Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 * User-space Probes (UProbes) for x86
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  17 *
  18 * Copyright (C) IBM Corporation, 2008-2011
  19 * Authors:
  20 *	Srikar Dronamraju
  21 *	Jim Keniston
  22 */
  23#include <linux/kernel.h>
  24#include <linux/sched.h>
  25#include <linux/ptrace.h>
  26#include <linux/uprobes.h>
  27#include <linux/uaccess.h>
 
  28
  29#include <linux/kdebug.h>
  30#include <asm/processor.h>
  31#include <asm/insn.h>
  32#include <asm/mmu_context.h>
  33
  34/* Post-execution fixups. */
  35
  36/* Adjust IP back to vicinity of actual insn */
  37#define UPROBE_FIX_IP		0x01
  38
  39/* Adjust the return address of a call insn */
  40#define UPROBE_FIX_CALL		0x02
  41
  42/* Instruction will modify TF, don't change it */
  43#define UPROBE_FIX_SETF		0x04
  44
  45#define UPROBE_FIX_RIP_SI	0x08
  46#define UPROBE_FIX_RIP_DI	0x10
  47#define UPROBE_FIX_RIP_BX	0x20
  48#define UPROBE_FIX_RIP_MASK	\
  49	(UPROBE_FIX_RIP_SI | UPROBE_FIX_RIP_DI | UPROBE_FIX_RIP_BX)
  50
  51#define	UPROBE_TRAP_NR		UINT_MAX
  52
  53/* Adaptations for mhiramat x86 decoder v14. */
  54#define OPCODE1(insn)		((insn)->opcode.bytes[0])
  55#define OPCODE2(insn)		((insn)->opcode.bytes[1])
  56#define OPCODE3(insn)		((insn)->opcode.bytes[2])
  57#define MODRM_REG(insn)		X86_MODRM_REG((insn)->modrm.value)
  58
  59#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
  60	(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
  61	  (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
  62	  (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
  63	  (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
  64	 << (row % 32))
  65
  66/*
  67 * Good-instruction tables for 32-bit apps.  This is non-const and volatile
  68 * to keep gcc from statically optimizing it out, as variable_test_bit makes
  69 * some versions of gcc to think only *(unsigned long*) is used.
  70 *
  71 * Opcodes we'll probably never support:
  72 * 6c-6f - ins,outs. SEGVs if used in userspace
  73 * e4-e7 - in,out imm. SEGVs if used in userspace
  74 * ec-ef - in,out acc. SEGVs if used in userspace
  75 * cc - int3. SIGTRAP if used in userspace
  76 * ce - into. Not used in userspace - no kernel support to make it useful. SEGVs
  77 *	(why we support bound (62) then? it's similar, and similarly unused...)
  78 * f1 - int1. SIGTRAP if used in userspace
  79 * f4 - hlt. SEGVs if used in userspace
  80 * fa - cli. SEGVs if used in userspace
  81 * fb - sti. SEGVs if used in userspace
  82 *
  83 * Opcodes which need some work to be supported:
  84 * 07,17,1f - pop es/ss/ds
  85 *	Normally not used in userspace, but would execute if used.
  86 *	Can cause GP or stack exception if tries to load wrong segment descriptor.
  87 *	We hesitate to run them under single step since kernel's handling
  88 *	of userspace single-stepping (TF flag) is fragile.
  89 *	We can easily refuse to support push es/cs/ss/ds (06/0e/16/1e)
  90 *	on the same grounds that they are never used.
  91 * cd - int N.
  92 *	Used by userspace for "int 80" syscall entry. (Other "int N"
  93 *	cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
  94 *	Not supported since kernel's handling of userspace single-stepping
  95 *	(TF flag) is fragile.
  96 * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
  97 */
  98#if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION)
  99static volatile u32 good_insns_32[256 / 32] = {
 100	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 101	/*      ----------------------------------------------         */
 102	W(0x00, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 00 */
 103	W(0x10, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 10 */
 104	W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
 105	W(0x30, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
 106	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
 107	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
 108	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
 109	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
 110	W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
 111	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
 112	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
 113	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
 114	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
 115	W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
 116	W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
 117	W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1)   /* f0 */
 118	/*      ----------------------------------------------         */
 119	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 120};
 121#else
 122#define good_insns_32	NULL
 123#endif
 124
 125/* Good-instruction tables for 64-bit apps.
 126 *
 127 * Genuinely invalid opcodes:
 128 * 06,07 - formerly push/pop es
 129 * 0e - formerly push cs
 130 * 16,17 - formerly push/pop ss
 131 * 1e,1f - formerly push/pop ds
 132 * 27,2f,37,3f - formerly daa/das/aaa/aas
 133 * 60,61 - formerly pusha/popa
 134 * 62 - formerly bound. EVEX prefix for AVX512 (not yet supported)
 135 * 82 - formerly redundant encoding of Group1
 136 * 9a - formerly call seg:ofs
 137 * ce - formerly into
 138 * d4,d5 - formerly aam/aad
 139 * d6 - formerly undocumented salc
 140 * ea - formerly jmp seg:ofs
 141 *
 142 * Opcodes we'll probably never support:
 143 * 6c-6f - ins,outs. SEGVs if used in userspace
 144 * e4-e7 - in,out imm. SEGVs if used in userspace
 145 * ec-ef - in,out acc. SEGVs if used in userspace
 146 * cc - int3. SIGTRAP if used in userspace
 147 * f1 - int1. SIGTRAP if used in userspace
 148 * f4 - hlt. SEGVs if used in userspace
 149 * fa - cli. SEGVs if used in userspace
 150 * fb - sti. SEGVs if used in userspace
 151 *
 152 * Opcodes which need some work to be supported:
 153 * cd - int N.
 154 *	Used by userspace for "int 80" syscall entry. (Other "int N"
 155 *	cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
 156 *	Not supported since kernel's handling of userspace single-stepping
 157 *	(TF flag) is fragile.
 158 * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
 159 */
 160#if defined(CONFIG_X86_64)
 161static volatile u32 good_insns_64[256 / 32] = {
 162	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 163	/*      ----------------------------------------------         */
 164	W(0x00, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* 00 */
 165	W(0x10, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 10 */
 166	W(0x20, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) | /* 20 */
 167	W(0x30, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 30 */
 168	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
 169	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
 170	W(0x60, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
 171	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
 172	W(0x80, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
 173	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1) , /* 90 */
 174	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
 175	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
 176	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
 177	W(0xd0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
 178	W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0) | /* e0 */
 179	W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1)   /* f0 */
 180	/*      ----------------------------------------------         */
 181	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 182};
 183#else
 184#define good_insns_64	NULL
 185#endif
 186
 187/* Using this for both 64-bit and 32-bit apps.
 188 * Opcodes we don't support:
 189 * 0f 00 - SLDT/STR/LLDT/LTR/VERR/VERW/-/- group. System insns
 190 * 0f 01 - SGDT/SIDT/LGDT/LIDT/SMSW/-/LMSW/INVLPG group.
 191 *	Also encodes tons of other system insns if mod=11.
 192 *	Some are in fact non-system: xend, xtest, rdtscp, maybe more
 193 * 0f 05 - syscall
 194 * 0f 06 - clts (CPL0 insn)
 195 * 0f 07 - sysret
 196 * 0f 08 - invd (CPL0 insn)
 197 * 0f 09 - wbinvd (CPL0 insn)
 198 * 0f 0b - ud2
 199 * 0f 30 - wrmsr (CPL0 insn) (then why rdmsr is allowed, it's also CPL0 insn?)
 200 * 0f 34 - sysenter
 201 * 0f 35 - sysexit
 202 * 0f 37 - getsec
 203 * 0f 78 - vmread (Intel VMX. CPL0 insn)
 204 * 0f 79 - vmwrite (Intel VMX. CPL0 insn)
 205 *	Note: with prefixes, these two opcodes are
 206 *	extrq/insertq/AVX512 convert vector ops.
 207 * 0f ae - group15: [f]xsave,[f]xrstor,[v]{ld,st}mxcsr,clflush[opt],
 208 *	{rd,wr}{fs,gs}base,{s,l,m}fence.
 209 *	Why? They are all user-executable.
 210 */
 211static volatile u32 good_2byte_insns[256 / 32] = {
 212	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 213	/*      ----------------------------------------------         */
 214	W(0x00, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1) | /* 00 */
 215	W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 10 */
 216	W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
 217	W(0x30, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
 218	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
 219	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
 220	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 60 */
 221	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1) , /* 70 */
 222	W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
 223	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
 224	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1) | /* a0 */
 225	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
 226	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
 227	W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
 228	W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* e0 */
 229	W(0xf0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)   /* f0 */
 230	/*      ----------------------------------------------         */
 231	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 232};
 233#undef W
 234
 235/*
 236 * opcodes we may need to refine support for:
 237 *
 238 *  0f - 2-byte instructions: For many of these instructions, the validity
 239 *  depends on the prefix and/or the reg field.  On such instructions, we
 240 *  just consider the opcode combination valid if it corresponds to any
 241 *  valid instruction.
 242 *
 243 *  8f - Group 1 - only reg = 0 is OK
 244 *  c6-c7 - Group 11 - only reg = 0 is OK
 245 *  d9-df - fpu insns with some illegal encodings
 246 *  f2, f3 - repnz, repz prefixes.  These are also the first byte for
 247 *  certain floating-point instructions, such as addsd.
 248 *
 249 *  fe - Group 4 - only reg = 0 or 1 is OK
 250 *  ff - Group 5 - only reg = 0-6 is OK
 251 *
 252 * others -- Do we need to support these?
 253 *
 254 *  0f - (floating-point?) prefetch instructions
 255 *  07, 17, 1f - pop es, pop ss, pop ds
 256 *  26, 2e, 36, 3e - es:, cs:, ss:, ds: segment prefixes --
 257 *	but 64 and 65 (fs: and gs:) seem to be used, so we support them
 258 *  67 - addr16 prefix
 259 *  ce - into
 260 *  f0 - lock prefix
 261 */
 262
 263/*
 264 * TODO:
 265 * - Where necessary, examine the modrm byte and allow only valid instructions
 266 * in the different Groups and fpu instructions.
 267 */
 268
 269static bool is_prefix_bad(struct insn *insn)
 270{
 
 271	int i;
 272
 273	for (i = 0; i < insn->prefixes.nbytes; i++) {
 274		insn_attr_t attr;
 275
 276		attr = inat_get_opcode_attribute(insn->prefixes.bytes[i]);
 277		switch (attr) {
 278		case INAT_MAKE_PREFIX(INAT_PFX_ES):
 279		case INAT_MAKE_PREFIX(INAT_PFX_CS):
 280		case INAT_MAKE_PREFIX(INAT_PFX_DS):
 281		case INAT_MAKE_PREFIX(INAT_PFX_SS):
 282		case INAT_MAKE_PREFIX(INAT_PFX_LOCK):
 283			return true;
 284		}
 285	}
 286	return false;
 287}
 288
 289static int uprobe_init_insn(struct arch_uprobe *auprobe, struct insn *insn, bool x86_64)
 290{
 
 291	u32 volatile *good_insns;
 
 292
 293	insn_init(insn, auprobe->insn, sizeof(auprobe->insn), x86_64);
 294	/* has the side-effect of processing the entire instruction */
 295	insn_get_length(insn);
 296	if (WARN_ON_ONCE(!insn_complete(insn)))
 297		return -ENOEXEC;
 298
 299	if (is_prefix_bad(insn))
 300		return -ENOTSUPP;
 301
 302	/* We should not singlestep on the exception masking instructions */
 303	if (insn_masking_exception(insn))
 304		return -ENOTSUPP;
 305
 306	if (x86_64)
 307		good_insns = good_insns_64;
 308	else
 309		good_insns = good_insns_32;
 310
 311	if (test_bit(OPCODE1(insn), (unsigned long *)good_insns))
 312		return 0;
 313
 314	if (insn->opcode.nbytes == 2) {
 315		if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns))
 316			return 0;
 317	}
 318
 319	return -ENOTSUPP;
 320}
 321
 322#ifdef CONFIG_X86_64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 323/*
 324 * If arch_uprobe->insn doesn't use rip-relative addressing, return
 325 * immediately.  Otherwise, rewrite the instruction so that it accesses
 326 * its memory operand indirectly through a scratch register.  Set
 327 * defparam->fixups accordingly. (The contents of the scratch register
 328 * will be saved before we single-step the modified instruction,
 329 * and restored afterward).
 330 *
 331 * We do this because a rip-relative instruction can access only a
 332 * relatively small area (+/- 2 GB from the instruction), and the XOL
 333 * area typically lies beyond that area.  At least for instructions
 334 * that store to memory, we can't execute the original instruction
 335 * and "fix things up" later, because the misdirected store could be
 336 * disastrous.
 337 *
 338 * Some useful facts about rip-relative instructions:
 339 *
 340 *  - There's always a modrm byte with bit layout "00 reg 101".
 341 *  - There's never a SIB byte.
 342 *  - The displacement is always 4 bytes.
 343 *  - REX.B=1 bit in REX prefix, which normally extends r/m field,
 344 *    has no effect on rip-relative mode. It doesn't make modrm byte
 345 *    with r/m=101 refer to register 1101 = R13.
 346 */
 347static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
 348{
 349	u8 *cursor;
 350	u8 reg;
 351	u8 reg2;
 352
 353	if (!insn_rip_relative(insn))
 354		return;
 355
 356	/*
 357	 * insn_rip_relative() would have decoded rex_prefix, vex_prefix, modrm.
 358	 * Clear REX.b bit (extension of MODRM.rm field):
 359	 * we want to encode low numbered reg, not r8+.
 360	 */
 361	if (insn->rex_prefix.nbytes) {
 362		cursor = auprobe->insn + insn_offset_rex_prefix(insn);
 363		/* REX byte has 0100wrxb layout, clearing REX.b bit */
 364		*cursor &= 0xfe;
 365	}
 366	/*
 367	 * Similar treatment for VEX3/EVEX prefix.
 368	 * TODO: add XOP treatment when insn decoder supports them
 369	 */
 370	if (insn->vex_prefix.nbytes >= 3) {
 371		/*
 372		 * vex2:     c5    rvvvvLpp   (has no b bit)
 373		 * vex3/xop: c4/8f rxbmmmmm wvvvvLpp
 374		 * evex:     62    rxbR00mm wvvvv1pp zllBVaaa
 375		 * Setting VEX3.b (setting because it has inverted meaning).
 376		 * Setting EVEX.x since (in non-SIB encoding) EVEX.x
 377		 * is the 4th bit of MODRM.rm, and needs the same treatment.
 378		 * For VEX3-encoded insns, VEX3.x value has no effect in
 379		 * non-SIB encoding, the change is superfluous but harmless.
 380		 */
 381		cursor = auprobe->insn + insn_offset_vex_prefix(insn) + 1;
 382		*cursor |= 0x60;
 383	}
 384
 385	/*
 386	 * Convert from rip-relative addressing to register-relative addressing
 387	 * via a scratch register.
 388	 *
 389	 * This is tricky since there are insns with modrm byte
 390	 * which also use registers not encoded in modrm byte:
 391	 * [i]div/[i]mul: implicitly use dx:ax
 392	 * shift ops: implicitly use cx
 393	 * cmpxchg: implicitly uses ax
 394	 * cmpxchg8/16b: implicitly uses dx:ax and bx:cx
 395	 *   Encoding: 0f c7/1 modrm
 396	 *   The code below thinks that reg=1 (cx), chooses si as scratch.
 397	 * mulx: implicitly uses dx: mulx r/m,r1,r2 does r1:r2 = dx * r/m.
 398	 *   First appeared in Haswell (BMI2 insn). It is vex-encoded.
 399	 *   Example where none of bx,cx,dx can be used as scratch reg:
 400	 *   c4 e2 63 f6 0d disp32   mulx disp32(%rip),%ebx,%ecx
 401	 * [v]pcmpistri: implicitly uses cx, xmm0
 402	 * [v]pcmpistrm: implicitly uses xmm0
 403	 * [v]pcmpestri: implicitly uses ax, dx, cx, xmm0
 404	 * [v]pcmpestrm: implicitly uses ax, dx, xmm0
 405	 *   Evil SSE4.2 string comparison ops from hell.
 406	 * maskmovq/[v]maskmovdqu: implicitly uses (ds:rdi) as destination.
 407	 *   Encoding: 0f f7 modrm, 66 0f f7 modrm, vex-encoded: c5 f9 f7 modrm.
 408	 *   Store op1, byte-masked by op2 msb's in each byte, to (ds:rdi).
 409	 *   AMD says it has no 3-operand form (vex.vvvv must be 1111)
 410	 *   and that it can have only register operands, not mem
 411	 *   (its modrm byte must have mode=11).
 412	 *   If these restrictions will ever be lifted,
 413	 *   we'll need code to prevent selection of di as scratch reg!
 414	 *
 415	 * Summary: I don't know any insns with modrm byte which
 416	 * use SI register implicitly. DI register is used only
 417	 * by one insn (maskmovq) and BX register is used
 418	 * only by one too (cmpxchg8b).
 419	 * BP is stack-segment based (may be a problem?).
 420	 * AX, DX, CX are off-limits (many implicit users).
 421	 * SP is unusable (it's stack pointer - think about "pop mem";
 422	 * also, rsp+disp32 needs sib encoding -> insn length change).
 423	 */
 424
 425	reg = MODRM_REG(insn);	/* Fetch modrm.reg */
 426	reg2 = 0xff;		/* Fetch vex.vvvv */
 427	if (insn->vex_prefix.nbytes)
 428		reg2 = insn->vex_prefix.bytes[2];
 429	/*
 430	 * TODO: add XOP vvvv reading.
 431	 *
 432	 * vex.vvvv field is in bits 6-3, bits are inverted.
 433	 * But in 32-bit mode, high-order bit may be ignored.
 434	 * Therefore, let's consider only 3 low-order bits.
 435	 */
 436	reg2 = ((reg2 >> 3) & 0x7) ^ 0x7;
 437	/*
 438	 * Register numbering is ax,cx,dx,bx, sp,bp,si,di, r8..r15.
 439	 *
 440	 * Choose scratch reg. Order is important: must not select bx
 441	 * if we can use si (cmpxchg8b case!)
 442	 */
 443	if (reg != 6 && reg2 != 6) {
 444		reg2 = 6;
 445		auprobe->defparam.fixups |= UPROBE_FIX_RIP_SI;
 446	} else if (reg != 7 && reg2 != 7) {
 447		reg2 = 7;
 448		auprobe->defparam.fixups |= UPROBE_FIX_RIP_DI;
 449		/* TODO (paranoia): force maskmovq to not use di */
 450	} else {
 451		reg2 = 3;
 452		auprobe->defparam.fixups |= UPROBE_FIX_RIP_BX;
 453	}
 454	/*
 455	 * Point cursor at the modrm byte.  The next 4 bytes are the
 456	 * displacement.  Beyond the displacement, for some instructions,
 457	 * is the immediate operand.
 458	 */
 459	cursor = auprobe->insn + insn_offset_modrm(insn);
 460	/*
 461	 * Change modrm from "00 reg 101" to "10 reg reg2". Example:
 462	 * 89 05 disp32  mov %eax,disp32(%rip) becomes
 463	 * 89 86 disp32  mov %eax,disp32(%rsi)
 464	 */
 465	*cursor = 0x80 | (reg << 3) | reg2;
 466}
 467
 468static inline unsigned long *
 469scratch_reg(struct arch_uprobe *auprobe, struct pt_regs *regs)
 470{
 471	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_SI)
 472		return &regs->si;
 473	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_DI)
 474		return &regs->di;
 475	return &regs->bx;
 476}
 477
 478/*
 479 * If we're emulating a rip-relative instruction, save the contents
 480 * of the scratch register and store the target address in that register.
 481 */
 482static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 483{
 484	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
 485		struct uprobe_task *utask = current->utask;
 486		unsigned long *sr = scratch_reg(auprobe, regs);
 487
 488		utask->autask.saved_scratch_register = *sr;
 489		*sr = utask->vaddr + auprobe->defparam.ilen;
 490	}
 491}
 492
 493static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 494{
 495	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
 496		struct uprobe_task *utask = current->utask;
 497		unsigned long *sr = scratch_reg(auprobe, regs);
 498
 499		*sr = utask->autask.saved_scratch_register;
 500	}
 501}
 502#else /* 32-bit: */
 503/*
 504 * No RIP-relative addressing on 32-bit
 505 */
 506static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
 507{
 508}
 509static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 510{
 511}
 512static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 513{
 514}
 515#endif /* CONFIG_X86_64 */
 516
 517struct uprobe_xol_ops {
 518	bool	(*emulate)(struct arch_uprobe *, struct pt_regs *);
 519	int	(*pre_xol)(struct arch_uprobe *, struct pt_regs *);
 520	int	(*post_xol)(struct arch_uprobe *, struct pt_regs *);
 521	void	(*abort)(struct arch_uprobe *, struct pt_regs *);
 522};
 523
 524static inline int sizeof_long(void)
 525{
 526	return in_ia32_syscall() ? 4 : 8;
 
 
 
 527}
 528
 529static int default_pre_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 530{
 531	riprel_pre_xol(auprobe, regs);
 532	return 0;
 533}
 534
 535static int emulate_push_stack(struct pt_regs *regs, unsigned long val)
 536{
 537	unsigned long new_sp = regs->sp - sizeof_long();
 538
 539	if (copy_to_user((void __user *)new_sp, &val, sizeof_long()))
 540		return -EFAULT;
 541
 542	regs->sp = new_sp;
 543	return 0;
 544}
 545
 546/*
 547 * We have to fix things up as follows:
 548 *
 549 * Typically, the new ip is relative to the copied instruction.  We need
 550 * to make it relative to the original instruction (FIX_IP).  Exceptions
 551 * are return instructions and absolute or indirect jump or call instructions.
 552 *
 553 * If the single-stepped instruction was a call, the return address that
 554 * is atop the stack is the address following the copied instruction.  We
 555 * need to make it the address following the original instruction (FIX_CALL).
 556 *
 557 * If the original instruction was a rip-relative instruction such as
 558 * "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent
 559 * instruction using a scratch register -- e.g., "movl %edx,0xnnnn(%rsi)".
 560 * We need to restore the contents of the scratch register
 561 * (FIX_RIP_reg).
 562 */
 563static int default_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 564{
 565	struct uprobe_task *utask = current->utask;
 566
 567	riprel_post_xol(auprobe, regs);
 568	if (auprobe->defparam.fixups & UPROBE_FIX_IP) {
 569		long correction = utask->vaddr - utask->xol_vaddr;
 570		regs->ip += correction;
 571	} else if (auprobe->defparam.fixups & UPROBE_FIX_CALL) {
 572		regs->sp += sizeof_long(); /* Pop incorrect return address */
 573		if (emulate_push_stack(regs, utask->vaddr + auprobe->defparam.ilen))
 574			return -ERESTART;
 575	}
 576	/* popf; tell the caller to not touch TF */
 577	if (auprobe->defparam.fixups & UPROBE_FIX_SETF)
 578		utask->autask.saved_tf = true;
 579
 580	return 0;
 581}
 582
 583static void default_abort_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 584{
 585	riprel_post_xol(auprobe, regs);
 586}
 587
 588static const struct uprobe_xol_ops default_xol_ops = {
 589	.pre_xol  = default_pre_xol_op,
 590	.post_xol = default_post_xol_op,
 591	.abort	  = default_abort_op,
 592};
 593
 594static bool branch_is_call(struct arch_uprobe *auprobe)
 595{
 596	return auprobe->branch.opc1 == 0xe8;
 597}
 598
 599#define CASE_COND					\
 600	COND(70, 71, XF(OF))				\
 601	COND(72, 73, XF(CF))				\
 602	COND(74, 75, XF(ZF))				\
 603	COND(78, 79, XF(SF))				\
 604	COND(7a, 7b, XF(PF))				\
 605	COND(76, 77, XF(CF) || XF(ZF))			\
 606	COND(7c, 7d, XF(SF) != XF(OF))			\
 607	COND(7e, 7f, XF(ZF) || XF(SF) != XF(OF))
 608
 609#define COND(op_y, op_n, expr)				\
 610	case 0x ## op_y: DO((expr) != 0)		\
 611	case 0x ## op_n: DO((expr) == 0)
 612
 613#define XF(xf)	(!!(flags & X86_EFLAGS_ ## xf))
 614
 615static bool is_cond_jmp_opcode(u8 opcode)
 616{
 617	switch (opcode) {
 618	#define DO(expr)	\
 619		return true;
 620	CASE_COND
 621	#undef	DO
 622
 623	default:
 624		return false;
 625	}
 626}
 627
 628static bool check_jmp_cond(struct arch_uprobe *auprobe, struct pt_regs *regs)
 629{
 630	unsigned long flags = regs->flags;
 631
 632	switch (auprobe->branch.opc1) {
 633	#define DO(expr)	\
 634		return expr;
 635	CASE_COND
 636	#undef	DO
 637
 638	default:	/* not a conditional jmp */
 639		return true;
 640	}
 641}
 642
 643#undef	XF
 644#undef	COND
 645#undef	CASE_COND
 646
 647static bool branch_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 648{
 649	unsigned long new_ip = regs->ip += auprobe->branch.ilen;
 650	unsigned long offs = (long)auprobe->branch.offs;
 651
 652	if (branch_is_call(auprobe)) {
 653		/*
 654		 * If it fails we execute this (mangled, see the comment in
 655		 * branch_clear_offset) insn out-of-line. In the likely case
 656		 * this should trigger the trap, and the probed application
 657		 * should die or restart the same insn after it handles the
 658		 * signal, arch_uprobe_post_xol() won't be even called.
 659		 *
 660		 * But there is corner case, see the comment in ->post_xol().
 661		 */
 662		if (emulate_push_stack(regs, new_ip))
 663			return false;
 664	} else if (!check_jmp_cond(auprobe, regs)) {
 665		offs = 0;
 666	}
 667
 668	regs->ip = new_ip + offs;
 669	return true;
 670}
 671
 672static bool push_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 673{
 674	unsigned long *src_ptr = (void *)regs + auprobe->push.reg_offset;
 675
 676	if (emulate_push_stack(regs, *src_ptr))
 677		return false;
 678	regs->ip += auprobe->push.ilen;
 679	return true;
 680}
 681
 682static int branch_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 683{
 684	BUG_ON(!branch_is_call(auprobe));
 685	/*
 686	 * We can only get here if branch_emulate_op() failed to push the ret
 687	 * address _and_ another thread expanded our stack before the (mangled)
 688	 * "call" insn was executed out-of-line. Just restore ->sp and restart.
 689	 * We could also restore ->ip and try to call branch_emulate_op() again.
 690	 */
 691	regs->sp += sizeof_long();
 692	return -ERESTART;
 693}
 694
 695static void branch_clear_offset(struct arch_uprobe *auprobe, struct insn *insn)
 696{
 697	/*
 698	 * Turn this insn into "call 1f; 1:", this is what we will execute
 699	 * out-of-line if ->emulate() fails. We only need this to generate
 700	 * a trap, so that the probed task receives the correct signal with
 701	 * the properly filled siginfo.
 702	 *
 703	 * But see the comment in ->post_xol(), in the unlikely case it can
 704	 * succeed. So we need to ensure that the new ->ip can not fall into
 705	 * the non-canonical area and trigger #GP.
 706	 *
 707	 * We could turn it into (say) "pushf", but then we would need to
 708	 * divorce ->insn[] and ->ixol[]. We need to preserve the 1st byte
 709	 * of ->insn[] for set_orig_insn().
 710	 */
 711	memset(auprobe->insn + insn_offset_immediate(insn),
 712		0, insn->immediate.nbytes);
 713}
 714
 715static const struct uprobe_xol_ops branch_xol_ops = {
 716	.emulate  = branch_emulate_op,
 717	.post_xol = branch_post_xol_op,
 718};
 719
 720static const struct uprobe_xol_ops push_xol_ops = {
 721	.emulate  = push_emulate_op,
 722};
 723
 724/* Returns -ENOSYS if branch_xol_ops doesn't handle this insn */
 725static int branch_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
 726{
 727	u8 opc1 = OPCODE1(insn);
 
 728	int i;
 729
 730	switch (opc1) {
 731	case 0xeb:	/* jmp 8 */
 732	case 0xe9:	/* jmp 32 */
 733	case 0x90:	/* prefix* + nop; same as jmp with .offs = 0 */
 734		break;
 
 
 735
 736	case 0xe8:	/* call relative */
 737		branch_clear_offset(auprobe, insn);
 738		break;
 739
 740	case 0x0f:
 741		if (insn->opcode.nbytes != 2)
 742			return -ENOSYS;
 743		/*
 744		 * If it is a "near" conditional jmp, OPCODE2() - 0x10 matches
 745		 * OPCODE1() of the "short" jmp which checks the same condition.
 746		 */
 747		opc1 = OPCODE2(insn) - 0x10;
 
 748	default:
 749		if (!is_cond_jmp_opcode(opc1))
 750			return -ENOSYS;
 751	}
 752
 753	/*
 754	 * 16-bit overrides such as CALLW (66 e8 nn nn) are not supported.
 755	 * Intel and AMD behavior differ in 64-bit mode: Intel ignores 66 prefix.
 756	 * No one uses these insns, reject any branch insns with such prefix.
 757	 */
 758	for (i = 0; i < insn->prefixes.nbytes; i++) {
 759		if (insn->prefixes.bytes[i] == 0x66)
 760			return -ENOTSUPP;
 761	}
 762
 
 763	auprobe->branch.opc1 = opc1;
 764	auprobe->branch.ilen = insn->length;
 765	auprobe->branch.offs = insn->immediate.value;
 766
 767	auprobe->ops = &branch_xol_ops;
 768	return 0;
 769}
 770
 771/* Returns -ENOSYS if push_xol_ops doesn't handle this insn */
 772static int push_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
 773{
 774	u8 opc1 = OPCODE1(insn), reg_offset = 0;
 775
 776	if (opc1 < 0x50 || opc1 > 0x57)
 777		return -ENOSYS;
 778
 779	if (insn->length > 2)
 780		return -ENOSYS;
 781	if (insn->length == 2) {
 782		/* only support rex_prefix 0x41 (x64 only) */
 783#ifdef CONFIG_X86_64
 784		if (insn->rex_prefix.nbytes != 1 ||
 785		    insn->rex_prefix.bytes[0] != 0x41)
 786			return -ENOSYS;
 787
 788		switch (opc1) {
 789		case 0x50:
 790			reg_offset = offsetof(struct pt_regs, r8);
 791			break;
 792		case 0x51:
 793			reg_offset = offsetof(struct pt_regs, r9);
 794			break;
 795		case 0x52:
 796			reg_offset = offsetof(struct pt_regs, r10);
 797			break;
 798		case 0x53:
 799			reg_offset = offsetof(struct pt_regs, r11);
 800			break;
 801		case 0x54:
 802			reg_offset = offsetof(struct pt_regs, r12);
 803			break;
 804		case 0x55:
 805			reg_offset = offsetof(struct pt_regs, r13);
 806			break;
 807		case 0x56:
 808			reg_offset = offsetof(struct pt_regs, r14);
 809			break;
 810		case 0x57:
 811			reg_offset = offsetof(struct pt_regs, r15);
 812			break;
 813		}
 814#else
 815		return -ENOSYS;
 816#endif
 817	} else {
 818		switch (opc1) {
 819		case 0x50:
 820			reg_offset = offsetof(struct pt_regs, ax);
 821			break;
 822		case 0x51:
 823			reg_offset = offsetof(struct pt_regs, cx);
 824			break;
 825		case 0x52:
 826			reg_offset = offsetof(struct pt_regs, dx);
 827			break;
 828		case 0x53:
 829			reg_offset = offsetof(struct pt_regs, bx);
 830			break;
 831		case 0x54:
 832			reg_offset = offsetof(struct pt_regs, sp);
 833			break;
 834		case 0x55:
 835			reg_offset = offsetof(struct pt_regs, bp);
 836			break;
 837		case 0x56:
 838			reg_offset = offsetof(struct pt_regs, si);
 839			break;
 840		case 0x57:
 841			reg_offset = offsetof(struct pt_regs, di);
 842			break;
 843		}
 844	}
 845
 846	auprobe->push.reg_offset = reg_offset;
 847	auprobe->push.ilen = insn->length;
 848	auprobe->ops = &push_xol_ops;
 849	return 0;
 850}
 851
 852/**
 853 * arch_uprobe_analyze_insn - instruction analysis including validity and fixups.
 
 854 * @mm: the probed address space.
 855 * @arch_uprobe: the probepoint information.
 856 * @addr: virtual address at which to install the probepoint
 857 * Return 0 on success or a -ve number on error.
 858 */
 859int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long addr)
 860{
 861	struct insn insn;
 862	u8 fix_ip_or_call = UPROBE_FIX_IP;
 863	int ret;
 864
 865	ret = uprobe_init_insn(auprobe, &insn, is_64bit_mm(mm));
 866	if (ret)
 867		return ret;
 868
 869	ret = branch_setup_xol_ops(auprobe, &insn);
 870	if (ret != -ENOSYS)
 871		return ret;
 872
 873	ret = push_setup_xol_ops(auprobe, &insn);
 874	if (ret != -ENOSYS)
 875		return ret;
 876
 877	/*
 878	 * Figure out which fixups default_post_xol_op() will need to perform,
 879	 * and annotate defparam->fixups accordingly.
 880	 */
 881	switch (OPCODE1(&insn)) {
 882	case 0x9d:		/* popf */
 883		auprobe->defparam.fixups |= UPROBE_FIX_SETF;
 884		break;
 885	case 0xc3:		/* ret or lret -- ip is correct */
 886	case 0xcb:
 887	case 0xc2:
 888	case 0xca:
 889	case 0xea:		/* jmp absolute -- ip is correct */
 890		fix_ip_or_call = 0;
 891		break;
 892	case 0x9a:		/* call absolute - Fix return addr, not ip */
 893		fix_ip_or_call = UPROBE_FIX_CALL;
 894		break;
 895	case 0xff:
 896		switch (MODRM_REG(&insn)) {
 897		case 2: case 3:			/* call or lcall, indirect */
 898			fix_ip_or_call = UPROBE_FIX_CALL;
 899			break;
 900		case 4: case 5:			/* jmp or ljmp, indirect */
 901			fix_ip_or_call = 0;
 902			break;
 903		}
 904		/* fall through */
 905	default:
 906		riprel_analyze(auprobe, &insn);
 907	}
 908
 909	auprobe->defparam.ilen = insn.length;
 910	auprobe->defparam.fixups |= fix_ip_or_call;
 911
 912	auprobe->ops = &default_xol_ops;
 913	return 0;
 914}
 915
 916/*
 917 * arch_uprobe_pre_xol - prepare to execute out of line.
 918 * @auprobe: the probepoint information.
 919 * @regs: reflects the saved user state of current task.
 920 */
 921int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 922{
 923	struct uprobe_task *utask = current->utask;
 924
 925	if (auprobe->ops->pre_xol) {
 926		int err = auprobe->ops->pre_xol(auprobe, regs);
 927		if (err)
 928			return err;
 929	}
 930
 931	regs->ip = utask->xol_vaddr;
 932	utask->autask.saved_trap_nr = current->thread.trap_nr;
 933	current->thread.trap_nr = UPROBE_TRAP_NR;
 934
 935	utask->autask.saved_tf = !!(regs->flags & X86_EFLAGS_TF);
 936	regs->flags |= X86_EFLAGS_TF;
 937	if (test_tsk_thread_flag(current, TIF_BLOCKSTEP))
 938		set_task_blockstep(current, false);
 939
 940	return 0;
 941}
 942
 943/*
 944 * If xol insn itself traps and generates a signal(Say,
 945 * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped
 946 * instruction jumps back to its own address. It is assumed that anything
 947 * like do_page_fault/do_trap/etc sets thread.trap_nr != -1.
 948 *
 949 * arch_uprobe_pre_xol/arch_uprobe_post_xol save/restore thread.trap_nr,
 950 * arch_uprobe_xol_was_trapped() simply checks that ->trap_nr is not equal to
 951 * UPROBE_TRAP_NR == -1 set by arch_uprobe_pre_xol().
 952 */
 953bool arch_uprobe_xol_was_trapped(struct task_struct *t)
 954{
 955	if (t->thread.trap_nr != UPROBE_TRAP_NR)
 956		return true;
 957
 958	return false;
 959}
 960
 961/*
 962 * Called after single-stepping. To avoid the SMP problems that can
 963 * occur when we temporarily put back the original opcode to
 964 * single-step, we single-stepped a copy of the instruction.
 965 *
 966 * This function prepares to resume execution after the single-step.
 967 */
 968int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 969{
 970	struct uprobe_task *utask = current->utask;
 971	bool send_sigtrap = utask->autask.saved_tf;
 972	int err = 0;
 973
 974	WARN_ON_ONCE(current->thread.trap_nr != UPROBE_TRAP_NR);
 975	current->thread.trap_nr = utask->autask.saved_trap_nr;
 976
 977	if (auprobe->ops->post_xol) {
 978		err = auprobe->ops->post_xol(auprobe, regs);
 979		if (err) {
 980			/*
 981			 * Restore ->ip for restart or post mortem analysis.
 982			 * ->post_xol() must not return -ERESTART unless this
 983			 * is really possible.
 984			 */
 985			regs->ip = utask->vaddr;
 986			if (err == -ERESTART)
 987				err = 0;
 988			send_sigtrap = false;
 989		}
 990	}
 991	/*
 992	 * arch_uprobe_pre_xol() doesn't save the state of TIF_BLOCKSTEP
 993	 * so we can get an extra SIGTRAP if we do not clear TF. We need
 994	 * to examine the opcode to make it right.
 995	 */
 996	if (send_sigtrap)
 997		send_sig(SIGTRAP, current, 0);
 998
 999	if (!utask->autask.saved_tf)
1000		regs->flags &= ~X86_EFLAGS_TF;
1001
1002	return err;
1003}
1004
1005/* callback routine for handling exceptions. */
1006int arch_uprobe_exception_notify(struct notifier_block *self, unsigned long val, void *data)
1007{
1008	struct die_args *args = data;
1009	struct pt_regs *regs = args->regs;
1010	int ret = NOTIFY_DONE;
1011
1012	/* We are only interested in userspace traps */
1013	if (regs && !user_mode(regs))
1014		return NOTIFY_DONE;
1015
1016	switch (val) {
1017	case DIE_INT3:
1018		if (uprobe_pre_sstep_notifier(regs))
1019			ret = NOTIFY_STOP;
1020
1021		break;
1022
1023	case DIE_DEBUG:
1024		if (uprobe_post_sstep_notifier(regs))
1025			ret = NOTIFY_STOP;
1026
 
 
1027	default:
1028		break;
1029	}
1030
1031	return ret;
1032}
1033
1034/*
1035 * This function gets called when XOL instruction either gets trapped or
1036 * the thread has a fatal signal. Reset the instruction pointer to its
1037 * probed address for the potential restart or for post mortem analysis.
1038 */
1039void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
1040{
1041	struct uprobe_task *utask = current->utask;
1042
1043	if (auprobe->ops->abort)
1044		auprobe->ops->abort(auprobe, regs);
1045
1046	current->thread.trap_nr = utask->autask.saved_trap_nr;
1047	regs->ip = utask->vaddr;
1048	/* clear TF if it was set by us in arch_uprobe_pre_xol() */
1049	if (!utask->autask.saved_tf)
1050		regs->flags &= ~X86_EFLAGS_TF;
1051}
1052
1053static bool __skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
1054{
1055	if (auprobe->ops->emulate)
1056		return auprobe->ops->emulate(auprobe, regs);
1057	return false;
1058}
1059
1060bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
1061{
1062	bool ret = __skip_sstep(auprobe, regs);
1063	if (ret && (regs->flags & X86_EFLAGS_TF))
1064		send_sig(SIGTRAP, current, 0);
1065	return ret;
1066}
1067
1068unsigned long
1069arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr, struct pt_regs *regs)
1070{
1071	int rasize = sizeof_long(), nleft;
1072	unsigned long orig_ret_vaddr = 0; /* clear high bits for 32-bit apps */
1073
1074	if (copy_from_user(&orig_ret_vaddr, (void __user *)regs->sp, rasize))
1075		return -1;
1076
1077	/* check whether address has been already hijacked */
1078	if (orig_ret_vaddr == trampoline_vaddr)
1079		return orig_ret_vaddr;
1080
1081	nleft = copy_to_user((void __user *)regs->sp, &trampoline_vaddr, rasize);
1082	if (likely(!nleft))
 
 
 
 
1083		return orig_ret_vaddr;
 
1084
1085	if (nleft != rasize) {
1086		pr_err("uprobe: return address clobbered: pid=%d, %%sp=%#lx, "
1087			"%%ip=%#lx\n", current->pid, regs->sp, regs->ip);
1088
1089		force_sig_info(SIGSEGV, SEND_SIG_FORCED, current);
1090	}
1091
1092	return -1;
1093}
1094
1095bool arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
1096				struct pt_regs *regs)
1097{
1098	if (ctx == RP_CHECK_CALL) /* sp was just decremented by "call" insn */
1099		return regs->sp < ret->stack;
1100	else
1101		return regs->sp <= ret->stack;
1102}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * User-space Probes (UProbes) for x86
   4 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 * Copyright (C) IBM Corporation, 2008-2011
   6 * Authors:
   7 *	Srikar Dronamraju
   8 *	Jim Keniston
   9 */
  10#include <linux/kernel.h>
  11#include <linux/sched.h>
  12#include <linux/ptrace.h>
  13#include <linux/uprobes.h>
  14#include <linux/uaccess.h>
  15#include <linux/syscalls.h>
  16
  17#include <linux/kdebug.h>
  18#include <asm/processor.h>
  19#include <asm/insn.h>
  20#include <asm/mmu_context.h>
  21
  22/* Post-execution fixups. */
  23
  24/* Adjust IP back to vicinity of actual insn */
  25#define UPROBE_FIX_IP		0x01
  26
  27/* Adjust the return address of a call insn */
  28#define UPROBE_FIX_CALL		0x02
  29
  30/* Instruction will modify TF, don't change it */
  31#define UPROBE_FIX_SETF		0x04
  32
  33#define UPROBE_FIX_RIP_SI	0x08
  34#define UPROBE_FIX_RIP_DI	0x10
  35#define UPROBE_FIX_RIP_BX	0x20
  36#define UPROBE_FIX_RIP_MASK	\
  37	(UPROBE_FIX_RIP_SI | UPROBE_FIX_RIP_DI | UPROBE_FIX_RIP_BX)
  38
  39#define	UPROBE_TRAP_NR		UINT_MAX
  40
  41/* Adaptations for mhiramat x86 decoder v14. */
  42#define OPCODE1(insn)		((insn)->opcode.bytes[0])
  43#define OPCODE2(insn)		((insn)->opcode.bytes[1])
  44#define OPCODE3(insn)		((insn)->opcode.bytes[2])
  45#define MODRM_REG(insn)		X86_MODRM_REG((insn)->modrm.value)
  46
  47#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
  48	(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
  49	  (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
  50	  (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
  51	  (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
  52	 << (row % 32))
  53
  54/*
  55 * Good-instruction tables for 32-bit apps.  This is non-const and volatile
  56 * to keep gcc from statically optimizing it out, as variable_test_bit makes
  57 * some versions of gcc to think only *(unsigned long*) is used.
  58 *
  59 * Opcodes we'll probably never support:
  60 * 6c-6f - ins,outs. SEGVs if used in userspace
  61 * e4-e7 - in,out imm. SEGVs if used in userspace
  62 * ec-ef - in,out acc. SEGVs if used in userspace
  63 * cc - int3. SIGTRAP if used in userspace
  64 * ce - into. Not used in userspace - no kernel support to make it useful. SEGVs
  65 *	(why we support bound (62) then? it's similar, and similarly unused...)
  66 * f1 - int1. SIGTRAP if used in userspace
  67 * f4 - hlt. SEGVs if used in userspace
  68 * fa - cli. SEGVs if used in userspace
  69 * fb - sti. SEGVs if used in userspace
  70 *
  71 * Opcodes which need some work to be supported:
  72 * 07,17,1f - pop es/ss/ds
  73 *	Normally not used in userspace, but would execute if used.
  74 *	Can cause GP or stack exception if tries to load wrong segment descriptor.
  75 *	We hesitate to run them under single step since kernel's handling
  76 *	of userspace single-stepping (TF flag) is fragile.
  77 *	We can easily refuse to support push es/cs/ss/ds (06/0e/16/1e)
  78 *	on the same grounds that they are never used.
  79 * cd - int N.
  80 *	Used by userspace for "int 80" syscall entry. (Other "int N"
  81 *	cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
  82 *	Not supported since kernel's handling of userspace single-stepping
  83 *	(TF flag) is fragile.
  84 * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
  85 */
  86#if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION)
  87static volatile u32 good_insns_32[256 / 32] = {
  88	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
  89	/*      ----------------------------------------------         */
  90	W(0x00, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 00 */
  91	W(0x10, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 10 */
  92	W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
  93	W(0x30, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
  94	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
  95	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
  96	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
  97	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
  98	W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
  99	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
 100	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
 101	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
 102	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
 103	W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
 104	W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
 105	W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1)   /* f0 */
 106	/*      ----------------------------------------------         */
 107	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 108};
 109#else
 110#define good_insns_32	NULL
 111#endif
 112
 113/* Good-instruction tables for 64-bit apps.
 114 *
 115 * Genuinely invalid opcodes:
 116 * 06,07 - formerly push/pop es
 117 * 0e - formerly push cs
 118 * 16,17 - formerly push/pop ss
 119 * 1e,1f - formerly push/pop ds
 120 * 27,2f,37,3f - formerly daa/das/aaa/aas
 121 * 60,61 - formerly pusha/popa
 122 * 62 - formerly bound. EVEX prefix for AVX512 (not yet supported)
 123 * 82 - formerly redundant encoding of Group1
 124 * 9a - formerly call seg:ofs
 125 * ce - formerly into
 126 * d4,d5 - formerly aam/aad
 127 * d6 - formerly undocumented salc
 128 * ea - formerly jmp seg:ofs
 129 *
 130 * Opcodes we'll probably never support:
 131 * 6c-6f - ins,outs. SEGVs if used in userspace
 132 * e4-e7 - in,out imm. SEGVs if used in userspace
 133 * ec-ef - in,out acc. SEGVs if used in userspace
 134 * cc - int3. SIGTRAP if used in userspace
 135 * f1 - int1. SIGTRAP if used in userspace
 136 * f4 - hlt. SEGVs if used in userspace
 137 * fa - cli. SEGVs if used in userspace
 138 * fb - sti. SEGVs if used in userspace
 139 *
 140 * Opcodes which need some work to be supported:
 141 * cd - int N.
 142 *	Used by userspace for "int 80" syscall entry. (Other "int N"
 143 *	cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
 144 *	Not supported since kernel's handling of userspace single-stepping
 145 *	(TF flag) is fragile.
 146 * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
 147 */
 148#if defined(CONFIG_X86_64)
 149static volatile u32 good_insns_64[256 / 32] = {
 150	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 151	/*      ----------------------------------------------         */
 152	W(0x00, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* 00 */
 153	W(0x10, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 10 */
 154	W(0x20, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) | /* 20 */
 155	W(0x30, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 30 */
 156	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
 157	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
 158	W(0x60, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
 159	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
 160	W(0x80, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
 161	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1) , /* 90 */
 162	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
 163	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
 164	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
 165	W(0xd0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
 166	W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0) | /* e0 */
 167	W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1)   /* f0 */
 168	/*      ----------------------------------------------         */
 169	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 170};
 171#else
 172#define good_insns_64	NULL
 173#endif
 174
 175/* Using this for both 64-bit and 32-bit apps.
 176 * Opcodes we don't support:
 177 * 0f 00 - SLDT/STR/LLDT/LTR/VERR/VERW/-/- group. System insns
 178 * 0f 01 - SGDT/SIDT/LGDT/LIDT/SMSW/-/LMSW/INVLPG group.
 179 *	Also encodes tons of other system insns if mod=11.
 180 *	Some are in fact non-system: xend, xtest, rdtscp, maybe more
 181 * 0f 05 - syscall
 182 * 0f 06 - clts (CPL0 insn)
 183 * 0f 07 - sysret
 184 * 0f 08 - invd (CPL0 insn)
 185 * 0f 09 - wbinvd (CPL0 insn)
 186 * 0f 0b - ud2
 187 * 0f 30 - wrmsr (CPL0 insn) (then why rdmsr is allowed, it's also CPL0 insn?)
 188 * 0f 34 - sysenter
 189 * 0f 35 - sysexit
 190 * 0f 37 - getsec
 191 * 0f 78 - vmread (Intel VMX. CPL0 insn)
 192 * 0f 79 - vmwrite (Intel VMX. CPL0 insn)
 193 *	Note: with prefixes, these two opcodes are
 194 *	extrq/insertq/AVX512 convert vector ops.
 195 * 0f ae - group15: [f]xsave,[f]xrstor,[v]{ld,st}mxcsr,clflush[opt],
 196 *	{rd,wr}{fs,gs}base,{s,l,m}fence.
 197 *	Why? They are all user-executable.
 198 */
 199static volatile u32 good_2byte_insns[256 / 32] = {
 200	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 201	/*      ----------------------------------------------         */
 202	W(0x00, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1) | /* 00 */
 203	W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 10 */
 204	W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
 205	W(0x30, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
 206	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
 207	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
 208	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 60 */
 209	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1) , /* 70 */
 210	W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
 211	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
 212	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1) | /* a0 */
 213	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
 214	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
 215	W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
 216	W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* e0 */
 217	W(0xf0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)   /* f0 */
 218	/*      ----------------------------------------------         */
 219	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 220};
 221#undef W
 222
 223/*
 224 * opcodes we may need to refine support for:
 225 *
 226 *  0f - 2-byte instructions: For many of these instructions, the validity
 227 *  depends on the prefix and/or the reg field.  On such instructions, we
 228 *  just consider the opcode combination valid if it corresponds to any
 229 *  valid instruction.
 230 *
 231 *  8f - Group 1 - only reg = 0 is OK
 232 *  c6-c7 - Group 11 - only reg = 0 is OK
 233 *  d9-df - fpu insns with some illegal encodings
 234 *  f2, f3 - repnz, repz prefixes.  These are also the first byte for
 235 *  certain floating-point instructions, such as addsd.
 236 *
 237 *  fe - Group 4 - only reg = 0 or 1 is OK
 238 *  ff - Group 5 - only reg = 0-6 is OK
 239 *
 240 * others -- Do we need to support these?
 241 *
 242 *  0f - (floating-point?) prefetch instructions
 243 *  07, 17, 1f - pop es, pop ss, pop ds
 244 *  26, 2e, 36, 3e - es:, cs:, ss:, ds: segment prefixes --
 245 *	but 64 and 65 (fs: and gs:) seem to be used, so we support them
 246 *  67 - addr16 prefix
 247 *  ce - into
 248 *  f0 - lock prefix
 249 */
 250
 251/*
 252 * TODO:
 253 * - Where necessary, examine the modrm byte and allow only valid instructions
 254 * in the different Groups and fpu instructions.
 255 */
 256
 257static bool is_prefix_bad(struct insn *insn)
 258{
 259	insn_byte_t p;
 260	int i;
 261
 262	for_each_insn_prefix(insn, i, p) {
 263		insn_attr_t attr;
 264
 265		attr = inat_get_opcode_attribute(p);
 266		switch (attr) {
 267		case INAT_MAKE_PREFIX(INAT_PFX_ES):
 268		case INAT_MAKE_PREFIX(INAT_PFX_CS):
 269		case INAT_MAKE_PREFIX(INAT_PFX_DS):
 270		case INAT_MAKE_PREFIX(INAT_PFX_SS):
 271		case INAT_MAKE_PREFIX(INAT_PFX_LOCK):
 272			return true;
 273		}
 274	}
 275	return false;
 276}
 277
 278static int uprobe_init_insn(struct arch_uprobe *auprobe, struct insn *insn, bool x86_64)
 279{
 280	enum insn_mode m = x86_64 ? INSN_MODE_64 : INSN_MODE_32;
 281	u32 volatile *good_insns;
 282	int ret;
 283
 284	ret = insn_decode(insn, auprobe->insn, sizeof(auprobe->insn), m);
 285	if (ret < 0)
 
 
 286		return -ENOEXEC;
 287
 288	if (is_prefix_bad(insn))
 289		return -ENOTSUPP;
 290
 291	/* We should not singlestep on the exception masking instructions */
 292	if (insn_masking_exception(insn))
 293		return -ENOTSUPP;
 294
 295	if (x86_64)
 296		good_insns = good_insns_64;
 297	else
 298		good_insns = good_insns_32;
 299
 300	if (test_bit(OPCODE1(insn), (unsigned long *)good_insns))
 301		return 0;
 302
 303	if (insn->opcode.nbytes == 2) {
 304		if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns))
 305			return 0;
 306	}
 307
 308	return -ENOTSUPP;
 309}
 310
 311#ifdef CONFIG_X86_64
 312
 313asm (
 314	".pushsection .rodata\n"
 315	".global uretprobe_trampoline_entry\n"
 316	"uretprobe_trampoline_entry:\n"
 317	"pushq %rax\n"
 318	"pushq %rcx\n"
 319	"pushq %r11\n"
 320	"movq $" __stringify(__NR_uretprobe) ", %rax\n"
 321	"syscall\n"
 322	".global uretprobe_syscall_check\n"
 323	"uretprobe_syscall_check:\n"
 324	"popq %r11\n"
 325	"popq %rcx\n"
 326
 327	/* The uretprobe syscall replaces stored %rax value with final
 328	 * return address, so we don't restore %rax in here and just
 329	 * call ret.
 330	 */
 331	"retq\n"
 332	".global uretprobe_trampoline_end\n"
 333	"uretprobe_trampoline_end:\n"
 334	".popsection\n"
 335);
 336
 337extern u8 uretprobe_trampoline_entry[];
 338extern u8 uretprobe_trampoline_end[];
 339extern u8 uretprobe_syscall_check[];
 340
 341void *arch_uprobe_trampoline(unsigned long *psize)
 342{
 343	static uprobe_opcode_t insn = UPROBE_SWBP_INSN;
 344	struct pt_regs *regs = task_pt_regs(current);
 345
 346	/*
 347	 * At the moment the uretprobe syscall trampoline is supported
 348	 * only for native 64-bit process, the compat process still uses
 349	 * standard breakpoint.
 350	 */
 351	if (user_64bit_mode(regs)) {
 352		*psize = uretprobe_trampoline_end - uretprobe_trampoline_entry;
 353		return uretprobe_trampoline_entry;
 354	}
 355
 356	*psize = UPROBE_SWBP_INSN_SIZE;
 357	return &insn;
 358}
 359
 360static unsigned long trampoline_check_ip(void)
 361{
 362	unsigned long tramp = uprobe_get_trampoline_vaddr();
 363
 364	return tramp + (uretprobe_syscall_check - uretprobe_trampoline_entry);
 365}
 366
 367SYSCALL_DEFINE0(uretprobe)
 368{
 369	struct pt_regs *regs = task_pt_regs(current);
 370	unsigned long err, ip, sp, r11_cx_ax[3];
 371
 372	if (regs->ip != trampoline_check_ip())
 373		goto sigill;
 374
 375	err = copy_from_user(r11_cx_ax, (void __user *)regs->sp, sizeof(r11_cx_ax));
 376	if (err)
 377		goto sigill;
 378
 379	/* expose the "right" values of r11/cx/ax/sp to uprobe_consumer/s */
 380	regs->r11 = r11_cx_ax[0];
 381	regs->cx  = r11_cx_ax[1];
 382	regs->ax  = r11_cx_ax[2];
 383	regs->sp += sizeof(r11_cx_ax);
 384	regs->orig_ax = -1;
 385
 386	ip = regs->ip;
 387	sp = regs->sp;
 388
 389	uprobe_handle_trampoline(regs);
 390
 391	/*
 392	 * Some of the uprobe consumers has changed sp, we can do nothing,
 393	 * just return via iret.
 394	 * .. or shadow stack is enabled, in which case we need to skip
 395	 * return through the user space stack address.
 396	 */
 397	if (regs->sp != sp || shstk_is_enabled())
 398		return regs->ax;
 399	regs->sp -= sizeof(r11_cx_ax);
 400
 401	/* for the case uprobe_consumer has changed r11/cx */
 402	r11_cx_ax[0] = regs->r11;
 403	r11_cx_ax[1] = regs->cx;
 404
 405	/*
 406	 * ax register is passed through as return value, so we can use
 407	 * its space on stack for ip value and jump to it through the
 408	 * trampoline's ret instruction
 409	 */
 410	r11_cx_ax[2] = regs->ip;
 411	regs->ip = ip;
 412
 413	err = copy_to_user((void __user *)regs->sp, r11_cx_ax, sizeof(r11_cx_ax));
 414	if (err)
 415		goto sigill;
 416
 417	/* ensure sysret, see do_syscall_64() */
 418	regs->r11 = regs->flags;
 419	regs->cx  = regs->ip;
 420
 421	return regs->ax;
 422
 423sigill:
 424	force_sig(SIGILL);
 425	return -1;
 426}
 427
 428/*
 429 * If arch_uprobe->insn doesn't use rip-relative addressing, return
 430 * immediately.  Otherwise, rewrite the instruction so that it accesses
 431 * its memory operand indirectly through a scratch register.  Set
 432 * defparam->fixups accordingly. (The contents of the scratch register
 433 * will be saved before we single-step the modified instruction,
 434 * and restored afterward).
 435 *
 436 * We do this because a rip-relative instruction can access only a
 437 * relatively small area (+/- 2 GB from the instruction), and the XOL
 438 * area typically lies beyond that area.  At least for instructions
 439 * that store to memory, we can't execute the original instruction
 440 * and "fix things up" later, because the misdirected store could be
 441 * disastrous.
 442 *
 443 * Some useful facts about rip-relative instructions:
 444 *
 445 *  - There's always a modrm byte with bit layout "00 reg 101".
 446 *  - There's never a SIB byte.
 447 *  - The displacement is always 4 bytes.
 448 *  - REX.B=1 bit in REX prefix, which normally extends r/m field,
 449 *    has no effect on rip-relative mode. It doesn't make modrm byte
 450 *    with r/m=101 refer to register 1101 = R13.
 451 */
 452static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
 453{
 454	u8 *cursor;
 455	u8 reg;
 456	u8 reg2;
 457
 458	if (!insn_rip_relative(insn))
 459		return;
 460
 461	/*
 462	 * insn_rip_relative() would have decoded rex_prefix, vex_prefix, modrm.
 463	 * Clear REX.b bit (extension of MODRM.rm field):
 464	 * we want to encode low numbered reg, not r8+.
 465	 */
 466	if (insn->rex_prefix.nbytes) {
 467		cursor = auprobe->insn + insn_offset_rex_prefix(insn);
 468		/* REX byte has 0100wrxb layout, clearing REX.b bit */
 469		*cursor &= 0xfe;
 470	}
 471	/*
 472	 * Similar treatment for VEX3/EVEX prefix.
 473	 * TODO: add XOP treatment when insn decoder supports them
 474	 */
 475	if (insn->vex_prefix.nbytes >= 3) {
 476		/*
 477		 * vex2:     c5    rvvvvLpp   (has no b bit)
 478		 * vex3/xop: c4/8f rxbmmmmm wvvvvLpp
 479		 * evex:     62    rxbR00mm wvvvv1pp zllBVaaa
 480		 * Setting VEX3.b (setting because it has inverted meaning).
 481		 * Setting EVEX.x since (in non-SIB encoding) EVEX.x
 482		 * is the 4th bit of MODRM.rm, and needs the same treatment.
 483		 * For VEX3-encoded insns, VEX3.x value has no effect in
 484		 * non-SIB encoding, the change is superfluous but harmless.
 485		 */
 486		cursor = auprobe->insn + insn_offset_vex_prefix(insn) + 1;
 487		*cursor |= 0x60;
 488	}
 489
 490	/*
 491	 * Convert from rip-relative addressing to register-relative addressing
 492	 * via a scratch register.
 493	 *
 494	 * This is tricky since there are insns with modrm byte
 495	 * which also use registers not encoded in modrm byte:
 496	 * [i]div/[i]mul: implicitly use dx:ax
 497	 * shift ops: implicitly use cx
 498	 * cmpxchg: implicitly uses ax
 499	 * cmpxchg8/16b: implicitly uses dx:ax and bx:cx
 500	 *   Encoding: 0f c7/1 modrm
 501	 *   The code below thinks that reg=1 (cx), chooses si as scratch.
 502	 * mulx: implicitly uses dx: mulx r/m,r1,r2 does r1:r2 = dx * r/m.
 503	 *   First appeared in Haswell (BMI2 insn). It is vex-encoded.
 504	 *   Example where none of bx,cx,dx can be used as scratch reg:
 505	 *   c4 e2 63 f6 0d disp32   mulx disp32(%rip),%ebx,%ecx
 506	 * [v]pcmpistri: implicitly uses cx, xmm0
 507	 * [v]pcmpistrm: implicitly uses xmm0
 508	 * [v]pcmpestri: implicitly uses ax, dx, cx, xmm0
 509	 * [v]pcmpestrm: implicitly uses ax, dx, xmm0
 510	 *   Evil SSE4.2 string comparison ops from hell.
 511	 * maskmovq/[v]maskmovdqu: implicitly uses (ds:rdi) as destination.
 512	 *   Encoding: 0f f7 modrm, 66 0f f7 modrm, vex-encoded: c5 f9 f7 modrm.
 513	 *   Store op1, byte-masked by op2 msb's in each byte, to (ds:rdi).
 514	 *   AMD says it has no 3-operand form (vex.vvvv must be 1111)
 515	 *   and that it can have only register operands, not mem
 516	 *   (its modrm byte must have mode=11).
 517	 *   If these restrictions will ever be lifted,
 518	 *   we'll need code to prevent selection of di as scratch reg!
 519	 *
 520	 * Summary: I don't know any insns with modrm byte which
 521	 * use SI register implicitly. DI register is used only
 522	 * by one insn (maskmovq) and BX register is used
 523	 * only by one too (cmpxchg8b).
 524	 * BP is stack-segment based (may be a problem?).
 525	 * AX, DX, CX are off-limits (many implicit users).
 526	 * SP is unusable (it's stack pointer - think about "pop mem";
 527	 * also, rsp+disp32 needs sib encoding -> insn length change).
 528	 */
 529
 530	reg = MODRM_REG(insn);	/* Fetch modrm.reg */
 531	reg2 = 0xff;		/* Fetch vex.vvvv */
 532	if (insn->vex_prefix.nbytes)
 533		reg2 = insn->vex_prefix.bytes[2];
 534	/*
 535	 * TODO: add XOP vvvv reading.
 536	 *
 537	 * vex.vvvv field is in bits 6-3, bits are inverted.
 538	 * But in 32-bit mode, high-order bit may be ignored.
 539	 * Therefore, let's consider only 3 low-order bits.
 540	 */
 541	reg2 = ((reg2 >> 3) & 0x7) ^ 0x7;
 542	/*
 543	 * Register numbering is ax,cx,dx,bx, sp,bp,si,di, r8..r15.
 544	 *
 545	 * Choose scratch reg. Order is important: must not select bx
 546	 * if we can use si (cmpxchg8b case!)
 547	 */
 548	if (reg != 6 && reg2 != 6) {
 549		reg2 = 6;
 550		auprobe->defparam.fixups |= UPROBE_FIX_RIP_SI;
 551	} else if (reg != 7 && reg2 != 7) {
 552		reg2 = 7;
 553		auprobe->defparam.fixups |= UPROBE_FIX_RIP_DI;
 554		/* TODO (paranoia): force maskmovq to not use di */
 555	} else {
 556		reg2 = 3;
 557		auprobe->defparam.fixups |= UPROBE_FIX_RIP_BX;
 558	}
 559	/*
 560	 * Point cursor at the modrm byte.  The next 4 bytes are the
 561	 * displacement.  Beyond the displacement, for some instructions,
 562	 * is the immediate operand.
 563	 */
 564	cursor = auprobe->insn + insn_offset_modrm(insn);
 565	/*
 566	 * Change modrm from "00 reg 101" to "10 reg reg2". Example:
 567	 * 89 05 disp32  mov %eax,disp32(%rip) becomes
 568	 * 89 86 disp32  mov %eax,disp32(%rsi)
 569	 */
 570	*cursor = 0x80 | (reg << 3) | reg2;
 571}
 572
 573static inline unsigned long *
 574scratch_reg(struct arch_uprobe *auprobe, struct pt_regs *regs)
 575{
 576	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_SI)
 577		return &regs->si;
 578	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_DI)
 579		return &regs->di;
 580	return &regs->bx;
 581}
 582
 583/*
 584 * If we're emulating a rip-relative instruction, save the contents
 585 * of the scratch register and store the target address in that register.
 586 */
 587static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 588{
 589	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
 590		struct uprobe_task *utask = current->utask;
 591		unsigned long *sr = scratch_reg(auprobe, regs);
 592
 593		utask->autask.saved_scratch_register = *sr;
 594		*sr = utask->vaddr + auprobe->defparam.ilen;
 595	}
 596}
 597
 598static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 599{
 600	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
 601		struct uprobe_task *utask = current->utask;
 602		unsigned long *sr = scratch_reg(auprobe, regs);
 603
 604		*sr = utask->autask.saved_scratch_register;
 605	}
 606}
 607#else /* 32-bit: */
 608/*
 609 * No RIP-relative addressing on 32-bit
 610 */
 611static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
 612{
 613}
 614static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 615{
 616}
 617static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 618{
 619}
 620#endif /* CONFIG_X86_64 */
 621
 622struct uprobe_xol_ops {
 623	bool	(*emulate)(struct arch_uprobe *, struct pt_regs *);
 624	int	(*pre_xol)(struct arch_uprobe *, struct pt_regs *);
 625	int	(*post_xol)(struct arch_uprobe *, struct pt_regs *);
 626	void	(*abort)(struct arch_uprobe *, struct pt_regs *);
 627};
 628
 629static inline int sizeof_long(struct pt_regs *regs)
 630{
 631	/*
 632	 * Check registers for mode as in_xxx_syscall() does not apply here.
 633	 */
 634	return user_64bit_mode(regs) ? 8 : 4;
 635}
 636
 637static int default_pre_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 638{
 639	riprel_pre_xol(auprobe, regs);
 640	return 0;
 641}
 642
 643static int emulate_push_stack(struct pt_regs *regs, unsigned long val)
 644{
 645	unsigned long new_sp = regs->sp - sizeof_long(regs);
 646
 647	if (copy_to_user((void __user *)new_sp, &val, sizeof_long(regs)))
 648		return -EFAULT;
 649
 650	regs->sp = new_sp;
 651	return 0;
 652}
 653
 654/*
 655 * We have to fix things up as follows:
 656 *
 657 * Typically, the new ip is relative to the copied instruction.  We need
 658 * to make it relative to the original instruction (FIX_IP).  Exceptions
 659 * are return instructions and absolute or indirect jump or call instructions.
 660 *
 661 * If the single-stepped instruction was a call, the return address that
 662 * is atop the stack is the address following the copied instruction.  We
 663 * need to make it the address following the original instruction (FIX_CALL).
 664 *
 665 * If the original instruction was a rip-relative instruction such as
 666 * "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent
 667 * instruction using a scratch register -- e.g., "movl %edx,0xnnnn(%rsi)".
 668 * We need to restore the contents of the scratch register
 669 * (FIX_RIP_reg).
 670 */
 671static int default_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 672{
 673	struct uprobe_task *utask = current->utask;
 674
 675	riprel_post_xol(auprobe, regs);
 676	if (auprobe->defparam.fixups & UPROBE_FIX_IP) {
 677		long correction = utask->vaddr - utask->xol_vaddr;
 678		regs->ip += correction;
 679	} else if (auprobe->defparam.fixups & UPROBE_FIX_CALL) {
 680		regs->sp += sizeof_long(regs); /* Pop incorrect return address */
 681		if (emulate_push_stack(regs, utask->vaddr + auprobe->defparam.ilen))
 682			return -ERESTART;
 683	}
 684	/* popf; tell the caller to not touch TF */
 685	if (auprobe->defparam.fixups & UPROBE_FIX_SETF)
 686		utask->autask.saved_tf = true;
 687
 688	return 0;
 689}
 690
 691static void default_abort_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 692{
 693	riprel_post_xol(auprobe, regs);
 694}
 695
 696static const struct uprobe_xol_ops default_xol_ops = {
 697	.pre_xol  = default_pre_xol_op,
 698	.post_xol = default_post_xol_op,
 699	.abort	  = default_abort_op,
 700};
 701
 702static bool branch_is_call(struct arch_uprobe *auprobe)
 703{
 704	return auprobe->branch.opc1 == 0xe8;
 705}
 706
 707#define CASE_COND					\
 708	COND(70, 71, XF(OF))				\
 709	COND(72, 73, XF(CF))				\
 710	COND(74, 75, XF(ZF))				\
 711	COND(78, 79, XF(SF))				\
 712	COND(7a, 7b, XF(PF))				\
 713	COND(76, 77, XF(CF) || XF(ZF))			\
 714	COND(7c, 7d, XF(SF) != XF(OF))			\
 715	COND(7e, 7f, XF(ZF) || XF(SF) != XF(OF))
 716
 717#define COND(op_y, op_n, expr)				\
 718	case 0x ## op_y: DO((expr) != 0)		\
 719	case 0x ## op_n: DO((expr) == 0)
 720
 721#define XF(xf)	(!!(flags & X86_EFLAGS_ ## xf))
 722
 723static bool is_cond_jmp_opcode(u8 opcode)
 724{
 725	switch (opcode) {
 726	#define DO(expr)	\
 727		return true;
 728	CASE_COND
 729	#undef	DO
 730
 731	default:
 732		return false;
 733	}
 734}
 735
 736static bool check_jmp_cond(struct arch_uprobe *auprobe, struct pt_regs *regs)
 737{
 738	unsigned long flags = regs->flags;
 739
 740	switch (auprobe->branch.opc1) {
 741	#define DO(expr)	\
 742		return expr;
 743	CASE_COND
 744	#undef	DO
 745
 746	default:	/* not a conditional jmp */
 747		return true;
 748	}
 749}
 750
 751#undef	XF
 752#undef	COND
 753#undef	CASE_COND
 754
 755static bool branch_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 756{
 757	unsigned long new_ip = regs->ip += auprobe->branch.ilen;
 758	unsigned long offs = (long)auprobe->branch.offs;
 759
 760	if (branch_is_call(auprobe)) {
 761		/*
 762		 * If it fails we execute this (mangled, see the comment in
 763		 * branch_clear_offset) insn out-of-line. In the likely case
 764		 * this should trigger the trap, and the probed application
 765		 * should die or restart the same insn after it handles the
 766		 * signal, arch_uprobe_post_xol() won't be even called.
 767		 *
 768		 * But there is corner case, see the comment in ->post_xol().
 769		 */
 770		if (emulate_push_stack(regs, new_ip))
 771			return false;
 772	} else if (!check_jmp_cond(auprobe, regs)) {
 773		offs = 0;
 774	}
 775
 776	regs->ip = new_ip + offs;
 777	return true;
 778}
 779
 780static bool push_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 781{
 782	unsigned long *src_ptr = (void *)regs + auprobe->push.reg_offset;
 783
 784	if (emulate_push_stack(regs, *src_ptr))
 785		return false;
 786	regs->ip += auprobe->push.ilen;
 787	return true;
 788}
 789
 790static int branch_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 791{
 792	BUG_ON(!branch_is_call(auprobe));
 793	/*
 794	 * We can only get here if branch_emulate_op() failed to push the ret
 795	 * address _and_ another thread expanded our stack before the (mangled)
 796	 * "call" insn was executed out-of-line. Just restore ->sp and restart.
 797	 * We could also restore ->ip and try to call branch_emulate_op() again.
 798	 */
 799	regs->sp += sizeof_long(regs);
 800	return -ERESTART;
 801}
 802
 803static void branch_clear_offset(struct arch_uprobe *auprobe, struct insn *insn)
 804{
 805	/*
 806	 * Turn this insn into "call 1f; 1:", this is what we will execute
 807	 * out-of-line if ->emulate() fails. We only need this to generate
 808	 * a trap, so that the probed task receives the correct signal with
 809	 * the properly filled siginfo.
 810	 *
 811	 * But see the comment in ->post_xol(), in the unlikely case it can
 812	 * succeed. So we need to ensure that the new ->ip can not fall into
 813	 * the non-canonical area and trigger #GP.
 814	 *
 815	 * We could turn it into (say) "pushf", but then we would need to
 816	 * divorce ->insn[] and ->ixol[]. We need to preserve the 1st byte
 817	 * of ->insn[] for set_orig_insn().
 818	 */
 819	memset(auprobe->insn + insn_offset_immediate(insn),
 820		0, insn->immediate.nbytes);
 821}
 822
 823static const struct uprobe_xol_ops branch_xol_ops = {
 824	.emulate  = branch_emulate_op,
 825	.post_xol = branch_post_xol_op,
 826};
 827
 828static const struct uprobe_xol_ops push_xol_ops = {
 829	.emulate  = push_emulate_op,
 830};
 831
 832/* Returns -ENOSYS if branch_xol_ops doesn't handle this insn */
 833static int branch_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
 834{
 835	u8 opc1 = OPCODE1(insn);
 836	insn_byte_t p;
 837	int i;
 838
 839	switch (opc1) {
 840	case 0xeb:	/* jmp 8 */
 841	case 0xe9:	/* jmp 32 */
 
 842		break;
 843	case 0x90:	/* prefix* + nop; same as jmp with .offs = 0 */
 844		goto setup;
 845
 846	case 0xe8:	/* call relative */
 847		branch_clear_offset(auprobe, insn);
 848		break;
 849
 850	case 0x0f:
 851		if (insn->opcode.nbytes != 2)
 852			return -ENOSYS;
 853		/*
 854		 * If it is a "near" conditional jmp, OPCODE2() - 0x10 matches
 855		 * OPCODE1() of the "short" jmp which checks the same condition.
 856		 */
 857		opc1 = OPCODE2(insn) - 0x10;
 858		fallthrough;
 859	default:
 860		if (!is_cond_jmp_opcode(opc1))
 861			return -ENOSYS;
 862	}
 863
 864	/*
 865	 * 16-bit overrides such as CALLW (66 e8 nn nn) are not supported.
 866	 * Intel and AMD behavior differ in 64-bit mode: Intel ignores 66 prefix.
 867	 * No one uses these insns, reject any branch insns with such prefix.
 868	 */
 869	for_each_insn_prefix(insn, i, p) {
 870		if (p == 0x66)
 871			return -ENOTSUPP;
 872	}
 873
 874setup:
 875	auprobe->branch.opc1 = opc1;
 876	auprobe->branch.ilen = insn->length;
 877	auprobe->branch.offs = insn->immediate.value;
 878
 879	auprobe->ops = &branch_xol_ops;
 880	return 0;
 881}
 882
 883/* Returns -ENOSYS if push_xol_ops doesn't handle this insn */
 884static int push_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
 885{
 886	u8 opc1 = OPCODE1(insn), reg_offset = 0;
 887
 888	if (opc1 < 0x50 || opc1 > 0x57)
 889		return -ENOSYS;
 890
 891	if (insn->length > 2)
 892		return -ENOSYS;
 893	if (insn->length == 2) {
 894		/* only support rex_prefix 0x41 (x64 only) */
 895#ifdef CONFIG_X86_64
 896		if (insn->rex_prefix.nbytes != 1 ||
 897		    insn->rex_prefix.bytes[0] != 0x41)
 898			return -ENOSYS;
 899
 900		switch (opc1) {
 901		case 0x50:
 902			reg_offset = offsetof(struct pt_regs, r8);
 903			break;
 904		case 0x51:
 905			reg_offset = offsetof(struct pt_regs, r9);
 906			break;
 907		case 0x52:
 908			reg_offset = offsetof(struct pt_regs, r10);
 909			break;
 910		case 0x53:
 911			reg_offset = offsetof(struct pt_regs, r11);
 912			break;
 913		case 0x54:
 914			reg_offset = offsetof(struct pt_regs, r12);
 915			break;
 916		case 0x55:
 917			reg_offset = offsetof(struct pt_regs, r13);
 918			break;
 919		case 0x56:
 920			reg_offset = offsetof(struct pt_regs, r14);
 921			break;
 922		case 0x57:
 923			reg_offset = offsetof(struct pt_regs, r15);
 924			break;
 925		}
 926#else
 927		return -ENOSYS;
 928#endif
 929	} else {
 930		switch (opc1) {
 931		case 0x50:
 932			reg_offset = offsetof(struct pt_regs, ax);
 933			break;
 934		case 0x51:
 935			reg_offset = offsetof(struct pt_regs, cx);
 936			break;
 937		case 0x52:
 938			reg_offset = offsetof(struct pt_regs, dx);
 939			break;
 940		case 0x53:
 941			reg_offset = offsetof(struct pt_regs, bx);
 942			break;
 943		case 0x54:
 944			reg_offset = offsetof(struct pt_regs, sp);
 945			break;
 946		case 0x55:
 947			reg_offset = offsetof(struct pt_regs, bp);
 948			break;
 949		case 0x56:
 950			reg_offset = offsetof(struct pt_regs, si);
 951			break;
 952		case 0x57:
 953			reg_offset = offsetof(struct pt_regs, di);
 954			break;
 955		}
 956	}
 957
 958	auprobe->push.reg_offset = reg_offset;
 959	auprobe->push.ilen = insn->length;
 960	auprobe->ops = &push_xol_ops;
 961	return 0;
 962}
 963
 964/**
 965 * arch_uprobe_analyze_insn - instruction analysis including validity and fixups.
 966 * @auprobe: the probepoint information.
 967 * @mm: the probed address space.
 
 968 * @addr: virtual address at which to install the probepoint
 969 * Return 0 on success or a -ve number on error.
 970 */
 971int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long addr)
 972{
 973	struct insn insn;
 974	u8 fix_ip_or_call = UPROBE_FIX_IP;
 975	int ret;
 976
 977	ret = uprobe_init_insn(auprobe, &insn, is_64bit_mm(mm));
 978	if (ret)
 979		return ret;
 980
 981	ret = branch_setup_xol_ops(auprobe, &insn);
 982	if (ret != -ENOSYS)
 983		return ret;
 984
 985	ret = push_setup_xol_ops(auprobe, &insn);
 986	if (ret != -ENOSYS)
 987		return ret;
 988
 989	/*
 990	 * Figure out which fixups default_post_xol_op() will need to perform,
 991	 * and annotate defparam->fixups accordingly.
 992	 */
 993	switch (OPCODE1(&insn)) {
 994	case 0x9d:		/* popf */
 995		auprobe->defparam.fixups |= UPROBE_FIX_SETF;
 996		break;
 997	case 0xc3:		/* ret or lret -- ip is correct */
 998	case 0xcb:
 999	case 0xc2:
1000	case 0xca:
1001	case 0xea:		/* jmp absolute -- ip is correct */
1002		fix_ip_or_call = 0;
1003		break;
1004	case 0x9a:		/* call absolute - Fix return addr, not ip */
1005		fix_ip_or_call = UPROBE_FIX_CALL;
1006		break;
1007	case 0xff:
1008		switch (MODRM_REG(&insn)) {
1009		case 2: case 3:			/* call or lcall, indirect */
1010			fix_ip_or_call = UPROBE_FIX_CALL;
1011			break;
1012		case 4: case 5:			/* jmp or ljmp, indirect */
1013			fix_ip_or_call = 0;
1014			break;
1015		}
1016		fallthrough;
1017	default:
1018		riprel_analyze(auprobe, &insn);
1019	}
1020
1021	auprobe->defparam.ilen = insn.length;
1022	auprobe->defparam.fixups |= fix_ip_or_call;
1023
1024	auprobe->ops = &default_xol_ops;
1025	return 0;
1026}
1027
1028/*
1029 * arch_uprobe_pre_xol - prepare to execute out of line.
1030 * @auprobe: the probepoint information.
1031 * @regs: reflects the saved user state of current task.
1032 */
1033int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
1034{
1035	struct uprobe_task *utask = current->utask;
1036
1037	if (auprobe->ops->pre_xol) {
1038		int err = auprobe->ops->pre_xol(auprobe, regs);
1039		if (err)
1040			return err;
1041	}
1042
1043	regs->ip = utask->xol_vaddr;
1044	utask->autask.saved_trap_nr = current->thread.trap_nr;
1045	current->thread.trap_nr = UPROBE_TRAP_NR;
1046
1047	utask->autask.saved_tf = !!(regs->flags & X86_EFLAGS_TF);
1048	regs->flags |= X86_EFLAGS_TF;
1049	if (test_tsk_thread_flag(current, TIF_BLOCKSTEP))
1050		set_task_blockstep(current, false);
1051
1052	return 0;
1053}
1054
1055/*
1056 * If xol insn itself traps and generates a signal(Say,
1057 * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped
1058 * instruction jumps back to its own address. It is assumed that anything
1059 * like do_page_fault/do_trap/etc sets thread.trap_nr != -1.
1060 *
1061 * arch_uprobe_pre_xol/arch_uprobe_post_xol save/restore thread.trap_nr,
1062 * arch_uprobe_xol_was_trapped() simply checks that ->trap_nr is not equal to
1063 * UPROBE_TRAP_NR == -1 set by arch_uprobe_pre_xol().
1064 */
1065bool arch_uprobe_xol_was_trapped(struct task_struct *t)
1066{
1067	if (t->thread.trap_nr != UPROBE_TRAP_NR)
1068		return true;
1069
1070	return false;
1071}
1072
1073/*
1074 * Called after single-stepping. To avoid the SMP problems that can
1075 * occur when we temporarily put back the original opcode to
1076 * single-step, we single-stepped a copy of the instruction.
1077 *
1078 * This function prepares to resume execution after the single-step.
1079 */
1080int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
1081{
1082	struct uprobe_task *utask = current->utask;
1083	bool send_sigtrap = utask->autask.saved_tf;
1084	int err = 0;
1085
1086	WARN_ON_ONCE(current->thread.trap_nr != UPROBE_TRAP_NR);
1087	current->thread.trap_nr = utask->autask.saved_trap_nr;
1088
1089	if (auprobe->ops->post_xol) {
1090		err = auprobe->ops->post_xol(auprobe, regs);
1091		if (err) {
1092			/*
1093			 * Restore ->ip for restart or post mortem analysis.
1094			 * ->post_xol() must not return -ERESTART unless this
1095			 * is really possible.
1096			 */
1097			regs->ip = utask->vaddr;
1098			if (err == -ERESTART)
1099				err = 0;
1100			send_sigtrap = false;
1101		}
1102	}
1103	/*
1104	 * arch_uprobe_pre_xol() doesn't save the state of TIF_BLOCKSTEP
1105	 * so we can get an extra SIGTRAP if we do not clear TF. We need
1106	 * to examine the opcode to make it right.
1107	 */
1108	if (send_sigtrap)
1109		send_sig(SIGTRAP, current, 0);
1110
1111	if (!utask->autask.saved_tf)
1112		regs->flags &= ~X86_EFLAGS_TF;
1113
1114	return err;
1115}
1116
1117/* callback routine for handling exceptions. */
1118int arch_uprobe_exception_notify(struct notifier_block *self, unsigned long val, void *data)
1119{
1120	struct die_args *args = data;
1121	struct pt_regs *regs = args->regs;
1122	int ret = NOTIFY_DONE;
1123
1124	/* We are only interested in userspace traps */
1125	if (regs && !user_mode(regs))
1126		return NOTIFY_DONE;
1127
1128	switch (val) {
1129	case DIE_INT3:
1130		if (uprobe_pre_sstep_notifier(regs))
1131			ret = NOTIFY_STOP;
1132
1133		break;
1134
1135	case DIE_DEBUG:
1136		if (uprobe_post_sstep_notifier(regs))
1137			ret = NOTIFY_STOP;
1138
1139		break;
1140
1141	default:
1142		break;
1143	}
1144
1145	return ret;
1146}
1147
1148/*
1149 * This function gets called when XOL instruction either gets trapped or
1150 * the thread has a fatal signal. Reset the instruction pointer to its
1151 * probed address for the potential restart or for post mortem analysis.
1152 */
1153void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
1154{
1155	struct uprobe_task *utask = current->utask;
1156
1157	if (auprobe->ops->abort)
1158		auprobe->ops->abort(auprobe, regs);
1159
1160	current->thread.trap_nr = utask->autask.saved_trap_nr;
1161	regs->ip = utask->vaddr;
1162	/* clear TF if it was set by us in arch_uprobe_pre_xol() */
1163	if (!utask->autask.saved_tf)
1164		regs->flags &= ~X86_EFLAGS_TF;
1165}
1166
1167static bool __skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
1168{
1169	if (auprobe->ops->emulate)
1170		return auprobe->ops->emulate(auprobe, regs);
1171	return false;
1172}
1173
1174bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
1175{
1176	bool ret = __skip_sstep(auprobe, regs);
1177	if (ret && (regs->flags & X86_EFLAGS_TF))
1178		send_sig(SIGTRAP, current, 0);
1179	return ret;
1180}
1181
1182unsigned long
1183arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr, struct pt_regs *regs)
1184{
1185	int rasize = sizeof_long(regs), nleft;
1186	unsigned long orig_ret_vaddr = 0; /* clear high bits for 32-bit apps */
1187
1188	if (copy_from_user(&orig_ret_vaddr, (void __user *)regs->sp, rasize))
1189		return -1;
1190
1191	/* check whether address has been already hijacked */
1192	if (orig_ret_vaddr == trampoline_vaddr)
1193		return orig_ret_vaddr;
1194
1195	nleft = copy_to_user((void __user *)regs->sp, &trampoline_vaddr, rasize);
1196	if (likely(!nleft)) {
1197		if (shstk_update_last_frame(trampoline_vaddr)) {
1198			force_sig(SIGSEGV);
1199			return -1;
1200		}
1201		return orig_ret_vaddr;
1202	}
1203
1204	if (nleft != rasize) {
1205		pr_err("return address clobbered: pid=%d, %%sp=%#lx, %%ip=%#lx\n",
1206		       current->pid, regs->sp, regs->ip);
1207
1208		force_sig(SIGSEGV);
1209	}
1210
1211	return -1;
1212}
1213
1214bool arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
1215				struct pt_regs *regs)
1216{
1217	if (ctx == RP_CHECK_CALL) /* sp was just decremented by "call" insn */
1218		return regs->sp < ret->stack;
1219	else
1220		return regs->sp <= ret->stack;
1221}