Linux Audio

Check our new training course

Loading...
v4.17
 
  1/*
  2 * Based on arch/arm/mm/fault.c
  3 *
  4 * Copyright (C) 1995  Linus Torvalds
  5 * Copyright (C) 1995-2004 Russell King
  6 * Copyright (C) 2012 ARM Ltd.
  7 *
  8 * This program is free software; you can redistribute it and/or modify
  9 * it under the terms of the GNU General Public License version 2 as
 10 * published by the Free Software Foundation.
 11 *
 12 * This program is distributed in the hope that it will be useful,
 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 15 * GNU General Public License for more details.
 16 *
 17 * You should have received a copy of the GNU General Public License
 18 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 19 */
 20
 
 
 21#include <linux/extable.h>
 
 22#include <linux/signal.h>
 23#include <linux/mm.h>
 24#include <linux/hardirq.h>
 25#include <linux/init.h>
 
 26#include <linux/kprobes.h>
 27#include <linux/uaccess.h>
 28#include <linux/page-flags.h>
 29#include <linux/sched/signal.h>
 30#include <linux/sched/debug.h>
 31#include <linux/highmem.h>
 32#include <linux/perf_event.h>
 33#include <linux/preempt.h>
 34#include <linux/hugetlb.h>
 35
 
 36#include <asm/bug.h>
 37#include <asm/cmpxchg.h>
 38#include <asm/cpufeature.h>
 
 39#include <asm/exception.h>
 
 40#include <asm/debug-monitors.h>
 41#include <asm/esr.h>
 
 
 
 42#include <asm/sysreg.h>
 43#include <asm/system_misc.h>
 44#include <asm/pgtable.h>
 45#include <asm/tlbflush.h>
 46#include <asm/traps.h>
 47
 48#include <acpi/ghes.h>
 49
 50struct fault_info {
 51	int	(*fn)(unsigned long addr, unsigned int esr,
 52		      struct pt_regs *regs);
 53	int	sig;
 54	int	code;
 55	const char *name;
 56};
 57
 58static const struct fault_info fault_info[];
 
 59
 60static inline const struct fault_info *esr_to_fault_info(unsigned int esr)
 61{
 62	return fault_info + (esr & 63);
 63}
 64
 65#ifdef CONFIG_KPROBES
 66static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr)
 67{
 68	int ret = 0;
 69
 70	/* kprobe_running() needs smp_processor_id() */
 71	if (!user_mode(regs)) {
 72		preempt_disable();
 73		if (kprobe_running() && kprobe_fault_handler(regs, esr))
 74			ret = 1;
 75		preempt_enable();
 76	}
 77
 78	return ret;
 79}
 80#else
 81static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr)
 82{
 83	return 0;
 84}
 85#endif
 86
 87static void data_abort_decode(unsigned int esr)
 88{
 
 
 89	pr_alert("Data abort info:\n");
 90
 91	if (esr & ESR_ELx_ISV) {
 92		pr_alert("  Access size = %u byte(s)\n",
 93			 1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT));
 94		pr_alert("  SSE = %lu, SRT = %lu\n",
 95			 (esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT,
 96			 (esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT);
 97		pr_alert("  SF = %lu, AR = %lu\n",
 98			 (esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT,
 99			 (esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT);
100	} else {
101		pr_alert("  ISV = 0, ISS = 0x%08lx\n", esr & ESR_ELx_ISS_MASK);
 
102	}
103
104	pr_alert("  CM = %lu, WnR = %lu\n",
105		 (esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT,
106		 (esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT);
 
 
 
 
 
 
 
 
107}
108
109static void mem_abort_decode(unsigned int esr)
110{
111	pr_alert("Mem abort info:\n");
112
113	pr_alert("  ESR = 0x%08x\n", esr);
114	pr_alert("  Exception class = %s, IL = %u bits\n",
115		 esr_get_class_string(esr),
116		 (esr & ESR_ELx_IL) ? 32 : 16);
117	pr_alert("  SET = %lu, FnV = %lu\n",
118		 (esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT,
119		 (esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT);
120	pr_alert("  EA = %lu, S1PTW = %lu\n",
121		 (esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT,
122		 (esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT);
 
 
123
124	if (esr_is_data_abort(esr))
125		data_abort_decode(esr);
126}
127
 
 
 
 
 
 
 
 
 
128/*
129 * Dump out the page tables associated with 'addr' in the currently active mm.
130 */
131void show_pte(unsigned long addr)
132{
133	struct mm_struct *mm;
134	pgd_t *pgdp;
135	pgd_t pgd;
136
137	if (addr < TASK_SIZE) {
138		/* TTBR0 */
139		mm = current->active_mm;
140		if (mm == &init_mm) {
141			pr_alert("[%016lx] user address but active_mm is swapper\n",
142				 addr);
143			return;
144		}
145	} else if (addr >= VA_START) {
146		/* TTBR1 */
147		mm = &init_mm;
148	} else {
149		pr_alert("[%016lx] address between user and kernel address ranges\n",
150			 addr);
151		return;
152	}
153
154	pr_alert("%s pgtable: %luk pages, %u-bit VAs, pgdp = %p\n",
155		 mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K,
156		 VA_BITS, mm->pgd);
157	pgdp = pgd_offset(mm, addr);
158	pgd = READ_ONCE(*pgdp);
159	pr_alert("[%016lx] pgd=%016llx", addr, pgd_val(pgd));
160
161	do {
 
162		pud_t *pudp, pud;
163		pmd_t *pmdp, pmd;
164		pte_t *ptep, pte;
165
166		if (pgd_none(pgd) || pgd_bad(pgd))
167			break;
168
169		pudp = pud_offset(pgdp, addr);
 
 
 
 
 
 
170		pud = READ_ONCE(*pudp);
171		pr_cont(", pud=%016llx", pud_val(pud));
172		if (pud_none(pud) || pud_bad(pud))
173			break;
174
175		pmdp = pmd_offset(pudp, addr);
176		pmd = READ_ONCE(*pmdp);
177		pr_cont(", pmd=%016llx", pmd_val(pmd));
178		if (pmd_none(pmd) || pmd_bad(pmd))
179			break;
180
181		ptep = pte_offset_map(pmdp, addr);
 
 
 
182		pte = READ_ONCE(*ptep);
183		pr_cont(", pte=%016llx", pte_val(pte));
184		pte_unmap(ptep);
185	} while(0);
186
187	pr_cont("\n");
188}
189
190/*
191 * This function sets the access flags (dirty, accessed), as well as write
192 * permission, and only to a more permissive setting.
193 *
194 * It needs to cope with hardware update of the accessed/dirty state by other
195 * agents in the system and can safely skip the __sync_icache_dcache() call as,
196 * like set_pte_at(), the PTE is never changed from no-exec to exec here.
197 *
198 * Returns whether or not the PTE actually changed.
199 */
200int ptep_set_access_flags(struct vm_area_struct *vma,
201			  unsigned long address, pte_t *ptep,
202			  pte_t entry, int dirty)
203{
204	pteval_t old_pteval, pteval;
205	pte_t pte = READ_ONCE(*ptep);
206
207	if (pte_same(pte, entry))
208		return 0;
209
210	/* only preserve the access flags and write permission */
211	pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY;
212
213	/*
214	 * Setting the flags must be done atomically to avoid racing with the
215	 * hardware update of the access/dirty state. The PTE_RDONLY bit must
216	 * be set to the most permissive (lowest value) of *ptep and entry
217	 * (calculated as: a & b == ~(~a | ~b)).
218	 */
219	pte_val(entry) ^= PTE_RDONLY;
220	pteval = pte_val(pte);
221	do {
222		old_pteval = pteval;
223		pteval ^= PTE_RDONLY;
224		pteval |= pte_val(entry);
225		pteval ^= PTE_RDONLY;
226		pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
227	} while (pteval != old_pteval);
228
229	flush_tlb_fix_spurious_fault(vma, address);
 
 
230	return 1;
231}
232
233static bool is_el1_instruction_abort(unsigned int esr)
234{
235	return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR;
236}
237
238static inline bool is_permission_fault(unsigned int esr, struct pt_regs *regs,
239				       unsigned long addr)
 
 
 
 
 
240{
241	unsigned int ec       = ESR_ELx_EC(esr);
242	unsigned int fsc_type = esr & ESR_ELx_FSC_TYPE;
243
244	if (ec != ESR_ELx_EC_DABT_CUR && ec != ESR_ELx_EC_IABT_CUR)
245		return false;
246
247	if (fsc_type == ESR_ELx_FSC_PERM)
248		return true;
249
250	if (addr < TASK_SIZE && system_uses_ttbr0_pan())
251		return fsc_type == ESR_ELx_FSC_FAULT &&
252			(regs->pstate & PSR_PAN_BIT);
253
254	return false;
255}
256
257static void __do_kernel_fault(unsigned long addr, unsigned int esr,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
258			      struct pt_regs *regs)
259{
260	const char *msg;
261
262	/*
263	 * Are we prepared to handle this kernel fault?
264	 * We are almost certainly not prepared to handle instruction faults.
265	 */
266	if (!is_el1_instruction_abort(esr) && fixup_exception(regs))
267		return;
268
269	bust_spinlocks(1);
 
 
 
 
 
270
271	if (is_permission_fault(esr, regs, addr)) {
 
 
 
272		if (esr & ESR_ELx_WNR)
273			msg = "write to read-only memory";
 
 
274		else
275			msg = "read from unreadable memory";
276	} else if (addr < PAGE_SIZE) {
277		msg = "NULL pointer dereference";
278	} else {
 
 
 
 
279		msg = "paging request";
280	}
281
282	pr_alert("Unable to handle kernel %s at virtual address %08lx\n", msg,
283		 addr);
284
285	mem_abort_decode(esr);
286
287	show_pte(addr);
288	die("Oops", regs, esr);
289	bust_spinlocks(0);
290	do_exit(SIGKILL);
291}
292
293static void __do_user_fault(struct siginfo *info, unsigned int esr)
294{
295	current->thread.fault_address = (unsigned long)info->si_addr;
296
297	/*
298	 * If the faulting address is in the kernel, we must sanitize the ESR.
299	 * From userspace's point of view, kernel-only mappings don't exist
300	 * at all, so we report them as level 0 translation faults.
301	 * (This is not quite the way that "no mapping there at all" behaves:
302	 * an alignment fault not caused by the memory type would take
303	 * precedence over translation fault for a real access to empty
304	 * space. Unfortunately we can't easily distinguish "alignment fault
305	 * not caused by memory type" from "alignment fault caused by memory
306	 * type", so we ignore this wrinkle and just return the translation
307	 * fault.)
308	 */
309	if (current->thread.fault_address >= TASK_SIZE) {
310		switch (ESR_ELx_EC(esr)) {
311		case ESR_ELx_EC_DABT_LOW:
312			/*
313			 * These bits provide only information about the
314			 * faulting instruction, which userspace knows already.
315			 * We explicitly clear bits which are architecturally
316			 * RES0 in case they are given meanings in future.
317			 * We always report the ESR as if the fault was taken
318			 * to EL1 and so ISV and the bits in ISS[23:14] are
319			 * clear. (In fact it always will be a fault to EL1.)
320			 */
321			esr &= ESR_ELx_EC_MASK | ESR_ELx_IL |
322				ESR_ELx_CM | ESR_ELx_WNR;
323			esr |= ESR_ELx_FSC_FAULT;
324			break;
325		case ESR_ELx_EC_IABT_LOW:
326			/*
327			 * Claim a level 0 translation fault.
328			 * All other bits are architecturally RES0 for faults
329			 * reported with that DFSC value, so we clear them.
330			 */
331			esr &= ESR_ELx_EC_MASK | ESR_ELx_IL;
332			esr |= ESR_ELx_FSC_FAULT;
333			break;
334		default:
335			/*
336			 * This should never happen (entry.S only brings us
337			 * into this code for insn and data aborts from a lower
338			 * exception level). Fail safe by not providing an ESR
339			 * context record at all.
340			 */
341			WARN(1, "ESR 0x%x is not DABT or IABT from EL0\n", esr);
342			esr = 0;
343			break;
344		}
345	}
346
347	current->thread.fault_code = esr;
348	arm64_force_sig_info(info, esr_to_fault_info(esr)->name, current);
349}
350
351static void do_bad_area(unsigned long addr, unsigned int esr, struct pt_regs *regs)
 
352{
 
 
353	/*
354	 * If we are in kernel mode at this point, we have no context to
355	 * handle this fault with.
356	 */
357	if (user_mode(regs)) {
358		const struct fault_info *inf = esr_to_fault_info(esr);
359		struct siginfo si = {
360			.si_signo	= inf->sig,
361			.si_code	= inf->code,
362			.si_addr	= (void __user *)addr,
363		};
364
365		__do_user_fault(&si, esr);
 
366	} else {
367		__do_kernel_fault(addr, esr, regs);
368	}
369}
370
371#define VM_FAULT_BADMAP		0x010000
372#define VM_FAULT_BADACCESS	0x020000
373
374static int __do_page_fault(struct mm_struct *mm, unsigned long addr,
375			   unsigned int mm_flags, unsigned long vm_flags,
376			   struct task_struct *tsk)
 
377{
378	struct vm_area_struct *vma;
379	int fault;
380
381	vma = find_vma(mm, addr);
382	fault = VM_FAULT_BADMAP;
383	if (unlikely(!vma))
384		goto out;
385	if (unlikely(vma->vm_start > addr))
386		goto check_stack;
387
388	/*
389	 * Ok, we have a good vm_area for this memory access, so we can handle
390	 * it.
391	 */
392good_area:
393	/*
394	 * Check that the permissions on the VMA allow for the fault which
395	 * occurred.
396	 */
397	if (!(vma->vm_flags & vm_flags)) {
398		fault = VM_FAULT_BADACCESS;
399		goto out;
400	}
401
402	return handle_mm_fault(vma, addr & PAGE_MASK, mm_flags);
403
404check_stack:
405	if (vma->vm_flags & VM_GROWSDOWN && !expand_stack(vma, addr))
406		goto good_area;
407out:
408	return fault;
409}
410
411static bool is_el0_instruction_abort(unsigned int esr)
412{
413	return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW;
414}
415
416static int __kprobes do_page_fault(unsigned long addr, unsigned int esr,
 
 
 
 
 
 
 
 
 
417				   struct pt_regs *regs)
418{
419	struct task_struct *tsk;
420	struct mm_struct *mm;
421	struct siginfo si;
422	int fault, major = 0;
423	unsigned long vm_flags = VM_READ | VM_WRITE;
424	unsigned int mm_flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
 
425
426	if (notify_page_fault(regs, esr))
427		return 0;
428
429	tsk = current;
430	mm  = tsk->mm;
431
432	/*
433	 * If we're in an interrupt or have no user context, we must not take
434	 * the fault.
435	 */
436	if (faulthandler_disabled() || !mm)
437		goto no_context;
438
439	if (user_mode(regs))
440		mm_flags |= FAULT_FLAG_USER;
441
 
 
 
 
 
 
442	if (is_el0_instruction_abort(esr)) {
 
443		vm_flags = VM_EXEC;
444	} else if ((esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM)) {
 
 
445		vm_flags = VM_WRITE;
446		mm_flags |= FAULT_FLAG_WRITE;
 
 
 
 
 
 
 
 
447	}
448
449	if (addr < TASK_SIZE && is_permission_fault(esr, regs, addr)) {
450		/* regs->orig_addr_limit may be 0 if we entered from EL0 */
451		if (regs->orig_addr_limit == KERNEL_DS)
452			die("Accessing user space memory with fs=KERNEL_DS", regs, esr);
453
454		if (is_el1_instruction_abort(esr))
455			die("Attempting to execute userspace memory", regs, esr);
 
456
457		if (!search_exception_tables(regs->pc))
458			die("Accessing user space memory outside uaccess.h routines", regs, esr);
 
459	}
460
461	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
462
463	/*
464	 * As per x86, we may deadlock here. However, since the kernel only
465	 * validly references user space from well defined areas of the code,
466	 * we can bug out early if this is from code which shouldn't.
467	 */
468	if (!down_read_trylock(&mm->mmap_sem)) {
469		if (!user_mode(regs) && !search_exception_tables(regs->pc))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
470			goto no_context;
 
 
 
 
471retry:
472		down_read(&mm->mmap_sem);
473	} else {
474		/*
475		 * The above down_read_trylock() might have succeeded in which
476		 * case, we'll have missed the might_sleep() from down_read().
477		 */
478		might_sleep();
479#ifdef CONFIG_DEBUG_VM
480		if (!user_mode(regs) && !search_exception_tables(regs->pc))
 
 
481			goto no_context;
482#endif
483	}
484
485	fault = __do_page_fault(mm, addr, mm_flags, vm_flags, tsk);
486	major |= fault & VM_FAULT_MAJOR;
 
487
488	if (fault & VM_FAULT_RETRY) {
489		/*
490		 * If we need to retry but a fatal signal is pending,
491		 * handle the signal first. We do not need to release
492		 * the mmap_sem because it would already be released
493		 * in __lock_page_or_retry in mm/filemap.c.
494		 */
495		if (fatal_signal_pending(current)) {
496			if (!user_mode(regs))
497				goto no_context;
498			return 0;
499		}
500
501		/*
502		 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk of
503		 * starvation.
504		 */
505		if (mm_flags & FAULT_FLAG_ALLOW_RETRY) {
506			mm_flags &= ~FAULT_FLAG_ALLOW_RETRY;
507			mm_flags |= FAULT_FLAG_TRIED;
508			goto retry;
509		}
510	}
511	up_read(&mm->mmap_sem);
512
 
513	/*
514	 * Handle the "normal" (no error) case first.
515	 */
516	if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
517			      VM_FAULT_BADACCESS)))) {
518		/*
519		 * Major/minor page fault accounting is only done
520		 * once. If we go through a retry, it is extremely
521		 * likely that the page will be found in page cache at
522		 * that point.
523		 */
524		if (major) {
525			tsk->maj_flt++;
526			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs,
527				      addr);
528		} else {
529			tsk->min_flt++;
530			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs,
531				      addr);
532		}
533
534		return 0;
535	}
536
537	/*
538	 * If we are in kernel mode at this point, we have no context to
539	 * handle this fault with.
540	 */
541	if (!user_mode(regs))
542		goto no_context;
543
544	if (fault & VM_FAULT_OOM) {
545		/*
546		 * We ran out of memory, call the OOM killer, and return to
547		 * userspace (which will retry the fault, or kill us if we got
548		 * oom-killed).
549		 */
550		pagefault_out_of_memory();
551		return 0;
552	}
553
554	clear_siginfo(&si);
555	si.si_addr = (void __user *)addr;
556
557	if (fault & VM_FAULT_SIGBUS) {
558		/*
559		 * We had some memory, but were unable to successfully fix up
560		 * this page fault.
561		 */
562		si.si_signo	= SIGBUS;
563		si.si_code	= BUS_ADRERR;
564	} else if (fault & VM_FAULT_HWPOISON_LARGE) {
565		unsigned int hindex = VM_FAULT_GET_HINDEX(fault);
566
567		si.si_signo	= SIGBUS;
568		si.si_code	= BUS_MCEERR_AR;
569		si.si_addr_lsb	= hstate_index_to_shift(hindex);
570	} else if (fault & VM_FAULT_HWPOISON) {
571		si.si_signo	= SIGBUS;
572		si.si_code	= BUS_MCEERR_AR;
573		si.si_addr_lsb	= PAGE_SHIFT;
574	} else {
575		/*
576		 * Something tried to access memory that isn't in our memory
577		 * map.
578		 */
579		si.si_signo	= SIGSEGV;
580		si.si_code	= fault == VM_FAULT_BADACCESS ?
581				  SEGV_ACCERR : SEGV_MAPERR;
582	}
583
584	__do_user_fault(&si, esr);
585	return 0;
586
587no_context:
588	__do_kernel_fault(addr, esr, regs);
589	return 0;
590}
591
592static int __kprobes do_translation_fault(unsigned long addr,
593					  unsigned int esr,
594					  struct pt_regs *regs)
595{
596	if (addr < TASK_SIZE)
597		return do_page_fault(addr, esr, regs);
 
 
598
599	do_bad_area(addr, esr, regs);
600	return 0;
601}
602
603static int do_alignment_fault(unsigned long addr, unsigned int esr,
604			      struct pt_regs *regs)
605{
606	do_bad_area(addr, esr, regs);
 
 
 
607	return 0;
608}
609
610static int do_bad(unsigned long addr, unsigned int esr, struct pt_regs *regs)
611{
612	return 1; /* "fault" */
613}
614
615static int do_sea(unsigned long addr, unsigned int esr, struct pt_regs *regs)
616{
617	struct siginfo info;
618	const struct fault_info *inf;
 
619
620	inf = esr_to_fault_info(esr);
621
622	/*
623	 * Synchronous aborts may interrupt code which had interrupts masked.
624	 * Before calling out into the wider kernel tell the interested
625	 * subsystems.
626	 */
627	if (IS_ENABLED(CONFIG_ACPI_APEI_SEA)) {
628		if (interrupts_enabled(regs))
629			nmi_enter();
630
631		ghes_notify_sea();
632
633		if (interrupts_enabled(regs))
634			nmi_exit();
635	}
636
637	info.si_signo = inf->sig;
638	info.si_errno = 0;
639	info.si_code  = inf->code;
640	if (esr & ESR_ELx_FnV)
641		info.si_addr = NULL;
642	else
643		info.si_addr  = (void __user *)addr;
644	arm64_notify_die(inf->name, regs, &info, esr);
645
646	return 0;
647}
648
 
 
 
 
 
 
 
 
 
 
 
 
 
649static const struct fault_info fault_info[] = {
650	{ do_bad,		SIGKILL, SI_KERNEL,	"ttbr address size fault"	},
651	{ do_bad,		SIGKILL, SI_KERNEL,	"level 1 address size fault"	},
652	{ do_bad,		SIGKILL, SI_KERNEL,	"level 2 address size fault"	},
653	{ do_bad,		SIGKILL, SI_KERNEL,	"level 3 address size fault"	},
654	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 0 translation fault"	},
655	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 1 translation fault"	},
656	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 2 translation fault"	},
657	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 3 translation fault"	},
658	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 8"			},
659	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 access flag fault"	},
660	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 access flag fault"	},
661	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 access flag fault"	},
662	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 12"			},
663	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 permission fault"	},
664	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 permission fault"	},
665	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 permission fault"	},
666	{ do_sea,		SIGBUS,  BUS_OBJERR,	"synchronous external abort"	},
667	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 17"			},
668	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 18"			},
669	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 19"			},
670	{ do_sea,		SIGKILL, SI_KERNEL,	"level 0 (translation table walk)"	},
671	{ do_sea,		SIGKILL, SI_KERNEL,	"level 1 (translation table walk)"	},
672	{ do_sea,		SIGKILL, SI_KERNEL,	"level 2 (translation table walk)"	},
673	{ do_sea,		SIGKILL, SI_KERNEL,	"level 3 (translation table walk)"	},
674	{ do_sea,		SIGBUS,  BUS_OBJERR,	"synchronous parity or ECC error" },	// Reserved when RAS is implemented
675	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 25"			},
676	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 26"			},
677	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 27"			},
678	{ do_sea,		SIGKILL, SI_KERNEL,	"level 0 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
679	{ do_sea,		SIGKILL, SI_KERNEL,	"level 1 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
680	{ do_sea,		SIGKILL, SI_KERNEL,	"level 2 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
681	{ do_sea,		SIGKILL, SI_KERNEL,	"level 3 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
682	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 32"			},
683	{ do_alignment_fault,	SIGBUS,  BUS_ADRALN,	"alignment fault"		},
684	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 34"			},
685	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 35"			},
686	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 36"			},
687	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 37"			},
688	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 38"			},
689	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 39"			},
690	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 40"			},
691	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 41"			},
692	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 42"			},
693	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 43"			},
694	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 44"			},
695	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 45"			},
696	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 46"			},
697	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 47"			},
698	{ do_bad,		SIGKILL, SI_KERNEL,	"TLB conflict abort"		},
699	{ do_bad,		SIGKILL, SI_KERNEL,	"Unsupported atomic hardware update fault"	},
700	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 50"			},
701	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 51"			},
702	{ do_bad,		SIGKILL, SI_KERNEL,	"implementation fault (lockdown abort)" },
703	{ do_bad,		SIGBUS,  BUS_OBJERR,	"implementation fault (unsupported exclusive)" },
704	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 54"			},
705	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 55"			},
706	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 56"			},
707	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 57"			},
708	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 58" 			},
709	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 59"			},
710	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 60"			},
711	{ do_bad,		SIGKILL, SI_KERNEL,	"section domain fault"		},
712	{ do_bad,		SIGKILL, SI_KERNEL,	"page domain fault"		},
713	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 63"			},
714};
715
716int handle_guest_sea(phys_addr_t addr, unsigned int esr)
717{
718	int ret = -ENOENT;
719
720	if (IS_ENABLED(CONFIG_ACPI_APEI_SEA))
721		ret = ghes_notify_sea();
722
723	return ret;
724}
725
726asmlinkage void __exception do_mem_abort(unsigned long addr, unsigned int esr,
727					 struct pt_regs *regs)
728{
729	const struct fault_info *inf = esr_to_fault_info(esr);
730	struct siginfo info;
731
732	if (!inf->fn(addr, esr, regs))
733		return;
734
735	if (!user_mode(regs)) {
736		pr_alert("Unhandled fault at 0x%016lx\n", addr);
737		mem_abort_decode(esr);
738		show_pte(addr);
739	}
740
741	info.si_signo = inf->sig;
742	info.si_errno = 0;
743	info.si_code  = inf->code;
744	info.si_addr  = (void __user *)addr;
745	arm64_notify_die(inf->name, regs, &info, esr);
746}
747
748asmlinkage void __exception do_el0_irq_bp_hardening(void)
749{
750	/* PC has already been checked in entry.S */
751	arm64_apply_bp_hardening();
752}
753
754asmlinkage void __exception do_el0_ia_bp_hardening(unsigned long addr,
755						   unsigned int esr,
756						   struct pt_regs *regs)
757{
758	/*
759	 * We've taken an instruction abort from userspace and not yet
760	 * re-enabled IRQs. If the address is a kernel address, apply
761	 * BP hardening prior to enabling IRQs and pre-emption.
762	 */
763	if (addr > TASK_SIZE)
764		arm64_apply_bp_hardening();
765
766	local_irq_enable();
767	do_mem_abort(addr, esr, regs);
768}
 
769
770
771asmlinkage void __exception do_sp_pc_abort(unsigned long addr,
772					   unsigned int esr,
773					   struct pt_regs *regs)
774{
775	struct siginfo info;
776
777	if (user_mode(regs)) {
778		if (instruction_pointer(regs) > TASK_SIZE)
779			arm64_apply_bp_hardening();
780		local_irq_enable();
781	}
782
783	info.si_signo = SIGBUS;
784	info.si_errno = 0;
785	info.si_code  = BUS_ADRALN;
786	info.si_addr  = (void __user *)addr;
787	arm64_notify_die("SP/PC alignment exception", regs, &info, esr);
788}
789
790int __init early_brk64(unsigned long addr, unsigned int esr,
791		       struct pt_regs *regs);
792
793/*
794 * __refdata because early_brk64 is __init, but the reference to it is
795 * clobbered at arch_initcall time.
796 * See traps.c and debug-monitors.c:debug_traps_init().
797 */
798static struct fault_info __refdata debug_fault_info[] = {
799	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware breakpoint"	},
800	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware single-step"	},
801	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware watchpoint"	},
802	{ do_bad,	SIGKILL,	SI_KERNEL,	"unknown 3"		},
803	{ do_bad,	SIGTRAP,	TRAP_BRKPT,	"aarch32 BKPT"		},
804	{ do_bad,	SIGKILL,	SI_KERNEL,	"aarch32 vector catch"	},
805	{ early_brk64,	SIGTRAP,	TRAP_BRKPT,	"aarch64 BRK"		},
806	{ do_bad,	SIGKILL,	SI_KERNEL,	"unknown 7"		},
807};
808
809void __init hook_debug_fault_code(int nr,
810				  int (*fn)(unsigned long, unsigned int, struct pt_regs *),
811				  int sig, int code, const char *name)
812{
813	BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));
814
815	debug_fault_info[nr].fn		= fn;
816	debug_fault_info[nr].sig	= sig;
817	debug_fault_info[nr].code	= code;
818	debug_fault_info[nr].name	= name;
819}
820
821asmlinkage int __exception do_debug_exception(unsigned long addr,
822					      unsigned int esr,
823					      struct pt_regs *regs)
 
 
 
 
 
824{
825	const struct fault_info *inf = debug_fault_info + DBG_ESR_EVT(esr);
826	struct siginfo info;
827	int rv;
828
829	/*
830	 * Tell lockdep we disabled irqs in entry.S. Do nothing if they were
831	 * already disabled to preserve the last enabled/disabled addresses.
832	 */
833	if (interrupts_enabled(regs))
834		trace_hardirqs_off();
835
836	if (user_mode(regs) && instruction_pointer(regs) > TASK_SIZE)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
837		arm64_apply_bp_hardening();
838
839	if (!inf->fn(addr, esr, regs)) {
840		rv = 1;
841	} else {
842		info.si_signo = inf->sig;
843		info.si_errno = 0;
844		info.si_code  = inf->code;
845		info.si_addr  = (void __user *)addr;
846		arm64_notify_die(inf->name, regs, &info, esr);
847		rv = 0;
848	}
849
850	if (interrupts_enabled(regs))
851		trace_hardirqs_on();
852
853	return rv;
854}
855NOKPROBE_SYMBOL(do_debug_exception);
856
857#ifdef CONFIG_ARM64_PAN
858void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused)
 
 
 
859{
 
 
860	/*
861	 * We modify PSTATE. This won't work from irq context as the PSTATE
862	 * is discarded once we return from the exception.
 
863	 */
864	WARN_ON_ONCE(in_interrupt());
 
865
866	config_sctlr_el1(SCTLR_EL1_SPAN, 0);
867	asm(SET_PSTATE_PAN(1));
 
 
 
 
 
 
 
868}
869#endif /* CONFIG_ARM64_PAN */
v6.8
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Based on arch/arm/mm/fault.c
  4 *
  5 * Copyright (C) 1995  Linus Torvalds
  6 * Copyright (C) 1995-2004 Russell King
  7 * Copyright (C) 2012 ARM Ltd.
 
 
 
 
 
 
 
 
 
 
 
 
  8 */
  9
 10#include <linux/acpi.h>
 11#include <linux/bitfield.h>
 12#include <linux/extable.h>
 13#include <linux/kfence.h>
 14#include <linux/signal.h>
 15#include <linux/mm.h>
 16#include <linux/hardirq.h>
 17#include <linux/init.h>
 18#include <linux/kasan.h>
 19#include <linux/kprobes.h>
 20#include <linux/uaccess.h>
 21#include <linux/page-flags.h>
 22#include <linux/sched/signal.h>
 23#include <linux/sched/debug.h>
 24#include <linux/highmem.h>
 25#include <linux/perf_event.h>
 26#include <linux/preempt.h>
 27#include <linux/hugetlb.h>
 28
 29#include <asm/acpi.h>
 30#include <asm/bug.h>
 31#include <asm/cmpxchg.h>
 32#include <asm/cpufeature.h>
 33#include <asm/efi.h>
 34#include <asm/exception.h>
 35#include <asm/daifflags.h>
 36#include <asm/debug-monitors.h>
 37#include <asm/esr.h>
 38#include <asm/kprobes.h>
 39#include <asm/mte.h>
 40#include <asm/processor.h>
 41#include <asm/sysreg.h>
 42#include <asm/system_misc.h>
 
 43#include <asm/tlbflush.h>
 44#include <asm/traps.h>
 45
 
 
 46struct fault_info {
 47	int	(*fn)(unsigned long far, unsigned long esr,
 48		      struct pt_regs *regs);
 49	int	sig;
 50	int	code;
 51	const char *name;
 52};
 53
 54static const struct fault_info fault_info[];
 55static struct fault_info debug_fault_info[];
 56
 57static inline const struct fault_info *esr_to_fault_info(unsigned long esr)
 58{
 59	return fault_info + (esr & ESR_ELx_FSC);
 60}
 61
 62static inline const struct fault_info *esr_to_debug_fault_info(unsigned long esr)
 
 63{
 64	return debug_fault_info + DBG_ESR_EVT(esr);
 
 
 
 
 
 
 
 
 
 
 65}
 
 
 
 
 
 
 66
 67static void data_abort_decode(unsigned long esr)
 68{
 69	unsigned long iss2 = ESR_ELx_ISS2(esr);
 70
 71	pr_alert("Data abort info:\n");
 72
 73	if (esr & ESR_ELx_ISV) {
 74		pr_alert("  Access size = %u byte(s)\n",
 75			 1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT));
 76		pr_alert("  SSE = %lu, SRT = %lu\n",
 77			 (esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT,
 78			 (esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT);
 79		pr_alert("  SF = %lu, AR = %lu\n",
 80			 (esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT,
 81			 (esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT);
 82	} else {
 83		pr_alert("  ISV = 0, ISS = 0x%08lx, ISS2 = 0x%08lx\n",
 84			 esr & ESR_ELx_ISS_MASK, iss2);
 85	}
 86
 87	pr_alert("  CM = %lu, WnR = %lu, TnD = %lu, TagAccess = %lu\n",
 88		 (esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT,
 89		 (esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT,
 90		 (iss2 & ESR_ELx_TnD) >> ESR_ELx_TnD_SHIFT,
 91		 (iss2 & ESR_ELx_TagAccess) >> ESR_ELx_TagAccess_SHIFT);
 92
 93	pr_alert("  GCS = %ld, Overlay = %lu, DirtyBit = %lu, Xs = %llu\n",
 94		 (iss2 & ESR_ELx_GCS) >> ESR_ELx_GCS_SHIFT,
 95		 (iss2 & ESR_ELx_Overlay) >> ESR_ELx_Overlay_SHIFT,
 96		 (iss2 & ESR_ELx_DirtyBit) >> ESR_ELx_DirtyBit_SHIFT,
 97		 (iss2 & ESR_ELx_Xs_MASK) >> ESR_ELx_Xs_SHIFT);
 98}
 99
100static void mem_abort_decode(unsigned long esr)
101{
102	pr_alert("Mem abort info:\n");
103
104	pr_alert("  ESR = 0x%016lx\n", esr);
105	pr_alert("  EC = 0x%02lx: %s, IL = %u bits\n",
106		 ESR_ELx_EC(esr), esr_get_class_string(esr),
107		 (esr & ESR_ELx_IL) ? 32 : 16);
108	pr_alert("  SET = %lu, FnV = %lu\n",
109		 (esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT,
110		 (esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT);
111	pr_alert("  EA = %lu, S1PTW = %lu\n",
112		 (esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT,
113		 (esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT);
114	pr_alert("  FSC = 0x%02lx: %s\n", (esr & ESR_ELx_FSC),
115		 esr_to_fault_info(esr)->name);
116
117	if (esr_is_data_abort(esr))
118		data_abort_decode(esr);
119}
120
121static inline unsigned long mm_to_pgd_phys(struct mm_struct *mm)
122{
123	/* Either init_pg_dir or swapper_pg_dir */
124	if (mm == &init_mm)
125		return __pa_symbol(mm->pgd);
126
127	return (unsigned long)virt_to_phys(mm->pgd);
128}
129
130/*
131 * Dump out the page tables associated with 'addr' in the currently active mm.
132 */
133static void show_pte(unsigned long addr)
134{
135	struct mm_struct *mm;
136	pgd_t *pgdp;
137	pgd_t pgd;
138
139	if (is_ttbr0_addr(addr)) {
140		/* TTBR0 */
141		mm = current->active_mm;
142		if (mm == &init_mm) {
143			pr_alert("[%016lx] user address but active_mm is swapper\n",
144				 addr);
145			return;
146		}
147	} else if (is_ttbr1_addr(addr)) {
148		/* TTBR1 */
149		mm = &init_mm;
150	} else {
151		pr_alert("[%016lx] address between user and kernel address ranges\n",
152			 addr);
153		return;
154	}
155
156	pr_alert("%s pgtable: %luk pages, %llu-bit VAs, pgdp=%016lx\n",
157		 mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K,
158		 vabits_actual, mm_to_pgd_phys(mm));
159	pgdp = pgd_offset(mm, addr);
160	pgd = READ_ONCE(*pgdp);
161	pr_alert("[%016lx] pgd=%016llx", addr, pgd_val(pgd));
162
163	do {
164		p4d_t *p4dp, p4d;
165		pud_t *pudp, pud;
166		pmd_t *pmdp, pmd;
167		pte_t *ptep, pte;
168
169		if (pgd_none(pgd) || pgd_bad(pgd))
170			break;
171
172		p4dp = p4d_offset(pgdp, addr);
173		p4d = READ_ONCE(*p4dp);
174		pr_cont(", p4d=%016llx", p4d_val(p4d));
175		if (p4d_none(p4d) || p4d_bad(p4d))
176			break;
177
178		pudp = pud_offset(p4dp, addr);
179		pud = READ_ONCE(*pudp);
180		pr_cont(", pud=%016llx", pud_val(pud));
181		if (pud_none(pud) || pud_bad(pud))
182			break;
183
184		pmdp = pmd_offset(pudp, addr);
185		pmd = READ_ONCE(*pmdp);
186		pr_cont(", pmd=%016llx", pmd_val(pmd));
187		if (pmd_none(pmd) || pmd_bad(pmd))
188			break;
189
190		ptep = pte_offset_map(pmdp, addr);
191		if (!ptep)
192			break;
193
194		pte = READ_ONCE(*ptep);
195		pr_cont(", pte=%016llx", pte_val(pte));
196		pte_unmap(ptep);
197	} while(0);
198
199	pr_cont("\n");
200}
201
202/*
203 * This function sets the access flags (dirty, accessed), as well as write
204 * permission, and only to a more permissive setting.
205 *
206 * It needs to cope with hardware update of the accessed/dirty state by other
207 * agents in the system and can safely skip the __sync_icache_dcache() call as,
208 * like set_pte_at(), the PTE is never changed from no-exec to exec here.
209 *
210 * Returns whether or not the PTE actually changed.
211 */
212int ptep_set_access_flags(struct vm_area_struct *vma,
213			  unsigned long address, pte_t *ptep,
214			  pte_t entry, int dirty)
215{
216	pteval_t old_pteval, pteval;
217	pte_t pte = READ_ONCE(*ptep);
218
219	if (pte_same(pte, entry))
220		return 0;
221
222	/* only preserve the access flags and write permission */
223	pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY;
224
225	/*
226	 * Setting the flags must be done atomically to avoid racing with the
227	 * hardware update of the access/dirty state. The PTE_RDONLY bit must
228	 * be set to the most permissive (lowest value) of *ptep and entry
229	 * (calculated as: a & b == ~(~a | ~b)).
230	 */
231	pte_val(entry) ^= PTE_RDONLY;
232	pteval = pte_val(pte);
233	do {
234		old_pteval = pteval;
235		pteval ^= PTE_RDONLY;
236		pteval |= pte_val(entry);
237		pteval ^= PTE_RDONLY;
238		pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
239	} while (pteval != old_pteval);
240
241	/* Invalidate a stale read-only entry */
242	if (dirty)
243		flush_tlb_page(vma, address);
244	return 1;
245}
246
247static bool is_el1_instruction_abort(unsigned long esr)
248{
249	return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR;
250}
251
252static bool is_el1_data_abort(unsigned long esr)
253{
254	return ESR_ELx_EC(esr) == ESR_ELx_EC_DABT_CUR;
255}
256
257static inline bool is_el1_permission_fault(unsigned long addr, unsigned long esr,
258					   struct pt_regs *regs)
259{
260	unsigned long fsc_type = esr & ESR_ELx_FSC_TYPE;
 
261
262	if (!is_el1_data_abort(esr) && !is_el1_instruction_abort(esr))
263		return false;
264
265	if (fsc_type == ESR_ELx_FSC_PERM)
266		return true;
267
268	if (is_ttbr0_addr(addr) && system_uses_ttbr0_pan())
269		return fsc_type == ESR_ELx_FSC_FAULT &&
270			(regs->pstate & PSR_PAN_BIT);
271
272	return false;
273}
274
275static bool __kprobes is_spurious_el1_translation_fault(unsigned long addr,
276							unsigned long esr,
277							struct pt_regs *regs)
278{
279	unsigned long flags;
280	u64 par, dfsc;
281
282	if (!is_el1_data_abort(esr) ||
283	    (esr & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT)
284		return false;
285
286	local_irq_save(flags);
287	asm volatile("at s1e1r, %0" :: "r" (addr));
288	isb();
289	par = read_sysreg_par();
290	local_irq_restore(flags);
291
292	/*
293	 * If we now have a valid translation, treat the translation fault as
294	 * spurious.
295	 */
296	if (!(par & SYS_PAR_EL1_F))
297		return true;
298
299	/*
300	 * If we got a different type of fault from the AT instruction,
301	 * treat the translation fault as spurious.
302	 */
303	dfsc = FIELD_GET(SYS_PAR_EL1_FST, par);
304	return (dfsc & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT;
305}
306
307static void die_kernel_fault(const char *msg, unsigned long addr,
308			     unsigned long esr, struct pt_regs *regs)
309{
310	bust_spinlocks(1);
311
312	pr_alert("Unable to handle kernel %s at virtual address %016lx\n", msg,
313		 addr);
314
315	kasan_non_canonical_hook(addr);
316
317	mem_abort_decode(esr);
318
319	show_pte(addr);
320	die("Oops", regs, esr);
321	bust_spinlocks(0);
322	make_task_dead(SIGKILL);
323}
324
325#ifdef CONFIG_KASAN_HW_TAGS
326static void report_tag_fault(unsigned long addr, unsigned long esr,
327			     struct pt_regs *regs)
328{
329	/*
330	 * SAS bits aren't set for all faults reported in EL1, so we can't
331	 * find out access size.
332	 */
333	bool is_write = !!(esr & ESR_ELx_WNR);
334	kasan_report((void *)addr, 0, is_write, regs->pc);
335}
336#else
337/* Tag faults aren't enabled without CONFIG_KASAN_HW_TAGS. */
338static inline void report_tag_fault(unsigned long addr, unsigned long esr,
339				    struct pt_regs *regs) { }
340#endif
341
342static void do_tag_recovery(unsigned long addr, unsigned long esr,
343			   struct pt_regs *regs)
344{
345
346	report_tag_fault(addr, esr, regs);
347
348	/*
349	 * Disable MTE Tag Checking on the local CPU for the current EL.
350	 * It will be done lazily on the other CPUs when they will hit a
351	 * tag fault.
352	 */
353	sysreg_clear_set(sctlr_el1, SCTLR_EL1_TCF_MASK,
354			 SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF, NONE));
355	isb();
356}
357
358static bool is_el1_mte_sync_tag_check_fault(unsigned long esr)
359{
360	unsigned long fsc = esr & ESR_ELx_FSC;
361
362	if (!is_el1_data_abort(esr))
363		return false;
364
365	if (fsc == ESR_ELx_FSC_MTE)
366		return true;
367
368	return false;
369}
370
371static bool is_translation_fault(unsigned long esr)
372{
373	return (esr & ESR_ELx_FSC_TYPE) == ESR_ELx_FSC_FAULT;
374}
375
376static void __do_kernel_fault(unsigned long addr, unsigned long esr,
377			      struct pt_regs *regs)
378{
379	const char *msg;
380
381	/*
382	 * Are we prepared to handle this kernel fault?
383	 * We are almost certainly not prepared to handle instruction faults.
384	 */
385	if (!is_el1_instruction_abort(esr) && fixup_exception(regs))
386		return;
387
388	if (WARN_RATELIMIT(is_spurious_el1_translation_fault(addr, esr, regs),
389	    "Ignoring spurious kernel translation fault at virtual address %016lx\n", addr))
390		return;
391
392	if (is_el1_mte_sync_tag_check_fault(esr)) {
393		do_tag_recovery(addr, esr, regs);
394
395		return;
396	}
397
398	if (is_el1_permission_fault(addr, esr, regs)) {
399		if (esr & ESR_ELx_WNR)
400			msg = "write to read-only memory";
401		else if (is_el1_instruction_abort(esr))
402			msg = "execute from non-executable memory";
403		else
404			msg = "read from unreadable memory";
405	} else if (addr < PAGE_SIZE) {
406		msg = "NULL pointer dereference";
407	} else {
408		if (is_translation_fault(esr) &&
409		    kfence_handle_page_fault(addr, esr & ESR_ELx_WNR, regs))
410			return;
411
412		msg = "paging request";
413	}
414
415	if (efi_runtime_fixup_exception(regs, msg))
416		return;
 
 
417
418	die_kernel_fault(msg, addr, esr, regs);
 
 
 
419}
420
421static void set_thread_esr(unsigned long address, unsigned long esr)
422{
423	current->thread.fault_address = address;
424
425	/*
426	 * If the faulting address is in the kernel, we must sanitize the ESR.
427	 * From userspace's point of view, kernel-only mappings don't exist
428	 * at all, so we report them as level 0 translation faults.
429	 * (This is not quite the way that "no mapping there at all" behaves:
430	 * an alignment fault not caused by the memory type would take
431	 * precedence over translation fault for a real access to empty
432	 * space. Unfortunately we can't easily distinguish "alignment fault
433	 * not caused by memory type" from "alignment fault caused by memory
434	 * type", so we ignore this wrinkle and just return the translation
435	 * fault.)
436	 */
437	if (!is_ttbr0_addr(current->thread.fault_address)) {
438		switch (ESR_ELx_EC(esr)) {
439		case ESR_ELx_EC_DABT_LOW:
440			/*
441			 * These bits provide only information about the
442			 * faulting instruction, which userspace knows already.
443			 * We explicitly clear bits which are architecturally
444			 * RES0 in case they are given meanings in future.
445			 * We always report the ESR as if the fault was taken
446			 * to EL1 and so ISV and the bits in ISS[23:14] are
447			 * clear. (In fact it always will be a fault to EL1.)
448			 */
449			esr &= ESR_ELx_EC_MASK | ESR_ELx_IL |
450				ESR_ELx_CM | ESR_ELx_WNR;
451			esr |= ESR_ELx_FSC_FAULT;
452			break;
453		case ESR_ELx_EC_IABT_LOW:
454			/*
455			 * Claim a level 0 translation fault.
456			 * All other bits are architecturally RES0 for faults
457			 * reported with that DFSC value, so we clear them.
458			 */
459			esr &= ESR_ELx_EC_MASK | ESR_ELx_IL;
460			esr |= ESR_ELx_FSC_FAULT;
461			break;
462		default:
463			/*
464			 * This should never happen (entry.S only brings us
465			 * into this code for insn and data aborts from a lower
466			 * exception level). Fail safe by not providing an ESR
467			 * context record at all.
468			 */
469			WARN(1, "ESR 0x%lx is not DABT or IABT from EL0\n", esr);
470			esr = 0;
471			break;
472		}
473	}
474
475	current->thread.fault_code = esr;
 
476}
477
478static void do_bad_area(unsigned long far, unsigned long esr,
479			struct pt_regs *regs)
480{
481	unsigned long addr = untagged_addr(far);
482
483	/*
484	 * If we are in kernel mode at this point, we have no context to
485	 * handle this fault with.
486	 */
487	if (user_mode(regs)) {
488		const struct fault_info *inf = esr_to_fault_info(esr);
 
 
 
 
 
489
490		set_thread_esr(addr, esr);
491		arm64_force_sig_fault(inf->sig, inf->code, far, inf->name);
492	} else {
493		__do_kernel_fault(addr, esr, regs);
494	}
495}
496
497#define VM_FAULT_BADMAP		((__force vm_fault_t)0x010000)
498#define VM_FAULT_BADACCESS	((__force vm_fault_t)0x020000)
499
500static vm_fault_t __do_page_fault(struct mm_struct *mm,
501				  struct vm_area_struct *vma, unsigned long addr,
502				  unsigned int mm_flags, unsigned long vm_flags,
503				  struct pt_regs *regs)
504{
 
 
 
 
 
 
 
 
 
 
505	/*
506	 * Ok, we have a good vm_area for this memory access, so we can handle
507	 * it.
 
 
 
508	 * Check that the permissions on the VMA allow for the fault which
509	 * occurred.
510	 */
511	if (!(vma->vm_flags & vm_flags))
512		return VM_FAULT_BADACCESS;
513	return handle_mm_fault(vma, addr, mm_flags, regs);
 
 
 
 
 
 
 
 
 
514}
515
516static bool is_el0_instruction_abort(unsigned long esr)
517{
518	return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW;
519}
520
521/*
522 * Note: not valid for EL1 DC IVAC, but we never use that such that it
523 * should fault. EL0 cannot issue DC IVAC (undef).
524 */
525static bool is_write_abort(unsigned long esr)
526{
527	return (esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM);
528}
529
530static int __kprobes do_page_fault(unsigned long far, unsigned long esr,
531				   struct pt_regs *regs)
532{
533	const struct fault_info *inf;
534	struct mm_struct *mm = current->mm;
535	vm_fault_t fault;
536	unsigned long vm_flags;
537	unsigned int mm_flags = FAULT_FLAG_DEFAULT;
538	unsigned long addr = untagged_addr(far);
539	struct vm_area_struct *vma;
540
541	if (kprobe_page_fault(regs, esr))
542		return 0;
543
 
 
 
544	/*
545	 * If we're in an interrupt or have no user context, we must not take
546	 * the fault.
547	 */
548	if (faulthandler_disabled() || !mm)
549		goto no_context;
550
551	if (user_mode(regs))
552		mm_flags |= FAULT_FLAG_USER;
553
554	/*
555	 * vm_flags tells us what bits we must have in vma->vm_flags
556	 * for the fault to be benign, __do_page_fault() would check
557	 * vma->vm_flags & vm_flags and returns an error if the
558	 * intersection is empty
559	 */
560	if (is_el0_instruction_abort(esr)) {
561		/* It was exec fault */
562		vm_flags = VM_EXEC;
563		mm_flags |= FAULT_FLAG_INSTRUCTION;
564	} else if (is_write_abort(esr)) {
565		/* It was write fault */
566		vm_flags = VM_WRITE;
567		mm_flags |= FAULT_FLAG_WRITE;
568	} else {
569		/* It was read fault */
570		vm_flags = VM_READ;
571		/* Write implies read */
572		vm_flags |= VM_WRITE;
573		/* If EPAN is absent then exec implies read */
574		if (!alternative_has_cap_unlikely(ARM64_HAS_EPAN))
575			vm_flags |= VM_EXEC;
576	}
577
578	if (is_ttbr0_addr(addr) && is_el1_permission_fault(addr, esr, regs)) {
 
 
 
 
579		if (is_el1_instruction_abort(esr))
580			die_kernel_fault("execution of user memory",
581					 addr, esr, regs);
582
583		if (!search_exception_tables(regs->pc))
584			die_kernel_fault("access to user memory outside uaccess routines",
585					 addr, esr, regs);
586	}
587
588	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
589
590	if (!(mm_flags & FAULT_FLAG_USER))
591		goto lock_mmap;
592
593	vma = lock_vma_under_rcu(mm, addr);
594	if (!vma)
595		goto lock_mmap;
596
597	if (!(vma->vm_flags & vm_flags)) {
598		vma_end_read(vma);
599		goto lock_mmap;
600	}
601	fault = handle_mm_fault(vma, addr, mm_flags | FAULT_FLAG_VMA_LOCK, regs);
602	if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED)))
603		vma_end_read(vma);
604
605	if (!(fault & VM_FAULT_RETRY)) {
606		count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
607		goto done;
608	}
609	count_vm_vma_lock_event(VMA_LOCK_RETRY);
610	if (fault & VM_FAULT_MAJOR)
611		mm_flags |= FAULT_FLAG_TRIED;
612
613	/* Quick path to respond to signals */
614	if (fault_signal_pending(fault, regs)) {
615		if (!user_mode(regs))
616			goto no_context;
617		return 0;
618	}
619lock_mmap:
620
621retry:
622	vma = lock_mm_and_find_vma(mm, addr, regs);
623	if (unlikely(!vma)) {
624		fault = VM_FAULT_BADMAP;
625		goto done;
626	}
627
628	fault = __do_page_fault(mm, vma, addr, mm_flags, vm_flags, regs);
629
630	/* Quick path to respond to signals */
631	if (fault_signal_pending(fault, regs)) {
632		if (!user_mode(regs))
633			goto no_context;
634		return 0;
635	}
636
637	/* The fault is fully completed (including releasing mmap lock) */
638	if (fault & VM_FAULT_COMPLETED)
639		return 0;
640
641	if (fault & VM_FAULT_RETRY) {
642		mm_flags |= FAULT_FLAG_TRIED;
643		goto retry;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
644	}
645	mmap_read_unlock(mm);
646
647done:
648	/*
649	 * Handle the "normal" (no error) case first.
650	 */
651	if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
652			      VM_FAULT_BADACCESS))))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
653		return 0;
 
654
655	/*
656	 * If we are in kernel mode at this point, we have no context to
657	 * handle this fault with.
658	 */
659	if (!user_mode(regs))
660		goto no_context;
661
662	if (fault & VM_FAULT_OOM) {
663		/*
664		 * We ran out of memory, call the OOM killer, and return to
665		 * userspace (which will retry the fault, or kill us if we got
666		 * oom-killed).
667		 */
668		pagefault_out_of_memory();
669		return 0;
670	}
671
672	inf = esr_to_fault_info(esr);
673	set_thread_esr(addr, esr);
 
674	if (fault & VM_FAULT_SIGBUS) {
675		/*
676		 * We had some memory, but were unable to successfully fix up
677		 * this page fault.
678		 */
679		arm64_force_sig_fault(SIGBUS, BUS_ADRERR, far, inf->name);
680	} else if (fault & (VM_FAULT_HWPOISON_LARGE | VM_FAULT_HWPOISON)) {
681		unsigned int lsb;
682
683		lsb = PAGE_SHIFT;
684		if (fault & VM_FAULT_HWPOISON_LARGE)
685			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
686
687		arm64_force_sig_mceerr(BUS_MCEERR_AR, far, lsb, inf->name);
 
 
 
688	} else {
689		/*
690		 * Something tried to access memory that isn't in our memory
691		 * map.
692		 */
693		arm64_force_sig_fault(SIGSEGV,
694				      fault == VM_FAULT_BADACCESS ? SEGV_ACCERR : SEGV_MAPERR,
695				      far, inf->name);
696	}
697
 
698	return 0;
699
700no_context:
701	__do_kernel_fault(addr, esr, regs);
702	return 0;
703}
704
705static int __kprobes do_translation_fault(unsigned long far,
706					  unsigned long esr,
707					  struct pt_regs *regs)
708{
709	unsigned long addr = untagged_addr(far);
710
711	if (is_ttbr0_addr(addr))
712		return do_page_fault(far, esr, regs);
713
714	do_bad_area(far, esr, regs);
715	return 0;
716}
717
718static int do_alignment_fault(unsigned long far, unsigned long esr,
719			      struct pt_regs *regs)
720{
721	if (IS_ENABLED(CONFIG_COMPAT_ALIGNMENT_FIXUPS) &&
722	    compat_user_mode(regs))
723		return do_compat_alignment_fixup(far, regs);
724	do_bad_area(far, esr, regs);
725	return 0;
726}
727
728static int do_bad(unsigned long far, unsigned long esr, struct pt_regs *regs)
729{
730	return 1; /* "fault" */
731}
732
733static int do_sea(unsigned long far, unsigned long esr, struct pt_regs *regs)
734{
 
735	const struct fault_info *inf;
736	unsigned long siaddr;
737
738	inf = esr_to_fault_info(esr);
739
740	if (user_mode(regs) && apei_claim_sea(regs) == 0) {
741		/*
742		 * APEI claimed this as a firmware-first notification.
743		 * Some processing deferred to task_work before ret_to_user().
744		 */
745		return 0;
746	}
747
748	if (esr & ESR_ELx_FnV) {
749		siaddr = 0;
750	} else {
751		/*
752		 * The architecture specifies that the tag bits of FAR_EL1 are
753		 * UNKNOWN for synchronous external aborts. Mask them out now
754		 * so that userspace doesn't see them.
755		 */
756		siaddr  = untagged_addr(far);
757	}
758	arm64_notify_die(inf->name, regs, inf->sig, inf->code, siaddr, esr);
 
 
 
 
759
760	return 0;
761}
762
763static int do_tag_check_fault(unsigned long far, unsigned long esr,
764			      struct pt_regs *regs)
765{
766	/*
767	 * The architecture specifies that bits 63:60 of FAR_EL1 are UNKNOWN
768	 * for tag check faults. Set them to corresponding bits in the untagged
769	 * address.
770	 */
771	far = (__untagged_addr(far) & ~MTE_TAG_MASK) | (far & MTE_TAG_MASK);
772	do_bad_area(far, esr, regs);
773	return 0;
774}
775
776static const struct fault_info fault_info[] = {
777	{ do_bad,		SIGKILL, SI_KERNEL,	"ttbr address size fault"	},
778	{ do_bad,		SIGKILL, SI_KERNEL,	"level 1 address size fault"	},
779	{ do_bad,		SIGKILL, SI_KERNEL,	"level 2 address size fault"	},
780	{ do_bad,		SIGKILL, SI_KERNEL,	"level 3 address size fault"	},
781	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 0 translation fault"	},
782	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 1 translation fault"	},
783	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 2 translation fault"	},
784	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 3 translation fault"	},
785	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 8"			},
786	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 access flag fault"	},
787	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 access flag fault"	},
788	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 access flag fault"	},
789	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 12"			},
790	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 permission fault"	},
791	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 permission fault"	},
792	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 permission fault"	},
793	{ do_sea,		SIGBUS,  BUS_OBJERR,	"synchronous external abort"	},
794	{ do_tag_check_fault,	SIGSEGV, SEGV_MTESERR,	"synchronous tag check fault"	},
795	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 18"			},
796	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 19"			},
797	{ do_sea,		SIGKILL, SI_KERNEL,	"level 0 (translation table walk)"	},
798	{ do_sea,		SIGKILL, SI_KERNEL,	"level 1 (translation table walk)"	},
799	{ do_sea,		SIGKILL, SI_KERNEL,	"level 2 (translation table walk)"	},
800	{ do_sea,		SIGKILL, SI_KERNEL,	"level 3 (translation table walk)"	},
801	{ do_sea,		SIGBUS,  BUS_OBJERR,	"synchronous parity or ECC error" },	// Reserved when RAS is implemented
802	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 25"			},
803	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 26"			},
804	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 27"			},
805	{ do_sea,		SIGKILL, SI_KERNEL,	"level 0 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
806	{ do_sea,		SIGKILL, SI_KERNEL,	"level 1 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
807	{ do_sea,		SIGKILL, SI_KERNEL,	"level 2 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
808	{ do_sea,		SIGKILL, SI_KERNEL,	"level 3 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
809	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 32"			},
810	{ do_alignment_fault,	SIGBUS,  BUS_ADRALN,	"alignment fault"		},
811	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 34"			},
812	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 35"			},
813	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 36"			},
814	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 37"			},
815	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 38"			},
816	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 39"			},
817	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 40"			},
818	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 41"			},
819	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 42"			},
820	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 43"			},
821	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 44"			},
822	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 45"			},
823	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 46"			},
824	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 47"			},
825	{ do_bad,		SIGKILL, SI_KERNEL,	"TLB conflict abort"		},
826	{ do_bad,		SIGKILL, SI_KERNEL,	"Unsupported atomic hardware update fault"	},
827	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 50"			},
828	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 51"			},
829	{ do_bad,		SIGKILL, SI_KERNEL,	"implementation fault (lockdown abort)" },
830	{ do_bad,		SIGBUS,  BUS_OBJERR,	"implementation fault (unsupported exclusive)" },
831	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 54"			},
832	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 55"			},
833	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 56"			},
834	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 57"			},
835	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 58" 			},
836	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 59"			},
837	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 60"			},
838	{ do_bad,		SIGKILL, SI_KERNEL,	"section domain fault"		},
839	{ do_bad,		SIGKILL, SI_KERNEL,	"page domain fault"		},
840	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 63"			},
841};
842
843void do_mem_abort(unsigned long far, unsigned long esr, struct pt_regs *regs)
 
 
 
 
 
 
 
 
 
 
 
844{
845	const struct fault_info *inf = esr_to_fault_info(esr);
846	unsigned long addr = untagged_addr(far);
847
848	if (!inf->fn(far, esr, regs))
849		return;
850
851	if (!user_mode(regs))
852		die_kernel_fault(inf->name, addr, esr, regs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
853
 
 
 
 
854	/*
855	 * At this point we have an unrecognized fault type whose tag bits may
856	 * have been defined as UNKNOWN. Therefore we only expose the untagged
857	 * address to the signal handler.
858	 */
859	arm64_notify_die(inf->name, regs, inf->sig, inf->code, addr, esr);
 
 
 
 
860}
861NOKPROBE_SYMBOL(do_mem_abort);
862
863void do_sp_pc_abort(unsigned long addr, unsigned long esr, struct pt_regs *regs)
 
 
 
864{
865	arm64_notify_die("SP/PC alignment exception", regs, SIGBUS, BUS_ADRALN,
866			 addr, esr);
 
 
 
 
 
 
 
 
 
 
 
867}
868NOKPROBE_SYMBOL(do_sp_pc_abort);
 
 
869
870/*
871 * __refdata because early_brk64 is __init, but the reference to it is
872 * clobbered at arch_initcall time.
873 * See traps.c and debug-monitors.c:debug_traps_init().
874 */
875static struct fault_info __refdata debug_fault_info[] = {
876	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware breakpoint"	},
877	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware single-step"	},
878	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware watchpoint"	},
879	{ do_bad,	SIGKILL,	SI_KERNEL,	"unknown 3"		},
880	{ do_bad,	SIGTRAP,	TRAP_BRKPT,	"aarch32 BKPT"		},
881	{ do_bad,	SIGKILL,	SI_KERNEL,	"aarch32 vector catch"	},
882	{ early_brk64,	SIGTRAP,	TRAP_BRKPT,	"aarch64 BRK"		},
883	{ do_bad,	SIGKILL,	SI_KERNEL,	"unknown 7"		},
884};
885
886void __init hook_debug_fault_code(int nr,
887				  int (*fn)(unsigned long, unsigned long, struct pt_regs *),
888				  int sig, int code, const char *name)
889{
890	BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));
891
892	debug_fault_info[nr].fn		= fn;
893	debug_fault_info[nr].sig	= sig;
894	debug_fault_info[nr].code	= code;
895	debug_fault_info[nr].name	= name;
896}
897
898/*
899 * In debug exception context, we explicitly disable preemption despite
900 * having interrupts disabled.
901 * This serves two purposes: it makes it much less likely that we would
902 * accidentally schedule in exception context and it will force a warning
903 * if we somehow manage to schedule by accident.
904 */
905static void debug_exception_enter(struct pt_regs *regs)
906{
907	preempt_disable();
 
 
908
909	/* This code is a bit fragile.  Test it. */
910	RCU_LOCKDEP_WARN(!rcu_is_watching(), "exception_enter didn't work");
911}
912NOKPROBE_SYMBOL(debug_exception_enter);
 
 
913
914static void debug_exception_exit(struct pt_regs *regs)
915{
916	preempt_enable_no_resched();
917}
918NOKPROBE_SYMBOL(debug_exception_exit);
919
920void do_debug_exception(unsigned long addr_if_watchpoint, unsigned long esr,
921			struct pt_regs *regs)
922{
923	const struct fault_info *inf = esr_to_debug_fault_info(esr);
924	unsigned long pc = instruction_pointer(regs);
925
926	debug_exception_enter(regs);
927
928	if (user_mode(regs) && !is_ttbr0_addr(pc))
929		arm64_apply_bp_hardening();
930
931	if (inf->fn(addr_if_watchpoint, esr, regs)) {
932		arm64_notify_die(inf->name, regs, inf->sig, inf->code, pc, esr);
 
 
 
 
 
 
 
933	}
934
935	debug_exception_exit(regs);
 
 
 
936}
937NOKPROBE_SYMBOL(do_debug_exception);
938
939/*
940 * Used during anonymous page fault handling.
941 */
942struct folio *vma_alloc_zeroed_movable_folio(struct vm_area_struct *vma,
943						unsigned long vaddr)
944{
945	gfp_t flags = GFP_HIGHUSER_MOVABLE | __GFP_ZERO;
946
947	/*
948	 * If the page is mapped with PROT_MTE, initialise the tags at the
949	 * point of allocation and page zeroing as this is usually faster than
950	 * separate DC ZVA and STGM.
951	 */
952	if (vma->vm_flags & VM_MTE)
953		flags |= __GFP_ZEROTAGS;
954
955	return vma_alloc_folio(flags, 0, vma, vaddr, false);
956}
957
958void tag_clear_highpage(struct page *page)
959{
960	/* Newly allocated page, shouldn't have been tagged yet */
961	WARN_ON_ONCE(!try_page_mte_tagging(page));
962	mte_zero_clear_page_tags(page_address(page));
963	set_page_mte_tagged(page);
964}