Loading...
1/*
2 * Based on arch/arm/mm/fault.c
3 *
4 * Copyright (C) 1995 Linus Torvalds
5 * Copyright (C) 1995-2004 Russell King
6 * Copyright (C) 2012 ARM Ltd.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program. If not, see <http://www.gnu.org/licenses/>.
19 */
20
21#include <linux/extable.h>
22#include <linux/signal.h>
23#include <linux/mm.h>
24#include <linux/hardirq.h>
25#include <linux/init.h>
26#include <linux/kprobes.h>
27#include <linux/uaccess.h>
28#include <linux/page-flags.h>
29#include <linux/sched/signal.h>
30#include <linux/sched/debug.h>
31#include <linux/highmem.h>
32#include <linux/perf_event.h>
33#include <linux/preempt.h>
34#include <linux/hugetlb.h>
35
36#include <asm/bug.h>
37#include <asm/cmpxchg.h>
38#include <asm/cpufeature.h>
39#include <asm/exception.h>
40#include <asm/debug-monitors.h>
41#include <asm/esr.h>
42#include <asm/sysreg.h>
43#include <asm/system_misc.h>
44#include <asm/pgtable.h>
45#include <asm/tlbflush.h>
46#include <asm/traps.h>
47
48#include <acpi/ghes.h>
49
50struct fault_info {
51 int (*fn)(unsigned long addr, unsigned int esr,
52 struct pt_regs *regs);
53 int sig;
54 int code;
55 const char *name;
56};
57
58static const struct fault_info fault_info[];
59
60static inline const struct fault_info *esr_to_fault_info(unsigned int esr)
61{
62 return fault_info + (esr & 63);
63}
64
65#ifdef CONFIG_KPROBES
66static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr)
67{
68 int ret = 0;
69
70 /* kprobe_running() needs smp_processor_id() */
71 if (!user_mode(regs)) {
72 preempt_disable();
73 if (kprobe_running() && kprobe_fault_handler(regs, esr))
74 ret = 1;
75 preempt_enable();
76 }
77
78 return ret;
79}
80#else
81static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr)
82{
83 return 0;
84}
85#endif
86
87static void data_abort_decode(unsigned int esr)
88{
89 pr_alert("Data abort info:\n");
90
91 if (esr & ESR_ELx_ISV) {
92 pr_alert(" Access size = %u byte(s)\n",
93 1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT));
94 pr_alert(" SSE = %lu, SRT = %lu\n",
95 (esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT,
96 (esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT);
97 pr_alert(" SF = %lu, AR = %lu\n",
98 (esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT,
99 (esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT);
100 } else {
101 pr_alert(" ISV = 0, ISS = 0x%08lx\n", esr & ESR_ELx_ISS_MASK);
102 }
103
104 pr_alert(" CM = %lu, WnR = %lu\n",
105 (esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT,
106 (esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT);
107}
108
109static void mem_abort_decode(unsigned int esr)
110{
111 pr_alert("Mem abort info:\n");
112
113 pr_alert(" ESR = 0x%08x\n", esr);
114 pr_alert(" Exception class = %s, IL = %u bits\n",
115 esr_get_class_string(esr),
116 (esr & ESR_ELx_IL) ? 32 : 16);
117 pr_alert(" SET = %lu, FnV = %lu\n",
118 (esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT,
119 (esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT);
120 pr_alert(" EA = %lu, S1PTW = %lu\n",
121 (esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT,
122 (esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT);
123
124 if (esr_is_data_abort(esr))
125 data_abort_decode(esr);
126}
127
128/*
129 * Dump out the page tables associated with 'addr' in the currently active mm.
130 */
131void show_pte(unsigned long addr)
132{
133 struct mm_struct *mm;
134 pgd_t *pgdp;
135 pgd_t pgd;
136
137 if (addr < TASK_SIZE) {
138 /* TTBR0 */
139 mm = current->active_mm;
140 if (mm == &init_mm) {
141 pr_alert("[%016lx] user address but active_mm is swapper\n",
142 addr);
143 return;
144 }
145 } else if (addr >= VA_START) {
146 /* TTBR1 */
147 mm = &init_mm;
148 } else {
149 pr_alert("[%016lx] address between user and kernel address ranges\n",
150 addr);
151 return;
152 }
153
154 pr_alert("%s pgtable: %luk pages, %u-bit VAs, pgdp = %p\n",
155 mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K,
156 VA_BITS, mm->pgd);
157 pgdp = pgd_offset(mm, addr);
158 pgd = READ_ONCE(*pgdp);
159 pr_alert("[%016lx] pgd=%016llx", addr, pgd_val(pgd));
160
161 do {
162 pud_t *pudp, pud;
163 pmd_t *pmdp, pmd;
164 pte_t *ptep, pte;
165
166 if (pgd_none(pgd) || pgd_bad(pgd))
167 break;
168
169 pudp = pud_offset(pgdp, addr);
170 pud = READ_ONCE(*pudp);
171 pr_cont(", pud=%016llx", pud_val(pud));
172 if (pud_none(pud) || pud_bad(pud))
173 break;
174
175 pmdp = pmd_offset(pudp, addr);
176 pmd = READ_ONCE(*pmdp);
177 pr_cont(", pmd=%016llx", pmd_val(pmd));
178 if (pmd_none(pmd) || pmd_bad(pmd))
179 break;
180
181 ptep = pte_offset_map(pmdp, addr);
182 pte = READ_ONCE(*ptep);
183 pr_cont(", pte=%016llx", pte_val(pte));
184 pte_unmap(ptep);
185 } while(0);
186
187 pr_cont("\n");
188}
189
190/*
191 * This function sets the access flags (dirty, accessed), as well as write
192 * permission, and only to a more permissive setting.
193 *
194 * It needs to cope with hardware update of the accessed/dirty state by other
195 * agents in the system and can safely skip the __sync_icache_dcache() call as,
196 * like set_pte_at(), the PTE is never changed from no-exec to exec here.
197 *
198 * Returns whether or not the PTE actually changed.
199 */
200int ptep_set_access_flags(struct vm_area_struct *vma,
201 unsigned long address, pte_t *ptep,
202 pte_t entry, int dirty)
203{
204 pteval_t old_pteval, pteval;
205 pte_t pte = READ_ONCE(*ptep);
206
207 if (pte_same(pte, entry))
208 return 0;
209
210 /* only preserve the access flags and write permission */
211 pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY;
212
213 /*
214 * Setting the flags must be done atomically to avoid racing with the
215 * hardware update of the access/dirty state. The PTE_RDONLY bit must
216 * be set to the most permissive (lowest value) of *ptep and entry
217 * (calculated as: a & b == ~(~a | ~b)).
218 */
219 pte_val(entry) ^= PTE_RDONLY;
220 pteval = pte_val(pte);
221 do {
222 old_pteval = pteval;
223 pteval ^= PTE_RDONLY;
224 pteval |= pte_val(entry);
225 pteval ^= PTE_RDONLY;
226 pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
227 } while (pteval != old_pteval);
228
229 flush_tlb_fix_spurious_fault(vma, address);
230 return 1;
231}
232
233static bool is_el1_instruction_abort(unsigned int esr)
234{
235 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR;
236}
237
238static inline bool is_permission_fault(unsigned int esr, struct pt_regs *regs,
239 unsigned long addr)
240{
241 unsigned int ec = ESR_ELx_EC(esr);
242 unsigned int fsc_type = esr & ESR_ELx_FSC_TYPE;
243
244 if (ec != ESR_ELx_EC_DABT_CUR && ec != ESR_ELx_EC_IABT_CUR)
245 return false;
246
247 if (fsc_type == ESR_ELx_FSC_PERM)
248 return true;
249
250 if (addr < TASK_SIZE && system_uses_ttbr0_pan())
251 return fsc_type == ESR_ELx_FSC_FAULT &&
252 (regs->pstate & PSR_PAN_BIT);
253
254 return false;
255}
256
257static void __do_kernel_fault(unsigned long addr, unsigned int esr,
258 struct pt_regs *regs)
259{
260 const char *msg;
261
262 /*
263 * Are we prepared to handle this kernel fault?
264 * We are almost certainly not prepared to handle instruction faults.
265 */
266 if (!is_el1_instruction_abort(esr) && fixup_exception(regs))
267 return;
268
269 bust_spinlocks(1);
270
271 if (is_permission_fault(esr, regs, addr)) {
272 if (esr & ESR_ELx_WNR)
273 msg = "write to read-only memory";
274 else
275 msg = "read from unreadable memory";
276 } else if (addr < PAGE_SIZE) {
277 msg = "NULL pointer dereference";
278 } else {
279 msg = "paging request";
280 }
281
282 pr_alert("Unable to handle kernel %s at virtual address %08lx\n", msg,
283 addr);
284
285 mem_abort_decode(esr);
286
287 show_pte(addr);
288 die("Oops", regs, esr);
289 bust_spinlocks(0);
290 do_exit(SIGKILL);
291}
292
293static void __do_user_fault(struct siginfo *info, unsigned int esr)
294{
295 current->thread.fault_address = (unsigned long)info->si_addr;
296
297 /*
298 * If the faulting address is in the kernel, we must sanitize the ESR.
299 * From userspace's point of view, kernel-only mappings don't exist
300 * at all, so we report them as level 0 translation faults.
301 * (This is not quite the way that "no mapping there at all" behaves:
302 * an alignment fault not caused by the memory type would take
303 * precedence over translation fault for a real access to empty
304 * space. Unfortunately we can't easily distinguish "alignment fault
305 * not caused by memory type" from "alignment fault caused by memory
306 * type", so we ignore this wrinkle and just return the translation
307 * fault.)
308 */
309 if (current->thread.fault_address >= TASK_SIZE) {
310 switch (ESR_ELx_EC(esr)) {
311 case ESR_ELx_EC_DABT_LOW:
312 /*
313 * These bits provide only information about the
314 * faulting instruction, which userspace knows already.
315 * We explicitly clear bits which are architecturally
316 * RES0 in case they are given meanings in future.
317 * We always report the ESR as if the fault was taken
318 * to EL1 and so ISV and the bits in ISS[23:14] are
319 * clear. (In fact it always will be a fault to EL1.)
320 */
321 esr &= ESR_ELx_EC_MASK | ESR_ELx_IL |
322 ESR_ELx_CM | ESR_ELx_WNR;
323 esr |= ESR_ELx_FSC_FAULT;
324 break;
325 case ESR_ELx_EC_IABT_LOW:
326 /*
327 * Claim a level 0 translation fault.
328 * All other bits are architecturally RES0 for faults
329 * reported with that DFSC value, so we clear them.
330 */
331 esr &= ESR_ELx_EC_MASK | ESR_ELx_IL;
332 esr |= ESR_ELx_FSC_FAULT;
333 break;
334 default:
335 /*
336 * This should never happen (entry.S only brings us
337 * into this code for insn and data aborts from a lower
338 * exception level). Fail safe by not providing an ESR
339 * context record at all.
340 */
341 WARN(1, "ESR 0x%x is not DABT or IABT from EL0\n", esr);
342 esr = 0;
343 break;
344 }
345 }
346
347 current->thread.fault_code = esr;
348 arm64_force_sig_info(info, esr_to_fault_info(esr)->name, current);
349}
350
351static void do_bad_area(unsigned long addr, unsigned int esr, struct pt_regs *regs)
352{
353 /*
354 * If we are in kernel mode at this point, we have no context to
355 * handle this fault with.
356 */
357 if (user_mode(regs)) {
358 const struct fault_info *inf = esr_to_fault_info(esr);
359 struct siginfo si = {
360 .si_signo = inf->sig,
361 .si_code = inf->code,
362 .si_addr = (void __user *)addr,
363 };
364
365 __do_user_fault(&si, esr);
366 } else {
367 __do_kernel_fault(addr, esr, regs);
368 }
369}
370
371#define VM_FAULT_BADMAP 0x010000
372#define VM_FAULT_BADACCESS 0x020000
373
374static int __do_page_fault(struct mm_struct *mm, unsigned long addr,
375 unsigned int mm_flags, unsigned long vm_flags,
376 struct task_struct *tsk)
377{
378 struct vm_area_struct *vma;
379 int fault;
380
381 vma = find_vma(mm, addr);
382 fault = VM_FAULT_BADMAP;
383 if (unlikely(!vma))
384 goto out;
385 if (unlikely(vma->vm_start > addr))
386 goto check_stack;
387
388 /*
389 * Ok, we have a good vm_area for this memory access, so we can handle
390 * it.
391 */
392good_area:
393 /*
394 * Check that the permissions on the VMA allow for the fault which
395 * occurred.
396 */
397 if (!(vma->vm_flags & vm_flags)) {
398 fault = VM_FAULT_BADACCESS;
399 goto out;
400 }
401
402 return handle_mm_fault(vma, addr & PAGE_MASK, mm_flags);
403
404check_stack:
405 if (vma->vm_flags & VM_GROWSDOWN && !expand_stack(vma, addr))
406 goto good_area;
407out:
408 return fault;
409}
410
411static bool is_el0_instruction_abort(unsigned int esr)
412{
413 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW;
414}
415
416static int __kprobes do_page_fault(unsigned long addr, unsigned int esr,
417 struct pt_regs *regs)
418{
419 struct task_struct *tsk;
420 struct mm_struct *mm;
421 struct siginfo si;
422 int fault, major = 0;
423 unsigned long vm_flags = VM_READ | VM_WRITE;
424 unsigned int mm_flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
425
426 if (notify_page_fault(regs, esr))
427 return 0;
428
429 tsk = current;
430 mm = tsk->mm;
431
432 /*
433 * If we're in an interrupt or have no user context, we must not take
434 * the fault.
435 */
436 if (faulthandler_disabled() || !mm)
437 goto no_context;
438
439 if (user_mode(regs))
440 mm_flags |= FAULT_FLAG_USER;
441
442 if (is_el0_instruction_abort(esr)) {
443 vm_flags = VM_EXEC;
444 } else if ((esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM)) {
445 vm_flags = VM_WRITE;
446 mm_flags |= FAULT_FLAG_WRITE;
447 }
448
449 if (addr < TASK_SIZE && is_permission_fault(esr, regs, addr)) {
450 /* regs->orig_addr_limit may be 0 if we entered from EL0 */
451 if (regs->orig_addr_limit == KERNEL_DS)
452 die("Accessing user space memory with fs=KERNEL_DS", regs, esr);
453
454 if (is_el1_instruction_abort(esr))
455 die("Attempting to execute userspace memory", regs, esr);
456
457 if (!search_exception_tables(regs->pc))
458 die("Accessing user space memory outside uaccess.h routines", regs, esr);
459 }
460
461 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
462
463 /*
464 * As per x86, we may deadlock here. However, since the kernel only
465 * validly references user space from well defined areas of the code,
466 * we can bug out early if this is from code which shouldn't.
467 */
468 if (!down_read_trylock(&mm->mmap_sem)) {
469 if (!user_mode(regs) && !search_exception_tables(regs->pc))
470 goto no_context;
471retry:
472 down_read(&mm->mmap_sem);
473 } else {
474 /*
475 * The above down_read_trylock() might have succeeded in which
476 * case, we'll have missed the might_sleep() from down_read().
477 */
478 might_sleep();
479#ifdef CONFIG_DEBUG_VM
480 if (!user_mode(regs) && !search_exception_tables(regs->pc))
481 goto no_context;
482#endif
483 }
484
485 fault = __do_page_fault(mm, addr, mm_flags, vm_flags, tsk);
486 major |= fault & VM_FAULT_MAJOR;
487
488 if (fault & VM_FAULT_RETRY) {
489 /*
490 * If we need to retry but a fatal signal is pending,
491 * handle the signal first. We do not need to release
492 * the mmap_sem because it would already be released
493 * in __lock_page_or_retry in mm/filemap.c.
494 */
495 if (fatal_signal_pending(current)) {
496 if (!user_mode(regs))
497 goto no_context;
498 return 0;
499 }
500
501 /*
502 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk of
503 * starvation.
504 */
505 if (mm_flags & FAULT_FLAG_ALLOW_RETRY) {
506 mm_flags &= ~FAULT_FLAG_ALLOW_RETRY;
507 mm_flags |= FAULT_FLAG_TRIED;
508 goto retry;
509 }
510 }
511 up_read(&mm->mmap_sem);
512
513 /*
514 * Handle the "normal" (no error) case first.
515 */
516 if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
517 VM_FAULT_BADACCESS)))) {
518 /*
519 * Major/minor page fault accounting is only done
520 * once. If we go through a retry, it is extremely
521 * likely that the page will be found in page cache at
522 * that point.
523 */
524 if (major) {
525 tsk->maj_flt++;
526 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs,
527 addr);
528 } else {
529 tsk->min_flt++;
530 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs,
531 addr);
532 }
533
534 return 0;
535 }
536
537 /*
538 * If we are in kernel mode at this point, we have no context to
539 * handle this fault with.
540 */
541 if (!user_mode(regs))
542 goto no_context;
543
544 if (fault & VM_FAULT_OOM) {
545 /*
546 * We ran out of memory, call the OOM killer, and return to
547 * userspace (which will retry the fault, or kill us if we got
548 * oom-killed).
549 */
550 pagefault_out_of_memory();
551 return 0;
552 }
553
554 clear_siginfo(&si);
555 si.si_addr = (void __user *)addr;
556
557 if (fault & VM_FAULT_SIGBUS) {
558 /*
559 * We had some memory, but were unable to successfully fix up
560 * this page fault.
561 */
562 si.si_signo = SIGBUS;
563 si.si_code = BUS_ADRERR;
564 } else if (fault & VM_FAULT_HWPOISON_LARGE) {
565 unsigned int hindex = VM_FAULT_GET_HINDEX(fault);
566
567 si.si_signo = SIGBUS;
568 si.si_code = BUS_MCEERR_AR;
569 si.si_addr_lsb = hstate_index_to_shift(hindex);
570 } else if (fault & VM_FAULT_HWPOISON) {
571 si.si_signo = SIGBUS;
572 si.si_code = BUS_MCEERR_AR;
573 si.si_addr_lsb = PAGE_SHIFT;
574 } else {
575 /*
576 * Something tried to access memory that isn't in our memory
577 * map.
578 */
579 si.si_signo = SIGSEGV;
580 si.si_code = fault == VM_FAULT_BADACCESS ?
581 SEGV_ACCERR : SEGV_MAPERR;
582 }
583
584 __do_user_fault(&si, esr);
585 return 0;
586
587no_context:
588 __do_kernel_fault(addr, esr, regs);
589 return 0;
590}
591
592static int __kprobes do_translation_fault(unsigned long addr,
593 unsigned int esr,
594 struct pt_regs *regs)
595{
596 if (addr < TASK_SIZE)
597 return do_page_fault(addr, esr, regs);
598
599 do_bad_area(addr, esr, regs);
600 return 0;
601}
602
603static int do_alignment_fault(unsigned long addr, unsigned int esr,
604 struct pt_regs *regs)
605{
606 do_bad_area(addr, esr, regs);
607 return 0;
608}
609
610static int do_bad(unsigned long addr, unsigned int esr, struct pt_regs *regs)
611{
612 return 1; /* "fault" */
613}
614
615static int do_sea(unsigned long addr, unsigned int esr, struct pt_regs *regs)
616{
617 struct siginfo info;
618 const struct fault_info *inf;
619
620 inf = esr_to_fault_info(esr);
621
622 /*
623 * Synchronous aborts may interrupt code which had interrupts masked.
624 * Before calling out into the wider kernel tell the interested
625 * subsystems.
626 */
627 if (IS_ENABLED(CONFIG_ACPI_APEI_SEA)) {
628 if (interrupts_enabled(regs))
629 nmi_enter();
630
631 ghes_notify_sea();
632
633 if (interrupts_enabled(regs))
634 nmi_exit();
635 }
636
637 info.si_signo = inf->sig;
638 info.si_errno = 0;
639 info.si_code = inf->code;
640 if (esr & ESR_ELx_FnV)
641 info.si_addr = NULL;
642 else
643 info.si_addr = (void __user *)addr;
644 arm64_notify_die(inf->name, regs, &info, esr);
645
646 return 0;
647}
648
649static const struct fault_info fault_info[] = {
650 { do_bad, SIGKILL, SI_KERNEL, "ttbr address size fault" },
651 { do_bad, SIGKILL, SI_KERNEL, "level 1 address size fault" },
652 { do_bad, SIGKILL, SI_KERNEL, "level 2 address size fault" },
653 { do_bad, SIGKILL, SI_KERNEL, "level 3 address size fault" },
654 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 0 translation fault" },
655 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 1 translation fault" },
656 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 2 translation fault" },
657 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 3 translation fault" },
658 { do_bad, SIGKILL, SI_KERNEL, "unknown 8" },
659 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 access flag fault" },
660 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 access flag fault" },
661 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 access flag fault" },
662 { do_bad, SIGKILL, SI_KERNEL, "unknown 12" },
663 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 permission fault" },
664 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 permission fault" },
665 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 permission fault" },
666 { do_sea, SIGBUS, BUS_OBJERR, "synchronous external abort" },
667 { do_bad, SIGKILL, SI_KERNEL, "unknown 17" },
668 { do_bad, SIGKILL, SI_KERNEL, "unknown 18" },
669 { do_bad, SIGKILL, SI_KERNEL, "unknown 19" },
670 { do_sea, SIGKILL, SI_KERNEL, "level 0 (translation table walk)" },
671 { do_sea, SIGKILL, SI_KERNEL, "level 1 (translation table walk)" },
672 { do_sea, SIGKILL, SI_KERNEL, "level 2 (translation table walk)" },
673 { do_sea, SIGKILL, SI_KERNEL, "level 3 (translation table walk)" },
674 { do_sea, SIGBUS, BUS_OBJERR, "synchronous parity or ECC error" }, // Reserved when RAS is implemented
675 { do_bad, SIGKILL, SI_KERNEL, "unknown 25" },
676 { do_bad, SIGKILL, SI_KERNEL, "unknown 26" },
677 { do_bad, SIGKILL, SI_KERNEL, "unknown 27" },
678 { do_sea, SIGKILL, SI_KERNEL, "level 0 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
679 { do_sea, SIGKILL, SI_KERNEL, "level 1 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
680 { do_sea, SIGKILL, SI_KERNEL, "level 2 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
681 { do_sea, SIGKILL, SI_KERNEL, "level 3 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
682 { do_bad, SIGKILL, SI_KERNEL, "unknown 32" },
683 { do_alignment_fault, SIGBUS, BUS_ADRALN, "alignment fault" },
684 { do_bad, SIGKILL, SI_KERNEL, "unknown 34" },
685 { do_bad, SIGKILL, SI_KERNEL, "unknown 35" },
686 { do_bad, SIGKILL, SI_KERNEL, "unknown 36" },
687 { do_bad, SIGKILL, SI_KERNEL, "unknown 37" },
688 { do_bad, SIGKILL, SI_KERNEL, "unknown 38" },
689 { do_bad, SIGKILL, SI_KERNEL, "unknown 39" },
690 { do_bad, SIGKILL, SI_KERNEL, "unknown 40" },
691 { do_bad, SIGKILL, SI_KERNEL, "unknown 41" },
692 { do_bad, SIGKILL, SI_KERNEL, "unknown 42" },
693 { do_bad, SIGKILL, SI_KERNEL, "unknown 43" },
694 { do_bad, SIGKILL, SI_KERNEL, "unknown 44" },
695 { do_bad, SIGKILL, SI_KERNEL, "unknown 45" },
696 { do_bad, SIGKILL, SI_KERNEL, "unknown 46" },
697 { do_bad, SIGKILL, SI_KERNEL, "unknown 47" },
698 { do_bad, SIGKILL, SI_KERNEL, "TLB conflict abort" },
699 { do_bad, SIGKILL, SI_KERNEL, "Unsupported atomic hardware update fault" },
700 { do_bad, SIGKILL, SI_KERNEL, "unknown 50" },
701 { do_bad, SIGKILL, SI_KERNEL, "unknown 51" },
702 { do_bad, SIGKILL, SI_KERNEL, "implementation fault (lockdown abort)" },
703 { do_bad, SIGBUS, BUS_OBJERR, "implementation fault (unsupported exclusive)" },
704 { do_bad, SIGKILL, SI_KERNEL, "unknown 54" },
705 { do_bad, SIGKILL, SI_KERNEL, "unknown 55" },
706 { do_bad, SIGKILL, SI_KERNEL, "unknown 56" },
707 { do_bad, SIGKILL, SI_KERNEL, "unknown 57" },
708 { do_bad, SIGKILL, SI_KERNEL, "unknown 58" },
709 { do_bad, SIGKILL, SI_KERNEL, "unknown 59" },
710 { do_bad, SIGKILL, SI_KERNEL, "unknown 60" },
711 { do_bad, SIGKILL, SI_KERNEL, "section domain fault" },
712 { do_bad, SIGKILL, SI_KERNEL, "page domain fault" },
713 { do_bad, SIGKILL, SI_KERNEL, "unknown 63" },
714};
715
716int handle_guest_sea(phys_addr_t addr, unsigned int esr)
717{
718 int ret = -ENOENT;
719
720 if (IS_ENABLED(CONFIG_ACPI_APEI_SEA))
721 ret = ghes_notify_sea();
722
723 return ret;
724}
725
726asmlinkage void __exception do_mem_abort(unsigned long addr, unsigned int esr,
727 struct pt_regs *regs)
728{
729 const struct fault_info *inf = esr_to_fault_info(esr);
730 struct siginfo info;
731
732 if (!inf->fn(addr, esr, regs))
733 return;
734
735 if (!user_mode(regs)) {
736 pr_alert("Unhandled fault at 0x%016lx\n", addr);
737 mem_abort_decode(esr);
738 show_pte(addr);
739 }
740
741 info.si_signo = inf->sig;
742 info.si_errno = 0;
743 info.si_code = inf->code;
744 info.si_addr = (void __user *)addr;
745 arm64_notify_die(inf->name, regs, &info, esr);
746}
747
748asmlinkage void __exception do_el0_irq_bp_hardening(void)
749{
750 /* PC has already been checked in entry.S */
751 arm64_apply_bp_hardening();
752}
753
754asmlinkage void __exception do_el0_ia_bp_hardening(unsigned long addr,
755 unsigned int esr,
756 struct pt_regs *regs)
757{
758 /*
759 * We've taken an instruction abort from userspace and not yet
760 * re-enabled IRQs. If the address is a kernel address, apply
761 * BP hardening prior to enabling IRQs and pre-emption.
762 */
763 if (addr > TASK_SIZE)
764 arm64_apply_bp_hardening();
765
766 local_irq_enable();
767 do_mem_abort(addr, esr, regs);
768}
769
770
771asmlinkage void __exception do_sp_pc_abort(unsigned long addr,
772 unsigned int esr,
773 struct pt_regs *regs)
774{
775 struct siginfo info;
776
777 if (user_mode(regs)) {
778 if (instruction_pointer(regs) > TASK_SIZE)
779 arm64_apply_bp_hardening();
780 local_irq_enable();
781 }
782
783 info.si_signo = SIGBUS;
784 info.si_errno = 0;
785 info.si_code = BUS_ADRALN;
786 info.si_addr = (void __user *)addr;
787 arm64_notify_die("SP/PC alignment exception", regs, &info, esr);
788}
789
790int __init early_brk64(unsigned long addr, unsigned int esr,
791 struct pt_regs *regs);
792
793/*
794 * __refdata because early_brk64 is __init, but the reference to it is
795 * clobbered at arch_initcall time.
796 * See traps.c and debug-monitors.c:debug_traps_init().
797 */
798static struct fault_info __refdata debug_fault_info[] = {
799 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware breakpoint" },
800 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware single-step" },
801 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware watchpoint" },
802 { do_bad, SIGKILL, SI_KERNEL, "unknown 3" },
803 { do_bad, SIGTRAP, TRAP_BRKPT, "aarch32 BKPT" },
804 { do_bad, SIGKILL, SI_KERNEL, "aarch32 vector catch" },
805 { early_brk64, SIGTRAP, TRAP_BRKPT, "aarch64 BRK" },
806 { do_bad, SIGKILL, SI_KERNEL, "unknown 7" },
807};
808
809void __init hook_debug_fault_code(int nr,
810 int (*fn)(unsigned long, unsigned int, struct pt_regs *),
811 int sig, int code, const char *name)
812{
813 BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));
814
815 debug_fault_info[nr].fn = fn;
816 debug_fault_info[nr].sig = sig;
817 debug_fault_info[nr].code = code;
818 debug_fault_info[nr].name = name;
819}
820
821asmlinkage int __exception do_debug_exception(unsigned long addr,
822 unsigned int esr,
823 struct pt_regs *regs)
824{
825 const struct fault_info *inf = debug_fault_info + DBG_ESR_EVT(esr);
826 struct siginfo info;
827 int rv;
828
829 /*
830 * Tell lockdep we disabled irqs in entry.S. Do nothing if they were
831 * already disabled to preserve the last enabled/disabled addresses.
832 */
833 if (interrupts_enabled(regs))
834 trace_hardirqs_off();
835
836 if (user_mode(regs) && instruction_pointer(regs) > TASK_SIZE)
837 arm64_apply_bp_hardening();
838
839 if (!inf->fn(addr, esr, regs)) {
840 rv = 1;
841 } else {
842 info.si_signo = inf->sig;
843 info.si_errno = 0;
844 info.si_code = inf->code;
845 info.si_addr = (void __user *)addr;
846 arm64_notify_die(inf->name, regs, &info, esr);
847 rv = 0;
848 }
849
850 if (interrupts_enabled(regs))
851 trace_hardirqs_on();
852
853 return rv;
854}
855NOKPROBE_SYMBOL(do_debug_exception);
856
857#ifdef CONFIG_ARM64_PAN
858void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused)
859{
860 /*
861 * We modify PSTATE. This won't work from irq context as the PSTATE
862 * is discarded once we return from the exception.
863 */
864 WARN_ON_ONCE(in_interrupt());
865
866 config_sctlr_el1(SCTLR_EL1_SPAN, 0);
867 asm(SET_PSTATE_PAN(1));
868}
869#endif /* CONFIG_ARM64_PAN */
1/*
2 * Based on arch/arm/mm/fault.c
3 *
4 * Copyright (C) 1995 Linus Torvalds
5 * Copyright (C) 1995-2004 Russell King
6 * Copyright (C) 2012 ARM Ltd.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program. If not, see <http://www.gnu.org/licenses/>.
19 */
20
21#include <linux/module.h>
22#include <linux/signal.h>
23#include <linux/mm.h>
24#include <linux/hardirq.h>
25#include <linux/init.h>
26#include <linux/kprobes.h>
27#include <linux/uaccess.h>
28#include <linux/page-flags.h>
29#include <linux/sched.h>
30#include <linux/highmem.h>
31#include <linux/perf_event.h>
32
33#include <asm/cpufeature.h>
34#include <asm/exception.h>
35#include <asm/debug-monitors.h>
36#include <asm/esr.h>
37#include <asm/sysreg.h>
38#include <asm/system_misc.h>
39#include <asm/pgtable.h>
40#include <asm/tlbflush.h>
41
42static const char *fault_name(unsigned int esr);
43
44/*
45 * Dump out the page tables associated with 'addr' in mm 'mm'.
46 */
47void show_pte(struct mm_struct *mm, unsigned long addr)
48{
49 pgd_t *pgd;
50
51 if (!mm)
52 mm = &init_mm;
53
54 pr_alert("pgd = %p\n", mm->pgd);
55 pgd = pgd_offset(mm, addr);
56 pr_alert("[%08lx] *pgd=%016llx", addr, pgd_val(*pgd));
57
58 do {
59 pud_t *pud;
60 pmd_t *pmd;
61 pte_t *pte;
62
63 if (pgd_none(*pgd) || pgd_bad(*pgd))
64 break;
65
66 pud = pud_offset(pgd, addr);
67 printk(", *pud=%016llx", pud_val(*pud));
68 if (pud_none(*pud) || pud_bad(*pud))
69 break;
70
71 pmd = pmd_offset(pud, addr);
72 printk(", *pmd=%016llx", pmd_val(*pmd));
73 if (pmd_none(*pmd) || pmd_bad(*pmd))
74 break;
75
76 pte = pte_offset_map(pmd, addr);
77 printk(", *pte=%016llx", pte_val(*pte));
78 pte_unmap(pte);
79 } while(0);
80
81 printk("\n");
82}
83
84/*
85 * The kernel tried to access some page that wasn't present.
86 */
87static void __do_kernel_fault(struct mm_struct *mm, unsigned long addr,
88 unsigned int esr, struct pt_regs *regs)
89{
90 /*
91 * Are we prepared to handle this kernel fault?
92 */
93 if (fixup_exception(regs))
94 return;
95
96 /*
97 * No handler, we'll have to terminate things with extreme prejudice.
98 */
99 bust_spinlocks(1);
100 pr_alert("Unable to handle kernel %s at virtual address %08lx\n",
101 (addr < PAGE_SIZE) ? "NULL pointer dereference" :
102 "paging request", addr);
103
104 show_pte(mm, addr);
105 die("Oops", regs, esr);
106 bust_spinlocks(0);
107 do_exit(SIGKILL);
108}
109
110/*
111 * Something tried to access memory that isn't in our memory map. User mode
112 * accesses just cause a SIGSEGV
113 */
114static void __do_user_fault(struct task_struct *tsk, unsigned long addr,
115 unsigned int esr, unsigned int sig, int code,
116 struct pt_regs *regs)
117{
118 struct siginfo si;
119
120 if (unhandled_signal(tsk, sig) && show_unhandled_signals_ratelimited()) {
121 pr_info("%s[%d]: unhandled %s (%d) at 0x%08lx, esr 0x%03x\n",
122 tsk->comm, task_pid_nr(tsk), fault_name(esr), sig,
123 addr, esr);
124 show_pte(tsk->mm, addr);
125 show_regs(regs);
126 }
127
128 tsk->thread.fault_address = addr;
129 tsk->thread.fault_code = esr;
130 si.si_signo = sig;
131 si.si_errno = 0;
132 si.si_code = code;
133 si.si_addr = (void __user *)addr;
134 force_sig_info(sig, &si, tsk);
135}
136
137static void do_bad_area(unsigned long addr, unsigned int esr, struct pt_regs *regs)
138{
139 struct task_struct *tsk = current;
140 struct mm_struct *mm = tsk->active_mm;
141
142 /*
143 * If we are in kernel mode at this point, we have no context to
144 * handle this fault with.
145 */
146 if (user_mode(regs))
147 __do_user_fault(tsk, addr, esr, SIGSEGV, SEGV_MAPERR, regs);
148 else
149 __do_kernel_fault(mm, addr, esr, regs);
150}
151
152#define VM_FAULT_BADMAP 0x010000
153#define VM_FAULT_BADACCESS 0x020000
154
155#define ESR_LNX_EXEC (1 << 24)
156
157static int __do_page_fault(struct mm_struct *mm, unsigned long addr,
158 unsigned int mm_flags, unsigned long vm_flags,
159 struct task_struct *tsk)
160{
161 struct vm_area_struct *vma;
162 int fault;
163
164 vma = find_vma(mm, addr);
165 fault = VM_FAULT_BADMAP;
166 if (unlikely(!vma))
167 goto out;
168 if (unlikely(vma->vm_start > addr))
169 goto check_stack;
170
171 /*
172 * Ok, we have a good vm_area for this memory access, so we can handle
173 * it.
174 */
175good_area:
176 /*
177 * Check that the permissions on the VMA allow for the fault which
178 * occurred. If we encountered a write or exec fault, we must have
179 * appropriate permissions, otherwise we allow any permission.
180 */
181 if (!(vma->vm_flags & vm_flags)) {
182 fault = VM_FAULT_BADACCESS;
183 goto out;
184 }
185
186 return handle_mm_fault(mm, vma, addr & PAGE_MASK, mm_flags);
187
188check_stack:
189 if (vma->vm_flags & VM_GROWSDOWN && !expand_stack(vma, addr))
190 goto good_area;
191out:
192 return fault;
193}
194
195static inline int permission_fault(unsigned int esr)
196{
197 unsigned int ec = (esr & ESR_ELx_EC_MASK) >> ESR_ELx_EC_SHIFT;
198 unsigned int fsc_type = esr & ESR_ELx_FSC_TYPE;
199
200 return (ec == ESR_ELx_EC_DABT_CUR && fsc_type == ESR_ELx_FSC_PERM);
201}
202
203static int __kprobes do_page_fault(unsigned long addr, unsigned int esr,
204 struct pt_regs *regs)
205{
206 struct task_struct *tsk;
207 struct mm_struct *mm;
208 int fault, sig, code;
209 unsigned long vm_flags = VM_READ | VM_WRITE | VM_EXEC;
210 unsigned int mm_flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
211
212 tsk = current;
213 mm = tsk->mm;
214
215 /* Enable interrupts if they were enabled in the parent context. */
216 if (interrupts_enabled(regs))
217 local_irq_enable();
218
219 /*
220 * If we're in an interrupt or have no user context, we must not take
221 * the fault.
222 */
223 if (faulthandler_disabled() || !mm)
224 goto no_context;
225
226 if (user_mode(regs))
227 mm_flags |= FAULT_FLAG_USER;
228
229 if (esr & ESR_LNX_EXEC) {
230 vm_flags = VM_EXEC;
231 } else if ((esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM)) {
232 vm_flags = VM_WRITE;
233 mm_flags |= FAULT_FLAG_WRITE;
234 }
235
236 if (permission_fault(esr) && (addr < USER_DS)) {
237 if (get_fs() == KERNEL_DS)
238 die("Accessing user space memory with fs=KERNEL_DS", regs, esr);
239
240 if (!search_exception_tables(regs->pc))
241 die("Accessing user space memory outside uaccess.h routines", regs, esr);
242 }
243
244 /*
245 * As per x86, we may deadlock here. However, since the kernel only
246 * validly references user space from well defined areas of the code,
247 * we can bug out early if this is from code which shouldn't.
248 */
249 if (!down_read_trylock(&mm->mmap_sem)) {
250 if (!user_mode(regs) && !search_exception_tables(regs->pc))
251 goto no_context;
252retry:
253 down_read(&mm->mmap_sem);
254 } else {
255 /*
256 * The above down_read_trylock() might have succeeded in which
257 * case, we'll have missed the might_sleep() from down_read().
258 */
259 might_sleep();
260#ifdef CONFIG_DEBUG_VM
261 if (!user_mode(regs) && !search_exception_tables(regs->pc))
262 goto no_context;
263#endif
264 }
265
266 fault = __do_page_fault(mm, addr, mm_flags, vm_flags, tsk);
267
268 /*
269 * If we need to retry but a fatal signal is pending, handle the
270 * signal first. We do not need to release the mmap_sem because it
271 * would already be released in __lock_page_or_retry in mm/filemap.c.
272 */
273 if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
274 return 0;
275
276 /*
277 * Major/minor page fault accounting is only done on the initial
278 * attempt. If we go through a retry, it is extremely likely that the
279 * page will be found in page cache at that point.
280 */
281
282 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
283 if (mm_flags & FAULT_FLAG_ALLOW_RETRY) {
284 if (fault & VM_FAULT_MAJOR) {
285 tsk->maj_flt++;
286 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs,
287 addr);
288 } else {
289 tsk->min_flt++;
290 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs,
291 addr);
292 }
293 if (fault & VM_FAULT_RETRY) {
294 /*
295 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk of
296 * starvation.
297 */
298 mm_flags &= ~FAULT_FLAG_ALLOW_RETRY;
299 mm_flags |= FAULT_FLAG_TRIED;
300 goto retry;
301 }
302 }
303
304 up_read(&mm->mmap_sem);
305
306 /*
307 * Handle the "normal" case first - VM_FAULT_MAJOR
308 */
309 if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
310 VM_FAULT_BADACCESS))))
311 return 0;
312
313 /*
314 * If we are in kernel mode at this point, we have no context to
315 * handle this fault with.
316 */
317 if (!user_mode(regs))
318 goto no_context;
319
320 if (fault & VM_FAULT_OOM) {
321 /*
322 * We ran out of memory, call the OOM killer, and return to
323 * userspace (which will retry the fault, or kill us if we got
324 * oom-killed).
325 */
326 pagefault_out_of_memory();
327 return 0;
328 }
329
330 if (fault & VM_FAULT_SIGBUS) {
331 /*
332 * We had some memory, but were unable to successfully fix up
333 * this page fault.
334 */
335 sig = SIGBUS;
336 code = BUS_ADRERR;
337 } else {
338 /*
339 * Something tried to access memory that isn't in our memory
340 * map.
341 */
342 sig = SIGSEGV;
343 code = fault == VM_FAULT_BADACCESS ?
344 SEGV_ACCERR : SEGV_MAPERR;
345 }
346
347 __do_user_fault(tsk, addr, esr, sig, code, regs);
348 return 0;
349
350no_context:
351 __do_kernel_fault(mm, addr, esr, regs);
352 return 0;
353}
354
355/*
356 * First Level Translation Fault Handler
357 *
358 * We enter here because the first level page table doesn't contain a valid
359 * entry for the address.
360 *
361 * If the address is in kernel space (>= TASK_SIZE), then we are probably
362 * faulting in the vmalloc() area.
363 *
364 * If the init_task's first level page tables contains the relevant entry, we
365 * copy the it to this task. If not, we send the process a signal, fixup the
366 * exception, or oops the kernel.
367 *
368 * NOTE! We MUST NOT take any locks for this case. We may be in an interrupt
369 * or a critical region, and should only copy the information from the master
370 * page table, nothing more.
371 */
372static int __kprobes do_translation_fault(unsigned long addr,
373 unsigned int esr,
374 struct pt_regs *regs)
375{
376 if (addr < TASK_SIZE)
377 return do_page_fault(addr, esr, regs);
378
379 do_bad_area(addr, esr, regs);
380 return 0;
381}
382
383static int do_alignment_fault(unsigned long addr, unsigned int esr,
384 struct pt_regs *regs)
385{
386 do_bad_area(addr, esr, regs);
387 return 0;
388}
389
390/*
391 * This abort handler always returns "fault".
392 */
393static int do_bad(unsigned long addr, unsigned int esr, struct pt_regs *regs)
394{
395 return 1;
396}
397
398static struct fault_info {
399 int (*fn)(unsigned long addr, unsigned int esr, struct pt_regs *regs);
400 int sig;
401 int code;
402 const char *name;
403} fault_info[] = {
404 { do_bad, SIGBUS, 0, "ttbr address size fault" },
405 { do_bad, SIGBUS, 0, "level 1 address size fault" },
406 { do_bad, SIGBUS, 0, "level 2 address size fault" },
407 { do_bad, SIGBUS, 0, "level 3 address size fault" },
408 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 0 translation fault" },
409 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 1 translation fault" },
410 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 2 translation fault" },
411 { do_page_fault, SIGSEGV, SEGV_MAPERR, "level 3 translation fault" },
412 { do_bad, SIGBUS, 0, "unknown 8" },
413 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 access flag fault" },
414 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 access flag fault" },
415 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 access flag fault" },
416 { do_bad, SIGBUS, 0, "unknown 12" },
417 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 permission fault" },
418 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 permission fault" },
419 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 permission fault" },
420 { do_bad, SIGBUS, 0, "synchronous external abort" },
421 { do_bad, SIGBUS, 0, "unknown 17" },
422 { do_bad, SIGBUS, 0, "unknown 18" },
423 { do_bad, SIGBUS, 0, "unknown 19" },
424 { do_bad, SIGBUS, 0, "synchronous abort (translation table walk)" },
425 { do_bad, SIGBUS, 0, "synchronous abort (translation table walk)" },
426 { do_bad, SIGBUS, 0, "synchronous abort (translation table walk)" },
427 { do_bad, SIGBUS, 0, "synchronous abort (translation table walk)" },
428 { do_bad, SIGBUS, 0, "synchronous parity error" },
429 { do_bad, SIGBUS, 0, "unknown 25" },
430 { do_bad, SIGBUS, 0, "unknown 26" },
431 { do_bad, SIGBUS, 0, "unknown 27" },
432 { do_bad, SIGBUS, 0, "synchronous parity error (translation table walk)" },
433 { do_bad, SIGBUS, 0, "synchronous parity error (translation table walk)" },
434 { do_bad, SIGBUS, 0, "synchronous parity error (translation table walk)" },
435 { do_bad, SIGBUS, 0, "synchronous parity error (translation table walk)" },
436 { do_bad, SIGBUS, 0, "unknown 32" },
437 { do_alignment_fault, SIGBUS, BUS_ADRALN, "alignment fault" },
438 { do_bad, SIGBUS, 0, "unknown 34" },
439 { do_bad, SIGBUS, 0, "unknown 35" },
440 { do_bad, SIGBUS, 0, "unknown 36" },
441 { do_bad, SIGBUS, 0, "unknown 37" },
442 { do_bad, SIGBUS, 0, "unknown 38" },
443 { do_bad, SIGBUS, 0, "unknown 39" },
444 { do_bad, SIGBUS, 0, "unknown 40" },
445 { do_bad, SIGBUS, 0, "unknown 41" },
446 { do_bad, SIGBUS, 0, "unknown 42" },
447 { do_bad, SIGBUS, 0, "unknown 43" },
448 { do_bad, SIGBUS, 0, "unknown 44" },
449 { do_bad, SIGBUS, 0, "unknown 45" },
450 { do_bad, SIGBUS, 0, "unknown 46" },
451 { do_bad, SIGBUS, 0, "unknown 47" },
452 { do_bad, SIGBUS, 0, "TLB conflict abort" },
453 { do_bad, SIGBUS, 0, "unknown 49" },
454 { do_bad, SIGBUS, 0, "unknown 50" },
455 { do_bad, SIGBUS, 0, "unknown 51" },
456 { do_bad, SIGBUS, 0, "implementation fault (lockdown abort)" },
457 { do_bad, SIGBUS, 0, "implementation fault (unsupported exclusive)" },
458 { do_bad, SIGBUS, 0, "unknown 54" },
459 { do_bad, SIGBUS, 0, "unknown 55" },
460 { do_bad, SIGBUS, 0, "unknown 56" },
461 { do_bad, SIGBUS, 0, "unknown 57" },
462 { do_bad, SIGBUS, 0, "unknown 58" },
463 { do_bad, SIGBUS, 0, "unknown 59" },
464 { do_bad, SIGBUS, 0, "unknown 60" },
465 { do_bad, SIGBUS, 0, "section domain fault" },
466 { do_bad, SIGBUS, 0, "page domain fault" },
467 { do_bad, SIGBUS, 0, "unknown 63" },
468};
469
470static const char *fault_name(unsigned int esr)
471{
472 const struct fault_info *inf = fault_info + (esr & 63);
473 return inf->name;
474}
475
476/*
477 * Dispatch a data abort to the relevant handler.
478 */
479asmlinkage void __exception do_mem_abort(unsigned long addr, unsigned int esr,
480 struct pt_regs *regs)
481{
482 const struct fault_info *inf = fault_info + (esr & 63);
483 struct siginfo info;
484
485 if (!inf->fn(addr, esr, regs))
486 return;
487
488 pr_alert("Unhandled fault: %s (0x%08x) at 0x%016lx\n",
489 inf->name, esr, addr);
490
491 info.si_signo = inf->sig;
492 info.si_errno = 0;
493 info.si_code = inf->code;
494 info.si_addr = (void __user *)addr;
495 arm64_notify_die("", regs, &info, esr);
496}
497
498/*
499 * Handle stack alignment exceptions.
500 */
501asmlinkage void __exception do_sp_pc_abort(unsigned long addr,
502 unsigned int esr,
503 struct pt_regs *regs)
504{
505 struct siginfo info;
506 struct task_struct *tsk = current;
507
508 if (show_unhandled_signals && unhandled_signal(tsk, SIGBUS))
509 pr_info_ratelimited("%s[%d]: %s exception: pc=%p sp=%p\n",
510 tsk->comm, task_pid_nr(tsk),
511 esr_get_class_string(esr), (void *)regs->pc,
512 (void *)regs->sp);
513
514 info.si_signo = SIGBUS;
515 info.si_errno = 0;
516 info.si_code = BUS_ADRALN;
517 info.si_addr = (void __user *)addr;
518 arm64_notify_die("Oops - SP/PC alignment exception", regs, &info, esr);
519}
520
521int __init early_brk64(unsigned long addr, unsigned int esr,
522 struct pt_regs *regs);
523
524/*
525 * __refdata because early_brk64 is __init, but the reference to it is
526 * clobbered at arch_initcall time.
527 * See traps.c and debug-monitors.c:debug_traps_init().
528 */
529static struct fault_info __refdata debug_fault_info[] = {
530 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware breakpoint" },
531 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware single-step" },
532 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware watchpoint" },
533 { do_bad, SIGBUS, 0, "unknown 3" },
534 { do_bad, SIGTRAP, TRAP_BRKPT, "aarch32 BKPT" },
535 { do_bad, SIGTRAP, 0, "aarch32 vector catch" },
536 { early_brk64, SIGTRAP, TRAP_BRKPT, "aarch64 BRK" },
537 { do_bad, SIGBUS, 0, "unknown 7" },
538};
539
540void __init hook_debug_fault_code(int nr,
541 int (*fn)(unsigned long, unsigned int, struct pt_regs *),
542 int sig, int code, const char *name)
543{
544 BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));
545
546 debug_fault_info[nr].fn = fn;
547 debug_fault_info[nr].sig = sig;
548 debug_fault_info[nr].code = code;
549 debug_fault_info[nr].name = name;
550}
551
552asmlinkage int __exception do_debug_exception(unsigned long addr,
553 unsigned int esr,
554 struct pt_regs *regs)
555{
556 const struct fault_info *inf = debug_fault_info + DBG_ESR_EVT(esr);
557 struct siginfo info;
558
559 if (!inf->fn(addr, esr, regs))
560 return 1;
561
562 pr_alert("Unhandled debug exception: %s (0x%08x) at 0x%016lx\n",
563 inf->name, esr, addr);
564
565 info.si_signo = inf->sig;
566 info.si_errno = 0;
567 info.si_code = inf->code;
568 info.si_addr = (void __user *)addr;
569 arm64_notify_die("", regs, &info, 0);
570
571 return 0;
572}
573
574#ifdef CONFIG_ARM64_PAN
575void cpu_enable_pan(void *__unused)
576{
577 config_sctlr_el1(SCTLR_EL1_SPAN, 0);
578}
579#endif /* CONFIG_ARM64_PAN */
580
581#ifdef CONFIG_ARM64_UAO
582/*
583 * Kernel threads have fs=KERNEL_DS by default, and don't need to call
584 * set_fs(), devtmpfs in particular relies on this behaviour.
585 * We need to enable the feature at runtime (instead of adding it to
586 * PSR_MODE_EL1h) as the feature may not be implemented by the cpu.
587 */
588void cpu_enable_uao(void *__unused)
589{
590 asm(SET_PSTATE_UAO(1));
591}
592#endif /* CONFIG_ARM64_UAO */