Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 * Copyright (C) 2012,2013 - ARM Ltd
   3 * Author: Marc Zyngier <marc.zyngier@arm.com>
   4 *
   5 * Derived from arch/arm/kvm/coproc.c:
   6 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
   7 * Authors: Rusty Russell <rusty@rustcorp.com.au>
   8 *          Christoffer Dall <c.dall@virtualopensystems.com>
   9 *
  10 * This program is free software; you can redistribute it and/or modify
  11 * it under the terms of the GNU General Public License, version 2, as
  12 * published by the Free Software Foundation.
  13 *
  14 * This program is distributed in the hope that it will be useful,
  15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  17 * GNU General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
  21 */
  22
 
  23#include <linux/bsearch.h>
 
  24#include <linux/kvm_host.h>
  25#include <linux/mm.h>
  26#include <linux/printk.h>
  27#include <linux/uaccess.h>
  28
  29#include <asm/cacheflush.h>
  30#include <asm/cputype.h>
  31#include <asm/debug-monitors.h>
  32#include <asm/esr.h>
  33#include <asm/kvm_arm.h>
  34#include <asm/kvm_asm.h>
  35#include <asm/kvm_coproc.h>
  36#include <asm/kvm_emulate.h>
  37#include <asm/kvm_host.h>
  38#include <asm/kvm_hyp.h>
  39#include <asm/kvm_mmu.h>
 
  40#include <asm/perf_event.h>
  41#include <asm/sysreg.h>
  42
  43#include <trace/events/kvm.h>
  44
  45#include "sys_regs.h"
  46
  47#include "trace.h"
  48
  49/*
  50 * All of this file is extremly similar to the ARM coproc.c, but the
  51 * types are different. My gut feeling is that it should be pretty
  52 * easy to merge, but that would be an ABI breakage -- again. VFP
  53 * would also need to be abstracted.
  54 *
  55 * For AArch32, we only take care of what is being trapped. Anything
  56 * that has to do with init and userspace access has to go via the
  57 * 64bit interface.
  58 */
  59
  60static bool read_from_write_only(struct kvm_vcpu *vcpu,
  61				 struct sys_reg_params *params,
  62				 const struct sys_reg_desc *r)
 
 
 
 
 
  63{
  64	WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
  65	print_sys_reg_instr(params);
  66	kvm_inject_undefined(vcpu);
  67	return false;
  68}
  69
 
 
 
 
 
 
 
 
  70static bool write_to_read_only(struct kvm_vcpu *vcpu,
  71			       struct sys_reg_params *params,
  72			       const struct sys_reg_desc *r)
  73{
  74	WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
  75	print_sys_reg_instr(params);
  76	kvm_inject_undefined(vcpu);
  77	return false;
  78}
  79
  80u64 vcpu_read_sys_reg(struct kvm_vcpu *vcpu, int reg)
  81{
  82	if (!vcpu->arch.sysregs_loaded_on_cpu)
  83		goto immediate_read;
 
  84
  85	/*
  86	 * System registers listed in the switch are not saved on every
  87	 * exit from the guest but are only saved on vcpu_put.
  88	 *
  89	 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
  90	 * should never be listed below, because the guest cannot modify its
  91	 * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's
  92	 * thread when emulating cross-VCPU communication.
  93	 */
 
  94	switch (reg) {
  95	case CSSELR_EL1:	return read_sysreg_s(SYS_CSSELR_EL1);
  96	case SCTLR_EL1:		return read_sysreg_s(sctlr_EL12);
  97	case ACTLR_EL1:		return read_sysreg_s(SYS_ACTLR_EL1);
  98	case CPACR_EL1:		return read_sysreg_s(cpacr_EL12);
  99	case TTBR0_EL1:		return read_sysreg_s(ttbr0_EL12);
 100	case TTBR1_EL1:		return read_sysreg_s(ttbr1_EL12);
 101	case TCR_EL1:		return read_sysreg_s(tcr_EL12);
 102	case ESR_EL1:		return read_sysreg_s(esr_EL12);
 103	case AFSR0_EL1:		return read_sysreg_s(afsr0_EL12);
 104	case AFSR1_EL1:		return read_sysreg_s(afsr1_EL12);
 105	case FAR_EL1:		return read_sysreg_s(far_EL12);
 106	case MAIR_EL1:		return read_sysreg_s(mair_EL12);
 107	case VBAR_EL1:		return read_sysreg_s(vbar_EL12);
 108	case CONTEXTIDR_EL1:	return read_sysreg_s(contextidr_EL12);
 109	case TPIDR_EL0:		return read_sysreg_s(SYS_TPIDR_EL0);
 110	case TPIDRRO_EL0:	return read_sysreg_s(SYS_TPIDRRO_EL0);
 111	case TPIDR_EL1:		return read_sysreg_s(SYS_TPIDR_EL1);
 112	case AMAIR_EL1:		return read_sysreg_s(amair_EL12);
 113	case CNTKCTL_EL1:	return read_sysreg_s(cntkctl_EL12);
 114	case PAR_EL1:		return read_sysreg_s(SYS_PAR_EL1);
 115	case DACR32_EL2:	return read_sysreg_s(SYS_DACR32_EL2);
 116	case IFSR32_EL2:	return read_sysreg_s(SYS_IFSR32_EL2);
 117	case DBGVCR32_EL2:	return read_sysreg_s(SYS_DBGVCR32_EL2);
 
 
 
 
 
 
 
 
 
 
 118	}
 
 119
 120immediate_read:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 121	return __vcpu_sys_reg(vcpu, reg);
 122}
 123
 124void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
 125{
 126	if (!vcpu->arch.sysregs_loaded_on_cpu)
 127		goto immediate_write;
 128
 129	/*
 130	 * System registers listed in the switch are not restored on every
 131	 * entry to the guest but are only restored on vcpu_load.
 132	 *
 133	 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
 134	 * should never be listed below, because the the MPIDR should only be
 135	 * set once, before running the VCPU, and never changed later.
 136	 */
 137	switch (reg) {
 138	case CSSELR_EL1:	write_sysreg_s(val, SYS_CSSELR_EL1);	return;
 139	case SCTLR_EL1:		write_sysreg_s(val, sctlr_EL12);	return;
 140	case ACTLR_EL1:		write_sysreg_s(val, SYS_ACTLR_EL1);	return;
 141	case CPACR_EL1:		write_sysreg_s(val, cpacr_EL12);	return;
 142	case TTBR0_EL1:		write_sysreg_s(val, ttbr0_EL12);	return;
 143	case TTBR1_EL1:		write_sysreg_s(val, ttbr1_EL12);	return;
 144	case TCR_EL1:		write_sysreg_s(val, tcr_EL12);		return;
 145	case ESR_EL1:		write_sysreg_s(val, esr_EL12);		return;
 146	case AFSR0_EL1:		write_sysreg_s(val, afsr0_EL12);	return;
 147	case AFSR1_EL1:		write_sysreg_s(val, afsr1_EL12);	return;
 148	case FAR_EL1:		write_sysreg_s(val, far_EL12);		return;
 149	case MAIR_EL1:		write_sysreg_s(val, mair_EL12);		return;
 150	case VBAR_EL1:		write_sysreg_s(val, vbar_EL12);		return;
 151	case CONTEXTIDR_EL1:	write_sysreg_s(val, contextidr_EL12);	return;
 152	case TPIDR_EL0:		write_sysreg_s(val, SYS_TPIDR_EL0);	return;
 153	case TPIDRRO_EL0:	write_sysreg_s(val, SYS_TPIDRRO_EL0);	return;
 154	case TPIDR_EL1:		write_sysreg_s(val, SYS_TPIDR_EL1);	return;
 155	case AMAIR_EL1:		write_sysreg_s(val, amair_EL12);	return;
 156	case CNTKCTL_EL1:	write_sysreg_s(val, cntkctl_EL12);	return;
 157	case PAR_EL1:		write_sysreg_s(val, SYS_PAR_EL1);	return;
 158	case DACR32_EL2:	write_sysreg_s(val, SYS_DACR32_EL2);	return;
 159	case IFSR32_EL2:	write_sysreg_s(val, SYS_IFSR32_EL2);	return;
 160	case DBGVCR32_EL2:	write_sysreg_s(val, SYS_DBGVCR32_EL2);	return;
 161	}
 162
 163immediate_write:
 
 
 
 
 
 
 
 164	 __vcpu_sys_reg(vcpu, reg) = val;
 165}
 166
 167/* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
 168static u32 cache_levels;
 169
 170/* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
 171#define CSSELR_MAX 12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 172
 173/* Which cache CCSIDR represents depends on CSSELR value. */
 174static u32 get_ccsidr(u32 csselr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 175{
 176	u32 ccsidr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 177
 178	/* Make sure noone else changes CSSELR during this! */
 179	local_irq_disable();
 180	write_sysreg(csselr, csselr_el1);
 181	isb();
 182	ccsidr = read_sysreg(ccsidr_el1);
 183	local_irq_enable();
 
 
 
 
 
 184
 185	return ccsidr;
 186}
 187
 188/*
 189 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
 190 */
 191static bool access_dcsw(struct kvm_vcpu *vcpu,
 192			struct sys_reg_params *p,
 193			const struct sys_reg_desc *r)
 194{
 195	if (!p->is_write)
 196		return read_from_write_only(vcpu, p, r);
 197
 198	kvm_set_way_flush(vcpu);
 
 
 
 
 
 
 
 
 
 199	return true;
 200}
 201
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 202/*
 203 * Generic accessor for VM registers. Only called as long as HCR_TVM
 204 * is set. If the guest enables the MMU, we stop trapping the VM
 205 * sys_regs and leave it in complete control of the caches.
 206 */
 207static bool access_vm_reg(struct kvm_vcpu *vcpu,
 208			  struct sys_reg_params *p,
 209			  const struct sys_reg_desc *r)
 210{
 211	bool was_enabled = vcpu_has_cache_enabled(vcpu);
 212	u64 val;
 213	int reg = r->reg;
 214
 215	BUG_ON(!p->is_write);
 216
 217	/* See the 32bit mapping in kvm_host.h */
 218	if (p->is_aarch32)
 219		reg = r->reg / 2;
 220
 221	if (!p->is_aarch32 || !p->is_32bit) {
 222		val = p->regval;
 
 223	} else {
 224		val = vcpu_read_sys_reg(vcpu, reg);
 225		if (r->reg % 2)
 226			val = (p->regval << 32) | (u64)lower_32_bits(val);
 227		else
 228			val = ((u64)upper_32_bits(val) << 32) |
 229				lower_32_bits(p->regval);
 230	}
 231	vcpu_write_sys_reg(vcpu, val, reg);
 
 
 232
 233	kvm_toggle_cache(vcpu, was_enabled);
 234	return true;
 235}
 236
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 237/*
 238 * Trap handler for the GICv3 SGI generation system register.
 239 * Forward the request to the VGIC emulation.
 240 * The cp15_64 code makes sure this automatically works
 241 * for both AArch64 and AArch32 accesses.
 242 */
 243static bool access_gic_sgi(struct kvm_vcpu *vcpu,
 244			   struct sys_reg_params *p,
 245			   const struct sys_reg_desc *r)
 246{
 
 
 247	if (!p->is_write)
 248		return read_from_write_only(vcpu, p, r);
 249
 250	vgic_v3_dispatch_sgi(vcpu, p->regval);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 251
 252	return true;
 253}
 254
 255static bool access_gic_sre(struct kvm_vcpu *vcpu,
 256			   struct sys_reg_params *p,
 257			   const struct sys_reg_desc *r)
 258{
 259	if (p->is_write)
 260		return ignore_write(vcpu, p);
 261
 262	p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
 263	return true;
 264}
 265
 266static bool trap_raz_wi(struct kvm_vcpu *vcpu,
 267			struct sys_reg_params *p,
 268			const struct sys_reg_desc *r)
 269{
 270	if (p->is_write)
 271		return ignore_write(vcpu, p);
 272	else
 273		return read_zero(vcpu, p);
 274}
 275
 276static bool trap_undef(struct kvm_vcpu *vcpu,
 277		       struct sys_reg_params *p,
 278		       const struct sys_reg_desc *r)
 279{
 280	kvm_inject_undefined(vcpu);
 281	return false;
 282}
 283
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 284static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
 285			   struct sys_reg_params *p,
 286			   const struct sys_reg_desc *r)
 287{
 288	if (p->is_write) {
 289		return ignore_write(vcpu, p);
 290	} else {
 291		p->regval = (1 << 3);
 292		return true;
 293	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 294}
 295
 296static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
 297				   struct sys_reg_params *p,
 298				   const struct sys_reg_desc *r)
 299{
 300	if (p->is_write) {
 301		return ignore_write(vcpu, p);
 302	} else {
 303		p->regval = read_sysreg(dbgauthstatus_el1);
 304		return true;
 305	}
 306}
 307
 308/*
 309 * We want to avoid world-switching all the DBG registers all the
 310 * time:
 311 * 
 312 * - If we've touched any debug register, it is likely that we're
 313 *   going to touch more of them. It then makes sense to disable the
 314 *   traps and start doing the save/restore dance
 315 * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
 316 *   then mandatory to save/restore the registers, as the guest
 317 *   depends on them.
 318 * 
 319 * For this, we use a DIRTY bit, indicating the guest has modified the
 320 * debug registers, used as follow:
 321 *
 322 * On guest entry:
 323 * - If the dirty bit is set (because we're coming back from trapping),
 324 *   disable the traps, save host registers, restore guest registers.
 325 * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
 326 *   set the dirty bit, disable the traps, save host registers,
 327 *   restore guest registers.
 328 * - Otherwise, enable the traps
 329 *
 330 * On guest exit:
 331 * - If the dirty bit is set, save guest registers, restore host
 332 *   registers and clear the dirty bit. This ensure that the host can
 333 *   now use the debug registers.
 334 */
 335static bool trap_debug_regs(struct kvm_vcpu *vcpu,
 336			    struct sys_reg_params *p,
 337			    const struct sys_reg_desc *r)
 338{
 339	if (p->is_write) {
 340		vcpu_write_sys_reg(vcpu, p->regval, r->reg);
 341		vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
 342	} else {
 343		p->regval = vcpu_read_sys_reg(vcpu, r->reg);
 344	}
 345
 346	trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
 347
 348	return true;
 349}
 350
 351/*
 352 * reg_to_dbg/dbg_to_reg
 353 *
 354 * A 32 bit write to a debug register leave top bits alone
 355 * A 32 bit read from a debug register only returns the bottom bits
 356 *
 357 * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
 358 * hyp.S code switches between host and guest values in future.
 359 */
 360static void reg_to_dbg(struct kvm_vcpu *vcpu,
 361		       struct sys_reg_params *p,
 
 362		       u64 *dbg_reg)
 363{
 364	u64 val = p->regval;
 365
 366	if (p->is_32bit) {
 367		val &= 0xffffffffUL;
 368		val |= ((*dbg_reg >> 32) << 32);
 369	}
 370
 
 
 
 371	*dbg_reg = val;
 372	vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
 
 373}
 374
 375static void dbg_to_reg(struct kvm_vcpu *vcpu,
 376		       struct sys_reg_params *p,
 
 377		       u64 *dbg_reg)
 378{
 379	p->regval = *dbg_reg;
 380	if (p->is_32bit)
 381		p->regval &= 0xffffffffUL;
 
 382}
 383
 384static bool trap_bvr(struct kvm_vcpu *vcpu,
 385		     struct sys_reg_params *p,
 386		     const struct sys_reg_desc *rd)
 387{
 388	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
 389
 390	if (p->is_write)
 391		reg_to_dbg(vcpu, p, dbg_reg);
 392	else
 393		dbg_to_reg(vcpu, p, dbg_reg);
 394
 395	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
 396
 397	return true;
 398}
 399
 400static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
 401		const struct kvm_one_reg *reg, void __user *uaddr)
 402{
 403	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
 404
 405	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
 406		return -EFAULT;
 407	return 0;
 408}
 409
 410static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
 411	const struct kvm_one_reg *reg, void __user *uaddr)
 412{
 413	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
 414
 415	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
 416		return -EFAULT;
 417	return 0;
 418}
 419
 420static void reset_bvr(struct kvm_vcpu *vcpu,
 421		      const struct sys_reg_desc *rd)
 422{
 423	vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val;
 
 424}
 425
 426static bool trap_bcr(struct kvm_vcpu *vcpu,
 427		     struct sys_reg_params *p,
 428		     const struct sys_reg_desc *rd)
 429{
 430	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
 431
 432	if (p->is_write)
 433		reg_to_dbg(vcpu, p, dbg_reg);
 434	else
 435		dbg_to_reg(vcpu, p, dbg_reg);
 436
 437	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
 438
 439	return true;
 440}
 441
 442static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
 443		const struct kvm_one_reg *reg, void __user *uaddr)
 444{
 445	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
 446
 447	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
 448		return -EFAULT;
 449
 450	return 0;
 451}
 452
 453static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
 454	const struct kvm_one_reg *reg, void __user *uaddr)
 455{
 456	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
 457
 458	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
 459		return -EFAULT;
 460	return 0;
 461}
 462
 463static void reset_bcr(struct kvm_vcpu *vcpu,
 464		      const struct sys_reg_desc *rd)
 465{
 466	vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val;
 
 467}
 468
 469static bool trap_wvr(struct kvm_vcpu *vcpu,
 470		     struct sys_reg_params *p,
 471		     const struct sys_reg_desc *rd)
 472{
 473	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
 474
 475	if (p->is_write)
 476		reg_to_dbg(vcpu, p, dbg_reg);
 477	else
 478		dbg_to_reg(vcpu, p, dbg_reg);
 479
 480	trace_trap_reg(__func__, rd->reg, p->is_write,
 481		vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]);
 482
 483	return true;
 484}
 485
 486static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
 487		const struct kvm_one_reg *reg, void __user *uaddr)
 488{
 489	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
 490
 491	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
 492		return -EFAULT;
 493	return 0;
 494}
 495
 496static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
 497	const struct kvm_one_reg *reg, void __user *uaddr)
 498{
 499	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
 500
 501	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
 502		return -EFAULT;
 503	return 0;
 504}
 505
 506static void reset_wvr(struct kvm_vcpu *vcpu,
 507		      const struct sys_reg_desc *rd)
 508{
 509	vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val;
 
 510}
 511
 512static bool trap_wcr(struct kvm_vcpu *vcpu,
 513		     struct sys_reg_params *p,
 514		     const struct sys_reg_desc *rd)
 515{
 516	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
 517
 518	if (p->is_write)
 519		reg_to_dbg(vcpu, p, dbg_reg);
 520	else
 521		dbg_to_reg(vcpu, p, dbg_reg);
 522
 523	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
 524
 525	return true;
 526}
 527
 528static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
 529		const struct kvm_one_reg *reg, void __user *uaddr)
 530{
 531	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
 532
 533	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
 534		return -EFAULT;
 535	return 0;
 536}
 537
 538static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
 539	const struct kvm_one_reg *reg, void __user *uaddr)
 540{
 541	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
 542
 543	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
 544		return -EFAULT;
 545	return 0;
 546}
 547
 548static void reset_wcr(struct kvm_vcpu *vcpu,
 549		      const struct sys_reg_desc *rd)
 550{
 551	vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val;
 
 552}
 553
 554static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
 555{
 556	u64 amair = read_sysreg(amair_el1);
 557	vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
 
 558}
 559
 560static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
 
 
 
 
 
 
 
 561{
 562	u64 mpidr;
 563
 564	/*
 565	 * Map the vcpu_id into the first three affinity level fields of
 566	 * the MPIDR. We limit the number of VCPUs in level 0 due to a
 567	 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
 568	 * of the GICv3 to be able to address each CPU directly when
 569	 * sending IPIs.
 570	 */
 571	mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
 572	mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
 573	mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
 574	vcpu_write_sys_reg(vcpu, (1ULL << 31) | mpidr, MPIDR_EL1);
 
 
 
 575}
 576
 577static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
 
 578{
 579	u64 pmcr, val;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 580
 581	pmcr = read_sysreg(pmcr_el0);
 582	/*
 583	 * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
 584	 * except PMCR.E resetting to zero.
 585	 */
 586	val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
 587	       | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
 588	__vcpu_sys_reg(vcpu, PMCR_EL0) = val;
 589}
 590
 591static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
 592{
 593	u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
 594	bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
 595
 596	if (!enabled)
 597		kvm_inject_undefined(vcpu);
 598
 599	return !enabled;
 600}
 601
 602static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
 603{
 604	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
 605}
 606
 607static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
 608{
 609	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
 610}
 611
 612static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
 613{
 614	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
 615}
 616
 617static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
 618{
 619	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
 620}
 621
 622static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
 623			const struct sys_reg_desc *r)
 624{
 625	u64 val;
 626
 627	if (!kvm_arm_pmu_v3_ready(vcpu))
 628		return trap_raz_wi(vcpu, p, r);
 629
 630	if (pmu_access_el0_disabled(vcpu))
 631		return false;
 632
 633	if (p->is_write) {
 634		/* Only update writeable bits of PMCR */
 635		val = __vcpu_sys_reg(vcpu, PMCR_EL0);
 
 
 
 636		val &= ~ARMV8_PMU_PMCR_MASK;
 637		val |= p->regval & ARMV8_PMU_PMCR_MASK;
 638		__vcpu_sys_reg(vcpu, PMCR_EL0) = val;
 
 639		kvm_pmu_handle_pmcr(vcpu, val);
 640	} else {
 641		/* PMCR.P & PMCR.C are RAZ */
 642		val = __vcpu_sys_reg(vcpu, PMCR_EL0)
 643		      & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
 644		p->regval = val;
 645	}
 646
 647	return true;
 648}
 649
 650static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
 651			  const struct sys_reg_desc *r)
 652{
 653	if (!kvm_arm_pmu_v3_ready(vcpu))
 654		return trap_raz_wi(vcpu, p, r);
 655
 656	if (pmu_access_event_counter_el0_disabled(vcpu))
 657		return false;
 658
 659	if (p->is_write)
 660		__vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
 661	else
 662		/* return PMSELR.SEL field */
 663		p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
 664			    & ARMV8_PMU_COUNTER_MASK;
 665
 666	return true;
 667}
 668
 669static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
 670			  const struct sys_reg_desc *r)
 671{
 672	u64 pmceid;
 673
 674	if (!kvm_arm_pmu_v3_ready(vcpu))
 675		return trap_raz_wi(vcpu, p, r);
 676
 677	BUG_ON(p->is_write);
 678
 679	if (pmu_access_el0_disabled(vcpu))
 680		return false;
 681
 682	if (!(p->Op2 & 1))
 683		pmceid = read_sysreg(pmceid0_el0);
 684	else
 685		pmceid = read_sysreg(pmceid1_el0);
 
 686
 687	p->regval = pmceid;
 688
 689	return true;
 690}
 691
 692static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
 693{
 694	u64 pmcr, val;
 695
 696	pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
 697	val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
 698	if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
 699		kvm_inject_undefined(vcpu);
 700		return false;
 701	}
 702
 703	return true;
 704}
 705
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 706static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
 707			      struct sys_reg_params *p,
 708			      const struct sys_reg_desc *r)
 709{
 710	u64 idx;
 711
 712	if (!kvm_arm_pmu_v3_ready(vcpu))
 713		return trap_raz_wi(vcpu, p, r);
 714
 715	if (r->CRn == 9 && r->CRm == 13) {
 716		if (r->Op2 == 2) {
 717			/* PMXEVCNTR_EL0 */
 718			if (pmu_access_event_counter_el0_disabled(vcpu))
 719				return false;
 720
 721			idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
 722			      & ARMV8_PMU_COUNTER_MASK;
 723		} else if (r->Op2 == 0) {
 724			/* PMCCNTR_EL0 */
 725			if (pmu_access_cycle_counter_el0_disabled(vcpu))
 726				return false;
 727
 728			idx = ARMV8_PMU_CYCLE_IDX;
 729		} else {
 730			return false;
 731		}
 732	} else if (r->CRn == 0 && r->CRm == 9) {
 733		/* PMCCNTR */
 734		if (pmu_access_event_counter_el0_disabled(vcpu))
 735			return false;
 736
 737		idx = ARMV8_PMU_CYCLE_IDX;
 738	} else if (r->CRn == 14 && (r->CRm & 12) == 8) {
 739		/* PMEVCNTRn_EL0 */
 740		if (pmu_access_event_counter_el0_disabled(vcpu))
 741			return false;
 742
 743		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
 744	} else {
 745		return false;
 746	}
 747
 
 
 
 748	if (!pmu_counter_idx_valid(vcpu, idx))
 749		return false;
 750
 751	if (p->is_write) {
 752		if (pmu_access_el0_disabled(vcpu))
 753			return false;
 754
 755		kvm_pmu_set_counter_value(vcpu, idx, p->regval);
 756	} else {
 757		p->regval = kvm_pmu_get_counter_value(vcpu, idx);
 758	}
 759
 760	return true;
 761}
 762
 763static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
 764			       const struct sys_reg_desc *r)
 765{
 766	u64 idx, reg;
 767
 768	if (!kvm_arm_pmu_v3_ready(vcpu))
 769		return trap_raz_wi(vcpu, p, r);
 770
 771	if (pmu_access_el0_disabled(vcpu))
 772		return false;
 773
 774	if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
 775		/* PMXEVTYPER_EL0 */
 776		idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
 777		reg = PMEVTYPER0_EL0 + idx;
 778	} else if (r->CRn == 14 && (r->CRm & 12) == 12) {
 779		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
 780		if (idx == ARMV8_PMU_CYCLE_IDX)
 781			reg = PMCCFILTR_EL0;
 782		else
 783			/* PMEVTYPERn_EL0 */
 784			reg = PMEVTYPER0_EL0 + idx;
 785	} else {
 786		BUG();
 787	}
 788
 789	if (!pmu_counter_idx_valid(vcpu, idx))
 790		return false;
 791
 792	if (p->is_write) {
 793		kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
 794		__vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
 795	} else {
 796		p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
 797	}
 798
 799	return true;
 800}
 801
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 802static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
 803			   const struct sys_reg_desc *r)
 804{
 805	u64 val, mask;
 806
 807	if (!kvm_arm_pmu_v3_ready(vcpu))
 808		return trap_raz_wi(vcpu, p, r);
 809
 810	if (pmu_access_el0_disabled(vcpu))
 811		return false;
 812
 813	mask = kvm_pmu_valid_counter_mask(vcpu);
 814	if (p->is_write) {
 815		val = p->regval & mask;
 816		if (r->Op2 & 0x1) {
 817			/* accessing PMCNTENSET_EL0 */
 818			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
 819			kvm_pmu_enable_counter(vcpu, val);
 
 820		} else {
 821			/* accessing PMCNTENCLR_EL0 */
 822			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
 823			kvm_pmu_disable_counter(vcpu, val);
 824		}
 825	} else {
 826		p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask;
 827	}
 828
 829	return true;
 830}
 831
 832static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
 833			   const struct sys_reg_desc *r)
 834{
 835	u64 mask = kvm_pmu_valid_counter_mask(vcpu);
 836
 837	if (!kvm_arm_pmu_v3_ready(vcpu))
 838		return trap_raz_wi(vcpu, p, r);
 839
 840	if (!vcpu_mode_priv(vcpu)) {
 841		kvm_inject_undefined(vcpu);
 842		return false;
 843	}
 844
 845	if (p->is_write) {
 846		u64 val = p->regval & mask;
 847
 848		if (r->Op2 & 0x1)
 849			/* accessing PMINTENSET_EL1 */
 850			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
 851		else
 852			/* accessing PMINTENCLR_EL1 */
 853			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
 854	} else {
 855		p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1) & mask;
 856	}
 857
 858	return true;
 859}
 860
 861static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
 862			 const struct sys_reg_desc *r)
 863{
 864	u64 mask = kvm_pmu_valid_counter_mask(vcpu);
 865
 866	if (!kvm_arm_pmu_v3_ready(vcpu))
 867		return trap_raz_wi(vcpu, p, r);
 868
 869	if (pmu_access_el0_disabled(vcpu))
 870		return false;
 871
 872	if (p->is_write) {
 873		if (r->CRm & 0x2)
 874			/* accessing PMOVSSET_EL0 */
 875			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
 876		else
 877			/* accessing PMOVSCLR_EL0 */
 878			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
 879	} else {
 880		p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0) & mask;
 881	}
 882
 883	return true;
 884}
 885
 886static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
 887			   const struct sys_reg_desc *r)
 888{
 889	u64 mask;
 890
 891	if (!kvm_arm_pmu_v3_ready(vcpu))
 892		return trap_raz_wi(vcpu, p, r);
 893
 894	if (!p->is_write)
 895		return read_from_write_only(vcpu, p, r);
 896
 897	if (pmu_write_swinc_el0_disabled(vcpu))
 898		return false;
 899
 900	mask = kvm_pmu_valid_counter_mask(vcpu);
 901	kvm_pmu_software_increment(vcpu, p->regval & mask);
 902	return true;
 903}
 904
 905static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
 906			     const struct sys_reg_desc *r)
 907{
 908	if (!kvm_arm_pmu_v3_ready(vcpu))
 909		return trap_raz_wi(vcpu, p, r);
 910
 911	if (p->is_write) {
 912		if (!vcpu_mode_priv(vcpu)) {
 913			kvm_inject_undefined(vcpu);
 914			return false;
 915		}
 916
 917		__vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
 918			       p->regval & ARMV8_PMU_USERENR_MASK;
 919	} else {
 920		p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
 921			    & ARMV8_PMU_USERENR_MASK;
 922	}
 923
 924	return true;
 925}
 926
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 927/* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
 928#define DBG_BCR_BVR_WCR_WVR_EL1(n)					\
 929	{ SYS_DESC(SYS_DBGBVRn_EL1(n)),					\
 930	  trap_bvr, reset_bvr, n, 0, get_bvr, set_bvr },		\
 931	{ SYS_DESC(SYS_DBGBCRn_EL1(n)),					\
 932	  trap_bcr, reset_bcr, n, 0, get_bcr, set_bcr },		\
 933	{ SYS_DESC(SYS_DBGWVRn_EL1(n)),					\
 934	  trap_wvr, reset_wvr, n, 0,  get_wvr, set_wvr },		\
 935	{ SYS_DESC(SYS_DBGWCRn_EL1(n)),					\
 936	  trap_wcr, reset_wcr, n, 0,  get_wcr, set_wcr }
 
 
 
 
 937
 938/* Macro to expand the PMEVCNTRn_EL0 register */
 939#define PMU_PMEVCNTR_EL0(n)						\
 940	{ SYS_DESC(SYS_PMEVCNTRn_EL0(n)),					\
 941	  access_pmu_evcntr, reset_unknown, (PMEVCNTR0_EL0 + n), }
 
 942
 943/* Macro to expand the PMEVTYPERn_EL0 register */
 944#define PMU_PMEVTYPER_EL0(n)						\
 945	{ SYS_DESC(SYS_PMEVTYPERn_EL0(n)),					\
 946	  access_pmu_evtyper, reset_unknown, (PMEVTYPER0_EL0 + n), }
 
 947
 948static bool access_cntp_tval(struct kvm_vcpu *vcpu,
 949		struct sys_reg_params *p,
 950		const struct sys_reg_desc *r)
 951{
 952	u64 now = kvm_phys_timer_read();
 953	u64 cval;
 954
 955	if (p->is_write) {
 956		kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL,
 957				      p->regval + now);
 958	} else {
 959		cval = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL);
 960		p->regval = cval - now;
 961	}
 962
 963	return true;
 
 
 
 
 
 
 
 
 
 964}
 965
 966static bool access_cntp_ctl(struct kvm_vcpu *vcpu,
 967		struct sys_reg_params *p,
 968		const struct sys_reg_desc *r)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 969{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 970	if (p->is_write)
 971		kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CTL, p->regval);
 972	else
 973		p->regval = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CTL);
 974
 975	return true;
 976}
 977
 978static bool access_cntp_cval(struct kvm_vcpu *vcpu,
 979		struct sys_reg_params *p,
 980		const struct sys_reg_desc *r)
 981{
 982	if (p->is_write)
 983		kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL, p->regval);
 984	else
 985		p->regval = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL);
 986
 987	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 988}
 989
 990/* Read a sanitised cpufeature ID register by sys_reg_desc */
 991static u64 read_id_reg(struct sys_reg_desc const *r, bool raz)
 
 992{
 993	u32 id = sys_reg((u32)r->Op0, (u32)r->Op1,
 994			 (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
 995	u64 val = raz ? 0 : read_sanitised_ftr_reg(id);
 996
 997	if (id == SYS_ID_AA64PFR0_EL1) {
 998		if (val & (0xfUL << ID_AA64PFR0_SVE_SHIFT))
 999			kvm_debug("SVE unsupported for guests, suppressing\n");
1000
1001		val &= ~(0xfUL << ID_AA64PFR0_SVE_SHIFT);
1002	} else if (id == SYS_ID_AA64MMFR1_EL1) {
1003		if (val & (0xfUL << ID_AA64MMFR1_LOR_SHIFT))
1004			kvm_debug("LORegions unsupported for guests, suppressing\n");
1005
1006		val &= ~(0xfUL << ID_AA64MMFR1_LOR_SHIFT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1007	}
1008
1009	return val;
1010}
1011
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1012/* cpufeature ID register access trap handlers */
1013
1014static bool __access_id_reg(struct kvm_vcpu *vcpu,
1015			    struct sys_reg_params *p,
1016			    const struct sys_reg_desc *r,
1017			    bool raz)
1018{
1019	if (p->is_write)
1020		return write_to_read_only(vcpu, p, r);
1021
1022	p->regval = read_id_reg(r, raz);
 
1023	return true;
1024}
1025
1026static bool access_id_reg(struct kvm_vcpu *vcpu,
1027			  struct sys_reg_params *p,
1028			  const struct sys_reg_desc *r)
1029{
1030	return __access_id_reg(vcpu, p, r, false);
 
 
 
1031}
1032
1033static bool access_raz_id_reg(struct kvm_vcpu *vcpu,
1034			      struct sys_reg_params *p,
1035			      const struct sys_reg_desc *r)
1036{
1037	return __access_id_reg(vcpu, p, r, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1038}
1039
1040static int reg_from_user(u64 *val, const void __user *uaddr, u64 id);
1041static int reg_to_user(void __user *uaddr, const u64 *val, u64 id);
1042static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1043
1044/*
1045 * cpufeature ID register user accessors
1046 *
1047 * For now, these registers are immutable for userspace, so no values
1048 * are stored, and for set_id_reg() we don't allow the effective value
1049 * to be changed.
1050 */
1051static int __get_id_reg(const struct sys_reg_desc *rd, void __user *uaddr,
1052			bool raz)
1053{
1054	const u64 id = sys_reg_to_index(rd);
1055	const u64 val = read_id_reg(rd, raz);
 
 
 
 
 
 
1056
1057	return reg_to_user(uaddr, &val, id);
 
 
 
 
1058}
1059
1060static int __set_id_reg(const struct sys_reg_desc *rd, void __user *uaddr,
1061			bool raz)
1062{
1063	const u64 id = sys_reg_to_index(rd);
1064	int err;
1065	u64 val;
1066
1067	err = reg_from_user(&val, uaddr, id);
1068	if (err)
1069		return err;
1070
1071	/* This is what we mean by invariant: you can't change it. */
1072	if (val != read_id_reg(rd, raz))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1073		return -EINVAL;
1074
 
 
1075	return 0;
1076}
1077
1078static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1079		      const struct kvm_one_reg *reg, void __user *uaddr)
1080{
1081	return __get_id_reg(rd, uaddr, false);
 
 
 
 
 
 
1082}
1083
1084static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1085		      const struct kvm_one_reg *reg, void __user *uaddr)
1086{
1087	return __set_id_reg(rd, uaddr, false);
 
 
 
 
 
 
 
 
 
 
1088}
1089
1090static int get_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1091			  const struct kvm_one_reg *reg, void __user *uaddr)
1092{
1093	return __get_id_reg(rd, uaddr, true);
 
 
 
1094}
1095
1096static int set_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1097			  const struct kvm_one_reg *reg, void __user *uaddr)
 
 
 
 
 
 
 
 
1098{
1099	return __set_id_reg(rd, uaddr, true);
 
 
 
1100}
1101
1102/* sys_reg_desc initialiser for known cpufeature ID registers */
1103#define ID_SANITISED(name) {			\
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1104	SYS_DESC(SYS_##name),			\
1105	.access	= access_id_reg,		\
1106	.get_user = get_id_reg,			\
 
 
 
 
1107	.set_user = set_id_reg,			\
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1108}
1109
1110/*
1111 * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
1112 * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
1113 * (1 <= crm < 8, 0 <= Op2 < 8).
1114 */
1115#define ID_UNALLOCATED(crm, op2) {			\
1116	Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2),	\
1117	.access = access_raz_id_reg,			\
1118	.get_user = get_raz_id_reg,			\
1119	.set_user = set_raz_id_reg,			\
 
 
 
1120}
1121
1122/*
1123 * sys_reg_desc initialiser for known ID registers that we hide from guests.
1124 * For now, these are exposed just like unallocated ID regs: they appear
1125 * RAZ for the guest.
1126 */
1127#define ID_HIDDEN(name) {			\
1128	SYS_DESC(SYS_##name),			\
1129	.access = access_raz_id_reg,		\
1130	.get_user = get_raz_id_reg,		\
1131	.set_user = set_raz_id_reg,		\
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1132}
1133
1134/*
1135 * Architected system registers.
1136 * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
1137 *
1138 * Debug handling: We do trap most, if not all debug related system
1139 * registers. The implementation is good enough to ensure that a guest
1140 * can use these with minimal performance degradation. The drawback is
1141 * that we don't implement any of the external debug, none of the
1142 * OSlock protocol. This should be revisited if we ever encounter a
1143 * more demanding guest...
1144 */
1145static const struct sys_reg_desc sys_reg_descs[] = {
1146	{ SYS_DESC(SYS_DC_ISW), access_dcsw },
 
 
1147	{ SYS_DESC(SYS_DC_CSW), access_dcsw },
 
 
1148	{ SYS_DESC(SYS_DC_CISW), access_dcsw },
 
 
1149
1150	DBG_BCR_BVR_WCR_WVR_EL1(0),
1151	DBG_BCR_BVR_WCR_WVR_EL1(1),
1152	{ SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
1153	{ SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
1154	DBG_BCR_BVR_WCR_WVR_EL1(2),
1155	DBG_BCR_BVR_WCR_WVR_EL1(3),
1156	DBG_BCR_BVR_WCR_WVR_EL1(4),
1157	DBG_BCR_BVR_WCR_WVR_EL1(5),
1158	DBG_BCR_BVR_WCR_WVR_EL1(6),
1159	DBG_BCR_BVR_WCR_WVR_EL1(7),
1160	DBG_BCR_BVR_WCR_WVR_EL1(8),
1161	DBG_BCR_BVR_WCR_WVR_EL1(9),
1162	DBG_BCR_BVR_WCR_WVR_EL1(10),
1163	DBG_BCR_BVR_WCR_WVR_EL1(11),
1164	DBG_BCR_BVR_WCR_WVR_EL1(12),
1165	DBG_BCR_BVR_WCR_WVR_EL1(13),
1166	DBG_BCR_BVR_WCR_WVR_EL1(14),
1167	DBG_BCR_BVR_WCR_WVR_EL1(15),
1168
1169	{ SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
1170	{ SYS_DESC(SYS_OSLAR_EL1), trap_raz_wi },
1171	{ SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1 },
 
1172	{ SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
1173	{ SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
1174	{ SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
1175	{ SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
1176	{ SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
1177
1178	{ SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
1179	{ SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
1180	// DBGDTR[TR]X_EL0 share the same encoding
1181	{ SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
1182
1183	{ SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
1184
1185	{ SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
1186
1187	/*
1188	 * ID regs: all ID_SANITISED() entries here must have corresponding
1189	 * entries in arm64_ftr_regs[].
1190	 */
1191
1192	/* AArch64 mappings of the AArch32 ID registers */
1193	/* CRm=1 */
1194	ID_SANITISED(ID_PFR0_EL1),
1195	ID_SANITISED(ID_PFR1_EL1),
1196	ID_SANITISED(ID_DFR0_EL1),
 
 
 
 
 
 
 
1197	ID_HIDDEN(ID_AFR0_EL1),
1198	ID_SANITISED(ID_MMFR0_EL1),
1199	ID_SANITISED(ID_MMFR1_EL1),
1200	ID_SANITISED(ID_MMFR2_EL1),
1201	ID_SANITISED(ID_MMFR3_EL1),
1202
1203	/* CRm=2 */
1204	ID_SANITISED(ID_ISAR0_EL1),
1205	ID_SANITISED(ID_ISAR1_EL1),
1206	ID_SANITISED(ID_ISAR2_EL1),
1207	ID_SANITISED(ID_ISAR3_EL1),
1208	ID_SANITISED(ID_ISAR4_EL1),
1209	ID_SANITISED(ID_ISAR5_EL1),
1210	ID_SANITISED(ID_MMFR4_EL1),
1211	ID_UNALLOCATED(2,7),
1212
1213	/* CRm=3 */
1214	ID_SANITISED(MVFR0_EL1),
1215	ID_SANITISED(MVFR1_EL1),
1216	ID_SANITISED(MVFR2_EL1),
1217	ID_UNALLOCATED(3,3),
1218	ID_UNALLOCATED(3,4),
1219	ID_UNALLOCATED(3,5),
1220	ID_UNALLOCATED(3,6),
1221	ID_UNALLOCATED(3,7),
1222
1223	/* AArch64 ID registers */
1224	/* CRm=4 */
1225	ID_SANITISED(ID_AA64PFR0_EL1),
 
 
 
 
 
 
 
 
 
 
 
1226	ID_SANITISED(ID_AA64PFR1_EL1),
1227	ID_UNALLOCATED(4,2),
1228	ID_UNALLOCATED(4,3),
1229	ID_UNALLOCATED(4,4),
1230	ID_UNALLOCATED(4,5),
1231	ID_UNALLOCATED(4,6),
1232	ID_UNALLOCATED(4,7),
1233
1234	/* CRm=5 */
1235	ID_SANITISED(ID_AA64DFR0_EL1),
 
 
 
 
 
 
1236	ID_SANITISED(ID_AA64DFR1_EL1),
1237	ID_UNALLOCATED(5,2),
1238	ID_UNALLOCATED(5,3),
1239	ID_HIDDEN(ID_AA64AFR0_EL1),
1240	ID_HIDDEN(ID_AA64AFR1_EL1),
1241	ID_UNALLOCATED(5,6),
1242	ID_UNALLOCATED(5,7),
1243
1244	/* CRm=6 */
1245	ID_SANITISED(ID_AA64ISAR0_EL1),
1246	ID_SANITISED(ID_AA64ISAR1_EL1),
1247	ID_UNALLOCATED(6,2),
 
 
 
 
 
1248	ID_UNALLOCATED(6,3),
1249	ID_UNALLOCATED(6,4),
1250	ID_UNALLOCATED(6,5),
1251	ID_UNALLOCATED(6,6),
1252	ID_UNALLOCATED(6,7),
1253
1254	/* CRm=7 */
1255	ID_SANITISED(ID_AA64MMFR0_EL1),
1256	ID_SANITISED(ID_AA64MMFR1_EL1),
1257	ID_SANITISED(ID_AA64MMFR2_EL1),
1258	ID_UNALLOCATED(7,3),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1259	ID_UNALLOCATED(7,4),
1260	ID_UNALLOCATED(7,5),
1261	ID_UNALLOCATED(7,6),
1262	ID_UNALLOCATED(7,7),
1263
1264	{ SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
 
1265	{ SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
 
 
 
 
 
 
 
 
1266	{ SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
1267	{ SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
1268	{ SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
 
 
 
 
 
 
 
 
 
 
1269
1270	{ SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
1271	{ SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
1272	{ SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
1273
1274	{ SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
1275	{ SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
1276	{ SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
1277	{ SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
1278	{ SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
1279	{ SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
1280	{ SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
1281	{ SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
1282
 
 
 
1283	{ SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
1284	{ SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
1285
1286	{ SYS_DESC(SYS_PMINTENSET_EL1), access_pminten, reset_unknown, PMINTENSET_EL1 },
1287	{ SYS_DESC(SYS_PMINTENCLR_EL1), access_pminten, NULL, PMINTENSET_EL1 },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1288
1289	{ SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
 
 
1290	{ SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
1291
1292	{ SYS_DESC(SYS_LORSA_EL1), trap_undef },
1293	{ SYS_DESC(SYS_LOREA_EL1), trap_undef },
1294	{ SYS_DESC(SYS_LORN_EL1), trap_undef },
1295	{ SYS_DESC(SYS_LORC_EL1), trap_undef },
1296	{ SYS_DESC(SYS_LORID_EL1), trap_undef },
1297
1298	{ SYS_DESC(SYS_VBAR_EL1), NULL, reset_val, VBAR_EL1, 0 },
1299	{ SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
1300
1301	{ SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
1302	{ SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
1303	{ SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
1304	{ SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
1305	{ SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
1306	{ SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
 
 
1307	{ SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
1308	{ SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
1309	{ SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
1310	{ SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
1311
1312	{ SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
1313	{ SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
1314
1315	{ SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
1316
1317	{ SYS_DESC(SYS_CSSELR_EL1), NULL, reset_unknown, CSSELR_EL1 },
1318
1319	{ SYS_DESC(SYS_PMCR_EL0), access_pmcr, reset_pmcr, },
1320	{ SYS_DESC(SYS_PMCNTENSET_EL0), access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
1321	{ SYS_DESC(SYS_PMCNTENCLR_EL0), access_pmcnten, NULL, PMCNTENSET_EL0 },
1322	{ SYS_DESC(SYS_PMOVSCLR_EL0), access_pmovs, NULL, PMOVSSET_EL0 },
1323	{ SYS_DESC(SYS_PMSWINC_EL0), access_pmswinc, reset_unknown, PMSWINC_EL0 },
1324	{ SYS_DESC(SYS_PMSELR_EL0), access_pmselr, reset_unknown, PMSELR_EL0 },
1325	{ SYS_DESC(SYS_PMCEID0_EL0), access_pmceid },
1326	{ SYS_DESC(SYS_PMCEID1_EL0), access_pmceid },
1327	{ SYS_DESC(SYS_PMCCNTR_EL0), access_pmu_evcntr, reset_unknown, PMCCNTR_EL0 },
1328	{ SYS_DESC(SYS_PMXEVTYPER_EL0), access_pmu_evtyper },
1329	{ SYS_DESC(SYS_PMXEVCNTR_EL0), access_pmu_evcntr },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1330	/*
1331	 * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
1332	 * in 32bit mode. Here we choose to reset it as zero for consistency.
1333	 */
1334	{ SYS_DESC(SYS_PMUSERENR_EL0), access_pmuserenr, reset_val, PMUSERENR_EL0, 0 },
1335	{ SYS_DESC(SYS_PMOVSSET_EL0), access_pmovs, reset_unknown, PMOVSSET_EL0 },
 
 
 
1336
1337	{ SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
1338	{ SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
 
 
 
1339
1340	{ SYS_DESC(SYS_CNTP_TVAL_EL0), access_cntp_tval },
1341	{ SYS_DESC(SYS_CNTP_CTL_EL0), access_cntp_ctl },
1342	{ SYS_DESC(SYS_CNTP_CVAL_EL0), access_cntp_cval },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1343
1344	/* PMEVCNTRn_EL0 */
1345	PMU_PMEVCNTR_EL0(0),
1346	PMU_PMEVCNTR_EL0(1),
1347	PMU_PMEVCNTR_EL0(2),
1348	PMU_PMEVCNTR_EL0(3),
1349	PMU_PMEVCNTR_EL0(4),
1350	PMU_PMEVCNTR_EL0(5),
1351	PMU_PMEVCNTR_EL0(6),
1352	PMU_PMEVCNTR_EL0(7),
1353	PMU_PMEVCNTR_EL0(8),
1354	PMU_PMEVCNTR_EL0(9),
1355	PMU_PMEVCNTR_EL0(10),
1356	PMU_PMEVCNTR_EL0(11),
1357	PMU_PMEVCNTR_EL0(12),
1358	PMU_PMEVCNTR_EL0(13),
1359	PMU_PMEVCNTR_EL0(14),
1360	PMU_PMEVCNTR_EL0(15),
1361	PMU_PMEVCNTR_EL0(16),
1362	PMU_PMEVCNTR_EL0(17),
1363	PMU_PMEVCNTR_EL0(18),
1364	PMU_PMEVCNTR_EL0(19),
1365	PMU_PMEVCNTR_EL0(20),
1366	PMU_PMEVCNTR_EL0(21),
1367	PMU_PMEVCNTR_EL0(22),
1368	PMU_PMEVCNTR_EL0(23),
1369	PMU_PMEVCNTR_EL0(24),
1370	PMU_PMEVCNTR_EL0(25),
1371	PMU_PMEVCNTR_EL0(26),
1372	PMU_PMEVCNTR_EL0(27),
1373	PMU_PMEVCNTR_EL0(28),
1374	PMU_PMEVCNTR_EL0(29),
1375	PMU_PMEVCNTR_EL0(30),
1376	/* PMEVTYPERn_EL0 */
1377	PMU_PMEVTYPER_EL0(0),
1378	PMU_PMEVTYPER_EL0(1),
1379	PMU_PMEVTYPER_EL0(2),
1380	PMU_PMEVTYPER_EL0(3),
1381	PMU_PMEVTYPER_EL0(4),
1382	PMU_PMEVTYPER_EL0(5),
1383	PMU_PMEVTYPER_EL0(6),
1384	PMU_PMEVTYPER_EL0(7),
1385	PMU_PMEVTYPER_EL0(8),
1386	PMU_PMEVTYPER_EL0(9),
1387	PMU_PMEVTYPER_EL0(10),
1388	PMU_PMEVTYPER_EL0(11),
1389	PMU_PMEVTYPER_EL0(12),
1390	PMU_PMEVTYPER_EL0(13),
1391	PMU_PMEVTYPER_EL0(14),
1392	PMU_PMEVTYPER_EL0(15),
1393	PMU_PMEVTYPER_EL0(16),
1394	PMU_PMEVTYPER_EL0(17),
1395	PMU_PMEVTYPER_EL0(18),
1396	PMU_PMEVTYPER_EL0(19),
1397	PMU_PMEVTYPER_EL0(20),
1398	PMU_PMEVTYPER_EL0(21),
1399	PMU_PMEVTYPER_EL0(22),
1400	PMU_PMEVTYPER_EL0(23),
1401	PMU_PMEVTYPER_EL0(24),
1402	PMU_PMEVTYPER_EL0(25),
1403	PMU_PMEVTYPER_EL0(26),
1404	PMU_PMEVTYPER_EL0(27),
1405	PMU_PMEVTYPER_EL0(28),
1406	PMU_PMEVTYPER_EL0(29),
1407	PMU_PMEVTYPER_EL0(30),
1408	/*
1409	 * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
1410	 * in 32bit mode. Here we choose to reset it as zero for consistency.
1411	 */
1412	{ SYS_DESC(SYS_PMCCFILTR_EL0), access_pmu_evtyper, reset_val, PMCCFILTR_EL0, 0 },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1413
1414	{ SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
1415	{ SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
1416	{ SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x70 },
1417};
1418
1419static bool trap_dbgidr(struct kvm_vcpu *vcpu,
 
 
1420			struct sys_reg_params *p,
1421			const struct sys_reg_desc *r)
1422{
1423	if (p->is_write) {
1424		return ignore_write(vcpu, p);
1425	} else {
1426		u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1427		u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1428		u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
1429
1430		p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
1431			     (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
1432			     (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
1433			     | (6 << 16) | (el3 << 14) | (el3 << 12));
 
1434		return true;
1435	}
1436}
1437
1438static bool trap_debug32(struct kvm_vcpu *vcpu,
1439			 struct sys_reg_params *p,
1440			 const struct sys_reg_desc *r)
1441{
1442	if (p->is_write) {
1443		vcpu_cp14(vcpu, r->reg) = p->regval;
1444		vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
1445	} else {
1446		p->regval = vcpu_cp14(vcpu, r->reg);
1447	}
1448
1449	return true;
1450}
1451
1452/* AArch32 debug register mappings
1453 *
1454 * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
1455 * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
1456 *
1457 * All control registers and watchpoint value registers are mapped to
1458 * the lower 32 bits of their AArch64 equivalents. We share the trap
1459 * handlers with the above AArch64 code which checks what mode the
1460 * system is in.
1461 */
1462
1463static bool trap_xvr(struct kvm_vcpu *vcpu,
1464		     struct sys_reg_params *p,
1465		     const struct sys_reg_desc *rd)
1466{
1467	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
1468
1469	if (p->is_write) {
1470		u64 val = *dbg_reg;
1471
1472		val &= 0xffffffffUL;
1473		val |= p->regval << 32;
1474		*dbg_reg = val;
1475
1476		vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
1477	} else {
1478		p->regval = *dbg_reg >> 32;
1479	}
1480
1481	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
1482
1483	return true;
1484}
1485
1486#define DBG_BCR_BVR_WCR_WVR(n)						\
1487	/* DBGBVRn */							\
1488	{ Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, 	\
1489	/* DBGBCRn */							\
1490	{ Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },	\
1491	/* DBGWVRn */							\
1492	{ Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },	\
1493	/* DBGWCRn */							\
1494	{ Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
1495
1496#define DBGBXVR(n)							\
1497	{ Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n }
1498
1499/*
1500 * Trapped cp14 registers. We generally ignore most of the external
1501 * debug, on the principle that they don't really make sense to a
1502 * guest. Revisit this one day, would this principle change.
1503 */
1504static const struct sys_reg_desc cp14_regs[] = {
1505	/* DBGIDR */
1506	{ Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
1507	/* DBGDTRRXext */
1508	{ Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
1509
1510	DBG_BCR_BVR_WCR_WVR(0),
1511	/* DBGDSCRint */
1512	{ Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
1513	DBG_BCR_BVR_WCR_WVR(1),
1514	/* DBGDCCINT */
1515	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 },
1516	/* DBGDSCRext */
1517	{ Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 },
1518	DBG_BCR_BVR_WCR_WVR(2),
1519	/* DBGDTR[RT]Xint */
1520	{ Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
1521	/* DBGDTR[RT]Xext */
1522	{ Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
1523	DBG_BCR_BVR_WCR_WVR(3),
1524	DBG_BCR_BVR_WCR_WVR(4),
1525	DBG_BCR_BVR_WCR_WVR(5),
1526	/* DBGWFAR */
1527	{ Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
1528	/* DBGOSECCR */
1529	{ Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
1530	DBG_BCR_BVR_WCR_WVR(6),
1531	/* DBGVCR */
1532	{ Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 },
1533	DBG_BCR_BVR_WCR_WVR(7),
1534	DBG_BCR_BVR_WCR_WVR(8),
1535	DBG_BCR_BVR_WCR_WVR(9),
1536	DBG_BCR_BVR_WCR_WVR(10),
1537	DBG_BCR_BVR_WCR_WVR(11),
1538	DBG_BCR_BVR_WCR_WVR(12),
1539	DBG_BCR_BVR_WCR_WVR(13),
1540	DBG_BCR_BVR_WCR_WVR(14),
1541	DBG_BCR_BVR_WCR_WVR(15),
1542
1543	/* DBGDRAR (32bit) */
1544	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
1545
1546	DBGBXVR(0),
1547	/* DBGOSLAR */
1548	{ Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
1549	DBGBXVR(1),
1550	/* DBGOSLSR */
1551	{ Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
1552	DBGBXVR(2),
1553	DBGBXVR(3),
1554	/* DBGOSDLR */
1555	{ Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
1556	DBGBXVR(4),
1557	/* DBGPRCR */
1558	{ Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
1559	DBGBXVR(5),
1560	DBGBXVR(6),
1561	DBGBXVR(7),
1562	DBGBXVR(8),
1563	DBGBXVR(9),
1564	DBGBXVR(10),
1565	DBGBXVR(11),
1566	DBGBXVR(12),
1567	DBGBXVR(13),
1568	DBGBXVR(14),
1569	DBGBXVR(15),
1570
1571	/* DBGDSAR (32bit) */
1572	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
1573
1574	/* DBGDEVID2 */
1575	{ Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
1576	/* DBGDEVID1 */
1577	{ Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
1578	/* DBGDEVID */
1579	{ Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
1580	/* DBGCLAIMSET */
1581	{ Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
1582	/* DBGCLAIMCLR */
1583	{ Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
1584	/* DBGAUTHSTATUS */
1585	{ Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
1586};
1587
1588/* Trapped cp14 64bit registers */
1589static const struct sys_reg_desc cp14_64_regs[] = {
1590	/* DBGDRAR (64bit) */
1591	{ Op1( 0), CRm( 1), .access = trap_raz_wi },
1592
1593	/* DBGDSAR (64bit) */
1594	{ Op1( 0), CRm( 2), .access = trap_raz_wi },
1595};
1596
 
 
 
 
 
1597/* Macro to expand the PMEVCNTRn register */
1598#define PMU_PMEVCNTR(n)							\
1599	/* PMEVCNTRn */							\
1600	{ Op1(0), CRn(0b1110),						\
1601	  CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),		\
1602	  access_pmu_evcntr }
1603
1604/* Macro to expand the PMEVTYPERn register */
1605#define PMU_PMEVTYPER(n)						\
1606	/* PMEVTYPERn */						\
1607	{ Op1(0), CRn(0b1110),						\
1608	  CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),		\
1609	  access_pmu_evtyper }
1610
1611/*
1612 * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
1613 * depending on the way they are accessed (as a 32bit or a 64bit
1614 * register).
1615 */
1616static const struct sys_reg_desc cp15_regs[] = {
1617	{ Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
1618
1619	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
1620	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1621	{ Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
1622	{ Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
1623	{ Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
1624	{ Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
1625	{ Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
1626	{ Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
1627	{ Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
1628	{ Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
1629	{ Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
 
 
 
 
 
 
 
 
 
 
 
1630
1631	/*
1632	 * DC{C,I,CI}SW operations:
1633	 */
1634	{ Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
1635	{ Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
1636	{ Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
1637
1638	/* PMU */
1639	{ Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
1640	{ Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
1641	{ Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
1642	{ Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
1643	{ Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
1644	{ Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
1645	{ Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
1646	{ Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
1647	{ Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
1648	{ Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
1649	{ Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
1650	{ Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
1651	{ Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
1652	{ Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
1653	{ Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
1654
1655	{ Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
1656	{ Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
1657	{ Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
1658	{ Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
 
 
 
 
 
 
 
 
1659
1660	/* ICC_SRE */
1661	{ Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
1662
1663	{ Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
1664
1665	/* CNTP_TVAL */
1666	{ Op1( 0), CRn(14), CRm( 2), Op2( 0), access_cntp_tval },
1667	/* CNTP_CTL */
1668	{ Op1( 0), CRn(14), CRm( 2), Op2( 1), access_cntp_ctl },
1669
1670	/* PMEVCNTRn */
1671	PMU_PMEVCNTR(0),
1672	PMU_PMEVCNTR(1),
1673	PMU_PMEVCNTR(2),
1674	PMU_PMEVCNTR(3),
1675	PMU_PMEVCNTR(4),
1676	PMU_PMEVCNTR(5),
1677	PMU_PMEVCNTR(6),
1678	PMU_PMEVCNTR(7),
1679	PMU_PMEVCNTR(8),
1680	PMU_PMEVCNTR(9),
1681	PMU_PMEVCNTR(10),
1682	PMU_PMEVCNTR(11),
1683	PMU_PMEVCNTR(12),
1684	PMU_PMEVCNTR(13),
1685	PMU_PMEVCNTR(14),
1686	PMU_PMEVCNTR(15),
1687	PMU_PMEVCNTR(16),
1688	PMU_PMEVCNTR(17),
1689	PMU_PMEVCNTR(18),
1690	PMU_PMEVCNTR(19),
1691	PMU_PMEVCNTR(20),
1692	PMU_PMEVCNTR(21),
1693	PMU_PMEVCNTR(22),
1694	PMU_PMEVCNTR(23),
1695	PMU_PMEVCNTR(24),
1696	PMU_PMEVCNTR(25),
1697	PMU_PMEVCNTR(26),
1698	PMU_PMEVCNTR(27),
1699	PMU_PMEVCNTR(28),
1700	PMU_PMEVCNTR(29),
1701	PMU_PMEVCNTR(30),
1702	/* PMEVTYPERn */
1703	PMU_PMEVTYPER(0),
1704	PMU_PMEVTYPER(1),
1705	PMU_PMEVTYPER(2),
1706	PMU_PMEVTYPER(3),
1707	PMU_PMEVTYPER(4),
1708	PMU_PMEVTYPER(5),
1709	PMU_PMEVTYPER(6),
1710	PMU_PMEVTYPER(7),
1711	PMU_PMEVTYPER(8),
1712	PMU_PMEVTYPER(9),
1713	PMU_PMEVTYPER(10),
1714	PMU_PMEVTYPER(11),
1715	PMU_PMEVTYPER(12),
1716	PMU_PMEVTYPER(13),
1717	PMU_PMEVTYPER(14),
1718	PMU_PMEVTYPER(15),
1719	PMU_PMEVTYPER(16),
1720	PMU_PMEVTYPER(17),
1721	PMU_PMEVTYPER(18),
1722	PMU_PMEVTYPER(19),
1723	PMU_PMEVTYPER(20),
1724	PMU_PMEVTYPER(21),
1725	PMU_PMEVTYPER(22),
1726	PMU_PMEVTYPER(23),
1727	PMU_PMEVTYPER(24),
1728	PMU_PMEVTYPER(25),
1729	PMU_PMEVTYPER(26),
1730	PMU_PMEVTYPER(27),
1731	PMU_PMEVTYPER(28),
1732	PMU_PMEVTYPER(29),
1733	PMU_PMEVTYPER(30),
1734	/* PMCCFILTR */
1735	{ Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
 
 
 
 
 
 
 
 
1736};
1737
1738static const struct sys_reg_desc cp15_64_regs[] = {
1739	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1740	{ Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
1741	{ Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
1742	{ Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
1743	{ Op1( 2), CRn( 0), CRm(14), Op2( 0), access_cntp_cval },
 
 
 
 
1744};
1745
1746/* Target specific emulation tables */
1747static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
1748
1749void kvm_register_target_sys_reg_table(unsigned int target,
1750				       struct kvm_sys_reg_target_table *table)
1751{
1752	target_tables[target] = table;
1753}
1754
1755/* Get specific register table for this target. */
1756static const struct sys_reg_desc *get_target_table(unsigned target,
1757						   bool mode_is_64,
1758						   size_t *num)
1759{
1760	struct kvm_sys_reg_target_table *table;
1761
1762	table = target_tables[target];
1763	if (mode_is_64) {
1764		*num = table->table64.num;
1765		return table->table64.table;
1766	} else {
1767		*num = table->table32.num;
1768		return table->table32.table;
1769	}
1770}
1771
1772#define reg_to_match_value(x)						\
1773	({								\
1774		unsigned long val;					\
1775		val  = (x)->Op0 << 14;					\
1776		val |= (x)->Op1 << 11;					\
1777		val |= (x)->CRn << 7;					\
1778		val |= (x)->CRm << 3;					\
1779		val |= (x)->Op2;					\
1780		val;							\
1781	 })
1782
1783static int match_sys_reg(const void *key, const void *elt)
1784{
1785	const unsigned long pval = (unsigned long)key;
1786	const struct sys_reg_desc *r = elt;
1787
1788	return pval - reg_to_match_value(r);
1789}
1790
1791static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
1792					 const struct sys_reg_desc table[],
1793					 unsigned int num)
1794{
1795	unsigned long pval = reg_to_match_value(params);
1796
1797	return bsearch((void *)pval, table, num, sizeof(table[0]), match_sys_reg);
1798}
1799
1800int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
1801{
1802	kvm_inject_undefined(vcpu);
1803	return 1;
1804}
1805
1806static void perform_access(struct kvm_vcpu *vcpu,
1807			   struct sys_reg_params *params,
1808			   const struct sys_reg_desc *r)
1809{
 
 
 
 
 
 
 
 
1810	/*
1811	 * Not having an accessor means that we have configured a trap
1812	 * that we don't know how to handle. This certainly qualifies
1813	 * as a gross bug that should be fixed right away.
1814	 */
1815	BUG_ON(!r->access);
1816
1817	/* Skip instruction if instructed so */
1818	if (likely(r->access(vcpu, params, r)))
1819		kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1820}
1821
1822/*
1823 * emulate_cp --  tries to match a sys_reg access in a handling table, and
1824 *                call the corresponding trap handler.
1825 *
1826 * @params: pointer to the descriptor of the access
1827 * @table: array of trap descriptors
1828 * @num: size of the trap descriptor array
1829 *
1830 * Return 0 if the access has been handled, and -1 if not.
1831 */
1832static int emulate_cp(struct kvm_vcpu *vcpu,
1833		      struct sys_reg_params *params,
1834		      const struct sys_reg_desc *table,
1835		      size_t num)
1836{
1837	const struct sys_reg_desc *r;
1838
1839	if (!table)
1840		return -1;	/* Not handled */
1841
1842	r = find_reg(params, table, num);
1843
1844	if (r) {
1845		perform_access(vcpu, params, r);
1846		return 0;
1847	}
1848
1849	/* Not handled */
1850	return -1;
1851}
1852
1853static void unhandled_cp_access(struct kvm_vcpu *vcpu,
1854				struct sys_reg_params *params)
1855{
1856	u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
1857	int cp = -1;
1858
1859	switch(hsr_ec) {
1860	case ESR_ELx_EC_CP15_32:
1861	case ESR_ELx_EC_CP15_64:
1862		cp = 15;
1863		break;
1864	case ESR_ELx_EC_CP14_MR:
1865	case ESR_ELx_EC_CP14_64:
1866		cp = 14;
1867		break;
1868	default:
1869		WARN_ON(1);
1870	}
1871
1872	kvm_err("Unsupported guest CP%d access at: %08lx\n",
1873		cp, *vcpu_pc(vcpu));
1874	print_sys_reg_instr(params);
1875	kvm_inject_undefined(vcpu);
1876}
1877
1878/**
1879 * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
1880 * @vcpu: The VCPU pointer
1881 * @run:  The kvm_run struct
1882 */
1883static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
1884			    const struct sys_reg_desc *global,
1885			    size_t nr_global,
1886			    const struct sys_reg_desc *target_specific,
1887			    size_t nr_specific)
1888{
1889	struct sys_reg_params params;
1890	u32 hsr = kvm_vcpu_get_hsr(vcpu);
1891	int Rt = kvm_vcpu_sys_get_rt(vcpu);
1892	int Rt2 = (hsr >> 10) & 0x1f;
1893
1894	params.is_aarch32 = true;
1895	params.is_32bit = false;
1896	params.CRm = (hsr >> 1) & 0xf;
1897	params.is_write = ((hsr & 1) == 0);
1898
1899	params.Op0 = 0;
1900	params.Op1 = (hsr >> 16) & 0xf;
1901	params.Op2 = 0;
1902	params.CRn = 0;
1903
1904	/*
1905	 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
1906	 * backends between AArch32 and AArch64, we get away with it.
1907	 */
1908	if (params.is_write) {
1909		params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
1910		params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
1911	}
1912
1913	/*
1914	 * Try to emulate the coprocessor access using the target
1915	 * specific table first, and using the global table afterwards.
1916	 * If either of the tables contains a handler, handle the
1917	 * potential register operation in the case of a read and return
1918	 * with success.
1919	 */
1920	if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
1921	    !emulate_cp(vcpu, &params, global, nr_global)) {
1922		/* Split up the value between registers for the read side */
1923		if (!params.is_write) {
1924			vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
1925			vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
1926		}
1927
1928		return 1;
1929	}
1930
1931	unhandled_cp_access(vcpu, &params);
1932	return 1;
1933}
1934
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1935/**
1936 * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
1937 * @vcpu: The VCPU pointer
1938 * @run:  The kvm_run struct
1939 */
1940static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
 
1941			    const struct sys_reg_desc *global,
1942			    size_t nr_global,
1943			    const struct sys_reg_desc *target_specific,
1944			    size_t nr_specific)
1945{
1946	struct sys_reg_params params;
1947	u32 hsr = kvm_vcpu_get_hsr(vcpu);
1948	int Rt  = kvm_vcpu_sys_get_rt(vcpu);
1949
1950	params.is_aarch32 = true;
1951	params.is_32bit = true;
1952	params.CRm = (hsr >> 1) & 0xf;
1953	params.regval = vcpu_get_reg(vcpu, Rt);
1954	params.is_write = ((hsr & 1) == 0);
1955	params.CRn = (hsr >> 10) & 0xf;
1956	params.Op0 = 0;
1957	params.Op1 = (hsr >> 14) & 0x7;
1958	params.Op2 = (hsr >> 17) & 0x7;
1959
1960	if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
1961	    !emulate_cp(vcpu, &params, global, nr_global)) {
1962		if (!params.is_write)
1963			vcpu_set_reg(vcpu, Rt, params.regval);
1964		return 1;
1965	}
1966
1967	unhandled_cp_access(vcpu, &params);
1968	return 1;
1969}
1970
1971int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
1972{
1973	const struct sys_reg_desc *target_specific;
1974	size_t num;
1975
1976	target_specific = get_target_table(vcpu->arch.target, false, &num);
1977	return kvm_handle_cp_64(vcpu,
1978				cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
1979				target_specific, num);
1980}
1981
1982int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
1983{
1984	const struct sys_reg_desc *target_specific;
1985	size_t num;
 
1986
1987	target_specific = get_target_table(vcpu->arch.target, false, &num);
1988	return kvm_handle_cp_32(vcpu,
1989				cp15_regs, ARRAY_SIZE(cp15_regs),
1990				target_specific, num);
 
 
 
 
 
 
1991}
1992
1993int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
1994{
1995	return kvm_handle_cp_64(vcpu,
1996				cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
1997				NULL, 0);
1998}
1999
2000int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
2001{
2002	return kvm_handle_cp_32(vcpu,
2003				cp14_regs, ARRAY_SIZE(cp14_regs),
2004				NULL, 0);
 
 
2005}
2006
2007static int emulate_sys_reg(struct kvm_vcpu *vcpu,
2008			   struct sys_reg_params *params)
2009{
2010	size_t num;
2011	const struct sys_reg_desc *table, *r;
 
2012
2013	table = get_target_table(vcpu->arch.target, true, &num);
 
 
 
 
 
 
 
 
 
 
2014
2015	/* Search target-specific then generic table. */
2016	r = find_reg(params, table, num);
2017	if (!r)
2018		r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2019
2020	if (likely(r)) {
2021		perform_access(vcpu, params, r);
 
 
 
 
 
2022	} else {
2023		kvm_err("Unsupported guest sys_reg access at: %lx\n",
2024			*vcpu_pc(vcpu));
2025		print_sys_reg_instr(params);
2026		kvm_inject_undefined(vcpu);
2027	}
2028	return 1;
2029}
2030
2031static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
2032			      const struct sys_reg_desc *table, size_t num)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2033{
2034	unsigned long i;
2035
2036	for (i = 0; i < num; i++)
2037		if (table[i].reset)
2038			table[i].reset(vcpu, &table[i]);
 
 
 
 
 
 
 
 
2039}
2040
2041/**
2042 * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
2043 * @vcpu: The VCPU pointer
2044 * @run:  The kvm_run struct
2045 */
2046int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
2047{
2048	struct sys_reg_params params;
2049	unsigned long esr = kvm_vcpu_get_hsr(vcpu);
2050	int Rt = kvm_vcpu_sys_get_rt(vcpu);
2051	int ret;
2052
2053	trace_kvm_handle_sys_reg(esr);
2054
2055	params.is_aarch32 = false;
2056	params.is_32bit = false;
2057	params.Op0 = (esr >> 20) & 3;
2058	params.Op1 = (esr >> 14) & 0x7;
2059	params.CRn = (esr >> 10) & 0xf;
2060	params.CRm = (esr >> 1) & 0xf;
2061	params.Op2 = (esr >> 17) & 0x7;
2062	params.regval = vcpu_get_reg(vcpu, Rt);
2063	params.is_write = !(esr & 1);
2064
2065	ret = emulate_sys_reg(vcpu, &params);
 
2066
2067	if (!params.is_write)
2068		vcpu_set_reg(vcpu, Rt, params.regval);
2069	return ret;
2070}
2071
2072/******************************************************************************
2073 * Userspace API
2074 *****************************************************************************/
2075
2076static bool index_to_params(u64 id, struct sys_reg_params *params)
2077{
2078	switch (id & KVM_REG_SIZE_MASK) {
2079	case KVM_REG_SIZE_U64:
2080		/* Any unused index bits means it's not valid. */
2081		if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
2082			      | KVM_REG_ARM_COPROC_MASK
2083			      | KVM_REG_ARM64_SYSREG_OP0_MASK
2084			      | KVM_REG_ARM64_SYSREG_OP1_MASK
2085			      | KVM_REG_ARM64_SYSREG_CRN_MASK
2086			      | KVM_REG_ARM64_SYSREG_CRM_MASK
2087			      | KVM_REG_ARM64_SYSREG_OP2_MASK))
2088			return false;
2089		params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
2090			       >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
2091		params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
2092			       >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
2093		params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
2094			       >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
2095		params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
2096			       >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
2097		params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
2098			       >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
2099		return true;
2100	default:
2101		return false;
2102	}
2103}
2104
2105const struct sys_reg_desc *find_reg_by_id(u64 id,
2106					  struct sys_reg_params *params,
2107					  const struct sys_reg_desc table[],
2108					  unsigned int num)
2109{
2110	if (!index_to_params(id, params))
 
 
2111		return NULL;
2112
2113	return find_reg(params, table, num);
2114}
2115
2116/* Decode an index value, and find the sys_reg_desc entry. */
2117static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
2118						    u64 id)
 
 
2119{
2120	size_t num;
2121	const struct sys_reg_desc *table, *r;
2122	struct sys_reg_params params;
2123
2124	/* We only do sys_reg for now. */
2125	if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
2126		return NULL;
2127
2128	table = get_target_table(vcpu->arch.target, true, &num);
2129	r = find_reg_by_id(id, &params, table, num);
2130	if (!r)
2131		r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2132
2133	/* Not saved in the sys_reg array and not otherwise accessible? */
2134	if (r && !(r->reg || r->get_user))
2135		r = NULL;
2136
2137	return r;
2138}
2139
2140/*
2141 * These are the invariant sys_reg registers: we let the guest see the
2142 * host versions of these, so they're part of the guest state.
2143 *
2144 * A future CPU may provide a mechanism to present different values to
2145 * the guest, or a future kvm may trap them.
2146 */
2147
2148#define FUNCTION_INVARIANT(reg)						\
2149	static void get_##reg(struct kvm_vcpu *v,			\
2150			      const struct sys_reg_desc *r)		\
2151	{								\
2152		((struct sys_reg_desc *)r)->val = read_sysreg(reg);	\
 
2153	}
2154
2155FUNCTION_INVARIANT(midr_el1)
2156FUNCTION_INVARIANT(ctr_el0)
2157FUNCTION_INVARIANT(revidr_el1)
2158FUNCTION_INVARIANT(clidr_el1)
2159FUNCTION_INVARIANT(aidr_el1)
2160
 
 
 
 
 
 
2161/* ->val is filled in by kvm_sys_reg_table_init() */
2162static struct sys_reg_desc invariant_sys_regs[] = {
2163	{ SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
2164	{ SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
2165	{ SYS_DESC(SYS_CLIDR_EL1), NULL, get_clidr_el1 },
2166	{ SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
2167	{ SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
2168};
2169
2170static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
2171{
2172	if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
2173		return -EFAULT;
2174	return 0;
2175}
2176
2177static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
2178{
2179	if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
2180		return -EFAULT;
2181	return 0;
2182}
2183
2184static int get_invariant_sys_reg(u64 id, void __user *uaddr)
2185{
2186	struct sys_reg_params params;
2187	const struct sys_reg_desc *r;
2188
2189	r = find_reg_by_id(id, &params, invariant_sys_regs,
2190			   ARRAY_SIZE(invariant_sys_regs));
2191	if (!r)
2192		return -ENOENT;
2193
2194	return reg_to_user(uaddr, &r->val, id);
2195}
2196
2197static int set_invariant_sys_reg(u64 id, void __user *uaddr)
2198{
2199	struct sys_reg_params params;
2200	const struct sys_reg_desc *r;
2201	int err;
2202	u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
2203
2204	r = find_reg_by_id(id, &params, invariant_sys_regs,
2205			   ARRAY_SIZE(invariant_sys_regs));
2206	if (!r)
2207		return -ENOENT;
2208
2209	err = reg_from_user(&val, uaddr, id);
2210	if (err)
2211		return err;
2212
2213	/* This is what we mean by invariant: you can't change it. */
2214	if (r->val != val)
2215		return -EINVAL;
2216
2217	return 0;
2218}
2219
2220static bool is_valid_cache(u32 val)
2221{
2222	u32 level, ctype;
2223
2224	if (val >= CSSELR_MAX)
2225		return false;
2226
2227	/* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
2228	level = (val >> 1);
2229	ctype = (cache_levels >> (level * 3)) & 7;
2230
2231	switch (ctype) {
2232	case 0: /* No cache */
2233		return false;
2234	case 1: /* Instruction cache only */
2235		return (val & 1);
2236	case 2: /* Data cache only */
2237	case 4: /* Unified cache */
2238		return !(val & 1);
2239	case 3: /* Separate instruction and data caches */
2240		return true;
2241	default: /* Reserved: we can't know instruction or data. */
2242		return false;
2243	}
2244}
2245
2246static int demux_c15_get(u64 id, void __user *uaddr)
2247{
2248	u32 val;
2249	u32 __user *uval = uaddr;
2250
2251	/* Fail if we have unknown bits set. */
2252	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2253		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2254		return -ENOENT;
2255
2256	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2257	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2258		if (KVM_REG_SIZE(id) != 4)
2259			return -ENOENT;
2260		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2261			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2262		if (!is_valid_cache(val))
2263			return -ENOENT;
2264
2265		return put_user(get_ccsidr(val), uval);
2266	default:
2267		return -ENOENT;
2268	}
2269}
2270
2271static int demux_c15_set(u64 id, void __user *uaddr)
2272{
2273	u32 val, newval;
2274	u32 __user *uval = uaddr;
2275
2276	/* Fail if we have unknown bits set. */
2277	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2278		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2279		return -ENOENT;
2280
2281	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2282	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2283		if (KVM_REG_SIZE(id) != 4)
2284			return -ENOENT;
2285		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2286			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2287		if (!is_valid_cache(val))
2288			return -ENOENT;
2289
2290		if (get_user(newval, uval))
2291			return -EFAULT;
2292
2293		/* This is also invariant: you can't change it. */
2294		if (newval != get_ccsidr(val))
2295			return -EINVAL;
2296		return 0;
2297	default:
2298		return -ENOENT;
2299	}
2300}
2301
2302int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 
2303{
 
2304	const struct sys_reg_desc *r;
2305	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2306
2307	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2308		return demux_c15_get(reg->id, uaddr);
2309
2310	if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
 
2311		return -ENOENT;
2312
2313	r = index_to_sys_reg_desc(vcpu, reg->id);
2314	if (!r)
2315		return get_invariant_sys_reg(reg->id, uaddr);
 
 
 
2316
2317	if (r->get_user)
2318		return (r->get_user)(vcpu, r, reg, uaddr);
2319
2320	return reg_to_user(uaddr, &__vcpu_sys_reg(vcpu, r->reg), reg->id);
2321}
2322
2323int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2324{
2325	const struct sys_reg_desc *r;
2326	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
 
2327
2328	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2329		return demux_c15_set(reg->id, uaddr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2330
2331	if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
 
 
 
 
2332		return -ENOENT;
2333
2334	r = index_to_sys_reg_desc(vcpu, reg->id);
2335	if (!r)
2336		return set_invariant_sys_reg(reg->id, uaddr);
2337
2338	if (r->set_user)
2339		return (r->set_user)(vcpu, r, reg, uaddr);
 
 
 
 
2340
2341	return reg_from_user(&__vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
2342}
2343
2344static unsigned int num_demux_regs(void)
2345{
2346	unsigned int i, count = 0;
 
2347
2348	for (i = 0; i < CSSELR_MAX; i++)
2349		if (is_valid_cache(i))
2350			count++;
 
 
 
2351
2352	return count;
 
 
 
 
 
 
2353}
2354
2355static int write_demux_regids(u64 __user *uindices)
2356{
2357	u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
2358	unsigned int i;
2359
2360	val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
2361	for (i = 0; i < CSSELR_MAX; i++) {
2362		if (!is_valid_cache(i))
2363			continue;
2364		if (put_user(val | i, uindices))
2365			return -EFAULT;
2366		uindices++;
2367	}
2368	return 0;
2369}
2370
2371static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
2372{
2373	return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
2374		KVM_REG_ARM64_SYSREG |
2375		(reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
2376		(reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
2377		(reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
2378		(reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
2379		(reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
2380}
2381
2382static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
2383{
2384	if (!*uind)
2385		return true;
2386
2387	if (put_user(sys_reg_to_index(reg), *uind))
2388		return false;
2389
2390	(*uind)++;
2391	return true;
2392}
2393
2394static int walk_one_sys_reg(const struct sys_reg_desc *rd,
 
2395			    u64 __user **uind,
2396			    unsigned int *total)
2397{
2398	/*
2399	 * Ignore registers we trap but don't save,
2400	 * and for which no custom user accessor is provided.
2401	 */
2402	if (!(rd->reg || rd->get_user))
2403		return 0;
2404
 
 
 
2405	if (!copy_reg_to_user(rd, uind))
2406		return -EFAULT;
2407
2408	(*total)++;
2409	return 0;
2410}
2411
2412/* Assumed ordered tables, see kvm_sys_reg_table_init. */
2413static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
2414{
2415	const struct sys_reg_desc *i1, *i2, *end1, *end2;
2416	unsigned int total = 0;
2417	size_t num;
2418	int err;
2419
2420	/* We check for duplicates here, to allow arch-specific overrides. */
2421	i1 = get_target_table(vcpu->arch.target, true, &num);
2422	end1 = i1 + num;
2423	i2 = sys_reg_descs;
2424	end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
2425
2426	BUG_ON(i1 == end1 || i2 == end2);
2427
2428	/* Walk carefully, as both tables may refer to the same register. */
2429	while (i1 || i2) {
2430		int cmp = cmp_sys_reg(i1, i2);
2431		/* target-specific overrides generic entry. */
2432		if (cmp <= 0)
2433			err = walk_one_sys_reg(i1, &uind, &total);
2434		else
2435			err = walk_one_sys_reg(i2, &uind, &total);
2436
2437		if (err)
2438			return err;
2439
2440		if (cmp <= 0 && ++i1 == end1)
2441			i1 = NULL;
2442		if (cmp >= 0 && ++i2 == end2)
2443			i2 = NULL;
2444	}
2445	return total;
2446}
2447
2448unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
2449{
2450	return ARRAY_SIZE(invariant_sys_regs)
2451		+ num_demux_regs()
2452		+ walk_sys_regs(vcpu, (u64 __user *)NULL);
2453}
2454
2455int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
2456{
2457	unsigned int i;
2458	int err;
2459
2460	/* Then give them all the invariant registers' indices. */
2461	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
2462		if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
2463			return -EFAULT;
2464		uindices++;
2465	}
2466
2467	err = walk_sys_regs(vcpu, uindices);
2468	if (err < 0)
2469		return err;
2470	uindices += err;
2471
2472	return write_demux_regids(uindices);
2473}
2474
2475static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
 
 
 
 
 
 
 
2476{
2477	unsigned int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2478
2479	for (i = 1; i < n; i++) {
2480		if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2481			kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
2482			return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2483		}
 
 
 
2484	}
2485
2486	return 0;
2487}
2488
2489void kvm_sys_reg_table_init(void)
2490{
 
 
2491	unsigned int i;
2492	struct sys_reg_desc clidr;
2493
2494	/* Make sure tables are unique and in order. */
2495	BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
2496	BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
2497	BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
2498	BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
2499	BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
2500	BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));
 
 
 
2501
2502	/* We abuse the reset function to overwrite the table itself. */
2503	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
2504		invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
2505
2506	/*
2507	 * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
2508	 *
2509	 *   If software reads the Cache Type fields from Ctype1
2510	 *   upwards, once it has seen a value of 0b000, no caches
2511	 *   exist at further-out levels of the hierarchy. So, for
2512	 *   example, if Ctype3 is the first Cache Type field with a
2513	 *   value of 0b000, the values of Ctype4 to Ctype7 must be
2514	 *   ignored.
2515	 */
2516	get_clidr_el1(NULL, &clidr); /* Ugly... */
2517	cache_levels = clidr.val;
2518	for (i = 0; i < 7; i++)
2519		if (((cache_levels >> (i*3)) & 7) == 0)
2520			break;
2521	/* Clear all higher bits. */
2522	cache_levels &= (1 << (i*3))-1;
2523}
2524
2525/**
2526 * kvm_reset_sys_regs - sets system registers to reset value
2527 * @vcpu: The VCPU pointer
2528 *
2529 * This function finds the right table above and sets the registers on the
2530 * virtual CPU struct to their architecturally defined reset values.
2531 */
2532void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
2533{
2534	size_t num;
2535	const struct sys_reg_desc *table;
2536
2537	/* Catch someone adding a register without putting in reset entry. */
2538	memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs));
2539
2540	/* Generic chip reset first (so target could override). */
2541	reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2542
2543	table = get_target_table(vcpu->arch.target, true, &num);
2544	reset_sys_reg_descs(vcpu, table, num);
2545
2546	for (num = 1; num < NR_SYS_REGS; num++)
2547		if (__vcpu_sys_reg(vcpu, num) == 0x4242424242424242)
2548			panic("Didn't reset __vcpu_sys_reg(%zi)", num);
2549}
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2012,2013 - ARM Ltd
   4 * Author: Marc Zyngier <marc.zyngier@arm.com>
   5 *
   6 * Derived from arch/arm/kvm/coproc.c:
   7 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
   8 * Authors: Rusty Russell <rusty@rustcorp.com.au>
   9 *          Christoffer Dall <c.dall@virtualopensystems.com>
 
 
 
 
 
 
 
 
 
 
 
 
  10 */
  11
  12#include <linux/bitfield.h>
  13#include <linux/bsearch.h>
  14#include <linux/cacheinfo.h>
  15#include <linux/kvm_host.h>
  16#include <linux/mm.h>
  17#include <linux/printk.h>
  18#include <linux/uaccess.h>
  19
  20#include <asm/cacheflush.h>
  21#include <asm/cputype.h>
  22#include <asm/debug-monitors.h>
  23#include <asm/esr.h>
  24#include <asm/kvm_arm.h>
 
 
  25#include <asm/kvm_emulate.h>
 
  26#include <asm/kvm_hyp.h>
  27#include <asm/kvm_mmu.h>
  28#include <asm/kvm_nested.h>
  29#include <asm/perf_event.h>
  30#include <asm/sysreg.h>
  31
  32#include <trace/events/kvm.h>
  33
  34#include "sys_regs.h"
  35
  36#include "trace.h"
  37
  38/*
 
 
 
 
 
  39 * For AArch32, we only take care of what is being trapped. Anything
  40 * that has to do with init and userspace access has to go via the
  41 * 64bit interface.
  42 */
  43
  44static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
  45static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
  46		      u64 val);
  47
  48static bool bad_trap(struct kvm_vcpu *vcpu,
  49		     struct sys_reg_params *params,
  50		     const struct sys_reg_desc *r,
  51		     const char *msg)
  52{
  53	WARN_ONCE(1, "Unexpected %s\n", msg);
  54	print_sys_reg_instr(params);
  55	kvm_inject_undefined(vcpu);
  56	return false;
  57}
  58
  59static bool read_from_write_only(struct kvm_vcpu *vcpu,
  60				 struct sys_reg_params *params,
  61				 const struct sys_reg_desc *r)
  62{
  63	return bad_trap(vcpu, params, r,
  64			"sys_reg read to write-only register");
  65}
  66
  67static bool write_to_read_only(struct kvm_vcpu *vcpu,
  68			       struct sys_reg_params *params,
  69			       const struct sys_reg_desc *r)
  70{
  71	return bad_trap(vcpu, params, r,
  72			"sys_reg write to read-only register");
 
 
  73}
  74
  75#define PURE_EL2_SYSREG(el2)						\
  76	case el2: {							\
  77		*el1r = el2;						\
  78		return true;						\
  79	}
  80
  81#define MAPPED_EL2_SYSREG(el2, el1, fn)					\
  82	case el2: {							\
  83		*xlate = fn;						\
  84		*el1r = el1;						\
  85		return true;						\
  86	}
  87
  88static bool get_el2_to_el1_mapping(unsigned int reg,
  89				   unsigned int *el1r, u64 (**xlate)(u64))
  90{
  91	switch (reg) {
  92		PURE_EL2_SYSREG(  VPIDR_EL2	);
  93		PURE_EL2_SYSREG(  VMPIDR_EL2	);
  94		PURE_EL2_SYSREG(  ACTLR_EL2	);
  95		PURE_EL2_SYSREG(  HCR_EL2	);
  96		PURE_EL2_SYSREG(  MDCR_EL2	);
  97		PURE_EL2_SYSREG(  HSTR_EL2	);
  98		PURE_EL2_SYSREG(  HACR_EL2	);
  99		PURE_EL2_SYSREG(  VTTBR_EL2	);
 100		PURE_EL2_SYSREG(  VTCR_EL2	);
 101		PURE_EL2_SYSREG(  RVBAR_EL2	);
 102		PURE_EL2_SYSREG(  TPIDR_EL2	);
 103		PURE_EL2_SYSREG(  HPFAR_EL2	);
 104		PURE_EL2_SYSREG(  CNTHCTL_EL2	);
 105		MAPPED_EL2_SYSREG(SCTLR_EL2,   SCTLR_EL1,
 106				  translate_sctlr_el2_to_sctlr_el1	     );
 107		MAPPED_EL2_SYSREG(CPTR_EL2,    CPACR_EL1,
 108				  translate_cptr_el2_to_cpacr_el1	     );
 109		MAPPED_EL2_SYSREG(TTBR0_EL2,   TTBR0_EL1,
 110				  translate_ttbr0_el2_to_ttbr0_el1	     );
 111		MAPPED_EL2_SYSREG(TTBR1_EL2,   TTBR1_EL1,   NULL	     );
 112		MAPPED_EL2_SYSREG(TCR_EL2,     TCR_EL1,
 113				  translate_tcr_el2_to_tcr_el1		     );
 114		MAPPED_EL2_SYSREG(VBAR_EL2,    VBAR_EL1,    NULL	     );
 115		MAPPED_EL2_SYSREG(AFSR0_EL2,   AFSR0_EL1,   NULL	     );
 116		MAPPED_EL2_SYSREG(AFSR1_EL2,   AFSR1_EL1,   NULL	     );
 117		MAPPED_EL2_SYSREG(ESR_EL2,     ESR_EL1,     NULL	     );
 118		MAPPED_EL2_SYSREG(FAR_EL2,     FAR_EL1,     NULL	     );
 119		MAPPED_EL2_SYSREG(MAIR_EL2,    MAIR_EL1,    NULL	     );
 120		MAPPED_EL2_SYSREG(AMAIR_EL2,   AMAIR_EL1,   NULL	     );
 121		MAPPED_EL2_SYSREG(ELR_EL2,     ELR_EL1,	    NULL	     );
 122		MAPPED_EL2_SYSREG(SPSR_EL2,    SPSR_EL1,    NULL	     );
 123	default:
 124		return false;
 125	}
 126}
 127
 128u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
 129{
 130	u64 val = 0x8badf00d8badf00d;
 131	u64 (*xlate)(u64) = NULL;
 132	unsigned int el1r;
 133
 134	if (!vcpu_get_flag(vcpu, SYSREGS_ON_CPU))
 135		goto memory_read;
 136
 137	if (unlikely(get_el2_to_el1_mapping(reg, &el1r, &xlate))) {
 138		if (!is_hyp_ctxt(vcpu))
 139			goto memory_read;
 140
 141		/*
 142		 * If this register does not have an EL1 counterpart,
 143		 * then read the stored EL2 version.
 144		 */
 145		if (reg == el1r)
 146			goto memory_read;
 147
 148		/*
 149		 * If we have a non-VHE guest and that the sysreg
 150		 * requires translation to be used at EL1, use the
 151		 * in-memory copy instead.
 152		 */
 153		if (!vcpu_el2_e2h_is_set(vcpu) && xlate)
 154			goto memory_read;
 155
 156		/* Get the current version of the EL1 counterpart. */
 157		WARN_ON(!__vcpu_read_sys_reg_from_cpu(el1r, &val));
 158		return val;
 159	}
 160
 161	/* EL1 register can't be on the CPU if the guest is in vEL2. */
 162	if (unlikely(is_hyp_ctxt(vcpu)))
 163		goto memory_read;
 164
 165	if (__vcpu_read_sys_reg_from_cpu(reg, &val))
 166		return val;
 167
 168memory_read:
 169	return __vcpu_sys_reg(vcpu, reg);
 170}
 171
 172void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
 173{
 174	u64 (*xlate)(u64) = NULL;
 175	unsigned int el1r;
 176
 177	if (!vcpu_get_flag(vcpu, SYSREGS_ON_CPU))
 178		goto memory_write;
 179
 180	if (unlikely(get_el2_to_el1_mapping(reg, &el1r, &xlate))) {
 181		if (!is_hyp_ctxt(vcpu))
 182			goto memory_write;
 183
 184		/*
 185		 * Always store a copy of the write to memory to avoid having
 186		 * to reverse-translate virtual EL2 system registers for a
 187		 * non-VHE guest hypervisor.
 188		 */
 189		__vcpu_sys_reg(vcpu, reg) = val;
 190
 191		/* No EL1 counterpart? We're done here.? */
 192		if (reg == el1r)
 193			return;
 194
 195		if (!vcpu_el2_e2h_is_set(vcpu) && xlate)
 196			val = xlate(val);
 197
 198		/* Redirect this to the EL1 version of the register. */
 199		WARN_ON(!__vcpu_write_sys_reg_to_cpu(val, el1r));
 200		return;
 
 
 
 
 
 
 
 
 201	}
 202
 203	/* EL1 register can't be on the CPU if the guest is in vEL2. */
 204	if (unlikely(is_hyp_ctxt(vcpu)))
 205		goto memory_write;
 206
 207	if (__vcpu_write_sys_reg_to_cpu(val, reg))
 208		return;
 209
 210memory_write:
 211	 __vcpu_sys_reg(vcpu, reg) = val;
 212}
 213
 
 
 
 214/* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
 215#define CSSELR_MAX 14
 216
 217/*
 218 * Returns the minimum line size for the selected cache, expressed as
 219 * Log2(bytes).
 220 */
 221static u8 get_min_cache_line_size(bool icache)
 222{
 223	u64 ctr = read_sanitised_ftr_reg(SYS_CTR_EL0);
 224	u8 field;
 225
 226	if (icache)
 227		field = SYS_FIELD_GET(CTR_EL0, IminLine, ctr);
 228	else
 229		field = SYS_FIELD_GET(CTR_EL0, DminLine, ctr);
 230
 231	/*
 232	 * Cache line size is represented as Log2(words) in CTR_EL0.
 233	 * Log2(bytes) can be derived with the following:
 234	 *
 235	 * Log2(words) + 2 = Log2(bytes / 4) + 2
 236	 * 		   = Log2(bytes) - 2 + 2
 237	 * 		   = Log2(bytes)
 238	 */
 239	return field + 2;
 240}
 241
 242/* Which cache CCSIDR represents depends on CSSELR value. */
 243static u32 get_ccsidr(struct kvm_vcpu *vcpu, u32 csselr)
 244{
 245	u8 line_size;
 246
 247	if (vcpu->arch.ccsidr)
 248		return vcpu->arch.ccsidr[csselr];
 249
 250	line_size = get_min_cache_line_size(csselr & CSSELR_EL1_InD);
 251
 252	/*
 253	 * Fabricate a CCSIDR value as the overriding value does not exist.
 254	 * The real CCSIDR value will not be used as it can vary by the
 255	 * physical CPU which the vcpu currently resides in.
 256	 *
 257	 * The line size is determined with get_min_cache_line_size(), which
 258	 * should be valid for all CPUs even if they have different cache
 259	 * configuration.
 260	 *
 261	 * The associativity bits are cleared, meaning the geometry of all data
 262	 * and unified caches (which are guaranteed to be PIPT and thus
 263	 * non-aliasing) are 1 set and 1 way.
 264	 * Guests should not be doing cache operations by set/way at all, and
 265	 * for this reason, we trap them and attempt to infer the intent, so
 266	 * that we can flush the entire guest's address space at the appropriate
 267	 * time. The exposed geometry minimizes the number of the traps.
 268	 * [If guests should attempt to infer aliasing properties from the
 269	 * geometry (which is not permitted by the architecture), they would
 270	 * only do so for virtually indexed caches.]
 271	 *
 272	 * We don't check if the cache level exists as it is allowed to return
 273	 * an UNKNOWN value if not.
 274	 */
 275	return SYS_FIELD_PREP(CCSIDR_EL1, LineSize, line_size - 4);
 276}
 277
 278static int set_ccsidr(struct kvm_vcpu *vcpu, u32 csselr, u32 val)
 279{
 280	u8 line_size = FIELD_GET(CCSIDR_EL1_LineSize, val) + 4;
 281	u32 *ccsidr = vcpu->arch.ccsidr;
 282	u32 i;
 283
 284	if ((val & CCSIDR_EL1_RES0) ||
 285	    line_size < get_min_cache_line_size(csselr & CSSELR_EL1_InD))
 286		return -EINVAL;
 287
 288	if (!ccsidr) {
 289		if (val == get_ccsidr(vcpu, csselr))
 290			return 0;
 291
 292		ccsidr = kmalloc_array(CSSELR_MAX, sizeof(u32), GFP_KERNEL_ACCOUNT);
 293		if (!ccsidr)
 294			return -ENOMEM;
 295
 296		for (i = 0; i < CSSELR_MAX; i++)
 297			ccsidr[i] = get_ccsidr(vcpu, i);
 298
 299		vcpu->arch.ccsidr = ccsidr;
 300	}
 301
 302	ccsidr[csselr] = val;
 303
 304	return 0;
 305}
 306
 307static bool access_rw(struct kvm_vcpu *vcpu,
 308		      struct sys_reg_params *p,
 309		      const struct sys_reg_desc *r)
 310{
 311	if (p->is_write)
 312		vcpu_write_sys_reg(vcpu, p->regval, r->reg);
 313	else
 314		p->regval = vcpu_read_sys_reg(vcpu, r->reg);
 315
 316	return true;
 317}
 318
 319/*
 320 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
 321 */
 322static bool access_dcsw(struct kvm_vcpu *vcpu,
 323			struct sys_reg_params *p,
 324			const struct sys_reg_desc *r)
 325{
 326	if (!p->is_write)
 327		return read_from_write_only(vcpu, p, r);
 328
 329	/*
 330	 * Only track S/W ops if we don't have FWB. It still indicates
 331	 * that the guest is a bit broken (S/W operations should only
 332	 * be done by firmware, knowing that there is only a single
 333	 * CPU left in the system, and certainly not from non-secure
 334	 * software).
 335	 */
 336	if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
 337		kvm_set_way_flush(vcpu);
 338
 339	return true;
 340}
 341
 342static bool access_dcgsw(struct kvm_vcpu *vcpu,
 343			 struct sys_reg_params *p,
 344			 const struct sys_reg_desc *r)
 345{
 346	if (!kvm_has_mte(vcpu->kvm)) {
 347		kvm_inject_undefined(vcpu);
 348		return false;
 349	}
 350
 351	/* Treat MTE S/W ops as we treat the classic ones: with contempt */
 352	return access_dcsw(vcpu, p, r);
 353}
 354
 355static void get_access_mask(const struct sys_reg_desc *r, u64 *mask, u64 *shift)
 356{
 357	switch (r->aarch32_map) {
 358	case AA32_LO:
 359		*mask = GENMASK_ULL(31, 0);
 360		*shift = 0;
 361		break;
 362	case AA32_HI:
 363		*mask = GENMASK_ULL(63, 32);
 364		*shift = 32;
 365		break;
 366	default:
 367		*mask = GENMASK_ULL(63, 0);
 368		*shift = 0;
 369		break;
 370	}
 371}
 372
 373/*
 374 * Generic accessor for VM registers. Only called as long as HCR_TVM
 375 * is set. If the guest enables the MMU, we stop trapping the VM
 376 * sys_regs and leave it in complete control of the caches.
 377 */
 378static bool access_vm_reg(struct kvm_vcpu *vcpu,
 379			  struct sys_reg_params *p,
 380			  const struct sys_reg_desc *r)
 381{
 382	bool was_enabled = vcpu_has_cache_enabled(vcpu);
 383	u64 val, mask, shift;
 
 384
 385	BUG_ON(!p->is_write);
 386
 387	get_access_mask(r, &mask, &shift);
 
 
 388
 389	if (~mask) {
 390		val = vcpu_read_sys_reg(vcpu, r->reg);
 391		val &= ~mask;
 392	} else {
 393		val = 0;
 
 
 
 
 
 394	}
 395
 396	val |= (p->regval & (mask >> shift)) << shift;
 397	vcpu_write_sys_reg(vcpu, val, r->reg);
 398
 399	kvm_toggle_cache(vcpu, was_enabled);
 400	return true;
 401}
 402
 403static bool access_actlr(struct kvm_vcpu *vcpu,
 404			 struct sys_reg_params *p,
 405			 const struct sys_reg_desc *r)
 406{
 407	u64 mask, shift;
 408
 409	if (p->is_write)
 410		return ignore_write(vcpu, p);
 411
 412	get_access_mask(r, &mask, &shift);
 413	p->regval = (vcpu_read_sys_reg(vcpu, r->reg) & mask) >> shift;
 414
 415	return true;
 416}
 417
 418/*
 419 * Trap handler for the GICv3 SGI generation system register.
 420 * Forward the request to the VGIC emulation.
 421 * The cp15_64 code makes sure this automatically works
 422 * for both AArch64 and AArch32 accesses.
 423 */
 424static bool access_gic_sgi(struct kvm_vcpu *vcpu,
 425			   struct sys_reg_params *p,
 426			   const struct sys_reg_desc *r)
 427{
 428	bool g1;
 429
 430	if (!p->is_write)
 431		return read_from_write_only(vcpu, p, r);
 432
 433	/*
 434	 * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
 435	 * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
 436	 * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
 437	 * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
 438	 * group.
 439	 */
 440	if (p->Op0 == 0) {		/* AArch32 */
 441		switch (p->Op1) {
 442		default:		/* Keep GCC quiet */
 443		case 0:			/* ICC_SGI1R */
 444			g1 = true;
 445			break;
 446		case 1:			/* ICC_ASGI1R */
 447		case 2:			/* ICC_SGI0R */
 448			g1 = false;
 449			break;
 450		}
 451	} else {			/* AArch64 */
 452		switch (p->Op2) {
 453		default:		/* Keep GCC quiet */
 454		case 5:			/* ICC_SGI1R_EL1 */
 455			g1 = true;
 456			break;
 457		case 6:			/* ICC_ASGI1R_EL1 */
 458		case 7:			/* ICC_SGI0R_EL1 */
 459			g1 = false;
 460			break;
 461		}
 462	}
 463
 464	vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
 465
 466	return true;
 467}
 468
 469static bool access_gic_sre(struct kvm_vcpu *vcpu,
 470			   struct sys_reg_params *p,
 471			   const struct sys_reg_desc *r)
 472{
 473	if (p->is_write)
 474		return ignore_write(vcpu, p);
 475
 476	p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
 477	return true;
 478}
 479
 480static bool trap_raz_wi(struct kvm_vcpu *vcpu,
 481			struct sys_reg_params *p,
 482			const struct sys_reg_desc *r)
 483{
 484	if (p->is_write)
 485		return ignore_write(vcpu, p);
 486	else
 487		return read_zero(vcpu, p);
 488}
 489
 490static bool trap_undef(struct kvm_vcpu *vcpu,
 491		       struct sys_reg_params *p,
 492		       const struct sys_reg_desc *r)
 493{
 494	kvm_inject_undefined(vcpu);
 495	return false;
 496}
 497
 498/*
 499 * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
 500 * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
 501 * system, these registers should UNDEF. LORID_EL1 being a RO register, we
 502 * treat it separately.
 503 */
 504static bool trap_loregion(struct kvm_vcpu *vcpu,
 505			  struct sys_reg_params *p,
 506			  const struct sys_reg_desc *r)
 507{
 508	u64 val = IDREG(vcpu->kvm, SYS_ID_AA64MMFR1_EL1);
 509	u32 sr = reg_to_encoding(r);
 510
 511	if (!(val & (0xfUL << ID_AA64MMFR1_EL1_LO_SHIFT))) {
 512		kvm_inject_undefined(vcpu);
 513		return false;
 514	}
 515
 516	if (p->is_write && sr == SYS_LORID_EL1)
 517		return write_to_read_only(vcpu, p, r);
 518
 519	return trap_raz_wi(vcpu, p, r);
 520}
 521
 522static bool trap_oslar_el1(struct kvm_vcpu *vcpu,
 523			   struct sys_reg_params *p,
 524			   const struct sys_reg_desc *r)
 525{
 526	u64 oslsr;
 527
 528	if (!p->is_write)
 529		return read_from_write_only(vcpu, p, r);
 530
 531	/* Forward the OSLK bit to OSLSR */
 532	oslsr = __vcpu_sys_reg(vcpu, OSLSR_EL1) & ~OSLSR_EL1_OSLK;
 533	if (p->regval & OSLAR_EL1_OSLK)
 534		oslsr |= OSLSR_EL1_OSLK;
 535
 536	__vcpu_sys_reg(vcpu, OSLSR_EL1) = oslsr;
 537	return true;
 538}
 539
 540static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
 541			   struct sys_reg_params *p,
 542			   const struct sys_reg_desc *r)
 543{
 544	if (p->is_write)
 545		return write_to_read_only(vcpu, p, r);
 546
 547	p->regval = __vcpu_sys_reg(vcpu, r->reg);
 548	return true;
 549}
 550
 551static int set_oslsr_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
 552			 u64 val)
 553{
 554	/*
 555	 * The only modifiable bit is the OSLK bit. Refuse the write if
 556	 * userspace attempts to change any other bit in the register.
 557	 */
 558	if ((val ^ rd->val) & ~OSLSR_EL1_OSLK)
 559		return -EINVAL;
 560
 561	__vcpu_sys_reg(vcpu, rd->reg) = val;
 562	return 0;
 563}
 564
 565static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
 566				   struct sys_reg_params *p,
 567				   const struct sys_reg_desc *r)
 568{
 569	if (p->is_write) {
 570		return ignore_write(vcpu, p);
 571	} else {
 572		p->regval = read_sysreg(dbgauthstatus_el1);
 573		return true;
 574	}
 575}
 576
 577/*
 578 * We want to avoid world-switching all the DBG registers all the
 579 * time:
 580 *
 581 * - If we've touched any debug register, it is likely that we're
 582 *   going to touch more of them. It then makes sense to disable the
 583 *   traps and start doing the save/restore dance
 584 * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
 585 *   then mandatory to save/restore the registers, as the guest
 586 *   depends on them.
 587 *
 588 * For this, we use a DIRTY bit, indicating the guest has modified the
 589 * debug registers, used as follow:
 590 *
 591 * On guest entry:
 592 * - If the dirty bit is set (because we're coming back from trapping),
 593 *   disable the traps, save host registers, restore guest registers.
 594 * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
 595 *   set the dirty bit, disable the traps, save host registers,
 596 *   restore guest registers.
 597 * - Otherwise, enable the traps
 598 *
 599 * On guest exit:
 600 * - If the dirty bit is set, save guest registers, restore host
 601 *   registers and clear the dirty bit. This ensure that the host can
 602 *   now use the debug registers.
 603 */
 604static bool trap_debug_regs(struct kvm_vcpu *vcpu,
 605			    struct sys_reg_params *p,
 606			    const struct sys_reg_desc *r)
 607{
 608	access_rw(vcpu, p, r);
 609	if (p->is_write)
 610		vcpu_set_flag(vcpu, DEBUG_DIRTY);
 
 
 
 611
 612	trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
 613
 614	return true;
 615}
 616
 617/*
 618 * reg_to_dbg/dbg_to_reg
 619 *
 620 * A 32 bit write to a debug register leave top bits alone
 621 * A 32 bit read from a debug register only returns the bottom bits
 622 *
 623 * All writes will set the DEBUG_DIRTY flag to ensure the hyp code
 624 * switches between host and guest values in future.
 625 */
 626static void reg_to_dbg(struct kvm_vcpu *vcpu,
 627		       struct sys_reg_params *p,
 628		       const struct sys_reg_desc *rd,
 629		       u64 *dbg_reg)
 630{
 631	u64 mask, shift, val;
 632
 633	get_access_mask(rd, &mask, &shift);
 
 
 
 634
 635	val = *dbg_reg;
 636	val &= ~mask;
 637	val |= (p->regval & (mask >> shift)) << shift;
 638	*dbg_reg = val;
 639
 640	vcpu_set_flag(vcpu, DEBUG_DIRTY);
 641}
 642
 643static void dbg_to_reg(struct kvm_vcpu *vcpu,
 644		       struct sys_reg_params *p,
 645		       const struct sys_reg_desc *rd,
 646		       u64 *dbg_reg)
 647{
 648	u64 mask, shift;
 649
 650	get_access_mask(rd, &mask, &shift);
 651	p->regval = (*dbg_reg & mask) >> shift;
 652}
 653
 654static bool trap_bvr(struct kvm_vcpu *vcpu,
 655		     struct sys_reg_params *p,
 656		     const struct sys_reg_desc *rd)
 657{
 658	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
 659
 660	if (p->is_write)
 661		reg_to_dbg(vcpu, p, rd, dbg_reg);
 662	else
 663		dbg_to_reg(vcpu, p, rd, dbg_reg);
 664
 665	trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
 666
 667	return true;
 668}
 669
 670static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
 671		   u64 val)
 672{
 673	vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = val;
 
 
 
 674	return 0;
 675}
 676
 677static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
 678		   u64 *val)
 679{
 680	*val = vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
 
 
 
 681	return 0;
 682}
 683
 684static u64 reset_bvr(struct kvm_vcpu *vcpu,
 685		      const struct sys_reg_desc *rd)
 686{
 687	vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = rd->val;
 688	return rd->val;
 689}
 690
 691static bool trap_bcr(struct kvm_vcpu *vcpu,
 692		     struct sys_reg_params *p,
 693		     const struct sys_reg_desc *rd)
 694{
 695	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
 696
 697	if (p->is_write)
 698		reg_to_dbg(vcpu, p, rd, dbg_reg);
 699	else
 700		dbg_to_reg(vcpu, p, rd, dbg_reg);
 701
 702	trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
 703
 704	return true;
 705}
 706
 707static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
 708		   u64 val)
 709{
 710	vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = val;
 
 
 
 
 711	return 0;
 712}
 713
 714static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
 715		   u64 *val)
 716{
 717	*val = vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
 
 
 
 718	return 0;
 719}
 720
 721static u64 reset_bcr(struct kvm_vcpu *vcpu,
 722		      const struct sys_reg_desc *rd)
 723{
 724	vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = rd->val;
 725	return rd->val;
 726}
 727
 728static bool trap_wvr(struct kvm_vcpu *vcpu,
 729		     struct sys_reg_params *p,
 730		     const struct sys_reg_desc *rd)
 731{
 732	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
 733
 734	if (p->is_write)
 735		reg_to_dbg(vcpu, p, rd, dbg_reg);
 736	else
 737		dbg_to_reg(vcpu, p, rd, dbg_reg);
 738
 739	trace_trap_reg(__func__, rd->CRm, p->is_write,
 740		vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]);
 741
 742	return true;
 743}
 744
 745static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
 746		   u64 val)
 747{
 748	vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = val;
 
 
 
 749	return 0;
 750}
 751
 752static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
 753		   u64 *val)
 754{
 755	*val = vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
 
 
 
 756	return 0;
 757}
 758
 759static u64 reset_wvr(struct kvm_vcpu *vcpu,
 760		      const struct sys_reg_desc *rd)
 761{
 762	vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = rd->val;
 763	return rd->val;
 764}
 765
 766static bool trap_wcr(struct kvm_vcpu *vcpu,
 767		     struct sys_reg_params *p,
 768		     const struct sys_reg_desc *rd)
 769{
 770	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
 771
 772	if (p->is_write)
 773		reg_to_dbg(vcpu, p, rd, dbg_reg);
 774	else
 775		dbg_to_reg(vcpu, p, rd, dbg_reg);
 776
 777	trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
 778
 779	return true;
 780}
 781
 782static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
 783		   u64 val)
 784{
 785	vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = val;
 
 
 
 786	return 0;
 787}
 788
 789static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
 790		   u64 *val)
 791{
 792	*val = vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
 
 
 
 793	return 0;
 794}
 795
 796static u64 reset_wcr(struct kvm_vcpu *vcpu,
 797		      const struct sys_reg_desc *rd)
 798{
 799	vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = rd->val;
 800	return rd->val;
 801}
 802
 803static u64 reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
 804{
 805	u64 amair = read_sysreg(amair_el1);
 806	vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
 807	return amair;
 808}
 809
 810static u64 reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
 811{
 812	u64 actlr = read_sysreg(actlr_el1);
 813	vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1);
 814	return actlr;
 815}
 816
 817static u64 reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
 818{
 819	u64 mpidr;
 820
 821	/*
 822	 * Map the vcpu_id into the first three affinity level fields of
 823	 * the MPIDR. We limit the number of VCPUs in level 0 due to a
 824	 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
 825	 * of the GICv3 to be able to address each CPU directly when
 826	 * sending IPIs.
 827	 */
 828	mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
 829	mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
 830	mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
 831	mpidr |= (1ULL << 31);
 832	vcpu_write_sys_reg(vcpu, mpidr, MPIDR_EL1);
 833
 834	return mpidr;
 835}
 836
 837static unsigned int pmu_visibility(const struct kvm_vcpu *vcpu,
 838				   const struct sys_reg_desc *r)
 839{
 840	if (kvm_vcpu_has_pmu(vcpu))
 841		return 0;
 842
 843	return REG_HIDDEN;
 844}
 845
 846static u64 reset_pmu_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
 847{
 848	u64 mask = BIT(ARMV8_PMU_CYCLE_IDX);
 849	u8 n = vcpu->kvm->arch.pmcr_n;
 850
 851	if (n)
 852		mask |= GENMASK(n - 1, 0);
 853
 854	reset_unknown(vcpu, r);
 855	__vcpu_sys_reg(vcpu, r->reg) &= mask;
 856
 857	return __vcpu_sys_reg(vcpu, r->reg);
 858}
 859
 860static u64 reset_pmevcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
 861{
 862	reset_unknown(vcpu, r);
 863	__vcpu_sys_reg(vcpu, r->reg) &= GENMASK(31, 0);
 864
 865	return __vcpu_sys_reg(vcpu, r->reg);
 866}
 867
 868static u64 reset_pmevtyper(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
 869{
 870	/* This thing will UNDEF, who cares about the reset value? */
 871	if (!kvm_vcpu_has_pmu(vcpu))
 872		return 0;
 873
 874	reset_unknown(vcpu, r);
 875	__vcpu_sys_reg(vcpu, r->reg) &= kvm_pmu_evtyper_mask(vcpu->kvm);
 876
 877	return __vcpu_sys_reg(vcpu, r->reg);
 878}
 879
 880static u64 reset_pmselr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
 881{
 882	reset_unknown(vcpu, r);
 883	__vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_COUNTER_MASK;
 884
 885	return __vcpu_sys_reg(vcpu, r->reg);
 886}
 887
 888static u64 reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
 889{
 890	u64 pmcr = 0;
 891
 892	if (!kvm_supports_32bit_el0())
 893		pmcr |= ARMV8_PMU_PMCR_LC;
 894
 
 895	/*
 896	 * The value of PMCR.N field is included when the
 897	 * vCPU register is read via kvm_vcpu_read_pmcr().
 898	 */
 899	__vcpu_sys_reg(vcpu, r->reg) = pmcr;
 900
 901	return __vcpu_sys_reg(vcpu, r->reg);
 902}
 903
 904static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
 905{
 906	u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
 907	bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
 908
 909	if (!enabled)
 910		kvm_inject_undefined(vcpu);
 911
 912	return !enabled;
 913}
 914
 915static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
 916{
 917	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
 918}
 919
 920static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
 921{
 922	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
 923}
 924
 925static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
 926{
 927	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
 928}
 929
 930static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
 931{
 932	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
 933}
 934
 935static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
 936			const struct sys_reg_desc *r)
 937{
 938	u64 val;
 939
 
 
 
 940	if (pmu_access_el0_disabled(vcpu))
 941		return false;
 942
 943	if (p->is_write) {
 944		/*
 945		 * Only update writeable bits of PMCR (continuing into
 946		 * kvm_pmu_handle_pmcr() as well)
 947		 */
 948		val = kvm_vcpu_read_pmcr(vcpu);
 949		val &= ~ARMV8_PMU_PMCR_MASK;
 950		val |= p->regval & ARMV8_PMU_PMCR_MASK;
 951		if (!kvm_supports_32bit_el0())
 952			val |= ARMV8_PMU_PMCR_LC;
 953		kvm_pmu_handle_pmcr(vcpu, val);
 954	} else {
 955		/* PMCR.P & PMCR.C are RAZ */
 956		val = kvm_vcpu_read_pmcr(vcpu)
 957		      & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
 958		p->regval = val;
 959	}
 960
 961	return true;
 962}
 963
 964static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
 965			  const struct sys_reg_desc *r)
 966{
 
 
 
 967	if (pmu_access_event_counter_el0_disabled(vcpu))
 968		return false;
 969
 970	if (p->is_write)
 971		__vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
 972	else
 973		/* return PMSELR.SEL field */
 974		p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
 975			    & ARMV8_PMU_COUNTER_MASK;
 976
 977	return true;
 978}
 979
 980static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
 981			  const struct sys_reg_desc *r)
 982{
 983	u64 pmceid, mask, shift;
 
 
 
 984
 985	BUG_ON(p->is_write);
 986
 987	if (pmu_access_el0_disabled(vcpu))
 988		return false;
 989
 990	get_access_mask(r, &mask, &shift);
 991
 992	pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1));
 993	pmceid &= mask;
 994	pmceid >>= shift;
 995
 996	p->regval = pmceid;
 997
 998	return true;
 999}
1000
1001static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
1002{
1003	u64 pmcr, val;
1004
1005	pmcr = kvm_vcpu_read_pmcr(vcpu);
1006	val = FIELD_GET(ARMV8_PMU_PMCR_N, pmcr);
1007	if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
1008		kvm_inject_undefined(vcpu);
1009		return false;
1010	}
1011
1012	return true;
1013}
1014
1015static int get_pmu_evcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
1016			  u64 *val)
1017{
1018	u64 idx;
1019
1020	if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 0)
1021		/* PMCCNTR_EL0 */
1022		idx = ARMV8_PMU_CYCLE_IDX;
1023	else
1024		/* PMEVCNTRn_EL0 */
1025		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
1026
1027	*val = kvm_pmu_get_counter_value(vcpu, idx);
1028	return 0;
1029}
1030
1031static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
1032			      struct sys_reg_params *p,
1033			      const struct sys_reg_desc *r)
1034{
1035	u64 idx = ~0UL;
 
 
 
1036
1037	if (r->CRn == 9 && r->CRm == 13) {
1038		if (r->Op2 == 2) {
1039			/* PMXEVCNTR_EL0 */
1040			if (pmu_access_event_counter_el0_disabled(vcpu))
1041				return false;
1042
1043			idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
1044			      & ARMV8_PMU_COUNTER_MASK;
1045		} else if (r->Op2 == 0) {
1046			/* PMCCNTR_EL0 */
1047			if (pmu_access_cycle_counter_el0_disabled(vcpu))
1048				return false;
1049
1050			idx = ARMV8_PMU_CYCLE_IDX;
 
 
1051		}
1052	} else if (r->CRn == 0 && r->CRm == 9) {
1053		/* PMCCNTR */
1054		if (pmu_access_event_counter_el0_disabled(vcpu))
1055			return false;
1056
1057		idx = ARMV8_PMU_CYCLE_IDX;
1058	} else if (r->CRn == 14 && (r->CRm & 12) == 8) {
1059		/* PMEVCNTRn_EL0 */
1060		if (pmu_access_event_counter_el0_disabled(vcpu))
1061			return false;
1062
1063		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
 
 
1064	}
1065
1066	/* Catch any decoding mistake */
1067	WARN_ON(idx == ~0UL);
1068
1069	if (!pmu_counter_idx_valid(vcpu, idx))
1070		return false;
1071
1072	if (p->is_write) {
1073		if (pmu_access_el0_disabled(vcpu))
1074			return false;
1075
1076		kvm_pmu_set_counter_value(vcpu, idx, p->regval);
1077	} else {
1078		p->regval = kvm_pmu_get_counter_value(vcpu, idx);
1079	}
1080
1081	return true;
1082}
1083
1084static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1085			       const struct sys_reg_desc *r)
1086{
1087	u64 idx, reg;
1088
 
 
 
1089	if (pmu_access_el0_disabled(vcpu))
1090		return false;
1091
1092	if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
1093		/* PMXEVTYPER_EL0 */
1094		idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
1095		reg = PMEVTYPER0_EL0 + idx;
1096	} else if (r->CRn == 14 && (r->CRm & 12) == 12) {
1097		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
1098		if (idx == ARMV8_PMU_CYCLE_IDX)
1099			reg = PMCCFILTR_EL0;
1100		else
1101			/* PMEVTYPERn_EL0 */
1102			reg = PMEVTYPER0_EL0 + idx;
1103	} else {
1104		BUG();
1105	}
1106
1107	if (!pmu_counter_idx_valid(vcpu, idx))
1108		return false;
1109
1110	if (p->is_write) {
1111		kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
1112		kvm_vcpu_pmu_restore_guest(vcpu);
1113	} else {
1114		p->regval = __vcpu_sys_reg(vcpu, reg);
1115	}
1116
1117	return true;
1118}
1119
1120static int set_pmreg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, u64 val)
1121{
1122	bool set;
1123
1124	val &= kvm_pmu_valid_counter_mask(vcpu);
1125
1126	switch (r->reg) {
1127	case PMOVSSET_EL0:
1128		/* CRm[1] being set indicates a SET register, and CLR otherwise */
1129		set = r->CRm & 2;
1130		break;
1131	default:
1132		/* Op2[0] being set indicates a SET register, and CLR otherwise */
1133		set = r->Op2 & 1;
1134		break;
1135	}
1136
1137	if (set)
1138		__vcpu_sys_reg(vcpu, r->reg) |= val;
1139	else
1140		__vcpu_sys_reg(vcpu, r->reg) &= ~val;
1141
1142	return 0;
1143}
1144
1145static int get_pmreg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, u64 *val)
1146{
1147	u64 mask = kvm_pmu_valid_counter_mask(vcpu);
1148
1149	*val = __vcpu_sys_reg(vcpu, r->reg) & mask;
1150	return 0;
1151}
1152
1153static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1154			   const struct sys_reg_desc *r)
1155{
1156	u64 val, mask;
1157
 
 
 
1158	if (pmu_access_el0_disabled(vcpu))
1159		return false;
1160
1161	mask = kvm_pmu_valid_counter_mask(vcpu);
1162	if (p->is_write) {
1163		val = p->regval & mask;
1164		if (r->Op2 & 0x1) {
1165			/* accessing PMCNTENSET_EL0 */
1166			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
1167			kvm_pmu_enable_counter_mask(vcpu, val);
1168			kvm_vcpu_pmu_restore_guest(vcpu);
1169		} else {
1170			/* accessing PMCNTENCLR_EL0 */
1171			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
1172			kvm_pmu_disable_counter_mask(vcpu, val);
1173		}
1174	} else {
1175		p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
1176	}
1177
1178	return true;
1179}
1180
1181static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1182			   const struct sys_reg_desc *r)
1183{
1184	u64 mask = kvm_pmu_valid_counter_mask(vcpu);
1185
1186	if (check_pmu_access_disabled(vcpu, 0))
 
 
 
 
1187		return false;
 
1188
1189	if (p->is_write) {
1190		u64 val = p->regval & mask;
1191
1192		if (r->Op2 & 0x1)
1193			/* accessing PMINTENSET_EL1 */
1194			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
1195		else
1196			/* accessing PMINTENCLR_EL1 */
1197			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
1198	} else {
1199		p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1);
1200	}
1201
1202	return true;
1203}
1204
1205static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1206			 const struct sys_reg_desc *r)
1207{
1208	u64 mask = kvm_pmu_valid_counter_mask(vcpu);
1209
 
 
 
1210	if (pmu_access_el0_disabled(vcpu))
1211		return false;
1212
1213	if (p->is_write) {
1214		if (r->CRm & 0x2)
1215			/* accessing PMOVSSET_EL0 */
1216			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
1217		else
1218			/* accessing PMOVSCLR_EL0 */
1219			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
1220	} else {
1221		p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0);
1222	}
1223
1224	return true;
1225}
1226
1227static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1228			   const struct sys_reg_desc *r)
1229{
1230	u64 mask;
1231
 
 
 
1232	if (!p->is_write)
1233		return read_from_write_only(vcpu, p, r);
1234
1235	if (pmu_write_swinc_el0_disabled(vcpu))
1236		return false;
1237
1238	mask = kvm_pmu_valid_counter_mask(vcpu);
1239	kvm_pmu_software_increment(vcpu, p->regval & mask);
1240	return true;
1241}
1242
1243static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1244			     const struct sys_reg_desc *r)
1245{
 
 
 
1246	if (p->is_write) {
1247		if (!vcpu_mode_priv(vcpu)) {
1248			kvm_inject_undefined(vcpu);
1249			return false;
1250		}
1251
1252		__vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
1253			       p->regval & ARMV8_PMU_USERENR_MASK;
1254	} else {
1255		p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
1256			    & ARMV8_PMU_USERENR_MASK;
1257	}
1258
1259	return true;
1260}
1261
1262static int get_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
1263		    u64 *val)
1264{
1265	*val = kvm_vcpu_read_pmcr(vcpu);
1266	return 0;
1267}
1268
1269static int set_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
1270		    u64 val)
1271{
1272	u8 new_n = FIELD_GET(ARMV8_PMU_PMCR_N, val);
1273	struct kvm *kvm = vcpu->kvm;
1274
1275	mutex_lock(&kvm->arch.config_lock);
1276
1277	/*
1278	 * The vCPU can't have more counters than the PMU hardware
1279	 * implements. Ignore this error to maintain compatibility
1280	 * with the existing KVM behavior.
1281	 */
1282	if (!kvm_vm_has_ran_once(kvm) &&
1283	    new_n <= kvm_arm_pmu_get_max_counters(kvm))
1284		kvm->arch.pmcr_n = new_n;
1285
1286	mutex_unlock(&kvm->arch.config_lock);
1287
1288	/*
1289	 * Ignore writes to RES0 bits, read only bits that are cleared on
1290	 * vCPU reset, and writable bits that KVM doesn't support yet.
1291	 * (i.e. only PMCR.N and bits [7:0] are mutable from userspace)
1292	 * The LP bit is RES0 when FEAT_PMUv3p5 is not supported on the vCPU.
1293	 * But, we leave the bit as it is here, as the vCPU's PMUver might
1294	 * be changed later (NOTE: the bit will be cleared on first vCPU run
1295	 * if necessary).
1296	 */
1297	val &= ARMV8_PMU_PMCR_MASK;
1298
1299	/* The LC bit is RES1 when AArch32 is not supported */
1300	if (!kvm_supports_32bit_el0())
1301		val |= ARMV8_PMU_PMCR_LC;
1302
1303	__vcpu_sys_reg(vcpu, r->reg) = val;
1304	return 0;
1305}
1306
1307/* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
1308#define DBG_BCR_BVR_WCR_WVR_EL1(n)					\
1309	{ SYS_DESC(SYS_DBGBVRn_EL1(n)),					\
1310	  trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr },		\
1311	{ SYS_DESC(SYS_DBGBCRn_EL1(n)),					\
1312	  trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr },		\
1313	{ SYS_DESC(SYS_DBGWVRn_EL1(n)),					\
1314	  trap_wvr, reset_wvr, 0, 0,  get_wvr, set_wvr },		\
1315	{ SYS_DESC(SYS_DBGWCRn_EL1(n)),					\
1316	  trap_wcr, reset_wcr, 0, 0,  get_wcr, set_wcr }
1317
1318#define PMU_SYS_REG(name)						\
1319	SYS_DESC(SYS_##name), .reset = reset_pmu_reg,			\
1320	.visibility = pmu_visibility
1321
1322/* Macro to expand the PMEVCNTRn_EL0 register */
1323#define PMU_PMEVCNTR_EL0(n)						\
1324	{ PMU_SYS_REG(PMEVCNTRn_EL0(n)),				\
1325	  .reset = reset_pmevcntr, .get_user = get_pmu_evcntr,		\
1326	  .access = access_pmu_evcntr, .reg = (PMEVCNTR0_EL0 + n), }
1327
1328/* Macro to expand the PMEVTYPERn_EL0 register */
1329#define PMU_PMEVTYPER_EL0(n)						\
1330	{ PMU_SYS_REG(PMEVTYPERn_EL0(n)),				\
1331	  .reset = reset_pmevtyper,					\
1332	  .access = access_pmu_evtyper, .reg = (PMEVTYPER0_EL0 + n), }
1333
1334static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1335			 const struct sys_reg_desc *r)
 
1336{
1337	kvm_inject_undefined(vcpu);
 
1338
1339	return false;
1340}
 
 
 
 
 
1341
1342/* Macro to expand the AMU counter and type registers*/
1343#define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), undef_access }
1344#define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), undef_access }
1345#define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), undef_access }
1346#define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), undef_access }
1347
1348static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
1349			const struct sys_reg_desc *rd)
1350{
1351	return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN;
1352}
1353
1354/*
1355 * If we land here on a PtrAuth access, that is because we didn't
1356 * fixup the access on exit by allowing the PtrAuth sysregs. The only
1357 * way this happens is when the guest does not have PtrAuth support
1358 * enabled.
1359 */
1360#define __PTRAUTH_KEY(k)						\
1361	{ SYS_DESC(SYS_## k), undef_access, reset_unknown, k,		\
1362	.visibility = ptrauth_visibility}
1363
1364#define PTRAUTH_KEY(k)							\
1365	__PTRAUTH_KEY(k ## KEYLO_EL1),					\
1366	__PTRAUTH_KEY(k ## KEYHI_EL1)
1367
1368static bool access_arch_timer(struct kvm_vcpu *vcpu,
1369			      struct sys_reg_params *p,
1370			      const struct sys_reg_desc *r)
1371{
1372	enum kvm_arch_timers tmr;
1373	enum kvm_arch_timer_regs treg;
1374	u64 reg = reg_to_encoding(r);
1375
1376	switch (reg) {
1377	case SYS_CNTP_TVAL_EL0:
1378	case SYS_AARCH32_CNTP_TVAL:
1379		tmr = TIMER_PTIMER;
1380		treg = TIMER_REG_TVAL;
1381		break;
1382	case SYS_CNTP_CTL_EL0:
1383	case SYS_AARCH32_CNTP_CTL:
1384		tmr = TIMER_PTIMER;
1385		treg = TIMER_REG_CTL;
1386		break;
1387	case SYS_CNTP_CVAL_EL0:
1388	case SYS_AARCH32_CNTP_CVAL:
1389		tmr = TIMER_PTIMER;
1390		treg = TIMER_REG_CVAL;
1391		break;
1392	case SYS_CNTPCT_EL0:
1393	case SYS_CNTPCTSS_EL0:
1394	case SYS_AARCH32_CNTPCT:
1395		tmr = TIMER_PTIMER;
1396		treg = TIMER_REG_CNT;
1397		break;
1398	default:
1399		print_sys_reg_msg(p, "%s", "Unhandled trapped timer register");
1400		kvm_inject_undefined(vcpu);
1401		return false;
1402	}
1403
1404	if (p->is_write)
1405		kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
1406	else
1407		p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
1408
1409	return true;
1410}
1411
1412static s64 kvm_arm64_ftr_safe_value(u32 id, const struct arm64_ftr_bits *ftrp,
1413				    s64 new, s64 cur)
 
1414{
1415	struct arm64_ftr_bits kvm_ftr = *ftrp;
 
 
 
1416
1417	/* Some features have different safe value type in KVM than host features */
1418	switch (id) {
1419	case SYS_ID_AA64DFR0_EL1:
1420		switch (kvm_ftr.shift) {
1421		case ID_AA64DFR0_EL1_PMUVer_SHIFT:
1422			kvm_ftr.type = FTR_LOWER_SAFE;
1423			break;
1424		case ID_AA64DFR0_EL1_DebugVer_SHIFT:
1425			kvm_ftr.type = FTR_LOWER_SAFE;
1426			break;
1427		}
1428		break;
1429	case SYS_ID_DFR0_EL1:
1430		if (kvm_ftr.shift == ID_DFR0_EL1_PerfMon_SHIFT)
1431			kvm_ftr.type = FTR_LOWER_SAFE;
1432		break;
1433	}
1434
1435	return arm64_ftr_safe_value(&kvm_ftr, new, cur);
1436}
1437
1438/*
1439 * arm64_check_features() - Check if a feature register value constitutes
1440 * a subset of features indicated by the idreg's KVM sanitised limit.
1441 *
1442 * This function will check if each feature field of @val is the "safe" value
1443 * against idreg's KVM sanitised limit return from reset() callback.
1444 * If a field value in @val is the same as the one in limit, it is always
1445 * considered the safe value regardless For register fields that are not in
1446 * writable, only the value in limit is considered the safe value.
1447 *
1448 * Return: 0 if all the fields are safe. Otherwise, return negative errno.
1449 */
1450static int arm64_check_features(struct kvm_vcpu *vcpu,
1451				const struct sys_reg_desc *rd,
1452				u64 val)
1453{
1454	const struct arm64_ftr_reg *ftr_reg;
1455	const struct arm64_ftr_bits *ftrp = NULL;
1456	u32 id = reg_to_encoding(rd);
1457	u64 writable_mask = rd->val;
1458	u64 limit = rd->reset(vcpu, rd);
1459	u64 mask = 0;
1460
1461	/*
1462	 * Hidden and unallocated ID registers may not have a corresponding
1463	 * struct arm64_ftr_reg. Of course, if the register is RAZ we know the
1464	 * only safe value is 0.
1465	 */
1466	if (sysreg_visible_as_raz(vcpu, rd))
1467		return val ? -E2BIG : 0;
1468
1469	ftr_reg = get_arm64_ftr_reg(id);
1470	if (!ftr_reg)
1471		return -EINVAL;
1472
1473	ftrp = ftr_reg->ftr_bits;
1474
1475	for (; ftrp && ftrp->width; ftrp++) {
1476		s64 f_val, f_lim, safe_val;
1477		u64 ftr_mask;
1478
1479		ftr_mask = arm64_ftr_mask(ftrp);
1480		if ((ftr_mask & writable_mask) != ftr_mask)
1481			continue;
1482
1483		f_val = arm64_ftr_value(ftrp, val);
1484		f_lim = arm64_ftr_value(ftrp, limit);
1485		mask |= ftr_mask;
1486
1487		if (f_val == f_lim)
1488			safe_val = f_val;
1489		else
1490			safe_val = kvm_arm64_ftr_safe_value(id, ftrp, f_val, f_lim);
1491
1492		if (safe_val != f_val)
1493			return -E2BIG;
1494	}
1495
1496	/* For fields that are not writable, values in limit are the safe values. */
1497	if ((val & ~mask) != (limit & ~mask))
1498		return -E2BIG;
1499
1500	return 0;
1501}
1502
1503static u8 pmuver_to_perfmon(u8 pmuver)
1504{
1505	switch (pmuver) {
1506	case ID_AA64DFR0_EL1_PMUVer_IMP:
1507		return ID_DFR0_EL1_PerfMon_PMUv3;
1508	case ID_AA64DFR0_EL1_PMUVer_IMP_DEF:
1509		return ID_DFR0_EL1_PerfMon_IMPDEF;
1510	default:
1511		/* Anything ARMv8.1+ and NI have the same value. For now. */
1512		return pmuver;
1513	}
1514}
1515
1516/* Read a sanitised cpufeature ID register by sys_reg_desc */
1517static u64 __kvm_read_sanitised_id_reg(const struct kvm_vcpu *vcpu,
1518				       const struct sys_reg_desc *r)
1519{
1520	u32 id = reg_to_encoding(r);
1521	u64 val;
1522
1523	if (sysreg_visible_as_raz(vcpu, r))
1524		return 0;
 
 
 
 
 
 
 
1525
1526	val = read_sanitised_ftr_reg(id);
1527
1528	switch (id) {
1529	case SYS_ID_AA64PFR1_EL1:
1530		if (!kvm_has_mte(vcpu->kvm))
1531			val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTE);
1532
1533		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_SME);
1534		break;
1535	case SYS_ID_AA64ISAR1_EL1:
1536		if (!vcpu_has_ptrauth(vcpu))
1537			val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_APA) |
1538				 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_API) |
1539				 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPA) |
1540				 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPI));
1541		break;
1542	case SYS_ID_AA64ISAR2_EL1:
1543		if (!vcpu_has_ptrauth(vcpu))
1544			val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_APA3) |
1545				 ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_GPA3));
1546		if (!cpus_have_final_cap(ARM64_HAS_WFXT))
1547			val &= ~ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_WFxT);
1548		break;
1549	case SYS_ID_AA64MMFR2_EL1:
1550		val &= ~ID_AA64MMFR2_EL1_CCIDX_MASK;
1551		break;
1552	case SYS_ID_MMFR4_EL1:
1553		val &= ~ARM64_FEATURE_MASK(ID_MMFR4_EL1_CCIDX);
1554		break;
1555	}
1556
1557	return val;
1558}
1559
1560static u64 kvm_read_sanitised_id_reg(struct kvm_vcpu *vcpu,
1561				     const struct sys_reg_desc *r)
1562{
1563	return __kvm_read_sanitised_id_reg(vcpu, r);
1564}
1565
1566static u64 read_id_reg(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
1567{
1568	return IDREG(vcpu->kvm, reg_to_encoding(r));
1569}
1570
1571/*
1572 * Return true if the register's (Op0, Op1, CRn, CRm, Op2) is
1573 * (3, 0, 0, crm, op2), where 1<=crm<8, 0<=op2<8.
1574 */
1575static inline bool is_id_reg(u32 id)
1576{
1577	return (sys_reg_Op0(id) == 3 && sys_reg_Op1(id) == 0 &&
1578		sys_reg_CRn(id) == 0 && sys_reg_CRm(id) >= 1 &&
1579		sys_reg_CRm(id) < 8);
1580}
1581
1582static inline bool is_aa32_id_reg(u32 id)
1583{
1584	return (sys_reg_Op0(id) == 3 && sys_reg_Op1(id) == 0 &&
1585		sys_reg_CRn(id) == 0 && sys_reg_CRm(id) >= 1 &&
1586		sys_reg_CRm(id) <= 3);
1587}
1588
1589static unsigned int id_visibility(const struct kvm_vcpu *vcpu,
1590				  const struct sys_reg_desc *r)
1591{
1592	u32 id = reg_to_encoding(r);
1593
1594	switch (id) {
1595	case SYS_ID_AA64ZFR0_EL1:
1596		if (!vcpu_has_sve(vcpu))
1597			return REG_RAZ;
1598		break;
1599	}
1600
1601	return 0;
1602}
1603
1604static unsigned int aa32_id_visibility(const struct kvm_vcpu *vcpu,
1605				       const struct sys_reg_desc *r)
1606{
1607	/*
1608	 * AArch32 ID registers are UNKNOWN if AArch32 isn't implemented at any
1609	 * EL. Promote to RAZ/WI in order to guarantee consistency between
1610	 * systems.
1611	 */
1612	if (!kvm_supports_32bit_el0())
1613		return REG_RAZ | REG_USER_WI;
1614
1615	return id_visibility(vcpu, r);
1616}
1617
1618static unsigned int raz_visibility(const struct kvm_vcpu *vcpu,
1619				   const struct sys_reg_desc *r)
1620{
1621	return REG_RAZ;
1622}
1623
1624/* cpufeature ID register access trap handlers */
1625
1626static bool access_id_reg(struct kvm_vcpu *vcpu,
1627			  struct sys_reg_params *p,
1628			  const struct sys_reg_desc *r)
 
1629{
1630	if (p->is_write)
1631		return write_to_read_only(vcpu, p, r);
1632
1633	p->regval = read_id_reg(vcpu, r);
1634
1635	return true;
1636}
1637
1638/* Visibility overrides for SVE-specific control registers */
1639static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
1640				   const struct sys_reg_desc *rd)
1641{
1642	if (vcpu_has_sve(vcpu))
1643		return 0;
1644
1645	return REG_HIDDEN;
1646}
1647
1648static u64 read_sanitised_id_aa64pfr0_el1(struct kvm_vcpu *vcpu,
1649					  const struct sys_reg_desc *rd)
 
1650{
1651	u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1652
1653	if (!vcpu_has_sve(vcpu))
1654		val &= ~ID_AA64PFR0_EL1_SVE_MASK;
1655
1656	/*
1657	 * The default is to expose CSV2 == 1 if the HW isn't affected.
1658	 * Although this is a per-CPU feature, we make it global because
1659	 * asymmetric systems are just a nuisance.
1660	 *
1661	 * Userspace can override this as long as it doesn't promise
1662	 * the impossible.
1663	 */
1664	if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED) {
1665		val &= ~ID_AA64PFR0_EL1_CSV2_MASK;
1666		val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV2, IMP);
1667	}
1668	if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED) {
1669		val &= ~ID_AA64PFR0_EL1_CSV3_MASK;
1670		val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV3, IMP);
1671	}
1672
1673	if (kvm_vgic_global_state.type == VGIC_V3) {
1674		val &= ~ID_AA64PFR0_EL1_GIC_MASK;
1675		val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, GIC, IMP);
1676	}
1677
1678	val &= ~ID_AA64PFR0_EL1_AMU_MASK;
1679
1680	return val;
1681}
1682
1683#define ID_REG_LIMIT_FIELD_ENUM(val, reg, field, limit)			       \
1684({									       \
1685	u64 __f_val = FIELD_GET(reg##_##field##_MASK, val);		       \
1686	(val) &= ~reg##_##field##_MASK;					       \
1687	(val) |= FIELD_PREP(reg##_##field##_MASK,			       \
1688			min(__f_val, (u64)reg##_##field##_##limit));	       \
1689	(val);								       \
1690})
1691
1692static u64 read_sanitised_id_aa64dfr0_el1(struct kvm_vcpu *vcpu,
1693					  const struct sys_reg_desc *rd)
1694{
1695	u64 val = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1696
1697	val = ID_REG_LIMIT_FIELD_ENUM(val, ID_AA64DFR0_EL1, DebugVer, V8P8);
1698
1699	/*
1700	 * Only initialize the PMU version if the vCPU was configured with one.
1701	 */
1702	val &= ~ID_AA64DFR0_EL1_PMUVer_MASK;
1703	if (kvm_vcpu_has_pmu(vcpu))
1704		val |= SYS_FIELD_PREP(ID_AA64DFR0_EL1, PMUVer,
1705				      kvm_arm_pmu_get_pmuver_limit());
1706
1707	/* Hide SPE from guests */
1708	val &= ~ID_AA64DFR0_EL1_PMSVer_MASK;
1709
1710	return val;
1711}
1712
1713static int set_id_aa64dfr0_el1(struct kvm_vcpu *vcpu,
1714			       const struct sys_reg_desc *rd,
1715			       u64 val)
1716{
1717	u8 debugver = SYS_FIELD_GET(ID_AA64DFR0_EL1, DebugVer, val);
1718	u8 pmuver = SYS_FIELD_GET(ID_AA64DFR0_EL1, PMUVer, val);
1719
1720	/*
1721	 * Prior to commit 3d0dba5764b9 ("KVM: arm64: PMU: Move the
1722	 * ID_AA64DFR0_EL1.PMUver limit to VM creation"), KVM erroneously
1723	 * exposed an IMP_DEF PMU to userspace and the guest on systems w/
1724	 * non-architectural PMUs. Of course, PMUv3 is the only game in town for
1725	 * PMU virtualization, so the IMP_DEF value was rather user-hostile.
1726	 *
1727	 * At minimum, we're on the hook to allow values that were given to
1728	 * userspace by KVM. Cover our tracks here and replace the IMP_DEF value
1729	 * with a more sensible NI. The value of an ID register changing under
1730	 * the nose of the guest is unfortunate, but is certainly no more
1731	 * surprising than an ill-guided PMU driver poking at impdef system
1732	 * registers that end in an UNDEF...
1733	 */
1734	if (pmuver == ID_AA64DFR0_EL1_PMUVer_IMP_DEF)
1735		val &= ~ID_AA64DFR0_EL1_PMUVer_MASK;
1736
1737	/*
1738	 * ID_AA64DFR0_EL1.DebugVer is one of those awkward fields with a
1739	 * nonzero minimum safe value.
1740	 */
1741	if (debugver < ID_AA64DFR0_EL1_DebugVer_IMP)
1742		return -EINVAL;
1743
1744	return set_id_reg(vcpu, rd, val);
1745}
1746
1747static u64 read_sanitised_id_dfr0_el1(struct kvm_vcpu *vcpu,
1748				      const struct sys_reg_desc *rd)
1749{
1750	u8 perfmon = pmuver_to_perfmon(kvm_arm_pmu_get_pmuver_limit());
1751	u64 val = read_sanitised_ftr_reg(SYS_ID_DFR0_EL1);
1752
1753	val &= ~ID_DFR0_EL1_PerfMon_MASK;
1754	if (kvm_vcpu_has_pmu(vcpu))
1755		val |= SYS_FIELD_PREP(ID_DFR0_EL1, PerfMon, perfmon);
1756
1757	val = ID_REG_LIMIT_FIELD_ENUM(val, ID_DFR0_EL1, CopDbg, Debugv8p8);
1758
1759	return val;
1760}
1761
1762static int set_id_dfr0_el1(struct kvm_vcpu *vcpu,
1763			   const struct sys_reg_desc *rd,
1764			   u64 val)
1765{
1766	u8 perfmon = SYS_FIELD_GET(ID_DFR0_EL1, PerfMon, val);
1767	u8 copdbg = SYS_FIELD_GET(ID_DFR0_EL1, CopDbg, val);
1768
1769	if (perfmon == ID_DFR0_EL1_PerfMon_IMPDEF) {
1770		val &= ~ID_DFR0_EL1_PerfMon_MASK;
1771		perfmon = 0;
1772	}
1773
1774	/*
1775	 * Allow DFR0_EL1.PerfMon to be set from userspace as long as
1776	 * it doesn't promise more than what the HW gives us on the
1777	 * AArch64 side (as everything is emulated with that), and
1778	 * that this is a PMUv3.
1779	 */
1780	if (perfmon != 0 && perfmon < ID_DFR0_EL1_PerfMon_PMUv3)
1781		return -EINVAL;
1782
1783	if (copdbg < ID_DFR0_EL1_CopDbg_Armv8)
1784		return -EINVAL;
1785
1786	return set_id_reg(vcpu, rd, val);
1787}
1788
1789/*
1790 * cpufeature ID register user accessors
1791 *
1792 * For now, these registers are immutable for userspace, so no values
1793 * are stored, and for set_id_reg() we don't allow the effective value
1794 * to be changed.
1795 */
1796static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1797		      u64 *val)
1798{
1799	/*
1800	 * Avoid locking if the VM has already started, as the ID registers are
1801	 * guaranteed to be invariant at that point.
1802	 */
1803	if (kvm_vm_has_ran_once(vcpu->kvm)) {
1804		*val = read_id_reg(vcpu, rd);
1805		return 0;
1806	}
1807
1808	mutex_lock(&vcpu->kvm->arch.config_lock);
1809	*val = read_id_reg(vcpu, rd);
1810	mutex_unlock(&vcpu->kvm->arch.config_lock);
1811
1812	return 0;
1813}
1814
1815static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1816		      u64 val)
1817{
1818	u32 id = reg_to_encoding(rd);
1819	int ret;
 
1820
1821	mutex_lock(&vcpu->kvm->arch.config_lock);
 
 
1822
1823	/*
1824	 * Once the VM has started the ID registers are immutable. Reject any
1825	 * write that does not match the final register value.
1826	 */
1827	if (kvm_vm_has_ran_once(vcpu->kvm)) {
1828		if (val != read_id_reg(vcpu, rd))
1829			ret = -EBUSY;
1830		else
1831			ret = 0;
1832
1833		mutex_unlock(&vcpu->kvm->arch.config_lock);
1834		return ret;
1835	}
1836
1837	ret = arm64_check_features(vcpu, rd, val);
1838	if (!ret)
1839		IDREG(vcpu->kvm, id) = val;
1840
1841	mutex_unlock(&vcpu->kvm->arch.config_lock);
1842
1843	/*
1844	 * arm64_check_features() returns -E2BIG to indicate the register's
1845	 * feature set is a superset of the maximally-allowed register value.
1846	 * While it would be nice to precisely describe this to userspace, the
1847	 * existing UAPI for KVM_SET_ONE_REG has it that invalid register
1848	 * writes return -EINVAL.
1849	 */
1850	if (ret == -E2BIG)
1851		ret = -EINVAL;
1852	return ret;
1853}
1854
1855static int get_raz_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1856		       u64 *val)
1857{
1858	*val = 0;
1859	return 0;
1860}
1861
1862static int set_wi_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1863		      u64 val)
1864{
1865	return 0;
1866}
1867
1868static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1869		       const struct sys_reg_desc *r)
1870{
1871	if (p->is_write)
1872		return write_to_read_only(vcpu, p, r);
1873
1874	p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0);
1875	return true;
1876}
1877
1878static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1879			 const struct sys_reg_desc *r)
1880{
1881	if (p->is_write)
1882		return write_to_read_only(vcpu, p, r);
1883
1884	p->regval = __vcpu_sys_reg(vcpu, r->reg);
1885	return true;
1886}
1887
1888/*
1889 * Fabricate a CLIDR_EL1 value instead of using the real value, which can vary
1890 * by the physical CPU which the vcpu currently resides in.
1891 */
1892static u64 reset_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
1893{
1894	u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0);
1895	u64 clidr;
1896	u8 loc;
1897
1898	if ((ctr_el0 & CTR_EL0_IDC)) {
1899		/*
1900		 * Data cache clean to the PoU is not required so LoUU and LoUIS
1901		 * will not be set and a unified cache, which will be marked as
1902		 * LoC, will be added.
1903		 *
1904		 * If not DIC, let the unified cache L2 so that an instruction
1905		 * cache can be added as L1 later.
1906		 */
1907		loc = (ctr_el0 & CTR_EL0_DIC) ? 1 : 2;
1908		clidr = CACHE_TYPE_UNIFIED << CLIDR_CTYPE_SHIFT(loc);
1909	} else {
1910		/*
1911		 * Data cache clean to the PoU is required so let L1 have a data
1912		 * cache and mark it as LoUU and LoUIS. As L1 has a data cache,
1913		 * it can be marked as LoC too.
1914		 */
1915		loc = 1;
1916		clidr = 1 << CLIDR_LOUU_SHIFT;
1917		clidr |= 1 << CLIDR_LOUIS_SHIFT;
1918		clidr |= CACHE_TYPE_DATA << CLIDR_CTYPE_SHIFT(1);
1919	}
1920
1921	/*
1922	 * Instruction cache invalidation to the PoU is required so let L1 have
1923	 * an instruction cache. If L1 already has a data cache, it will be
1924	 * CACHE_TYPE_SEPARATE.
1925	 */
1926	if (!(ctr_el0 & CTR_EL0_DIC))
1927		clidr |= CACHE_TYPE_INST << CLIDR_CTYPE_SHIFT(1);
1928
1929	clidr |= loc << CLIDR_LOC_SHIFT;
1930
1931	/*
1932	 * Add tag cache unified to data cache. Allocation tags and data are
1933	 * unified in a cache line so that it looks valid even if there is only
1934	 * one cache line.
1935	 */
1936	if (kvm_has_mte(vcpu->kvm))
1937		clidr |= 2 << CLIDR_TTYPE_SHIFT(loc);
1938
1939	__vcpu_sys_reg(vcpu, r->reg) = clidr;
1940
1941	return __vcpu_sys_reg(vcpu, r->reg);
1942}
1943
1944static int set_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1945		      u64 val)
1946{
1947	u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0);
1948	u64 idc = !CLIDR_LOC(val) || (!CLIDR_LOUIS(val) && !CLIDR_LOUU(val));
1949
1950	if ((val & CLIDR_EL1_RES0) || (!(ctr_el0 & CTR_EL0_IDC) && idc))
1951		return -EINVAL;
1952
1953	__vcpu_sys_reg(vcpu, rd->reg) = val;
1954
1955	return 0;
1956}
1957
1958static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1959			  const struct sys_reg_desc *r)
1960{
1961	int reg = r->reg;
1962
1963	if (p->is_write)
1964		vcpu_write_sys_reg(vcpu, p->regval, reg);
1965	else
1966		p->regval = vcpu_read_sys_reg(vcpu, reg);
1967	return true;
1968}
1969
1970static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1971			  const struct sys_reg_desc *r)
1972{
1973	u32 csselr;
1974
1975	if (p->is_write)
1976		return write_to_read_only(vcpu, p, r);
1977
1978	csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
1979	csselr &= CSSELR_EL1_Level | CSSELR_EL1_InD;
1980	if (csselr < CSSELR_MAX)
1981		p->regval = get_ccsidr(vcpu, csselr);
1982
1983	return true;
1984}
1985
1986static unsigned int mte_visibility(const struct kvm_vcpu *vcpu,
1987				   const struct sys_reg_desc *rd)
1988{
1989	if (kvm_has_mte(vcpu->kvm))
1990		return 0;
1991
1992	return REG_HIDDEN;
1993}
1994
1995#define MTE_REG(name) {				\
1996	SYS_DESC(SYS_##name),			\
1997	.access = undef_access,			\
1998	.reset = reset_unknown,			\
1999	.reg = name,				\
2000	.visibility = mte_visibility,		\
2001}
2002
2003static unsigned int el2_visibility(const struct kvm_vcpu *vcpu,
2004				   const struct sys_reg_desc *rd)
2005{
2006	if (vcpu_has_nv(vcpu))
2007		return 0;
2008
2009	return REG_HIDDEN;
2010}
2011
2012static bool bad_vncr_trap(struct kvm_vcpu *vcpu,
2013			  struct sys_reg_params *p,
2014			  const struct sys_reg_desc *r)
2015{
2016	/*
2017	 * We really shouldn't be here, and this is likely the result
2018	 * of a misconfigured trap, as this register should target the
2019	 * VNCR page, and nothing else.
2020	 */
2021	return bad_trap(vcpu, p, r,
2022			"trap of VNCR-backed register");
2023}
2024
2025static bool bad_redir_trap(struct kvm_vcpu *vcpu,
2026			   struct sys_reg_params *p,
2027			   const struct sys_reg_desc *r)
2028{
2029	/*
2030	 * We really shouldn't be here, and this is likely the result
2031	 * of a misconfigured trap, as this register should target the
2032	 * corresponding EL1, and nothing else.
2033	 */
2034	return bad_trap(vcpu, p, r,
2035			"trap of EL2 register redirected to EL1");
2036}
2037
2038#define EL2_REG(name, acc, rst, v) {		\
2039	SYS_DESC(SYS_##name),			\
2040	.access = acc,				\
2041	.reset = rst,				\
2042	.reg = name,				\
2043	.visibility = el2_visibility,		\
2044	.val = v,				\
2045}
2046
2047#define EL2_REG_VNCR(name, rst, v)	EL2_REG(name, bad_vncr_trap, rst, v)
2048#define EL2_REG_REDIR(name, rst, v)	EL2_REG(name, bad_redir_trap, rst, v)
2049
2050/*
2051 * EL{0,1}2 registers are the EL2 view on an EL0 or EL1 register when
2052 * HCR_EL2.E2H==1, and only in the sysreg table for convenience of
2053 * handling traps. Given that, they are always hidden from userspace.
2054 */
2055static unsigned int hidden_user_visibility(const struct kvm_vcpu *vcpu,
2056					   const struct sys_reg_desc *rd)
2057{
2058	return REG_HIDDEN_USER;
2059}
2060
2061#define EL12_REG(name, acc, rst, v) {		\
2062	SYS_DESC(SYS_##name##_EL12),		\
2063	.access = acc,				\
2064	.reset = rst,				\
2065	.reg = name##_EL1,			\
2066	.val = v,				\
2067	.visibility = hidden_user_visibility,	\
2068}
2069
2070/*
2071 * Since reset() callback and field val are not used for idregs, they will be
2072 * used for specific purposes for idregs.
2073 * The reset() would return KVM sanitised register value. The value would be the
2074 * same as the host kernel sanitised value if there is no KVM sanitisation.
2075 * The val would be used as a mask indicating writable fields for the idreg.
2076 * Only bits with 1 are writable from userspace. This mask might not be
2077 * necessary in the future whenever all ID registers are enabled as writable
2078 * from userspace.
2079 */
2080
2081#define ID_DESC(name)				\
2082	SYS_DESC(SYS_##name),			\
2083	.access	= access_id_reg,		\
2084	.get_user = get_id_reg			\
2085
2086/* sys_reg_desc initialiser for known cpufeature ID registers */
2087#define ID_SANITISED(name) {			\
2088	ID_DESC(name),				\
2089	.set_user = set_id_reg,			\
2090	.visibility = id_visibility,		\
2091	.reset = kvm_read_sanitised_id_reg,	\
2092	.val = 0,				\
2093}
2094
2095/* sys_reg_desc initialiser for known cpufeature ID registers */
2096#define AA32_ID_SANITISED(name) {		\
2097	ID_DESC(name),				\
2098	.set_user = set_id_reg,			\
2099	.visibility = aa32_id_visibility,	\
2100	.reset = kvm_read_sanitised_id_reg,	\
2101	.val = 0,				\
2102}
2103
2104/* sys_reg_desc initialiser for writable ID registers */
2105#define ID_WRITABLE(name, mask) {		\
2106	ID_DESC(name),				\
2107	.set_user = set_id_reg,			\
2108	.visibility = id_visibility,		\
2109	.reset = kvm_read_sanitised_id_reg,	\
2110	.val = mask,				\
2111}
2112
2113/*
2114 * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
2115 * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
2116 * (1 <= crm < 8, 0 <= Op2 < 8).
2117 */
2118#define ID_UNALLOCATED(crm, op2) {			\
2119	Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2),	\
2120	.access = access_id_reg,			\
2121	.get_user = get_id_reg,				\
2122	.set_user = set_id_reg,				\
2123	.visibility = raz_visibility,			\
2124	.reset = kvm_read_sanitised_id_reg,		\
2125	.val = 0,					\
2126}
2127
2128/*
2129 * sys_reg_desc initialiser for known ID registers that we hide from guests.
2130 * For now, these are exposed just like unallocated ID regs: they appear
2131 * RAZ for the guest.
2132 */
2133#define ID_HIDDEN(name) {			\
2134	ID_DESC(name),				\
2135	.set_user = set_id_reg,			\
2136	.visibility = raz_visibility,		\
2137	.reset = kvm_read_sanitised_id_reg,	\
2138	.val = 0,				\
2139}
2140
2141static bool access_sp_el1(struct kvm_vcpu *vcpu,
2142			  struct sys_reg_params *p,
2143			  const struct sys_reg_desc *r)
2144{
2145	if (p->is_write)
2146		__vcpu_sys_reg(vcpu, SP_EL1) = p->regval;
2147	else
2148		p->regval = __vcpu_sys_reg(vcpu, SP_EL1);
2149
2150	return true;
2151}
2152
2153static bool access_elr(struct kvm_vcpu *vcpu,
2154		       struct sys_reg_params *p,
2155		       const struct sys_reg_desc *r)
2156{
2157	if (p->is_write)
2158		vcpu_write_sys_reg(vcpu, p->regval, ELR_EL1);
2159	else
2160		p->regval = vcpu_read_sys_reg(vcpu, ELR_EL1);
2161
2162	return true;
2163}
2164
2165static bool access_spsr(struct kvm_vcpu *vcpu,
2166			struct sys_reg_params *p,
2167			const struct sys_reg_desc *r)
2168{
2169	if (p->is_write)
2170		__vcpu_sys_reg(vcpu, SPSR_EL1) = p->regval;
2171	else
2172		p->regval = __vcpu_sys_reg(vcpu, SPSR_EL1);
2173
2174	return true;
2175}
2176
2177/*
2178 * Architected system registers.
2179 * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
2180 *
2181 * Debug handling: We do trap most, if not all debug related system
2182 * registers. The implementation is good enough to ensure that a guest
2183 * can use these with minimal performance degradation. The drawback is
2184 * that we don't implement any of the external debug architecture.
2185 * This should be revisited if we ever encounter a more demanding
2186 * guest...
2187 */
2188static const struct sys_reg_desc sys_reg_descs[] = {
2189	{ SYS_DESC(SYS_DC_ISW), access_dcsw },
2190	{ SYS_DESC(SYS_DC_IGSW), access_dcgsw },
2191	{ SYS_DESC(SYS_DC_IGDSW), access_dcgsw },
2192	{ SYS_DESC(SYS_DC_CSW), access_dcsw },
2193	{ SYS_DESC(SYS_DC_CGSW), access_dcgsw },
2194	{ SYS_DESC(SYS_DC_CGDSW), access_dcgsw },
2195	{ SYS_DESC(SYS_DC_CISW), access_dcsw },
2196	{ SYS_DESC(SYS_DC_CIGSW), access_dcgsw },
2197	{ SYS_DESC(SYS_DC_CIGDSW), access_dcgsw },
2198
2199	DBG_BCR_BVR_WCR_WVR_EL1(0),
2200	DBG_BCR_BVR_WCR_WVR_EL1(1),
2201	{ SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
2202	{ SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
2203	DBG_BCR_BVR_WCR_WVR_EL1(2),
2204	DBG_BCR_BVR_WCR_WVR_EL1(3),
2205	DBG_BCR_BVR_WCR_WVR_EL1(4),
2206	DBG_BCR_BVR_WCR_WVR_EL1(5),
2207	DBG_BCR_BVR_WCR_WVR_EL1(6),
2208	DBG_BCR_BVR_WCR_WVR_EL1(7),
2209	DBG_BCR_BVR_WCR_WVR_EL1(8),
2210	DBG_BCR_BVR_WCR_WVR_EL1(9),
2211	DBG_BCR_BVR_WCR_WVR_EL1(10),
2212	DBG_BCR_BVR_WCR_WVR_EL1(11),
2213	DBG_BCR_BVR_WCR_WVR_EL1(12),
2214	DBG_BCR_BVR_WCR_WVR_EL1(13),
2215	DBG_BCR_BVR_WCR_WVR_EL1(14),
2216	DBG_BCR_BVR_WCR_WVR_EL1(15),
2217
2218	{ SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
2219	{ SYS_DESC(SYS_OSLAR_EL1), trap_oslar_el1 },
2220	{ SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1, reset_val, OSLSR_EL1,
2221		OSLSR_EL1_OSLM_IMPLEMENTED, .set_user = set_oslsr_el1, },
2222	{ SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
2223	{ SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
2224	{ SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
2225	{ SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
2226	{ SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
2227
2228	{ SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
2229	{ SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
2230	// DBGDTR[TR]X_EL0 share the same encoding
2231	{ SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
2232
2233	{ SYS_DESC(SYS_DBGVCR32_EL2), trap_undef, reset_val, DBGVCR32_EL2, 0 },
2234
2235	{ SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
2236
2237	/*
2238	 * ID regs: all ID_SANITISED() entries here must have corresponding
2239	 * entries in arm64_ftr_regs[].
2240	 */
2241
2242	/* AArch64 mappings of the AArch32 ID registers */
2243	/* CRm=1 */
2244	AA32_ID_SANITISED(ID_PFR0_EL1),
2245	AA32_ID_SANITISED(ID_PFR1_EL1),
2246	{ SYS_DESC(SYS_ID_DFR0_EL1),
2247	  .access = access_id_reg,
2248	  .get_user = get_id_reg,
2249	  .set_user = set_id_dfr0_el1,
2250	  .visibility = aa32_id_visibility,
2251	  .reset = read_sanitised_id_dfr0_el1,
2252	  .val = ID_DFR0_EL1_PerfMon_MASK |
2253		 ID_DFR0_EL1_CopDbg_MASK, },
2254	ID_HIDDEN(ID_AFR0_EL1),
2255	AA32_ID_SANITISED(ID_MMFR0_EL1),
2256	AA32_ID_SANITISED(ID_MMFR1_EL1),
2257	AA32_ID_SANITISED(ID_MMFR2_EL1),
2258	AA32_ID_SANITISED(ID_MMFR3_EL1),
2259
2260	/* CRm=2 */
2261	AA32_ID_SANITISED(ID_ISAR0_EL1),
2262	AA32_ID_SANITISED(ID_ISAR1_EL1),
2263	AA32_ID_SANITISED(ID_ISAR2_EL1),
2264	AA32_ID_SANITISED(ID_ISAR3_EL1),
2265	AA32_ID_SANITISED(ID_ISAR4_EL1),
2266	AA32_ID_SANITISED(ID_ISAR5_EL1),
2267	AA32_ID_SANITISED(ID_MMFR4_EL1),
2268	AA32_ID_SANITISED(ID_ISAR6_EL1),
2269
2270	/* CRm=3 */
2271	AA32_ID_SANITISED(MVFR0_EL1),
2272	AA32_ID_SANITISED(MVFR1_EL1),
2273	AA32_ID_SANITISED(MVFR2_EL1),
2274	ID_UNALLOCATED(3,3),
2275	AA32_ID_SANITISED(ID_PFR2_EL1),
2276	ID_HIDDEN(ID_DFR1_EL1),
2277	AA32_ID_SANITISED(ID_MMFR5_EL1),
2278	ID_UNALLOCATED(3,7),
2279
2280	/* AArch64 ID registers */
2281	/* CRm=4 */
2282	{ SYS_DESC(SYS_ID_AA64PFR0_EL1),
2283	  .access = access_id_reg,
2284	  .get_user = get_id_reg,
2285	  .set_user = set_id_reg,
2286	  .reset = read_sanitised_id_aa64pfr0_el1,
2287	  .val = ~(ID_AA64PFR0_EL1_AMU |
2288		   ID_AA64PFR0_EL1_MPAM |
2289		   ID_AA64PFR0_EL1_SVE |
2290		   ID_AA64PFR0_EL1_RAS |
2291		   ID_AA64PFR0_EL1_GIC |
2292		   ID_AA64PFR0_EL1_AdvSIMD |
2293		   ID_AA64PFR0_EL1_FP), },
2294	ID_SANITISED(ID_AA64PFR1_EL1),
2295	ID_UNALLOCATED(4,2),
2296	ID_UNALLOCATED(4,3),
2297	ID_WRITABLE(ID_AA64ZFR0_EL1, ~ID_AA64ZFR0_EL1_RES0),
2298	ID_HIDDEN(ID_AA64SMFR0_EL1),
2299	ID_UNALLOCATED(4,6),
2300	ID_UNALLOCATED(4,7),
2301
2302	/* CRm=5 */
2303	{ SYS_DESC(SYS_ID_AA64DFR0_EL1),
2304	  .access = access_id_reg,
2305	  .get_user = get_id_reg,
2306	  .set_user = set_id_aa64dfr0_el1,
2307	  .reset = read_sanitised_id_aa64dfr0_el1,
2308	  .val = ID_AA64DFR0_EL1_PMUVer_MASK |
2309		 ID_AA64DFR0_EL1_DebugVer_MASK, },
2310	ID_SANITISED(ID_AA64DFR1_EL1),
2311	ID_UNALLOCATED(5,2),
2312	ID_UNALLOCATED(5,3),
2313	ID_HIDDEN(ID_AA64AFR0_EL1),
2314	ID_HIDDEN(ID_AA64AFR1_EL1),
2315	ID_UNALLOCATED(5,6),
2316	ID_UNALLOCATED(5,7),
2317
2318	/* CRm=6 */
2319	ID_WRITABLE(ID_AA64ISAR0_EL1, ~ID_AA64ISAR0_EL1_RES0),
2320	ID_WRITABLE(ID_AA64ISAR1_EL1, ~(ID_AA64ISAR1_EL1_GPI |
2321					ID_AA64ISAR1_EL1_GPA |
2322					ID_AA64ISAR1_EL1_API |
2323					ID_AA64ISAR1_EL1_APA)),
2324	ID_WRITABLE(ID_AA64ISAR2_EL1, ~(ID_AA64ISAR2_EL1_RES0 |
2325					ID_AA64ISAR2_EL1_APA3 |
2326					ID_AA64ISAR2_EL1_GPA3)),
2327	ID_UNALLOCATED(6,3),
2328	ID_UNALLOCATED(6,4),
2329	ID_UNALLOCATED(6,5),
2330	ID_UNALLOCATED(6,6),
2331	ID_UNALLOCATED(6,7),
2332
2333	/* CRm=7 */
2334	ID_WRITABLE(ID_AA64MMFR0_EL1, ~(ID_AA64MMFR0_EL1_RES0 |
2335					ID_AA64MMFR0_EL1_TGRAN4_2 |
2336					ID_AA64MMFR0_EL1_TGRAN64_2 |
2337					ID_AA64MMFR0_EL1_TGRAN16_2)),
2338	ID_WRITABLE(ID_AA64MMFR1_EL1, ~(ID_AA64MMFR1_EL1_RES0 |
2339					ID_AA64MMFR1_EL1_HCX |
2340					ID_AA64MMFR1_EL1_XNX |
2341					ID_AA64MMFR1_EL1_TWED |
2342					ID_AA64MMFR1_EL1_XNX |
2343					ID_AA64MMFR1_EL1_VH |
2344					ID_AA64MMFR1_EL1_VMIDBits)),
2345	ID_WRITABLE(ID_AA64MMFR2_EL1, ~(ID_AA64MMFR2_EL1_RES0 |
2346					ID_AA64MMFR2_EL1_EVT |
2347					ID_AA64MMFR2_EL1_FWB |
2348					ID_AA64MMFR2_EL1_IDS |
2349					ID_AA64MMFR2_EL1_NV |
2350					ID_AA64MMFR2_EL1_CCIDX)),
2351	ID_SANITISED(ID_AA64MMFR3_EL1),
2352	ID_UNALLOCATED(7,4),
2353	ID_UNALLOCATED(7,5),
2354	ID_UNALLOCATED(7,6),
2355	ID_UNALLOCATED(7,7),
2356
2357	{ SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
2358	{ SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 },
2359	{ SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
2360
2361	MTE_REG(RGSR_EL1),
2362	MTE_REG(GCR_EL1),
2363
2364	{ SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
2365	{ SYS_DESC(SYS_TRFCR_EL1), undef_access },
2366	{ SYS_DESC(SYS_SMPRI_EL1), undef_access },
2367	{ SYS_DESC(SYS_SMCR_EL1), undef_access },
2368	{ SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
2369	{ SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
2370	{ SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
2371	{ SYS_DESC(SYS_TCR2_EL1), access_vm_reg, reset_val, TCR2_EL1, 0 },
2372
2373	PTRAUTH_KEY(APIA),
2374	PTRAUTH_KEY(APIB),
2375	PTRAUTH_KEY(APDA),
2376	PTRAUTH_KEY(APDB),
2377	PTRAUTH_KEY(APGA),
2378
2379	{ SYS_DESC(SYS_SPSR_EL1), access_spsr},
2380	{ SYS_DESC(SYS_ELR_EL1), access_elr},
2381
2382	{ SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
2383	{ SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
2384	{ SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
2385
2386	{ SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
2387	{ SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
2388	{ SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
2389	{ SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
2390	{ SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
2391	{ SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
2392	{ SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
2393	{ SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
2394
2395	MTE_REG(TFSR_EL1),
2396	MTE_REG(TFSRE0_EL1),
2397
2398	{ SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
2399	{ SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
2400
2401	{ SYS_DESC(SYS_PMSCR_EL1), undef_access },
2402	{ SYS_DESC(SYS_PMSNEVFR_EL1), undef_access },
2403	{ SYS_DESC(SYS_PMSICR_EL1), undef_access },
2404	{ SYS_DESC(SYS_PMSIRR_EL1), undef_access },
2405	{ SYS_DESC(SYS_PMSFCR_EL1), undef_access },
2406	{ SYS_DESC(SYS_PMSEVFR_EL1), undef_access },
2407	{ SYS_DESC(SYS_PMSLATFR_EL1), undef_access },
2408	{ SYS_DESC(SYS_PMSIDR_EL1), undef_access },
2409	{ SYS_DESC(SYS_PMBLIMITR_EL1), undef_access },
2410	{ SYS_DESC(SYS_PMBPTR_EL1), undef_access },
2411	{ SYS_DESC(SYS_PMBSR_EL1), undef_access },
2412	/* PMBIDR_EL1 is not trapped */
2413
2414	{ PMU_SYS_REG(PMINTENSET_EL1),
2415	  .access = access_pminten, .reg = PMINTENSET_EL1,
2416	  .get_user = get_pmreg, .set_user = set_pmreg },
2417	{ PMU_SYS_REG(PMINTENCLR_EL1),
2418	  .access = access_pminten, .reg = PMINTENSET_EL1,
2419	  .get_user = get_pmreg, .set_user = set_pmreg },
2420	{ SYS_DESC(SYS_PMMIR_EL1), trap_raz_wi },
2421
2422	{ SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
2423	{ SYS_DESC(SYS_PIRE0_EL1), NULL, reset_unknown, PIRE0_EL1 },
2424	{ SYS_DESC(SYS_PIR_EL1), NULL, reset_unknown, PIR_EL1 },
2425	{ SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
2426
2427	{ SYS_DESC(SYS_LORSA_EL1), trap_loregion },
2428	{ SYS_DESC(SYS_LOREA_EL1), trap_loregion },
2429	{ SYS_DESC(SYS_LORN_EL1), trap_loregion },
2430	{ SYS_DESC(SYS_LORC_EL1), trap_loregion },
2431	{ SYS_DESC(SYS_LORID_EL1), trap_loregion },
2432
2433	{ SYS_DESC(SYS_VBAR_EL1), access_rw, reset_val, VBAR_EL1, 0 },
2434	{ SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
2435
2436	{ SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
2437	{ SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
2438	{ SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
2439	{ SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
2440	{ SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
2441	{ SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
2442	{ SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
2443	{ SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
2444	{ SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
2445	{ SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
2446	{ SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
2447	{ SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
2448
2449	{ SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
2450	{ SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
2451
2452	{ SYS_DESC(SYS_ACCDATA_EL1), undef_access },
2453
2454	{ SYS_DESC(SYS_SCXTNUM_EL1), undef_access },
2455
2456	{ SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
2457
2458	{ SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
2459	{ SYS_DESC(SYS_CLIDR_EL1), access_clidr, reset_clidr, CLIDR_EL1,
2460	  .set_user = set_clidr },
2461	{ SYS_DESC(SYS_CCSIDR2_EL1), undef_access },
2462	{ SYS_DESC(SYS_SMIDR_EL1), undef_access },
2463	{ SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
2464	{ SYS_DESC(SYS_CTR_EL0), access_ctr },
2465	{ SYS_DESC(SYS_SVCR), undef_access },
2466
2467	{ PMU_SYS_REG(PMCR_EL0), .access = access_pmcr, .reset = reset_pmcr,
2468	  .reg = PMCR_EL0, .get_user = get_pmcr, .set_user = set_pmcr },
2469	{ PMU_SYS_REG(PMCNTENSET_EL0),
2470	  .access = access_pmcnten, .reg = PMCNTENSET_EL0,
2471	  .get_user = get_pmreg, .set_user = set_pmreg },
2472	{ PMU_SYS_REG(PMCNTENCLR_EL0),
2473	  .access = access_pmcnten, .reg = PMCNTENSET_EL0,
2474	  .get_user = get_pmreg, .set_user = set_pmreg },
2475	{ PMU_SYS_REG(PMOVSCLR_EL0),
2476	  .access = access_pmovs, .reg = PMOVSSET_EL0,
2477	  .get_user = get_pmreg, .set_user = set_pmreg },
2478	/*
2479	 * PM_SWINC_EL0 is exposed to userspace as RAZ/WI, as it was
2480	 * previously (and pointlessly) advertised in the past...
2481	 */
2482	{ PMU_SYS_REG(PMSWINC_EL0),
2483	  .get_user = get_raz_reg, .set_user = set_wi_reg,
2484	  .access = access_pmswinc, .reset = NULL },
2485	{ PMU_SYS_REG(PMSELR_EL0),
2486	  .access = access_pmselr, .reset = reset_pmselr, .reg = PMSELR_EL0 },
2487	{ PMU_SYS_REG(PMCEID0_EL0),
2488	  .access = access_pmceid, .reset = NULL },
2489	{ PMU_SYS_REG(PMCEID1_EL0),
2490	  .access = access_pmceid, .reset = NULL },
2491	{ PMU_SYS_REG(PMCCNTR_EL0),
2492	  .access = access_pmu_evcntr, .reset = reset_unknown,
2493	  .reg = PMCCNTR_EL0, .get_user = get_pmu_evcntr},
2494	{ PMU_SYS_REG(PMXEVTYPER_EL0),
2495	  .access = access_pmu_evtyper, .reset = NULL },
2496	{ PMU_SYS_REG(PMXEVCNTR_EL0),
2497	  .access = access_pmu_evcntr, .reset = NULL },
2498	/*
2499	 * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
2500	 * in 32bit mode. Here we choose to reset it as zero for consistency.
2501	 */
2502	{ PMU_SYS_REG(PMUSERENR_EL0), .access = access_pmuserenr,
2503	  .reset = reset_val, .reg = PMUSERENR_EL0, .val = 0 },
2504	{ PMU_SYS_REG(PMOVSSET_EL0),
2505	  .access = access_pmovs, .reg = PMOVSSET_EL0,
2506	  .get_user = get_pmreg, .set_user = set_pmreg },
2507
2508	{ SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
2509	{ SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
2510	{ SYS_DESC(SYS_TPIDR2_EL0), undef_access },
2511
2512	{ SYS_DESC(SYS_SCXTNUM_EL0), undef_access },
2513
2514	{ SYS_DESC(SYS_AMCR_EL0), undef_access },
2515	{ SYS_DESC(SYS_AMCFGR_EL0), undef_access },
2516	{ SYS_DESC(SYS_AMCGCR_EL0), undef_access },
2517	{ SYS_DESC(SYS_AMUSERENR_EL0), undef_access },
2518	{ SYS_DESC(SYS_AMCNTENCLR0_EL0), undef_access },
2519	{ SYS_DESC(SYS_AMCNTENSET0_EL0), undef_access },
2520	{ SYS_DESC(SYS_AMCNTENCLR1_EL0), undef_access },
2521	{ SYS_DESC(SYS_AMCNTENSET1_EL0), undef_access },
2522	AMU_AMEVCNTR0_EL0(0),
2523	AMU_AMEVCNTR0_EL0(1),
2524	AMU_AMEVCNTR0_EL0(2),
2525	AMU_AMEVCNTR0_EL0(3),
2526	AMU_AMEVCNTR0_EL0(4),
2527	AMU_AMEVCNTR0_EL0(5),
2528	AMU_AMEVCNTR0_EL0(6),
2529	AMU_AMEVCNTR0_EL0(7),
2530	AMU_AMEVCNTR0_EL0(8),
2531	AMU_AMEVCNTR0_EL0(9),
2532	AMU_AMEVCNTR0_EL0(10),
2533	AMU_AMEVCNTR0_EL0(11),
2534	AMU_AMEVCNTR0_EL0(12),
2535	AMU_AMEVCNTR0_EL0(13),
2536	AMU_AMEVCNTR0_EL0(14),
2537	AMU_AMEVCNTR0_EL0(15),
2538	AMU_AMEVTYPER0_EL0(0),
2539	AMU_AMEVTYPER0_EL0(1),
2540	AMU_AMEVTYPER0_EL0(2),
2541	AMU_AMEVTYPER0_EL0(3),
2542	AMU_AMEVTYPER0_EL0(4),
2543	AMU_AMEVTYPER0_EL0(5),
2544	AMU_AMEVTYPER0_EL0(6),
2545	AMU_AMEVTYPER0_EL0(7),
2546	AMU_AMEVTYPER0_EL0(8),
2547	AMU_AMEVTYPER0_EL0(9),
2548	AMU_AMEVTYPER0_EL0(10),
2549	AMU_AMEVTYPER0_EL0(11),
2550	AMU_AMEVTYPER0_EL0(12),
2551	AMU_AMEVTYPER0_EL0(13),
2552	AMU_AMEVTYPER0_EL0(14),
2553	AMU_AMEVTYPER0_EL0(15),
2554	AMU_AMEVCNTR1_EL0(0),
2555	AMU_AMEVCNTR1_EL0(1),
2556	AMU_AMEVCNTR1_EL0(2),
2557	AMU_AMEVCNTR1_EL0(3),
2558	AMU_AMEVCNTR1_EL0(4),
2559	AMU_AMEVCNTR1_EL0(5),
2560	AMU_AMEVCNTR1_EL0(6),
2561	AMU_AMEVCNTR1_EL0(7),
2562	AMU_AMEVCNTR1_EL0(8),
2563	AMU_AMEVCNTR1_EL0(9),
2564	AMU_AMEVCNTR1_EL0(10),
2565	AMU_AMEVCNTR1_EL0(11),
2566	AMU_AMEVCNTR1_EL0(12),
2567	AMU_AMEVCNTR1_EL0(13),
2568	AMU_AMEVCNTR1_EL0(14),
2569	AMU_AMEVCNTR1_EL0(15),
2570	AMU_AMEVTYPER1_EL0(0),
2571	AMU_AMEVTYPER1_EL0(1),
2572	AMU_AMEVTYPER1_EL0(2),
2573	AMU_AMEVTYPER1_EL0(3),
2574	AMU_AMEVTYPER1_EL0(4),
2575	AMU_AMEVTYPER1_EL0(5),
2576	AMU_AMEVTYPER1_EL0(6),
2577	AMU_AMEVTYPER1_EL0(7),
2578	AMU_AMEVTYPER1_EL0(8),
2579	AMU_AMEVTYPER1_EL0(9),
2580	AMU_AMEVTYPER1_EL0(10),
2581	AMU_AMEVTYPER1_EL0(11),
2582	AMU_AMEVTYPER1_EL0(12),
2583	AMU_AMEVTYPER1_EL0(13),
2584	AMU_AMEVTYPER1_EL0(14),
2585	AMU_AMEVTYPER1_EL0(15),
2586
2587	{ SYS_DESC(SYS_CNTPCT_EL0), access_arch_timer },
2588	{ SYS_DESC(SYS_CNTPCTSS_EL0), access_arch_timer },
2589	{ SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
2590	{ SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
2591	{ SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
2592
2593	/* PMEVCNTRn_EL0 */
2594	PMU_PMEVCNTR_EL0(0),
2595	PMU_PMEVCNTR_EL0(1),
2596	PMU_PMEVCNTR_EL0(2),
2597	PMU_PMEVCNTR_EL0(3),
2598	PMU_PMEVCNTR_EL0(4),
2599	PMU_PMEVCNTR_EL0(5),
2600	PMU_PMEVCNTR_EL0(6),
2601	PMU_PMEVCNTR_EL0(7),
2602	PMU_PMEVCNTR_EL0(8),
2603	PMU_PMEVCNTR_EL0(9),
2604	PMU_PMEVCNTR_EL0(10),
2605	PMU_PMEVCNTR_EL0(11),
2606	PMU_PMEVCNTR_EL0(12),
2607	PMU_PMEVCNTR_EL0(13),
2608	PMU_PMEVCNTR_EL0(14),
2609	PMU_PMEVCNTR_EL0(15),
2610	PMU_PMEVCNTR_EL0(16),
2611	PMU_PMEVCNTR_EL0(17),
2612	PMU_PMEVCNTR_EL0(18),
2613	PMU_PMEVCNTR_EL0(19),
2614	PMU_PMEVCNTR_EL0(20),
2615	PMU_PMEVCNTR_EL0(21),
2616	PMU_PMEVCNTR_EL0(22),
2617	PMU_PMEVCNTR_EL0(23),
2618	PMU_PMEVCNTR_EL0(24),
2619	PMU_PMEVCNTR_EL0(25),
2620	PMU_PMEVCNTR_EL0(26),
2621	PMU_PMEVCNTR_EL0(27),
2622	PMU_PMEVCNTR_EL0(28),
2623	PMU_PMEVCNTR_EL0(29),
2624	PMU_PMEVCNTR_EL0(30),
2625	/* PMEVTYPERn_EL0 */
2626	PMU_PMEVTYPER_EL0(0),
2627	PMU_PMEVTYPER_EL0(1),
2628	PMU_PMEVTYPER_EL0(2),
2629	PMU_PMEVTYPER_EL0(3),
2630	PMU_PMEVTYPER_EL0(4),
2631	PMU_PMEVTYPER_EL0(5),
2632	PMU_PMEVTYPER_EL0(6),
2633	PMU_PMEVTYPER_EL0(7),
2634	PMU_PMEVTYPER_EL0(8),
2635	PMU_PMEVTYPER_EL0(9),
2636	PMU_PMEVTYPER_EL0(10),
2637	PMU_PMEVTYPER_EL0(11),
2638	PMU_PMEVTYPER_EL0(12),
2639	PMU_PMEVTYPER_EL0(13),
2640	PMU_PMEVTYPER_EL0(14),
2641	PMU_PMEVTYPER_EL0(15),
2642	PMU_PMEVTYPER_EL0(16),
2643	PMU_PMEVTYPER_EL0(17),
2644	PMU_PMEVTYPER_EL0(18),
2645	PMU_PMEVTYPER_EL0(19),
2646	PMU_PMEVTYPER_EL0(20),
2647	PMU_PMEVTYPER_EL0(21),
2648	PMU_PMEVTYPER_EL0(22),
2649	PMU_PMEVTYPER_EL0(23),
2650	PMU_PMEVTYPER_EL0(24),
2651	PMU_PMEVTYPER_EL0(25),
2652	PMU_PMEVTYPER_EL0(26),
2653	PMU_PMEVTYPER_EL0(27),
2654	PMU_PMEVTYPER_EL0(28),
2655	PMU_PMEVTYPER_EL0(29),
2656	PMU_PMEVTYPER_EL0(30),
2657	/*
2658	 * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
2659	 * in 32bit mode. Here we choose to reset it as zero for consistency.
2660	 */
2661	{ PMU_SYS_REG(PMCCFILTR_EL0), .access = access_pmu_evtyper,
2662	  .reset = reset_val, .reg = PMCCFILTR_EL0, .val = 0 },
2663
2664	EL2_REG_VNCR(VPIDR_EL2, reset_unknown, 0),
2665	EL2_REG_VNCR(VMPIDR_EL2, reset_unknown, 0),
2666	EL2_REG(SCTLR_EL2, access_rw, reset_val, SCTLR_EL2_RES1),
2667	EL2_REG(ACTLR_EL2, access_rw, reset_val, 0),
2668	EL2_REG_VNCR(HCR_EL2, reset_val, 0),
2669	EL2_REG(MDCR_EL2, access_rw, reset_val, 0),
2670	EL2_REG(CPTR_EL2, access_rw, reset_val, CPTR_NVHE_EL2_RES1),
2671	EL2_REG_VNCR(HSTR_EL2, reset_val, 0),
2672	EL2_REG_VNCR(HFGRTR_EL2, reset_val, 0),
2673	EL2_REG_VNCR(HFGWTR_EL2, reset_val, 0),
2674	EL2_REG_VNCR(HFGITR_EL2, reset_val, 0),
2675	EL2_REG_VNCR(HACR_EL2, reset_val, 0),
2676
2677	EL2_REG_VNCR(HCRX_EL2, reset_val, 0),
2678
2679	EL2_REG(TTBR0_EL2, access_rw, reset_val, 0),
2680	EL2_REG(TTBR1_EL2, access_rw, reset_val, 0),
2681	EL2_REG(TCR_EL2, access_rw, reset_val, TCR_EL2_RES1),
2682	EL2_REG_VNCR(VTTBR_EL2, reset_val, 0),
2683	EL2_REG_VNCR(VTCR_EL2, reset_val, 0),
2684
2685	{ SYS_DESC(SYS_DACR32_EL2), trap_undef, reset_unknown, DACR32_EL2 },
2686	EL2_REG_VNCR(HDFGRTR_EL2, reset_val, 0),
2687	EL2_REG_VNCR(HDFGWTR_EL2, reset_val, 0),
2688	EL2_REG_VNCR(HAFGRTR_EL2, reset_val, 0),
2689	EL2_REG_REDIR(SPSR_EL2, reset_val, 0),
2690	EL2_REG_REDIR(ELR_EL2, reset_val, 0),
2691	{ SYS_DESC(SYS_SP_EL1), access_sp_el1},
2692
2693	/* AArch32 SPSR_* are RES0 if trapped from a NV guest */
2694	{ SYS_DESC(SYS_SPSR_irq), .access = trap_raz_wi,
2695	  .visibility = hidden_user_visibility },
2696	{ SYS_DESC(SYS_SPSR_abt), .access = trap_raz_wi,
2697	  .visibility = hidden_user_visibility },
2698	{ SYS_DESC(SYS_SPSR_und), .access = trap_raz_wi,
2699	  .visibility = hidden_user_visibility },
2700	{ SYS_DESC(SYS_SPSR_fiq), .access = trap_raz_wi,
2701	  .visibility = hidden_user_visibility },
2702
2703	{ SYS_DESC(SYS_IFSR32_EL2), trap_undef, reset_unknown, IFSR32_EL2 },
2704	EL2_REG(AFSR0_EL2, access_rw, reset_val, 0),
2705	EL2_REG(AFSR1_EL2, access_rw, reset_val, 0),
2706	EL2_REG_REDIR(ESR_EL2, reset_val, 0),
2707	{ SYS_DESC(SYS_FPEXC32_EL2), trap_undef, reset_val, FPEXC32_EL2, 0x700 },
2708
2709	EL2_REG_REDIR(FAR_EL2, reset_val, 0),
2710	EL2_REG(HPFAR_EL2, access_rw, reset_val, 0),
2711
2712	EL2_REG(MAIR_EL2, access_rw, reset_val, 0),
2713	EL2_REG(AMAIR_EL2, access_rw, reset_val, 0),
2714
2715	EL2_REG(VBAR_EL2, access_rw, reset_val, 0),
2716	EL2_REG(RVBAR_EL2, access_rw, reset_val, 0),
2717	{ SYS_DESC(SYS_RMR_EL2), trap_undef },
2718
2719	EL2_REG(CONTEXTIDR_EL2, access_rw, reset_val, 0),
2720	EL2_REG(TPIDR_EL2, access_rw, reset_val, 0),
2721
2722	EL2_REG_VNCR(CNTVOFF_EL2, reset_val, 0),
2723	EL2_REG(CNTHCTL_EL2, access_rw, reset_val, 0),
2724
2725	EL12_REG(CNTKCTL, access_rw, reset_val, 0),
2726
2727	EL2_REG(SP_EL2, NULL, reset_unknown, 0),
2728};
2729
2730static const struct sys_reg_desc *first_idreg;
2731
2732static bool trap_dbgdidr(struct kvm_vcpu *vcpu,
2733			struct sys_reg_params *p,
2734			const struct sys_reg_desc *r)
2735{
2736	if (p->is_write) {
2737		return ignore_write(vcpu, p);
2738	} else {
2739		u64 dfr = IDREG(vcpu->kvm, SYS_ID_AA64DFR0_EL1);
2740		u64 pfr = IDREG(vcpu->kvm, SYS_ID_AA64PFR0_EL1);
2741		u32 el3 = !!SYS_FIELD_GET(ID_AA64PFR0_EL1, EL3, pfr);
2742
2743		p->regval = ((SYS_FIELD_GET(ID_AA64DFR0_EL1, WRPs, dfr) << 28) |
2744			     (SYS_FIELD_GET(ID_AA64DFR0_EL1, BRPs, dfr) << 24) |
2745			     (SYS_FIELD_GET(ID_AA64DFR0_EL1, CTX_CMPs, dfr) << 20) |
2746			     (SYS_FIELD_GET(ID_AA64DFR0_EL1, DebugVer, dfr) << 16) |
2747			     (1 << 15) | (el3 << 14) | (el3 << 12));
2748		return true;
2749	}
2750}
2751
2752/*
2753 * AArch32 debug register mappings
 
 
 
 
 
 
 
 
 
 
 
 
 
2754 *
2755 * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
2756 * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
2757 *
2758 * None of the other registers share their location, so treat them as
2759 * if they were 64bit.
 
 
2760 */
2761#define DBG_BCR_BVR_WCR_WVR(n)						      \
2762	/* DBGBVRn */							      \
2763	{ AA32(LO), Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
2764	/* DBGBCRn */							      \
2765	{ Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },	      \
2766	/* DBGWVRn */							      \
2767	{ Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },	      \
2768	/* DBGWCRn */							      \
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2769	{ Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
2770
2771#define DBGBXVR(n)							      \
2772	{ AA32(HI), Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_bvr, NULL, n }
2773
2774/*
2775 * Trapped cp14 registers. We generally ignore most of the external
2776 * debug, on the principle that they don't really make sense to a
2777 * guest. Revisit this one day, would this principle change.
2778 */
2779static const struct sys_reg_desc cp14_regs[] = {
2780	/* DBGDIDR */
2781	{ Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgdidr },
2782	/* DBGDTRRXext */
2783	{ Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
2784
2785	DBG_BCR_BVR_WCR_WVR(0),
2786	/* DBGDSCRint */
2787	{ Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
2788	DBG_BCR_BVR_WCR_WVR(1),
2789	/* DBGDCCINT */
2790	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug_regs, NULL, MDCCINT_EL1 },
2791	/* DBGDSCRext */
2792	{ Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug_regs, NULL, MDSCR_EL1 },
2793	DBG_BCR_BVR_WCR_WVR(2),
2794	/* DBGDTR[RT]Xint */
2795	{ Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
2796	/* DBGDTR[RT]Xext */
2797	{ Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
2798	DBG_BCR_BVR_WCR_WVR(3),
2799	DBG_BCR_BVR_WCR_WVR(4),
2800	DBG_BCR_BVR_WCR_WVR(5),
2801	/* DBGWFAR */
2802	{ Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
2803	/* DBGOSECCR */
2804	{ Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
2805	DBG_BCR_BVR_WCR_WVR(6),
2806	/* DBGVCR */
2807	{ Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug_regs, NULL, DBGVCR32_EL2 },
2808	DBG_BCR_BVR_WCR_WVR(7),
2809	DBG_BCR_BVR_WCR_WVR(8),
2810	DBG_BCR_BVR_WCR_WVR(9),
2811	DBG_BCR_BVR_WCR_WVR(10),
2812	DBG_BCR_BVR_WCR_WVR(11),
2813	DBG_BCR_BVR_WCR_WVR(12),
2814	DBG_BCR_BVR_WCR_WVR(13),
2815	DBG_BCR_BVR_WCR_WVR(14),
2816	DBG_BCR_BVR_WCR_WVR(15),
2817
2818	/* DBGDRAR (32bit) */
2819	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
2820
2821	DBGBXVR(0),
2822	/* DBGOSLAR */
2823	{ Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_oslar_el1 },
2824	DBGBXVR(1),
2825	/* DBGOSLSR */
2826	{ Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1, NULL, OSLSR_EL1 },
2827	DBGBXVR(2),
2828	DBGBXVR(3),
2829	/* DBGOSDLR */
2830	{ Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
2831	DBGBXVR(4),
2832	/* DBGPRCR */
2833	{ Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
2834	DBGBXVR(5),
2835	DBGBXVR(6),
2836	DBGBXVR(7),
2837	DBGBXVR(8),
2838	DBGBXVR(9),
2839	DBGBXVR(10),
2840	DBGBXVR(11),
2841	DBGBXVR(12),
2842	DBGBXVR(13),
2843	DBGBXVR(14),
2844	DBGBXVR(15),
2845
2846	/* DBGDSAR (32bit) */
2847	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
2848
2849	/* DBGDEVID2 */
2850	{ Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
2851	/* DBGDEVID1 */
2852	{ Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
2853	/* DBGDEVID */
2854	{ Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
2855	/* DBGCLAIMSET */
2856	{ Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
2857	/* DBGCLAIMCLR */
2858	{ Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
2859	/* DBGAUTHSTATUS */
2860	{ Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
2861};
2862
2863/* Trapped cp14 64bit registers */
2864static const struct sys_reg_desc cp14_64_regs[] = {
2865	/* DBGDRAR (64bit) */
2866	{ Op1( 0), CRm( 1), .access = trap_raz_wi },
2867
2868	/* DBGDSAR (64bit) */
2869	{ Op1( 0), CRm( 2), .access = trap_raz_wi },
2870};
2871
2872#define CP15_PMU_SYS_REG(_map, _Op1, _CRn, _CRm, _Op2)			\
2873	AA32(_map),							\
2874	Op1(_Op1), CRn(_CRn), CRm(_CRm), Op2(_Op2),			\
2875	.visibility = pmu_visibility
2876
2877/* Macro to expand the PMEVCNTRn register */
2878#define PMU_PMEVCNTR(n)							\
2879	{ CP15_PMU_SYS_REG(DIRECT, 0, 0b1110,				\
2880	  (0b1000 | (((n) >> 3) & 0x3)), ((n) & 0x7)),			\
2881	  .access = access_pmu_evcntr }
 
2882
2883/* Macro to expand the PMEVTYPERn register */
2884#define PMU_PMEVTYPER(n)						\
2885	{ CP15_PMU_SYS_REG(DIRECT, 0, 0b1110,				\
2886	  (0b1100 | (((n) >> 3) & 0x3)), ((n) & 0x7)),			\
2887	  .access = access_pmu_evtyper }
 
 
2888/*
2889 * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
2890 * depending on the way they are accessed (as a 32bit or a 64bit
2891 * register).
2892 */
2893static const struct sys_reg_desc cp15_regs[] = {
2894	{ Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
2895	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, SCTLR_EL1 },
2896	/* ACTLR */
2897	{ AA32(LO), Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr, NULL, ACTLR_EL1 },
2898	/* ACTLR2 */
2899	{ AA32(HI), Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr, NULL, ACTLR_EL1 },
2900	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
2901	{ Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, TTBR1_EL1 },
2902	/* TTBCR */
2903	{ AA32(LO), Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, TCR_EL1 },
2904	/* TTBCR2 */
2905	{ AA32(HI), Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, TCR_EL1 },
2906	{ Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, DACR32_EL2 },
2907	/* DFSR */
2908	{ Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, ESR_EL1 },
2909	{ Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, IFSR32_EL2 },
2910	/* ADFSR */
2911	{ Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, AFSR0_EL1 },
2912	/* AIFSR */
2913	{ Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, AFSR1_EL1 },
2914	/* DFAR */
2915	{ AA32(LO), Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, FAR_EL1 },
2916	/* IFAR */
2917	{ AA32(HI), Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, FAR_EL1 },
2918
2919	/*
2920	 * DC{C,I,CI}SW operations:
2921	 */
2922	{ Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
2923	{ Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
2924	{ Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
2925
2926	/* PMU */
2927	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 0), .access = access_pmcr },
2928	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 1), .access = access_pmcnten },
2929	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 2), .access = access_pmcnten },
2930	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 3), .access = access_pmovs },
2931	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 4), .access = access_pmswinc },
2932	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 5), .access = access_pmselr },
2933	{ CP15_PMU_SYS_REG(LO,     0, 9, 12, 6), .access = access_pmceid },
2934	{ CP15_PMU_SYS_REG(LO,     0, 9, 12, 7), .access = access_pmceid },
2935	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 0), .access = access_pmu_evcntr },
2936	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 1), .access = access_pmu_evtyper },
2937	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 2), .access = access_pmu_evcntr },
2938	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 0), .access = access_pmuserenr },
2939	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 1), .access = access_pminten },
2940	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 2), .access = access_pminten },
2941	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 3), .access = access_pmovs },
2942	{ CP15_PMU_SYS_REG(HI,     0, 9, 14, 4), .access = access_pmceid },
2943	{ CP15_PMU_SYS_REG(HI,     0, 9, 14, 5), .access = access_pmceid },
2944	/* PMMIR */
2945	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 6), .access = trap_raz_wi },
2946
2947	/* PRRR/MAIR0 */
2948	{ AA32(LO), Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, MAIR_EL1 },
2949	/* NMRR/MAIR1 */
2950	{ AA32(HI), Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, MAIR_EL1 },
2951	/* AMAIR0 */
2952	{ AA32(LO), Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, AMAIR_EL1 },
2953	/* AMAIR1 */
2954	{ AA32(HI), Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, AMAIR_EL1 },
2955
2956	/* ICC_SRE */
2957	{ Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
2958
2959	{ Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, CONTEXTIDR_EL1 },
2960
2961	/* Arch Tmers */
2962	{ SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
2963	{ SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
 
2964
2965	/* PMEVCNTRn */
2966	PMU_PMEVCNTR(0),
2967	PMU_PMEVCNTR(1),
2968	PMU_PMEVCNTR(2),
2969	PMU_PMEVCNTR(3),
2970	PMU_PMEVCNTR(4),
2971	PMU_PMEVCNTR(5),
2972	PMU_PMEVCNTR(6),
2973	PMU_PMEVCNTR(7),
2974	PMU_PMEVCNTR(8),
2975	PMU_PMEVCNTR(9),
2976	PMU_PMEVCNTR(10),
2977	PMU_PMEVCNTR(11),
2978	PMU_PMEVCNTR(12),
2979	PMU_PMEVCNTR(13),
2980	PMU_PMEVCNTR(14),
2981	PMU_PMEVCNTR(15),
2982	PMU_PMEVCNTR(16),
2983	PMU_PMEVCNTR(17),
2984	PMU_PMEVCNTR(18),
2985	PMU_PMEVCNTR(19),
2986	PMU_PMEVCNTR(20),
2987	PMU_PMEVCNTR(21),
2988	PMU_PMEVCNTR(22),
2989	PMU_PMEVCNTR(23),
2990	PMU_PMEVCNTR(24),
2991	PMU_PMEVCNTR(25),
2992	PMU_PMEVCNTR(26),
2993	PMU_PMEVCNTR(27),
2994	PMU_PMEVCNTR(28),
2995	PMU_PMEVCNTR(29),
2996	PMU_PMEVCNTR(30),
2997	/* PMEVTYPERn */
2998	PMU_PMEVTYPER(0),
2999	PMU_PMEVTYPER(1),
3000	PMU_PMEVTYPER(2),
3001	PMU_PMEVTYPER(3),
3002	PMU_PMEVTYPER(4),
3003	PMU_PMEVTYPER(5),
3004	PMU_PMEVTYPER(6),
3005	PMU_PMEVTYPER(7),
3006	PMU_PMEVTYPER(8),
3007	PMU_PMEVTYPER(9),
3008	PMU_PMEVTYPER(10),
3009	PMU_PMEVTYPER(11),
3010	PMU_PMEVTYPER(12),
3011	PMU_PMEVTYPER(13),
3012	PMU_PMEVTYPER(14),
3013	PMU_PMEVTYPER(15),
3014	PMU_PMEVTYPER(16),
3015	PMU_PMEVTYPER(17),
3016	PMU_PMEVTYPER(18),
3017	PMU_PMEVTYPER(19),
3018	PMU_PMEVTYPER(20),
3019	PMU_PMEVTYPER(21),
3020	PMU_PMEVTYPER(22),
3021	PMU_PMEVTYPER(23),
3022	PMU_PMEVTYPER(24),
3023	PMU_PMEVTYPER(25),
3024	PMU_PMEVTYPER(26),
3025	PMU_PMEVTYPER(27),
3026	PMU_PMEVTYPER(28),
3027	PMU_PMEVTYPER(29),
3028	PMU_PMEVTYPER(30),
3029	/* PMCCFILTR */
3030	{ CP15_PMU_SYS_REG(DIRECT, 0, 14, 15, 7), .access = access_pmu_evtyper },
3031
3032	{ Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
3033	{ Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
3034
3035	/* CCSIDR2 */
3036	{ Op1(1), CRn( 0), CRm( 0),  Op2(2), undef_access },
3037
3038	{ Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, CSSELR_EL1 },
3039};
3040
3041static const struct sys_reg_desc cp15_64_regs[] = {
3042	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
3043	{ CP15_PMU_SYS_REG(DIRECT, 0, 0, 9, 0), .access = access_pmu_evcntr },
3044	{ Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
3045	{ SYS_DESC(SYS_AARCH32_CNTPCT),	      access_arch_timer },
3046	{ Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR1_EL1 },
3047	{ Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
3048	{ Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
3049	{ SYS_DESC(SYS_AARCH32_CNTP_CVAL),    access_arch_timer },
3050	{ SYS_DESC(SYS_AARCH32_CNTPCTSS),     access_arch_timer },
3051};
3052
3053static bool check_sysreg_table(const struct sys_reg_desc *table, unsigned int n,
3054			       bool is_32)
 
 
 
3055{
3056	unsigned int i;
 
3057
3058	for (i = 0; i < n; i++) {
3059		if (!is_32 && table[i].reg && !table[i].reset) {
3060			kvm_err("sys_reg table %pS entry %d lacks reset\n", &table[i], i);
3061			return false;
3062		}
 
3063
3064		if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
3065			kvm_err("sys_reg table %pS entry %d out of order\n", &table[i - 1], i - 1);
3066			return false;
3067		}
 
 
 
3068	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3069
3070	return true;
 
 
 
 
 
 
 
 
 
3071}
3072
3073int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu)
3074{
3075	kvm_inject_undefined(vcpu);
3076	return 1;
3077}
3078
3079static void perform_access(struct kvm_vcpu *vcpu,
3080			   struct sys_reg_params *params,
3081			   const struct sys_reg_desc *r)
3082{
3083	trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
3084
3085	/* Check for regs disabled by runtime config */
3086	if (sysreg_hidden(vcpu, r)) {
3087		kvm_inject_undefined(vcpu);
3088		return;
3089	}
3090
3091	/*
3092	 * Not having an accessor means that we have configured a trap
3093	 * that we don't know how to handle. This certainly qualifies
3094	 * as a gross bug that should be fixed right away.
3095	 */
3096	BUG_ON(!r->access);
3097
3098	/* Skip instruction if instructed so */
3099	if (likely(r->access(vcpu, params, r)))
3100		kvm_incr_pc(vcpu);
3101}
3102
3103/*
3104 * emulate_cp --  tries to match a sys_reg access in a handling table, and
3105 *                call the corresponding trap handler.
3106 *
3107 * @params: pointer to the descriptor of the access
3108 * @table: array of trap descriptors
3109 * @num: size of the trap descriptor array
3110 *
3111 * Return true if the access has been handled, false if not.
3112 */
3113static bool emulate_cp(struct kvm_vcpu *vcpu,
3114		       struct sys_reg_params *params,
3115		       const struct sys_reg_desc *table,
3116		       size_t num)
3117{
3118	const struct sys_reg_desc *r;
3119
3120	if (!table)
3121		return false;	/* Not handled */
3122
3123	r = find_reg(params, table, num);
3124
3125	if (r) {
3126		perform_access(vcpu, params, r);
3127		return true;
3128	}
3129
3130	/* Not handled */
3131	return false;
3132}
3133
3134static void unhandled_cp_access(struct kvm_vcpu *vcpu,
3135				struct sys_reg_params *params)
3136{
3137	u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
3138	int cp = -1;
3139
3140	switch (esr_ec) {
3141	case ESR_ELx_EC_CP15_32:
3142	case ESR_ELx_EC_CP15_64:
3143		cp = 15;
3144		break;
3145	case ESR_ELx_EC_CP14_MR:
3146	case ESR_ELx_EC_CP14_64:
3147		cp = 14;
3148		break;
3149	default:
3150		WARN_ON(1);
3151	}
3152
3153	print_sys_reg_msg(params,
3154			  "Unsupported guest CP%d access at: %08lx [%08lx]\n",
3155			  cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
3156	kvm_inject_undefined(vcpu);
3157}
3158
3159/**
3160 * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
3161 * @vcpu: The VCPU pointer
3162 * @run:  The kvm_run struct
3163 */
3164static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
3165			    const struct sys_reg_desc *global,
3166			    size_t nr_global)
 
 
3167{
3168	struct sys_reg_params params;
3169	u64 esr = kvm_vcpu_get_esr(vcpu);
3170	int Rt = kvm_vcpu_sys_get_rt(vcpu);
3171	int Rt2 = (esr >> 10) & 0x1f;
3172
3173	params.CRm = (esr >> 1) & 0xf;
3174	params.is_write = ((esr & 1) == 0);
 
 
3175
3176	params.Op0 = 0;
3177	params.Op1 = (esr >> 16) & 0xf;
3178	params.Op2 = 0;
3179	params.CRn = 0;
3180
3181	/*
3182	 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
3183	 * backends between AArch32 and AArch64, we get away with it.
3184	 */
3185	if (params.is_write) {
3186		params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
3187		params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
3188	}
3189
3190	/*
3191	 * If the table contains a handler, handle the
 
 
3192	 * potential register operation in the case of a read and return
3193	 * with success.
3194	 */
3195	if (emulate_cp(vcpu, &params, global, nr_global)) {
 
3196		/* Split up the value between registers for the read side */
3197		if (!params.is_write) {
3198			vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
3199			vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
3200		}
3201
3202		return 1;
3203	}
3204
3205	unhandled_cp_access(vcpu, &params);
3206	return 1;
3207}
3208
3209static bool emulate_sys_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *params);
3210
3211/*
3212 * The CP10 ID registers are architecturally mapped to AArch64 feature
3213 * registers. Abuse that fact so we can rely on the AArch64 handler for accesses
3214 * from AArch32.
3215 */
3216static bool kvm_esr_cp10_id_to_sys64(u64 esr, struct sys_reg_params *params)
3217{
3218	u8 reg_id = (esr >> 10) & 0xf;
3219	bool valid;
3220
3221	params->is_write = ((esr & 1) == 0);
3222	params->Op0 = 3;
3223	params->Op1 = 0;
3224	params->CRn = 0;
3225	params->CRm = 3;
3226
3227	/* CP10 ID registers are read-only */
3228	valid = !params->is_write;
3229
3230	switch (reg_id) {
3231	/* MVFR0 */
3232	case 0b0111:
3233		params->Op2 = 0;
3234		break;
3235	/* MVFR1 */
3236	case 0b0110:
3237		params->Op2 = 1;
3238		break;
3239	/* MVFR2 */
3240	case 0b0101:
3241		params->Op2 = 2;
3242		break;
3243	default:
3244		valid = false;
3245	}
3246
3247	if (valid)
3248		return true;
3249
3250	kvm_pr_unimpl("Unhandled cp10 register %s: %u\n",
3251		      params->is_write ? "write" : "read", reg_id);
3252	return false;
3253}
3254
3255/**
3256 * kvm_handle_cp10_id() - Handles a VMRS trap on guest access to a 'Media and
3257 *			  VFP Register' from AArch32.
3258 * @vcpu: The vCPU pointer
3259 *
3260 * MVFR{0-2} are architecturally mapped to the AArch64 MVFR{0-2}_EL1 registers.
3261 * Work out the correct AArch64 system register encoding and reroute to the
3262 * AArch64 system register emulation.
3263 */
3264int kvm_handle_cp10_id(struct kvm_vcpu *vcpu)
3265{
3266	int Rt = kvm_vcpu_sys_get_rt(vcpu);
3267	u64 esr = kvm_vcpu_get_esr(vcpu);
3268	struct sys_reg_params params;
3269
3270	/* UNDEF on any unhandled register access */
3271	if (!kvm_esr_cp10_id_to_sys64(esr, &params)) {
3272		kvm_inject_undefined(vcpu);
3273		return 1;
3274	}
3275
3276	if (emulate_sys_reg(vcpu, &params))
3277		vcpu_set_reg(vcpu, Rt, params.regval);
3278
3279	return 1;
3280}
3281
3282/**
3283 * kvm_emulate_cp15_id_reg() - Handles an MRC trap on a guest CP15 access where
3284 *			       CRn=0, which corresponds to the AArch32 feature
3285 *			       registers.
3286 * @vcpu: the vCPU pointer
3287 * @params: the system register access parameters.
3288 *
3289 * Our cp15 system register tables do not enumerate the AArch32 feature
3290 * registers. Conveniently, our AArch64 table does, and the AArch32 system
3291 * register encoding can be trivially remapped into the AArch64 for the feature
3292 * registers: Append op0=3, leaving op1, CRn, CRm, and op2 the same.
3293 *
3294 * According to DDI0487G.b G7.3.1, paragraph "Behavior of VMSAv8-32 32-bit
3295 * System registers with (coproc=0b1111, CRn==c0)", read accesses from this
3296 * range are either UNKNOWN or RES0. Rerouting remains architectural as we
3297 * treat undefined registers in this range as RAZ.
3298 */
3299static int kvm_emulate_cp15_id_reg(struct kvm_vcpu *vcpu,
3300				   struct sys_reg_params *params)
3301{
3302	int Rt = kvm_vcpu_sys_get_rt(vcpu);
3303
3304	/* Treat impossible writes to RO registers as UNDEFINED */
3305	if (params->is_write) {
3306		unhandled_cp_access(vcpu, params);
3307		return 1;
3308	}
3309
3310	params->Op0 = 3;
3311
3312	/*
3313	 * All registers where CRm > 3 are known to be UNKNOWN/RAZ from AArch32.
3314	 * Avoid conflicting with future expansion of AArch64 feature registers
3315	 * and simply treat them as RAZ here.
3316	 */
3317	if (params->CRm > 3)
3318		params->regval = 0;
3319	else if (!emulate_sys_reg(vcpu, params))
3320		return 1;
3321
3322	vcpu_set_reg(vcpu, Rt, params->regval);
3323	return 1;
3324}
3325
3326/**
3327 * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
3328 * @vcpu: The VCPU pointer
3329 * @run:  The kvm_run struct
3330 */
3331static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
3332			    struct sys_reg_params *params,
3333			    const struct sys_reg_desc *global,
3334			    size_t nr_global)
 
 
3335{
 
 
3336	int Rt  = kvm_vcpu_sys_get_rt(vcpu);
3337
3338	params->regval = vcpu_get_reg(vcpu, Rt);
 
 
 
 
 
 
 
 
3339
3340	if (emulate_cp(vcpu, params, global, nr_global)) {
3341		if (!params->is_write)
3342			vcpu_set_reg(vcpu, Rt, params->regval);
 
3343		return 1;
3344	}
3345
3346	unhandled_cp_access(vcpu, params);
3347	return 1;
3348}
3349
3350int kvm_handle_cp15_64(struct kvm_vcpu *vcpu)
3351{
3352	return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs));
 
 
 
 
 
 
3353}
3354
3355int kvm_handle_cp15_32(struct kvm_vcpu *vcpu)
3356{
3357	struct sys_reg_params params;
3358
3359	params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
3360
3361	/*
3362	 * Certain AArch32 ID registers are handled by rerouting to the AArch64
3363	 * system register table. Registers in the ID range where CRm=0 are
3364	 * excluded from this scheme as they do not trivially map into AArch64
3365	 * system register encodings.
3366	 */
3367	if (params.Op1 == 0 && params.CRn == 0 && params.CRm)
3368		return kvm_emulate_cp15_id_reg(vcpu, &params);
3369
3370	return kvm_handle_cp_32(vcpu, &params, cp15_regs, ARRAY_SIZE(cp15_regs));
3371}
3372
3373int kvm_handle_cp14_64(struct kvm_vcpu *vcpu)
3374{
3375	return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs));
 
 
3376}
3377
3378int kvm_handle_cp14_32(struct kvm_vcpu *vcpu)
3379{
3380	struct sys_reg_params params;
3381
3382	params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
3383
3384	return kvm_handle_cp_32(vcpu, &params, cp14_regs, ARRAY_SIZE(cp14_regs));
3385}
3386
3387static bool is_imp_def_sys_reg(struct sys_reg_params *params)
 
3388{
3389	// See ARM DDI 0487E.a, section D12.3.2
3390	return params->Op0 == 3 && (params->CRn & 0b1011) == 0b1011;
3391}
3392
3393/**
3394 * emulate_sys_reg - Emulate a guest access to an AArch64 system register
3395 * @vcpu: The VCPU pointer
3396 * @params: Decoded system register parameters
3397 *
3398 * Return: true if the system register access was successful, false otherwise.
3399 */
3400static bool emulate_sys_reg(struct kvm_vcpu *vcpu,
3401			   struct sys_reg_params *params)
3402{
3403	const struct sys_reg_desc *r;
3404
3405	r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
 
 
 
3406
3407	if (likely(r)) {
3408		perform_access(vcpu, params, r);
3409		return true;
3410	}
3411
3412	if (is_imp_def_sys_reg(params)) {
3413		kvm_inject_undefined(vcpu);
3414	} else {
3415		print_sys_reg_msg(params,
3416				  "Unsupported guest sys_reg access at: %lx [%08lx]\n",
3417				  *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
3418		kvm_inject_undefined(vcpu);
3419	}
3420	return false;
3421}
3422
3423static void kvm_reset_id_regs(struct kvm_vcpu *vcpu)
3424{
3425	const struct sys_reg_desc *idreg = first_idreg;
3426	u32 id = reg_to_encoding(idreg);
3427	struct kvm *kvm = vcpu->kvm;
3428
3429	if (test_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags))
3430		return;
3431
3432	lockdep_assert_held(&kvm->arch.config_lock);
3433
3434	/* Initialize all idregs */
3435	while (is_id_reg(id)) {
3436		IDREG(kvm, id) = idreg->reset(vcpu, idreg);
3437
3438		idreg++;
3439		id = reg_to_encoding(idreg);
3440	}
3441
3442	set_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags);
3443}
3444
3445/**
3446 * kvm_reset_sys_regs - sets system registers to reset value
3447 * @vcpu: The VCPU pointer
3448 *
3449 * This function finds the right table above and sets the registers on the
3450 * virtual CPU struct to their architecturally defined reset values.
3451 */
3452void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
3453{
3454	unsigned long i;
3455
3456	kvm_reset_id_regs(vcpu);
3457
3458	for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) {
3459		const struct sys_reg_desc *r = &sys_reg_descs[i];
3460
3461		if (is_id_reg(reg_to_encoding(r)))
3462			continue;
3463
3464		if (r->reset)
3465			r->reset(vcpu, r);
3466	}
3467}
3468
3469/**
3470 * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
3471 * @vcpu: The VCPU pointer
 
3472 */
3473int kvm_handle_sys_reg(struct kvm_vcpu *vcpu)
3474{
3475	struct sys_reg_params params;
3476	unsigned long esr = kvm_vcpu_get_esr(vcpu);
3477	int Rt = kvm_vcpu_sys_get_rt(vcpu);
 
3478
3479	trace_kvm_handle_sys_reg(esr);
3480
3481	if (__check_nv_sr_forward(vcpu))
3482		return 1;
3483
3484	params = esr_sys64_to_params(esr);
 
 
 
3485	params.regval = vcpu_get_reg(vcpu, Rt);
 
3486
3487	if (!emulate_sys_reg(vcpu, &params))
3488		return 1;
3489
3490	if (!params.is_write)
3491		vcpu_set_reg(vcpu, Rt, params.regval);
3492	return 1;
3493}
3494
3495/******************************************************************************
3496 * Userspace API
3497 *****************************************************************************/
3498
3499static bool index_to_params(u64 id, struct sys_reg_params *params)
3500{
3501	switch (id & KVM_REG_SIZE_MASK) {
3502	case KVM_REG_SIZE_U64:
3503		/* Any unused index bits means it's not valid. */
3504		if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
3505			      | KVM_REG_ARM_COPROC_MASK
3506			      | KVM_REG_ARM64_SYSREG_OP0_MASK
3507			      | KVM_REG_ARM64_SYSREG_OP1_MASK
3508			      | KVM_REG_ARM64_SYSREG_CRN_MASK
3509			      | KVM_REG_ARM64_SYSREG_CRM_MASK
3510			      | KVM_REG_ARM64_SYSREG_OP2_MASK))
3511			return false;
3512		params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
3513			       >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
3514		params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
3515			       >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
3516		params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
3517			       >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
3518		params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
3519			       >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
3520		params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
3521			       >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
3522		return true;
3523	default:
3524		return false;
3525	}
3526}
3527
3528const struct sys_reg_desc *get_reg_by_id(u64 id,
3529					 const struct sys_reg_desc table[],
3530					 unsigned int num)
 
3531{
3532	struct sys_reg_params params;
3533
3534	if (!index_to_params(id, &params))
3535		return NULL;
3536
3537	return find_reg(&params, table, num);
3538}
3539
3540/* Decode an index value, and find the sys_reg_desc entry. */
3541static const struct sys_reg_desc *
3542id_to_sys_reg_desc(struct kvm_vcpu *vcpu, u64 id,
3543		   const struct sys_reg_desc table[], unsigned int num)
3544
3545{
3546	const struct sys_reg_desc *r;
 
 
3547
3548	/* We only do sys_reg for now. */
3549	if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
3550		return NULL;
3551
3552	r = get_reg_by_id(id, table, num);
 
 
 
3553
3554	/* Not saved in the sys_reg array and not otherwise accessible? */
3555	if (r && (!(r->reg || r->get_user) || sysreg_hidden(vcpu, r)))
3556		r = NULL;
3557
3558	return r;
3559}
3560
3561/*
3562 * These are the invariant sys_reg registers: we let the guest see the
3563 * host versions of these, so they're part of the guest state.
3564 *
3565 * A future CPU may provide a mechanism to present different values to
3566 * the guest, or a future kvm may trap them.
3567 */
3568
3569#define FUNCTION_INVARIANT(reg)						\
3570	static u64 get_##reg(struct kvm_vcpu *v,			\
3571			      const struct sys_reg_desc *r)		\
3572	{								\
3573		((struct sys_reg_desc *)r)->val = read_sysreg(reg);	\
3574		return ((struct sys_reg_desc *)r)->val;			\
3575	}
3576
3577FUNCTION_INVARIANT(midr_el1)
 
3578FUNCTION_INVARIANT(revidr_el1)
 
3579FUNCTION_INVARIANT(aidr_el1)
3580
3581static u64 get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r)
3582{
3583	((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0);
3584	return ((struct sys_reg_desc *)r)->val;
3585}
3586
3587/* ->val is filled in by kvm_sys_reg_table_init() */
3588static struct sys_reg_desc invariant_sys_regs[] __ro_after_init = {
3589	{ SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
3590	{ SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
 
3591	{ SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
3592	{ SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
3593};
3594
3595static int get_invariant_sys_reg(u64 id, u64 __user *uaddr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3596{
 
3597	const struct sys_reg_desc *r;
3598
3599	r = get_reg_by_id(id, invariant_sys_regs,
3600			  ARRAY_SIZE(invariant_sys_regs));
3601	if (!r)
3602		return -ENOENT;
3603
3604	return put_user(r->val, uaddr);
3605}
3606
3607static int set_invariant_sys_reg(u64 id, u64 __user *uaddr)
3608{
 
3609	const struct sys_reg_desc *r;
3610	u64 val;
 
3611
3612	r = get_reg_by_id(id, invariant_sys_regs,
3613			  ARRAY_SIZE(invariant_sys_regs));
3614	if (!r)
3615		return -ENOENT;
3616
3617	if (get_user(val, uaddr))
3618		return -EFAULT;
 
3619
3620	/* This is what we mean by invariant: you can't change it. */
3621	if (r->val != val)
3622		return -EINVAL;
3623
3624	return 0;
3625}
3626
3627static int demux_c15_get(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3628{
3629	u32 val;
3630	u32 __user *uval = uaddr;
3631
3632	/* Fail if we have unknown bits set. */
3633	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
3634		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
3635		return -ENOENT;
3636
3637	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
3638	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
3639		if (KVM_REG_SIZE(id) != 4)
3640			return -ENOENT;
3641		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
3642			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
3643		if (val >= CSSELR_MAX)
3644			return -ENOENT;
3645
3646		return put_user(get_ccsidr(vcpu, val), uval);
3647	default:
3648		return -ENOENT;
3649	}
3650}
3651
3652static int demux_c15_set(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
3653{
3654	u32 val, newval;
3655	u32 __user *uval = uaddr;
3656
3657	/* Fail if we have unknown bits set. */
3658	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
3659		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
3660		return -ENOENT;
3661
3662	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
3663	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
3664		if (KVM_REG_SIZE(id) != 4)
3665			return -ENOENT;
3666		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
3667			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
3668		if (val >= CSSELR_MAX)
3669			return -ENOENT;
3670
3671		if (get_user(newval, uval))
3672			return -EFAULT;
3673
3674		return set_ccsidr(vcpu, val, newval);
 
 
 
3675	default:
3676		return -ENOENT;
3677	}
3678}
3679
3680int kvm_sys_reg_get_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
3681			 const struct sys_reg_desc table[], unsigned int num)
3682{
3683	u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
3684	const struct sys_reg_desc *r;
3685	u64 val;
3686	int ret;
 
 
3687
3688	r = id_to_sys_reg_desc(vcpu, reg->id, table, num);
3689	if (!r || sysreg_hidden_user(vcpu, r))
3690		return -ENOENT;
3691
3692	if (r->get_user) {
3693		ret = (r->get_user)(vcpu, r, &val);
3694	} else {
3695		val = __vcpu_sys_reg(vcpu, r->reg);
3696		ret = 0;
3697	}
3698
3699	if (!ret)
3700		ret = put_user(val, uaddr);
3701
3702	return ret;
3703}
3704
3705int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
3706{
 
3707	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
3708	int err;
3709
3710	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
3711		return demux_c15_get(vcpu, reg->id, uaddr);
3712
3713	err = get_invariant_sys_reg(reg->id, uaddr);
3714	if (err != -ENOENT)
3715		return err;
3716
3717	return kvm_sys_reg_get_user(vcpu, reg,
3718				    sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
3719}
3720
3721int kvm_sys_reg_set_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
3722			 const struct sys_reg_desc table[], unsigned int num)
3723{
3724	u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
3725	const struct sys_reg_desc *r;
3726	u64 val;
3727	int ret;
3728
3729	if (get_user(val, uaddr))
3730		return -EFAULT;
3731
3732	r = id_to_sys_reg_desc(vcpu, reg->id, table, num);
3733	if (!r || sysreg_hidden_user(vcpu, r))
3734		return -ENOENT;
3735
3736	if (sysreg_user_write_ignore(vcpu, r))
3737		return 0;
 
3738
3739	if (r->set_user) {
3740		ret = (r->set_user)(vcpu, r, val);
3741	} else {
3742		__vcpu_sys_reg(vcpu, r->reg) = val;
3743		ret = 0;
3744	}
3745
3746	return ret;
3747}
3748
3749int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
3750{
3751	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
3752	int err;
3753
3754	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
3755		return demux_c15_set(vcpu, reg->id, uaddr);
3756
3757	err = set_invariant_sys_reg(reg->id, uaddr);
3758	if (err != -ENOENT)
3759		return err;
3760
3761	return kvm_sys_reg_set_user(vcpu, reg,
3762				    sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
3763}
3764
3765static unsigned int num_demux_regs(void)
3766{
3767	return CSSELR_MAX;
3768}
3769
3770static int write_demux_regids(u64 __user *uindices)
3771{
3772	u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
3773	unsigned int i;
3774
3775	val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
3776	for (i = 0; i < CSSELR_MAX; i++) {
 
 
3777		if (put_user(val | i, uindices))
3778			return -EFAULT;
3779		uindices++;
3780	}
3781	return 0;
3782}
3783
3784static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
3785{
3786	return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
3787		KVM_REG_ARM64_SYSREG |
3788		(reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
3789		(reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
3790		(reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
3791		(reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
3792		(reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
3793}
3794
3795static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
3796{
3797	if (!*uind)
3798		return true;
3799
3800	if (put_user(sys_reg_to_index(reg), *uind))
3801		return false;
3802
3803	(*uind)++;
3804	return true;
3805}
3806
3807static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
3808			    const struct sys_reg_desc *rd,
3809			    u64 __user **uind,
3810			    unsigned int *total)
3811{
3812	/*
3813	 * Ignore registers we trap but don't save,
3814	 * and for which no custom user accessor is provided.
3815	 */
3816	if (!(rd->reg || rd->get_user))
3817		return 0;
3818
3819	if (sysreg_hidden_user(vcpu, rd))
3820		return 0;
3821
3822	if (!copy_reg_to_user(rd, uind))
3823		return -EFAULT;
3824
3825	(*total)++;
3826	return 0;
3827}
3828
3829/* Assumed ordered tables, see kvm_sys_reg_table_init. */
3830static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
3831{
3832	const struct sys_reg_desc *i2, *end2;
3833	unsigned int total = 0;
 
3834	int err;
3835
 
 
 
3836	i2 = sys_reg_descs;
3837	end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
3838
3839	while (i2 != end2) {
3840		err = walk_one_sys_reg(vcpu, i2++, &uind, &total);
 
 
 
 
 
 
 
 
 
3841		if (err)
3842			return err;
 
 
 
 
 
3843	}
3844	return total;
3845}
3846
3847unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
3848{
3849	return ARRAY_SIZE(invariant_sys_regs)
3850		+ num_demux_regs()
3851		+ walk_sys_regs(vcpu, (u64 __user *)NULL);
3852}
3853
3854int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
3855{
3856	unsigned int i;
3857	int err;
3858
3859	/* Then give them all the invariant registers' indices. */
3860	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
3861		if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
3862			return -EFAULT;
3863		uindices++;
3864	}
3865
3866	err = walk_sys_regs(vcpu, uindices);
3867	if (err < 0)
3868		return err;
3869	uindices += err;
3870
3871	return write_demux_regids(uindices);
3872}
3873
3874#define KVM_ARM_FEATURE_ID_RANGE_INDEX(r)			\
3875	KVM_ARM_FEATURE_ID_RANGE_IDX(sys_reg_Op0(r),		\
3876		sys_reg_Op1(r),					\
3877		sys_reg_CRn(r),					\
3878		sys_reg_CRm(r),					\
3879		sys_reg_Op2(r))
3880
3881static bool is_feature_id_reg(u32 encoding)
3882{
3883	return (sys_reg_Op0(encoding) == 3 &&
3884		(sys_reg_Op1(encoding) < 2 || sys_reg_Op1(encoding) == 3) &&
3885		sys_reg_CRn(encoding) == 0 &&
3886		sys_reg_CRm(encoding) <= 7);
3887}
3888
3889int kvm_vm_ioctl_get_reg_writable_masks(struct kvm *kvm, struct reg_mask_range *range)
3890{
3891	const void *zero_page = page_to_virt(ZERO_PAGE(0));
3892	u64 __user *masks = (u64 __user *)range->addr;
3893
3894	/* Only feature id range is supported, reserved[13] must be zero. */
3895	if (range->range ||
3896	    memcmp(range->reserved, zero_page, sizeof(range->reserved)))
3897		return -EINVAL;
3898
3899	/* Wipe the whole thing first */
3900	if (clear_user(masks, KVM_ARM_FEATURE_ID_RANGE_SIZE * sizeof(__u64)))
3901		return -EFAULT;
3902
3903	for (int i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) {
3904		const struct sys_reg_desc *reg = &sys_reg_descs[i];
3905		u32 encoding = reg_to_encoding(reg);
3906		u64 val;
3907
3908		if (!is_feature_id_reg(encoding) || !reg->set_user)
3909			continue;
3910
3911		/*
3912		 * For ID registers, we return the writable mask. Other feature
3913		 * registers return a full 64bit mask. That's not necessary
3914		 * compliant with a given revision of the architecture, but the
3915		 * RES0/RES1 definitions allow us to do that.
3916		 */
3917		if (is_id_reg(encoding)) {
3918			if (!reg->val ||
3919			    (is_aa32_id_reg(encoding) && !kvm_supports_32bit_el0()))
3920				continue;
3921			val = reg->val;
3922		} else {
3923			val = ~0UL;
3924		}
3925
3926		if (put_user(val, (masks + KVM_ARM_FEATURE_ID_RANGE_INDEX(encoding))))
3927			return -EFAULT;
3928	}
3929
3930	return 0;
3931}
3932
3933int __init kvm_sys_reg_table_init(void)
3934{
3935	struct sys_reg_params params;
3936	bool valid = true;
3937	unsigned int i;
 
3938
3939	/* Make sure tables are unique and in order. */
3940	valid &= check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false);
3941	valid &= check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true);
3942	valid &= check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true);
3943	valid &= check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true);
3944	valid &= check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true);
3945	valid &= check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false);
3946
3947	if (!valid)
3948		return -EINVAL;
3949
3950	/* We abuse the reset function to overwrite the table itself. */
3951	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
3952		invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
3953
3954	/* Find the first idreg (SYS_ID_PFR0_EL1) in sys_reg_descs. */
3955	params = encoding_to_params(SYS_ID_PFR0_EL1);
3956	first_idreg = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
3957	if (!first_idreg)
3958		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3959
3960	if (kvm_get_mode() == KVM_MODE_NV)
3961		return populate_nv_trap_config();
3962
3963	return 0;
 
 
3964}