Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Apr 14-17, 2025
Register
Loading...
v4.17
 
   1/*
   2 * User-space Probes (UProbes) for x86
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  17 *
  18 * Copyright (C) IBM Corporation, 2008-2011
  19 * Authors:
  20 *	Srikar Dronamraju
  21 *	Jim Keniston
  22 */
  23#include <linux/kernel.h>
  24#include <linux/sched.h>
  25#include <linux/ptrace.h>
  26#include <linux/uprobes.h>
  27#include <linux/uaccess.h>
  28
  29#include <linux/kdebug.h>
  30#include <asm/processor.h>
  31#include <asm/insn.h>
  32#include <asm/mmu_context.h>
  33
  34/* Post-execution fixups. */
  35
  36/* Adjust IP back to vicinity of actual insn */
  37#define UPROBE_FIX_IP		0x01
  38
  39/* Adjust the return address of a call insn */
  40#define UPROBE_FIX_CALL		0x02
  41
  42/* Instruction will modify TF, don't change it */
  43#define UPROBE_FIX_SETF		0x04
  44
  45#define UPROBE_FIX_RIP_SI	0x08
  46#define UPROBE_FIX_RIP_DI	0x10
  47#define UPROBE_FIX_RIP_BX	0x20
  48#define UPROBE_FIX_RIP_MASK	\
  49	(UPROBE_FIX_RIP_SI | UPROBE_FIX_RIP_DI | UPROBE_FIX_RIP_BX)
  50
  51#define	UPROBE_TRAP_NR		UINT_MAX
  52
  53/* Adaptations for mhiramat x86 decoder v14. */
  54#define OPCODE1(insn)		((insn)->opcode.bytes[0])
  55#define OPCODE2(insn)		((insn)->opcode.bytes[1])
  56#define OPCODE3(insn)		((insn)->opcode.bytes[2])
  57#define MODRM_REG(insn)		X86_MODRM_REG((insn)->modrm.value)
  58
  59#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
  60	(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
  61	  (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
  62	  (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
  63	  (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
  64	 << (row % 32))
  65
  66/*
  67 * Good-instruction tables for 32-bit apps.  This is non-const and volatile
  68 * to keep gcc from statically optimizing it out, as variable_test_bit makes
  69 * some versions of gcc to think only *(unsigned long*) is used.
  70 *
  71 * Opcodes we'll probably never support:
  72 * 6c-6f - ins,outs. SEGVs if used in userspace
  73 * e4-e7 - in,out imm. SEGVs if used in userspace
  74 * ec-ef - in,out acc. SEGVs if used in userspace
  75 * cc - int3. SIGTRAP if used in userspace
  76 * ce - into. Not used in userspace - no kernel support to make it useful. SEGVs
  77 *	(why we support bound (62) then? it's similar, and similarly unused...)
  78 * f1 - int1. SIGTRAP if used in userspace
  79 * f4 - hlt. SEGVs if used in userspace
  80 * fa - cli. SEGVs if used in userspace
  81 * fb - sti. SEGVs if used in userspace
  82 *
  83 * Opcodes which need some work to be supported:
  84 * 07,17,1f - pop es/ss/ds
  85 *	Normally not used in userspace, but would execute if used.
  86 *	Can cause GP or stack exception if tries to load wrong segment descriptor.
  87 *	We hesitate to run them under single step since kernel's handling
  88 *	of userspace single-stepping (TF flag) is fragile.
  89 *	We can easily refuse to support push es/cs/ss/ds (06/0e/16/1e)
  90 *	on the same grounds that they are never used.
  91 * cd - int N.
  92 *	Used by userspace for "int 80" syscall entry. (Other "int N"
  93 *	cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
  94 *	Not supported since kernel's handling of userspace single-stepping
  95 *	(TF flag) is fragile.
  96 * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
  97 */
  98#if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION)
  99static volatile u32 good_insns_32[256 / 32] = {
 100	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 101	/*      ----------------------------------------------         */
 102	W(0x00, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 00 */
 103	W(0x10, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 10 */
 104	W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
 105	W(0x30, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
 106	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
 107	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
 108	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
 109	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
 110	W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
 111	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
 112	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
 113	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
 114	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
 115	W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
 116	W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
 117	W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1)   /* f0 */
 118	/*      ----------------------------------------------         */
 119	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 120};
 121#else
 122#define good_insns_32	NULL
 123#endif
 124
 125/* Good-instruction tables for 64-bit apps.
 126 *
 127 * Genuinely invalid opcodes:
 128 * 06,07 - formerly push/pop es
 129 * 0e - formerly push cs
 130 * 16,17 - formerly push/pop ss
 131 * 1e,1f - formerly push/pop ds
 132 * 27,2f,37,3f - formerly daa/das/aaa/aas
 133 * 60,61 - formerly pusha/popa
 134 * 62 - formerly bound. EVEX prefix for AVX512 (not yet supported)
 135 * 82 - formerly redundant encoding of Group1
 136 * 9a - formerly call seg:ofs
 137 * ce - formerly into
 138 * d4,d5 - formerly aam/aad
 139 * d6 - formerly undocumented salc
 140 * ea - formerly jmp seg:ofs
 141 *
 142 * Opcodes we'll probably never support:
 143 * 6c-6f - ins,outs. SEGVs if used in userspace
 144 * e4-e7 - in,out imm. SEGVs if used in userspace
 145 * ec-ef - in,out acc. SEGVs if used in userspace
 146 * cc - int3. SIGTRAP if used in userspace
 147 * f1 - int1. SIGTRAP if used in userspace
 148 * f4 - hlt. SEGVs if used in userspace
 149 * fa - cli. SEGVs if used in userspace
 150 * fb - sti. SEGVs if used in userspace
 151 *
 152 * Opcodes which need some work to be supported:
 153 * cd - int N.
 154 *	Used by userspace for "int 80" syscall entry. (Other "int N"
 155 *	cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
 156 *	Not supported since kernel's handling of userspace single-stepping
 157 *	(TF flag) is fragile.
 158 * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
 159 */
 160#if defined(CONFIG_X86_64)
 161static volatile u32 good_insns_64[256 / 32] = {
 162	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 163	/*      ----------------------------------------------         */
 164	W(0x00, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* 00 */
 165	W(0x10, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 10 */
 166	W(0x20, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) | /* 20 */
 167	W(0x30, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 30 */
 168	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
 169	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
 170	W(0x60, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
 171	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
 172	W(0x80, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
 173	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1) , /* 90 */
 174	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
 175	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
 176	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
 177	W(0xd0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
 178	W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0) | /* e0 */
 179	W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1)   /* f0 */
 180	/*      ----------------------------------------------         */
 181	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 182};
 183#else
 184#define good_insns_64	NULL
 185#endif
 186
 187/* Using this for both 64-bit and 32-bit apps.
 188 * Opcodes we don't support:
 189 * 0f 00 - SLDT/STR/LLDT/LTR/VERR/VERW/-/- group. System insns
 190 * 0f 01 - SGDT/SIDT/LGDT/LIDT/SMSW/-/LMSW/INVLPG group.
 191 *	Also encodes tons of other system insns if mod=11.
 192 *	Some are in fact non-system: xend, xtest, rdtscp, maybe more
 193 * 0f 05 - syscall
 194 * 0f 06 - clts (CPL0 insn)
 195 * 0f 07 - sysret
 196 * 0f 08 - invd (CPL0 insn)
 197 * 0f 09 - wbinvd (CPL0 insn)
 198 * 0f 0b - ud2
 199 * 0f 30 - wrmsr (CPL0 insn) (then why rdmsr is allowed, it's also CPL0 insn?)
 200 * 0f 34 - sysenter
 201 * 0f 35 - sysexit
 202 * 0f 37 - getsec
 203 * 0f 78 - vmread (Intel VMX. CPL0 insn)
 204 * 0f 79 - vmwrite (Intel VMX. CPL0 insn)
 205 *	Note: with prefixes, these two opcodes are
 206 *	extrq/insertq/AVX512 convert vector ops.
 207 * 0f ae - group15: [f]xsave,[f]xrstor,[v]{ld,st}mxcsr,clflush[opt],
 208 *	{rd,wr}{fs,gs}base,{s,l,m}fence.
 209 *	Why? They are all user-executable.
 210 */
 211static volatile u32 good_2byte_insns[256 / 32] = {
 212	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 213	/*      ----------------------------------------------         */
 214	W(0x00, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1) | /* 00 */
 215	W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 10 */
 216	W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
 217	W(0x30, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
 218	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
 219	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
 220	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 60 */
 221	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1) , /* 70 */
 222	W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
 223	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
 224	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1) | /* a0 */
 225	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
 226	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
 227	W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
 228	W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* e0 */
 229	W(0xf0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)   /* f0 */
 230	/*      ----------------------------------------------         */
 231	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 232};
 233#undef W
 234
 235/*
 236 * opcodes we may need to refine support for:
 237 *
 238 *  0f - 2-byte instructions: For many of these instructions, the validity
 239 *  depends on the prefix and/or the reg field.  On such instructions, we
 240 *  just consider the opcode combination valid if it corresponds to any
 241 *  valid instruction.
 242 *
 243 *  8f - Group 1 - only reg = 0 is OK
 244 *  c6-c7 - Group 11 - only reg = 0 is OK
 245 *  d9-df - fpu insns with some illegal encodings
 246 *  f2, f3 - repnz, repz prefixes.  These are also the first byte for
 247 *  certain floating-point instructions, such as addsd.
 248 *
 249 *  fe - Group 4 - only reg = 0 or 1 is OK
 250 *  ff - Group 5 - only reg = 0-6 is OK
 251 *
 252 * others -- Do we need to support these?
 253 *
 254 *  0f - (floating-point?) prefetch instructions
 255 *  07, 17, 1f - pop es, pop ss, pop ds
 256 *  26, 2e, 36, 3e - es:, cs:, ss:, ds: segment prefixes --
 257 *	but 64 and 65 (fs: and gs:) seem to be used, so we support them
 258 *  67 - addr16 prefix
 259 *  ce - into
 260 *  f0 - lock prefix
 261 */
 262
 263/*
 264 * TODO:
 265 * - Where necessary, examine the modrm byte and allow only valid instructions
 266 * in the different Groups and fpu instructions.
 267 */
 268
 269static bool is_prefix_bad(struct insn *insn)
 270{
 
 271	int i;
 272
 273	for (i = 0; i < insn->prefixes.nbytes; i++) {
 274		insn_attr_t attr;
 275
 276		attr = inat_get_opcode_attribute(insn->prefixes.bytes[i]);
 277		switch (attr) {
 278		case INAT_MAKE_PREFIX(INAT_PFX_ES):
 279		case INAT_MAKE_PREFIX(INAT_PFX_CS):
 280		case INAT_MAKE_PREFIX(INAT_PFX_DS):
 281		case INAT_MAKE_PREFIX(INAT_PFX_SS):
 282		case INAT_MAKE_PREFIX(INAT_PFX_LOCK):
 283			return true;
 284		}
 285	}
 286	return false;
 287}
 288
 289static int uprobe_init_insn(struct arch_uprobe *auprobe, struct insn *insn, bool x86_64)
 290{
 
 291	u32 volatile *good_insns;
 
 292
 293	insn_init(insn, auprobe->insn, sizeof(auprobe->insn), x86_64);
 294	/* has the side-effect of processing the entire instruction */
 295	insn_get_length(insn);
 296	if (WARN_ON_ONCE(!insn_complete(insn)))
 297		return -ENOEXEC;
 298
 299	if (is_prefix_bad(insn))
 300		return -ENOTSUPP;
 301
 302	/* We should not singlestep on the exception masking instructions */
 303	if (insn_masking_exception(insn))
 304		return -ENOTSUPP;
 305
 306	if (x86_64)
 307		good_insns = good_insns_64;
 308	else
 309		good_insns = good_insns_32;
 310
 311	if (test_bit(OPCODE1(insn), (unsigned long *)good_insns))
 312		return 0;
 313
 314	if (insn->opcode.nbytes == 2) {
 315		if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns))
 316			return 0;
 317	}
 318
 319	return -ENOTSUPP;
 320}
 321
 322#ifdef CONFIG_X86_64
 323/*
 324 * If arch_uprobe->insn doesn't use rip-relative addressing, return
 325 * immediately.  Otherwise, rewrite the instruction so that it accesses
 326 * its memory operand indirectly through a scratch register.  Set
 327 * defparam->fixups accordingly. (The contents of the scratch register
 328 * will be saved before we single-step the modified instruction,
 329 * and restored afterward).
 330 *
 331 * We do this because a rip-relative instruction can access only a
 332 * relatively small area (+/- 2 GB from the instruction), and the XOL
 333 * area typically lies beyond that area.  At least for instructions
 334 * that store to memory, we can't execute the original instruction
 335 * and "fix things up" later, because the misdirected store could be
 336 * disastrous.
 337 *
 338 * Some useful facts about rip-relative instructions:
 339 *
 340 *  - There's always a modrm byte with bit layout "00 reg 101".
 341 *  - There's never a SIB byte.
 342 *  - The displacement is always 4 bytes.
 343 *  - REX.B=1 bit in REX prefix, which normally extends r/m field,
 344 *    has no effect on rip-relative mode. It doesn't make modrm byte
 345 *    with r/m=101 refer to register 1101 = R13.
 346 */
 347static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
 348{
 349	u8 *cursor;
 350	u8 reg;
 351	u8 reg2;
 352
 353	if (!insn_rip_relative(insn))
 354		return;
 355
 356	/*
 357	 * insn_rip_relative() would have decoded rex_prefix, vex_prefix, modrm.
 358	 * Clear REX.b bit (extension of MODRM.rm field):
 359	 * we want to encode low numbered reg, not r8+.
 360	 */
 361	if (insn->rex_prefix.nbytes) {
 362		cursor = auprobe->insn + insn_offset_rex_prefix(insn);
 363		/* REX byte has 0100wrxb layout, clearing REX.b bit */
 364		*cursor &= 0xfe;
 365	}
 366	/*
 367	 * Similar treatment for VEX3/EVEX prefix.
 368	 * TODO: add XOP treatment when insn decoder supports them
 369	 */
 370	if (insn->vex_prefix.nbytes >= 3) {
 371		/*
 372		 * vex2:     c5    rvvvvLpp   (has no b bit)
 373		 * vex3/xop: c4/8f rxbmmmmm wvvvvLpp
 374		 * evex:     62    rxbR00mm wvvvv1pp zllBVaaa
 375		 * Setting VEX3.b (setting because it has inverted meaning).
 376		 * Setting EVEX.x since (in non-SIB encoding) EVEX.x
 377		 * is the 4th bit of MODRM.rm, and needs the same treatment.
 378		 * For VEX3-encoded insns, VEX3.x value has no effect in
 379		 * non-SIB encoding, the change is superfluous but harmless.
 380		 */
 381		cursor = auprobe->insn + insn_offset_vex_prefix(insn) + 1;
 382		*cursor |= 0x60;
 383	}
 384
 385	/*
 386	 * Convert from rip-relative addressing to register-relative addressing
 387	 * via a scratch register.
 388	 *
 389	 * This is tricky since there are insns with modrm byte
 390	 * which also use registers not encoded in modrm byte:
 391	 * [i]div/[i]mul: implicitly use dx:ax
 392	 * shift ops: implicitly use cx
 393	 * cmpxchg: implicitly uses ax
 394	 * cmpxchg8/16b: implicitly uses dx:ax and bx:cx
 395	 *   Encoding: 0f c7/1 modrm
 396	 *   The code below thinks that reg=1 (cx), chooses si as scratch.
 397	 * mulx: implicitly uses dx: mulx r/m,r1,r2 does r1:r2 = dx * r/m.
 398	 *   First appeared in Haswell (BMI2 insn). It is vex-encoded.
 399	 *   Example where none of bx,cx,dx can be used as scratch reg:
 400	 *   c4 e2 63 f6 0d disp32   mulx disp32(%rip),%ebx,%ecx
 401	 * [v]pcmpistri: implicitly uses cx, xmm0
 402	 * [v]pcmpistrm: implicitly uses xmm0
 403	 * [v]pcmpestri: implicitly uses ax, dx, cx, xmm0
 404	 * [v]pcmpestrm: implicitly uses ax, dx, xmm0
 405	 *   Evil SSE4.2 string comparison ops from hell.
 406	 * maskmovq/[v]maskmovdqu: implicitly uses (ds:rdi) as destination.
 407	 *   Encoding: 0f f7 modrm, 66 0f f7 modrm, vex-encoded: c5 f9 f7 modrm.
 408	 *   Store op1, byte-masked by op2 msb's in each byte, to (ds:rdi).
 409	 *   AMD says it has no 3-operand form (vex.vvvv must be 1111)
 410	 *   and that it can have only register operands, not mem
 411	 *   (its modrm byte must have mode=11).
 412	 *   If these restrictions will ever be lifted,
 413	 *   we'll need code to prevent selection of di as scratch reg!
 414	 *
 415	 * Summary: I don't know any insns with modrm byte which
 416	 * use SI register implicitly. DI register is used only
 417	 * by one insn (maskmovq) and BX register is used
 418	 * only by one too (cmpxchg8b).
 419	 * BP is stack-segment based (may be a problem?).
 420	 * AX, DX, CX are off-limits (many implicit users).
 421	 * SP is unusable (it's stack pointer - think about "pop mem";
 422	 * also, rsp+disp32 needs sib encoding -> insn length change).
 423	 */
 424
 425	reg = MODRM_REG(insn);	/* Fetch modrm.reg */
 426	reg2 = 0xff;		/* Fetch vex.vvvv */
 427	if (insn->vex_prefix.nbytes)
 428		reg2 = insn->vex_prefix.bytes[2];
 429	/*
 430	 * TODO: add XOP vvvv reading.
 431	 *
 432	 * vex.vvvv field is in bits 6-3, bits are inverted.
 433	 * But in 32-bit mode, high-order bit may be ignored.
 434	 * Therefore, let's consider only 3 low-order bits.
 435	 */
 436	reg2 = ((reg2 >> 3) & 0x7) ^ 0x7;
 437	/*
 438	 * Register numbering is ax,cx,dx,bx, sp,bp,si,di, r8..r15.
 439	 *
 440	 * Choose scratch reg. Order is important: must not select bx
 441	 * if we can use si (cmpxchg8b case!)
 442	 */
 443	if (reg != 6 && reg2 != 6) {
 444		reg2 = 6;
 445		auprobe->defparam.fixups |= UPROBE_FIX_RIP_SI;
 446	} else if (reg != 7 && reg2 != 7) {
 447		reg2 = 7;
 448		auprobe->defparam.fixups |= UPROBE_FIX_RIP_DI;
 449		/* TODO (paranoia): force maskmovq to not use di */
 450	} else {
 451		reg2 = 3;
 452		auprobe->defparam.fixups |= UPROBE_FIX_RIP_BX;
 453	}
 454	/*
 455	 * Point cursor at the modrm byte.  The next 4 bytes are the
 456	 * displacement.  Beyond the displacement, for some instructions,
 457	 * is the immediate operand.
 458	 */
 459	cursor = auprobe->insn + insn_offset_modrm(insn);
 460	/*
 461	 * Change modrm from "00 reg 101" to "10 reg reg2". Example:
 462	 * 89 05 disp32  mov %eax,disp32(%rip) becomes
 463	 * 89 86 disp32  mov %eax,disp32(%rsi)
 464	 */
 465	*cursor = 0x80 | (reg << 3) | reg2;
 466}
 467
 468static inline unsigned long *
 469scratch_reg(struct arch_uprobe *auprobe, struct pt_regs *regs)
 470{
 471	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_SI)
 472		return &regs->si;
 473	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_DI)
 474		return &regs->di;
 475	return &regs->bx;
 476}
 477
 478/*
 479 * If we're emulating a rip-relative instruction, save the contents
 480 * of the scratch register and store the target address in that register.
 481 */
 482static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 483{
 484	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
 485		struct uprobe_task *utask = current->utask;
 486		unsigned long *sr = scratch_reg(auprobe, regs);
 487
 488		utask->autask.saved_scratch_register = *sr;
 489		*sr = utask->vaddr + auprobe->defparam.ilen;
 490	}
 491}
 492
 493static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 494{
 495	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
 496		struct uprobe_task *utask = current->utask;
 497		unsigned long *sr = scratch_reg(auprobe, regs);
 498
 499		*sr = utask->autask.saved_scratch_register;
 500	}
 501}
 502#else /* 32-bit: */
 503/*
 504 * No RIP-relative addressing on 32-bit
 505 */
 506static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
 507{
 508}
 509static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 510{
 511}
 512static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 513{
 514}
 515#endif /* CONFIG_X86_64 */
 516
 517struct uprobe_xol_ops {
 518	bool	(*emulate)(struct arch_uprobe *, struct pt_regs *);
 519	int	(*pre_xol)(struct arch_uprobe *, struct pt_regs *);
 520	int	(*post_xol)(struct arch_uprobe *, struct pt_regs *);
 521	void	(*abort)(struct arch_uprobe *, struct pt_regs *);
 522};
 523
 524static inline int sizeof_long(void)
 525{
 526	return in_ia32_syscall() ? 4 : 8;
 
 
 
 527}
 528
 529static int default_pre_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 530{
 531	riprel_pre_xol(auprobe, regs);
 532	return 0;
 533}
 534
 535static int emulate_push_stack(struct pt_regs *regs, unsigned long val)
 536{
 537	unsigned long new_sp = regs->sp - sizeof_long();
 538
 539	if (copy_to_user((void __user *)new_sp, &val, sizeof_long()))
 540		return -EFAULT;
 541
 542	regs->sp = new_sp;
 543	return 0;
 544}
 545
 546/*
 547 * We have to fix things up as follows:
 548 *
 549 * Typically, the new ip is relative to the copied instruction.  We need
 550 * to make it relative to the original instruction (FIX_IP).  Exceptions
 551 * are return instructions and absolute or indirect jump or call instructions.
 552 *
 553 * If the single-stepped instruction was a call, the return address that
 554 * is atop the stack is the address following the copied instruction.  We
 555 * need to make it the address following the original instruction (FIX_CALL).
 556 *
 557 * If the original instruction was a rip-relative instruction such as
 558 * "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent
 559 * instruction using a scratch register -- e.g., "movl %edx,0xnnnn(%rsi)".
 560 * We need to restore the contents of the scratch register
 561 * (FIX_RIP_reg).
 562 */
 563static int default_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 564{
 565	struct uprobe_task *utask = current->utask;
 566
 567	riprel_post_xol(auprobe, regs);
 568	if (auprobe->defparam.fixups & UPROBE_FIX_IP) {
 569		long correction = utask->vaddr - utask->xol_vaddr;
 570		regs->ip += correction;
 571	} else if (auprobe->defparam.fixups & UPROBE_FIX_CALL) {
 572		regs->sp += sizeof_long(); /* Pop incorrect return address */
 573		if (emulate_push_stack(regs, utask->vaddr + auprobe->defparam.ilen))
 574			return -ERESTART;
 575	}
 576	/* popf; tell the caller to not touch TF */
 577	if (auprobe->defparam.fixups & UPROBE_FIX_SETF)
 578		utask->autask.saved_tf = true;
 579
 580	return 0;
 581}
 582
 583static void default_abort_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 584{
 585	riprel_post_xol(auprobe, regs);
 586}
 587
 588static const struct uprobe_xol_ops default_xol_ops = {
 589	.pre_xol  = default_pre_xol_op,
 590	.post_xol = default_post_xol_op,
 591	.abort	  = default_abort_op,
 592};
 593
 594static bool branch_is_call(struct arch_uprobe *auprobe)
 595{
 596	return auprobe->branch.opc1 == 0xe8;
 597}
 598
 599#define CASE_COND					\
 600	COND(70, 71, XF(OF))				\
 601	COND(72, 73, XF(CF))				\
 602	COND(74, 75, XF(ZF))				\
 603	COND(78, 79, XF(SF))				\
 604	COND(7a, 7b, XF(PF))				\
 605	COND(76, 77, XF(CF) || XF(ZF))			\
 606	COND(7c, 7d, XF(SF) != XF(OF))			\
 607	COND(7e, 7f, XF(ZF) || XF(SF) != XF(OF))
 608
 609#define COND(op_y, op_n, expr)				\
 610	case 0x ## op_y: DO((expr) != 0)		\
 611	case 0x ## op_n: DO((expr) == 0)
 612
 613#define XF(xf)	(!!(flags & X86_EFLAGS_ ## xf))
 614
 615static bool is_cond_jmp_opcode(u8 opcode)
 616{
 617	switch (opcode) {
 618	#define DO(expr)	\
 619		return true;
 620	CASE_COND
 621	#undef	DO
 622
 623	default:
 624		return false;
 625	}
 626}
 627
 628static bool check_jmp_cond(struct arch_uprobe *auprobe, struct pt_regs *regs)
 629{
 630	unsigned long flags = regs->flags;
 631
 632	switch (auprobe->branch.opc1) {
 633	#define DO(expr)	\
 634		return expr;
 635	CASE_COND
 636	#undef	DO
 637
 638	default:	/* not a conditional jmp */
 639		return true;
 640	}
 641}
 642
 643#undef	XF
 644#undef	COND
 645#undef	CASE_COND
 646
 647static bool branch_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 648{
 649	unsigned long new_ip = regs->ip += auprobe->branch.ilen;
 650	unsigned long offs = (long)auprobe->branch.offs;
 651
 652	if (branch_is_call(auprobe)) {
 653		/*
 654		 * If it fails we execute this (mangled, see the comment in
 655		 * branch_clear_offset) insn out-of-line. In the likely case
 656		 * this should trigger the trap, and the probed application
 657		 * should die or restart the same insn after it handles the
 658		 * signal, arch_uprobe_post_xol() won't be even called.
 659		 *
 660		 * But there is corner case, see the comment in ->post_xol().
 661		 */
 662		if (emulate_push_stack(regs, new_ip))
 663			return false;
 664	} else if (!check_jmp_cond(auprobe, regs)) {
 665		offs = 0;
 666	}
 667
 668	regs->ip = new_ip + offs;
 669	return true;
 670}
 671
 672static bool push_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 673{
 674	unsigned long *src_ptr = (void *)regs + auprobe->push.reg_offset;
 675
 676	if (emulate_push_stack(regs, *src_ptr))
 677		return false;
 678	regs->ip += auprobe->push.ilen;
 679	return true;
 680}
 681
 682static int branch_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 683{
 684	BUG_ON(!branch_is_call(auprobe));
 685	/*
 686	 * We can only get here if branch_emulate_op() failed to push the ret
 687	 * address _and_ another thread expanded our stack before the (mangled)
 688	 * "call" insn was executed out-of-line. Just restore ->sp and restart.
 689	 * We could also restore ->ip and try to call branch_emulate_op() again.
 690	 */
 691	regs->sp += sizeof_long();
 692	return -ERESTART;
 693}
 694
 695static void branch_clear_offset(struct arch_uprobe *auprobe, struct insn *insn)
 696{
 697	/*
 698	 * Turn this insn into "call 1f; 1:", this is what we will execute
 699	 * out-of-line if ->emulate() fails. We only need this to generate
 700	 * a trap, so that the probed task receives the correct signal with
 701	 * the properly filled siginfo.
 702	 *
 703	 * But see the comment in ->post_xol(), in the unlikely case it can
 704	 * succeed. So we need to ensure that the new ->ip can not fall into
 705	 * the non-canonical area and trigger #GP.
 706	 *
 707	 * We could turn it into (say) "pushf", but then we would need to
 708	 * divorce ->insn[] and ->ixol[]. We need to preserve the 1st byte
 709	 * of ->insn[] for set_orig_insn().
 710	 */
 711	memset(auprobe->insn + insn_offset_immediate(insn),
 712		0, insn->immediate.nbytes);
 713}
 714
 715static const struct uprobe_xol_ops branch_xol_ops = {
 716	.emulate  = branch_emulate_op,
 717	.post_xol = branch_post_xol_op,
 718};
 719
 720static const struct uprobe_xol_ops push_xol_ops = {
 721	.emulate  = push_emulate_op,
 722};
 723
 724/* Returns -ENOSYS if branch_xol_ops doesn't handle this insn */
 725static int branch_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
 726{
 727	u8 opc1 = OPCODE1(insn);
 
 728	int i;
 729
 730	switch (opc1) {
 731	case 0xeb:	/* jmp 8 */
 732	case 0xe9:	/* jmp 32 */
 733	case 0x90:	/* prefix* + nop; same as jmp with .offs = 0 */
 734		break;
 
 
 735
 736	case 0xe8:	/* call relative */
 737		branch_clear_offset(auprobe, insn);
 738		break;
 739
 740	case 0x0f:
 741		if (insn->opcode.nbytes != 2)
 742			return -ENOSYS;
 743		/*
 744		 * If it is a "near" conditional jmp, OPCODE2() - 0x10 matches
 745		 * OPCODE1() of the "short" jmp which checks the same condition.
 746		 */
 747		opc1 = OPCODE2(insn) - 0x10;
 
 748	default:
 749		if (!is_cond_jmp_opcode(opc1))
 750			return -ENOSYS;
 751	}
 752
 753	/*
 754	 * 16-bit overrides such as CALLW (66 e8 nn nn) are not supported.
 755	 * Intel and AMD behavior differ in 64-bit mode: Intel ignores 66 prefix.
 756	 * No one uses these insns, reject any branch insns with such prefix.
 757	 */
 758	for (i = 0; i < insn->prefixes.nbytes; i++) {
 759		if (insn->prefixes.bytes[i] == 0x66)
 760			return -ENOTSUPP;
 761	}
 762
 
 763	auprobe->branch.opc1 = opc1;
 764	auprobe->branch.ilen = insn->length;
 765	auprobe->branch.offs = insn->immediate.value;
 766
 767	auprobe->ops = &branch_xol_ops;
 768	return 0;
 769}
 770
 771/* Returns -ENOSYS if push_xol_ops doesn't handle this insn */
 772static int push_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
 773{
 774	u8 opc1 = OPCODE1(insn), reg_offset = 0;
 775
 776	if (opc1 < 0x50 || opc1 > 0x57)
 777		return -ENOSYS;
 778
 779	if (insn->length > 2)
 780		return -ENOSYS;
 781	if (insn->length == 2) {
 782		/* only support rex_prefix 0x41 (x64 only) */
 783#ifdef CONFIG_X86_64
 784		if (insn->rex_prefix.nbytes != 1 ||
 785		    insn->rex_prefix.bytes[0] != 0x41)
 786			return -ENOSYS;
 787
 788		switch (opc1) {
 789		case 0x50:
 790			reg_offset = offsetof(struct pt_regs, r8);
 791			break;
 792		case 0x51:
 793			reg_offset = offsetof(struct pt_regs, r9);
 794			break;
 795		case 0x52:
 796			reg_offset = offsetof(struct pt_regs, r10);
 797			break;
 798		case 0x53:
 799			reg_offset = offsetof(struct pt_regs, r11);
 800			break;
 801		case 0x54:
 802			reg_offset = offsetof(struct pt_regs, r12);
 803			break;
 804		case 0x55:
 805			reg_offset = offsetof(struct pt_regs, r13);
 806			break;
 807		case 0x56:
 808			reg_offset = offsetof(struct pt_regs, r14);
 809			break;
 810		case 0x57:
 811			reg_offset = offsetof(struct pt_regs, r15);
 812			break;
 813		}
 814#else
 815		return -ENOSYS;
 816#endif
 817	} else {
 818		switch (opc1) {
 819		case 0x50:
 820			reg_offset = offsetof(struct pt_regs, ax);
 821			break;
 822		case 0x51:
 823			reg_offset = offsetof(struct pt_regs, cx);
 824			break;
 825		case 0x52:
 826			reg_offset = offsetof(struct pt_regs, dx);
 827			break;
 828		case 0x53:
 829			reg_offset = offsetof(struct pt_regs, bx);
 830			break;
 831		case 0x54:
 832			reg_offset = offsetof(struct pt_regs, sp);
 833			break;
 834		case 0x55:
 835			reg_offset = offsetof(struct pt_regs, bp);
 836			break;
 837		case 0x56:
 838			reg_offset = offsetof(struct pt_regs, si);
 839			break;
 840		case 0x57:
 841			reg_offset = offsetof(struct pt_regs, di);
 842			break;
 843		}
 844	}
 845
 846	auprobe->push.reg_offset = reg_offset;
 847	auprobe->push.ilen = insn->length;
 848	auprobe->ops = &push_xol_ops;
 849	return 0;
 850}
 851
 852/**
 853 * arch_uprobe_analyze_insn - instruction analysis including validity and fixups.
 
 854 * @mm: the probed address space.
 855 * @arch_uprobe: the probepoint information.
 856 * @addr: virtual address at which to install the probepoint
 857 * Return 0 on success or a -ve number on error.
 858 */
 859int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long addr)
 860{
 861	struct insn insn;
 862	u8 fix_ip_or_call = UPROBE_FIX_IP;
 863	int ret;
 864
 865	ret = uprobe_init_insn(auprobe, &insn, is_64bit_mm(mm));
 866	if (ret)
 867		return ret;
 868
 869	ret = branch_setup_xol_ops(auprobe, &insn);
 870	if (ret != -ENOSYS)
 871		return ret;
 872
 873	ret = push_setup_xol_ops(auprobe, &insn);
 874	if (ret != -ENOSYS)
 875		return ret;
 876
 877	/*
 878	 * Figure out which fixups default_post_xol_op() will need to perform,
 879	 * and annotate defparam->fixups accordingly.
 880	 */
 881	switch (OPCODE1(&insn)) {
 882	case 0x9d:		/* popf */
 883		auprobe->defparam.fixups |= UPROBE_FIX_SETF;
 884		break;
 885	case 0xc3:		/* ret or lret -- ip is correct */
 886	case 0xcb:
 887	case 0xc2:
 888	case 0xca:
 889	case 0xea:		/* jmp absolute -- ip is correct */
 890		fix_ip_or_call = 0;
 891		break;
 892	case 0x9a:		/* call absolute - Fix return addr, not ip */
 893		fix_ip_or_call = UPROBE_FIX_CALL;
 894		break;
 895	case 0xff:
 896		switch (MODRM_REG(&insn)) {
 897		case 2: case 3:			/* call or lcall, indirect */
 898			fix_ip_or_call = UPROBE_FIX_CALL;
 899			break;
 900		case 4: case 5:			/* jmp or ljmp, indirect */
 901			fix_ip_or_call = 0;
 902			break;
 903		}
 904		/* fall through */
 905	default:
 906		riprel_analyze(auprobe, &insn);
 907	}
 908
 909	auprobe->defparam.ilen = insn.length;
 910	auprobe->defparam.fixups |= fix_ip_or_call;
 911
 912	auprobe->ops = &default_xol_ops;
 913	return 0;
 914}
 915
 916/*
 917 * arch_uprobe_pre_xol - prepare to execute out of line.
 918 * @auprobe: the probepoint information.
 919 * @regs: reflects the saved user state of current task.
 920 */
 921int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 922{
 923	struct uprobe_task *utask = current->utask;
 924
 925	if (auprobe->ops->pre_xol) {
 926		int err = auprobe->ops->pre_xol(auprobe, regs);
 927		if (err)
 928			return err;
 929	}
 930
 931	regs->ip = utask->xol_vaddr;
 932	utask->autask.saved_trap_nr = current->thread.trap_nr;
 933	current->thread.trap_nr = UPROBE_TRAP_NR;
 934
 935	utask->autask.saved_tf = !!(regs->flags & X86_EFLAGS_TF);
 936	regs->flags |= X86_EFLAGS_TF;
 937	if (test_tsk_thread_flag(current, TIF_BLOCKSTEP))
 938		set_task_blockstep(current, false);
 939
 940	return 0;
 941}
 942
 943/*
 944 * If xol insn itself traps and generates a signal(Say,
 945 * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped
 946 * instruction jumps back to its own address. It is assumed that anything
 947 * like do_page_fault/do_trap/etc sets thread.trap_nr != -1.
 948 *
 949 * arch_uprobe_pre_xol/arch_uprobe_post_xol save/restore thread.trap_nr,
 950 * arch_uprobe_xol_was_trapped() simply checks that ->trap_nr is not equal to
 951 * UPROBE_TRAP_NR == -1 set by arch_uprobe_pre_xol().
 952 */
 953bool arch_uprobe_xol_was_trapped(struct task_struct *t)
 954{
 955	if (t->thread.trap_nr != UPROBE_TRAP_NR)
 956		return true;
 957
 958	return false;
 959}
 960
 961/*
 962 * Called after single-stepping. To avoid the SMP problems that can
 963 * occur when we temporarily put back the original opcode to
 964 * single-step, we single-stepped a copy of the instruction.
 965 *
 966 * This function prepares to resume execution after the single-step.
 967 */
 968int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 969{
 970	struct uprobe_task *utask = current->utask;
 971	bool send_sigtrap = utask->autask.saved_tf;
 972	int err = 0;
 973
 974	WARN_ON_ONCE(current->thread.trap_nr != UPROBE_TRAP_NR);
 975	current->thread.trap_nr = utask->autask.saved_trap_nr;
 976
 977	if (auprobe->ops->post_xol) {
 978		err = auprobe->ops->post_xol(auprobe, regs);
 979		if (err) {
 980			/*
 981			 * Restore ->ip for restart or post mortem analysis.
 982			 * ->post_xol() must not return -ERESTART unless this
 983			 * is really possible.
 984			 */
 985			regs->ip = utask->vaddr;
 986			if (err == -ERESTART)
 987				err = 0;
 988			send_sigtrap = false;
 989		}
 990	}
 991	/*
 992	 * arch_uprobe_pre_xol() doesn't save the state of TIF_BLOCKSTEP
 993	 * so we can get an extra SIGTRAP if we do not clear TF. We need
 994	 * to examine the opcode to make it right.
 995	 */
 996	if (send_sigtrap)
 997		send_sig(SIGTRAP, current, 0);
 998
 999	if (!utask->autask.saved_tf)
1000		regs->flags &= ~X86_EFLAGS_TF;
1001
1002	return err;
1003}
1004
1005/* callback routine for handling exceptions. */
1006int arch_uprobe_exception_notify(struct notifier_block *self, unsigned long val, void *data)
1007{
1008	struct die_args *args = data;
1009	struct pt_regs *regs = args->regs;
1010	int ret = NOTIFY_DONE;
1011
1012	/* We are only interested in userspace traps */
1013	if (regs && !user_mode(regs))
1014		return NOTIFY_DONE;
1015
1016	switch (val) {
1017	case DIE_INT3:
1018		if (uprobe_pre_sstep_notifier(regs))
1019			ret = NOTIFY_STOP;
1020
1021		break;
1022
1023	case DIE_DEBUG:
1024		if (uprobe_post_sstep_notifier(regs))
1025			ret = NOTIFY_STOP;
1026
 
 
1027	default:
1028		break;
1029	}
1030
1031	return ret;
1032}
1033
1034/*
1035 * This function gets called when XOL instruction either gets trapped or
1036 * the thread has a fatal signal. Reset the instruction pointer to its
1037 * probed address for the potential restart or for post mortem analysis.
1038 */
1039void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
1040{
1041	struct uprobe_task *utask = current->utask;
1042
1043	if (auprobe->ops->abort)
1044		auprobe->ops->abort(auprobe, regs);
1045
1046	current->thread.trap_nr = utask->autask.saved_trap_nr;
1047	regs->ip = utask->vaddr;
1048	/* clear TF if it was set by us in arch_uprobe_pre_xol() */
1049	if (!utask->autask.saved_tf)
1050		regs->flags &= ~X86_EFLAGS_TF;
1051}
1052
1053static bool __skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
1054{
1055	if (auprobe->ops->emulate)
1056		return auprobe->ops->emulate(auprobe, regs);
1057	return false;
1058}
1059
1060bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
1061{
1062	bool ret = __skip_sstep(auprobe, regs);
1063	if (ret && (regs->flags & X86_EFLAGS_TF))
1064		send_sig(SIGTRAP, current, 0);
1065	return ret;
1066}
1067
1068unsigned long
1069arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr, struct pt_regs *regs)
1070{
1071	int rasize = sizeof_long(), nleft;
1072	unsigned long orig_ret_vaddr = 0; /* clear high bits for 32-bit apps */
1073
1074	if (copy_from_user(&orig_ret_vaddr, (void __user *)regs->sp, rasize))
1075		return -1;
1076
1077	/* check whether address has been already hijacked */
1078	if (orig_ret_vaddr == trampoline_vaddr)
1079		return orig_ret_vaddr;
1080
1081	nleft = copy_to_user((void __user *)regs->sp, &trampoline_vaddr, rasize);
1082	if (likely(!nleft))
1083		return orig_ret_vaddr;
1084
1085	if (nleft != rasize) {
1086		pr_err("uprobe: return address clobbered: pid=%d, %%sp=%#lx, "
1087			"%%ip=%#lx\n", current->pid, regs->sp, regs->ip);
1088
1089		force_sig_info(SIGSEGV, SEND_SIG_FORCED, current);
1090	}
1091
1092	return -1;
1093}
1094
1095bool arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
1096				struct pt_regs *regs)
1097{
1098	if (ctx == RP_CHECK_CALL) /* sp was just decremented by "call" insn */
1099		return regs->sp < ret->stack;
1100	else
1101		return regs->sp <= ret->stack;
1102}
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * User-space Probes (UProbes) for x86
   4 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 * Copyright (C) IBM Corporation, 2008-2011
   6 * Authors:
   7 *	Srikar Dronamraju
   8 *	Jim Keniston
   9 */
  10#include <linux/kernel.h>
  11#include <linux/sched.h>
  12#include <linux/ptrace.h>
  13#include <linux/uprobes.h>
  14#include <linux/uaccess.h>
  15
  16#include <linux/kdebug.h>
  17#include <asm/processor.h>
  18#include <asm/insn.h>
  19#include <asm/mmu_context.h>
  20
  21/* Post-execution fixups. */
  22
  23/* Adjust IP back to vicinity of actual insn */
  24#define UPROBE_FIX_IP		0x01
  25
  26/* Adjust the return address of a call insn */
  27#define UPROBE_FIX_CALL		0x02
  28
  29/* Instruction will modify TF, don't change it */
  30#define UPROBE_FIX_SETF		0x04
  31
  32#define UPROBE_FIX_RIP_SI	0x08
  33#define UPROBE_FIX_RIP_DI	0x10
  34#define UPROBE_FIX_RIP_BX	0x20
  35#define UPROBE_FIX_RIP_MASK	\
  36	(UPROBE_FIX_RIP_SI | UPROBE_FIX_RIP_DI | UPROBE_FIX_RIP_BX)
  37
  38#define	UPROBE_TRAP_NR		UINT_MAX
  39
  40/* Adaptations for mhiramat x86 decoder v14. */
  41#define OPCODE1(insn)		((insn)->opcode.bytes[0])
  42#define OPCODE2(insn)		((insn)->opcode.bytes[1])
  43#define OPCODE3(insn)		((insn)->opcode.bytes[2])
  44#define MODRM_REG(insn)		X86_MODRM_REG((insn)->modrm.value)
  45
  46#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
  47	(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
  48	  (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
  49	  (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
  50	  (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
  51	 << (row % 32))
  52
  53/*
  54 * Good-instruction tables for 32-bit apps.  This is non-const and volatile
  55 * to keep gcc from statically optimizing it out, as variable_test_bit makes
  56 * some versions of gcc to think only *(unsigned long*) is used.
  57 *
  58 * Opcodes we'll probably never support:
  59 * 6c-6f - ins,outs. SEGVs if used in userspace
  60 * e4-e7 - in,out imm. SEGVs if used in userspace
  61 * ec-ef - in,out acc. SEGVs if used in userspace
  62 * cc - int3. SIGTRAP if used in userspace
  63 * ce - into. Not used in userspace - no kernel support to make it useful. SEGVs
  64 *	(why we support bound (62) then? it's similar, and similarly unused...)
  65 * f1 - int1. SIGTRAP if used in userspace
  66 * f4 - hlt. SEGVs if used in userspace
  67 * fa - cli. SEGVs if used in userspace
  68 * fb - sti. SEGVs if used in userspace
  69 *
  70 * Opcodes which need some work to be supported:
  71 * 07,17,1f - pop es/ss/ds
  72 *	Normally not used in userspace, but would execute if used.
  73 *	Can cause GP or stack exception if tries to load wrong segment descriptor.
  74 *	We hesitate to run them under single step since kernel's handling
  75 *	of userspace single-stepping (TF flag) is fragile.
  76 *	We can easily refuse to support push es/cs/ss/ds (06/0e/16/1e)
  77 *	on the same grounds that they are never used.
  78 * cd - int N.
  79 *	Used by userspace for "int 80" syscall entry. (Other "int N"
  80 *	cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
  81 *	Not supported since kernel's handling of userspace single-stepping
  82 *	(TF flag) is fragile.
  83 * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
  84 */
  85#if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION)
  86static volatile u32 good_insns_32[256 / 32] = {
  87	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
  88	/*      ----------------------------------------------         */
  89	W(0x00, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 00 */
  90	W(0x10, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 10 */
  91	W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
  92	W(0x30, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
  93	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
  94	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
  95	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
  96	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
  97	W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
  98	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
  99	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
 100	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
 101	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
 102	W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
 103	W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
 104	W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1)   /* f0 */
 105	/*      ----------------------------------------------         */
 106	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 107};
 108#else
 109#define good_insns_32	NULL
 110#endif
 111
 112/* Good-instruction tables for 64-bit apps.
 113 *
 114 * Genuinely invalid opcodes:
 115 * 06,07 - formerly push/pop es
 116 * 0e - formerly push cs
 117 * 16,17 - formerly push/pop ss
 118 * 1e,1f - formerly push/pop ds
 119 * 27,2f,37,3f - formerly daa/das/aaa/aas
 120 * 60,61 - formerly pusha/popa
 121 * 62 - formerly bound. EVEX prefix for AVX512 (not yet supported)
 122 * 82 - formerly redundant encoding of Group1
 123 * 9a - formerly call seg:ofs
 124 * ce - formerly into
 125 * d4,d5 - formerly aam/aad
 126 * d6 - formerly undocumented salc
 127 * ea - formerly jmp seg:ofs
 128 *
 129 * Opcodes we'll probably never support:
 130 * 6c-6f - ins,outs. SEGVs if used in userspace
 131 * e4-e7 - in,out imm. SEGVs if used in userspace
 132 * ec-ef - in,out acc. SEGVs if used in userspace
 133 * cc - int3. SIGTRAP if used in userspace
 134 * f1 - int1. SIGTRAP if used in userspace
 135 * f4 - hlt. SEGVs if used in userspace
 136 * fa - cli. SEGVs if used in userspace
 137 * fb - sti. SEGVs if used in userspace
 138 *
 139 * Opcodes which need some work to be supported:
 140 * cd - int N.
 141 *	Used by userspace for "int 80" syscall entry. (Other "int N"
 142 *	cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
 143 *	Not supported since kernel's handling of userspace single-stepping
 144 *	(TF flag) is fragile.
 145 * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
 146 */
 147#if defined(CONFIG_X86_64)
 148static volatile u32 good_insns_64[256 / 32] = {
 149	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 150	/*      ----------------------------------------------         */
 151	W(0x00, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* 00 */
 152	W(0x10, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 10 */
 153	W(0x20, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) | /* 20 */
 154	W(0x30, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 30 */
 155	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
 156	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
 157	W(0x60, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
 158	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
 159	W(0x80, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
 160	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1) , /* 90 */
 161	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
 162	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
 163	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
 164	W(0xd0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
 165	W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0) | /* e0 */
 166	W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1)   /* f0 */
 167	/*      ----------------------------------------------         */
 168	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 169};
 170#else
 171#define good_insns_64	NULL
 172#endif
 173
 174/* Using this for both 64-bit and 32-bit apps.
 175 * Opcodes we don't support:
 176 * 0f 00 - SLDT/STR/LLDT/LTR/VERR/VERW/-/- group. System insns
 177 * 0f 01 - SGDT/SIDT/LGDT/LIDT/SMSW/-/LMSW/INVLPG group.
 178 *	Also encodes tons of other system insns if mod=11.
 179 *	Some are in fact non-system: xend, xtest, rdtscp, maybe more
 180 * 0f 05 - syscall
 181 * 0f 06 - clts (CPL0 insn)
 182 * 0f 07 - sysret
 183 * 0f 08 - invd (CPL0 insn)
 184 * 0f 09 - wbinvd (CPL0 insn)
 185 * 0f 0b - ud2
 186 * 0f 30 - wrmsr (CPL0 insn) (then why rdmsr is allowed, it's also CPL0 insn?)
 187 * 0f 34 - sysenter
 188 * 0f 35 - sysexit
 189 * 0f 37 - getsec
 190 * 0f 78 - vmread (Intel VMX. CPL0 insn)
 191 * 0f 79 - vmwrite (Intel VMX. CPL0 insn)
 192 *	Note: with prefixes, these two opcodes are
 193 *	extrq/insertq/AVX512 convert vector ops.
 194 * 0f ae - group15: [f]xsave,[f]xrstor,[v]{ld,st}mxcsr,clflush[opt],
 195 *	{rd,wr}{fs,gs}base,{s,l,m}fence.
 196 *	Why? They are all user-executable.
 197 */
 198static volatile u32 good_2byte_insns[256 / 32] = {
 199	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 200	/*      ----------------------------------------------         */
 201	W(0x00, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1) | /* 00 */
 202	W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 10 */
 203	W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
 204	W(0x30, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
 205	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
 206	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
 207	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 60 */
 208	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1) , /* 70 */
 209	W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
 210	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
 211	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1) | /* a0 */
 212	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
 213	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
 214	W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
 215	W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* e0 */
 216	W(0xf0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)   /* f0 */
 217	/*      ----------------------------------------------         */
 218	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 219};
 220#undef W
 221
 222/*
 223 * opcodes we may need to refine support for:
 224 *
 225 *  0f - 2-byte instructions: For many of these instructions, the validity
 226 *  depends on the prefix and/or the reg field.  On such instructions, we
 227 *  just consider the opcode combination valid if it corresponds to any
 228 *  valid instruction.
 229 *
 230 *  8f - Group 1 - only reg = 0 is OK
 231 *  c6-c7 - Group 11 - only reg = 0 is OK
 232 *  d9-df - fpu insns with some illegal encodings
 233 *  f2, f3 - repnz, repz prefixes.  These are also the first byte for
 234 *  certain floating-point instructions, such as addsd.
 235 *
 236 *  fe - Group 4 - only reg = 0 or 1 is OK
 237 *  ff - Group 5 - only reg = 0-6 is OK
 238 *
 239 * others -- Do we need to support these?
 240 *
 241 *  0f - (floating-point?) prefetch instructions
 242 *  07, 17, 1f - pop es, pop ss, pop ds
 243 *  26, 2e, 36, 3e - es:, cs:, ss:, ds: segment prefixes --
 244 *	but 64 and 65 (fs: and gs:) seem to be used, so we support them
 245 *  67 - addr16 prefix
 246 *  ce - into
 247 *  f0 - lock prefix
 248 */
 249
 250/*
 251 * TODO:
 252 * - Where necessary, examine the modrm byte and allow only valid instructions
 253 * in the different Groups and fpu instructions.
 254 */
 255
 256static bool is_prefix_bad(struct insn *insn)
 257{
 258	insn_byte_t p;
 259	int i;
 260
 261	for_each_insn_prefix(insn, i, p) {
 262		insn_attr_t attr;
 263
 264		attr = inat_get_opcode_attribute(p);
 265		switch (attr) {
 266		case INAT_MAKE_PREFIX(INAT_PFX_ES):
 267		case INAT_MAKE_PREFIX(INAT_PFX_CS):
 268		case INAT_MAKE_PREFIX(INAT_PFX_DS):
 269		case INAT_MAKE_PREFIX(INAT_PFX_SS):
 270		case INAT_MAKE_PREFIX(INAT_PFX_LOCK):
 271			return true;
 272		}
 273	}
 274	return false;
 275}
 276
 277static int uprobe_init_insn(struct arch_uprobe *auprobe, struct insn *insn, bool x86_64)
 278{
 279	enum insn_mode m = x86_64 ? INSN_MODE_64 : INSN_MODE_32;
 280	u32 volatile *good_insns;
 281	int ret;
 282
 283	ret = insn_decode(insn, auprobe->insn, sizeof(auprobe->insn), m);
 284	if (ret < 0)
 
 
 285		return -ENOEXEC;
 286
 287	if (is_prefix_bad(insn))
 288		return -ENOTSUPP;
 289
 290	/* We should not singlestep on the exception masking instructions */
 291	if (insn_masking_exception(insn))
 292		return -ENOTSUPP;
 293
 294	if (x86_64)
 295		good_insns = good_insns_64;
 296	else
 297		good_insns = good_insns_32;
 298
 299	if (test_bit(OPCODE1(insn), (unsigned long *)good_insns))
 300		return 0;
 301
 302	if (insn->opcode.nbytes == 2) {
 303		if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns))
 304			return 0;
 305	}
 306
 307	return -ENOTSUPP;
 308}
 309
 310#ifdef CONFIG_X86_64
 311/*
 312 * If arch_uprobe->insn doesn't use rip-relative addressing, return
 313 * immediately.  Otherwise, rewrite the instruction so that it accesses
 314 * its memory operand indirectly through a scratch register.  Set
 315 * defparam->fixups accordingly. (The contents of the scratch register
 316 * will be saved before we single-step the modified instruction,
 317 * and restored afterward).
 318 *
 319 * We do this because a rip-relative instruction can access only a
 320 * relatively small area (+/- 2 GB from the instruction), and the XOL
 321 * area typically lies beyond that area.  At least for instructions
 322 * that store to memory, we can't execute the original instruction
 323 * and "fix things up" later, because the misdirected store could be
 324 * disastrous.
 325 *
 326 * Some useful facts about rip-relative instructions:
 327 *
 328 *  - There's always a modrm byte with bit layout "00 reg 101".
 329 *  - There's never a SIB byte.
 330 *  - The displacement is always 4 bytes.
 331 *  - REX.B=1 bit in REX prefix, which normally extends r/m field,
 332 *    has no effect on rip-relative mode. It doesn't make modrm byte
 333 *    with r/m=101 refer to register 1101 = R13.
 334 */
 335static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
 336{
 337	u8 *cursor;
 338	u8 reg;
 339	u8 reg2;
 340
 341	if (!insn_rip_relative(insn))
 342		return;
 343
 344	/*
 345	 * insn_rip_relative() would have decoded rex_prefix, vex_prefix, modrm.
 346	 * Clear REX.b bit (extension of MODRM.rm field):
 347	 * we want to encode low numbered reg, not r8+.
 348	 */
 349	if (insn->rex_prefix.nbytes) {
 350		cursor = auprobe->insn + insn_offset_rex_prefix(insn);
 351		/* REX byte has 0100wrxb layout, clearing REX.b bit */
 352		*cursor &= 0xfe;
 353	}
 354	/*
 355	 * Similar treatment for VEX3/EVEX prefix.
 356	 * TODO: add XOP treatment when insn decoder supports them
 357	 */
 358	if (insn->vex_prefix.nbytes >= 3) {
 359		/*
 360		 * vex2:     c5    rvvvvLpp   (has no b bit)
 361		 * vex3/xop: c4/8f rxbmmmmm wvvvvLpp
 362		 * evex:     62    rxbR00mm wvvvv1pp zllBVaaa
 363		 * Setting VEX3.b (setting because it has inverted meaning).
 364		 * Setting EVEX.x since (in non-SIB encoding) EVEX.x
 365		 * is the 4th bit of MODRM.rm, and needs the same treatment.
 366		 * For VEX3-encoded insns, VEX3.x value has no effect in
 367		 * non-SIB encoding, the change is superfluous but harmless.
 368		 */
 369		cursor = auprobe->insn + insn_offset_vex_prefix(insn) + 1;
 370		*cursor |= 0x60;
 371	}
 372
 373	/*
 374	 * Convert from rip-relative addressing to register-relative addressing
 375	 * via a scratch register.
 376	 *
 377	 * This is tricky since there are insns with modrm byte
 378	 * which also use registers not encoded in modrm byte:
 379	 * [i]div/[i]mul: implicitly use dx:ax
 380	 * shift ops: implicitly use cx
 381	 * cmpxchg: implicitly uses ax
 382	 * cmpxchg8/16b: implicitly uses dx:ax and bx:cx
 383	 *   Encoding: 0f c7/1 modrm
 384	 *   The code below thinks that reg=1 (cx), chooses si as scratch.
 385	 * mulx: implicitly uses dx: mulx r/m,r1,r2 does r1:r2 = dx * r/m.
 386	 *   First appeared in Haswell (BMI2 insn). It is vex-encoded.
 387	 *   Example where none of bx,cx,dx can be used as scratch reg:
 388	 *   c4 e2 63 f6 0d disp32   mulx disp32(%rip),%ebx,%ecx
 389	 * [v]pcmpistri: implicitly uses cx, xmm0
 390	 * [v]pcmpistrm: implicitly uses xmm0
 391	 * [v]pcmpestri: implicitly uses ax, dx, cx, xmm0
 392	 * [v]pcmpestrm: implicitly uses ax, dx, xmm0
 393	 *   Evil SSE4.2 string comparison ops from hell.
 394	 * maskmovq/[v]maskmovdqu: implicitly uses (ds:rdi) as destination.
 395	 *   Encoding: 0f f7 modrm, 66 0f f7 modrm, vex-encoded: c5 f9 f7 modrm.
 396	 *   Store op1, byte-masked by op2 msb's in each byte, to (ds:rdi).
 397	 *   AMD says it has no 3-operand form (vex.vvvv must be 1111)
 398	 *   and that it can have only register operands, not mem
 399	 *   (its modrm byte must have mode=11).
 400	 *   If these restrictions will ever be lifted,
 401	 *   we'll need code to prevent selection of di as scratch reg!
 402	 *
 403	 * Summary: I don't know any insns with modrm byte which
 404	 * use SI register implicitly. DI register is used only
 405	 * by one insn (maskmovq) and BX register is used
 406	 * only by one too (cmpxchg8b).
 407	 * BP is stack-segment based (may be a problem?).
 408	 * AX, DX, CX are off-limits (many implicit users).
 409	 * SP is unusable (it's stack pointer - think about "pop mem";
 410	 * also, rsp+disp32 needs sib encoding -> insn length change).
 411	 */
 412
 413	reg = MODRM_REG(insn);	/* Fetch modrm.reg */
 414	reg2 = 0xff;		/* Fetch vex.vvvv */
 415	if (insn->vex_prefix.nbytes)
 416		reg2 = insn->vex_prefix.bytes[2];
 417	/*
 418	 * TODO: add XOP vvvv reading.
 419	 *
 420	 * vex.vvvv field is in bits 6-3, bits are inverted.
 421	 * But in 32-bit mode, high-order bit may be ignored.
 422	 * Therefore, let's consider only 3 low-order bits.
 423	 */
 424	reg2 = ((reg2 >> 3) & 0x7) ^ 0x7;
 425	/*
 426	 * Register numbering is ax,cx,dx,bx, sp,bp,si,di, r8..r15.
 427	 *
 428	 * Choose scratch reg. Order is important: must not select bx
 429	 * if we can use si (cmpxchg8b case!)
 430	 */
 431	if (reg != 6 && reg2 != 6) {
 432		reg2 = 6;
 433		auprobe->defparam.fixups |= UPROBE_FIX_RIP_SI;
 434	} else if (reg != 7 && reg2 != 7) {
 435		reg2 = 7;
 436		auprobe->defparam.fixups |= UPROBE_FIX_RIP_DI;
 437		/* TODO (paranoia): force maskmovq to not use di */
 438	} else {
 439		reg2 = 3;
 440		auprobe->defparam.fixups |= UPROBE_FIX_RIP_BX;
 441	}
 442	/*
 443	 * Point cursor at the modrm byte.  The next 4 bytes are the
 444	 * displacement.  Beyond the displacement, for some instructions,
 445	 * is the immediate operand.
 446	 */
 447	cursor = auprobe->insn + insn_offset_modrm(insn);
 448	/*
 449	 * Change modrm from "00 reg 101" to "10 reg reg2". Example:
 450	 * 89 05 disp32  mov %eax,disp32(%rip) becomes
 451	 * 89 86 disp32  mov %eax,disp32(%rsi)
 452	 */
 453	*cursor = 0x80 | (reg << 3) | reg2;
 454}
 455
 456static inline unsigned long *
 457scratch_reg(struct arch_uprobe *auprobe, struct pt_regs *regs)
 458{
 459	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_SI)
 460		return &regs->si;
 461	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_DI)
 462		return &regs->di;
 463	return &regs->bx;
 464}
 465
 466/*
 467 * If we're emulating a rip-relative instruction, save the contents
 468 * of the scratch register and store the target address in that register.
 469 */
 470static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 471{
 472	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
 473		struct uprobe_task *utask = current->utask;
 474		unsigned long *sr = scratch_reg(auprobe, regs);
 475
 476		utask->autask.saved_scratch_register = *sr;
 477		*sr = utask->vaddr + auprobe->defparam.ilen;
 478	}
 479}
 480
 481static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 482{
 483	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
 484		struct uprobe_task *utask = current->utask;
 485		unsigned long *sr = scratch_reg(auprobe, regs);
 486
 487		*sr = utask->autask.saved_scratch_register;
 488	}
 489}
 490#else /* 32-bit: */
 491/*
 492 * No RIP-relative addressing on 32-bit
 493 */
 494static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
 495{
 496}
 497static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 498{
 499}
 500static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 501{
 502}
 503#endif /* CONFIG_X86_64 */
 504
 505struct uprobe_xol_ops {
 506	bool	(*emulate)(struct arch_uprobe *, struct pt_regs *);
 507	int	(*pre_xol)(struct arch_uprobe *, struct pt_regs *);
 508	int	(*post_xol)(struct arch_uprobe *, struct pt_regs *);
 509	void	(*abort)(struct arch_uprobe *, struct pt_regs *);
 510};
 511
 512static inline int sizeof_long(struct pt_regs *regs)
 513{
 514	/*
 515	 * Check registers for mode as in_xxx_syscall() does not apply here.
 516	 */
 517	return user_64bit_mode(regs) ? 8 : 4;
 518}
 519
 520static int default_pre_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 521{
 522	riprel_pre_xol(auprobe, regs);
 523	return 0;
 524}
 525
 526static int emulate_push_stack(struct pt_regs *regs, unsigned long val)
 527{
 528	unsigned long new_sp = regs->sp - sizeof_long(regs);
 529
 530	if (copy_to_user((void __user *)new_sp, &val, sizeof_long(regs)))
 531		return -EFAULT;
 532
 533	regs->sp = new_sp;
 534	return 0;
 535}
 536
 537/*
 538 * We have to fix things up as follows:
 539 *
 540 * Typically, the new ip is relative to the copied instruction.  We need
 541 * to make it relative to the original instruction (FIX_IP).  Exceptions
 542 * are return instructions and absolute or indirect jump or call instructions.
 543 *
 544 * If the single-stepped instruction was a call, the return address that
 545 * is atop the stack is the address following the copied instruction.  We
 546 * need to make it the address following the original instruction (FIX_CALL).
 547 *
 548 * If the original instruction was a rip-relative instruction such as
 549 * "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent
 550 * instruction using a scratch register -- e.g., "movl %edx,0xnnnn(%rsi)".
 551 * We need to restore the contents of the scratch register
 552 * (FIX_RIP_reg).
 553 */
 554static int default_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 555{
 556	struct uprobe_task *utask = current->utask;
 557
 558	riprel_post_xol(auprobe, regs);
 559	if (auprobe->defparam.fixups & UPROBE_FIX_IP) {
 560		long correction = utask->vaddr - utask->xol_vaddr;
 561		regs->ip += correction;
 562	} else if (auprobe->defparam.fixups & UPROBE_FIX_CALL) {
 563		regs->sp += sizeof_long(regs); /* Pop incorrect return address */
 564		if (emulate_push_stack(regs, utask->vaddr + auprobe->defparam.ilen))
 565			return -ERESTART;
 566	}
 567	/* popf; tell the caller to not touch TF */
 568	if (auprobe->defparam.fixups & UPROBE_FIX_SETF)
 569		utask->autask.saved_tf = true;
 570
 571	return 0;
 572}
 573
 574static void default_abort_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 575{
 576	riprel_post_xol(auprobe, regs);
 577}
 578
 579static const struct uprobe_xol_ops default_xol_ops = {
 580	.pre_xol  = default_pre_xol_op,
 581	.post_xol = default_post_xol_op,
 582	.abort	  = default_abort_op,
 583};
 584
 585static bool branch_is_call(struct arch_uprobe *auprobe)
 586{
 587	return auprobe->branch.opc1 == 0xe8;
 588}
 589
 590#define CASE_COND					\
 591	COND(70, 71, XF(OF))				\
 592	COND(72, 73, XF(CF))				\
 593	COND(74, 75, XF(ZF))				\
 594	COND(78, 79, XF(SF))				\
 595	COND(7a, 7b, XF(PF))				\
 596	COND(76, 77, XF(CF) || XF(ZF))			\
 597	COND(7c, 7d, XF(SF) != XF(OF))			\
 598	COND(7e, 7f, XF(ZF) || XF(SF) != XF(OF))
 599
 600#define COND(op_y, op_n, expr)				\
 601	case 0x ## op_y: DO((expr) != 0)		\
 602	case 0x ## op_n: DO((expr) == 0)
 603
 604#define XF(xf)	(!!(flags & X86_EFLAGS_ ## xf))
 605
 606static bool is_cond_jmp_opcode(u8 opcode)
 607{
 608	switch (opcode) {
 609	#define DO(expr)	\
 610		return true;
 611	CASE_COND
 612	#undef	DO
 613
 614	default:
 615		return false;
 616	}
 617}
 618
 619static bool check_jmp_cond(struct arch_uprobe *auprobe, struct pt_regs *regs)
 620{
 621	unsigned long flags = regs->flags;
 622
 623	switch (auprobe->branch.opc1) {
 624	#define DO(expr)	\
 625		return expr;
 626	CASE_COND
 627	#undef	DO
 628
 629	default:	/* not a conditional jmp */
 630		return true;
 631	}
 632}
 633
 634#undef	XF
 635#undef	COND
 636#undef	CASE_COND
 637
 638static bool branch_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 639{
 640	unsigned long new_ip = regs->ip += auprobe->branch.ilen;
 641	unsigned long offs = (long)auprobe->branch.offs;
 642
 643	if (branch_is_call(auprobe)) {
 644		/*
 645		 * If it fails we execute this (mangled, see the comment in
 646		 * branch_clear_offset) insn out-of-line. In the likely case
 647		 * this should trigger the trap, and the probed application
 648		 * should die or restart the same insn after it handles the
 649		 * signal, arch_uprobe_post_xol() won't be even called.
 650		 *
 651		 * But there is corner case, see the comment in ->post_xol().
 652		 */
 653		if (emulate_push_stack(regs, new_ip))
 654			return false;
 655	} else if (!check_jmp_cond(auprobe, regs)) {
 656		offs = 0;
 657	}
 658
 659	regs->ip = new_ip + offs;
 660	return true;
 661}
 662
 663static bool push_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 664{
 665	unsigned long *src_ptr = (void *)regs + auprobe->push.reg_offset;
 666
 667	if (emulate_push_stack(regs, *src_ptr))
 668		return false;
 669	regs->ip += auprobe->push.ilen;
 670	return true;
 671}
 672
 673static int branch_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 674{
 675	BUG_ON(!branch_is_call(auprobe));
 676	/*
 677	 * We can only get here if branch_emulate_op() failed to push the ret
 678	 * address _and_ another thread expanded our stack before the (mangled)
 679	 * "call" insn was executed out-of-line. Just restore ->sp and restart.
 680	 * We could also restore ->ip and try to call branch_emulate_op() again.
 681	 */
 682	regs->sp += sizeof_long(regs);
 683	return -ERESTART;
 684}
 685
 686static void branch_clear_offset(struct arch_uprobe *auprobe, struct insn *insn)
 687{
 688	/*
 689	 * Turn this insn into "call 1f; 1:", this is what we will execute
 690	 * out-of-line if ->emulate() fails. We only need this to generate
 691	 * a trap, so that the probed task receives the correct signal with
 692	 * the properly filled siginfo.
 693	 *
 694	 * But see the comment in ->post_xol(), in the unlikely case it can
 695	 * succeed. So we need to ensure that the new ->ip can not fall into
 696	 * the non-canonical area and trigger #GP.
 697	 *
 698	 * We could turn it into (say) "pushf", but then we would need to
 699	 * divorce ->insn[] and ->ixol[]. We need to preserve the 1st byte
 700	 * of ->insn[] for set_orig_insn().
 701	 */
 702	memset(auprobe->insn + insn_offset_immediate(insn),
 703		0, insn->immediate.nbytes);
 704}
 705
 706static const struct uprobe_xol_ops branch_xol_ops = {
 707	.emulate  = branch_emulate_op,
 708	.post_xol = branch_post_xol_op,
 709};
 710
 711static const struct uprobe_xol_ops push_xol_ops = {
 712	.emulate  = push_emulate_op,
 713};
 714
 715/* Returns -ENOSYS if branch_xol_ops doesn't handle this insn */
 716static int branch_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
 717{
 718	u8 opc1 = OPCODE1(insn);
 719	insn_byte_t p;
 720	int i;
 721
 722	switch (opc1) {
 723	case 0xeb:	/* jmp 8 */
 724	case 0xe9:	/* jmp 32 */
 
 725		break;
 726	case 0x90:	/* prefix* + nop; same as jmp with .offs = 0 */
 727		goto setup;
 728
 729	case 0xe8:	/* call relative */
 730		branch_clear_offset(auprobe, insn);
 731		break;
 732
 733	case 0x0f:
 734		if (insn->opcode.nbytes != 2)
 735			return -ENOSYS;
 736		/*
 737		 * If it is a "near" conditional jmp, OPCODE2() - 0x10 matches
 738		 * OPCODE1() of the "short" jmp which checks the same condition.
 739		 */
 740		opc1 = OPCODE2(insn) - 0x10;
 741		fallthrough;
 742	default:
 743		if (!is_cond_jmp_opcode(opc1))
 744			return -ENOSYS;
 745	}
 746
 747	/*
 748	 * 16-bit overrides such as CALLW (66 e8 nn nn) are not supported.
 749	 * Intel and AMD behavior differ in 64-bit mode: Intel ignores 66 prefix.
 750	 * No one uses these insns, reject any branch insns with such prefix.
 751	 */
 752	for_each_insn_prefix(insn, i, p) {
 753		if (p == 0x66)
 754			return -ENOTSUPP;
 755	}
 756
 757setup:
 758	auprobe->branch.opc1 = opc1;
 759	auprobe->branch.ilen = insn->length;
 760	auprobe->branch.offs = insn->immediate.value;
 761
 762	auprobe->ops = &branch_xol_ops;
 763	return 0;
 764}
 765
 766/* Returns -ENOSYS if push_xol_ops doesn't handle this insn */
 767static int push_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
 768{
 769	u8 opc1 = OPCODE1(insn), reg_offset = 0;
 770
 771	if (opc1 < 0x50 || opc1 > 0x57)
 772		return -ENOSYS;
 773
 774	if (insn->length > 2)
 775		return -ENOSYS;
 776	if (insn->length == 2) {
 777		/* only support rex_prefix 0x41 (x64 only) */
 778#ifdef CONFIG_X86_64
 779		if (insn->rex_prefix.nbytes != 1 ||
 780		    insn->rex_prefix.bytes[0] != 0x41)
 781			return -ENOSYS;
 782
 783		switch (opc1) {
 784		case 0x50:
 785			reg_offset = offsetof(struct pt_regs, r8);
 786			break;
 787		case 0x51:
 788			reg_offset = offsetof(struct pt_regs, r9);
 789			break;
 790		case 0x52:
 791			reg_offset = offsetof(struct pt_regs, r10);
 792			break;
 793		case 0x53:
 794			reg_offset = offsetof(struct pt_regs, r11);
 795			break;
 796		case 0x54:
 797			reg_offset = offsetof(struct pt_regs, r12);
 798			break;
 799		case 0x55:
 800			reg_offset = offsetof(struct pt_regs, r13);
 801			break;
 802		case 0x56:
 803			reg_offset = offsetof(struct pt_regs, r14);
 804			break;
 805		case 0x57:
 806			reg_offset = offsetof(struct pt_regs, r15);
 807			break;
 808		}
 809#else
 810		return -ENOSYS;
 811#endif
 812	} else {
 813		switch (opc1) {
 814		case 0x50:
 815			reg_offset = offsetof(struct pt_regs, ax);
 816			break;
 817		case 0x51:
 818			reg_offset = offsetof(struct pt_regs, cx);
 819			break;
 820		case 0x52:
 821			reg_offset = offsetof(struct pt_regs, dx);
 822			break;
 823		case 0x53:
 824			reg_offset = offsetof(struct pt_regs, bx);
 825			break;
 826		case 0x54:
 827			reg_offset = offsetof(struct pt_regs, sp);
 828			break;
 829		case 0x55:
 830			reg_offset = offsetof(struct pt_regs, bp);
 831			break;
 832		case 0x56:
 833			reg_offset = offsetof(struct pt_regs, si);
 834			break;
 835		case 0x57:
 836			reg_offset = offsetof(struct pt_regs, di);
 837			break;
 838		}
 839	}
 840
 841	auprobe->push.reg_offset = reg_offset;
 842	auprobe->push.ilen = insn->length;
 843	auprobe->ops = &push_xol_ops;
 844	return 0;
 845}
 846
 847/**
 848 * arch_uprobe_analyze_insn - instruction analysis including validity and fixups.
 849 * @auprobe: the probepoint information.
 850 * @mm: the probed address space.
 
 851 * @addr: virtual address at which to install the probepoint
 852 * Return 0 on success or a -ve number on error.
 853 */
 854int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long addr)
 855{
 856	struct insn insn;
 857	u8 fix_ip_or_call = UPROBE_FIX_IP;
 858	int ret;
 859
 860	ret = uprobe_init_insn(auprobe, &insn, is_64bit_mm(mm));
 861	if (ret)
 862		return ret;
 863
 864	ret = branch_setup_xol_ops(auprobe, &insn);
 865	if (ret != -ENOSYS)
 866		return ret;
 867
 868	ret = push_setup_xol_ops(auprobe, &insn);
 869	if (ret != -ENOSYS)
 870		return ret;
 871
 872	/*
 873	 * Figure out which fixups default_post_xol_op() will need to perform,
 874	 * and annotate defparam->fixups accordingly.
 875	 */
 876	switch (OPCODE1(&insn)) {
 877	case 0x9d:		/* popf */
 878		auprobe->defparam.fixups |= UPROBE_FIX_SETF;
 879		break;
 880	case 0xc3:		/* ret or lret -- ip is correct */
 881	case 0xcb:
 882	case 0xc2:
 883	case 0xca:
 884	case 0xea:		/* jmp absolute -- ip is correct */
 885		fix_ip_or_call = 0;
 886		break;
 887	case 0x9a:		/* call absolute - Fix return addr, not ip */
 888		fix_ip_or_call = UPROBE_FIX_CALL;
 889		break;
 890	case 0xff:
 891		switch (MODRM_REG(&insn)) {
 892		case 2: case 3:			/* call or lcall, indirect */
 893			fix_ip_or_call = UPROBE_FIX_CALL;
 894			break;
 895		case 4: case 5:			/* jmp or ljmp, indirect */
 896			fix_ip_or_call = 0;
 897			break;
 898		}
 899		fallthrough;
 900	default:
 901		riprel_analyze(auprobe, &insn);
 902	}
 903
 904	auprobe->defparam.ilen = insn.length;
 905	auprobe->defparam.fixups |= fix_ip_or_call;
 906
 907	auprobe->ops = &default_xol_ops;
 908	return 0;
 909}
 910
 911/*
 912 * arch_uprobe_pre_xol - prepare to execute out of line.
 913 * @auprobe: the probepoint information.
 914 * @regs: reflects the saved user state of current task.
 915 */
 916int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 917{
 918	struct uprobe_task *utask = current->utask;
 919
 920	if (auprobe->ops->pre_xol) {
 921		int err = auprobe->ops->pre_xol(auprobe, regs);
 922		if (err)
 923			return err;
 924	}
 925
 926	regs->ip = utask->xol_vaddr;
 927	utask->autask.saved_trap_nr = current->thread.trap_nr;
 928	current->thread.trap_nr = UPROBE_TRAP_NR;
 929
 930	utask->autask.saved_tf = !!(regs->flags & X86_EFLAGS_TF);
 931	regs->flags |= X86_EFLAGS_TF;
 932	if (test_tsk_thread_flag(current, TIF_BLOCKSTEP))
 933		set_task_blockstep(current, false);
 934
 935	return 0;
 936}
 937
 938/*
 939 * If xol insn itself traps and generates a signal(Say,
 940 * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped
 941 * instruction jumps back to its own address. It is assumed that anything
 942 * like do_page_fault/do_trap/etc sets thread.trap_nr != -1.
 943 *
 944 * arch_uprobe_pre_xol/arch_uprobe_post_xol save/restore thread.trap_nr,
 945 * arch_uprobe_xol_was_trapped() simply checks that ->trap_nr is not equal to
 946 * UPROBE_TRAP_NR == -1 set by arch_uprobe_pre_xol().
 947 */
 948bool arch_uprobe_xol_was_trapped(struct task_struct *t)
 949{
 950	if (t->thread.trap_nr != UPROBE_TRAP_NR)
 951		return true;
 952
 953	return false;
 954}
 955
 956/*
 957 * Called after single-stepping. To avoid the SMP problems that can
 958 * occur when we temporarily put back the original opcode to
 959 * single-step, we single-stepped a copy of the instruction.
 960 *
 961 * This function prepares to resume execution after the single-step.
 962 */
 963int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 964{
 965	struct uprobe_task *utask = current->utask;
 966	bool send_sigtrap = utask->autask.saved_tf;
 967	int err = 0;
 968
 969	WARN_ON_ONCE(current->thread.trap_nr != UPROBE_TRAP_NR);
 970	current->thread.trap_nr = utask->autask.saved_trap_nr;
 971
 972	if (auprobe->ops->post_xol) {
 973		err = auprobe->ops->post_xol(auprobe, regs);
 974		if (err) {
 975			/*
 976			 * Restore ->ip for restart or post mortem analysis.
 977			 * ->post_xol() must not return -ERESTART unless this
 978			 * is really possible.
 979			 */
 980			regs->ip = utask->vaddr;
 981			if (err == -ERESTART)
 982				err = 0;
 983			send_sigtrap = false;
 984		}
 985	}
 986	/*
 987	 * arch_uprobe_pre_xol() doesn't save the state of TIF_BLOCKSTEP
 988	 * so we can get an extra SIGTRAP if we do not clear TF. We need
 989	 * to examine the opcode to make it right.
 990	 */
 991	if (send_sigtrap)
 992		send_sig(SIGTRAP, current, 0);
 993
 994	if (!utask->autask.saved_tf)
 995		regs->flags &= ~X86_EFLAGS_TF;
 996
 997	return err;
 998}
 999
1000/* callback routine for handling exceptions. */
1001int arch_uprobe_exception_notify(struct notifier_block *self, unsigned long val, void *data)
1002{
1003	struct die_args *args = data;
1004	struct pt_regs *regs = args->regs;
1005	int ret = NOTIFY_DONE;
1006
1007	/* We are only interested in userspace traps */
1008	if (regs && !user_mode(regs))
1009		return NOTIFY_DONE;
1010
1011	switch (val) {
1012	case DIE_INT3:
1013		if (uprobe_pre_sstep_notifier(regs))
1014			ret = NOTIFY_STOP;
1015
1016		break;
1017
1018	case DIE_DEBUG:
1019		if (uprobe_post_sstep_notifier(regs))
1020			ret = NOTIFY_STOP;
1021
1022		break;
1023
1024	default:
1025		break;
1026	}
1027
1028	return ret;
1029}
1030
1031/*
1032 * This function gets called when XOL instruction either gets trapped or
1033 * the thread has a fatal signal. Reset the instruction pointer to its
1034 * probed address for the potential restart or for post mortem analysis.
1035 */
1036void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
1037{
1038	struct uprobe_task *utask = current->utask;
1039
1040	if (auprobe->ops->abort)
1041		auprobe->ops->abort(auprobe, regs);
1042
1043	current->thread.trap_nr = utask->autask.saved_trap_nr;
1044	regs->ip = utask->vaddr;
1045	/* clear TF if it was set by us in arch_uprobe_pre_xol() */
1046	if (!utask->autask.saved_tf)
1047		regs->flags &= ~X86_EFLAGS_TF;
1048}
1049
1050static bool __skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
1051{
1052	if (auprobe->ops->emulate)
1053		return auprobe->ops->emulate(auprobe, regs);
1054	return false;
1055}
1056
1057bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
1058{
1059	bool ret = __skip_sstep(auprobe, regs);
1060	if (ret && (regs->flags & X86_EFLAGS_TF))
1061		send_sig(SIGTRAP, current, 0);
1062	return ret;
1063}
1064
1065unsigned long
1066arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr, struct pt_regs *regs)
1067{
1068	int rasize = sizeof_long(regs), nleft;
1069	unsigned long orig_ret_vaddr = 0; /* clear high bits for 32-bit apps */
1070
1071	if (copy_from_user(&orig_ret_vaddr, (void __user *)regs->sp, rasize))
1072		return -1;
1073
1074	/* check whether address has been already hijacked */
1075	if (orig_ret_vaddr == trampoline_vaddr)
1076		return orig_ret_vaddr;
1077
1078	nleft = copy_to_user((void __user *)regs->sp, &trampoline_vaddr, rasize);
1079	if (likely(!nleft))
1080		return orig_ret_vaddr;
1081
1082	if (nleft != rasize) {
1083		pr_err("return address clobbered: pid=%d, %%sp=%#lx, %%ip=%#lx\n",
1084		       current->pid, regs->sp, regs->ip);
1085
1086		force_sig(SIGSEGV);
1087	}
1088
1089	return -1;
1090}
1091
1092bool arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
1093				struct pt_regs *regs)
1094{
1095	if (ctx == RP_CHECK_CALL) /* sp was just decremented by "call" insn */
1096		return regs->sp < ret->stack;
1097	else
1098		return regs->sp <= ret->stack;
1099}