pt_level))
3924 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3925 r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3926 spin_unlock(&vcpu->kvm->mmu_lock);
3927
3928 return r;
3929
3930out_unlock:
3931 spin_unlock(&vcpu->kvm->mmu_lock);
3932 kvm_release_pfn_clean(pfn);
3933 return RET_PF_RETRY;
3934}
3935
3936static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3937 struct kvm_mmu *context)
3938{
3939 context->page_fault = nonpaging_page_fault;
3940 context->gva_to_gpa = nonpaging_gva_to_gpa;
3941 context->sync_page = nonpaging_sync_page;
3942 context->invlpg = nonpaging_invlpg;
3943 context->update_pte = nonpaging_update_pte;
3944 context->root_level = 0;
3945 context->shadow_root_level = PT32E_ROOT_LEVEL;
3946 context->root_hpa = INVALID_PAGE;
3947 context->direct_map = true;
3948 context->nx = false;
3949}
3950
3951void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
3952{
3953 mmu_free_roots(vcpu);
3954}
3955
3956static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3957{
3958 return kvm_read_cr3(vcpu);
3959}
3960
3961static void inject_page_fault(struct kvm_vcpu *vcpu,
3962 struct x86_exception *fault)
3963{
3964 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3965}
3966
3967static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3968 unsigned access, int *nr_present)
3969{
3970 if (unlikely(is_mmio_spte(*sptep))) {
3971 if (gfn != get_mmio_spte_gfn(*sptep)) {
3972 mmu_spte_clear_no_track(sptep);
3973 return true;
3974 }
3975
3976 (*nr_present)++;
3977 mark_mmio_spte(vcpu, sptep, gfn, access);
3978 return true;
3979 }
3980
3981 return false;
3982}
3983
3984static inline bool is_last_gpte(struct kvm_mmu *mmu,
3985 unsigned level, unsigned gpte)
3986{
3987 /*
3988 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
3989 * If it is clear, there are no large pages at this level, so clear
3990 * PT_PAGE_SIZE_MASK in gpte if that is the case.
3991 */
3992 gpte &= level - mmu->last_nonleaf_level;
3993
3994 /*
3995 * PT_PAGE_TABLE_LEVEL always terminates. The RHS has bit 7 set
3996 * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
3997 * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
3998 */
3999 gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
4000
4001 return gpte & PT_PAGE_SIZE_MASK;
4002}
4003
4004#define PTTYPE_EPT 18 /* arbitrary */
4005#define PTTYPE PTTYPE_EPT
4006#include "paging_tmpl.h"
4007#undef PTTYPE
4008
4009#define PTTYPE 64
4010#include "paging_tmpl.h"
4011#undef PTTYPE
4012
4013#define PTTYPE 32
4014#include "paging_tmpl.h"
4015#undef PTTYPE
4016
4017static void
4018__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4019 struct rsvd_bits_validate *rsvd_check,
4020 int maxphyaddr, int level, bool nx, bool gbpages,
4021 bool pse, bool amd)
4022{
4023 u64 exb_bit_rsvd = 0;
4024 u64 gbpages_bit_rsvd = 0;
4025 u64 nonleaf_bit8_rsvd = 0;
4026
4027 rsvd_check->bad_mt_xwr = 0;
4028
4029 if (!nx)
4030 exb_bit_rsvd = rsvd_bits(63, 63);
4031 if (!gbpages)
4032 gbpages_bit_rsvd = rsvd_bits(7, 7);
4033
4034 /*
4035 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4036 * leaf entries) on AMD CPUs only.
4037 */
4038 if (amd)
4039 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4040
4041 switch (level) {
4042 case PT32_ROOT_LEVEL:
4043 /* no rsvd bits for 2 level 4K page table entries */
4044 rsvd_check->rsvd_bits_mask[0][1] = 0;
4045 rsvd_check->rsvd_bits_mask[0][0] = 0;
4046 rsvd_check->rsvd_bits_mask[1][0] =
4047 rsvd_check->rsvd_bits_mask[0][0];
4048
4049 if (!pse) {
4050 rsvd_check->rsvd_bits_mask[1][1] = 0;
4051 break;
4052 }
4053
4054 if (is_cpuid_PSE36())
4055 /* 36bits PSE 4MB page */
4056 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4057 else
4058 /* 32 bits PSE 4MB page */
4059 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4060 break;
4061 case PT32E_ROOT_LEVEL:
4062 rsvd_check->rsvd_bits_mask[0][2] =
4063 rsvd_bits(maxphyaddr, 63) |
4064 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
4065 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4066 rsvd_bits(maxphyaddr, 62); /* PDE */
4067 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4068 rsvd_bits(maxphyaddr, 62); /* PTE */
4069 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4070 rsvd_bits(maxphyaddr, 62) |
4071 rsvd_bits(13, 20); /* large page */
4072 rsvd_check->rsvd_bits_mask[1][0] =
4073 rsvd_check->rsvd_bits_mask[0][0];
4074 break;
4075 case PT64_ROOT_5LEVEL:
4076 rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
4077 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4078 rsvd_bits(maxphyaddr, 51);
4079 rsvd_check->rsvd_bits_mask[1][4] =
4080 rsvd_check->rsvd_bits_mask[0][4];
4081 case PT64_ROOT_4LEVEL:
4082 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4083 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4084 rsvd_bits(maxphyaddr, 51);
4085 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4086 nonleaf_bit8_rsvd | gbpages_bit_rsvd |
4087 rsvd_bits(maxphyaddr, 51);
4088 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4089 rsvd_bits(maxphyaddr, 51);
4090 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4091 rsvd_bits(maxphyaddr, 51);
4092 rsvd_check->rsvd_bits_mask[1][3] =
4093 rsvd_check->rsvd_bits_mask[0][3];
4094 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
4095 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
4096 rsvd_bits(13, 29);
4097 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4098 rsvd_bits(maxphyaddr, 51) |
4099 rsvd_bits(13, 20); /* large page */
4100 rsvd_check->rsvd_bits_mask[1][0] =
4101 rsvd_check->rsvd_bits_mask[0][0];
4102 break;
4103 }
4104}
4105
4106static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4107 struct kvm_mmu *context)
4108{
4109 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4110 cpuid_maxphyaddr(vcpu), context->root_level,
4111 context->nx,
4112 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4113 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
4114}
4115
4116static void
4117__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4118 int maxphyaddr, bool execonly)
4119{
4120 u64 bad_mt_xwr;
4121
4122 rsvd_check->rsvd_bits_mask[0][4] =
4123 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4124 rsvd_check->rsvd_bits_mask[0][3] =
4125 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4126 rsvd_check->rsvd_bits_mask[0][2] =
4127 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4128 rsvd_check->rsvd_bits_mask[0][1] =
4129 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4130 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
4131
4132 /* large page */
4133 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4134 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4135 rsvd_check->rsvd_bits_mask[1][2] =
4136 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4137 rsvd_check->rsvd_bits_mask[1][1] =
4138 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4139 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4140
4141 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
4142 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
4143 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
4144 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
4145 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
4146 if (!execonly) {
4147 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4148 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4149 }
4150 rsvd_check->bad_mt_xwr = bad_mt_xwr;
4151}
4152
4153static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4154 struct kvm_mmu *context, bool execonly)
4155{
4156 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4157 cpuid_maxphyaddr(vcpu), execonly);
4158}
4159
4160/*
4161 * the page table on host is the shadow page table for the page
4162 * table in guest or amd nested guest, its mmu features completely
4163 * follow the features in guest.
4164 */
4165void
4166reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4167{
4168 bool uses_nx = context->nx || context->base_role.smep_andnot_wp;
4169 struct rsvd_bits_validate *shadow_zero_check;
4170 int i;
4171
4172 /*
4173 * Passing "true" to the last argument is okay; it adds a check
4174 * on bit 8 of the SPTEs which KVM doesn't use anyway.
4175 */
4176 shadow_zero_check = &context->shadow_zero_check;
4177 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4178 boot_cpu_data.x86_phys_bits,
4179 context->shadow_root_level, uses_nx,
4180 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4181 is_pse(vcpu), true);
4182
4183 if (!shadow_me_mask)
4184 return;
4185
4186 for (i = context->shadow_root_level; --i >= 0;) {
4187 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4188 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4189 }
4190
4191}
4192EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4193
4194static inline bool boot_cpu_is_amd(void)
4195{
4196 WARN_ON_ONCE(!tdp_enabled);
4197 return shadow_x_mask == 0;
4198}
4199
4200/*
4201 * the direct page table on host, use as much mmu features as
4202 * possible, however, kvm currently does not do execution-protection.
4203 */
4204static void
4205reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4206 struct kvm_mmu *context)
4207{
4208 struct rsvd_bits_validate *shadow_zero_check;
4209 int i;
4210
4211 shadow_zero_check = &context->shadow_zero_check;
4212
4213 if (boot_cpu_is_amd())
4214 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4215 boot_cpu_data.x86_phys_bits,
4216 context->shadow_root_level, false,
4217 boot_cpu_has(X86_FEATURE_GBPAGES),
4218 true, true);
4219 else
4220 __reset_rsvds_bits_mask_ept(shadow_zero_check,
4221 boot_cpu_data.x86_phys_bits,
4222 false);
4223
4224 if (!shadow_me_mask)
4225 return;
4226
4227 for (i = context->shadow_root_level; --i >= 0;) {
4228 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4229 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4230 }
4231}
4232
4233/*
4234 * as the comments in reset_shadow_zero_bits_mask() except it
4235 * is the shadow page table for intel nested guest.
4236 */
4237static void
4238reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4239 struct kvm_mmu *context, bool execonly)
4240{
4241 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4242 boot_cpu_data.x86_phys_bits, execonly);
4243}
4244
4245#define BYTE_MASK(access) \
4246 ((1 & (access) ? 2 : 0) | \
4247 (2 & (access) ? 4 : 0) | \
4248 (3 & (access) ? 8 : 0) | \
4249 (4 & (access) ? 16 : 0) | \
4250 (5 & (access) ? 32 : 0) | \
4251 (6 & (access) ? 64 : 0) | \
4252 (7 & (access) ? 128 : 0))
4253
4254
4255static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4256 struct kvm_mmu *mmu, bool ept)
4257{
4258 unsigned byte;
4259
4260 const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4261 const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4262 const u8 u = BYTE_MASK(ACC_USER_MASK);
4263
4264 bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4265 bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4266 bool cr0_wp = is_write_protection(vcpu);
4267
4268 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4269 unsigned pfec = byte << 1;
4270
4271 /*
4272 * Each "*f" variable has a 1 bit for each UWX value
4273 * that causes a fault with the given PFEC.
4274 */
4275
4276 /* Faults from writes to non-writable pages */
4277 u8 wf = (pfec & PFERR_WRITE_MASK) ? ~w : 0;
4278 /* Faults from user mode accesses to supervisor pages */
4279 u8 uf = (pfec & PFERR_USER_MASK) ? ~u : 0;
4280 /* Faults from fetches of non-executable pages*/
4281 u8 ff = (pfec & PFERR_FETCH_MASK) ? ~x : 0;
4282 /* Faults from kernel mode fetches of user pages */
4283 u8 smepf = 0;
4284 /* Faults from kernel mode accesses of user pages */
4285 u8 smapf = 0;
4286
4287 if (!ept) {
4288 /* Faults from kernel mode accesses to user pages */
4289 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4290
4291 /* Not really needed: !nx will cause pte.nx to fault */
4292 if (!mmu->nx)
4293 ff = 0;
4294
4295 /* Allow supervisor writes if !cr0.wp */
4296 if (!cr0_wp)
4297 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4298
4299 /* Disallow supervisor fetches of user code if cr4.smep */
4300 if (cr4_smep)
4301 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4302
4303 /*
4304 * SMAP:kernel-mode data accesses from user-mode
4305 * mappings should fault. A fault is considered
4306 * as a SMAP violation if all of the following
4307 * conditions are ture:
4308 * - X86_CR4_SMAP is set in CR4
4309 * - A user page is accessed
4310 * - The access is not a fetch
4311 * - Page fault in kernel mode
4312 * - if CPL = 3 or X86_EFLAGS_AC is clear
4313 *
4314 * Here, we cover the first three conditions.
4315 * The fourth is computed dynamically in permission_fault();
4316 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4317 * *not* subject to SMAP restrictions.
4318 */
4319 if (cr4_smap)
4320 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4321 }
4322
4323 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4324 }
4325}
4326
4327/*
4328* PKU is an additional mechanism by which the paging controls access to
4329* user-mode addresses based on the value in the PKRU register. Protection
4330* key violations are reported through a bit in the page fault error code.
4331* Unlike other bits of the error code, the PK bit is not known at the
4332* call site of e.g. gva_to_gpa; it must be computed directly in
4333* permission_fault based on two bits of PKRU, on some machine state (CR4,
4334* CR0, EFER, CPL), and on other bits of the error code and the page tables.
4335*
4336* In particular the following conditions come from the error code, the
4337* page tables and the machine state:
4338* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4339* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4340* - PK is always zero if U=0 in the page tables
4341* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4342*
4343* The PKRU bitmask caches the result of these four conditions. The error
4344* code (minus the P bit) and the page table's U bit form an index into the
4345* PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
4346* with the two bits of the PKRU register corresponding to the protection key.
4347* For the first three conditions above the bits will be 00, thus masking
4348* away both AD and WD. For all reads or if the last condition holds, WD
4349* only will be masked away.
4350*/
4351static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4352 bool ept)
4353{
4354 unsigned bit;
4355 bool wp;
4356
4357 if (ept) {
4358 mmu->pkru_mask = 0;
4359 return;
4360 }
4361
4362 /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4363 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4364 mmu->pkru_mask = 0;
4365 return;
4366 }
4367
4368 wp = is_write_protection(vcpu);
4369
4370 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4371 unsigned pfec, pkey_bits;
4372 bool check_pkey, check_write, ff, uf, wf, pte_user;
4373
4374 pfec = bit << 1;
4375 ff = pfec & PFERR_FETCH_MASK;
4376 uf = pfec & PFERR_USER_MASK;
4377 wf = pfec & PFERR_WRITE_MASK;
4378
4379 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4380 pte_user = pfec & PFERR_RSVD_MASK;
4381
4382 /*
4383 * Only need to check the access which is not an
4384 * instruction fetch and is to a user page.
4385 */
4386 check_pkey = (!ff && pte_user);
4387 /*
4388 * write access is controlled by PKRU if it is a
4389 * user access or CR0.WP = 1.
4390 */
4391 check_write = check_pkey && wf && (uf || wp);
4392
4393 /* PKRU.AD stops both read and write access. */
4394 pkey_bits = !!check_pkey;
4395 /* PKRU.WD stops write access. */
4396 pkey_bits |= (!!check_write) << 1;
4397
4398 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4399 }
4400}
4401
4402static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4403{
4404 unsigned root_level = mmu->root_level;
4405
4406 mmu->last_nonleaf_level = root_level;
4407 if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4408 mmu->last_nonleaf_level++;
4409}
4410
4411static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4412 struct kvm_mmu *context,
4413 int level)
4414{
4415 context->nx = is_nx(vcpu);
4416 context->root_level = level;
4417
4418 reset_rsvds_bits_mask(vcpu, context);
4419 update_permission_bitmask(vcpu, context, false);
4420 update_pkru_bitmask(vcpu, context, false);
4421 update_last_nonleaf_level(vcpu, context);
4422
4423 MMU_WARN_ON(!is_pae(vcpu));
4424 context->page_fault = paging64_page_fault;
4425 context->gva_to_gpa = paging64_gva_to_gpa;
4426 context->sync_page = paging64_sync_page;
4427 context->invlpg = paging64_invlpg;
4428 context->update_pte = paging64_update_pte;
4429 context->shadow_root_level = level;
4430 context->root_hpa = INVALID_PAGE;
4431 context->direct_map = false;
4432}
4433
4434static void paging64_init_context(struct kvm_vcpu *vcpu,
4435 struct kvm_mmu *context)
4436{
4437 int root_level = is_la57_mode(vcpu) ?
4438 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4439
4440 paging64_init_context_common(vcpu, context, root_level);
4441}
4442
4443static void paging32_init_context(struct kvm_vcpu *vcpu,
4444 struct kvm_mmu *context)
4445{
4446 context->nx = false;
4447 context->root_level = PT32_ROOT_LEVEL;
4448
4449 reset_rsvds_bits_mask(vcpu, context);
4450 update_permission_bitmask(vcpu, context, false);
4451 update_pkru_bitmask(vcpu, context, false);
4452 update_last_nonleaf_level(vcpu, context);
4453
4454 context->page_fault = paging32_page_fault;
4455 context->gva_to_gpa = paging32_gva_to_gpa;
4456 context->sync_page = paging32_sync_page;
4457 context->invlpg = paging32_invlpg;
4458 context->update_pte = paging32_update_pte;
4459 context->shadow_root_level = PT32E_ROOT_LEVEL;
4460 context->root_hpa = INVALID_PAGE;
4461 context->direct_map = false;
4462}
4463
4464static void paging32E_init_context(struct kvm_vcpu *vcpu,
4465 struct kvm_mmu *context)
4466{
4467 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4468}
4469
4470static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4471{
4472 struct kvm_mmu *context = &vcpu->arch.mmu;
4473
4474 context->base_role.word = 0;
4475 context->base_role.smm = is_smm(vcpu);
4476 context->base_role.ad_disabled = (shadow_accessed_mask == 0);
4477 context->page_fault = tdp_page_fault;
4478 context->sync_page = nonpaging_sync_page;
4479 context->invlpg = nonpaging_invlpg;
4480 context->update_pte = nonpaging_update_pte;
4481 context->shadow_root_level = kvm_x86_ops->get_tdp_level(vcpu);
4482 context->root_hpa = INVALID_PAGE;
4483 context->direct_map = true;
4484 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
4485 context->get_cr3 = get_cr3;
4486 context->get_pdptr = kvm_pdptr_read;
4487 context->inject_page_fault = kvm_inject_page_fault;
4488
4489 if (!is_paging(vcpu)) {
4490 context->nx = false;
4491 context->gva_to_gpa = nonpaging_gva_to_gpa;
4492 context->root_level = 0;
4493 } else if (is_long_mode(vcpu)) {
4494 context->nx = is_nx(vcpu);
4495 context->root_level = is_la57_mode(vcpu) ?
4496 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4497 reset_rsvds_bits_mask(vcpu, context);
4498 context->gva_to_gpa = paging64_gva_to_gpa;
4499 } else if (is_pae(vcpu)) {
4500 context->nx = is_nx(vcpu);
4501 context->root_level = PT32E_ROOT_LEVEL;
4502 reset_rsvds_bits_mask(vcpu, context);
4503 context->gva_to_gpa = paging64_gva_to_gpa;
4504 } else {
4505 context->nx = false;
4506 context->root_level = PT32_ROOT_LEVEL;
4507 reset_rsvds_bits_mask(vcpu, context);
4508 context->gva_to_gpa = paging32_gva_to_gpa;
4509 }
4510
4511 update_permission_bitmask(vcpu, context, false);
4512 update_pkru_bitmask(vcpu, context, false);
4513 update_last_nonleaf_level(vcpu, context);
4514 reset_tdp_shadow_zero_bits_mask(vcpu, context);
4515}
4516
4517void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
4518{
4519 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4520 bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4521 struct kvm_mmu *context = &vcpu->arch.mmu;
4522
4523 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4524
4525 if (!is_paging(vcpu))
4526 nonpaging_init_context(vcpu, context);
4527 else if (is_long_mode(vcpu))
4528 paging64_init_context(vcpu, context);
4529 else if (is_pae(vcpu))
4530 paging32E_init_context(vcpu, context);
4531 else
4532 paging32_init_context(vcpu, context);
4533
4534 context->base_role.nxe = is_nx(vcpu);
4535 context->base_role.cr4_pae = !!is_pae(vcpu);
4536 context->base_role.cr0_wp = is_write_protection(vcpu);
4537 context->base_role.smep_andnot_wp
4538 = smep && !is_write_protection(vcpu);
4539 context->base_role.smap_andnot_wp
4540 = smap && !is_write_protection(vcpu);
4541 context->base_role.smm = is_smm(vcpu);
4542 reset_shadow_zero_bits_mask(vcpu, context);
4543}
4544EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4545
4546void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4547 bool accessed_dirty)
4548{
4549 struct kvm_mmu *context = &vcpu->arch.mmu;
4550
4551 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4552
4553 context->shadow_root_level = PT64_ROOT_4LEVEL;
4554
4555 context->nx = true;
4556 context->ept_ad = accessed_dirty;
4557 context->page_fault = ept_page_fault;
4558 context->gva_to_gpa = ept_gva_to_gpa;
4559 context->sync_page = ept_sync_page;
4560 context->invlpg = ept_invlpg;
4561 context->update_pte = ept_update_pte;
4562 context->root_level = PT64_ROOT_4LEVEL;
4563 context->root_hpa = INVALID_PAGE;
4564 context->direct_map = false;
4565 context->base_role.ad_disabled = !accessed_dirty;
4566
4567 update_permission_bitmask(vcpu, context, true);
4568 update_pkru_bitmask(vcpu, context, true);
4569 update_last_nonleaf_level(vcpu, context);
4570 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4571 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4572}
4573EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4574
4575static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4576{
4577 struct kvm_mmu *context = &vcpu->arch.mmu;
4578
4579 kvm_init_shadow_mmu(vcpu);
4580 context->set_cr3 = kvm_x86_ops->set_cr3;
4581 context->get_cr3 = get_cr3;
4582 context->get_pdptr = kvm_pdptr_read;
4583 context->inject_page_fault = kvm_inject_page_fault;
4584}
4585
4586static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4587{
4588 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4589
4590 g_context->get_cr3 = get_cr3;
4591 g_context->get_pdptr = kvm_pdptr_read;
4592 g_context->inject_page_fault = kvm_inject_page_fault;
4593
4594 /*
4595 * Note that arch.mmu.gva_to_gpa translates l2_gpa to l1_gpa using
4596 * L1's nested page tables (e.g. EPT12). The nested translation
4597 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4598 * L2's page tables as the first level of translation and L1's
4599 * nested page tables as the second level of translation. Basically
4600 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4601 */
4602 if (!is_paging(vcpu)) {
4603 g_context->nx = false;
4604 g_context->root_level = 0;
4605 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4606 } else if (is_long_mode(vcpu)) {
4607 g_context->nx = is_nx(vcpu);
4608 g_context->root_level = is_la57_mode(vcpu) ?
4609 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4610 reset_rsvds_bits_mask(vcpu, g_context);
4611 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4612 } else if (is_pae(vcpu)) {
4613 g_context->nx = is_nx(vcpu);
4614 g_context->root_level = PT32E_ROOT_LEVEL;
4615 reset_rsvds_bits_mask(vcpu, g_context);
4616 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4617 } else {
4618 g_context->nx = false;
4619 g_context->root_level = PT32_ROOT_LEVEL;
4620 reset_rsvds_bits_mask(vcpu, g_context);
4621 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4622 }
4623
4624 update_permission_bitmask(vcpu, g_context, false);
4625 update_pkru_bitmask(vcpu, g_context, false);
4626 update_last_nonleaf_level(vcpu, g_context);
4627}
4628
4629static void init_kvm_mmu(struct kvm_vcpu *vcpu)
4630{
4631 if (mmu_is_nested(vcpu))
4632 init_kvm_nested_mmu(vcpu);
4633 else if (tdp_enabled)
4634 init_kvm_tdp_mmu(vcpu);
4635 else
4636 init_kvm_softmmu(vcpu);
4637}
4638
4639void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4640{
4641 kvm_mmu_unload(vcpu);
4642 init_kvm_mmu(vcpu);
4643}
4644EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4645
4646int kvm_mmu_load(struct kvm_vcpu *vcpu)
4647{
4648 int r;
4649
4650 r = mmu_topup_memory_caches(vcpu);
4651 if (r)
4652 goto out;
4653 r = mmu_alloc_roots(vcpu);
4654 kvm_mmu_sync_roots(vcpu);
4655 if (r)
4656 goto out;
4657 /* set_cr3() should ensure TLB has been flushed */
4658 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
4659out:
4660 return r;
4661}
4662EXPORT_SYMBOL_GPL(kvm_mmu_load);
4663
4664void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4665{
4666 mmu_free_roots(vcpu);
4667 WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4668}
4669EXPORT_SYMBOL_GPL(kvm_mmu_unload);
4670
4671static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4672 struct kvm_mmu_page *sp, u64 *spte,
4673 const void *new)
4674{
4675 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
4676 ++vcpu->kvm->stat.mmu_pde_zapped;
4677 return;
4678 }
4679
4680 ++vcpu->kvm->stat.mmu_pte_updated;
4681 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
4682}
4683
4684static bool need_remote_flush(u64 old, u64 new)
4685{
4686 if (!is_shadow_present_pte(old))
4687 return false;
4688 if (!is_shadow_present_pte(new))
4689 return true;
4690 if ((old ^ new) & PT64_BASE_ADDR_MASK)
4691 return true;
4692 old ^= shadow_nx_mask;
4693 new ^= shadow_nx_mask;
4694 return (old & ~new & PT64_PERM_MASK) != 0;
4695}
4696
4697static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4698 const u8 *new, int *bytes)
4699{
4700 u64 gentry;
4701 int r;
4702
4703 /*
4704 * Assume that the pte write on a page table of the same type
4705 * as the current vcpu paging mode since we update the sptes only
4706 * when they have the same mode.
4707 */
4708 if (is_pae(vcpu) && *bytes == 4) {
4709 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4710 *gpa &= ~(gpa_t)7;
4711 *bytes = 8;
4712 r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
4713 if (r)
4714 gentry = 0;
4715 new = (const u8 *)&gentry;
4716 }
4717
4718 switch (*bytes) {
4719 case 4:
4720 gentry = *(const u32 *)new;
4721 break;
4722 case 8:
4723 gentry = *(const u64 *)new;
4724 break;
4725 default:
4726 gentry = 0;
4727 break;
4728 }
4729
4730 return gentry;
4731}
4732
4733/*
4734 * If we're seeing too many writes to a page, it may no longer be a page table,
4735 * or we may be forking, in which case it is better to unmap the page.
4736 */
4737static bool detect_write_flooding(struct kvm_mmu_page *sp)
4738{
4739 /*
4740 * Skip write-flooding detected for the sp whose level is 1, because
4741 * it can become unsync, then the guest page is not write-protected.
4742 */
4743 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4744 return false;
4745
4746 atomic_inc(&sp->write_flooding_count);
4747 return atomic_read(&sp->write_flooding_count) >= 3;
4748}
4749
4750/*
4751 * Misaligned accesses are too much trouble to fix up; also, they usually
4752 * indicate a page is not used as a page table.
4753 */
4754static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4755 int bytes)
4756{
4757 unsigned offset, pte_size, misaligned;
4758
4759 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4760 gpa, bytes, sp->role.word);
4761
4762 offset = offset_in_page(gpa);
4763 pte_size = sp->role.cr4_pae ? 8 : 4;
4764
4765 /*
4766 * Sometimes, the OS only writes the last one bytes to update status
4767 * bits, for example, in linux, andb instruction is used in clear_bit().
4768 */
4769 if (!(offset & (pte_size - 1)) && bytes == 1)
4770 return false;
4771
4772 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4773 misaligned |= bytes < 4;
4774
4775 return misaligned;
4776}
4777
4778static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4779{
4780 unsigned page_offset, quadrant;
4781 u64 *spte;
4782 int level;
4783
4784 page_offset = offset_in_page(gpa);
4785 level = sp->role.level;
4786 *nspte = 1;
4787 if (!sp->role.cr4_pae) {
4788 page_offset <<= 1; /* 32->64 */
4789 /*
4790 * A 32-bit pde maps 4MB while the shadow pdes map
4791 * only 2MB. So we need to double the offset again
4792 * and zap two pdes instead of one.
4793 */
4794 if (level == PT32_ROOT_LEVEL) {
4795 page_offset &= ~7; /* kill rounding error */
4796 page_offset <<= 1;
4797 *nspte = 2;
4798 }
4799 quadrant = page_offset >> PAGE_SHIFT;
4800 page_offset &= ~PAGE_MASK;
4801 if (quadrant != sp->role.quadrant)
4802 return NULL;
4803 }
4804
4805 spte = &sp->spt[page_offset / sizeof(*spte)];
4806 return spte;
4807}
4808
4809static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4810 const u8 *new, int bytes,
4811 struct kvm_page_track_notifier_node *node)
4812{
4813 gfn_t gfn = gpa >> PAGE_SHIFT;
4814 struct kvm_mmu_page *sp;
4815 LIST_HEAD(invalid_list);
4816 u64 entry, gentry, *spte;
4817 int npte;
4818 bool remote_flush, local_flush;
4819 union kvm_mmu_page_role mask = { };
4820
4821 mask.cr0_wp = 1;
4822 mask.cr4_pae = 1;
4823 mask.nxe = 1;
4824 mask.smep_andnot_wp = 1;
4825 mask.smap_andnot_wp = 1;
4826 mask.smm = 1;
4827 mask.ad_disabled = 1;
4828
4829 /*
4830 * If we don't have indirect shadow pages, it means no page is
4831 * write-protected, so we can exit simply.
4832 */
4833 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4834 return;
4835
4836 remote_flush = local_flush = false;
4837
4838 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4839
4840 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4841
4842 /*
4843 * No need to care whether allocation memory is successful
4844 * or not since pte prefetch is skiped if it does not have
4845 * enough objects in the cache.
4846 */
4847 mmu_topup_memory_caches(vcpu);
4848
4849 spin_lock(&vcpu->kvm->mmu_lock);
4850 ++vcpu->kvm->stat.mmu_pte_write;
4851 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4852
4853 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4854 if (detect_write_misaligned(sp, gpa, bytes) ||
4855 detect_write_flooding(sp)) {
4856 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4857 ++vcpu->kvm->stat.mmu_flooded;
4858 continue;
4859 }
4860
4861 spte = get_written_sptes(sp, gpa, &npte);
4862 if (!spte)
4863 continue;
4864
4865 local_flush = true;
4866 while (npte--) {
4867 entry = *spte;
4868 mmu_page_zap_pte(vcpu->kvm, sp, spte);
4869 if (gentry &&
4870 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4871 & mask.word) && rmap_can_add(vcpu))
4872 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4873 if (need_remote_flush(entry, *spte))
4874 remote_flush = true;
4875 ++spte;
4876 }
4877 }
4878 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
4879 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4880 spin_unlock(&vcpu->kvm->mmu_lock);
4881}
4882
4883int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4884{
4885 gpa_t gpa;
4886 int r;
4887
4888 if (vcpu->arch.mmu.direct_map)
4889 return 0;
4890
4891 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4892
4893 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4894
4895 return r;
4896}
4897EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4898
4899static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
4900{
4901 LIST_HEAD(invalid_list);
4902
4903 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4904 return 0;
4905
4906 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4907 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4908 break;
4909
4910 ++vcpu->kvm->stat.mmu_recycled;
4911 }
4912 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4913
4914 if (!kvm_mmu_available_pages(vcpu->kvm))
4915 return -ENOSPC;
4916 return 0;
4917}
4918
4919int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code,
4920 void *insn, int insn_len)
4921{
4922 int r, emulation_type = EMULTYPE_RETRY;
4923 enum emulation_result er;
4924 bool direct = vcpu->arch.mmu.direct_map;
4925
4926 /* With shadow page tables, fault_address contains a GVA or nGPA. */
4927 if (vcpu->arch.mmu.direct_map) {
4928 vcpu->arch.gpa_available = true;
4929 vcpu->arch.gpa_val = cr2;
4930 }
4931
4932 r = RET_PF_INVALID;
4933 if (unlikely(error_code & PFERR_RSVD_MASK)) {
4934 r = handle_mmio_page_fault(vcpu, cr2, direct);
4935 if (r == RET_PF_EMULATE) {
4936 emulation_type = 0;
4937 goto emulate;
4938 }
4939 }
4940
4941 if (r == RET_PF_INVALID) {
4942 r = vcpu->arch.mmu.page_fault(vcpu, cr2, lower_32_bits(error_code),
4943 false);
4944 WARN_ON(r == RET_PF_INVALID);
4945 }
4946
4947 if (r == RET_PF_RETRY)
4948 return 1;
4949 if (r < 0)
4950 return r;
4951
4952 /*
4953 * Before emulating the instruction, check if the error code
4954 * was due to a RO violation while translating the guest page.
4955 * This can occur when using nested virtualization with nested
4956 * paging in both guests. If true, we simply unprotect the page
4957 * and resume the guest.
4958 */
4959 if (vcpu->arch.mmu.direct_map &&
4960 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
4961 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2));
4962 return 1;
4963 }
4964
4965 if (mmio_info_in_cache(vcpu, cr2, direct))
4966 emulation_type = 0;
4967emulate:
4968 /*
4969 * On AMD platforms, under certain conditions insn_len may be zero on #NPF.
4970 * This can happen if a guest gets a page-fault on data access but the HW
4971 * table walker is not able to read the instruction page (e.g instruction
4972 * page is not present in memory). In those cases we simply restart the
4973 * guest.
4974 */
4975 if (unlikely(insn && !insn_len))
4976 return 1;
4977
4978 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4979
4980 switch (er) {
4981 case EMULATE_DONE:
4982 return 1;
4983 case EMULATE_USER_EXIT:
4984 ++vcpu->stat.mmio_exits;
4985 /* fall through */
4986 case EMULATE_FAIL:
4987 return 0;
4988 default:
4989 BUG();
4990 }
4991}
4992EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4993
4994void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4995{
4996 vcpu->arch.mmu.invlpg(vcpu, gva);
4997 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4998 ++vcpu->stat.invlpg;
4999}
5000EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5001
5002void kvm_enable_tdp(void)
5003{
5004 tdp_enabled = true;
5005}
5006EXPORT_SYMBOL_GPL(kvm_enable_tdp);
5007
5008void kvm_disable_tdp(void)
5009{
5010 tdp_enabled = false;
5011}
5012EXPORT_SYMBOL_GPL(kvm_disable_tdp);
5013
5014static void free_mmu_pages(struct kvm_vcpu *vcpu)
5015{
5016 free_page((unsigned long)vcpu->arch.mmu.pae_root);
5017 free_page((unsigned long)vcpu->arch.mmu.lm_root);
5018}
5019
5020static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
5021{
5022 struct page *page;
5023 int i;
5024
5025 /*
5026 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
5027 * Therefore we need to allocate shadow page tables in the first
5028 * 4GB of memory, which happens to fit the DMA32 zone.
5029 */
5030 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
5031 if (!page)
5032 return -ENOMEM;
5033
5034 vcpu->arch.mmu.pae_root = page_address(page);
5035 for (i = 0; i < 4; ++i)
5036 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
5037
5038 return 0;
5039}
5040
5041int kvm_mmu_create(struct kvm_vcpu *vcpu)
5042{
5043 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
5044 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
5045 vcpu->arch.mmu.translate_gpa = translate_gpa;
5046 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5047
5048 return alloc_mmu_pages(vcpu);
5049}
5050
5051void kvm_mmu_setup(struct kvm_vcpu *vcpu)
5052{
5053 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
5054
5055 init_kvm_mmu(vcpu);
5056}
5057
5058static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5059 struct kvm_memory_slot *slot,
5060 struct kvm_page_track_notifier_node *node)
5061{
5062 kvm_mmu_invalidate_zap_all_pages(kvm);
5063}
5064
5065void kvm_mmu_init_vm(struct kvm *kvm)
5066{
5067 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5068
5069 node->track_write = kvm_mmu_pte_write;
5070 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5071 kvm_page_track_register_notifier(kvm, node);
5072}
5073
5074void kvm_mmu_uninit_vm(struct kvm *kvm)
5075{
5076 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5077
5078 kvm_page_track_unregister_notifier(kvm, node);
5079}
5080
5081/* The return value indicates if tlb flush on all vcpus is needed. */
5082typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5083
5084/* The caller should hold mmu-lock before calling this function. */
5085static __always_inline bool
5086slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5087 slot_level_handler fn, int start_level, int end_level,
5088 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5089{
5090 struct slot_rmap_walk_iterator iterator;
5091 bool flush = false;
5092
5093 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5094 end_gfn, &iterator) {
5095 if (iterator.rmap)
5096 flush |= fn(kvm, iterator.rmap);
5097
5098 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5099 if (flush && lock_flush_tlb) {
5100 kvm_flush_remote_tlbs(kvm);
5101 flush = false;
5102 }
5103 cond_resched_lock(&kvm->mmu_lock);
5104 }
5105 }
5106
5107 if (flush && lock_flush_tlb) {
5108 kvm_flush_remote_tlbs(kvm);
5109 flush = false;
5110 }
5111
5112 return flush;
5113}
5114
5115static __always_inline bool
5116slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5117 slot_level_handler fn, int start_level, int end_level,
5118 bool lock_flush_tlb)
5119{
5120 return slot_handle_level_range(kvm, memslot, fn, start_level,
5121 end_level, memslot->base_gfn,
5122 memslot->base_gfn + memslot->npages - 1,
5123 lock_flush_tlb);
5124}
5125
5126static __always_inline bool
5127slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5128 slot_level_handler fn, bool lock_flush_tlb)
5129{
5130 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5131 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5132}
5133
5134static __always_inline bool
5135slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5136 slot_level_handler fn, bool lock_flush_tlb)
5137{
5138 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
5139 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5140}
5141
5142static __always_inline bool
5143slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5144 slot_level_handler fn, bool lock_flush_tlb)
5145{
5146 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5147 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
5148}
5149
5150void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5151{
5152 struct kvm_memslots *slots;
5153 struct kvm_memory_slot *memslot;
5154 int i;
5155
5156 spin_lock(&kvm->mmu_lock);
5157 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5158 slots = __kvm_memslots(kvm, i);
5159 kvm_for_each_memslot(memslot, slots) {
5160 gfn_t start, end;
5161
5162 start = max(gfn_start, memslot->base_gfn);
5163 end = min(gfn_end, memslot->base_gfn + memslot->npages);
5164 if (start >= end)
5165 continue;
5166
5167 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5168 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
5169 start, end - 1, true);
5170 }
5171 }
5172
5173 spin_unlock(&kvm->mmu_lock);
5174}
5175
5176static bool slot_rmap_write_protect(struct kvm *kvm,
5177 struct kvm_rmap_head *rmap_head)
5178{
5179 return __rmap_write_protect(kvm, rmap_head, false);
5180}
5181
5182void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5183 struct kvm_memory_slot *memslot)
5184{
5185 bool flush;
5186
5187 spin_lock(&kvm->mmu_lock);
5188 flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
5189 false);
5190 spin_unlock(&kvm->mmu_lock);
5191
5192 /*
5193 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
5194 * which do tlb flush out of mmu-lock should be serialized by
5195 * kvm->slots_lock otherwise tlb flush would be missed.
5196 */
5197 lockdep_assert_held(&kvm->slots_lock);
5198
5199 /*
5200 * We can flush all the TLBs out of the mmu lock without TLB
5201 * corruption since we just change the spte from writable to
5202 * readonly so that we only need to care the case of changing
5203 * spte from present to present (changing the spte from present
5204 * to nonpresent will flush all the TLBs immediately), in other
5205 * words, the only case we care is mmu_spte_update() where we
5206 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5207 * instead of PT_WRITABLE_MASK, that means it does not depend
5208 * on PT_WRITABLE_MASK anymore.
5209 */
5210 if (flush)
5211 kvm_flush_remote_tlbs(kvm);
5212}
5213
5214static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5215 struct kvm_rmap_head *rmap_head)
5216{
5217 u64 *sptep;
5218 struct rmap_iterator iter;
5219 int need_tlb_flush = 0;
5220 kvm_pfn_t pfn;
5221 struct kvm_mmu_page *sp;
5222
5223restart:
5224 for_each_rmap_spte(rmap_head, &iter, sptep) {
5225 sp = page_header(__pa(sptep));
5226 pfn = spte_to_pfn(*sptep);
5227
5228 /*
5229 * We cannot do huge page mapping for indirect shadow pages,
5230 * which are found on the last rmap (level = 1) when not using
5231 * tdp; such shadow pages are synced with the page table in
5232 * the guest, and the guest page table is using 4K page size
5233 * mapping if the indirect sp has level = 1.
5234 */
5235 if (sp->role.direct &&
5236 !kvm_is_reserved_pfn(pfn) &&
5237 PageTransCompoundMap(pfn_to_page(pfn))) {
5238 drop_spte(kvm, sptep);
5239 need_tlb_flush = 1;
5240 goto restart;
5241 }
5242 }
5243
5244 return need_tlb_flush;
5245}
5246
5247void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5248 const struct kvm_memory_slot *memslot)
5249{
5250 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
5251 spin_lock(&kvm->mmu_lock);
5252 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5253 kvm_mmu_zap_collapsible_spte, true);
5254 spin_unlock(&kvm->mmu_lock);
5255}
5256
5257void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5258 struct kvm_memory_slot *memslot)
5259{
5260 bool flush;
5261
5262 spin_lock(&kvm->mmu_lock);
5263 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5264 spin_unlock(&kvm->mmu_lock);
5265
5266 lockdep_assert_held(&kvm->slots_lock);
5267
5268 /*
5269 * It's also safe to flush TLBs out of mmu lock here as currently this
5270 * function is only used for dirty logging, in which case flushing TLB
5271 * out of mmu lock also guarantees no dirty pages will be lost in
5272 * dirty_bitmap.
5273 */
5274 if (flush)
5275 kvm_flush_remote_tlbs(kvm);
5276}
5277EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5278
5279void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5280 struct kvm_memory_slot *memslot)
5281{
5282 bool flush;
5283
5284 spin_lock(&kvm->mmu_lock);
5285 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5286 false);
5287 spin_unlock(&kvm->mmu_lock);
5288
5289 /* see kvm_mmu_slot_remove_write_access */
5290 lockdep_assert_held(&kvm->slots_lock);
5291
5292 if (flush)
5293 kvm_flush_remote_tlbs(kvm);
5294}
5295EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
5296
5297void kvm_mmu_slot_set_dirty(struct kvm *kvm,
5298 struct kvm_memory_slot *memslot)
5299{
5300 bool flush;
5301
5302 spin_lock(&kvm->mmu_lock);
5303 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
5304 spin_unlock(&kvm->mmu_lock);
5305
5306 lockdep_assert_held(&kvm->slots_lock);
5307
5308 /* see kvm_mmu_slot_leaf_clear_dirty */
5309 if (flush)
5310 kvm_flush_remote_tlbs(kvm);
5311}
5312EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
5313
5314#define BATCH_ZAP_PAGES 10
5315static void kvm_zap_obsolete_pages(struct kvm *kvm)
5316{
5317 struct kvm_mmu_page *sp, *node;
5318 int batch = 0;
5319
5320restart:
5321 list_for_each_entry_safe_reverse(sp, node,
5322 &kvm->arch.active_mmu_pages, link) {
5323 int ret;
5324
5325 /*
5326 * No obsolete page exists before new created page since
5327 * active_mmu_pages is the FIFO list.
5328 */
5329 if (!is_obsolete_sp(kvm, sp))
5330 break;
5331
5332 /*
5333 * Since we are reversely walking the list and the invalid
5334 * list will be moved to the head, skip the invalid page
5335 * can help us to avoid the infinity list walking.
5336 */
5337 if (sp->role.invalid)
5338 continue;
5339
5340 /*
5341 * Need not flush tlb since we only zap the sp with invalid
5342 * generation number.
5343 */
5344 if (batch >= BATCH_ZAP_PAGES &&
5345 cond_resched_lock(&kvm->mmu_lock)) {
5346 batch = 0;
5347 goto restart;
5348 }
5349
5350 ret = kvm_mmu_prepare_zap_page(kvm, sp,
5351 &kvm->arch.zapped_obsolete_pages);
5352 batch += ret;
5353
5354 if (ret)
5355 goto restart;
5356 }
5357
5358 /*
5359 * Should flush tlb before free page tables since lockless-walking
5360 * may use the pages.
5361 */
5362 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5363}
5364
5365/*
5366 * Fast invalidate all shadow pages and use lock-break technique
5367 * to zap obsolete pages.
5368 *
5369 * It's required when memslot is being deleted or VM is being
5370 * destroyed, in these cases, we should ensure that KVM MMU does
5371 * not use any resource of the being-deleted slot or all slots
5372 * after calling the function.
5373 */
5374void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
5375{
5376 spin_lock(&kvm->mmu_lock);
5377 trace_kvm_mmu_invalidate_zap_all_pages(kvm);
5378 kvm->arch.mmu_valid_gen++;
5379
5380 /*
5381 * Notify all vcpus to reload its shadow page table
5382 * and flush TLB. Then all vcpus will switch to new
5383 * shadow page table with the new mmu_valid_gen.
5384 *
5385 * Note: we should do this under the protection of
5386 * mmu-lock, otherwise, vcpu would purge shadow page
5387 * but miss tlb flush.
5388 */
5389 kvm_reload_remote_mmus(kvm);
5390
5391 kvm_zap_obsolete_pages(kvm);
5392 spin_unlock(&kvm->mmu_lock);
5393}
5394
5395static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5396{
5397 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5398}
5399
5400void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
5401{
5402 /*
5403 * The very rare case: if the generation-number is round,
5404 * zap all shadow pages.
5405 */
5406 if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
5407 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5408 kvm_mmu_invalidate_zap_all_pages(kvm);
5409 }
5410}
5411
5412static unsigned long
5413mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5414{
5415 struct kvm *kvm;
5416 int nr_to_scan = sc->nr_to_scan;
5417 unsigned long freed = 0;
5418
5419 spin_lock(&kvm_lock);
5420
5421 list_for_each_entry(kvm, &vm_list, vm_list) {
5422 int idx;
5423 LIST_HEAD(invalid_list);
5424
5425 /*
5426 * Never scan more than sc->nr_to_scan VM instances.
5427 * Will not hit this condition practically since we do not try
5428 * to shrink more than one VM and it is very unlikely to see
5429 * !n_used_mmu_pages so many times.
5430 */
5431 if (!nr_to_scan--)
5432 break;
5433 /*
5434 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5435 * here. We may skip a VM instance errorneosly, but we do not
5436 * want to shrink a VM that only started to populate its MMU
5437 * anyway.
5438 */
5439 if (!kvm->arch.n_used_mmu_pages &&
5440 !kvm_has_zapped_obsolete_pages(kvm))
5441 continue;
5442
5443 idx = srcu_read_lock(&kvm->srcu);
5444 spin_lock(&kvm->mmu_lock);
5445
5446 if (kvm_has_zapped_obsolete_pages(kvm)) {
5447 kvm_mmu_commit_zap_page(kvm,
5448 &kvm->arch.zapped_obsolete_pages);
5449 goto unlock;
5450 }
5451
5452 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
5453 freed++;
5454 kvm_mmu_commit_zap_page(kvm, &invalid_list);
5455
5456unlock:
5457 spin_unlock(&kvm->mmu_lock);
5458 srcu_read_unlock(&kvm->srcu, idx);
5459
5460 /*
5461 * unfair on small ones
5462 * per-vm shrinkers cry out
5463 * sadness comes quickly
5464 */
5465 list_move_tail(&kvm->vm_list, &vm_list);
5466 break;
5467 }
5468
5469 spin_unlock(&kvm_lock);
5470 return freed;
5471}
5472
5473static unsigned long
5474mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5475{
5476 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5477}
5478
5479static struct shrinker mmu_shrinker = {
5480 .count_objects = mmu_shrink_count,
5481 .scan_objects = mmu_shrink_scan,
5482 .seeks = DEFAULT_SEEKS * 10,
5483};
5484
5485static void mmu_destroy_caches(void)
5486{
5487 kmem_cache_destroy(pte_list_desc_cache);
5488 kmem_cache_destroy(mmu_page_header_cache);
5489}
5490
5491int kvm_mmu_module_init(void)
5492{
5493 int ret = -ENOMEM;
5494
5495 kvm_mmu_clear_all_pte_masks();
5496
5497 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5498 sizeof(struct pte_list_desc),
5499 0, SLAB_ACCOUNT, NULL);
5500 if (!pte_list_desc_cache)
5501 goto out;
5502
5503 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5504 sizeof(struct kvm_mmu_page),
5505 0, SLAB_ACCOUNT, NULL);
5506 if (!mmu_page_header_cache)
5507 goto out;
5508
5509 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5510 goto out;
5511
5512 ret = register_shrinker(&mmu_shrinker);
5513 if (ret)
5514 goto out;
5515
5516 return 0;
5517
5518out:
5519 mmu_destroy_caches();
5520 return ret;
5521}
5522
5523/*
5524 * Caculate mmu pages needed for kvm.
5525 */
5526unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
5527{
5528 unsigned int nr_mmu_pages;
5529 unsigned int nr_pages = 0;
5530 struct kvm_memslots *slots;
5531 struct kvm_memory_slot *memslot;
5532 int i;
5533
5534 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5535 slots = __kvm_memslots(kvm, i);
5536
5537 kvm_for_each_memslot(memslot, slots)
5538 nr_pages += memslot->npages;
5539 }
5540
5541 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5542 nr_mmu_pages = max(nr_mmu_pages,
5543 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
5544
5545 return nr_mmu_pages;
5546}
5547
5548void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5549{
5550 kvm_mmu_unload(vcpu);
5551 free_mmu_pages(vcpu);
5552 mmu_free_memory_caches(vcpu);
5553}
5554
5555void kvm_mmu_module_exit(void)
5556{
5557 mmu_destroy_caches();
5558 percpu_counter_destroy(&kvm_total_used_mmu_pages);
5559 unregister_shrinker(&mmu_shrinker);
5560 mmu_audit_disable();
5561}
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21#include "irq.h"
22#include "mmu.h"
23#include "x86.h"
24#include "kvm_cache_regs.h"
25#include "cpuid.h"
26
27#include <linux/kvm_host.h>
28#include <linux/types.h>
29#include <linux/string.h>
30#include <linux/mm.h>
31#include <linux/highmem.h>
32#include <linux/module.h>
33#include <linux/swap.h>
34#include <linux/hugetlb.h>
35#include <linux/compiler.h>
36#include <linux/srcu.h>
37#include <linux/slab.h>
38#include <linux/uaccess.h>
39
40#include <asm/page.h>
41#include <asm/cmpxchg.h>
42#include <asm/io.h>
43#include <asm/vmx.h>
44#include <asm/kvm_page_track.h>
45
46/*
47 * When setting this variable to true it enables Two-Dimensional-Paging
48 * where the hardware walks 2 page tables:
49 * 1. the guest-virtual to guest-physical
50 * 2. while doing 1. it walks guest-physical to host-physical
51 * If the hardware supports that we don't need to do shadow paging.
52 */
53bool tdp_enabled = false;
54
55enum {
56 AUDIT_PRE_PAGE_FAULT,
57 AUDIT_POST_PAGE_FAULT,
58 AUDIT_PRE_PTE_WRITE,
59 AUDIT_POST_PTE_WRITE,
60 AUDIT_PRE_SYNC,
61 AUDIT_POST_SYNC
62};
63
64#undef MMU_DEBUG
65
66#ifdef MMU_DEBUG
67static bool dbg = 0;
68module_param(dbg, bool, 0644);
69
70#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
71#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
72#define MMU_WARN_ON(x) WARN_ON(x)
73#else
74#define pgprintk(x...) do { } while (0)
75#define rmap_printk(x...) do { } while (0)
76#define MMU_WARN_ON(x) do { } while (0)
77#endif
78
79#define PTE_PREFETCH_NUM 8
80
81#define PT_FIRST_AVAIL_BITS_SHIFT 10
82#define PT64_SECOND_AVAIL_BITS_SHIFT 52
83
84#define PT64_LEVEL_BITS 9
85
86#define PT64_LEVEL_SHIFT(level) \
87 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
88
89#define PT64_INDEX(address, level)\
90 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
91
92
93#define PT32_LEVEL_BITS 10
94
95#define PT32_LEVEL_SHIFT(level) \
96 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
97
98#define PT32_LVL_OFFSET_MASK(level) \
99 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
100 * PT32_LEVEL_BITS))) - 1))
101
102#define PT32_INDEX(address, level)\
103 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
104
105
106#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
107#define PT64_DIR_BASE_ADDR_MASK \
108 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
109#define PT64_LVL_ADDR_MASK(level) \
110 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
111 * PT64_LEVEL_BITS))) - 1))
112#define PT64_LVL_OFFSET_MASK(level) \
113 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
114 * PT64_LEVEL_BITS))) - 1))
115
116#define PT32_BASE_ADDR_MASK PAGE_MASK
117#define PT32_DIR_BASE_ADDR_MASK \
118 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
119#define PT32_LVL_ADDR_MASK(level) \
120 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
121 * PT32_LEVEL_BITS))) - 1))
122
123#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
124 | shadow_x_mask | shadow_nx_mask)
125
126#define ACC_EXEC_MASK 1
127#define ACC_WRITE_MASK PT_WRITABLE_MASK
128#define ACC_USER_MASK PT_USER_MASK
129#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
130
131#include <trace/events/kvm.h>
132
133#define CREATE_TRACE_POINTS
134#include "mmutrace.h"
135
136#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
137#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
138
139#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
140
141/* make pte_list_desc fit well in cache line */
142#define PTE_LIST_EXT 3
143
144struct pte_list_desc {
145 u64 *sptes[PTE_LIST_EXT];
146 struct pte_list_desc *more;
147};
148
149struct kvm_shadow_walk_iterator {
150 u64 addr;
151 hpa_t shadow_addr;
152 u64 *sptep;
153 int level;
154 unsigned index;
155};
156
157#define for_each_shadow_entry(_vcpu, _addr, _walker) \
158 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
159 shadow_walk_okay(&(_walker)); \
160 shadow_walk_next(&(_walker)))
161
162#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
163 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
164 shadow_walk_okay(&(_walker)) && \
165 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
166 __shadow_walk_next(&(_walker), spte))
167
168static struct kmem_cache *pte_list_desc_cache;
169static struct kmem_cache *mmu_page_header_cache;
170static struct percpu_counter kvm_total_used_mmu_pages;
171
172static u64 __read_mostly shadow_nx_mask;
173static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
174static u64 __read_mostly shadow_user_mask;
175static u64 __read_mostly shadow_accessed_mask;
176static u64 __read_mostly shadow_dirty_mask;
177static u64 __read_mostly shadow_mmio_mask;
178
179static void mmu_spte_set(u64 *sptep, u64 spte);
180static void mmu_free_roots(struct kvm_vcpu *vcpu);
181
182void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
183{
184 shadow_mmio_mask = mmio_mask;
185}
186EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
187
188/*
189 * the low bit of the generation number is always presumed to be zero.
190 * This disables mmio caching during memslot updates. The concept is
191 * similar to a seqcount but instead of retrying the access we just punt
192 * and ignore the cache.
193 *
194 * spte bits 3-11 are used as bits 1-9 of the generation number,
195 * the bits 52-61 are used as bits 10-19 of the generation number.
196 */
197#define MMIO_SPTE_GEN_LOW_SHIFT 2
198#define MMIO_SPTE_GEN_HIGH_SHIFT 52
199
200#define MMIO_GEN_SHIFT 20
201#define MMIO_GEN_LOW_SHIFT 10
202#define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2)
203#define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
204
205static u64 generation_mmio_spte_mask(unsigned int gen)
206{
207 u64 mask;
208
209 WARN_ON(gen & ~MMIO_GEN_MASK);
210
211 mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
212 mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
213 return mask;
214}
215
216static unsigned int get_mmio_spte_generation(u64 spte)
217{
218 unsigned int gen;
219
220 spte &= ~shadow_mmio_mask;
221
222 gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
223 gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
224 return gen;
225}
226
227static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
228{
229 return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
230}
231
232static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
233 unsigned access)
234{
235 unsigned int gen = kvm_current_mmio_generation(vcpu);
236 u64 mask = generation_mmio_spte_mask(gen);
237
238 access &= ACC_WRITE_MASK | ACC_USER_MASK;
239 mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
240
241 trace_mark_mmio_spte(sptep, gfn, access, gen);
242 mmu_spte_set(sptep, mask);
243}
244
245static bool is_mmio_spte(u64 spte)
246{
247 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
248}
249
250static gfn_t get_mmio_spte_gfn(u64 spte)
251{
252 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
253 return (spte & ~mask) >> PAGE_SHIFT;
254}
255
256static unsigned get_mmio_spte_access(u64 spte)
257{
258 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
259 return (spte & ~mask) & ~PAGE_MASK;
260}
261
262static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
263 kvm_pfn_t pfn, unsigned access)
264{
265 if (unlikely(is_noslot_pfn(pfn))) {
266 mark_mmio_spte(vcpu, sptep, gfn, access);
267 return true;
268 }
269
270 return false;
271}
272
273static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
274{
275 unsigned int kvm_gen, spte_gen;
276
277 kvm_gen = kvm_current_mmio_generation(vcpu);
278 spte_gen = get_mmio_spte_generation(spte);
279
280 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
281 return likely(kvm_gen == spte_gen);
282}
283
284void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
285 u64 dirty_mask, u64 nx_mask, u64 x_mask)
286{
287 shadow_user_mask = user_mask;
288 shadow_accessed_mask = accessed_mask;
289 shadow_dirty_mask = dirty_mask;
290 shadow_nx_mask = nx_mask;
291 shadow_x_mask = x_mask;
292}
293EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
294
295static int is_cpuid_PSE36(void)
296{
297 return 1;
298}
299
300static int is_nx(struct kvm_vcpu *vcpu)
301{
302 return vcpu->arch.efer & EFER_NX;
303}
304
305static int is_shadow_present_pte(u64 pte)
306{
307 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
308}
309
310static int is_large_pte(u64 pte)
311{
312 return pte & PT_PAGE_SIZE_MASK;
313}
314
315static int is_last_spte(u64 pte, int level)
316{
317 if (level == PT_PAGE_TABLE_LEVEL)
318 return 1;
319 if (is_large_pte(pte))
320 return 1;
321 return 0;
322}
323
324static kvm_pfn_t spte_to_pfn(u64 pte)
325{
326 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
327}
328
329static gfn_t pse36_gfn_delta(u32 gpte)
330{
331 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
332
333 return (gpte & PT32_DIR_PSE36_MASK) << shift;
334}
335
336#ifdef CONFIG_X86_64
337static void __set_spte(u64 *sptep, u64 spte)
338{
339 *sptep = spte;
340}
341
342static void __update_clear_spte_fast(u64 *sptep, u64 spte)
343{
344 *sptep = spte;
345}
346
347static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
348{
349 return xchg(sptep, spte);
350}
351
352static u64 __get_spte_lockless(u64 *sptep)
353{
354 return ACCESS_ONCE(*sptep);
355}
356#else
357union split_spte {
358 struct {
359 u32 spte_low;
360 u32 spte_high;
361 };
362 u64 spte;
363};
364
365static void count_spte_clear(u64 *sptep, u64 spte)
366{
367 struct kvm_mmu_page *sp = page_header(__pa(sptep));
368
369 if (is_shadow_present_pte(spte))
370 return;
371
372 /* Ensure the spte is completely set before we increase the count */
373 smp_wmb();
374 sp->clear_spte_count++;
375}
376
377static void __set_spte(u64 *sptep, u64 spte)
378{
379 union split_spte *ssptep, sspte;
380
381 ssptep = (union split_spte *)sptep;
382 sspte = (union split_spte)spte;
383
384 ssptep->spte_high = sspte.spte_high;
385
386 /*
387 * If we map the spte from nonpresent to present, We should store
388 * the high bits firstly, then set present bit, so cpu can not
389 * fetch this spte while we are setting the spte.
390 */
391 smp_wmb();
392
393 ssptep->spte_low = sspte.spte_low;
394}
395
396static void __update_clear_spte_fast(u64 *sptep, u64 spte)
397{
398 union split_spte *ssptep, sspte;
399
400 ssptep = (union split_spte *)sptep;
401 sspte = (union split_spte)spte;
402
403 ssptep->spte_low = sspte.spte_low;
404
405 /*
406 * If we map the spte from present to nonpresent, we should clear
407 * present bit firstly to avoid vcpu fetch the old high bits.
408 */
409 smp_wmb();
410
411 ssptep->spte_high = sspte.spte_high;
412 count_spte_clear(sptep, spte);
413}
414
415static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
416{
417 union split_spte *ssptep, sspte, orig;
418
419 ssptep = (union split_spte *)sptep;
420 sspte = (union split_spte)spte;
421
422 /* xchg acts as a barrier before the setting of the high bits */
423 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
424 orig.spte_high = ssptep->spte_high;
425 ssptep->spte_high = sspte.spte_high;
426 count_spte_clear(sptep, spte);
427
428 return orig.spte;
429}
430
431/*
432 * The idea using the light way get the spte on x86_32 guest is from
433 * gup_get_pte(arch/x86/mm/gup.c).
434 *
435 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
436 * coalesces them and we are running out of the MMU lock. Therefore
437 * we need to protect against in-progress updates of the spte.
438 *
439 * Reading the spte while an update is in progress may get the old value
440 * for the high part of the spte. The race is fine for a present->non-present
441 * change (because the high part of the spte is ignored for non-present spte),
442 * but for a present->present change we must reread the spte.
443 *
444 * All such changes are done in two steps (present->non-present and
445 * non-present->present), hence it is enough to count the number of
446 * present->non-present updates: if it changed while reading the spte,
447 * we might have hit the race. This is done using clear_spte_count.
448 */
449static u64 __get_spte_lockless(u64 *sptep)
450{
451 struct kvm_mmu_page *sp = page_header(__pa(sptep));
452 union split_spte spte, *orig = (union split_spte *)sptep;
453 int count;
454
455retry:
456 count = sp->clear_spte_count;
457 smp_rmb();
458
459 spte.spte_low = orig->spte_low;
460 smp_rmb();
461
462 spte.spte_high = orig->spte_high;
463 smp_rmb();
464
465 if (unlikely(spte.spte_low != orig->spte_low ||
466 count != sp->clear_spte_count))
467 goto retry;
468
469 return spte.spte;
470}
471#endif
472
473static bool spte_is_locklessly_modifiable(u64 spte)
474{
475 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
476 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
477}
478
479static bool spte_has_volatile_bits(u64 spte)
480{
481 /*
482 * Always atomically update spte if it can be updated
483 * out of mmu-lock, it can ensure dirty bit is not lost,
484 * also, it can help us to get a stable is_writable_pte()
485 * to ensure tlb flush is not missed.
486 */
487 if (spte_is_locklessly_modifiable(spte))
488 return true;
489
490 if (!shadow_accessed_mask)
491 return false;
492
493 if (!is_shadow_present_pte(spte))
494 return false;
495
496 if ((spte & shadow_accessed_mask) &&
497 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
498 return false;
499
500 return true;
501}
502
503static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
504{
505 return (old_spte & bit_mask) && !(new_spte & bit_mask);
506}
507
508static bool spte_is_bit_changed(u64 old_spte, u64 new_spte, u64 bit_mask)
509{
510 return (old_spte & bit_mask) != (new_spte & bit_mask);
511}
512
513/* Rules for using mmu_spte_set:
514 * Set the sptep from nonpresent to present.
515 * Note: the sptep being assigned *must* be either not present
516 * or in a state where the hardware will not attempt to update
517 * the spte.
518 */
519static void mmu_spte_set(u64 *sptep, u64 new_spte)
520{
521 WARN_ON(is_shadow_present_pte(*sptep));
522 __set_spte(sptep, new_spte);
523}
524
525/* Rules for using mmu_spte_update:
526 * Update the state bits, it means the mapped pfn is not changged.
527 *
528 * Whenever we overwrite a writable spte with a read-only one we
529 * should flush remote TLBs. Otherwise rmap_write_protect
530 * will find a read-only spte, even though the writable spte
531 * might be cached on a CPU's TLB, the return value indicates this
532 * case.
533 */
534static bool mmu_spte_update(u64 *sptep, u64 new_spte)
535{
536 u64 old_spte = *sptep;
537 bool ret = false;
538
539 WARN_ON(!is_shadow_present_pte(new_spte));
540
541 if (!is_shadow_present_pte(old_spte)) {
542 mmu_spte_set(sptep, new_spte);
543 return ret;
544 }
545
546 if (!spte_has_volatile_bits(old_spte))
547 __update_clear_spte_fast(sptep, new_spte);
548 else
549 old_spte = __update_clear_spte_slow(sptep, new_spte);
550
551 /*
552 * For the spte updated out of mmu-lock is safe, since
553 * we always atomically update it, see the comments in
554 * spte_has_volatile_bits().
555 */
556 if (spte_is_locklessly_modifiable(old_spte) &&
557 !is_writable_pte(new_spte))
558 ret = true;
559
560 if (!shadow_accessed_mask) {
561 /*
562 * We don't set page dirty when dropping non-writable spte.
563 * So do it now if the new spte is becoming non-writable.
564 */
565 if (ret)
566 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
567 return ret;
568 }
569
570 /*
571 * Flush TLB when accessed/dirty bits are changed in the page tables,
572 * to guarantee consistency between TLB and page tables.
573 */
574 if (spte_is_bit_changed(old_spte, new_spte,
575 shadow_accessed_mask | shadow_dirty_mask))
576 ret = true;
577
578 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
579 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
580 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
581 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
582
583 return ret;
584}
585
586/*
587 * Rules for using mmu_spte_clear_track_bits:
588 * It sets the sptep from present to nonpresent, and track the
589 * state bits, it is used to clear the last level sptep.
590 */
591static int mmu_spte_clear_track_bits(u64 *sptep)
592{
593 kvm_pfn_t pfn;
594 u64 old_spte = *sptep;
595
596 if (!spte_has_volatile_bits(old_spte))
597 __update_clear_spte_fast(sptep, 0ull);
598 else
599 old_spte = __update_clear_spte_slow(sptep, 0ull);
600
601 if (!is_shadow_present_pte(old_spte))
602 return 0;
603
604 pfn = spte_to_pfn(old_spte);
605
606 /*
607 * KVM does not hold the refcount of the page used by
608 * kvm mmu, before reclaiming the page, we should
609 * unmap it from mmu first.
610 */
611 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
612
613 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
614 kvm_set_pfn_accessed(pfn);
615 if (old_spte & (shadow_dirty_mask ? shadow_dirty_mask :
616 PT_WRITABLE_MASK))
617 kvm_set_pfn_dirty(pfn);
618 return 1;
619}
620
621/*
622 * Rules for using mmu_spte_clear_no_track:
623 * Directly clear spte without caring the state bits of sptep,
624 * it is used to set the upper level spte.
625 */
626static void mmu_spte_clear_no_track(u64 *sptep)
627{
628 __update_clear_spte_fast(sptep, 0ull);
629}
630
631static u64 mmu_spte_get_lockless(u64 *sptep)
632{
633 return __get_spte_lockless(sptep);
634}
635
636static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
637{
638 /*
639 * Prevent page table teardown by making any free-er wait during
640 * kvm_flush_remote_tlbs() IPI to all active vcpus.
641 */
642 local_irq_disable();
643
644 /*
645 * Make sure a following spte read is not reordered ahead of the write
646 * to vcpu->mode.
647 */
648 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
649}
650
651static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
652{
653 /*
654 * Make sure the write to vcpu->mode is not reordered in front of
655 * reads to sptes. If it does, kvm_commit_zap_page() can see us
656 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
657 */
658 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
659 local_irq_enable();
660}
661
662static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
663 struct kmem_cache *base_cache, int min)
664{
665 void *obj;
666
667 if (cache->nobjs >= min)
668 return 0;
669 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
670 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
671 if (!obj)
672 return -ENOMEM;
673 cache->objects[cache->nobjs++] = obj;
674 }
675 return 0;
676}
677
678static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
679{
680 return cache->nobjs;
681}
682
683static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
684 struct kmem_cache *cache)
685{
686 while (mc->nobjs)
687 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
688}
689
690static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
691 int min)
692{
693 void *page;
694
695 if (cache->nobjs >= min)
696 return 0;
697 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
698 page = (void *)__get_free_page(GFP_KERNEL);
699 if (!page)
700 return -ENOMEM;
701 cache->objects[cache->nobjs++] = page;
702 }
703 return 0;
704}
705
706static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
707{
708 while (mc->nobjs)
709 free_page((unsigned long)mc->objects[--mc->nobjs]);
710}
711
712static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
713{
714 int r;
715
716 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
717 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
718 if (r)
719 goto out;
720 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
721 if (r)
722 goto out;
723 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
724 mmu_page_header_cache, 4);
725out:
726 return r;
727}
728
729static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
730{
731 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
732 pte_list_desc_cache);
733 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
734 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
735 mmu_page_header_cache);
736}
737
738static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
739{
740 void *p;
741
742 BUG_ON(!mc->nobjs);
743 p = mc->objects[--mc->nobjs];
744 return p;
745}
746
747static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
748{
749 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
750}
751
752static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
753{
754 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
755}
756
757static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
758{
759 if (!sp->role.direct)
760 return sp->gfns[index];
761
762 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
763}
764
765static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
766{
767 if (sp->role.direct)
768 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
769 else
770 sp->gfns[index] = gfn;
771}
772
773/*
774 * Return the pointer to the large page information for a given gfn,
775 * handling slots that are not large page aligned.
776 */
777static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
778 struct kvm_memory_slot *slot,
779 int level)
780{
781 unsigned long idx;
782
783 idx = gfn_to_index(gfn, slot->base_gfn, level);
784 return &slot->arch.lpage_info[level - 2][idx];
785}
786
787static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
788 gfn_t gfn, int count)
789{
790 struct kvm_lpage_info *linfo;
791 int i;
792
793 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
794 linfo = lpage_info_slot(gfn, slot, i);
795 linfo->disallow_lpage += count;
796 WARN_ON(linfo->disallow_lpage < 0);
797 }
798}
799
800void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
801{
802 update_gfn_disallow_lpage_count(slot, gfn, 1);
803}
804
805void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
806{
807 update_gfn_disallow_lpage_count(slot, gfn, -1);
808}
809
810static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
811{
812 struct kvm_memslots *slots;
813 struct kvm_memory_slot *slot;
814 gfn_t gfn;
815
816 kvm->arch.indirect_shadow_pages++;
817 gfn = sp->gfn;
818 slots = kvm_memslots_for_spte_role(kvm, sp->role);
819 slot = __gfn_to_memslot(slots, gfn);
820
821 /* the non-leaf shadow pages are keeping readonly. */
822 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
823 return kvm_slot_page_track_add_page(kvm, slot, gfn,
824 KVM_PAGE_TRACK_WRITE);
825
826 kvm_mmu_gfn_disallow_lpage(slot, gfn);
827}
828
829static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
830{
831 struct kvm_memslots *slots;
832 struct kvm_memory_slot *slot;
833 gfn_t gfn;
834
835 kvm->arch.indirect_shadow_pages--;
836 gfn = sp->gfn;
837 slots = kvm_memslots_for_spte_role(kvm, sp->role);
838 slot = __gfn_to_memslot(slots, gfn);
839 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
840 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
841 KVM_PAGE_TRACK_WRITE);
842
843 kvm_mmu_gfn_allow_lpage(slot, gfn);
844}
845
846static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
847 struct kvm_memory_slot *slot)
848{
849 struct kvm_lpage_info *linfo;
850
851 if (slot) {
852 linfo = lpage_info_slot(gfn, slot, level);
853 return !!linfo->disallow_lpage;
854 }
855
856 return true;
857}
858
859static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
860 int level)
861{
862 struct kvm_memory_slot *slot;
863
864 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
865 return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
866}
867
868static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
869{
870 unsigned long page_size;
871 int i, ret = 0;
872
873 page_size = kvm_host_page_size(kvm, gfn);
874
875 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
876 if (page_size >= KVM_HPAGE_SIZE(i))
877 ret = i;
878 else
879 break;
880 }
881
882 return ret;
883}
884
885static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
886 bool no_dirty_log)
887{
888 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
889 return false;
890 if (no_dirty_log && slot->dirty_bitmap)
891 return false;
892
893 return true;
894}
895
896static struct kvm_memory_slot *
897gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
898 bool no_dirty_log)
899{
900 struct kvm_memory_slot *slot;
901
902 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
903 if (!memslot_valid_for_gpte(slot, no_dirty_log))
904 slot = NULL;
905
906 return slot;
907}
908
909static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
910 bool *force_pt_level)
911{
912 int host_level, level, max_level;
913 struct kvm_memory_slot *slot;
914
915 if (unlikely(*force_pt_level))
916 return PT_PAGE_TABLE_LEVEL;
917
918 slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
919 *force_pt_level = !memslot_valid_for_gpte(slot, true);
920 if (unlikely(*force_pt_level))
921 return PT_PAGE_TABLE_LEVEL;
922
923 host_level = host_mapping_level(vcpu->kvm, large_gfn);
924
925 if (host_level == PT_PAGE_TABLE_LEVEL)
926 return host_level;
927
928 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
929
930 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
931 if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
932 break;
933
934 return level - 1;
935}
936
937/*
938 * About rmap_head encoding:
939 *
940 * If the bit zero of rmap_head->val is clear, then it points to the only spte
941 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
942 * pte_list_desc containing more mappings.
943 */
944
945/*
946 * Returns the number of pointers in the rmap chain, not counting the new one.
947 */
948static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
949 struct kvm_rmap_head *rmap_head)
950{
951 struct pte_list_desc *desc;
952 int i, count = 0;
953
954 if (!rmap_head->val) {
955 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
956 rmap_head->val = (unsigned long)spte;
957 } else if (!(rmap_head->val & 1)) {
958 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
959 desc = mmu_alloc_pte_list_desc(vcpu);
960 desc->sptes[0] = (u64 *)rmap_head->val;
961 desc->sptes[1] = spte;
962 rmap_head->val = (unsigned long)desc | 1;
963 ++count;
964 } else {
965 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
966 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
967 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
968 desc = desc->more;
969 count += PTE_LIST_EXT;
970 }
971 if (desc->sptes[PTE_LIST_EXT-1]) {
972 desc->more = mmu_alloc_pte_list_desc(vcpu);
973 desc = desc->more;
974 }
975 for (i = 0; desc->sptes[i]; ++i)
976 ++count;
977 desc->sptes[i] = spte;
978 }
979 return count;
980}
981
982static void
983pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
984 struct pte_list_desc *desc, int i,
985 struct pte_list_desc *prev_desc)
986{
987 int j;
988
989 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
990 ;
991 desc->sptes[i] = desc->sptes[j];
992 desc->sptes[j] = NULL;
993 if (j != 0)
994 return;
995 if (!prev_desc && !desc->more)
996 rmap_head->val = (unsigned long)desc->sptes[0];
997 else
998 if (prev_desc)
999 prev_desc->more = desc->more;
1000 else
1001 rmap_head->val = (unsigned long)desc->more | 1;
1002 mmu_free_pte_list_desc(desc);
1003}
1004
1005static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1006{
1007 struct pte_list_desc *desc;
1008 struct pte_list_desc *prev_desc;
1009 int i;
1010
1011 if (!rmap_head->val) {
1012 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
1013 BUG();
1014 } else if (!(rmap_head->val & 1)) {
1015 rmap_printk("pte_list_remove: %p 1->0\n", spte);
1016 if ((u64 *)rmap_head->val != spte) {
1017 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
1018 BUG();
1019 }
1020 rmap_head->val = 0;
1021 } else {
1022 rmap_printk("pte_list_remove: %p many->many\n", spte);
1023 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1024 prev_desc = NULL;
1025 while (desc) {
1026 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
1027 if (desc->sptes[i] == spte) {
1028 pte_list_desc_remove_entry(rmap_head,
1029 desc, i, prev_desc);
1030 return;
1031 }
1032 }
1033 prev_desc = desc;
1034 desc = desc->more;
1035 }
1036 pr_err("pte_list_remove: %p many->many\n", spte);
1037 BUG();
1038 }
1039}
1040
1041static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1042 struct kvm_memory_slot *slot)
1043{
1044 unsigned long idx;
1045
1046 idx = gfn_to_index(gfn, slot->base_gfn, level);
1047 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1048}
1049
1050static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1051 struct kvm_mmu_page *sp)
1052{
1053 struct kvm_memslots *slots;
1054 struct kvm_memory_slot *slot;
1055
1056 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1057 slot = __gfn_to_memslot(slots, gfn);
1058 return __gfn_to_rmap(gfn, sp->role.level, slot);
1059}
1060
1061static bool rmap_can_add(struct kvm_vcpu *vcpu)
1062{
1063 struct kvm_mmu_memory_cache *cache;
1064
1065 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1066 return mmu_memory_cache_free_objects(cache);
1067}
1068
1069static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1070{
1071 struct kvm_mmu_page *sp;
1072 struct kvm_rmap_head *rmap_head;
1073
1074 sp = page_header(__pa(spte));
1075 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1076 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1077 return pte_list_add(vcpu, spte, rmap_head);
1078}
1079
1080static void rmap_remove(struct kvm *kvm, u64 *spte)
1081{
1082 struct kvm_mmu_page *sp;
1083 gfn_t gfn;
1084 struct kvm_rmap_head *rmap_head;
1085
1086 sp = page_header(__pa(spte));
1087 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1088 rmap_head = gfn_to_rmap(kvm, gfn, sp);
1089 pte_list_remove(spte, rmap_head);
1090}
1091
1092/*
1093 * Used by the following functions to iterate through the sptes linked by a
1094 * rmap. All fields are private and not assumed to be used outside.
1095 */
1096struct rmap_iterator {
1097 /* private fields */
1098 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1099 int pos; /* index of the sptep */
1100};
1101
1102/*
1103 * Iteration must be started by this function. This should also be used after
1104 * removing/dropping sptes from the rmap link because in such cases the
1105 * information in the itererator may not be valid.
1106 *
1107 * Returns sptep if found, NULL otherwise.
1108 */
1109static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1110 struct rmap_iterator *iter)
1111{
1112 u64 *sptep;
1113
1114 if (!rmap_head->val)
1115 return NULL;
1116
1117 if (!(rmap_head->val & 1)) {
1118 iter->desc = NULL;
1119 sptep = (u64 *)rmap_head->val;
1120 goto out;
1121 }
1122
1123 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1124 iter->pos = 0;
1125 sptep = iter->desc->sptes[iter->pos];
1126out:
1127 BUG_ON(!is_shadow_present_pte(*sptep));
1128 return sptep;
1129}
1130
1131/*
1132 * Must be used with a valid iterator: e.g. after rmap_get_first().
1133 *
1134 * Returns sptep if found, NULL otherwise.
1135 */
1136static u64 *rmap_get_next(struct rmap_iterator *iter)
1137{
1138 u64 *sptep;
1139
1140 if (iter->desc) {
1141 if (iter->pos < PTE_LIST_EXT - 1) {
1142 ++iter->pos;
1143 sptep = iter->desc->sptes[iter->pos];
1144 if (sptep)
1145 goto out;
1146 }
1147
1148 iter->desc = iter->desc->more;
1149
1150 if (iter->desc) {
1151 iter->pos = 0;
1152 /* desc->sptes[0] cannot be NULL */
1153 sptep = iter->desc->sptes[iter->pos];
1154 goto out;
1155 }
1156 }
1157
1158 return NULL;
1159out:
1160 BUG_ON(!is_shadow_present_pte(*sptep));
1161 return sptep;
1162}
1163
1164#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1165 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
1166 _spte_; _spte_ = rmap_get_next(_iter_))
1167
1168static void drop_spte(struct kvm *kvm, u64 *sptep)
1169{
1170 if (mmu_spte_clear_track_bits(sptep))
1171 rmap_remove(kvm, sptep);
1172}
1173
1174
1175static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1176{
1177 if (is_large_pte(*sptep)) {
1178 WARN_ON(page_header(__pa(sptep))->role.level ==
1179 PT_PAGE_TABLE_LEVEL);
1180 drop_spte(kvm, sptep);
1181 --kvm->stat.lpages;
1182 return true;
1183 }
1184
1185 return false;
1186}
1187
1188static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1189{
1190 if (__drop_large_spte(vcpu->kvm, sptep))
1191 kvm_flush_remote_tlbs(vcpu->kvm);
1192}
1193
1194/*
1195 * Write-protect on the specified @sptep, @pt_protect indicates whether
1196 * spte write-protection is caused by protecting shadow page table.
1197 *
1198 * Note: write protection is difference between dirty logging and spte
1199 * protection:
1200 * - for dirty logging, the spte can be set to writable at anytime if
1201 * its dirty bitmap is properly set.
1202 * - for spte protection, the spte can be writable only after unsync-ing
1203 * shadow page.
1204 *
1205 * Return true if tlb need be flushed.
1206 */
1207static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
1208{
1209 u64 spte = *sptep;
1210
1211 if (!is_writable_pte(spte) &&
1212 !(pt_protect && spte_is_locklessly_modifiable(spte)))
1213 return false;
1214
1215 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1216
1217 if (pt_protect)
1218 spte &= ~SPTE_MMU_WRITEABLE;
1219 spte = spte & ~PT_WRITABLE_MASK;
1220
1221 return mmu_spte_update(sptep, spte);
1222}
1223
1224static bool __rmap_write_protect(struct kvm *kvm,
1225 struct kvm_rmap_head *rmap_head,
1226 bool pt_protect)
1227{
1228 u64 *sptep;
1229 struct rmap_iterator iter;
1230 bool flush = false;
1231
1232 for_each_rmap_spte(rmap_head, &iter, sptep)
1233 flush |= spte_write_protect(kvm, sptep, pt_protect);
1234
1235 return flush;
1236}
1237
1238static bool spte_clear_dirty(struct kvm *kvm, u64 *sptep)
1239{
1240 u64 spte = *sptep;
1241
1242 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1243
1244 spte &= ~shadow_dirty_mask;
1245
1246 return mmu_spte_update(sptep, spte);
1247}
1248
1249static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1250{
1251 u64 *sptep;
1252 struct rmap_iterator iter;
1253 bool flush = false;
1254
1255 for_each_rmap_spte(rmap_head, &iter, sptep)
1256 flush |= spte_clear_dirty(kvm, sptep);
1257
1258 return flush;
1259}
1260
1261static bool spte_set_dirty(struct kvm *kvm, u64 *sptep)
1262{
1263 u64 spte = *sptep;
1264
1265 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1266
1267 spte |= shadow_dirty_mask;
1268
1269 return mmu_spte_update(sptep, spte);
1270}
1271
1272static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1273{
1274 u64 *sptep;
1275 struct rmap_iterator iter;
1276 bool flush = false;
1277
1278 for_each_rmap_spte(rmap_head, &iter, sptep)
1279 flush |= spte_set_dirty(kvm, sptep);
1280
1281 return flush;
1282}
1283
1284/**
1285 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1286 * @kvm: kvm instance
1287 * @slot: slot to protect
1288 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1289 * @mask: indicates which pages we should protect
1290 *
1291 * Used when we do not need to care about huge page mappings: e.g. during dirty
1292 * logging we do not have any such mappings.
1293 */
1294static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1295 struct kvm_memory_slot *slot,
1296 gfn_t gfn_offset, unsigned long mask)
1297{
1298 struct kvm_rmap_head *rmap_head;
1299
1300 while (mask) {
1301 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1302 PT_PAGE_TABLE_LEVEL, slot);
1303 __rmap_write_protect(kvm, rmap_head, false);
1304
1305 /* clear the first set bit */
1306 mask &= mask - 1;
1307 }
1308}
1309
1310/**
1311 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
1312 * @kvm: kvm instance
1313 * @slot: slot to clear D-bit
1314 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1315 * @mask: indicates which pages we should clear D-bit
1316 *
1317 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1318 */
1319void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1320 struct kvm_memory_slot *slot,
1321 gfn_t gfn_offset, unsigned long mask)
1322{
1323 struct kvm_rmap_head *rmap_head;
1324
1325 while (mask) {
1326 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1327 PT_PAGE_TABLE_LEVEL, slot);
1328 __rmap_clear_dirty(kvm, rmap_head);
1329
1330 /* clear the first set bit */
1331 mask &= mask - 1;
1332 }
1333}
1334EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1335
1336/**
1337 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1338 * PT level pages.
1339 *
1340 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1341 * enable dirty logging for them.
1342 *
1343 * Used when we do not need to care about huge page mappings: e.g. during dirty
1344 * logging we do not have any such mappings.
1345 */
1346void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1347 struct kvm_memory_slot *slot,
1348 gfn_t gfn_offset, unsigned long mask)
1349{
1350 if (kvm_x86_ops->enable_log_dirty_pt_masked)
1351 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1352 mask);
1353 else
1354 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1355}
1356
1357bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1358 struct kvm_memory_slot *slot, u64 gfn)
1359{
1360 struct kvm_rmap_head *rmap_head;
1361 int i;
1362 bool write_protected = false;
1363
1364 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1365 rmap_head = __gfn_to_rmap(gfn, i, slot);
1366 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1367 }
1368
1369 return write_protected;
1370}
1371
1372static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1373{
1374 struct kvm_memory_slot *slot;
1375
1376 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1377 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1378}
1379
1380static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1381{
1382 u64 *sptep;
1383 struct rmap_iterator iter;
1384 bool flush = false;
1385
1386 while ((sptep = rmap_get_first(rmap_head, &iter))) {
1387 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1388
1389 drop_spte(kvm, sptep);
1390 flush = true;
1391 }
1392
1393 return flush;
1394}
1395
1396static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1397 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1398 unsigned long data)
1399{
1400 return kvm_zap_rmapp(kvm, rmap_head);
1401}
1402
1403static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1404 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1405 unsigned long data)
1406{
1407 u64 *sptep;
1408 struct rmap_iterator iter;
1409 int need_flush = 0;
1410 u64 new_spte;
1411 pte_t *ptep = (pte_t *)data;
1412 kvm_pfn_t new_pfn;
1413
1414 WARN_ON(pte_huge(*ptep));
1415 new_pfn = pte_pfn(*ptep);
1416
1417restart:
1418 for_each_rmap_spte(rmap_head, &iter, sptep) {
1419 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1420 sptep, *sptep, gfn, level);
1421
1422 need_flush = 1;
1423
1424 if (pte_write(*ptep)) {
1425 drop_spte(kvm, sptep);
1426 goto restart;
1427 } else {
1428 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1429 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1430
1431 new_spte &= ~PT_WRITABLE_MASK;
1432 new_spte &= ~SPTE_HOST_WRITEABLE;
1433 new_spte &= ~shadow_accessed_mask;
1434
1435 mmu_spte_clear_track_bits(sptep);
1436 mmu_spte_set(sptep, new_spte);
1437 }
1438 }
1439
1440 if (need_flush)
1441 kvm_flush_remote_tlbs(kvm);
1442
1443 return 0;
1444}
1445
1446struct slot_rmap_walk_iterator {
1447 /* input fields. */
1448 struct kvm_memory_slot *slot;
1449 gfn_t start_gfn;
1450 gfn_t end_gfn;
1451 int start_level;
1452 int end_level;
1453
1454 /* output fields. */
1455 gfn_t gfn;
1456 struct kvm_rmap_head *rmap;
1457 int level;
1458
1459 /* private field. */
1460 struct kvm_rmap_head *end_rmap;
1461};
1462
1463static void
1464rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1465{
1466 iterator->level = level;
1467 iterator->gfn = iterator->start_gfn;
1468 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1469 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1470 iterator->slot);
1471}
1472
1473static void
1474slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1475 struct kvm_memory_slot *slot, int start_level,
1476 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1477{
1478 iterator->slot = slot;
1479 iterator->start_level = start_level;
1480 iterator->end_level = end_level;
1481 iterator->start_gfn = start_gfn;
1482 iterator->end_gfn = end_gfn;
1483
1484 rmap_walk_init_level(iterator, iterator->start_level);
1485}
1486
1487static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1488{
1489 return !!iterator->rmap;
1490}
1491
1492static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1493{
1494 if (++iterator->rmap <= iterator->end_rmap) {
1495 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1496 return;
1497 }
1498
1499 if (++iterator->level > iterator->end_level) {
1500 iterator->rmap = NULL;
1501 return;
1502 }
1503
1504 rmap_walk_init_level(iterator, iterator->level);
1505}
1506
1507#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1508 _start_gfn, _end_gfn, _iter_) \
1509 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1510 _end_level_, _start_gfn, _end_gfn); \
1511 slot_rmap_walk_okay(_iter_); \
1512 slot_rmap_walk_next(_iter_))
1513
1514static int kvm_handle_hva_range(struct kvm *kvm,
1515 unsigned long start,
1516 unsigned long end,
1517 unsigned long data,
1518 int (*handler)(struct kvm *kvm,
1519 struct kvm_rmap_head *rmap_head,
1520 struct kvm_memory_slot *slot,
1521 gfn_t gfn,
1522 int level,
1523 unsigned long data))
1524{
1525 struct kvm_memslots *slots;
1526 struct kvm_memory_slot *memslot;
1527 struct slot_rmap_walk_iterator iterator;
1528 int ret = 0;
1529 int i;
1530
1531 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1532 slots = __kvm_memslots(kvm, i);
1533 kvm_for_each_memslot(memslot, slots) {
1534 unsigned long hva_start, hva_end;
1535 gfn_t gfn_start, gfn_end;
1536
1537 hva_start = max(start, memslot->userspace_addr);
1538 hva_end = min(end, memslot->userspace_addr +
1539 (memslot->npages << PAGE_SHIFT));
1540 if (hva_start >= hva_end)
1541 continue;
1542 /*
1543 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1544 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1545 */
1546 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1547 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1548
1549 for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1550 PT_MAX_HUGEPAGE_LEVEL,
1551 gfn_start, gfn_end - 1,
1552 &iterator)
1553 ret |= handler(kvm, iterator.rmap, memslot,
1554 iterator.gfn, iterator.level, data);
1555 }
1556 }
1557
1558 return ret;
1559}
1560
1561static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1562 unsigned long data,
1563 int (*handler)(struct kvm *kvm,
1564 struct kvm_rmap_head *rmap_head,
1565 struct kvm_memory_slot *slot,
1566 gfn_t gfn, int level,
1567 unsigned long data))
1568{
1569 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1570}
1571
1572int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1573{
1574 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1575}
1576
1577int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1578{
1579 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1580}
1581
1582void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1583{
1584 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1585}
1586
1587static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1588 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1589 unsigned long data)
1590{
1591 u64 *sptep;
1592 struct rmap_iterator uninitialized_var(iter);
1593 int young = 0;
1594
1595 BUG_ON(!shadow_accessed_mask);
1596
1597 for_each_rmap_spte(rmap_head, &iter, sptep) {
1598 if (*sptep & shadow_accessed_mask) {
1599 young = 1;
1600 clear_bit((ffs(shadow_accessed_mask) - 1),
1601 (unsigned long *)sptep);
1602 }
1603 }
1604
1605 trace_kvm_age_page(gfn, level, slot, young);
1606 return young;
1607}
1608
1609static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1610 struct kvm_memory_slot *slot, gfn_t gfn,
1611 int level, unsigned long data)
1612{
1613 u64 *sptep;
1614 struct rmap_iterator iter;
1615 int young = 0;
1616
1617 /*
1618 * If there's no access bit in the secondary pte set by the
1619 * hardware it's up to gup-fast/gup to set the access bit in
1620 * the primary pte or in the page structure.
1621 */
1622 if (!shadow_accessed_mask)
1623 goto out;
1624
1625 for_each_rmap_spte(rmap_head, &iter, sptep) {
1626 if (*sptep & shadow_accessed_mask) {
1627 young = 1;
1628 break;
1629 }
1630 }
1631out:
1632 return young;
1633}
1634
1635#define RMAP_RECYCLE_THRESHOLD 1000
1636
1637static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1638{
1639 struct kvm_rmap_head *rmap_head;
1640 struct kvm_mmu_page *sp;
1641
1642 sp = page_header(__pa(spte));
1643
1644 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1645
1646 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1647 kvm_flush_remote_tlbs(vcpu->kvm);
1648}
1649
1650int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1651{
1652 /*
1653 * In case of absence of EPT Access and Dirty Bits supports,
1654 * emulate the accessed bit for EPT, by checking if this page has
1655 * an EPT mapping, and clearing it if it does. On the next access,
1656 * a new EPT mapping will be established.
1657 * This has some overhead, but not as much as the cost of swapping
1658 * out actively used pages or breaking up actively used hugepages.
1659 */
1660 if (!shadow_accessed_mask) {
1661 /*
1662 * We are holding the kvm->mmu_lock, and we are blowing up
1663 * shadow PTEs. MMU notifier consumers need to be kept at bay.
1664 * This is correct as long as we don't decouple the mmu_lock
1665 * protected regions (like invalidate_range_start|end does).
1666 */
1667 kvm->mmu_notifier_seq++;
1668 return kvm_handle_hva_range(kvm, start, end, 0,
1669 kvm_unmap_rmapp);
1670 }
1671
1672 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1673}
1674
1675int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1676{
1677 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1678}
1679
1680#ifdef MMU_DEBUG
1681static int is_empty_shadow_page(u64 *spt)
1682{
1683 u64 *pos;
1684 u64 *end;
1685
1686 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1687 if (is_shadow_present_pte(*pos)) {
1688 printk(KERN_ERR "%s: %p %llx\n", __func__,
1689 pos, *pos);
1690 return 0;
1691 }
1692 return 1;
1693}
1694#endif
1695
1696/*
1697 * This value is the sum of all of the kvm instances's
1698 * kvm->arch.n_used_mmu_pages values. We need a global,
1699 * aggregate version in order to make the slab shrinker
1700 * faster
1701 */
1702static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1703{
1704 kvm->arch.n_used_mmu_pages += nr;
1705 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1706}
1707
1708static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1709{
1710 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1711 hlist_del(&sp->hash_link);
1712 list_del(&sp->link);
1713 free_page((unsigned long)sp->spt);
1714 if (!sp->role.direct)
1715 free_page((unsigned long)sp->gfns);
1716 kmem_cache_free(mmu_page_header_cache, sp);
1717}
1718
1719static unsigned kvm_page_table_hashfn(gfn_t gfn)
1720{
1721 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1722}
1723
1724static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1725 struct kvm_mmu_page *sp, u64 *parent_pte)
1726{
1727 if (!parent_pte)
1728 return;
1729
1730 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1731}
1732
1733static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1734 u64 *parent_pte)
1735{
1736 pte_list_remove(parent_pte, &sp->parent_ptes);
1737}
1738
1739static void drop_parent_pte(struct kvm_mmu_page *sp,
1740 u64 *parent_pte)
1741{
1742 mmu_page_remove_parent_pte(sp, parent_pte);
1743 mmu_spte_clear_no_track(parent_pte);
1744}
1745
1746static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1747{
1748 struct kvm_mmu_page *sp;
1749
1750 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1751 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1752 if (!direct)
1753 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1754 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1755
1756 /*
1757 * The active_mmu_pages list is the FIFO list, do not move the
1758 * page until it is zapped. kvm_zap_obsolete_pages depends on
1759 * this feature. See the comments in kvm_zap_obsolete_pages().
1760 */
1761 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1762 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1763 return sp;
1764}
1765
1766static void mark_unsync(u64 *spte);
1767static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1768{
1769 u64 *sptep;
1770 struct rmap_iterator iter;
1771
1772 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1773 mark_unsync(sptep);
1774 }
1775}
1776
1777static void mark_unsync(u64 *spte)
1778{
1779 struct kvm_mmu_page *sp;
1780 unsigned int index;
1781
1782 sp = page_header(__pa(spte));
1783 index = spte - sp->spt;
1784 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1785 return;
1786 if (sp->unsync_children++)
1787 return;
1788 kvm_mmu_mark_parents_unsync(sp);
1789}
1790
1791static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1792 struct kvm_mmu_page *sp)
1793{
1794 return 0;
1795}
1796
1797static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1798{
1799}
1800
1801static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1802 struct kvm_mmu_page *sp, u64 *spte,
1803 const void *pte)
1804{
1805 WARN_ON(1);
1806}
1807
1808#define KVM_PAGE_ARRAY_NR 16
1809
1810struct kvm_mmu_pages {
1811 struct mmu_page_and_offset {
1812 struct kvm_mmu_page *sp;
1813 unsigned int idx;
1814 } page[KVM_PAGE_ARRAY_NR];
1815 unsigned int nr;
1816};
1817
1818static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1819 int idx)
1820{
1821 int i;
1822
1823 if (sp->unsync)
1824 for (i=0; i < pvec->nr; i++)
1825 if (pvec->page[i].sp == sp)
1826 return 0;
1827
1828 pvec->page[pvec->nr].sp = sp;
1829 pvec->page[pvec->nr].idx = idx;
1830 pvec->nr++;
1831 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1832}
1833
1834static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1835{
1836 --sp->unsync_children;
1837 WARN_ON((int)sp->unsync_children < 0);
1838 __clear_bit(idx, sp->unsync_child_bitmap);
1839}
1840
1841static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1842 struct kvm_mmu_pages *pvec)
1843{
1844 int i, ret, nr_unsync_leaf = 0;
1845
1846 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1847 struct kvm_mmu_page *child;
1848 u64 ent = sp->spt[i];
1849
1850 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1851 clear_unsync_child_bit(sp, i);
1852 continue;
1853 }
1854
1855 child = page_header(ent & PT64_BASE_ADDR_MASK);
1856
1857 if (child->unsync_children) {
1858 if (mmu_pages_add(pvec, child, i))
1859 return -ENOSPC;
1860
1861 ret = __mmu_unsync_walk(child, pvec);
1862 if (!ret) {
1863 clear_unsync_child_bit(sp, i);
1864 continue;
1865 } else if (ret > 0) {
1866 nr_unsync_leaf += ret;
1867 } else
1868 return ret;
1869 } else if (child->unsync) {
1870 nr_unsync_leaf++;
1871 if (mmu_pages_add(pvec, child, i))
1872 return -ENOSPC;
1873 } else
1874 clear_unsync_child_bit(sp, i);
1875 }
1876
1877 return nr_unsync_leaf;
1878}
1879
1880#define INVALID_INDEX (-1)
1881
1882static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1883 struct kvm_mmu_pages *pvec)
1884{
1885 pvec->nr = 0;
1886 if (!sp->unsync_children)
1887 return 0;
1888
1889 mmu_pages_add(pvec, sp, INVALID_INDEX);
1890 return __mmu_unsync_walk(sp, pvec);
1891}
1892
1893static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1894{
1895 WARN_ON(!sp->unsync);
1896 trace_kvm_mmu_sync_page(sp);
1897 sp->unsync = 0;
1898 --kvm->stat.mmu_unsync;
1899}
1900
1901static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1902 struct list_head *invalid_list);
1903static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1904 struct list_head *invalid_list);
1905
1906/*
1907 * NOTE: we should pay more attention on the zapped-obsolete page
1908 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1909 * since it has been deleted from active_mmu_pages but still can be found
1910 * at hast list.
1911 *
1912 * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1913 * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1914 * all the obsolete pages.
1915 */
1916#define for_each_gfn_sp(_kvm, _sp, _gfn) \
1917 hlist_for_each_entry(_sp, \
1918 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1919 if ((_sp)->gfn != (_gfn)) {} else
1920
1921#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
1922 for_each_gfn_sp(_kvm, _sp, _gfn) \
1923 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1924
1925/* @sp->gfn should be write-protected at the call site */
1926static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1927 struct list_head *invalid_list)
1928{
1929 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1930 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1931 return false;
1932 }
1933
1934 if (vcpu->arch.mmu.sync_page(vcpu, sp) == 0) {
1935 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1936 return false;
1937 }
1938
1939 return true;
1940}
1941
1942static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
1943 struct list_head *invalid_list,
1944 bool remote_flush, bool local_flush)
1945{
1946 if (!list_empty(invalid_list)) {
1947 kvm_mmu_commit_zap_page(vcpu->kvm, invalid_list);
1948 return;
1949 }
1950
1951 if (remote_flush)
1952 kvm_flush_remote_tlbs(vcpu->kvm);
1953 else if (local_flush)
1954 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1955}
1956
1957#ifdef CONFIG_KVM_MMU_AUDIT
1958#include "mmu_audit.c"
1959#else
1960static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1961static void mmu_audit_disable(void) { }
1962#endif
1963
1964static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1965 struct list_head *invalid_list)
1966{
1967 kvm_unlink_unsync_page(vcpu->kvm, sp);
1968 return __kvm_sync_page(vcpu, sp, invalid_list);
1969}
1970
1971/* @gfn should be write-protected at the call site */
1972static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
1973 struct list_head *invalid_list)
1974{
1975 struct kvm_mmu_page *s;
1976 bool ret = false;
1977
1978 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1979 if (!s->unsync)
1980 continue;
1981
1982 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1983 ret |= kvm_sync_page(vcpu, s, invalid_list);
1984 }
1985
1986 return ret;
1987}
1988
1989struct mmu_page_path {
1990 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL];
1991 unsigned int idx[PT64_ROOT_LEVEL];
1992};
1993
1994#define for_each_sp(pvec, sp, parents, i) \
1995 for (i = mmu_pages_first(&pvec, &parents); \
1996 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1997 i = mmu_pages_next(&pvec, &parents, i))
1998
1999static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2000 struct mmu_page_path *parents,
2001 int i)
2002{
2003 int n;
2004
2005 for (n = i+1; n < pvec->nr; n++) {
2006 struct kvm_mmu_page *sp = pvec->page[n].sp;
2007 unsigned idx = pvec->page[n].idx;
2008 int level = sp->role.level;
2009
2010 parents->idx[level-1] = idx;
2011 if (level == PT_PAGE_TABLE_LEVEL)
2012 break;
2013
2014 parents->parent[level-2] = sp;
2015 }
2016
2017 return n;
2018}
2019
2020static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2021 struct mmu_page_path *parents)
2022{
2023 struct kvm_mmu_page *sp;
2024 int level;
2025
2026 if (pvec->nr == 0)
2027 return 0;
2028
2029 WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2030
2031 sp = pvec->page[0].sp;
2032 level = sp->role.level;
2033 WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2034
2035 parents->parent[level-2] = sp;
2036
2037 /* Also set up a sentinel. Further entries in pvec are all
2038 * children of sp, so this element is never overwritten.
2039 */
2040 parents->parent[level-1] = NULL;
2041 return mmu_pages_next(pvec, parents, 0);
2042}
2043
2044static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2045{
2046 struct kvm_mmu_page *sp;
2047 unsigned int level = 0;
2048
2049 do {
2050 unsigned int idx = parents->idx[level];
2051 sp = parents->parent[level];
2052 if (!sp)
2053 return;
2054
2055 WARN_ON(idx == INVALID_INDEX);
2056 clear_unsync_child_bit(sp, idx);
2057 level++;
2058 } while (!sp->unsync_children);
2059}
2060
2061static void mmu_sync_children(struct kvm_vcpu *vcpu,
2062 struct kvm_mmu_page *parent)
2063{
2064 int i;
2065 struct kvm_mmu_page *sp;
2066 struct mmu_page_path parents;
2067 struct kvm_mmu_pages pages;
2068 LIST_HEAD(invalid_list);
2069 bool flush = false;
2070
2071 while (mmu_unsync_walk(parent, &pages)) {
2072 bool protected = false;
2073
2074 for_each_sp(pages, sp, parents, i)
2075 protected |= rmap_write_protect(vcpu, sp->gfn);
2076
2077 if (protected) {
2078 kvm_flush_remote_tlbs(vcpu->kvm);
2079 flush = false;
2080 }
2081
2082 for_each_sp(pages, sp, parents, i) {
2083 flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2084 mmu_pages_clear_parents(&parents);
2085 }
2086 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2087 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2088 cond_resched_lock(&vcpu->kvm->mmu_lock);
2089 flush = false;
2090 }
2091 }
2092
2093 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2094}
2095
2096static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2097{
2098 atomic_set(&sp->write_flooding_count, 0);
2099}
2100
2101static void clear_sp_write_flooding_count(u64 *spte)
2102{
2103 struct kvm_mmu_page *sp = page_header(__pa(spte));
2104
2105 __clear_sp_write_flooding_count(sp);
2106}
2107
2108static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2109{
2110 return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2111}
2112
2113static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2114 gfn_t gfn,
2115 gva_t gaddr,
2116 unsigned level,
2117 int direct,
2118 unsigned access)
2119{
2120 union kvm_mmu_page_role role;
2121 unsigned quadrant;
2122 struct kvm_mmu_page *sp;
2123 bool need_sync = false;
2124 bool flush = false;
2125 LIST_HEAD(invalid_list);
2126
2127 role = vcpu->arch.mmu.base_role;
2128 role.level = level;
2129 role.direct = direct;
2130 if (role.direct)
2131 role.cr4_pae = 0;
2132 role.access = access;
2133 if (!vcpu->arch.mmu.direct_map
2134 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
2135 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2136 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2137 role.quadrant = quadrant;
2138 }
2139 for_each_gfn_sp(vcpu->kvm, sp, gfn) {
2140 if (is_obsolete_sp(vcpu->kvm, sp))
2141 continue;
2142
2143 if (!need_sync && sp->unsync)
2144 need_sync = true;
2145
2146 if (sp->role.word != role.word)
2147 continue;
2148
2149 if (sp->unsync) {
2150 /* The page is good, but __kvm_sync_page might still end
2151 * up zapping it. If so, break in order to rebuild it.
2152 */
2153 if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2154 break;
2155
2156 WARN_ON(!list_empty(&invalid_list));
2157 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2158 }
2159
2160 if (sp->unsync_children)
2161 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2162
2163 __clear_sp_write_flooding_count(sp);
2164 trace_kvm_mmu_get_page(sp, false);
2165 return sp;
2166 }
2167
2168 ++vcpu->kvm->stat.mmu_cache_miss;
2169
2170 sp = kvm_mmu_alloc_page(vcpu, direct);
2171
2172 sp->gfn = gfn;
2173 sp->role = role;
2174 hlist_add_head(&sp->hash_link,
2175 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2176 if (!direct) {
2177 /*
2178 * we should do write protection before syncing pages
2179 * otherwise the content of the synced shadow page may
2180 * be inconsistent with guest page table.
2181 */
2182 account_shadowed(vcpu->kvm, sp);
2183 if (level == PT_PAGE_TABLE_LEVEL &&
2184 rmap_write_protect(vcpu, gfn))
2185 kvm_flush_remote_tlbs(vcpu->kvm);
2186
2187 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2188 flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2189 }
2190 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2191 clear_page(sp->spt);
2192 trace_kvm_mmu_get_page(sp, true);
2193
2194 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2195 return sp;
2196}
2197
2198static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2199 struct kvm_vcpu *vcpu, u64 addr)
2200{
2201 iterator->addr = addr;
2202 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2203 iterator->level = vcpu->arch.mmu.shadow_root_level;
2204
2205 if (iterator->level == PT64_ROOT_LEVEL &&
2206 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2207 !vcpu->arch.mmu.direct_map)
2208 --iterator->level;
2209
2210 if (iterator->level == PT32E_ROOT_LEVEL) {
2211 iterator->shadow_addr
2212 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2213 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2214 --iterator->level;
2215 if (!iterator->shadow_addr)
2216 iterator->level = 0;
2217 }
2218}
2219
2220static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2221{
2222 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2223 return false;
2224
2225 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2226 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2227 return true;
2228}
2229
2230static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2231 u64 spte)
2232{
2233 if (is_last_spte(spte, iterator->level)) {
2234 iterator->level = 0;
2235 return;
2236 }
2237
2238 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2239 --iterator->level;
2240}
2241
2242static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2243{
2244 return __shadow_walk_next(iterator, *iterator->sptep);
2245}
2246
2247static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2248 struct kvm_mmu_page *sp)
2249{
2250 u64 spte;
2251
2252 BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
2253 VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2254
2255 spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
2256 shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
2257
2258 mmu_spte_set(sptep, spte);
2259
2260 mmu_page_add_parent_pte(vcpu, sp, sptep);
2261
2262 if (sp->unsync_children || sp->unsync)
2263 mark_unsync(sptep);
2264}
2265
2266static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2267 unsigned direct_access)
2268{
2269 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2270 struct kvm_mmu_page *child;
2271
2272 /*
2273 * For the direct sp, if the guest pte's dirty bit
2274 * changed form clean to dirty, it will corrupt the
2275 * sp's access: allow writable in the read-only sp,
2276 * so we should update the spte at this point to get
2277 * a new sp with the correct access.
2278 */
2279 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2280 if (child->role.access == direct_access)
2281 return;
2282
2283 drop_parent_pte(child, sptep);
2284 kvm_flush_remote_tlbs(vcpu->kvm);
2285 }
2286}
2287
2288static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2289 u64 *spte)
2290{
2291 u64 pte;
2292 struct kvm_mmu_page *child;
2293
2294 pte = *spte;
2295 if (is_shadow_present_pte(pte)) {
2296 if (is_last_spte(pte, sp->role.level)) {
2297 drop_spte(kvm, spte);
2298 if (is_large_pte(pte))
2299 --kvm->stat.lpages;
2300 } else {
2301 child = page_header(pte & PT64_BASE_ADDR_MASK);
2302 drop_parent_pte(child, spte);
2303 }
2304 return true;
2305 }
2306
2307 if (is_mmio_spte(pte))
2308 mmu_spte_clear_no_track(spte);
2309
2310 return false;
2311}
2312
2313static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2314 struct kvm_mmu_page *sp)
2315{
2316 unsigned i;
2317
2318 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2319 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2320}
2321
2322static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2323{
2324 u64 *sptep;
2325 struct rmap_iterator iter;
2326
2327 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2328 drop_parent_pte(sp, sptep);
2329}
2330
2331static int mmu_zap_unsync_children(struct kvm *kvm,
2332 struct kvm_mmu_page *parent,
2333 struct list_head *invalid_list)
2334{
2335 int i, zapped = 0;
2336 struct mmu_page_path parents;
2337 struct kvm_mmu_pages pages;
2338
2339 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2340 return 0;
2341
2342 while (mmu_unsync_walk(parent, &pages)) {
2343 struct kvm_mmu_page *sp;
2344
2345 for_each_sp(pages, sp, parents, i) {
2346 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2347 mmu_pages_clear_parents(&parents);
2348 zapped++;
2349 }
2350 }
2351
2352 return zapped;
2353}
2354
2355static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2356 struct list_head *invalid_list)
2357{
2358 int ret;
2359
2360 trace_kvm_mmu_prepare_zap_page(sp);
2361 ++kvm->stat.mmu_shadow_zapped;
2362 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2363 kvm_mmu_page_unlink_children(kvm, sp);
2364 kvm_mmu_unlink_parents(kvm, sp);
2365
2366 if (!sp->role.invalid && !sp->role.direct)
2367 unaccount_shadowed(kvm, sp);
2368
2369 if (sp->unsync)
2370 kvm_unlink_unsync_page(kvm, sp);
2371 if (!sp->root_count) {
2372 /* Count self */
2373 ret++;
2374 list_move(&sp->link, invalid_list);
2375 kvm_mod_used_mmu_pages(kvm, -1);
2376 } else {
2377 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2378
2379 /*
2380 * The obsolete pages can not be used on any vcpus.
2381 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2382 */
2383 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2384 kvm_reload_remote_mmus(kvm);
2385 }
2386
2387 sp->role.invalid = 1;
2388 return ret;
2389}
2390
2391static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2392 struct list_head *invalid_list)
2393{
2394 struct kvm_mmu_page *sp, *nsp;
2395
2396 if (list_empty(invalid_list))
2397 return;
2398
2399 /*
2400 * We need to make sure everyone sees our modifications to
2401 * the page tables and see changes to vcpu->mode here. The barrier
2402 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2403 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2404 *
2405 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2406 * guest mode and/or lockless shadow page table walks.
2407 */
2408 kvm_flush_remote_tlbs(kvm);
2409
2410 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2411 WARN_ON(!sp->role.invalid || sp->root_count);
2412 kvm_mmu_free_page(sp);
2413 }
2414}
2415
2416static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2417 struct list_head *invalid_list)
2418{
2419 struct kvm_mmu_page *sp;
2420
2421 if (list_empty(&kvm->arch.active_mmu_pages))
2422 return false;
2423
2424 sp = list_last_entry(&kvm->arch.active_mmu_pages,
2425 struct kvm_mmu_page, link);
2426 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2427
2428 return true;
2429}
2430
2431/*
2432 * Changing the number of mmu pages allocated to the vm
2433 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2434 */
2435void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2436{
2437 LIST_HEAD(invalid_list);
2438
2439 spin_lock(&kvm->mmu_lock);
2440
2441 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2442 /* Need to free some mmu pages to achieve the goal. */
2443 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2444 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2445 break;
2446
2447 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2448 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2449 }
2450
2451 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2452
2453 spin_unlock(&kvm->mmu_lock);
2454}
2455
2456int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2457{
2458 struct kvm_mmu_page *sp;
2459 LIST_HEAD(invalid_list);
2460 int r;
2461
2462 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2463 r = 0;
2464 spin_lock(&kvm->mmu_lock);
2465 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2466 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2467 sp->role.word);
2468 r = 1;
2469 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2470 }
2471 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2472 spin_unlock(&kvm->mmu_lock);
2473
2474 return r;
2475}
2476EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2477
2478static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2479{
2480 trace_kvm_mmu_unsync_page(sp);
2481 ++vcpu->kvm->stat.mmu_unsync;
2482 sp->unsync = 1;
2483
2484 kvm_mmu_mark_parents_unsync(sp);
2485}
2486
2487static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2488 bool can_unsync)
2489{
2490 struct kvm_mmu_page *sp;
2491
2492 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2493 return true;
2494
2495 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2496 if (!can_unsync)
2497 return true;
2498
2499 if (sp->unsync)
2500 continue;
2501
2502 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2503 kvm_unsync_page(vcpu, sp);
2504 }
2505
2506 return false;
2507}
2508
2509static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2510{
2511 if (pfn_valid(pfn))
2512 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));
2513
2514 return true;
2515}
2516
2517static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2518 unsigned pte_access, int level,
2519 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2520 bool can_unsync, bool host_writable)
2521{
2522 u64 spte;
2523 int ret = 0;
2524
2525 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2526 return 0;
2527
2528 spte = PT_PRESENT_MASK;
2529 if (!speculative)
2530 spte |= shadow_accessed_mask;
2531
2532 if (pte_access & ACC_EXEC_MASK)
2533 spte |= shadow_x_mask;
2534 else
2535 spte |= shadow_nx_mask;
2536
2537 if (pte_access & ACC_USER_MASK)
2538 spte |= shadow_user_mask;
2539
2540 if (level > PT_PAGE_TABLE_LEVEL)
2541 spte |= PT_PAGE_SIZE_MASK;
2542 if (tdp_enabled)
2543 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2544 kvm_is_mmio_pfn(pfn));
2545
2546 if (host_writable)
2547 spte |= SPTE_HOST_WRITEABLE;
2548 else
2549 pte_access &= ~ACC_WRITE_MASK;
2550
2551 spte |= (u64)pfn << PAGE_SHIFT;
2552
2553 if (pte_access & ACC_WRITE_MASK) {
2554
2555 /*
2556 * Other vcpu creates new sp in the window between
2557 * mapping_level() and acquiring mmu-lock. We can
2558 * allow guest to retry the access, the mapping can
2559 * be fixed if guest refault.
2560 */
2561 if (level > PT_PAGE_TABLE_LEVEL &&
2562 mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
2563 goto done;
2564
2565 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2566
2567 /*
2568 * Optimization: for pte sync, if spte was writable the hash
2569 * lookup is unnecessary (and expensive). Write protection
2570 * is responsibility of mmu_get_page / kvm_sync_page.
2571 * Same reasoning can be applied to dirty page accounting.
2572 */
2573 if (!can_unsync && is_writable_pte(*sptep))
2574 goto set_pte;
2575
2576 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2577 pgprintk("%s: found shadow page for %llx, marking ro\n",
2578 __func__, gfn);
2579 ret = 1;
2580 pte_access &= ~ACC_WRITE_MASK;
2581 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2582 }
2583 }
2584
2585 if (pte_access & ACC_WRITE_MASK) {
2586 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2587 spte |= shadow_dirty_mask;
2588 }
2589
2590set_pte:
2591 if (mmu_spte_update(sptep, spte))
2592 kvm_flush_remote_tlbs(vcpu->kvm);
2593done:
2594 return ret;
2595}
2596
2597static bool mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
2598 int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
2599 bool speculative, bool host_writable)
2600{
2601 int was_rmapped = 0;
2602 int rmap_count;
2603 bool emulate = false;
2604
2605 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2606 *sptep, write_fault, gfn);
2607
2608 if (is_shadow_present_pte(*sptep)) {
2609 /*
2610 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2611 * the parent of the now unreachable PTE.
2612 */
2613 if (level > PT_PAGE_TABLE_LEVEL &&
2614 !is_large_pte(*sptep)) {
2615 struct kvm_mmu_page *child;
2616 u64 pte = *sptep;
2617
2618 child = page_header(pte & PT64_BASE_ADDR_MASK);
2619 drop_parent_pte(child, sptep);
2620 kvm_flush_remote_tlbs(vcpu->kvm);
2621 } else if (pfn != spte_to_pfn(*sptep)) {
2622 pgprintk("hfn old %llx new %llx\n",
2623 spte_to_pfn(*sptep), pfn);
2624 drop_spte(vcpu->kvm, sptep);
2625 kvm_flush_remote_tlbs(vcpu->kvm);
2626 } else
2627 was_rmapped = 1;
2628 }
2629
2630 if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2631 true, host_writable)) {
2632 if (write_fault)
2633 emulate = true;
2634 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2635 }
2636
2637 if (unlikely(is_mmio_spte(*sptep)))
2638 emulate = true;
2639
2640 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2641 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2642 is_large_pte(*sptep)? "2MB" : "4kB",
2643 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2644 *sptep, sptep);
2645 if (!was_rmapped && is_large_pte(*sptep))
2646 ++vcpu->kvm->stat.lpages;
2647
2648 if (is_shadow_present_pte(*sptep)) {
2649 if (!was_rmapped) {
2650 rmap_count = rmap_add(vcpu, sptep, gfn);
2651 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2652 rmap_recycle(vcpu, sptep, gfn);
2653 }
2654 }
2655
2656 kvm_release_pfn_clean(pfn);
2657
2658 return emulate;
2659}
2660
2661static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2662 bool no_dirty_log)
2663{
2664 struct kvm_memory_slot *slot;
2665
2666 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2667 if (!slot)
2668 return KVM_PFN_ERR_FAULT;
2669
2670 return gfn_to_pfn_memslot_atomic(slot, gfn);
2671}
2672
2673static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2674 struct kvm_mmu_page *sp,
2675 u64 *start, u64 *end)
2676{
2677 struct page *pages[PTE_PREFETCH_NUM];
2678 struct kvm_memory_slot *slot;
2679 unsigned access = sp->role.access;
2680 int i, ret;
2681 gfn_t gfn;
2682
2683 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2684 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2685 if (!slot)
2686 return -1;
2687
2688 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2689 if (ret <= 0)
2690 return -1;
2691
2692 for (i = 0; i < ret; i++, gfn++, start++)
2693 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
2694 page_to_pfn(pages[i]), true, true);
2695
2696 return 0;
2697}
2698
2699static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2700 struct kvm_mmu_page *sp, u64 *sptep)
2701{
2702 u64 *spte, *start = NULL;
2703 int i;
2704
2705 WARN_ON(!sp->role.direct);
2706
2707 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2708 spte = sp->spt + i;
2709
2710 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2711 if (is_shadow_present_pte(*spte) || spte == sptep) {
2712 if (!start)
2713 continue;
2714 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2715 break;
2716 start = NULL;
2717 } else if (!start)
2718 start = spte;
2719 }
2720}
2721
2722static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2723{
2724 struct kvm_mmu_page *sp;
2725
2726 /*
2727 * Since it's no accessed bit on EPT, it's no way to
2728 * distinguish between actually accessed translations
2729 * and prefetched, so disable pte prefetch if EPT is
2730 * enabled.
2731 */
2732 if (!shadow_accessed_mask)
2733 return;
2734
2735 sp = page_header(__pa(sptep));
2736 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2737 return;
2738
2739 __direct_pte_prefetch(vcpu, sp, sptep);
2740}
2741
2742static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
2743 int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
2744{
2745 struct kvm_shadow_walk_iterator iterator;
2746 struct kvm_mmu_page *sp;
2747 int emulate = 0;
2748 gfn_t pseudo_gfn;
2749
2750 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2751 return 0;
2752
2753 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2754 if (iterator.level == level) {
2755 emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2756 write, level, gfn, pfn, prefault,
2757 map_writable);
2758 direct_pte_prefetch(vcpu, iterator.sptep);
2759 ++vcpu->stat.pf_fixed;
2760 break;
2761 }
2762
2763 drop_large_spte(vcpu, iterator.sptep);
2764 if (!is_shadow_present_pte(*iterator.sptep)) {
2765 u64 base_addr = iterator.addr;
2766
2767 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2768 pseudo_gfn = base_addr >> PAGE_SHIFT;
2769 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2770 iterator.level - 1, 1, ACC_ALL);
2771
2772 link_shadow_page(vcpu, iterator.sptep, sp);
2773 }
2774 }
2775 return emulate;
2776}
2777
2778static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2779{
2780 siginfo_t info;
2781
2782 info.si_signo = SIGBUS;
2783 info.si_errno = 0;
2784 info.si_code = BUS_MCEERR_AR;
2785 info.si_addr = (void __user *)address;
2786 info.si_addr_lsb = PAGE_SHIFT;
2787
2788 send_sig_info(SIGBUS, &info, tsk);
2789}
2790
2791static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2792{
2793 /*
2794 * Do not cache the mmio info caused by writing the readonly gfn
2795 * into the spte otherwise read access on readonly gfn also can
2796 * caused mmio page fault and treat it as mmio access.
2797 * Return 1 to tell kvm to emulate it.
2798 */
2799 if (pfn == KVM_PFN_ERR_RO_FAULT)
2800 return 1;
2801
2802 if (pfn == KVM_PFN_ERR_HWPOISON) {
2803 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2804 return 0;
2805 }
2806
2807 return -EFAULT;
2808}
2809
2810static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2811 gfn_t *gfnp, kvm_pfn_t *pfnp,
2812 int *levelp)
2813{
2814 kvm_pfn_t pfn = *pfnp;
2815 gfn_t gfn = *gfnp;
2816 int level = *levelp;
2817
2818 /*
2819 * Check if it's a transparent hugepage. If this would be an
2820 * hugetlbfs page, level wouldn't be set to
2821 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2822 * here.
2823 */
2824 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
2825 level == PT_PAGE_TABLE_LEVEL &&
2826 PageTransCompoundMap(pfn_to_page(pfn)) &&
2827 !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
2828 unsigned long mask;
2829 /*
2830 * mmu_notifier_retry was successful and we hold the
2831 * mmu_lock here, so the pmd can't become splitting
2832 * from under us, and in turn
2833 * __split_huge_page_refcount() can't run from under
2834 * us and we can safely transfer the refcount from
2835 * PG_tail to PG_head as we switch the pfn to tail to
2836 * head.
2837 */
2838 *levelp = level = PT_DIRECTORY_LEVEL;
2839 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2840 VM_BUG_ON((gfn & mask) != (pfn & mask));
2841 if (pfn & mask) {
2842 gfn &= ~mask;
2843 *gfnp = gfn;
2844 kvm_release_pfn_clean(pfn);
2845 pfn &= ~mask;
2846 kvm_get_pfn(pfn);
2847 *pfnp = pfn;
2848 }
2849 }
2850}
2851
2852static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2853 kvm_pfn_t pfn, unsigned access, int *ret_val)
2854{
2855 /* The pfn is invalid, report the error! */
2856 if (unlikely(is_error_pfn(pfn))) {
2857 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2858 return true;
2859 }
2860
2861 if (unlikely(is_noslot_pfn(pfn)))
2862 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2863
2864 return false;
2865}
2866
2867static bool page_fault_can_be_fast(u32 error_code)
2868{
2869 /*
2870 * Do not fix the mmio spte with invalid generation number which
2871 * need to be updated by slow page fault path.
2872 */
2873 if (unlikely(error_code & PFERR_RSVD_MASK))
2874 return false;
2875
2876 /*
2877 * #PF can be fast only if the shadow page table is present and it
2878 * is caused by write-protect, that means we just need change the
2879 * W bit of the spte which can be done out of mmu-lock.
2880 */
2881 if (!(error_code & PFERR_PRESENT_MASK) ||
2882 !(error_code & PFERR_WRITE_MASK))
2883 return false;
2884
2885 return true;
2886}
2887
2888static bool
2889fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2890 u64 *sptep, u64 spte)
2891{
2892 gfn_t gfn;
2893
2894 WARN_ON(!sp->role.direct);
2895
2896 /*
2897 * The gfn of direct spte is stable since it is calculated
2898 * by sp->gfn.
2899 */
2900 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2901
2902 /*
2903 * Theoretically we could also set dirty bit (and flush TLB) here in
2904 * order to eliminate unnecessary PML logging. See comments in
2905 * set_spte. But fast_page_fault is very unlikely to happen with PML
2906 * enabled, so we do not do this. This might result in the same GPA
2907 * to be logged in PML buffer again when the write really happens, and
2908 * eventually to be called by mark_page_dirty twice. But it's also no
2909 * harm. This also avoids the TLB flush needed after setting dirty bit
2910 * so non-PML cases won't be impacted.
2911 *
2912 * Compare with set_spte where instead shadow_dirty_mask is set.
2913 */
2914 if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2915 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2916
2917 return true;
2918}
2919
2920/*
2921 * Return value:
2922 * - true: let the vcpu to access on the same address again.
2923 * - false: let the real page fault path to fix it.
2924 */
2925static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2926 u32 error_code)
2927{
2928 struct kvm_shadow_walk_iterator iterator;
2929 struct kvm_mmu_page *sp;
2930 bool ret = false;
2931 u64 spte = 0ull;
2932
2933 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2934 return false;
2935
2936 if (!page_fault_can_be_fast(error_code))
2937 return false;
2938
2939 walk_shadow_page_lockless_begin(vcpu);
2940 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2941 if (!is_shadow_present_pte(spte) || iterator.level < level)
2942 break;
2943
2944 /*
2945 * If the mapping has been changed, let the vcpu fault on the
2946 * same address again.
2947 */
2948 if (!is_shadow_present_pte(spte)) {
2949 ret = true;
2950 goto exit;
2951 }
2952
2953 sp = page_header(__pa(iterator.sptep));
2954 if (!is_last_spte(spte, sp->role.level))
2955 goto exit;
2956
2957 /*
2958 * Check if it is a spurious fault caused by TLB lazily flushed.
2959 *
2960 * Need not check the access of upper level table entries since
2961 * they are always ACC_ALL.
2962 */
2963 if (is_writable_pte(spte)) {
2964 ret = true;
2965 goto exit;
2966 }
2967
2968 /*
2969 * Currently, to simplify the code, only the spte write-protected
2970 * by dirty-log can be fast fixed.
2971 */
2972 if (!spte_is_locklessly_modifiable(spte))
2973 goto exit;
2974
2975 /*
2976 * Do not fix write-permission on the large spte since we only dirty
2977 * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
2978 * that means other pages are missed if its slot is dirty-logged.
2979 *
2980 * Instead, we let the slow page fault path create a normal spte to
2981 * fix the access.
2982 *
2983 * See the comments in kvm_arch_commit_memory_region().
2984 */
2985 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2986 goto exit;
2987
2988 /*
2989 * Currently, fast page fault only works for direct mapping since
2990 * the gfn is not stable for indirect shadow page.
2991 * See Documentation/virtual/kvm/locking.txt to get more detail.
2992 */
2993 ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
2994exit:
2995 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2996 spte, ret);
2997 walk_shadow_page_lockless_end(vcpu);
2998
2999 return ret;
3000}
3001
3002static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3003 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
3004static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
3005
3006static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
3007 gfn_t gfn, bool prefault)
3008{
3009 int r;
3010 int level;
3011 bool force_pt_level = false;
3012 kvm_pfn_t pfn;
3013 unsigned long mmu_seq;
3014 bool map_writable, write = error_code & PFERR_WRITE_MASK;
3015
3016 level = mapping_level(vcpu, gfn, &force_pt_level);
3017 if (likely(!force_pt_level)) {
3018 /*
3019 * This path builds a PAE pagetable - so we can map
3020 * 2mb pages at maximum. Therefore check if the level
3021 * is larger than that.
3022 */
3023 if (level > PT_DIRECTORY_LEVEL)
3024 level = PT_DIRECTORY_LEVEL;
3025
3026 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3027 }
3028
3029 if (fast_page_fault(vcpu, v, level, error_code))
3030 return 0;
3031
3032 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3033 smp_rmb();
3034
3035 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3036 return 0;
3037
3038 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3039 return r;
3040
3041 spin_lock(&vcpu->kvm->mmu_lock);
3042 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3043 goto out_unlock;
3044 make_mmu_pages_available(vcpu);
3045 if (likely(!force_pt_level))
3046 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3047 r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3048 spin_unlock(&vcpu->kvm->mmu_lock);
3049
3050 return r;
3051
3052out_unlock:
3053 spin_unlock(&vcpu->kvm->mmu_lock);
3054 kvm_release_pfn_clean(pfn);
3055 return 0;
3056}
3057
3058
3059static void mmu_free_roots(struct kvm_vcpu *vcpu)
3060{
3061 int i;
3062 struct kvm_mmu_page *sp;
3063 LIST_HEAD(invalid_list);
3064
3065 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3066 return;
3067
3068 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
3069 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
3070 vcpu->arch.mmu.direct_map)) {
3071 hpa_t root = vcpu->arch.mmu.root_hpa;
3072
3073 spin_lock(&vcpu->kvm->mmu_lock);
3074 sp = page_header(root);
3075 --sp->root_count;
3076 if (!sp->root_count && sp->role.invalid) {
3077 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3078 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3079 }
3080 spin_unlock(&vcpu->kvm->mmu_lock);
3081 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3082 return;
3083 }
3084
3085 spin_lock(&vcpu->kvm->mmu_lock);
3086 for (i = 0; i < 4; ++i) {
3087 hpa_t root = vcpu->arch.mmu.pae_root[i];
3088
3089 if (root) {
3090 root &= PT64_BASE_ADDR_MASK;
3091 sp = page_header(root);
3092 --sp->root_count;
3093 if (!sp->root_count && sp->role.invalid)
3094 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3095 &invalid_list);
3096 }
3097 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3098 }
3099 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3100 spin_unlock(&vcpu->kvm->mmu_lock);
3101 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3102}
3103
3104static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3105{
3106 int ret = 0;
3107
3108 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3109 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3110 ret = 1;
3111 }
3112
3113 return ret;
3114}
3115
3116static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3117{
3118 struct kvm_mmu_page *sp;
3119 unsigned i;
3120
3121 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3122 spin_lock(&vcpu->kvm->mmu_lock);
3123 make_mmu_pages_available(vcpu);
3124 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL, 1, ACC_ALL);
3125 ++sp->root_count;
3126 spin_unlock(&vcpu->kvm->mmu_lock);
3127 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3128 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3129 for (i = 0; i < 4; ++i) {
3130 hpa_t root = vcpu->arch.mmu.pae_root[i];
3131
3132 MMU_WARN_ON(VALID_PAGE(root));
3133 spin_lock(&vcpu->kvm->mmu_lock);
3134 make_mmu_pages_available(vcpu);
3135 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3136 i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3137 root = __pa(sp->spt);
3138 ++sp->root_count;
3139 spin_unlock(&vcpu->kvm->mmu_lock);
3140 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
3141 }
3142 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3143 } else
3144 BUG();
3145
3146 return 0;
3147}
3148
3149static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3150{
3151 struct kvm_mmu_page *sp;
3152 u64 pdptr, pm_mask;
3153 gfn_t root_gfn;
3154 int i;
3155
3156 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3157
3158 if (mmu_check_root(vcpu, root_gfn))
3159 return 1;
3160
3161 /*
3162 * Do we shadow a long mode page table? If so we need to
3163 * write-protect the guests page table root.
3164 */
3165 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3166 hpa_t root = vcpu->arch.mmu.root_hpa;
3167
3168 MMU_WARN_ON(VALID_PAGE(root));
3169
3170 spin_lock(&vcpu->kvm->mmu_lock);
3171 make_mmu_pages_available(vcpu);
3172 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3173 0, ACC_ALL);
3174 root = __pa(sp->spt);
3175 ++sp->root_count;
3176 spin_unlock(&vcpu->kvm->mmu_lock);
3177 vcpu->arch.mmu.root_hpa = root;
3178 return 0;
3179 }
3180
3181 /*
3182 * We shadow a 32 bit page table. This may be a legacy 2-level
3183 * or a PAE 3-level page table. In either case we need to be aware that
3184 * the shadow page table may be a PAE or a long mode page table.
3185 */
3186 pm_mask = PT_PRESENT_MASK;
3187 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3188 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3189
3190 for (i = 0; i < 4; ++i) {
3191 hpa_t root = vcpu->arch.mmu.pae_root[i];
3192
3193 MMU_WARN_ON(VALID_PAGE(root));
3194 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3195 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3196 if (!is_present_gpte(pdptr)) {
3197 vcpu->arch.mmu.pae_root[i] = 0;
3198 continue;
3199 }
3200 root_gfn = pdptr >> PAGE_SHIFT;
3201 if (mmu_check_root(vcpu, root_gfn))
3202 return 1;
3203 }
3204 spin_lock(&vcpu->kvm->mmu_lock);
3205 make_mmu_pages_available(vcpu);
3206 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3207 0, ACC_ALL);
3208 root = __pa(sp->spt);
3209 ++sp->root_count;
3210 spin_unlock(&vcpu->kvm->mmu_lock);
3211
3212 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3213 }
3214 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3215
3216 /*
3217 * If we shadow a 32 bit page table with a long mode page
3218 * table we enter this path.
3219 */
3220 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3221 if (vcpu->arch.mmu.lm_root == NULL) {
3222 /*
3223 * The additional page necessary for this is only
3224 * allocated on demand.
3225 */
3226
3227 u64 *lm_root;
3228
3229 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3230 if (lm_root == NULL)
3231 return 1;
3232
3233 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3234
3235 vcpu->arch.mmu.lm_root = lm_root;
3236 }
3237
3238 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3239 }
3240
3241 return 0;
3242}
3243
3244static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3245{
3246 if (vcpu->arch.mmu.direct_map)
3247 return mmu_alloc_direct_roots(vcpu);
3248 else
3249 return mmu_alloc_shadow_roots(vcpu);
3250}
3251
3252static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3253{
3254 int i;
3255 struct kvm_mmu_page *sp;
3256
3257 if (vcpu->arch.mmu.direct_map)
3258 return;
3259
3260 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3261 return;
3262
3263 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3264 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3265 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3266 hpa_t root = vcpu->arch.mmu.root_hpa;
3267 sp = page_header(root);
3268 mmu_sync_children(vcpu, sp);
3269 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3270 return;
3271 }
3272 for (i = 0; i < 4; ++i) {
3273 hpa_t root = vcpu->arch.mmu.pae_root[i];
3274
3275 if (root && VALID_PAGE(root)) {
3276 root &= PT64_BASE_ADDR_MASK;
3277 sp = page_header(root);
3278 mmu_sync_children(vcpu, sp);
3279 }
3280 }
3281 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3282}
3283
3284void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3285{
3286 spin_lock(&vcpu->kvm->mmu_lock);
3287 mmu_sync_roots(vcpu);
3288 spin_unlock(&vcpu->kvm->mmu_lock);
3289}
3290EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3291
3292static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3293 u32 access, struct x86_exception *exception)
3294{
3295 if (exception)
3296 exception->error_code = 0;
3297 return vaddr;
3298}
3299
3300static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3301 u32 access,
3302 struct x86_exception *exception)
3303{
3304 if (exception)
3305 exception->error_code = 0;
3306 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3307}
3308
3309static bool
3310__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3311{
3312 int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3313
3314 return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3315 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3316}
3317
3318static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3319{
3320 return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3321}
3322
3323static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3324{
3325 return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3326}
3327
3328static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3329{
3330 if (direct)
3331 return vcpu_match_mmio_gpa(vcpu, addr);
3332
3333 return vcpu_match_mmio_gva(vcpu, addr);
3334}
3335
3336/* return true if reserved bit is detected on spte. */
3337static bool
3338walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3339{
3340 struct kvm_shadow_walk_iterator iterator;
3341 u64 sptes[PT64_ROOT_LEVEL], spte = 0ull;
3342 int root, leaf;
3343 bool reserved = false;
3344
3345 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3346 goto exit;
3347
3348 walk_shadow_page_lockless_begin(vcpu);
3349
3350 for (shadow_walk_init(&iterator, vcpu, addr),
3351 leaf = root = iterator.level;
3352 shadow_walk_okay(&iterator);
3353 __shadow_walk_next(&iterator, spte)) {
3354 spte = mmu_spte_get_lockless(iterator.sptep);
3355
3356 sptes[leaf - 1] = spte;
3357 leaf--;
3358
3359 if (!is_shadow_present_pte(spte))
3360 break;
3361
3362 reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
3363 iterator.level);
3364 }
3365
3366 walk_shadow_page_lockless_end(vcpu);
3367
3368 if (reserved) {
3369 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3370 __func__, addr);
3371 while (root > leaf) {
3372 pr_err("------ spte 0x%llx level %d.\n",
3373 sptes[root - 1], root);
3374 root--;
3375 }
3376 }
3377exit:
3378 *sptep = spte;
3379 return reserved;
3380}
3381
3382int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3383{
3384 u64 spte;
3385 bool reserved;
3386
3387 if (mmio_info_in_cache(vcpu, addr, direct))
3388 return RET_MMIO_PF_EMULATE;
3389
3390 reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3391 if (WARN_ON(reserved))
3392 return RET_MMIO_PF_BUG;
3393
3394 if (is_mmio_spte(spte)) {
3395 gfn_t gfn = get_mmio_spte_gfn(spte);
3396 unsigned access = get_mmio_spte_access(spte);
3397
3398 if (!check_mmio_spte(vcpu, spte))
3399 return RET_MMIO_PF_INVALID;
3400
3401 if (direct)
3402 addr = 0;
3403
3404 trace_handle_mmio_page_fault(addr, gfn, access);
3405 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3406 return RET_MMIO_PF_EMULATE;
3407 }
3408
3409 /*
3410 * If the page table is zapped by other cpus, let CPU fault again on
3411 * the address.
3412 */
3413 return RET_MMIO_PF_RETRY;
3414}
3415EXPORT_SYMBOL_GPL(handle_mmio_page_fault);
3416
3417static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3418 u32 error_code, gfn_t gfn)
3419{
3420 if (unlikely(error_code & PFERR_RSVD_MASK))
3421 return false;
3422
3423 if (!(error_code & PFERR_PRESENT_MASK) ||
3424 !(error_code & PFERR_WRITE_MASK))
3425 return false;
3426
3427 /*
3428 * guest is writing the page which is write tracked which can
3429 * not be fixed by page fault handler.
3430 */
3431 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3432 return true;
3433
3434 return false;
3435}
3436
3437static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3438{
3439 struct kvm_shadow_walk_iterator iterator;
3440 u64 spte;
3441
3442 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3443 return;
3444
3445 walk_shadow_page_lockless_begin(vcpu);
3446 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3447 clear_sp_write_flooding_count(iterator.sptep);
3448 if (!is_shadow_present_pte(spte))
3449 break;
3450 }
3451 walk_shadow_page_lockless_end(vcpu);
3452}
3453
3454static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3455 u32 error_code, bool prefault)
3456{
3457 gfn_t gfn = gva >> PAGE_SHIFT;
3458 int r;
3459
3460 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3461
3462 if (page_fault_handle_page_track(vcpu, error_code, gfn))
3463 return 1;
3464
3465 r = mmu_topup_memory_caches(vcpu);
3466 if (r)
3467 return r;
3468
3469 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3470
3471
3472 return nonpaging_map(vcpu, gva & PAGE_MASK,
3473 error_code, gfn, prefault);
3474}
3475
3476static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3477{
3478 struct kvm_arch_async_pf arch;
3479
3480 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3481 arch.gfn = gfn;
3482 arch.direct_map = vcpu->arch.mmu.direct_map;
3483 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3484
3485 return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3486}
3487
3488static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3489{
3490 if (unlikely(!lapic_in_kernel(vcpu) ||
3491 kvm_event_needs_reinjection(vcpu)))
3492 return false;
3493
3494 return kvm_x86_ops->interrupt_allowed(vcpu);
3495}
3496
3497static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3498 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
3499{
3500 struct kvm_memory_slot *slot;
3501 bool async;
3502
3503 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3504 async = false;
3505 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3506 if (!async)
3507 return false; /* *pfn has correct page already */
3508
3509 if (!prefault && can_do_async_pf(vcpu)) {
3510 trace_kvm_try_async_get_page(gva, gfn);
3511 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3512 trace_kvm_async_pf_doublefault(gva, gfn);
3513 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3514 return true;
3515 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3516 return true;
3517 }
3518
3519 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3520 return false;
3521}
3522
3523static bool
3524check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
3525{
3526 int page_num = KVM_PAGES_PER_HPAGE(level);
3527
3528 gfn &= ~(page_num - 1);
3529
3530 return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
3531}
3532
3533static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3534 bool prefault)
3535{
3536 kvm_pfn_t pfn;
3537 int r;
3538 int level;
3539 bool force_pt_level;
3540 gfn_t gfn = gpa >> PAGE_SHIFT;
3541 unsigned long mmu_seq;
3542 int write = error_code & PFERR_WRITE_MASK;
3543 bool map_writable;
3544
3545 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3546
3547 if (page_fault_handle_page_track(vcpu, error_code, gfn))
3548 return 1;
3549
3550 r = mmu_topup_memory_caches(vcpu);
3551 if (r)
3552 return r;
3553
3554 force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
3555 PT_DIRECTORY_LEVEL);
3556 level = mapping_level(vcpu, gfn, &force_pt_level);
3557 if (likely(!force_pt_level)) {
3558 if (level > PT_DIRECTORY_LEVEL &&
3559 !check_hugepage_cache_consistency(vcpu, gfn, level))
3560 level = PT_DIRECTORY_LEVEL;
3561 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3562 }
3563
3564 if (fast_page_fault(vcpu, gpa, level, error_code))
3565 return 0;
3566
3567 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3568 smp_rmb();
3569
3570 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3571 return 0;
3572
3573 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3574 return r;
3575
3576 spin_lock(&vcpu->kvm->mmu_lock);
3577 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3578 goto out_unlock;
3579 make_mmu_pages_available(vcpu);
3580 if (likely(!force_pt_level))
3581 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3582 r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3583 spin_unlock(&vcpu->kvm->mmu_lock);
3584
3585 return r;
3586
3587out_unlock:
3588 spin_unlock(&vcpu->kvm->mmu_lock);
3589 kvm_release_pfn_clean(pfn);
3590 return 0;
3591}
3592
3593static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3594 struct kvm_mmu *context)
3595{
3596 context->page_fault = nonpaging_page_fault;
3597 context->gva_to_gpa = nonpaging_gva_to_gpa;
3598 context->sync_page = nonpaging_sync_page;
3599 context->invlpg = nonpaging_invlpg;
3600 context->update_pte = nonpaging_update_pte;
3601 context->root_level = 0;
3602 context->shadow_root_level = PT32E_ROOT_LEVEL;
3603 context->root_hpa = INVALID_PAGE;
3604 context->direct_map = true;
3605 context->nx = false;
3606}
3607
3608void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
3609{
3610 mmu_free_roots(vcpu);
3611}
3612
3613static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3614{
3615 return kvm_read_cr3(vcpu);
3616}
3617
3618static void inject_page_fault(struct kvm_vcpu *vcpu,
3619 struct x86_exception *fault)
3620{
3621 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3622}
3623
3624static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3625 unsigned access, int *nr_present)
3626{
3627 if (unlikely(is_mmio_spte(*sptep))) {
3628 if (gfn != get_mmio_spte_gfn(*sptep)) {
3629 mmu_spte_clear_no_track(sptep);
3630 return true;
3631 }
3632
3633 (*nr_present)++;
3634 mark_mmio_spte(vcpu, sptep, gfn, access);
3635 return true;
3636 }
3637
3638 return false;
3639}
3640
3641static inline bool is_last_gpte(struct kvm_mmu *mmu,
3642 unsigned level, unsigned gpte)
3643{
3644 /*
3645 * PT_PAGE_TABLE_LEVEL always terminates. The RHS has bit 7 set
3646 * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
3647 * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
3648 */
3649 gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
3650
3651 /*
3652 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
3653 * If it is clear, there are no large pages at this level, so clear
3654 * PT_PAGE_SIZE_MASK in gpte if that is the case.
3655 */
3656 gpte &= level - mmu->last_nonleaf_level;
3657
3658 return gpte & PT_PAGE_SIZE_MASK;
3659}
3660
3661#define PTTYPE_EPT 18 /* arbitrary */
3662#define PTTYPE PTTYPE_EPT
3663#include "paging_tmpl.h"
3664#undef PTTYPE
3665
3666#define PTTYPE 64
3667#include "paging_tmpl.h"
3668#undef PTTYPE
3669
3670#define PTTYPE 32
3671#include "paging_tmpl.h"
3672#undef PTTYPE
3673
3674static void
3675__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3676 struct rsvd_bits_validate *rsvd_check,
3677 int maxphyaddr, int level, bool nx, bool gbpages,
3678 bool pse, bool amd)
3679{
3680 u64 exb_bit_rsvd = 0;
3681 u64 gbpages_bit_rsvd = 0;
3682 u64 nonleaf_bit8_rsvd = 0;
3683
3684 rsvd_check->bad_mt_xwr = 0;
3685
3686 if (!nx)
3687 exb_bit_rsvd = rsvd_bits(63, 63);
3688 if (!gbpages)
3689 gbpages_bit_rsvd = rsvd_bits(7, 7);
3690
3691 /*
3692 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3693 * leaf entries) on AMD CPUs only.
3694 */
3695 if (amd)
3696 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3697
3698 switch (level) {
3699 case PT32_ROOT_LEVEL:
3700 /* no rsvd bits for 2 level 4K page table entries */
3701 rsvd_check->rsvd_bits_mask[0][1] = 0;
3702 rsvd_check->rsvd_bits_mask[0][0] = 0;
3703 rsvd_check->rsvd_bits_mask[1][0] =
3704 rsvd_check->rsvd_bits_mask[0][0];
3705
3706 if (!pse) {
3707 rsvd_check->rsvd_bits_mask[1][1] = 0;
3708 break;
3709 }
3710
3711 if (is_cpuid_PSE36())
3712 /* 36bits PSE 4MB page */
3713 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3714 else
3715 /* 32 bits PSE 4MB page */
3716 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3717 break;
3718 case PT32E_ROOT_LEVEL:
3719 rsvd_check->rsvd_bits_mask[0][2] =
3720 rsvd_bits(maxphyaddr, 63) |
3721 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
3722 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3723 rsvd_bits(maxphyaddr, 62); /* PDE */
3724 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3725 rsvd_bits(maxphyaddr, 62); /* PTE */
3726 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3727 rsvd_bits(maxphyaddr, 62) |
3728 rsvd_bits(13, 20); /* large page */
3729 rsvd_check->rsvd_bits_mask[1][0] =
3730 rsvd_check->rsvd_bits_mask[0][0];
3731 break;
3732 case PT64_ROOT_LEVEL:
3733 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3734 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
3735 rsvd_bits(maxphyaddr, 51);
3736 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3737 nonleaf_bit8_rsvd | gbpages_bit_rsvd |
3738 rsvd_bits(maxphyaddr, 51);
3739 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3740 rsvd_bits(maxphyaddr, 51);
3741 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3742 rsvd_bits(maxphyaddr, 51);
3743 rsvd_check->rsvd_bits_mask[1][3] =
3744 rsvd_check->rsvd_bits_mask[0][3];
3745 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3746 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
3747 rsvd_bits(13, 29);
3748 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3749 rsvd_bits(maxphyaddr, 51) |
3750 rsvd_bits(13, 20); /* large page */
3751 rsvd_check->rsvd_bits_mask[1][0] =
3752 rsvd_check->rsvd_bits_mask[0][0];
3753 break;
3754 }
3755}
3756
3757static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3758 struct kvm_mmu *context)
3759{
3760 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
3761 cpuid_maxphyaddr(vcpu), context->root_level,
3762 context->nx, guest_cpuid_has_gbpages(vcpu),
3763 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
3764}
3765
3766static void
3767__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
3768 int maxphyaddr, bool execonly)
3769{
3770 u64 bad_mt_xwr;
3771
3772 rsvd_check->rsvd_bits_mask[0][3] =
3773 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
3774 rsvd_check->rsvd_bits_mask[0][2] =
3775 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3776 rsvd_check->rsvd_bits_mask[0][1] =
3777 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3778 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
3779
3780 /* large page */
3781 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
3782 rsvd_check->rsvd_bits_mask[1][2] =
3783 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
3784 rsvd_check->rsvd_bits_mask[1][1] =
3785 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
3786 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
3787
3788 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
3789 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
3790 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
3791 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
3792 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
3793 if (!execonly) {
3794 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
3795 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
3796 }
3797 rsvd_check->bad_mt_xwr = bad_mt_xwr;
3798}
3799
3800static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
3801 struct kvm_mmu *context, bool execonly)
3802{
3803 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
3804 cpuid_maxphyaddr(vcpu), execonly);
3805}
3806
3807/*
3808 * the page table on host is the shadow page table for the page
3809 * table in guest or amd nested guest, its mmu features completely
3810 * follow the features in guest.
3811 */
3812void
3813reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3814{
3815 bool uses_nx = context->nx || context->base_role.smep_andnot_wp;
3816
3817 /*
3818 * Passing "true" to the last argument is okay; it adds a check
3819 * on bit 8 of the SPTEs which KVM doesn't use anyway.
3820 */
3821 __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
3822 boot_cpu_data.x86_phys_bits,
3823 context->shadow_root_level, uses_nx,
3824 guest_cpuid_has_gbpages(vcpu), is_pse(vcpu),
3825 true);
3826}
3827EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
3828
3829static inline bool boot_cpu_is_amd(void)
3830{
3831 WARN_ON_ONCE(!tdp_enabled);
3832 return shadow_x_mask == 0;
3833}
3834
3835/*
3836 * the direct page table on host, use as much mmu features as
3837 * possible, however, kvm currently does not do execution-protection.
3838 */
3839static void
3840reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
3841 struct kvm_mmu *context)
3842{
3843 if (boot_cpu_is_amd())
3844 __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
3845 boot_cpu_data.x86_phys_bits,
3846 context->shadow_root_level, false,
3847 cpu_has_gbpages, true, true);
3848 else
3849 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
3850 boot_cpu_data.x86_phys_bits,
3851 false);
3852
3853}
3854
3855/*
3856 * as the comments in reset_shadow_zero_bits_mask() except it
3857 * is the shadow page table for intel nested guest.
3858 */
3859static void
3860reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
3861 struct kvm_mmu *context, bool execonly)
3862{
3863 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
3864 boot_cpu_data.x86_phys_bits, execonly);
3865}
3866
3867static void update_permission_bitmask(struct kvm_vcpu *vcpu,
3868 struct kvm_mmu *mmu, bool ept)
3869{
3870 unsigned bit, byte, pfec;
3871 u8 map;
3872 bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
3873
3874 cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3875 cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3876 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3877 pfec = byte << 1;
3878 map = 0;
3879 wf = pfec & PFERR_WRITE_MASK;
3880 uf = pfec & PFERR_USER_MASK;
3881 ff = pfec & PFERR_FETCH_MASK;
3882 /*
3883 * PFERR_RSVD_MASK bit is set in PFEC if the access is not
3884 * subject to SMAP restrictions, and cleared otherwise. The
3885 * bit is only meaningful if the SMAP bit is set in CR4.
3886 */
3887 smapf = !(pfec & PFERR_RSVD_MASK);
3888 for (bit = 0; bit < 8; ++bit) {
3889 x = bit & ACC_EXEC_MASK;
3890 w = bit & ACC_WRITE_MASK;
3891 u = bit & ACC_USER_MASK;
3892
3893 if (!ept) {
3894 /* Not really needed: !nx will cause pte.nx to fault */
3895 x |= !mmu->nx;
3896 /* Allow supervisor writes if !cr0.wp */
3897 w |= !is_write_protection(vcpu) && !uf;
3898 /* Disallow supervisor fetches of user code if cr4.smep */
3899 x &= !(cr4_smep && u && !uf);
3900
3901 /*
3902 * SMAP:kernel-mode data accesses from user-mode
3903 * mappings should fault. A fault is considered
3904 * as a SMAP violation if all of the following
3905 * conditions are ture:
3906 * - X86_CR4_SMAP is set in CR4
3907 * - An user page is accessed
3908 * - Page fault in kernel mode
3909 * - if CPL = 3 or X86_EFLAGS_AC is clear
3910 *
3911 * Here, we cover the first three conditions.
3912 * The fourth is computed dynamically in
3913 * permission_fault() and is in smapf.
3914 *
3915 * Also, SMAP does not affect instruction
3916 * fetches, add the !ff check here to make it
3917 * clearer.
3918 */
3919 smap = cr4_smap && u && !uf && !ff;
3920 } else
3921 /* Not really needed: no U/S accesses on ept */
3922 u = 1;
3923
3924 fault = (ff && !x) || (uf && !u) || (wf && !w) ||
3925 (smapf && smap);
3926 map |= fault << bit;
3927 }
3928 mmu->permissions[byte] = map;
3929 }
3930}
3931
3932/*
3933* PKU is an additional mechanism by which the paging controls access to
3934* user-mode addresses based on the value in the PKRU register. Protection
3935* key violations are reported through a bit in the page fault error code.
3936* Unlike other bits of the error code, the PK bit is not known at the
3937* call site of e.g. gva_to_gpa; it must be computed directly in
3938* permission_fault based on two bits of PKRU, on some machine state (CR4,
3939* CR0, EFER, CPL), and on other bits of the error code and the page tables.
3940*
3941* In particular the following conditions come from the error code, the
3942* page tables and the machine state:
3943* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
3944* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
3945* - PK is always zero if U=0 in the page tables
3946* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
3947*
3948* The PKRU bitmask caches the result of these four conditions. The error
3949* code (minus the P bit) and the page table's U bit form an index into the
3950* PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
3951* with the two bits of the PKRU register corresponding to the protection key.
3952* For the first three conditions above the bits will be 00, thus masking
3953* away both AD and WD. For all reads or if the last condition holds, WD
3954* only will be masked away.
3955*/
3956static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3957 bool ept)
3958{
3959 unsigned bit;
3960 bool wp;
3961
3962 if (ept) {
3963 mmu->pkru_mask = 0;
3964 return;
3965 }
3966
3967 /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
3968 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
3969 mmu->pkru_mask = 0;
3970 return;
3971 }
3972
3973 wp = is_write_protection(vcpu);
3974
3975 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
3976 unsigned pfec, pkey_bits;
3977 bool check_pkey, check_write, ff, uf, wf, pte_user;
3978
3979 pfec = bit << 1;
3980 ff = pfec & PFERR_FETCH_MASK;
3981 uf = pfec & PFERR_USER_MASK;
3982 wf = pfec & PFERR_WRITE_MASK;
3983
3984 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
3985 pte_user = pfec & PFERR_RSVD_MASK;
3986
3987 /*
3988 * Only need to check the access which is not an
3989 * instruction fetch and is to a user page.
3990 */
3991 check_pkey = (!ff && pte_user);
3992 /*
3993 * write access is controlled by PKRU if it is a
3994 * user access or CR0.WP = 1.
3995 */
3996 check_write = check_pkey && wf && (uf || wp);
3997
3998 /* PKRU.AD stops both read and write access. */
3999 pkey_bits = !!check_pkey;
4000 /* PKRU.WD stops write access. */
4001 pkey_bits |= (!!check_write) << 1;
4002
4003 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4004 }
4005}
4006
4007static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4008{
4009 unsigned root_level = mmu->root_level;
4010
4011 mmu->last_nonleaf_level = root_level;
4012 if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4013 mmu->last_nonleaf_level++;
4014}
4015
4016static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4017 struct kvm_mmu *context,
4018 int level)
4019{
4020 context->nx = is_nx(vcpu);
4021 context->root_level = level;
4022
4023 reset_rsvds_bits_mask(vcpu, context);
4024 update_permission_bitmask(vcpu, context, false);
4025 update_pkru_bitmask(vcpu, context, false);
4026 update_last_nonleaf_level(vcpu, context);
4027
4028 MMU_WARN_ON(!is_pae(vcpu));
4029 context->page_fault = paging64_page_fault;
4030 context->gva_to_gpa = paging64_gva_to_gpa;
4031 context->sync_page = paging64_sync_page;
4032 context->invlpg = paging64_invlpg;
4033 context->update_pte = paging64_update_pte;
4034 context->shadow_root_level = level;
4035 context->root_hpa = INVALID_PAGE;
4036 context->direct_map = false;
4037}
4038
4039static void paging64_init_context(struct kvm_vcpu *vcpu,
4040 struct kvm_mmu *context)
4041{
4042 paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
4043}
4044
4045static void paging32_init_context(struct kvm_vcpu *vcpu,
4046 struct kvm_mmu *context)
4047{
4048 context->nx = false;
4049 context->root_level = PT32_ROOT_LEVEL;
4050
4051 reset_rsvds_bits_mask(vcpu, context);
4052 update_permission_bitmask(vcpu, context, false);
4053 update_pkru_bitmask(vcpu, context, false);
4054 update_last_nonleaf_level(vcpu, context);
4055
4056 context->page_fault = paging32_page_fault;
4057 context->gva_to_gpa = paging32_gva_to_gpa;
4058 context->sync_page = paging32_sync_page;
4059 context->invlpg = paging32_invlpg;
4060 context->update_pte = paging32_update_pte;
4061 context->shadow_root_level = PT32E_ROOT_LEVEL;
4062 context->root_hpa = INVALID_PAGE;
4063 context->direct_map = false;
4064}
4065
4066static void paging32E_init_context(struct kvm_vcpu *vcpu,
4067 struct kvm_mmu *context)
4068{
4069 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4070}
4071
4072static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4073{
4074 struct kvm_mmu *context = &vcpu->arch.mmu;
4075
4076 context->base_role.word = 0;
4077 context->base_role.smm = is_smm(vcpu);
4078 context->page_fault = tdp_page_fault;
4079 context->sync_page = nonpaging_sync_page;
4080 context->invlpg = nonpaging_invlpg;
4081 context->update_pte = nonpaging_update_pte;
4082 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
4083 context->root_hpa = INVALID_PAGE;
4084 context->direct_map = true;
4085 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
4086 context->get_cr3 = get_cr3;
4087 context->get_pdptr = kvm_pdptr_read;
4088 context->inject_page_fault = kvm_inject_page_fault;
4089
4090 if (!is_paging(vcpu)) {
4091 context->nx = false;
4092 context->gva_to_gpa = nonpaging_gva_to_gpa;
4093 context->root_level = 0;
4094 } else if (is_long_mode(vcpu)) {
4095 context->nx = is_nx(vcpu);
4096 context->root_level = PT64_ROOT_LEVEL;
4097 reset_rsvds_bits_mask(vcpu, context);
4098 context->gva_to_gpa = paging64_gva_to_gpa;
4099 } else if (is_pae(vcpu)) {
4100 context->nx = is_nx(vcpu);
4101 context->root_level = PT32E_ROOT_LEVEL;
4102 reset_rsvds_bits_mask(vcpu, context);
4103 context->gva_to_gpa = paging64_gva_to_gpa;
4104 } else {
4105 context->nx = false;
4106 context->root_level = PT32_ROOT_LEVEL;
4107 reset_rsvds_bits_mask(vcpu, context);
4108 context->gva_to_gpa = paging32_gva_to_gpa;
4109 }
4110
4111 update_permission_bitmask(vcpu, context, false);
4112 update_pkru_bitmask(vcpu, context, false);
4113 update_last_nonleaf_level(vcpu, context);
4114 reset_tdp_shadow_zero_bits_mask(vcpu, context);
4115}
4116
4117void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
4118{
4119 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4120 bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4121 struct kvm_mmu *context = &vcpu->arch.mmu;
4122
4123 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4124
4125 if (!is_paging(vcpu))
4126 nonpaging_init_context(vcpu, context);
4127 else if (is_long_mode(vcpu))
4128 paging64_init_context(vcpu, context);
4129 else if (is_pae(vcpu))
4130 paging32E_init_context(vcpu, context);
4131 else
4132 paging32_init_context(vcpu, context);
4133
4134 context->base_role.nxe = is_nx(vcpu);
4135 context->base_role.cr4_pae = !!is_pae(vcpu);
4136 context->base_role.cr0_wp = is_write_protection(vcpu);
4137 context->base_role.smep_andnot_wp
4138 = smep && !is_write_protection(vcpu);
4139 context->base_role.smap_andnot_wp
4140 = smap && !is_write_protection(vcpu);
4141 context->base_role.smm = is_smm(vcpu);
4142 reset_shadow_zero_bits_mask(vcpu, context);
4143}
4144EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4145
4146void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly)
4147{
4148 struct kvm_mmu *context = &vcpu->arch.mmu;
4149
4150 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4151
4152 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
4153
4154 context->nx = true;
4155 context->page_fault = ept_page_fault;
4156 context->gva_to_gpa = ept_gva_to_gpa;
4157 context->sync_page = ept_sync_page;
4158 context->invlpg = ept_invlpg;
4159 context->update_pte = ept_update_pte;
4160 context->root_level = context->shadow_root_level;
4161 context->root_hpa = INVALID_PAGE;
4162 context->direct_map = false;
4163
4164 update_permission_bitmask(vcpu, context, true);
4165 update_pkru_bitmask(vcpu, context, true);
4166 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4167 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4168}
4169EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4170
4171static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4172{
4173 struct kvm_mmu *context = &vcpu->arch.mmu;
4174
4175 kvm_init_shadow_mmu(vcpu);
4176 context->set_cr3 = kvm_x86_ops->set_cr3;
4177 context->get_cr3 = get_cr3;
4178 context->get_pdptr = kvm_pdptr_read;
4179 context->inject_page_fault = kvm_inject_page_fault;
4180}
4181
4182static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4183{
4184 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4185
4186 g_context->get_cr3 = get_cr3;
4187 g_context->get_pdptr = kvm_pdptr_read;
4188 g_context->inject_page_fault = kvm_inject_page_fault;
4189
4190 /*
4191 * Note that arch.mmu.gva_to_gpa translates l2_gpa to l1_gpa using
4192 * L1's nested page tables (e.g. EPT12). The nested translation
4193 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4194 * L2's page tables as the first level of translation and L1's
4195 * nested page tables as the second level of translation. Basically
4196 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4197 */
4198 if (!is_paging(vcpu)) {
4199 g_context->nx = false;
4200 g_context->root_level = 0;
4201 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4202 } else if (is_long_mode(vcpu)) {
4203 g_context->nx = is_nx(vcpu);
4204 g_context->root_level = PT64_ROOT_LEVEL;
4205 reset_rsvds_bits_mask(vcpu, g_context);
4206 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4207 } else if (is_pae(vcpu)) {
4208 g_context->nx = is_nx(vcpu);
4209 g_context->root_level = PT32E_ROOT_LEVEL;
4210 reset_rsvds_bits_mask(vcpu, g_context);
4211 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4212 } else {
4213 g_context->nx = false;
4214 g_context->root_level = PT32_ROOT_LEVEL;
4215 reset_rsvds_bits_mask(vcpu, g_context);
4216 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4217 }
4218
4219 update_permission_bitmask(vcpu, g_context, false);
4220 update_pkru_bitmask(vcpu, g_context, false);
4221 update_last_nonleaf_level(vcpu, g_context);
4222}
4223
4224static void init_kvm_mmu(struct kvm_vcpu *vcpu)
4225{
4226 if (mmu_is_nested(vcpu))
4227 init_kvm_nested_mmu(vcpu);
4228 else if (tdp_enabled)
4229 init_kvm_tdp_mmu(vcpu);
4230 else
4231 init_kvm_softmmu(vcpu);
4232}
4233
4234void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4235{
4236 kvm_mmu_unload(vcpu);
4237 init_kvm_mmu(vcpu);
4238}
4239EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4240
4241int kvm_mmu_load(struct kvm_vcpu *vcpu)
4242{
4243 int r;
4244
4245 r = mmu_topup_memory_caches(vcpu);
4246 if (r)
4247 goto out;
4248 r = mmu_alloc_roots(vcpu);
4249 kvm_mmu_sync_roots(vcpu);
4250 if (r)
4251 goto out;
4252 /* set_cr3() should ensure TLB has been flushed */
4253 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
4254out:
4255 return r;
4256}
4257EXPORT_SYMBOL_GPL(kvm_mmu_load);
4258
4259void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4260{
4261 mmu_free_roots(vcpu);
4262 WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4263}
4264EXPORT_SYMBOL_GPL(kvm_mmu_unload);
4265
4266static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4267 struct kvm_mmu_page *sp, u64 *spte,
4268 const void *new)
4269{
4270 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
4271 ++vcpu->kvm->stat.mmu_pde_zapped;
4272 return;
4273 }
4274
4275 ++vcpu->kvm->stat.mmu_pte_updated;
4276 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
4277}
4278
4279static bool need_remote_flush(u64 old, u64 new)
4280{
4281 if (!is_shadow_present_pte(old))
4282 return false;
4283 if (!is_shadow_present_pte(new))
4284 return true;
4285 if ((old ^ new) & PT64_BASE_ADDR_MASK)
4286 return true;
4287 old ^= shadow_nx_mask;
4288 new ^= shadow_nx_mask;
4289 return (old & ~new & PT64_PERM_MASK) != 0;
4290}
4291
4292static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4293 const u8 *new, int *bytes)
4294{
4295 u64 gentry;
4296 int r;
4297
4298 /*
4299 * Assume that the pte write on a page table of the same type
4300 * as the current vcpu paging mode since we update the sptes only
4301 * when they have the same mode.
4302 */
4303 if (is_pae(vcpu) && *bytes == 4) {
4304 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4305 *gpa &= ~(gpa_t)7;
4306 *bytes = 8;
4307 r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
4308 if (r)
4309 gentry = 0;
4310 new = (const u8 *)&gentry;
4311 }
4312
4313 switch (*bytes) {
4314 case 4:
4315 gentry = *(const u32 *)new;
4316 break;
4317 case 8:
4318 gentry = *(const u64 *)new;
4319 break;
4320 default:
4321 gentry = 0;
4322 break;
4323 }
4324
4325 return gentry;
4326}
4327
4328/*
4329 * If we're seeing too many writes to a page, it may no longer be a page table,
4330 * or we may be forking, in which case it is better to unmap the page.
4331 */
4332static bool detect_write_flooding(struct kvm_mmu_page *sp)
4333{
4334 /*
4335 * Skip write-flooding detected for the sp whose level is 1, because
4336 * it can become unsync, then the guest page is not write-protected.
4337 */
4338 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4339 return false;
4340
4341 atomic_inc(&sp->write_flooding_count);
4342 return atomic_read(&sp->write_flooding_count) >= 3;
4343}
4344
4345/*
4346 * Misaligned accesses are too much trouble to fix up; also, they usually
4347 * indicate a page is not used as a page table.
4348 */
4349static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4350 int bytes)
4351{
4352 unsigned offset, pte_size, misaligned;
4353
4354 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4355 gpa, bytes, sp->role.word);
4356
4357 offset = offset_in_page(gpa);
4358 pte_size = sp->role.cr4_pae ? 8 : 4;
4359
4360 /*
4361 * Sometimes, the OS only writes the last one bytes to update status
4362 * bits, for example, in linux, andb instruction is used in clear_bit().
4363 */
4364 if (!(offset & (pte_size - 1)) && bytes == 1)
4365 return false;
4366
4367 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4368 misaligned |= bytes < 4;
4369
4370 return misaligned;
4371}
4372
4373static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4374{
4375 unsigned page_offset, quadrant;
4376 u64 *spte;
4377 int level;
4378
4379 page_offset = offset_in_page(gpa);
4380 level = sp->role.level;
4381 *nspte = 1;
4382 if (!sp->role.cr4_pae) {
4383 page_offset <<= 1; /* 32->64 */
4384 /*
4385 * A 32-bit pde maps 4MB while the shadow pdes map
4386 * only 2MB. So we need to double the offset again
4387 * and zap two pdes instead of one.
4388 */
4389 if (level == PT32_ROOT_LEVEL) {
4390 page_offset &= ~7; /* kill rounding error */
4391 page_offset <<= 1;
4392 *nspte = 2;
4393 }
4394 quadrant = page_offset >> PAGE_SHIFT;
4395 page_offset &= ~PAGE_MASK;
4396 if (quadrant != sp->role.quadrant)
4397 return NULL;
4398 }
4399
4400 spte = &sp->spt[page_offset / sizeof(*spte)];
4401 return spte;
4402}
4403
4404static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4405 const u8 *new, int bytes)
4406{
4407 gfn_t gfn = gpa >> PAGE_SHIFT;
4408 struct kvm_mmu_page *sp;
4409 LIST_HEAD(invalid_list);
4410 u64 entry, gentry, *spte;
4411 int npte;
4412 bool remote_flush, local_flush;
4413 union kvm_mmu_page_role mask = { };
4414
4415 mask.cr0_wp = 1;
4416 mask.cr4_pae = 1;
4417 mask.nxe = 1;
4418 mask.smep_andnot_wp = 1;
4419 mask.smap_andnot_wp = 1;
4420 mask.smm = 1;
4421
4422 /*
4423 * If we don't have indirect shadow pages, it means no page is
4424 * write-protected, so we can exit simply.
4425 */
4426 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4427 return;
4428
4429 remote_flush = local_flush = false;
4430
4431 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4432
4433 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4434
4435 /*
4436 * No need to care whether allocation memory is successful
4437 * or not since pte prefetch is skiped if it does not have
4438 * enough objects in the cache.
4439 */
4440 mmu_topup_memory_caches(vcpu);
4441
4442 spin_lock(&vcpu->kvm->mmu_lock);
4443 ++vcpu->kvm->stat.mmu_pte_write;
4444 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4445
4446 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4447 if (detect_write_misaligned(sp, gpa, bytes) ||
4448 detect_write_flooding(sp)) {
4449 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4450 ++vcpu->kvm->stat.mmu_flooded;
4451 continue;
4452 }
4453
4454 spte = get_written_sptes(sp, gpa, &npte);
4455 if (!spte)
4456 continue;
4457
4458 local_flush = true;
4459 while (npte--) {
4460 entry = *spte;
4461 mmu_page_zap_pte(vcpu->kvm, sp, spte);
4462 if (gentry &&
4463 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4464 & mask.word) && rmap_can_add(vcpu))
4465 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4466 if (need_remote_flush(entry, *spte))
4467 remote_flush = true;
4468 ++spte;
4469 }
4470 }
4471 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
4472 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4473 spin_unlock(&vcpu->kvm->mmu_lock);
4474}
4475
4476int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4477{
4478 gpa_t gpa;
4479 int r;
4480
4481 if (vcpu->arch.mmu.direct_map)
4482 return 0;
4483
4484 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4485
4486 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4487
4488 return r;
4489}
4490EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4491
4492static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
4493{
4494 LIST_HEAD(invalid_list);
4495
4496 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4497 return;
4498
4499 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4500 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4501 break;
4502
4503 ++vcpu->kvm->stat.mmu_recycled;
4504 }
4505 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4506}
4507
4508int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4509 void *insn, int insn_len)
4510{
4511 int r, emulation_type = EMULTYPE_RETRY;
4512 enum emulation_result er;
4513 bool direct = vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu);
4514
4515 if (unlikely(error_code & PFERR_RSVD_MASK)) {
4516 r = handle_mmio_page_fault(vcpu, cr2, direct);
4517 if (r == RET_MMIO_PF_EMULATE) {
4518 emulation_type = 0;
4519 goto emulate;
4520 }
4521 if (r == RET_MMIO_PF_RETRY)
4522 return 1;
4523 if (r < 0)
4524 return r;
4525 }
4526
4527 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4528 if (r < 0)
4529 return r;
4530 if (!r)
4531 return 1;
4532
4533 if (mmio_info_in_cache(vcpu, cr2, direct))
4534 emulation_type = 0;
4535emulate:
4536 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4537
4538 switch (er) {
4539 case EMULATE_DONE:
4540 return 1;
4541 case EMULATE_USER_EXIT:
4542 ++vcpu->stat.mmio_exits;
4543 /* fall through */
4544 case EMULATE_FAIL:
4545 return 0;
4546 default:
4547 BUG();
4548 }
4549}
4550EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4551
4552void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4553{
4554 vcpu->arch.mmu.invlpg(vcpu, gva);
4555 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4556 ++vcpu->stat.invlpg;
4557}
4558EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4559
4560void kvm_enable_tdp(void)
4561{
4562 tdp_enabled = true;
4563}
4564EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4565
4566void kvm_disable_tdp(void)
4567{
4568 tdp_enabled = false;
4569}
4570EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4571
4572static void free_mmu_pages(struct kvm_vcpu *vcpu)
4573{
4574 free_page((unsigned long)vcpu->arch.mmu.pae_root);
4575 if (vcpu->arch.mmu.lm_root != NULL)
4576 free_page((unsigned long)vcpu->arch.mmu.lm_root);
4577}
4578
4579static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4580{
4581 struct page *page;
4582 int i;
4583
4584 /*
4585 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4586 * Therefore we need to allocate shadow page tables in the first
4587 * 4GB of memory, which happens to fit the DMA32 zone.
4588 */
4589 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4590 if (!page)
4591 return -ENOMEM;
4592
4593 vcpu->arch.mmu.pae_root = page_address(page);
4594 for (i = 0; i < 4; ++i)
4595 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4596
4597 return 0;
4598}
4599
4600int kvm_mmu_create(struct kvm_vcpu *vcpu)
4601{
4602 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4603 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4604 vcpu->arch.mmu.translate_gpa = translate_gpa;
4605 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4606
4607 return alloc_mmu_pages(vcpu);
4608}
4609
4610void kvm_mmu_setup(struct kvm_vcpu *vcpu)
4611{
4612 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4613
4614 init_kvm_mmu(vcpu);
4615}
4616
4617void kvm_mmu_init_vm(struct kvm *kvm)
4618{
4619 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
4620
4621 node->track_write = kvm_mmu_pte_write;
4622 kvm_page_track_register_notifier(kvm, node);
4623}
4624
4625void kvm_mmu_uninit_vm(struct kvm *kvm)
4626{
4627 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
4628
4629 kvm_page_track_unregister_notifier(kvm, node);
4630}
4631
4632/* The return value indicates if tlb flush on all vcpus is needed. */
4633typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
4634
4635/* The caller should hold mmu-lock before calling this function. */
4636static bool
4637slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
4638 slot_level_handler fn, int start_level, int end_level,
4639 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
4640{
4641 struct slot_rmap_walk_iterator iterator;
4642 bool flush = false;
4643
4644 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
4645 end_gfn, &iterator) {
4646 if (iterator.rmap)
4647 flush |= fn(kvm, iterator.rmap);
4648
4649 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4650 if (flush && lock_flush_tlb) {
4651 kvm_flush_remote_tlbs(kvm);
4652 flush = false;
4653 }
4654 cond_resched_lock(&kvm->mmu_lock);
4655 }
4656 }
4657
4658 if (flush && lock_flush_tlb) {
4659 kvm_flush_remote_tlbs(kvm);
4660 flush = false;
4661 }
4662
4663 return flush;
4664}
4665
4666static bool
4667slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4668 slot_level_handler fn, int start_level, int end_level,
4669 bool lock_flush_tlb)
4670{
4671 return slot_handle_level_range(kvm, memslot, fn, start_level,
4672 end_level, memslot->base_gfn,
4673 memslot->base_gfn + memslot->npages - 1,
4674 lock_flush_tlb);
4675}
4676
4677static bool
4678slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4679 slot_level_handler fn, bool lock_flush_tlb)
4680{
4681 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4682 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4683}
4684
4685static bool
4686slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4687 slot_level_handler fn, bool lock_flush_tlb)
4688{
4689 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
4690 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4691}
4692
4693static bool
4694slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
4695 slot_level_handler fn, bool lock_flush_tlb)
4696{
4697 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4698 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
4699}
4700
4701void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
4702{
4703 struct kvm_memslots *slots;
4704 struct kvm_memory_slot *memslot;
4705 int i;
4706
4707 spin_lock(&kvm->mmu_lock);
4708 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4709 slots = __kvm_memslots(kvm, i);
4710 kvm_for_each_memslot(memslot, slots) {
4711 gfn_t start, end;
4712
4713 start = max(gfn_start, memslot->base_gfn);
4714 end = min(gfn_end, memslot->base_gfn + memslot->npages);
4715 if (start >= end)
4716 continue;
4717
4718 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
4719 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
4720 start, end - 1, true);
4721 }
4722 }
4723
4724 spin_unlock(&kvm->mmu_lock);
4725}
4726
4727static bool slot_rmap_write_protect(struct kvm *kvm,
4728 struct kvm_rmap_head *rmap_head)
4729{
4730 return __rmap_write_protect(kvm, rmap_head, false);
4731}
4732
4733void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
4734 struct kvm_memory_slot *memslot)
4735{
4736 bool flush;
4737
4738 spin_lock(&kvm->mmu_lock);
4739 flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
4740 false);
4741 spin_unlock(&kvm->mmu_lock);
4742
4743 /*
4744 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
4745 * which do tlb flush out of mmu-lock should be serialized by
4746 * kvm->slots_lock otherwise tlb flush would be missed.
4747 */
4748 lockdep_assert_held(&kvm->slots_lock);
4749
4750 /*
4751 * We can flush all the TLBs out of the mmu lock without TLB
4752 * corruption since we just change the spte from writable to
4753 * readonly so that we only need to care the case of changing
4754 * spte from present to present (changing the spte from present
4755 * to nonpresent will flush all the TLBs immediately), in other
4756 * words, the only case we care is mmu_spte_update() where we
4757 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
4758 * instead of PT_WRITABLE_MASK, that means it does not depend
4759 * on PT_WRITABLE_MASK anymore.
4760 */
4761 if (flush)
4762 kvm_flush_remote_tlbs(kvm);
4763}
4764
4765static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
4766 struct kvm_rmap_head *rmap_head)
4767{
4768 u64 *sptep;
4769 struct rmap_iterator iter;
4770 int need_tlb_flush = 0;
4771 kvm_pfn_t pfn;
4772 struct kvm_mmu_page *sp;
4773
4774restart:
4775 for_each_rmap_spte(rmap_head, &iter, sptep) {
4776 sp = page_header(__pa(sptep));
4777 pfn = spte_to_pfn(*sptep);
4778
4779 /*
4780 * We cannot do huge page mapping for indirect shadow pages,
4781 * which are found on the last rmap (level = 1) when not using
4782 * tdp; such shadow pages are synced with the page table in
4783 * the guest, and the guest page table is using 4K page size
4784 * mapping if the indirect sp has level = 1.
4785 */
4786 if (sp->role.direct &&
4787 !kvm_is_reserved_pfn(pfn) &&
4788 PageTransCompoundMap(pfn_to_page(pfn))) {
4789 drop_spte(kvm, sptep);
4790 need_tlb_flush = 1;
4791 goto restart;
4792 }
4793 }
4794
4795 return need_tlb_flush;
4796}
4797
4798void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
4799 const struct kvm_memory_slot *memslot)
4800{
4801 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
4802 spin_lock(&kvm->mmu_lock);
4803 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
4804 kvm_mmu_zap_collapsible_spte, true);
4805 spin_unlock(&kvm->mmu_lock);
4806}
4807
4808void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
4809 struct kvm_memory_slot *memslot)
4810{
4811 bool flush;
4812
4813 spin_lock(&kvm->mmu_lock);
4814 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
4815 spin_unlock(&kvm->mmu_lock);
4816
4817 lockdep_assert_held(&kvm->slots_lock);
4818
4819 /*
4820 * It's also safe to flush TLBs out of mmu lock here as currently this
4821 * function is only used for dirty logging, in which case flushing TLB
4822 * out of mmu lock also guarantees no dirty pages will be lost in
4823 * dirty_bitmap.
4824 */
4825 if (flush)
4826 kvm_flush_remote_tlbs(kvm);
4827}
4828EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
4829
4830void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
4831 struct kvm_memory_slot *memslot)
4832{
4833 bool flush;
4834
4835 spin_lock(&kvm->mmu_lock);
4836 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
4837 false);
4838 spin_unlock(&kvm->mmu_lock);
4839
4840 /* see kvm_mmu_slot_remove_write_access */
4841 lockdep_assert_held(&kvm->slots_lock);
4842
4843 if (flush)
4844 kvm_flush_remote_tlbs(kvm);
4845}
4846EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
4847
4848void kvm_mmu_slot_set_dirty(struct kvm *kvm,
4849 struct kvm_memory_slot *memslot)
4850{
4851 bool flush;
4852
4853 spin_lock(&kvm->mmu_lock);
4854 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
4855 spin_unlock(&kvm->mmu_lock);
4856
4857 lockdep_assert_held(&kvm->slots_lock);
4858
4859 /* see kvm_mmu_slot_leaf_clear_dirty */
4860 if (flush)
4861 kvm_flush_remote_tlbs(kvm);
4862}
4863EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
4864
4865#define BATCH_ZAP_PAGES 10
4866static void kvm_zap_obsolete_pages(struct kvm *kvm)
4867{
4868 struct kvm_mmu_page *sp, *node;
4869 int batch = 0;
4870
4871restart:
4872 list_for_each_entry_safe_reverse(sp, node,
4873 &kvm->arch.active_mmu_pages, link) {
4874 int ret;
4875
4876 /*
4877 * No obsolete page exists before new created page since
4878 * active_mmu_pages is the FIFO list.
4879 */
4880 if (!is_obsolete_sp(kvm, sp))
4881 break;
4882
4883 /*
4884 * Since we are reversely walking the list and the invalid
4885 * list will be moved to the head, skip the invalid page
4886 * can help us to avoid the infinity list walking.
4887 */
4888 if (sp->role.invalid)
4889 continue;
4890
4891 /*
4892 * Need not flush tlb since we only zap the sp with invalid
4893 * generation number.
4894 */
4895 if (batch >= BATCH_ZAP_PAGES &&
4896 cond_resched_lock(&kvm->mmu_lock)) {
4897 batch = 0;
4898 goto restart;
4899 }
4900
4901 ret = kvm_mmu_prepare_zap_page(kvm, sp,
4902 &kvm->arch.zapped_obsolete_pages);
4903 batch += ret;
4904
4905 if (ret)
4906 goto restart;
4907 }
4908
4909 /*
4910 * Should flush tlb before free page tables since lockless-walking
4911 * may use the pages.
4912 */
4913 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
4914}
4915
4916/*
4917 * Fast invalidate all shadow pages and use lock-break technique
4918 * to zap obsolete pages.
4919 *
4920 * It's required when memslot is being deleted or VM is being
4921 * destroyed, in these cases, we should ensure that KVM MMU does
4922 * not use any resource of the being-deleted slot or all slots
4923 * after calling the function.
4924 */
4925void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4926{
4927 spin_lock(&kvm->mmu_lock);
4928 trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4929 kvm->arch.mmu_valid_gen++;
4930
4931 /*
4932 * Notify all vcpus to reload its shadow page table
4933 * and flush TLB. Then all vcpus will switch to new
4934 * shadow page table with the new mmu_valid_gen.
4935 *
4936 * Note: we should do this under the protection of
4937 * mmu-lock, otherwise, vcpu would purge shadow page
4938 * but miss tlb flush.
4939 */
4940 kvm_reload_remote_mmus(kvm);
4941
4942 kvm_zap_obsolete_pages(kvm);
4943 spin_unlock(&kvm->mmu_lock);
4944}
4945
4946static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4947{
4948 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4949}
4950
4951void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
4952{
4953 /*
4954 * The very rare case: if the generation-number is round,
4955 * zap all shadow pages.
4956 */
4957 if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
4958 printk_ratelimited(KERN_DEBUG "kvm: zapping shadow pages for mmio generation wraparound\n");
4959 kvm_mmu_invalidate_zap_all_pages(kvm);
4960 }
4961}
4962
4963static unsigned long
4964mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
4965{
4966 struct kvm *kvm;
4967 int nr_to_scan = sc->nr_to_scan;
4968 unsigned long freed = 0;
4969
4970 spin_lock(&kvm_lock);
4971
4972 list_for_each_entry(kvm, &vm_list, vm_list) {
4973 int idx;
4974 LIST_HEAD(invalid_list);
4975
4976 /*
4977 * Never scan more than sc->nr_to_scan VM instances.
4978 * Will not hit this condition practically since we do not try
4979 * to shrink more than one VM and it is very unlikely to see
4980 * !n_used_mmu_pages so many times.
4981 */
4982 if (!nr_to_scan--)
4983 break;
4984 /*
4985 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4986 * here. We may skip a VM instance errorneosly, but we do not
4987 * want to shrink a VM that only started to populate its MMU
4988 * anyway.
4989 */
4990 if (!kvm->arch.n_used_mmu_pages &&
4991 !kvm_has_zapped_obsolete_pages(kvm))
4992 continue;
4993
4994 idx = srcu_read_lock(&kvm->srcu);
4995 spin_lock(&kvm->mmu_lock);
4996
4997 if (kvm_has_zapped_obsolete_pages(kvm)) {
4998 kvm_mmu_commit_zap_page(kvm,
4999 &kvm->arch.zapped_obsolete_pages);
5000 goto unlock;
5001 }
5002
5003 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
5004 freed++;
5005 kvm_mmu_commit_zap_page(kvm, &invalid_list);
5006
5007unlock:
5008 spin_unlock(&kvm->mmu_lock);
5009 srcu_read_unlock(&kvm->srcu, idx);
5010
5011 /*
5012 * unfair on small ones
5013 * per-vm shrinkers cry out
5014 * sadness comes quickly
5015 */
5016 list_move_tail(&kvm->vm_list, &vm_list);
5017 break;
5018 }
5019
5020 spin_unlock(&kvm_lock);
5021 return freed;
5022}
5023
5024static unsigned long
5025mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5026{
5027 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5028}
5029
5030static struct shrinker mmu_shrinker = {
5031 .count_objects = mmu_shrink_count,
5032 .scan_objects = mmu_shrink_scan,
5033 .seeks = DEFAULT_SEEKS * 10,
5034};
5035
5036static void mmu_destroy_caches(void)
5037{
5038 if (pte_list_desc_cache)
5039 kmem_cache_destroy(pte_list_desc_cache);
5040 if (mmu_page_header_cache)
5041 kmem_cache_destroy(mmu_page_header_cache);
5042}
5043
5044int kvm_mmu_module_init(void)
5045{
5046 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5047 sizeof(struct pte_list_desc),
5048 0, 0, NULL);
5049 if (!pte_list_desc_cache)
5050 goto nomem;
5051
5052 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5053 sizeof(struct kvm_mmu_page),
5054 0, 0, NULL);
5055 if (!mmu_page_header_cache)
5056 goto nomem;
5057
5058 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5059 goto nomem;
5060
5061 register_shrinker(&mmu_shrinker);
5062
5063 return 0;
5064
5065nomem:
5066 mmu_destroy_caches();
5067 return -ENOMEM;
5068}
5069
5070/*
5071 * Caculate mmu pages needed for kvm.
5072 */
5073unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
5074{
5075 unsigned int nr_mmu_pages;
5076 unsigned int nr_pages = 0;
5077 struct kvm_memslots *slots;
5078 struct kvm_memory_slot *memslot;
5079 int i;
5080
5081 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5082 slots = __kvm_memslots(kvm, i);
5083
5084 kvm_for_each_memslot(memslot, slots)
5085 nr_pages += memslot->npages;
5086 }
5087
5088 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5089 nr_mmu_pages = max(nr_mmu_pages,
5090 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
5091
5092 return nr_mmu_pages;
5093}
5094
5095void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5096{
5097 kvm_mmu_unload(vcpu);
5098 free_mmu_pages(vcpu);
5099 mmu_free_memory_caches(vcpu);
5100}
5101
5102void kvm_mmu_module_exit(void)
5103{
5104 mmu_destroy_caches();
5105 percpu_counter_destroy(&kvm_total_used_mmu_pages);
5106 unregister_shrinker(&mmu_shrinker);
5107 mmu_audit_disable();
5108}