Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 | // SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2012,2013 - ARM Ltd * Author: Marc Zyngier <marc.zyngier@arm.com> * * Derived from arch/arm/kvm/coproc.c: * Copyright (C) 2012 - Virtual Open Systems and Columbia University * Authors: Rusty Russell <rusty@rustcorp.com.au> * Christoffer Dall <c.dall@virtualopensystems.com> */ #include <linux/bitfield.h> #include <linux/bsearch.h> #include <linux/cacheinfo.h> #include <linux/debugfs.h> #include <linux/kvm_host.h> #include <linux/mm.h> #include <linux/printk.h> #include <linux/uaccess.h> #include <asm/cacheflush.h> #include <asm/cputype.h> #include <asm/debug-monitors.h> #include <asm/esr.h> #include <asm/kvm_arm.h> #include <asm/kvm_emulate.h> #include <asm/kvm_hyp.h> #include <asm/kvm_mmu.h> #include <asm/kvm_nested.h> #include <asm/perf_event.h> #include <asm/sysreg.h> #include <trace/events/kvm.h> #include "sys_regs.h" #include "trace.h" /* * For AArch32, we only take care of what is being trapped. Anything * that has to do with init and userspace access has to go via the * 64bit interface. */ static u64 sys_reg_to_index(const struct sys_reg_desc *reg); static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, u64 val); static bool bad_trap(struct kvm_vcpu *vcpu, struct sys_reg_params *params, const struct sys_reg_desc *r, const char *msg) { WARN_ONCE(1, "Unexpected %s\n", msg); print_sys_reg_instr(params); kvm_inject_undefined(vcpu); return false; } static bool read_from_write_only(struct kvm_vcpu *vcpu, struct sys_reg_params *params, const struct sys_reg_desc *r) { return bad_trap(vcpu, params, r, "sys_reg read to write-only register"); } static bool write_to_read_only(struct kvm_vcpu *vcpu, struct sys_reg_params *params, const struct sys_reg_desc *r) { return bad_trap(vcpu, params, r, "sys_reg write to read-only register"); } #define PURE_EL2_SYSREG(el2) \ case el2: { \ *el1r = el2; \ return true; \ } #define MAPPED_EL2_SYSREG(el2, el1, fn) \ case el2: { \ *xlate = fn; \ *el1r = el1; \ return true; \ } static bool get_el2_to_el1_mapping(unsigned int reg, unsigned int *el1r, u64 (**xlate)(u64)) { switch (reg) { PURE_EL2_SYSREG( VPIDR_EL2 ); PURE_EL2_SYSREG( VMPIDR_EL2 ); PURE_EL2_SYSREG( ACTLR_EL2 ); PURE_EL2_SYSREG( HCR_EL2 ); PURE_EL2_SYSREG( MDCR_EL2 ); PURE_EL2_SYSREG( HSTR_EL2 ); PURE_EL2_SYSREG( HACR_EL2 ); PURE_EL2_SYSREG( VTTBR_EL2 ); PURE_EL2_SYSREG( VTCR_EL2 ); PURE_EL2_SYSREG( RVBAR_EL2 ); PURE_EL2_SYSREG( TPIDR_EL2 ); PURE_EL2_SYSREG( HPFAR_EL2 ); PURE_EL2_SYSREG( CNTHCTL_EL2 ); MAPPED_EL2_SYSREG(SCTLR_EL2, SCTLR_EL1, translate_sctlr_el2_to_sctlr_el1 ); MAPPED_EL2_SYSREG(CPTR_EL2, CPACR_EL1, translate_cptr_el2_to_cpacr_el1 ); MAPPED_EL2_SYSREG(TTBR0_EL2, TTBR0_EL1, translate_ttbr0_el2_to_ttbr0_el1 ); MAPPED_EL2_SYSREG(TTBR1_EL2, TTBR1_EL1, NULL ); MAPPED_EL2_SYSREG(TCR_EL2, TCR_EL1, translate_tcr_el2_to_tcr_el1 ); MAPPED_EL2_SYSREG(VBAR_EL2, VBAR_EL1, NULL ); MAPPED_EL2_SYSREG(AFSR0_EL2, AFSR0_EL1, NULL ); MAPPED_EL2_SYSREG(AFSR1_EL2, AFSR1_EL1, NULL ); MAPPED_EL2_SYSREG(ESR_EL2, ESR_EL1, NULL ); MAPPED_EL2_SYSREG(FAR_EL2, FAR_EL1, NULL ); MAPPED_EL2_SYSREG(MAIR_EL2, MAIR_EL1, NULL ); MAPPED_EL2_SYSREG(AMAIR_EL2, AMAIR_EL1, NULL ); MAPPED_EL2_SYSREG(ELR_EL2, ELR_EL1, NULL ); MAPPED_EL2_SYSREG(SPSR_EL2, SPSR_EL1, NULL ); default: return false; } } u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg) { u64 val = 0x8badf00d8badf00d; u64 (*xlate)(u64) = NULL; unsigned int el1r; if (!vcpu_get_flag(vcpu, SYSREGS_ON_CPU)) goto memory_read; if (unlikely(get_el2_to_el1_mapping(reg, &el1r, &xlate))) { if (!is_hyp_ctxt(vcpu)) goto memory_read; /* * If this register does not have an EL1 counterpart, * then read the stored EL2 version. */ if (reg == el1r) goto memory_read; /* * If we have a non-VHE guest and that the sysreg * requires translation to be used at EL1, use the * in-memory copy instead. */ if (!vcpu_el2_e2h_is_set(vcpu) && xlate) goto memory_read; /* Get the current version of the EL1 counterpart. */ WARN_ON(!__vcpu_read_sys_reg_from_cpu(el1r, &val)); return val; } /* EL1 register can't be on the CPU if the guest is in vEL2. */ if (unlikely(is_hyp_ctxt(vcpu))) goto memory_read; if (__vcpu_read_sys_reg_from_cpu(reg, &val)) return val; memory_read: return __vcpu_sys_reg(vcpu, reg); } void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg) { u64 (*xlate)(u64) = NULL; unsigned int el1r; if (!vcpu_get_flag(vcpu, SYSREGS_ON_CPU)) goto memory_write; if (unlikely(get_el2_to_el1_mapping(reg, &el1r, &xlate))) { if (!is_hyp_ctxt(vcpu)) goto memory_write; /* * Always store a copy of the write to memory to avoid having * to reverse-translate virtual EL2 system registers for a * non-VHE guest hypervisor. */ __vcpu_sys_reg(vcpu, reg) = val; /* No EL1 counterpart? We're done here.? */ if (reg == el1r) return; if (!vcpu_el2_e2h_is_set(vcpu) && xlate) val = xlate(val); /* Redirect this to the EL1 version of the register. */ WARN_ON(!__vcpu_write_sys_reg_to_cpu(val, el1r)); return; } /* EL1 register can't be on the CPU if the guest is in vEL2. */ if (unlikely(is_hyp_ctxt(vcpu))) goto memory_write; if (__vcpu_write_sys_reg_to_cpu(val, reg)) return; memory_write: __vcpu_sys_reg(vcpu, reg) = val; } /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */ #define CSSELR_MAX 14 /* * Returns the minimum line size for the selected cache, expressed as * Log2(bytes). */ static u8 get_min_cache_line_size(bool icache) { u64 ctr = read_sanitised_ftr_reg(SYS_CTR_EL0); u8 field; if (icache) field = SYS_FIELD_GET(CTR_EL0, IminLine, ctr); else field = SYS_FIELD_GET(CTR_EL0, DminLine, ctr); /* * Cache line size is represented as Log2(words) in CTR_EL0. * Log2(bytes) can be derived with the following: * * Log2(words) + 2 = Log2(bytes / 4) + 2 * = Log2(bytes) - 2 + 2 * = Log2(bytes) */ return field + 2; } /* Which cache CCSIDR represents depends on CSSELR value. */ static u32 get_ccsidr(struct kvm_vcpu *vcpu, u32 csselr) { u8 line_size; if (vcpu->arch.ccsidr) return vcpu->arch.ccsidr[csselr]; line_size = get_min_cache_line_size(csselr & CSSELR_EL1_InD); /* * Fabricate a CCSIDR value as the overriding value does not exist. * The real CCSIDR value will not be used as it can vary by the * physical CPU which the vcpu currently resides in. * * The line size is determined with get_min_cache_line_size(), which * should be valid for all CPUs even if they have different cache * configuration. * * The associativity bits are cleared, meaning the geometry of all data * and unified caches (which are guaranteed to be PIPT and thus * non-aliasing) are 1 set and 1 way. * Guests should not be doing cache operations by set/way at all, and * for this reason, we trap them and attempt to infer the intent, so * that we can flush the entire guest's address space at the appropriate * time. The exposed geometry minimizes the number of the traps. * [If guests should attempt to infer aliasing properties from the * geometry (which is not permitted by the architecture), they would * only do so for virtually indexed caches.] * * We don't check if the cache level exists as it is allowed to return * an UNKNOWN value if not. */ return SYS_FIELD_PREP(CCSIDR_EL1, LineSize, line_size - 4); } static int set_ccsidr(struct kvm_vcpu *vcpu, u32 csselr, u32 val) { u8 line_size = FIELD_GET(CCSIDR_EL1_LineSize, val) + 4; u32 *ccsidr = vcpu->arch.ccsidr; u32 i; if ((val & CCSIDR_EL1_RES0) || line_size < get_min_cache_line_size(csselr & CSSELR_EL1_InD)) return -EINVAL; if (!ccsidr) { if (val == get_ccsidr(vcpu, csselr)) return 0; ccsidr = kmalloc_array(CSSELR_MAX, sizeof(u32), GFP_KERNEL_ACCOUNT); if (!ccsidr) return -ENOMEM; for (i = 0; i < CSSELR_MAX; i++) ccsidr[i] = get_ccsidr(vcpu, i); vcpu->arch.ccsidr = ccsidr; } ccsidr[csselr] = val; return 0; } static bool access_rw(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { if (p->is_write) vcpu_write_sys_reg(vcpu, p->regval, r->reg); else p->regval = vcpu_read_sys_reg(vcpu, r->reg); return true; } /* * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized). */ static bool access_dcsw(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { if (!p->is_write) return read_from_write_only(vcpu, p, r); /* * Only track S/W ops if we don't have FWB. It still indicates * that the guest is a bit broken (S/W operations should only * be done by firmware, knowing that there is only a single * CPU left in the system, and certainly not from non-secure * software). */ if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB)) kvm_set_way_flush(vcpu); return true; } static bool access_dcgsw(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { if (!kvm_has_mte(vcpu->kvm)) { kvm_inject_undefined(vcpu); return false; } /* Treat MTE S/W ops as we treat the classic ones: with contempt */ return access_dcsw(vcpu, p, r); } static void get_access_mask(const struct sys_reg_desc *r, u64 *mask, u64 *shift) { switch (r->aarch32_map) { case AA32_LO: *mask = GENMASK_ULL(31, 0); *shift = 0; break; case AA32_HI: *mask = GENMASK_ULL(63, 32); *shift = 32; break; default: *mask = GENMASK_ULL(63, 0); *shift = 0; break; } } /* * Generic accessor for VM registers. Only called as long as HCR_TVM * is set. If the guest enables the MMU, we stop trapping the VM * sys_regs and leave it in complete control of the caches. */ static bool access_vm_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { bool was_enabled = vcpu_has_cache_enabled(vcpu); u64 val, mask, shift; BUG_ON(!p->is_write); get_access_mask(r, &mask, &shift); if (~mask) { val = vcpu_read_sys_reg(vcpu, r->reg); val &= ~mask; } else { val = 0; } val |= (p->regval & (mask >> shift)) << shift; vcpu_write_sys_reg(vcpu, val, r->reg); kvm_toggle_cache(vcpu, was_enabled); return true; } static bool access_actlr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { u64 mask, shift; if (p->is_write) return ignore_write(vcpu, p); get_access_mask(r, &mask, &shift); p->regval = (vcpu_read_sys_reg(vcpu, r->reg) & mask) >> shift; return true; } /* * Trap handler for the GICv3 SGI generation system register. * Forward the request to the VGIC emulation. * The cp15_64 code makes sure this automatically works * for both AArch64 and AArch32 accesses. */ static bool access_gic_sgi(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { bool g1; if (!p->is_write) return read_from_write_only(vcpu, p, r); /* * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group, * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure * group. */ if (p->Op0 == 0) { /* AArch32 */ switch (p->Op1) { default: /* Keep GCC quiet */ case 0: /* ICC_SGI1R */ g1 = true; break; case 1: /* ICC_ASGI1R */ case 2: /* ICC_SGI0R */ g1 = false; break; } } else { /* AArch64 */ switch (p->Op2) { default: /* Keep GCC quiet */ case 5: /* ICC_SGI1R_EL1 */ g1 = true; break; case 6: /* ICC_ASGI1R_EL1 */ case 7: /* ICC_SGI0R_EL1 */ g1 = false; break; } } vgic_v3_dispatch_sgi(vcpu, p->regval, g1); return true; } static bool access_gic_sre(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { if (p->is_write) return ignore_write(vcpu, p); p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre; return true; } static bool trap_raz_wi(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { if (p->is_write) return ignore_write(vcpu, p); else return read_zero(vcpu, p); } static bool trap_undef(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { kvm_inject_undefined(vcpu); return false; } /* * ARMv8.1 mandates at least a trivial LORegion implementation, where all the * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0 * system, these registers should UNDEF. LORID_EL1 being a RO register, we * treat it separately. */ static bool trap_loregion(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { u32 sr = reg_to_encoding(r); if (!kvm_has_feat(vcpu->kvm, ID_AA64MMFR1_EL1, LO, IMP)) { kvm_inject_undefined(vcpu); return false; } if (p->is_write && sr == SYS_LORID_EL1) return write_to_read_only(vcpu, p, r); return trap_raz_wi(vcpu, p, r); } static bool trap_oslar_el1(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { u64 oslsr; if (!p->is_write) return read_from_write_only(vcpu, p, r); /* Forward the OSLK bit to OSLSR */ oslsr = __vcpu_sys_reg(vcpu, OSLSR_EL1) & ~OSLSR_EL1_OSLK; if (p->regval & OSLAR_EL1_OSLK) oslsr |= OSLSR_EL1_OSLK; __vcpu_sys_reg(vcpu, OSLSR_EL1) = oslsr; return true; } static bool trap_oslsr_el1(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { if (p->is_write) return write_to_read_only(vcpu, p, r); p->regval = __vcpu_sys_reg(vcpu, r->reg); return true; } static int set_oslsr_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, u64 val) { /* * The only modifiable bit is the OSLK bit. Refuse the write if * userspace attempts to change any other bit in the register. */ if ((val ^ rd->val) & ~OSLSR_EL1_OSLK) return -EINVAL; __vcpu_sys_reg(vcpu, rd->reg) = val; return 0; } static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { if (p->is_write) { return ignore_write(vcpu, p); } else { p->regval = read_sysreg(dbgauthstatus_el1); return true; } } /* * We want to avoid world-switching all the DBG registers all the * time: * * - If we've touched any debug register, it is likely that we're * going to touch more of them. It then makes sense to disable the * traps and start doing the save/restore dance * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is * then mandatory to save/restore the registers, as the guest * depends on them. * * For this, we use a DIRTY bit, indicating the guest has modified the * debug registers, used as follow: * * On guest entry: * - If the dirty bit is set (because we're coming back from trapping), * disable the traps, save host registers, restore guest registers. * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), * set the dirty bit, disable the traps, save host registers, * restore guest registers. * - Otherwise, enable the traps * * On guest exit: * - If the dirty bit is set, save guest registers, restore host * registers and clear the dirty bit. This ensure that the host can * now use the debug registers. */ static bool trap_debug_regs(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { access_rw(vcpu, p, r); if (p->is_write) vcpu_set_flag(vcpu, DEBUG_DIRTY); trace_trap_reg(__func__, r->reg, p->is_write, p->regval); return true; } /* * reg_to_dbg/dbg_to_reg * * A 32 bit write to a debug register leave top bits alone * A 32 bit read from a debug register only returns the bottom bits * * All writes will set the DEBUG_DIRTY flag to ensure the hyp code * switches between host and guest values in future. */ static void reg_to_dbg(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *rd, u64 *dbg_reg) { u64 mask, shift, val; get_access_mask(rd, &mask, &shift); val = *dbg_reg; val &= ~mask; val |= (p->regval & (mask >> shift)) << shift; *dbg_reg = val; vcpu_set_flag(vcpu, DEBUG_DIRTY); } static void dbg_to_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *rd, u64 *dbg_reg) { u64 mask, shift; get_access_mask(rd, &mask, &shift); p->regval = (*dbg_reg & mask) >> shift; } static bool trap_bvr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *rd) { u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm]; if (p->is_write) reg_to_dbg(vcpu, p, rd, dbg_reg); else dbg_to_reg(vcpu, p, rd, dbg_reg); trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg); return true; } static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, u64 val) { vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = val; return 0; } static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, u64 *val) { *val = vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm]; return 0; } static u64 reset_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd) { vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = rd->val; return rd->val; } static bool trap_bcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *rd) { u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm]; if (p->is_write) reg_to_dbg(vcpu, p, rd, dbg_reg); else dbg_to_reg(vcpu, p, rd, dbg_reg); trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg); return true; } static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, u64 val) { vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = val; return 0; } static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, u64 *val) { *val = vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm]; return 0; } static u64 reset_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd) { vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = rd->val; return rd->val; } static bool trap_wvr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *rd) { u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]; if (p->is_write) reg_to_dbg(vcpu, p, rd, dbg_reg); else dbg_to_reg(vcpu, p, rd, dbg_reg); trace_trap_reg(__func__, rd->CRm, p->is_write, vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]); return true; } static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, u64 val) { vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = val; return 0; } static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, u64 *val) { *val = vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]; return 0; } static u64 reset_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd) { vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = rd->val; return rd->val; } static bool trap_wcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *rd) { u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm]; if (p->is_write) reg_to_dbg(vcpu, p, rd, dbg_reg); else dbg_to_reg(vcpu, p, rd, dbg_reg); trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg); return true; } static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, u64 val) { vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = val; return 0; } static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, u64 *val) { *val = vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm]; return 0; } static u64 reset_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd) { vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = rd->val; return rd->val; } static u64 reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) { u64 amair = read_sysreg(amair_el1); vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1); return amair; } static u64 reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) { u64 actlr = read_sysreg(actlr_el1); vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1); return actlr; } static u64 reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) { u64 mpidr; /* * Map the vcpu_id into the first three affinity level fields of * the MPIDR. We limit the number of VCPUs in level 0 due to a * limitation to 16 CPUs in that level in the ICC_SGIxR registers * of the GICv3 to be able to address each CPU directly when * sending IPIs. */ mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0); mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1); mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2); mpidr |= (1ULL << 31); vcpu_write_sys_reg(vcpu, mpidr, MPIDR_EL1); return mpidr; } static unsigned int pmu_visibility(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) { if (kvm_vcpu_has_pmu(vcpu)) return 0; return REG_HIDDEN; } static u64 reset_pmu_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) { u64 mask = BIT(ARMV8_PMU_CYCLE_IDX); u8 n = vcpu->kvm->arch.pmcr_n; if (n) mask |= GENMASK(n - 1, 0); reset_unknown(vcpu, r); __vcpu_sys_reg(vcpu, r->reg) &= mask; return __vcpu_sys_reg(vcpu, r->reg); } static u64 reset_pmevcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) { reset_unknown(vcpu, r); __vcpu_sys_reg(vcpu, r->reg) &= GENMASK(31, 0); return __vcpu_sys_reg(vcpu, r->reg); } static u64 reset_pmevtyper(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) { /* This thing will UNDEF, who cares about the reset value? */ if (!kvm_vcpu_has_pmu(vcpu)) return 0; reset_unknown(vcpu, r); __vcpu_sys_reg(vcpu, r->reg) &= kvm_pmu_evtyper_mask(vcpu->kvm); return __vcpu_sys_reg(vcpu, r->reg); } static u64 reset_pmselr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) { reset_unknown(vcpu, r); __vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_COUNTER_MASK; return __vcpu_sys_reg(vcpu, r->reg); } static u64 reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) { u64 pmcr = 0; if (!kvm_supports_32bit_el0()) pmcr |= ARMV8_PMU_PMCR_LC; /* * The value of PMCR.N field is included when the * vCPU register is read via kvm_vcpu_read_pmcr(). */ __vcpu_sys_reg(vcpu, r->reg) = pmcr; return __vcpu_sys_reg(vcpu, r->reg); } static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags) { u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0); bool enabled = (reg & flags) || vcpu_mode_priv(vcpu); if (!enabled) kvm_inject_undefined(vcpu); return !enabled; } static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu) { return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN); } static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu) { return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN); } static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu) { return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN); } static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu) { return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN); } static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { u64 val; if (pmu_access_el0_disabled(vcpu)) return false; if (p->is_write) { /* * Only update writeable bits of PMCR (continuing into * kvm_pmu_handle_pmcr() as well) */ val = kvm_vcpu_read_pmcr(vcpu); val &= ~ARMV8_PMU_PMCR_MASK; val |= p->regval & ARMV8_PMU_PMCR_MASK; if (!kvm_supports_32bit_el0()) val |= ARMV8_PMU_PMCR_LC; kvm_pmu_handle_pmcr(vcpu, val); } else { /* PMCR.P & PMCR.C are RAZ */ val = kvm_vcpu_read_pmcr(vcpu) & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C); p->regval = val; } return true; } static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { if (pmu_access_event_counter_el0_disabled(vcpu)) return false; if (p->is_write) __vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval; else /* return PMSELR.SEL field */ p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK; return true; } static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { u64 pmceid, mask, shift; BUG_ON(p->is_write); if (pmu_access_el0_disabled(vcpu)) return false; get_access_mask(r, &mask, &shift); pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1)); pmceid &= mask; pmceid >>= shift; p->regval = pmceid; return true; } static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx) { u64 pmcr, val; pmcr = kvm_vcpu_read_pmcr(vcpu); val = FIELD_GET(ARMV8_PMU_PMCR_N, pmcr); if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) { kvm_inject_undefined(vcpu); return false; } return true; } static int get_pmu_evcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, u64 *val) { u64 idx; if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 0) /* PMCCNTR_EL0 */ idx = ARMV8_PMU_CYCLE_IDX; else /* PMEVCNTRn_EL0 */ idx = ((r->CRm & 3) << 3) | (r->Op2 & 7); *val = kvm_pmu_get_counter_value(vcpu, idx); return 0; } static bool access_pmu_evcntr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { u64 idx = ~0UL; if (r->CRn == 9 && r->CRm == 13) { if (r->Op2 == 2) { /* PMXEVCNTR_EL0 */ if (pmu_access_event_counter_el0_disabled(vcpu)) return false; idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK; } else if (r->Op2 == 0) { /* PMCCNTR_EL0 */ if (pmu_access_cycle_counter_el0_disabled(vcpu)) return false; idx = ARMV8_PMU_CYCLE_IDX; } } else if (r->CRn == 0 && r->CRm == 9) { /* PMCCNTR */ if (pmu_access_event_counter_el0_disabled(vcpu)) return false; idx = ARMV8_PMU_CYCLE_IDX; } else if (r->CRn == 14 && (r->CRm & 12) == 8) { /* PMEVCNTRn_EL0 */ if (pmu_access_event_counter_el0_disabled(vcpu)) return false; idx = ((r->CRm & 3) << 3) | (r->Op2 & 7); } /* Catch any decoding mistake */ WARN_ON(idx == ~0UL); if (!pmu_counter_idx_valid(vcpu, idx)) return false; if (p->is_write) { if (pmu_access_el0_disabled(vcpu)) return false; kvm_pmu_set_counter_value(vcpu, idx, p->regval); } else { p->regval = kvm_pmu_get_counter_value(vcpu, idx); } return true; } static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { u64 idx, reg; if (pmu_access_el0_disabled(vcpu)) return false; if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) { /* PMXEVTYPER_EL0 */ idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK; reg = PMEVTYPER0_EL0 + idx; } else if (r->CRn == 14 && (r->CRm & 12) == 12) { idx = ((r->CRm & 3) << 3) | (r->Op2 & 7); if (idx == ARMV8_PMU_CYCLE_IDX) reg = PMCCFILTR_EL0; else /* PMEVTYPERn_EL0 */ reg = PMEVTYPER0_EL0 + idx; } else { BUG(); } if (!pmu_counter_idx_valid(vcpu, idx)) return false; if (p->is_write) { kvm_pmu_set_counter_event_type(vcpu, p->regval, idx); kvm_vcpu_pmu_restore_guest(vcpu); } else { p->regval = __vcpu_sys_reg(vcpu, reg); } return true; } static int set_pmreg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, u64 val) { bool set; val &= kvm_pmu_valid_counter_mask(vcpu); switch (r->reg) { case PMOVSSET_EL0: /* CRm[1] being set indicates a SET register, and CLR otherwise */ set = r->CRm & 2; break; default: /* Op2[0] being set indicates a SET register, and CLR otherwise */ set = r->Op2 & 1; break; } if (set) __vcpu_sys_reg(vcpu, r->reg) |= val; else __vcpu_sys_reg(vcpu, r->reg) &= ~val; return 0; } static int get_pmreg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, u64 *val) { u64 mask = kvm_pmu_valid_counter_mask(vcpu); *val = __vcpu_sys_reg(vcpu, r->reg) & mask; return 0; } static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { u64 val, mask; if (pmu_access_el0_disabled(vcpu)) return false; mask = kvm_pmu_valid_counter_mask(vcpu); if (p->is_write) { val = p->regval & mask; if (r->Op2 & 0x1) { /* accessing PMCNTENSET_EL0 */ __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val; kvm_pmu_enable_counter_mask(vcpu, val); kvm_vcpu_pmu_restore_guest(vcpu); } else { /* accessing PMCNTENCLR_EL0 */ __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val; kvm_pmu_disable_counter_mask(vcpu, val); } } else { p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0); } return true; } static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { u64 mask = kvm_pmu_valid_counter_mask(vcpu); if (check_pmu_access_disabled(vcpu, 0)) return false; if (p->is_write) { u64 val = p->regval & mask; if (r->Op2 & 0x1) /* accessing PMINTENSET_EL1 */ __vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val; else /* accessing PMINTENCLR_EL1 */ __vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val; } else { p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1); } return true; } static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { u64 mask = kvm_pmu_valid_counter_mask(vcpu); if (pmu_access_el0_disabled(vcpu)) return false; if (p->is_write) { if (r->CRm & 0x2) /* accessing PMOVSSET_EL0 */ __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask); else /* accessing PMOVSCLR_EL0 */ __vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask); } else { p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0); } return true; } static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { u64 mask; if (!p->is_write) return read_from_write_only(vcpu, p, r); if (pmu_write_swinc_el0_disabled(vcpu)) return false; mask = kvm_pmu_valid_counter_mask(vcpu); kvm_pmu_software_increment(vcpu, p->regval & mask); return true; } static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { if (p->is_write) { if (!vcpu_mode_priv(vcpu)) { kvm_inject_undefined(vcpu); return false; } __vcpu_sys_reg(vcpu, PMUSERENR_EL0) = p->regval & ARMV8_PMU_USERENR_MASK; } else { p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0) & ARMV8_PMU_USERENR_MASK; } return true; } static int get_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, u64 *val) { *val = kvm_vcpu_read_pmcr(vcpu); return 0; } static int set_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, u64 val) { u8 new_n = FIELD_GET(ARMV8_PMU_PMCR_N, val); struct kvm *kvm = vcpu->kvm; mutex_lock(&kvm->arch.config_lock); /* * The vCPU can't have more counters than the PMU hardware * implements. Ignore this error to maintain compatibility * with the existing KVM behavior. */ if (!kvm_vm_has_ran_once(kvm) && new_n <= kvm_arm_pmu_get_max_counters(kvm)) kvm->arch.pmcr_n = new_n; mutex_unlock(&kvm->arch.config_lock); /* * Ignore writes to RES0 bits, read only bits that are cleared on * vCPU reset, and writable bits that KVM doesn't support yet. * (i.e. only PMCR.N and bits [7:0] are mutable from userspace) * The LP bit is RES0 when FEAT_PMUv3p5 is not supported on the vCPU. * But, we leave the bit as it is here, as the vCPU's PMUver might * be changed later (NOTE: the bit will be cleared on first vCPU run * if necessary). */ val &= ARMV8_PMU_PMCR_MASK; /* The LC bit is RES1 when AArch32 is not supported */ if (!kvm_supports_32bit_el0()) val |= ARMV8_PMU_PMCR_LC; __vcpu_sys_reg(vcpu, r->reg) = val; return 0; } /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */ #define DBG_BCR_BVR_WCR_WVR_EL1(n) \ { SYS_DESC(SYS_DBGBVRn_EL1(n)), \ trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr }, \ { SYS_DESC(SYS_DBGBCRn_EL1(n)), \ trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr }, \ { SYS_DESC(SYS_DBGWVRn_EL1(n)), \ trap_wvr, reset_wvr, 0, 0, get_wvr, set_wvr }, \ { SYS_DESC(SYS_DBGWCRn_EL1(n)), \ trap_wcr, reset_wcr, 0, 0, get_wcr, set_wcr } #define PMU_SYS_REG(name) \ SYS_DESC(SYS_##name), .reset = reset_pmu_reg, \ .visibility = pmu_visibility /* Macro to expand the PMEVCNTRn_EL0 register */ #define PMU_PMEVCNTR_EL0(n) \ { PMU_SYS_REG(PMEVCNTRn_EL0(n)), \ .reset = reset_pmevcntr, .get_user = get_pmu_evcntr, \ .access = access_pmu_evcntr, .reg = (PMEVCNTR0_EL0 + n), } /* Macro to expand the PMEVTYPERn_EL0 register */ #define PMU_PMEVTYPER_EL0(n) \ { PMU_SYS_REG(PMEVTYPERn_EL0(n)), \ .reset = reset_pmevtyper, \ .access = access_pmu_evtyper, .reg = (PMEVTYPER0_EL0 + n), } static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { kvm_inject_undefined(vcpu); return false; } /* Macro to expand the AMU counter and type registers*/ #define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), undef_access } #define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), undef_access } #define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), undef_access } #define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), undef_access } static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd) { return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN; } /* * If we land here on a PtrAuth access, that is because we didn't * fixup the access on exit by allowing the PtrAuth sysregs. The only * way this happens is when the guest does not have PtrAuth support * enabled. */ #define __PTRAUTH_KEY(k) \ { SYS_DESC(SYS_## k), undef_access, reset_unknown, k, \ .visibility = ptrauth_visibility} #define PTRAUTH_KEY(k) \ __PTRAUTH_KEY(k ## KEYLO_EL1), \ __PTRAUTH_KEY(k ## KEYHI_EL1) static bool access_arch_timer(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { enum kvm_arch_timers tmr; enum kvm_arch_timer_regs treg; u64 reg = reg_to_encoding(r); switch (reg) { case SYS_CNTP_TVAL_EL0: case SYS_AARCH32_CNTP_TVAL: tmr = TIMER_PTIMER; treg = TIMER_REG_TVAL; break; case SYS_CNTP_CTL_EL0: case SYS_AARCH32_CNTP_CTL: tmr = TIMER_PTIMER; treg = TIMER_REG_CTL; break; case SYS_CNTP_CVAL_EL0: case SYS_AARCH32_CNTP_CVAL: tmr = TIMER_PTIMER; treg = TIMER_REG_CVAL; break; case SYS_CNTPCT_EL0: case SYS_CNTPCTSS_EL0: case SYS_AARCH32_CNTPCT: tmr = TIMER_PTIMER; treg = TIMER_REG_CNT; break; default: print_sys_reg_msg(p, "%s", "Unhandled trapped timer register"); kvm_inject_undefined(vcpu); return false; } if (p->is_write) kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval); else p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg); return true; } static s64 kvm_arm64_ftr_safe_value(u32 id, const struct arm64_ftr_bits *ftrp, s64 new, s64 cur) { struct arm64_ftr_bits kvm_ftr = *ftrp; /* Some features have different safe value type in KVM than host features */ switch (id) { case SYS_ID_AA64DFR0_EL1: switch (kvm_ftr.shift) { case ID_AA64DFR0_EL1_PMUVer_SHIFT: kvm_ftr.type = FTR_LOWER_SAFE; break; case ID_AA64DFR0_EL1_DebugVer_SHIFT: kvm_ftr.type = FTR_LOWER_SAFE; break; } break; case SYS_ID_DFR0_EL1: if (kvm_ftr.shift == ID_DFR0_EL1_PerfMon_SHIFT) kvm_ftr.type = FTR_LOWER_SAFE; break; } return arm64_ftr_safe_value(&kvm_ftr, new, cur); } /* * arm64_check_features() - Check if a feature register value constitutes * a subset of features indicated by the idreg's KVM sanitised limit. * * This function will check if each feature field of @val is the "safe" value * against idreg's KVM sanitised limit return from reset() callback. * If a field value in @val is the same as the one in limit, it is always * considered the safe value regardless For register fields that are not in * writable, only the value in limit is considered the safe value. * * Return: 0 if all the fields are safe. Otherwise, return negative errno. */ static int arm64_check_features(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, u64 val) { const struct arm64_ftr_reg *ftr_reg; const struct arm64_ftr_bits *ftrp = NULL; u32 id = reg_to_encoding(rd); u64 writable_mask = rd->val; u64 limit = rd->reset(vcpu, rd); u64 mask = 0; /* * Hidden and unallocated ID registers may not have a corresponding * struct arm64_ftr_reg. Of course, if the register is RAZ we know the * only safe value is 0. */ if (sysreg_visible_as_raz(vcpu, rd)) return val ? -E2BIG : 0; ftr_reg = get_arm64_ftr_reg(id); if (!ftr_reg) return -EINVAL; ftrp = ftr_reg->ftr_bits; for (; ftrp && ftrp->width; ftrp++) { s64 f_val, f_lim, safe_val; u64 ftr_mask; ftr_mask = arm64_ftr_mask(ftrp); if ((ftr_mask & writable_mask) != ftr_mask) continue; f_val = arm64_ftr_value(ftrp, val); f_lim = arm64_ftr_value(ftrp, limit); mask |= ftr_mask; if (f_val == f_lim) safe_val = f_val; else safe_val = kvm_arm64_ftr_safe_value(id, ftrp, f_val, f_lim); if (safe_val != f_val) return -E2BIG; } /* For fields that are not writable, values in limit are the safe values. */ if ((val & ~mask) != (limit & ~mask)) return -E2BIG; return 0; } static u8 pmuver_to_perfmon(u8 pmuver) { switch (pmuver) { case ID_AA64DFR0_EL1_PMUVer_IMP: return ID_DFR0_EL1_PerfMon_PMUv3; case ID_AA64DFR0_EL1_PMUVer_IMP_DEF: return ID_DFR0_EL1_PerfMon_IMPDEF; default: /* Anything ARMv8.1+ and NI have the same value. For now. */ return pmuver; } } /* Read a sanitised cpufeature ID register by sys_reg_desc */ static u64 __kvm_read_sanitised_id_reg(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) { u32 id = reg_to_encoding(r); u64 val; if (sysreg_visible_as_raz(vcpu, r)) return 0; val = read_sanitised_ftr_reg(id); switch (id) { case SYS_ID_AA64PFR1_EL1: if (!kvm_has_mte(vcpu->kvm)) val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTE); val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_SME); break; case SYS_ID_AA64ISAR1_EL1: if (!vcpu_has_ptrauth(vcpu)) val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_APA) | ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_API) | ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPA) | ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPI)); break; case SYS_ID_AA64ISAR2_EL1: if (!vcpu_has_ptrauth(vcpu)) val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_APA3) | ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_GPA3)); if (!cpus_have_final_cap(ARM64_HAS_WFXT)) val &= ~ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_WFxT); break; case SYS_ID_AA64MMFR2_EL1: val &= ~ID_AA64MMFR2_EL1_CCIDX_MASK; break; case SYS_ID_MMFR4_EL1: val &= ~ARM64_FEATURE_MASK(ID_MMFR4_EL1_CCIDX); break; } return val; } static u64 kvm_read_sanitised_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) { return __kvm_read_sanitised_id_reg(vcpu, r); } static u64 read_id_reg(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) { return IDREG(vcpu->kvm, reg_to_encoding(r)); } /* * Return true if the register's (Op0, Op1, CRn, CRm, Op2) is * (3, 0, 0, crm, op2), where 1<=crm<8, 0<=op2<8. */ static inline bool is_id_reg(u32 id) { return (sys_reg_Op0(id) == 3 && sys_reg_Op1(id) == 0 && sys_reg_CRn(id) == 0 && sys_reg_CRm(id) >= 1 && sys_reg_CRm(id) < 8); } static inline bool is_aa32_id_reg(u32 id) { return (sys_reg_Op0(id) == 3 && sys_reg_Op1(id) == 0 && sys_reg_CRn(id) == 0 && sys_reg_CRm(id) >= 1 && sys_reg_CRm(id) <= 3); } static unsigned int id_visibility(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) { u32 id = reg_to_encoding(r); switch (id) { case SYS_ID_AA64ZFR0_EL1: if (!vcpu_has_sve(vcpu)) return REG_RAZ; break; } return 0; } static unsigned int aa32_id_visibility(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) { /* * AArch32 ID registers are UNKNOWN if AArch32 isn't implemented at any * EL. Promote to RAZ/WI in order to guarantee consistency between * systems. */ if (!kvm_supports_32bit_el0()) return REG_RAZ | REG_USER_WI; return id_visibility(vcpu, r); } static unsigned int raz_visibility(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) { return REG_RAZ; } /* cpufeature ID register access trap handlers */ static bool access_id_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { if (p->is_write) return write_to_read_only(vcpu, p, r); p->regval = read_id_reg(vcpu, r); return true; } /* Visibility overrides for SVE-specific control registers */ static unsigned int sve_visibility(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd) { if (vcpu_has_sve(vcpu)) return 0; return REG_HIDDEN; } static u64 read_sanitised_id_aa64pfr0_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd) { u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1); if (!vcpu_has_sve(vcpu)) val &= ~ID_AA64PFR0_EL1_SVE_MASK; /* * The default is to expose CSV2 == 1 if the HW isn't affected. * Although this is a per-CPU feature, we make it global because * asymmetric systems are just a nuisance. * * Userspace can override this as long as it doesn't promise * the impossible. */ if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED) { val &= ~ID_AA64PFR0_EL1_CSV2_MASK; val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV2, IMP); } if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED) { val &= ~ID_AA64PFR0_EL1_CSV3_MASK; val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV3, IMP); } if (kvm_vgic_global_state.type == VGIC_V3) { val &= ~ID_AA64PFR0_EL1_GIC_MASK; val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, GIC, IMP); } val &= ~ID_AA64PFR0_EL1_AMU_MASK; return val; } #define ID_REG_LIMIT_FIELD_ENUM(val, reg, field, limit) \ ({ \ u64 __f_val = FIELD_GET(reg##_##field##_MASK, val); \ (val) &= ~reg##_##field##_MASK; \ (val) |= FIELD_PREP(reg##_##field##_MASK, \ min(__f_val, \ (u64)SYS_FIELD_VALUE(reg, field, limit))); \ (val); \ }) static u64 read_sanitised_id_aa64dfr0_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd) { u64 val = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1); val = ID_REG_LIMIT_FIELD_ENUM(val, ID_AA64DFR0_EL1, DebugVer, V8P8); /* * Only initialize the PMU version if the vCPU was configured with one. */ val &= ~ID_AA64DFR0_EL1_PMUVer_MASK; if (kvm_vcpu_has_pmu(vcpu)) val |= SYS_FIELD_PREP(ID_AA64DFR0_EL1, PMUVer, kvm_arm_pmu_get_pmuver_limit()); /* Hide SPE from guests */ val &= ~ID_AA64DFR0_EL1_PMSVer_MASK; return val; } static int set_id_aa64dfr0_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, u64 val) { u8 debugver = SYS_FIELD_GET(ID_AA64DFR0_EL1, DebugVer, val); u8 pmuver = SYS_FIELD_GET(ID_AA64DFR0_EL1, PMUVer, val); /* * Prior to commit 3d0dba5764b9 ("KVM: arm64: PMU: Move the * ID_AA64DFR0_EL1.PMUver limit to VM creation"), KVM erroneously * exposed an IMP_DEF PMU to userspace and the guest on systems w/ * non-architectural PMUs. Of course, PMUv3 is the only game in town for * PMU virtualization, so the IMP_DEF value was rather user-hostile. * * At minimum, we're on the hook to allow values that were given to * userspace by KVM. Cover our tracks here and replace the IMP_DEF value * with a more sensible NI. The value of an ID register changing under * the nose of the guest is unfortunate, but is certainly no more * surprising than an ill-guided PMU driver poking at impdef system * registers that end in an UNDEF... */ if (pmuver == ID_AA64DFR0_EL1_PMUVer_IMP_DEF) val &= ~ID_AA64DFR0_EL1_PMUVer_MASK; /* * ID_AA64DFR0_EL1.DebugVer is one of those awkward fields with a * nonzero minimum safe value. */ if (debugver < ID_AA64DFR0_EL1_DebugVer_IMP) return -EINVAL; return set_id_reg(vcpu, rd, val); } static u64 read_sanitised_id_dfr0_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd) { u8 perfmon = pmuver_to_perfmon(kvm_arm_pmu_get_pmuver_limit()); u64 val = read_sanitised_ftr_reg(SYS_ID_DFR0_EL1); val &= ~ID_DFR0_EL1_PerfMon_MASK; if (kvm_vcpu_has_pmu(vcpu)) val |= SYS_FIELD_PREP(ID_DFR0_EL1, PerfMon, perfmon); val = ID_REG_LIMIT_FIELD_ENUM(val, ID_DFR0_EL1, CopDbg, Debugv8p8); return val; } static int set_id_dfr0_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, u64 val) { u8 perfmon = SYS_FIELD_GET(ID_DFR0_EL1, PerfMon, val); u8 copdbg = SYS_FIELD_GET(ID_DFR0_EL1, CopDbg, val); if (perfmon == ID_DFR0_EL1_PerfMon_IMPDEF) { val &= ~ID_DFR0_EL1_PerfMon_MASK; perfmon = 0; } /* * Allow DFR0_EL1.PerfMon to be set from userspace as long as * it doesn't promise more than what the HW gives us on the * AArch64 side (as everything is emulated with that), and * that this is a PMUv3. */ if (perfmon != 0 && perfmon < ID_DFR0_EL1_PerfMon_PMUv3) return -EINVAL; if (copdbg < ID_DFR0_EL1_CopDbg_Armv8) return -EINVAL; return set_id_reg(vcpu, rd, val); } /* * cpufeature ID register user accessors * * For now, these registers are immutable for userspace, so no values * are stored, and for set_id_reg() we don't allow the effective value * to be changed. */ static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, u64 *val) { /* * Avoid locking if the VM has already started, as the ID registers are * guaranteed to be invariant at that point. */ if (kvm_vm_has_ran_once(vcpu->kvm)) { *val = read_id_reg(vcpu, rd); return 0; } mutex_lock(&vcpu->kvm->arch.config_lock); *val = read_id_reg(vcpu, rd); mutex_unlock(&vcpu->kvm->arch.config_lock); return 0; } static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, u64 val) { u32 id = reg_to_encoding(rd); int ret; mutex_lock(&vcpu->kvm->arch.config_lock); /* * Once the VM has started the ID registers are immutable. Reject any * write that does not match the final register value. */ if (kvm_vm_has_ran_once(vcpu->kvm)) { if (val != read_id_reg(vcpu, rd)) ret = -EBUSY; else ret = 0; mutex_unlock(&vcpu->kvm->arch.config_lock); return ret; } ret = arm64_check_features(vcpu, rd, val); if (!ret) IDREG(vcpu->kvm, id) = val; mutex_unlock(&vcpu->kvm->arch.config_lock); /* * arm64_check_features() returns -E2BIG to indicate the register's * feature set is a superset of the maximally-allowed register value. * While it would be nice to precisely describe this to userspace, the * existing UAPI for KVM_SET_ONE_REG has it that invalid register * writes return -EINVAL. */ if (ret == -E2BIG) ret = -EINVAL; return ret; } static int get_raz_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, u64 *val) { *val = 0; return 0; } static int set_wi_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, u64 val) { return 0; } static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { if (p->is_write) return write_to_read_only(vcpu, p, r); p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0); return true; } static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { if (p->is_write) return write_to_read_only(vcpu, p, r); p->regval = __vcpu_sys_reg(vcpu, r->reg); return true; } /* * Fabricate a CLIDR_EL1 value instead of using the real value, which can vary * by the physical CPU which the vcpu currently resides in. */ static u64 reset_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) { u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0); u64 clidr; u8 loc; if ((ctr_el0 & CTR_EL0_IDC)) { /* * Data cache clean to the PoU is not required so LoUU and LoUIS * will not be set and a unified cache, which will be marked as * LoC, will be added. * * If not DIC, let the unified cache L2 so that an instruction * cache can be added as L1 later. */ loc = (ctr_el0 & CTR_EL0_DIC) ? 1 : 2; clidr = CACHE_TYPE_UNIFIED << CLIDR_CTYPE_SHIFT(loc); } else { /* * Data cache clean to the PoU is required so let L1 have a data * cache and mark it as LoUU and LoUIS. As L1 has a data cache, * it can be marked as LoC too. */ loc = 1; clidr = 1 << CLIDR_LOUU_SHIFT; clidr |= 1 << CLIDR_LOUIS_SHIFT; clidr |= CACHE_TYPE_DATA << CLIDR_CTYPE_SHIFT(1); } /* * Instruction cache invalidation to the PoU is required so let L1 have * an instruction cache. If L1 already has a data cache, it will be * CACHE_TYPE_SEPARATE. */ if (!(ctr_el0 & CTR_EL0_DIC)) clidr |= CACHE_TYPE_INST << CLIDR_CTYPE_SHIFT(1); clidr |= loc << CLIDR_LOC_SHIFT; /* * Add tag cache unified to data cache. Allocation tags and data are * unified in a cache line so that it looks valid even if there is only * one cache line. */ if (kvm_has_mte(vcpu->kvm)) clidr |= 2 << CLIDR_TTYPE_SHIFT(loc); __vcpu_sys_reg(vcpu, r->reg) = clidr; return __vcpu_sys_reg(vcpu, r->reg); } static int set_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, u64 val) { u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0); u64 idc = !CLIDR_LOC(val) || (!CLIDR_LOUIS(val) && !CLIDR_LOUU(val)); if ((val & CLIDR_EL1_RES0) || (!(ctr_el0 & CTR_EL0_IDC) && idc)) return -EINVAL; __vcpu_sys_reg(vcpu, rd->reg) = val; return 0; } static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { int reg = r->reg; if (p->is_write) vcpu_write_sys_reg(vcpu, p->regval, reg); else p->regval = vcpu_read_sys_reg(vcpu, reg); return true; } static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { u32 csselr; if (p->is_write) return write_to_read_only(vcpu, p, r); csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1); csselr &= CSSELR_EL1_Level | CSSELR_EL1_InD; if (csselr < CSSELR_MAX) p->regval = get_ccsidr(vcpu, csselr); return true; } static unsigned int mte_visibility(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd) { if (kvm_has_mte(vcpu->kvm)) return 0; return REG_HIDDEN; } #define MTE_REG(name) { \ SYS_DESC(SYS_##name), \ .access = undef_access, \ .reset = reset_unknown, \ .reg = name, \ .visibility = mte_visibility, \ } static unsigned int el2_visibility(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd) { if (vcpu_has_nv(vcpu)) return 0; return REG_HIDDEN; } static bool bad_vncr_trap(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { /* * We really shouldn't be here, and this is likely the result * of a misconfigured trap, as this register should target the * VNCR page, and nothing else. */ return bad_trap(vcpu, p, r, "trap of VNCR-backed register"); } static bool bad_redir_trap(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { /* * We really shouldn't be here, and this is likely the result * of a misconfigured trap, as this register should target the * corresponding EL1, and nothing else. */ return bad_trap(vcpu, p, r, "trap of EL2 register redirected to EL1"); } #define EL2_REG(name, acc, rst, v) { \ SYS_DESC(SYS_##name), \ .access = acc, \ .reset = rst, \ .reg = name, \ .visibility = el2_visibility, \ .val = v, \ } #define EL2_REG_VNCR(name, rst, v) EL2_REG(name, bad_vncr_trap, rst, v) #define EL2_REG_REDIR(name, rst, v) EL2_REG(name, bad_redir_trap, rst, v) /* * EL{0,1}2 registers are the EL2 view on an EL0 or EL1 register when * HCR_EL2.E2H==1, and only in the sysreg table for convenience of * handling traps. Given that, they are always hidden from userspace. */ static unsigned int hidden_user_visibility(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd) { return REG_HIDDEN_USER; } #define EL12_REG(name, acc, rst, v) { \ SYS_DESC(SYS_##name##_EL12), \ .access = acc, \ .reset = rst, \ .reg = name##_EL1, \ .val = v, \ .visibility = hidden_user_visibility, \ } /* * Since reset() callback and field val are not used for idregs, they will be * used for specific purposes for idregs. * The reset() would return KVM sanitised register value. The value would be the * same as the host kernel sanitised value if there is no KVM sanitisation. * The val would be used as a mask indicating writable fields for the idreg. * Only bits with 1 are writable from userspace. This mask might not be * necessary in the future whenever all ID registers are enabled as writable * from userspace. */ #define ID_DESC(name) \ SYS_DESC(SYS_##name), \ .access = access_id_reg, \ .get_user = get_id_reg \ /* sys_reg_desc initialiser for known cpufeature ID registers */ #define ID_SANITISED(name) { \ ID_DESC(name), \ .set_user = set_id_reg, \ .visibility = id_visibility, \ .reset = kvm_read_sanitised_id_reg, \ .val = 0, \ } /* sys_reg_desc initialiser for known cpufeature ID registers */ #define AA32_ID_SANITISED(name) { \ ID_DESC(name), \ .set_user = set_id_reg, \ .visibility = aa32_id_visibility, \ .reset = kvm_read_sanitised_id_reg, \ .val = 0, \ } /* sys_reg_desc initialiser for writable ID registers */ #define ID_WRITABLE(name, mask) { \ ID_DESC(name), \ .set_user = set_id_reg, \ .visibility = id_visibility, \ .reset = kvm_read_sanitised_id_reg, \ .val = mask, \ } /* * sys_reg_desc initialiser for architecturally unallocated cpufeature ID * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2 * (1 <= crm < 8, 0 <= Op2 < 8). */ #define ID_UNALLOCATED(crm, op2) { \ Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2), \ .access = access_id_reg, \ .get_user = get_id_reg, \ .set_user = set_id_reg, \ .visibility = raz_visibility, \ .reset = kvm_read_sanitised_id_reg, \ .val = 0, \ } /* * sys_reg_desc initialiser for known ID registers that we hide from guests. * For now, these are exposed just like unallocated ID regs: they appear * RAZ for the guest. */ #define ID_HIDDEN(name) { \ ID_DESC(name), \ .set_user = set_id_reg, \ .visibility = raz_visibility, \ .reset = kvm_read_sanitised_id_reg, \ .val = 0, \ } static bool access_sp_el1(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { if (p->is_write) __vcpu_sys_reg(vcpu, SP_EL1) = p->regval; else p->regval = __vcpu_sys_reg(vcpu, SP_EL1); return true; } static bool access_elr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { if (p->is_write) vcpu_write_sys_reg(vcpu, p->regval, ELR_EL1); else p->regval = vcpu_read_sys_reg(vcpu, ELR_EL1); return true; } static bool access_spsr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { if (p->is_write) __vcpu_sys_reg(vcpu, SPSR_EL1) = p->regval; else p->regval = __vcpu_sys_reg(vcpu, SPSR_EL1); return true; } static u64 reset_hcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) { u64 val = r->val; if (!cpus_have_final_cap(ARM64_HAS_HCR_NV1)) val |= HCR_E2H; return __vcpu_sys_reg(vcpu, r->reg) = val; } /* * Architected system registers. * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2 * * Debug handling: We do trap most, if not all debug related system * registers. The implementation is good enough to ensure that a guest * can use these with minimal performance degradation. The drawback is * that we don't implement any of the external debug architecture. * This should be revisited if we ever encounter a more demanding * guest... */ static const struct sys_reg_desc sys_reg_descs[] = { DBG_BCR_BVR_WCR_WVR_EL1(0), DBG_BCR_BVR_WCR_WVR_EL1(1), { SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 }, { SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 }, DBG_BCR_BVR_WCR_WVR_EL1(2), DBG_BCR_BVR_WCR_WVR_EL1(3), DBG_BCR_BVR_WCR_WVR_EL1(4), DBG_BCR_BVR_WCR_WVR_EL1(5), DBG_BCR_BVR_WCR_WVR_EL1(6), DBG_BCR_BVR_WCR_WVR_EL1(7), DBG_BCR_BVR_WCR_WVR_EL1(8), DBG_BCR_BVR_WCR_WVR_EL1(9), DBG_BCR_BVR_WCR_WVR_EL1(10), DBG_BCR_BVR_WCR_WVR_EL1(11), DBG_BCR_BVR_WCR_WVR_EL1(12), DBG_BCR_BVR_WCR_WVR_EL1(13), DBG_BCR_BVR_WCR_WVR_EL1(14), DBG_BCR_BVR_WCR_WVR_EL1(15), { SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi }, { SYS_DESC(SYS_OSLAR_EL1), trap_oslar_el1 }, { SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1, reset_val, OSLSR_EL1, OSLSR_EL1_OSLM_IMPLEMENTED, .set_user = set_oslsr_el1, }, { SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi }, { SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi }, { SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi }, { SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi }, { SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 }, { SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi }, { SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi }, // DBGDTR[TR]X_EL0 share the same encoding { SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi }, { SYS_DESC(SYS_DBGVCR32_EL2), trap_undef, reset_val, DBGVCR32_EL2, 0 }, { SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 }, /* * ID regs: all ID_SANITISED() entries here must have corresponding * entries in arm64_ftr_regs[]. */ /* AArch64 mappings of the AArch32 ID registers */ /* CRm=1 */ AA32_ID_SANITISED(ID_PFR0_EL1), AA32_ID_SANITISED(ID_PFR1_EL1), { SYS_DESC(SYS_ID_DFR0_EL1), .access = access_id_reg, .get_user = get_id_reg, .set_user = set_id_dfr0_el1, .visibility = aa32_id_visibility, .reset = read_sanitised_id_dfr0_el1, .val = ID_DFR0_EL1_PerfMon_MASK | ID_DFR0_EL1_CopDbg_MASK, }, ID_HIDDEN(ID_AFR0_EL1), AA32_ID_SANITISED(ID_MMFR0_EL1), AA32_ID_SANITISED(ID_MMFR1_EL1), AA32_ID_SANITISED(ID_MMFR2_EL1), AA32_ID_SANITISED(ID_MMFR3_EL1), /* CRm=2 */ AA32_ID_SANITISED(ID_ISAR0_EL1), AA32_ID_SANITISED(ID_ISAR1_EL1), AA32_ID_SANITISED(ID_ISAR2_EL1), AA32_ID_SANITISED(ID_ISAR3_EL1), AA32_ID_SANITISED(ID_ISAR4_EL1), AA32_ID_SANITISED(ID_ISAR5_EL1), AA32_ID_SANITISED(ID_MMFR4_EL1), AA32_ID_SANITISED(ID_ISAR6_EL1), /* CRm=3 */ AA32_ID_SANITISED(MVFR0_EL1), AA32_ID_SANITISED(MVFR1_EL1), AA32_ID_SANITISED(MVFR2_EL1), ID_UNALLOCATED(3,3), AA32_ID_SANITISED(ID_PFR2_EL1), ID_HIDDEN(ID_DFR1_EL1), AA32_ID_SANITISED(ID_MMFR5_EL1), ID_UNALLOCATED(3,7), /* AArch64 ID registers */ /* CRm=4 */ { SYS_DESC(SYS_ID_AA64PFR0_EL1), .access = access_id_reg, .get_user = get_id_reg, .set_user = set_id_reg, .reset = read_sanitised_id_aa64pfr0_el1, .val = ~(ID_AA64PFR0_EL1_AMU | ID_AA64PFR0_EL1_MPAM | ID_AA64PFR0_EL1_SVE | ID_AA64PFR0_EL1_RAS | ID_AA64PFR0_EL1_GIC | ID_AA64PFR0_EL1_AdvSIMD | ID_AA64PFR0_EL1_FP), }, ID_SANITISED(ID_AA64PFR1_EL1), ID_UNALLOCATED(4,2), ID_UNALLOCATED(4,3), ID_WRITABLE(ID_AA64ZFR0_EL1, ~ID_AA64ZFR0_EL1_RES0), ID_HIDDEN(ID_AA64SMFR0_EL1), ID_UNALLOCATED(4,6), ID_UNALLOCATED(4,7), /* CRm=5 */ { SYS_DESC(SYS_ID_AA64DFR0_EL1), .access = access_id_reg, .get_user = get_id_reg, .set_user = set_id_aa64dfr0_el1, .reset = read_sanitised_id_aa64dfr0_el1, .val = ID_AA64DFR0_EL1_PMUVer_MASK | ID_AA64DFR0_EL1_DebugVer_MASK, }, ID_SANITISED(ID_AA64DFR1_EL1), ID_UNALLOCATED(5,2), ID_UNALLOCATED(5,3), ID_HIDDEN(ID_AA64AFR0_EL1), ID_HIDDEN(ID_AA64AFR1_EL1), ID_UNALLOCATED(5,6), ID_UNALLOCATED(5,7), /* CRm=6 */ ID_WRITABLE(ID_AA64ISAR0_EL1, ~ID_AA64ISAR0_EL1_RES0), ID_WRITABLE(ID_AA64ISAR1_EL1, ~(ID_AA64ISAR1_EL1_GPI | ID_AA64ISAR1_EL1_GPA | ID_AA64ISAR1_EL1_API | ID_AA64ISAR1_EL1_APA)), ID_WRITABLE(ID_AA64ISAR2_EL1, ~(ID_AA64ISAR2_EL1_RES0 | ID_AA64ISAR2_EL1_APA3 | ID_AA64ISAR2_EL1_GPA3)), ID_UNALLOCATED(6,3), ID_UNALLOCATED(6,4), ID_UNALLOCATED(6,5), ID_UNALLOCATED(6,6), ID_UNALLOCATED(6,7), /* CRm=7 */ ID_WRITABLE(ID_AA64MMFR0_EL1, ~(ID_AA64MMFR0_EL1_RES0 | ID_AA64MMFR0_EL1_TGRAN4_2 | ID_AA64MMFR0_EL1_TGRAN64_2 | ID_AA64MMFR0_EL1_TGRAN16_2)), ID_WRITABLE(ID_AA64MMFR1_EL1, ~(ID_AA64MMFR1_EL1_RES0 | ID_AA64MMFR1_EL1_HCX | ID_AA64MMFR1_EL1_XNX | ID_AA64MMFR1_EL1_TWED | ID_AA64MMFR1_EL1_XNX | ID_AA64MMFR1_EL1_VH | ID_AA64MMFR1_EL1_VMIDBits)), ID_WRITABLE(ID_AA64MMFR2_EL1, ~(ID_AA64MMFR2_EL1_RES0 | ID_AA64MMFR2_EL1_EVT | ID_AA64MMFR2_EL1_FWB | ID_AA64MMFR2_EL1_IDS | ID_AA64MMFR2_EL1_NV | ID_AA64MMFR2_EL1_CCIDX)), ID_SANITISED(ID_AA64MMFR3_EL1), ID_SANITISED(ID_AA64MMFR4_EL1), ID_UNALLOCATED(7,5), ID_UNALLOCATED(7,6), ID_UNALLOCATED(7,7), { SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 }, { SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 }, { SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 }, MTE_REG(RGSR_EL1), MTE_REG(GCR_EL1), { SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility }, { SYS_DESC(SYS_TRFCR_EL1), undef_access }, { SYS_DESC(SYS_SMPRI_EL1), undef_access }, { SYS_DESC(SYS_SMCR_EL1), undef_access }, { SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 }, { SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 }, { SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 }, { SYS_DESC(SYS_TCR2_EL1), access_vm_reg, reset_val, TCR2_EL1, 0 }, PTRAUTH_KEY(APIA), PTRAUTH_KEY(APIB), PTRAUTH_KEY(APDA), PTRAUTH_KEY(APDB), PTRAUTH_KEY(APGA), { SYS_DESC(SYS_SPSR_EL1), access_spsr}, { SYS_DESC(SYS_ELR_EL1), access_elr}, { SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 }, { SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 }, { SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 }, { SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi }, { SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi }, { SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi }, { SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi }, { SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi }, { SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi }, { SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi }, { SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi }, MTE_REG(TFSR_EL1), MTE_REG(TFSRE0_EL1), { SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 }, { SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 }, { SYS_DESC(SYS_PMSCR_EL1), undef_access }, { SYS_DESC(SYS_PMSNEVFR_EL1), undef_access }, { SYS_DESC(SYS_PMSICR_EL1), undef_access }, { SYS_DESC(SYS_PMSIRR_EL1), undef_access }, { SYS_DESC(SYS_PMSFCR_EL1), undef_access }, { SYS_DESC(SYS_PMSEVFR_EL1), undef_access }, { SYS_DESC(SYS_PMSLATFR_EL1), undef_access }, { SYS_DESC(SYS_PMSIDR_EL1), undef_access }, { SYS_DESC(SYS_PMBLIMITR_EL1), undef_access }, { SYS_DESC(SYS_PMBPTR_EL1), undef_access }, { SYS_DESC(SYS_PMBSR_EL1), undef_access }, /* PMBIDR_EL1 is not trapped */ { PMU_SYS_REG(PMINTENSET_EL1), .access = access_pminten, .reg = PMINTENSET_EL1, .get_user = get_pmreg, .set_user = set_pmreg }, { PMU_SYS_REG(PMINTENCLR_EL1), .access = access_pminten, .reg = PMINTENSET_EL1, .get_user = get_pmreg, .set_user = set_pmreg }, { SYS_DESC(SYS_PMMIR_EL1), trap_raz_wi }, { SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 }, { SYS_DESC(SYS_PIRE0_EL1), NULL, reset_unknown, PIRE0_EL1 }, { SYS_DESC(SYS_PIR_EL1), NULL, reset_unknown, PIR_EL1 }, { SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 }, { SYS_DESC(SYS_LORSA_EL1), trap_loregion }, { SYS_DESC(SYS_LOREA_EL1), trap_loregion }, { SYS_DESC(SYS_LORN_EL1), trap_loregion }, { SYS_DESC(SYS_LORC_EL1), trap_loregion }, { SYS_DESC(SYS_LORID_EL1), trap_loregion }, { SYS_DESC(SYS_VBAR_EL1), access_rw, reset_val, VBAR_EL1, 0 }, { SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 }, { SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only }, { SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only }, { SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only }, { SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only }, { SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only }, { SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi }, { SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi }, { SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi }, { SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only }, { SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only }, { SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only }, { SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre }, { SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 }, { SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 }, { SYS_DESC(SYS_ACCDATA_EL1), undef_access }, { SYS_DESC(SYS_SCXTNUM_EL1), undef_access }, { SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0}, { SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr }, { SYS_DESC(SYS_CLIDR_EL1), access_clidr, reset_clidr, CLIDR_EL1, .set_user = set_clidr }, { SYS_DESC(SYS_CCSIDR2_EL1), undef_access }, { SYS_DESC(SYS_SMIDR_EL1), undef_access }, { SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 }, { SYS_DESC(SYS_CTR_EL0), access_ctr }, { SYS_DESC(SYS_SVCR), undef_access }, { PMU_SYS_REG(PMCR_EL0), .access = access_pmcr, .reset = reset_pmcr, .reg = PMCR_EL0, .get_user = get_pmcr, .set_user = set_pmcr }, { PMU_SYS_REG(PMCNTENSET_EL0), .access = access_pmcnten, .reg = PMCNTENSET_EL0, .get_user = get_pmreg, .set_user = set_pmreg }, { PMU_SYS_REG(PMCNTENCLR_EL0), .access = access_pmcnten, .reg = PMCNTENSET_EL0, .get_user = get_pmreg, .set_user = set_pmreg }, { PMU_SYS_REG(PMOVSCLR_EL0), .access = access_pmovs, .reg = PMOVSSET_EL0, .get_user = get_pmreg, .set_user = set_pmreg }, /* * PM_SWINC_EL0 is exposed to userspace as RAZ/WI, as it was * previously (and pointlessly) advertised in the past... */ { PMU_SYS_REG(PMSWINC_EL0), .get_user = get_raz_reg, .set_user = set_wi_reg, .access = access_pmswinc, .reset = NULL }, { PMU_SYS_REG(PMSELR_EL0), .access = access_pmselr, .reset = reset_pmselr, .reg = PMSELR_EL0 }, { PMU_SYS_REG(PMCEID0_EL0), .access = access_pmceid, .reset = NULL }, { PMU_SYS_REG(PMCEID1_EL0), .access = access_pmceid, .reset = NULL }, { PMU_SYS_REG(PMCCNTR_EL0), .access = access_pmu_evcntr, .reset = reset_unknown, .reg = PMCCNTR_EL0, .get_user = get_pmu_evcntr}, { PMU_SYS_REG(PMXEVTYPER_EL0), .access = access_pmu_evtyper, .reset = NULL }, { PMU_SYS_REG(PMXEVCNTR_EL0), .access = access_pmu_evcntr, .reset = NULL }, /* * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero * in 32bit mode. Here we choose to reset it as zero for consistency. */ { PMU_SYS_REG(PMUSERENR_EL0), .access = access_pmuserenr, .reset = reset_val, .reg = PMUSERENR_EL0, .val = 0 }, { PMU_SYS_REG(PMOVSSET_EL0), .access = access_pmovs, .reg = PMOVSSET_EL0, .get_user = get_pmreg, .set_user = set_pmreg }, { SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 }, { SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 }, { SYS_DESC(SYS_TPIDR2_EL0), undef_access }, { SYS_DESC(SYS_SCXTNUM_EL0), undef_access }, { SYS_DESC(SYS_AMCR_EL0), undef_access }, { SYS_DESC(SYS_AMCFGR_EL0), undef_access }, { SYS_DESC(SYS_AMCGCR_EL0), undef_access }, { SYS_DESC(SYS_AMUSERENR_EL0), undef_access }, { SYS_DESC(SYS_AMCNTENCLR0_EL0), undef_access }, { SYS_DESC(SYS_AMCNTENSET0_EL0), undef_access }, { SYS_DESC(SYS_AMCNTENCLR1_EL0), undef_access }, { SYS_DESC(SYS_AMCNTENSET1_EL0), undef_access }, AMU_AMEVCNTR0_EL0(0), AMU_AMEVCNTR0_EL0(1), AMU_AMEVCNTR0_EL0(2), AMU_AMEVCNTR0_EL0(3), AMU_AMEVCNTR0_EL0(4), AMU_AMEVCNTR0_EL0(5), AMU_AMEVCNTR0_EL0(6), AMU_AMEVCNTR0_EL0(7), AMU_AMEVCNTR0_EL0(8), AMU_AMEVCNTR0_EL0(9), AMU_AMEVCNTR0_EL0(10), AMU_AMEVCNTR0_EL0(11), AMU_AMEVCNTR0_EL0(12), AMU_AMEVCNTR0_EL0(13), AMU_AMEVCNTR0_EL0(14), AMU_AMEVCNTR0_EL0(15), AMU_AMEVTYPER0_EL0(0), AMU_AMEVTYPER0_EL0(1), AMU_AMEVTYPER0_EL0(2), AMU_AMEVTYPER0_EL0(3), AMU_AMEVTYPER0_EL0(4), AMU_AMEVTYPER0_EL0(5), AMU_AMEVTYPER0_EL0(6), AMU_AMEVTYPER0_EL0(7), AMU_AMEVTYPER0_EL0(8), AMU_AMEVTYPER0_EL0(9), AMU_AMEVTYPER0_EL0(10), AMU_AMEVTYPER0_EL0(11), AMU_AMEVTYPER0_EL0(12), AMU_AMEVTYPER0_EL0(13), AMU_AMEVTYPER0_EL0(14), AMU_AMEVTYPER0_EL0(15), AMU_AMEVCNTR1_EL0(0), AMU_AMEVCNTR1_EL0(1), AMU_AMEVCNTR1_EL0(2), AMU_AMEVCNTR1_EL0(3), AMU_AMEVCNTR1_EL0(4), AMU_AMEVCNTR1_EL0(5), AMU_AMEVCNTR1_EL0(6), AMU_AMEVCNTR1_EL0(7), AMU_AMEVCNTR1_EL0(8), AMU_AMEVCNTR1_EL0(9), AMU_AMEVCNTR1_EL0(10), AMU_AMEVCNTR1_EL0(11), AMU_AMEVCNTR1_EL0(12), AMU_AMEVCNTR1_EL0(13), AMU_AMEVCNTR1_EL0(14), AMU_AMEVCNTR1_EL0(15), AMU_AMEVTYPER1_EL0(0), AMU_AMEVTYPER1_EL0(1), AMU_AMEVTYPER1_EL0(2), AMU_AMEVTYPER1_EL0(3), AMU_AMEVTYPER1_EL0(4), AMU_AMEVTYPER1_EL0(5), AMU_AMEVTYPER1_EL0(6), AMU_AMEVTYPER1_EL0(7), AMU_AMEVTYPER1_EL0(8), AMU_AMEVTYPER1_EL0(9), AMU_AMEVTYPER1_EL0(10), AMU_AMEVTYPER1_EL0(11), AMU_AMEVTYPER1_EL0(12), AMU_AMEVTYPER1_EL0(13), AMU_AMEVTYPER1_EL0(14), AMU_AMEVTYPER1_EL0(15), { SYS_DESC(SYS_CNTPCT_EL0), access_arch_timer }, { SYS_DESC(SYS_CNTPCTSS_EL0), access_arch_timer }, { SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer }, { SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer }, { SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer }, /* PMEVCNTRn_EL0 */ PMU_PMEVCNTR_EL0(0), PMU_PMEVCNTR_EL0(1), PMU_PMEVCNTR_EL0(2), PMU_PMEVCNTR_EL0(3), PMU_PMEVCNTR_EL0(4), PMU_PMEVCNTR_EL0(5), PMU_PMEVCNTR_EL0(6), PMU_PMEVCNTR_EL0(7), PMU_PMEVCNTR_EL0(8), PMU_PMEVCNTR_EL0(9), PMU_PMEVCNTR_EL0(10), PMU_PMEVCNTR_EL0(11), PMU_PMEVCNTR_EL0(12), PMU_PMEVCNTR_EL0(13), PMU_PMEVCNTR_EL0(14), PMU_PMEVCNTR_EL0(15), PMU_PMEVCNTR_EL0(16), PMU_PMEVCNTR_EL0(17), PMU_PMEVCNTR_EL0(18), PMU_PMEVCNTR_EL0(19), PMU_PMEVCNTR_EL0(20), PMU_PMEVCNTR_EL0(21), PMU_PMEVCNTR_EL0(22), PMU_PMEVCNTR_EL0(23), PMU_PMEVCNTR_EL0(24), PMU_PMEVCNTR_EL0(25), PMU_PMEVCNTR_EL0(26), PMU_PMEVCNTR_EL0(27), PMU_PMEVCNTR_EL0(28), PMU_PMEVCNTR_EL0(29), PMU_PMEVCNTR_EL0(30), /* PMEVTYPERn_EL0 */ PMU_PMEVTYPER_EL0(0), PMU_PMEVTYPER_EL0(1), PMU_PMEVTYPER_EL0(2), PMU_PMEVTYPER_EL0(3), PMU_PMEVTYPER_EL0(4), PMU_PMEVTYPER_EL0(5), PMU_PMEVTYPER_EL0(6), PMU_PMEVTYPER_EL0(7), PMU_PMEVTYPER_EL0(8), PMU_PMEVTYPER_EL0(9), PMU_PMEVTYPER_EL0(10), PMU_PMEVTYPER_EL0(11), PMU_PMEVTYPER_EL0(12), PMU_PMEVTYPER_EL0(13), PMU_PMEVTYPER_EL0(14), PMU_PMEVTYPER_EL0(15), PMU_PMEVTYPER_EL0(16), PMU_PMEVTYPER_EL0(17), PMU_PMEVTYPER_EL0(18), PMU_PMEVTYPER_EL0(19), PMU_PMEVTYPER_EL0(20), PMU_PMEVTYPER_EL0(21), PMU_PMEVTYPER_EL0(22), PMU_PMEVTYPER_EL0(23), PMU_PMEVTYPER_EL0(24), PMU_PMEVTYPER_EL0(25), PMU_PMEVTYPER_EL0(26), PMU_PMEVTYPER_EL0(27), PMU_PMEVTYPER_EL0(28), PMU_PMEVTYPER_EL0(29), PMU_PMEVTYPER_EL0(30), /* * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero * in 32bit mode. Here we choose to reset it as zero for consistency. */ { PMU_SYS_REG(PMCCFILTR_EL0), .access = access_pmu_evtyper, .reset = reset_val, .reg = PMCCFILTR_EL0, .val = 0 }, EL2_REG_VNCR(VPIDR_EL2, reset_unknown, 0), EL2_REG_VNCR(VMPIDR_EL2, reset_unknown, 0), EL2_REG(SCTLR_EL2, access_rw, reset_val, SCTLR_EL2_RES1), EL2_REG(ACTLR_EL2, access_rw, reset_val, 0), EL2_REG_VNCR(HCR_EL2, reset_hcr, 0), EL2_REG(MDCR_EL2, access_rw, reset_val, 0), EL2_REG(CPTR_EL2, access_rw, reset_val, CPTR_NVHE_EL2_RES1), EL2_REG_VNCR(HSTR_EL2, reset_val, 0), EL2_REG_VNCR(HFGRTR_EL2, reset_val, 0), EL2_REG_VNCR(HFGWTR_EL2, reset_val, 0), EL2_REG_VNCR(HFGITR_EL2, reset_val, 0), EL2_REG_VNCR(HACR_EL2, reset_val, 0), EL2_REG_VNCR(HCRX_EL2, reset_val, 0), EL2_REG(TTBR0_EL2, access_rw, reset_val, 0), EL2_REG(TTBR1_EL2, access_rw, reset_val, 0), EL2_REG(TCR_EL2, access_rw, reset_val, TCR_EL2_RES1), EL2_REG_VNCR(VTTBR_EL2, reset_val, 0), EL2_REG_VNCR(VTCR_EL2, reset_val, 0), { SYS_DESC(SYS_DACR32_EL2), trap_undef, reset_unknown, DACR32_EL2 }, EL2_REG_VNCR(HDFGRTR_EL2, reset_val, 0), EL2_REG_VNCR(HDFGWTR_EL2, reset_val, 0), EL2_REG_VNCR(HAFGRTR_EL2, reset_val, 0), EL2_REG_REDIR(SPSR_EL2, reset_val, 0), EL2_REG_REDIR(ELR_EL2, reset_val, 0), { SYS_DESC(SYS_SP_EL1), access_sp_el1}, /* AArch32 SPSR_* are RES0 if trapped from a NV guest */ { SYS_DESC(SYS_SPSR_irq), .access = trap_raz_wi, .visibility = hidden_user_visibility }, { SYS_DESC(SYS_SPSR_abt), .access = trap_raz_wi, .visibility = hidden_user_visibility }, { SYS_DESC(SYS_SPSR_und), .access = trap_raz_wi, .visibility = hidden_user_visibility }, { SYS_DESC(SYS_SPSR_fiq), .access = trap_raz_wi, .visibility = hidden_user_visibility }, { SYS_DESC(SYS_IFSR32_EL2), trap_undef, reset_unknown, IFSR32_EL2 }, EL2_REG(AFSR0_EL2, access_rw, reset_val, 0), EL2_REG(AFSR1_EL2, access_rw, reset_val, 0), EL2_REG_REDIR(ESR_EL2, reset_val, 0), { SYS_DESC(SYS_FPEXC32_EL2), trap_undef, reset_val, FPEXC32_EL2, 0x700 }, EL2_REG_REDIR(FAR_EL2, reset_val, 0), EL2_REG(HPFAR_EL2, access_rw, reset_val, 0), EL2_REG(MAIR_EL2, access_rw, reset_val, 0), EL2_REG(AMAIR_EL2, access_rw, reset_val, 0), EL2_REG(VBAR_EL2, access_rw, reset_val, 0), EL2_REG(RVBAR_EL2, access_rw, reset_val, 0), { SYS_DESC(SYS_RMR_EL2), trap_undef }, EL2_REG(CONTEXTIDR_EL2, access_rw, reset_val, 0), EL2_REG(TPIDR_EL2, access_rw, reset_val, 0), EL2_REG_VNCR(CNTVOFF_EL2, reset_val, 0), EL2_REG(CNTHCTL_EL2, access_rw, reset_val, 0), EL12_REG(CNTKCTL, access_rw, reset_val, 0), EL2_REG(SP_EL2, NULL, reset_unknown, 0), }; static struct sys_reg_desc sys_insn_descs[] = { { SYS_DESC(SYS_DC_ISW), access_dcsw }, { SYS_DESC(SYS_DC_IGSW), access_dcgsw }, { SYS_DESC(SYS_DC_IGDSW), access_dcgsw }, { SYS_DESC(SYS_DC_CSW), access_dcsw }, { SYS_DESC(SYS_DC_CGSW), access_dcgsw }, { SYS_DESC(SYS_DC_CGDSW), access_dcgsw }, { SYS_DESC(SYS_DC_CISW), access_dcsw }, { SYS_DESC(SYS_DC_CIGSW), access_dcgsw }, { SYS_DESC(SYS_DC_CIGDSW), access_dcgsw }, }; static const struct sys_reg_desc *first_idreg; static bool trap_dbgdidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { if (p->is_write) { return ignore_write(vcpu, p); } else { u64 dfr = IDREG(vcpu->kvm, SYS_ID_AA64DFR0_EL1); u32 el3 = kvm_has_feat(vcpu->kvm, ID_AA64PFR0_EL1, EL3, IMP); p->regval = ((SYS_FIELD_GET(ID_AA64DFR0_EL1, WRPs, dfr) << 28) | (SYS_FIELD_GET(ID_AA64DFR0_EL1, BRPs, dfr) << 24) | (SYS_FIELD_GET(ID_AA64DFR0_EL1, CTX_CMPs, dfr) << 20) | (SYS_FIELD_GET(ID_AA64DFR0_EL1, DebugVer, dfr) << 16) | (1 << 15) | (el3 << 14) | (el3 << 12)); return true; } } /* * AArch32 debug register mappings * * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0] * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32] * * None of the other registers share their location, so treat them as * if they were 64bit. */ #define DBG_BCR_BVR_WCR_WVR(n) \ /* DBGBVRn */ \ { AA32(LO), Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \ /* DBGBCRn */ \ { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n }, \ /* DBGWVRn */ \ { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n }, \ /* DBGWCRn */ \ { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n } #define DBGBXVR(n) \ { AA32(HI), Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_bvr, NULL, n } /* * Trapped cp14 registers. We generally ignore most of the external * debug, on the principle that they don't really make sense to a * guest. Revisit this one day, would this principle change. */ static const struct sys_reg_desc cp14_regs[] = { /* DBGDIDR */ { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgdidr }, /* DBGDTRRXext */ { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi }, DBG_BCR_BVR_WCR_WVR(0), /* DBGDSCRint */ { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi }, DBG_BCR_BVR_WCR_WVR(1), /* DBGDCCINT */ { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug_regs, NULL, MDCCINT_EL1 }, /* DBGDSCRext */ { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug_regs, NULL, MDSCR_EL1 }, DBG_BCR_BVR_WCR_WVR(2), /* DBGDTR[RT]Xint */ { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi }, /* DBGDTR[RT]Xext */ { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi }, DBG_BCR_BVR_WCR_WVR(3), DBG_BCR_BVR_WCR_WVR(4), DBG_BCR_BVR_WCR_WVR(5), /* DBGWFAR */ { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi }, /* DBGOSECCR */ { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi }, DBG_BCR_BVR_WCR_WVR(6), /* DBGVCR */ { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug_regs, NULL, DBGVCR32_EL2 }, DBG_BCR_BVR_WCR_WVR(7), DBG_BCR_BVR_WCR_WVR(8), DBG_BCR_BVR_WCR_WVR(9), DBG_BCR_BVR_WCR_WVR(10), DBG_BCR_BVR_WCR_WVR(11), DBG_BCR_BVR_WCR_WVR(12), DBG_BCR_BVR_WCR_WVR(13), DBG_BCR_BVR_WCR_WVR(14), DBG_BCR_BVR_WCR_WVR(15), /* DBGDRAR (32bit) */ { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi }, DBGBXVR(0), /* DBGOSLAR */ { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_oslar_el1 }, DBGBXVR(1), /* DBGOSLSR */ { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1, NULL, OSLSR_EL1 }, DBGBXVR(2), DBGBXVR(3), /* DBGOSDLR */ { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi }, DBGBXVR(4), /* DBGPRCR */ { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi }, DBGBXVR(5), DBGBXVR(6), DBGBXVR(7), DBGBXVR(8), DBGBXVR(9), DBGBXVR(10), DBGBXVR(11), DBGBXVR(12), DBGBXVR(13), DBGBXVR(14), DBGBXVR(15), /* DBGDSAR (32bit) */ { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi }, /* DBGDEVID2 */ { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi }, /* DBGDEVID1 */ { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi }, /* DBGDEVID */ { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi }, /* DBGCLAIMSET */ { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi }, /* DBGCLAIMCLR */ { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi }, /* DBGAUTHSTATUS */ { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 }, }; /* Trapped cp14 64bit registers */ static const struct sys_reg_desc cp14_64_regs[] = { /* DBGDRAR (64bit) */ { Op1( 0), CRm( 1), .access = trap_raz_wi }, /* DBGDSAR (64bit) */ { Op1( 0), CRm( 2), .access = trap_raz_wi }, }; #define CP15_PMU_SYS_REG(_map, _Op1, _CRn, _CRm, _Op2) \ AA32(_map), \ Op1(_Op1), CRn(_CRn), CRm(_CRm), Op2(_Op2), \ .visibility = pmu_visibility /* Macro to expand the PMEVCNTRn register */ #define PMU_PMEVCNTR(n) \ { CP15_PMU_SYS_REG(DIRECT, 0, 0b1110, \ (0b1000 | (((n) >> 3) & 0x3)), ((n) & 0x7)), \ .access = access_pmu_evcntr } /* Macro to expand the PMEVTYPERn register */ #define PMU_PMEVTYPER(n) \ { CP15_PMU_SYS_REG(DIRECT, 0, 0b1110, \ (0b1100 | (((n) >> 3) & 0x3)), ((n) & 0x7)), \ .access = access_pmu_evtyper } /* * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding, * depending on the way they are accessed (as a 32bit or a 64bit * register). */ static const struct sys_reg_desc cp15_regs[] = { { Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr }, { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, SCTLR_EL1 }, /* ACTLR */ { AA32(LO), Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr, NULL, ACTLR_EL1 }, /* ACTLR2 */ { AA32(HI), Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr, NULL, ACTLR_EL1 }, { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 }, { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, TTBR1_EL1 }, /* TTBCR */ { AA32(LO), Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, TCR_EL1 }, /* TTBCR2 */ { AA32(HI), Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, TCR_EL1 }, { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, DACR32_EL2 }, /* DFSR */ { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, ESR_EL1 }, { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, IFSR32_EL2 }, /* ADFSR */ { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, AFSR0_EL1 }, /* AIFSR */ { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, AFSR1_EL1 }, /* DFAR */ { AA32(LO), Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, FAR_EL1 }, /* IFAR */ { AA32(HI), Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, FAR_EL1 }, /* * DC{C,I,CI}SW operations: */ { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw }, { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw }, { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw }, /* PMU */ { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 0), .access = access_pmcr }, { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 1), .access = access_pmcnten }, { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 2), .access = access_pmcnten }, { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 3), .access = access_pmovs }, { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 4), .access = access_pmswinc }, { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 5), .access = access_pmselr }, { CP15_PMU_SYS_REG(LO, 0, 9, 12, 6), .access = access_pmceid }, { CP15_PMU_SYS_REG(LO, 0, 9, 12, 7), .access = access_pmceid }, { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 0), .access = access_pmu_evcntr }, { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 1), .access = access_pmu_evtyper }, { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 2), .access = access_pmu_evcntr }, { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 0), .access = access_pmuserenr }, { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 1), .access = access_pminten }, { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 2), .access = access_pminten }, { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 3), .access = access_pmovs }, { CP15_PMU_SYS_REG(HI, 0, 9, 14, 4), .access = access_pmceid }, { CP15_PMU_SYS_REG(HI, 0, 9, 14, 5), .access = access_pmceid }, /* PMMIR */ { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 6), .access = trap_raz_wi }, /* PRRR/MAIR0 */ { AA32(LO), Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, MAIR_EL1 }, /* NMRR/MAIR1 */ { AA32(HI), Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, MAIR_EL1 }, /* AMAIR0 */ { AA32(LO), Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, AMAIR_EL1 }, /* AMAIR1 */ { AA32(HI), Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, AMAIR_EL1 }, /* ICC_SRE */ { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre }, { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, CONTEXTIDR_EL1 }, /* Arch Tmers */ { SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer }, { SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer }, /* PMEVCNTRn */ PMU_PMEVCNTR(0), PMU_PMEVCNTR(1), PMU_PMEVCNTR(2), PMU_PMEVCNTR(3), PMU_PMEVCNTR(4), PMU_PMEVCNTR(5), PMU_PMEVCNTR(6), PMU_PMEVCNTR(7), PMU_PMEVCNTR(8), PMU_PMEVCNTR(9), PMU_PMEVCNTR(10), PMU_PMEVCNTR(11), PMU_PMEVCNTR(12), PMU_PMEVCNTR(13), PMU_PMEVCNTR(14), PMU_PMEVCNTR(15), PMU_PMEVCNTR(16), PMU_PMEVCNTR(17), PMU_PMEVCNTR(18), PMU_PMEVCNTR(19), PMU_PMEVCNTR(20), PMU_PMEVCNTR(21), PMU_PMEVCNTR(22), PMU_PMEVCNTR(23), PMU_PMEVCNTR(24), PMU_PMEVCNTR(25), PMU_PMEVCNTR(26), PMU_PMEVCNTR(27), PMU_PMEVCNTR(28), PMU_PMEVCNTR(29), PMU_PMEVCNTR(30), /* PMEVTYPERn */ PMU_PMEVTYPER(0), PMU_PMEVTYPER(1), PMU_PMEVTYPER(2), PMU_PMEVTYPER(3), PMU_PMEVTYPER(4), PMU_PMEVTYPER(5), PMU_PMEVTYPER(6), PMU_PMEVTYPER(7), PMU_PMEVTYPER(8), PMU_PMEVTYPER(9), PMU_PMEVTYPER(10), PMU_PMEVTYPER(11), PMU_PMEVTYPER(12), PMU_PMEVTYPER(13), PMU_PMEVTYPER(14), PMU_PMEVTYPER(15), PMU_PMEVTYPER(16), PMU_PMEVTYPER(17), PMU_PMEVTYPER(18), PMU_PMEVTYPER(19), PMU_PMEVTYPER(20), PMU_PMEVTYPER(21), PMU_PMEVTYPER(22), PMU_PMEVTYPER(23), PMU_PMEVTYPER(24), PMU_PMEVTYPER(25), PMU_PMEVTYPER(26), PMU_PMEVTYPER(27), PMU_PMEVTYPER(28), PMU_PMEVTYPER(29), PMU_PMEVTYPER(30), /* PMCCFILTR */ { CP15_PMU_SYS_REG(DIRECT, 0, 14, 15, 7), .access = access_pmu_evtyper }, { Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr }, { Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr }, /* CCSIDR2 */ { Op1(1), CRn( 0), CRm( 0), Op2(2), undef_access }, { Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, CSSELR_EL1 }, }; static const struct sys_reg_desc cp15_64_regs[] = { { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 }, { CP15_PMU_SYS_REG(DIRECT, 0, 0, 9, 0), .access = access_pmu_evcntr }, { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */ { SYS_DESC(SYS_AARCH32_CNTPCT), access_arch_timer }, { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR1_EL1 }, { Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */ { Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */ { SYS_DESC(SYS_AARCH32_CNTP_CVAL), access_arch_timer }, { SYS_DESC(SYS_AARCH32_CNTPCTSS), access_arch_timer }, }; static bool check_sysreg_table(const struct sys_reg_desc *table, unsigned int n, bool is_32) { unsigned int i; for (i = 0; i < n; i++) { if (!is_32 && table[i].reg && !table[i].reset) { kvm_err("sys_reg table %pS entry %d lacks reset\n", &table[i], i); return false; } if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) { kvm_err("sys_reg table %pS entry %d out of order\n", &table[i - 1], i - 1); return false; } } return true; } int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu) { kvm_inject_undefined(vcpu); return 1; } static void perform_access(struct kvm_vcpu *vcpu, struct sys_reg_params *params, const struct sys_reg_desc *r) { trace_kvm_sys_access(*vcpu_pc(vcpu), params, r); /* Check for regs disabled by runtime config */ if (sysreg_hidden(vcpu, r)) { kvm_inject_undefined(vcpu); return; } /* * Not having an accessor means that we have configured a trap * that we don't know how to handle. This certainly qualifies * as a gross bug that should be fixed right away. */ BUG_ON(!r->access); /* Skip instruction if instructed so */ if (likely(r->access(vcpu, params, r))) kvm_incr_pc(vcpu); } /* * emulate_cp -- tries to match a sys_reg access in a handling table, and * call the corresponding trap handler. * * @params: pointer to the descriptor of the access * @table: array of trap descriptors * @num: size of the trap descriptor array * * Return true if the access has been handled, false if not. */ static bool emulate_cp(struct kvm_vcpu *vcpu, struct sys_reg_params *params, const struct sys_reg_desc *table, size_t num) { const struct sys_reg_desc *r; if (!table) return false; /* Not handled */ r = find_reg(params, table, num); if (r) { perform_access(vcpu, params, r); return true; } /* Not handled */ return false; } static void unhandled_cp_access(struct kvm_vcpu *vcpu, struct sys_reg_params *params) { u8 esr_ec = kvm_vcpu_trap_get_class(vcpu); int cp = -1; switch (esr_ec) { case ESR_ELx_EC_CP15_32: case ESR_ELx_EC_CP15_64: cp = 15; break; case ESR_ELx_EC_CP14_MR: case ESR_ELx_EC_CP14_64: cp = 14; break; default: WARN_ON(1); } print_sys_reg_msg(params, "Unsupported guest CP%d access at: %08lx [%08lx]\n", cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu)); kvm_inject_undefined(vcpu); } /** * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access * @vcpu: The VCPU pointer * @global: &struct sys_reg_desc * @nr_global: size of the @global array */ static int kvm_handle_cp_64(struct kvm_vcpu *vcpu, const struct sys_reg_desc *global, size_t nr_global) { struct sys_reg_params params; u64 esr = kvm_vcpu_get_esr(vcpu); int Rt = kvm_vcpu_sys_get_rt(vcpu); int Rt2 = (esr >> 10) & 0x1f; params.CRm = (esr >> 1) & 0xf; params.is_write = ((esr & 1) == 0); params.Op0 = 0; params.Op1 = (esr >> 16) & 0xf; params.Op2 = 0; params.CRn = 0; /* * Make a 64-bit value out of Rt and Rt2. As we use the same trap * backends between AArch32 and AArch64, we get away with it. */ if (params.is_write) { params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff; params.regval |= vcpu_get_reg(vcpu, Rt2) << 32; } /* * If the table contains a handler, handle the * potential register operation in the case of a read and return * with success. */ if (emulate_cp(vcpu, ¶ms, global, nr_global)) { /* Split up the value between registers for the read side */ if (!params.is_write) { vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval)); vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval)); } return 1; } unhandled_cp_access(vcpu, ¶ms); return 1; } static bool emulate_sys_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *params); /* * The CP10 ID registers are architecturally mapped to AArch64 feature * registers. Abuse that fact so we can rely on the AArch64 handler for accesses * from AArch32. */ static bool kvm_esr_cp10_id_to_sys64(u64 esr, struct sys_reg_params *params) { u8 reg_id = (esr >> 10) & 0xf; bool valid; params->is_write = ((esr & 1) == 0); params->Op0 = 3; params->Op1 = 0; params->CRn = 0; params->CRm = 3; /* CP10 ID registers are read-only */ valid = !params->is_write; switch (reg_id) { /* MVFR0 */ case 0b0111: params->Op2 = 0; break; /* MVFR1 */ case 0b0110: params->Op2 = 1; break; /* MVFR2 */ case 0b0101: params->Op2 = 2; break; default: valid = false; } if (valid) return true; kvm_pr_unimpl("Unhandled cp10 register %s: %u\n", params->is_write ? "write" : "read", reg_id); return false; } /** * kvm_handle_cp10_id() - Handles a VMRS trap on guest access to a 'Media and * VFP Register' from AArch32. * @vcpu: The vCPU pointer * * MVFR{0-2} are architecturally mapped to the AArch64 MVFR{0-2}_EL1 registers. * Work out the correct AArch64 system register encoding and reroute to the * AArch64 system register emulation. */ int kvm_handle_cp10_id(struct kvm_vcpu *vcpu) { int Rt = kvm_vcpu_sys_get_rt(vcpu); u64 esr = kvm_vcpu_get_esr(vcpu); struct sys_reg_params params; /* UNDEF on any unhandled register access */ if (!kvm_esr_cp10_id_to_sys64(esr, ¶ms)) { kvm_inject_undefined(vcpu); return 1; } if (emulate_sys_reg(vcpu, ¶ms)) vcpu_set_reg(vcpu, Rt, params.regval); return 1; } /** * kvm_emulate_cp15_id_reg() - Handles an MRC trap on a guest CP15 access where * CRn=0, which corresponds to the AArch32 feature * registers. * @vcpu: the vCPU pointer * @params: the system register access parameters. * * Our cp15 system register tables do not enumerate the AArch32 feature * registers. Conveniently, our AArch64 table does, and the AArch32 system * register encoding can be trivially remapped into the AArch64 for the feature * registers: Append op0=3, leaving op1, CRn, CRm, and op2 the same. * * According to DDI0487G.b G7.3.1, paragraph "Behavior of VMSAv8-32 32-bit * System registers with (coproc=0b1111, CRn==c0)", read accesses from this * range are either UNKNOWN or RES0. Rerouting remains architectural as we * treat undefined registers in this range as RAZ. */ static int kvm_emulate_cp15_id_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *params) { int Rt = kvm_vcpu_sys_get_rt(vcpu); /* Treat impossible writes to RO registers as UNDEFINED */ if (params->is_write) { unhandled_cp_access(vcpu, params); return 1; } params->Op0 = 3; /* * All registers where CRm > 3 are known to be UNKNOWN/RAZ from AArch32. * Avoid conflicting with future expansion of AArch64 feature registers * and simply treat them as RAZ here. */ if (params->CRm > 3) params->regval = 0; else if (!emulate_sys_reg(vcpu, params)) return 1; vcpu_set_reg(vcpu, Rt, params->regval); return 1; } /** * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access * @vcpu: The VCPU pointer * @params: &struct sys_reg_params * @global: &struct sys_reg_desc * @nr_global: size of the @global array */ static int kvm_handle_cp_32(struct kvm_vcpu *vcpu, struct sys_reg_params *params, const struct sys_reg_desc *global, size_t nr_global) { int Rt = kvm_vcpu_sys_get_rt(vcpu); params->regval = vcpu_get_reg(vcpu, Rt); if (emulate_cp(vcpu, params, global, nr_global)) { if (!params->is_write) vcpu_set_reg(vcpu, Rt, params->regval); return 1; } unhandled_cp_access(vcpu, params); return 1; } int kvm_handle_cp15_64(struct kvm_vcpu *vcpu) { return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs)); } int kvm_handle_cp15_32(struct kvm_vcpu *vcpu) { struct sys_reg_params params; params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu)); /* * Certain AArch32 ID registers are handled by rerouting to the AArch64 * system register table. Registers in the ID range where CRm=0 are * excluded from this scheme as they do not trivially map into AArch64 * system register encodings. */ if (params.Op1 == 0 && params.CRn == 0 && params.CRm) return kvm_emulate_cp15_id_reg(vcpu, ¶ms); return kvm_handle_cp_32(vcpu, ¶ms, cp15_regs, ARRAY_SIZE(cp15_regs)); } int kvm_handle_cp14_64(struct kvm_vcpu *vcpu) { return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs)); } int kvm_handle_cp14_32(struct kvm_vcpu *vcpu) { struct sys_reg_params params; params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu)); return kvm_handle_cp_32(vcpu, ¶ms, cp14_regs, ARRAY_SIZE(cp14_regs)); } /** * emulate_sys_reg - Emulate a guest access to an AArch64 system register * @vcpu: The VCPU pointer * @params: Decoded system register parameters * * Return: true if the system register access was successful, false otherwise. */ static bool emulate_sys_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *params) { const struct sys_reg_desc *r; r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs)); if (likely(r)) { perform_access(vcpu, params, r); return true; } print_sys_reg_msg(params, "Unsupported guest sys_reg access at: %lx [%08lx]\n", *vcpu_pc(vcpu), *vcpu_cpsr(vcpu)); kvm_inject_undefined(vcpu); return false; } static void *idregs_debug_start(struct seq_file *s, loff_t *pos) { struct kvm *kvm = s->private; u8 *iter; mutex_lock(&kvm->arch.config_lock); iter = &kvm->arch.idreg_debugfs_iter; if (test_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags) && *iter == (u8)~0) { *iter = *pos; if (*iter >= KVM_ARM_ID_REG_NUM) iter = NULL; } else { iter = ERR_PTR(-EBUSY); } mutex_unlock(&kvm->arch.config_lock); return iter; } static void *idregs_debug_next(struct seq_file *s, void *v, loff_t *pos) { struct kvm *kvm = s->private; (*pos)++; if ((kvm->arch.idreg_debugfs_iter + 1) < KVM_ARM_ID_REG_NUM) { kvm->arch.idreg_debugfs_iter++; return &kvm->arch.idreg_debugfs_iter; } return NULL; } static void idregs_debug_stop(struct seq_file *s, void *v) { struct kvm *kvm = s->private; if (IS_ERR(v)) return; mutex_lock(&kvm->arch.config_lock); kvm->arch.idreg_debugfs_iter = ~0; mutex_unlock(&kvm->arch.config_lock); } static int idregs_debug_show(struct seq_file *s, void *v) { struct kvm *kvm = s->private; const struct sys_reg_desc *desc; desc = first_idreg + kvm->arch.idreg_debugfs_iter; if (!desc->name) return 0; seq_printf(s, "%20s:\t%016llx\n", desc->name, IDREG(kvm, IDX_IDREG(kvm->arch.idreg_debugfs_iter))); return 0; } static const struct seq_operations idregs_debug_sops = { .start = idregs_debug_start, .next = idregs_debug_next, .stop = idregs_debug_stop, .show = idregs_debug_show, }; DEFINE_SEQ_ATTRIBUTE(idregs_debug); void kvm_sys_regs_create_debugfs(struct kvm *kvm) { kvm->arch.idreg_debugfs_iter = ~0; debugfs_create_file("idregs", 0444, kvm->debugfs_dentry, kvm, &idregs_debug_fops); } static void kvm_reset_id_regs(struct kvm_vcpu *vcpu) { const struct sys_reg_desc *idreg = first_idreg; u32 id = reg_to_encoding(idreg); struct kvm *kvm = vcpu->kvm; if (test_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags)) return; lockdep_assert_held(&kvm->arch.config_lock); /* Initialize all idregs */ while (is_id_reg(id)) { IDREG(kvm, id) = idreg->reset(vcpu, idreg); idreg++; id = reg_to_encoding(idreg); } set_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags); } /** * kvm_reset_sys_regs - sets system registers to reset value * @vcpu: The VCPU pointer * * This function finds the right table above and sets the registers on the * virtual CPU struct to their architecturally defined reset values. */ void kvm_reset_sys_regs(struct kvm_vcpu *vcpu) { unsigned long i; kvm_reset_id_regs(vcpu); for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) { const struct sys_reg_desc *r = &sys_reg_descs[i]; if (is_id_reg(reg_to_encoding(r))) continue; if (r->reset) r->reset(vcpu, r); } } /** * kvm_handle_sys_reg -- handles a system instruction or mrs/msr instruction * trap on a guest execution * @vcpu: The VCPU pointer */ int kvm_handle_sys_reg(struct kvm_vcpu *vcpu) { const struct sys_reg_desc *desc = NULL; struct sys_reg_params params; unsigned long esr = kvm_vcpu_get_esr(vcpu); int Rt = kvm_vcpu_sys_get_rt(vcpu); int sr_idx; trace_kvm_handle_sys_reg(esr); if (triage_sysreg_trap(vcpu, &sr_idx)) return 1; params = esr_sys64_to_params(esr); params.regval = vcpu_get_reg(vcpu, Rt); /* System registers have Op0=={2,3}, as per DDI487 J.a C5.1.2 */ if (params.Op0 == 2 || params.Op0 == 3) desc = &sys_reg_descs[sr_idx]; else desc = &sys_insn_descs[sr_idx]; perform_access(vcpu, ¶ms, desc); /* Read from system register? */ if (!params.is_write && (params.Op0 == 2 || params.Op0 == 3)) vcpu_set_reg(vcpu, Rt, params.regval); return 1; } /****************************************************************************** * Userspace API *****************************************************************************/ static bool index_to_params(u64 id, struct sys_reg_params *params) { switch (id & KVM_REG_SIZE_MASK) { case KVM_REG_SIZE_U64: /* Any unused index bits means it's not valid. */ if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_ARM_COPROC_MASK | KVM_REG_ARM64_SYSREG_OP0_MASK | KVM_REG_ARM64_SYSREG_OP1_MASK | KVM_REG_ARM64_SYSREG_CRN_MASK | KVM_REG_ARM64_SYSREG_CRM_MASK | KVM_REG_ARM64_SYSREG_OP2_MASK)) return false; params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK) >> KVM_REG_ARM64_SYSREG_OP0_SHIFT); params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK) >> KVM_REG_ARM64_SYSREG_OP1_SHIFT); params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK) >> KVM_REG_ARM64_SYSREG_CRN_SHIFT); params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK) >> KVM_REG_ARM64_SYSREG_CRM_SHIFT); params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK) >> KVM_REG_ARM64_SYSREG_OP2_SHIFT); return true; default: return false; } } const struct sys_reg_desc *get_reg_by_id(u64 id, const struct sys_reg_desc table[], unsigned int num) { struct sys_reg_params params; if (!index_to_params(id, ¶ms)) return NULL; return find_reg(¶ms, table, num); } /* Decode an index value, and find the sys_reg_desc entry. */ static const struct sys_reg_desc * id_to_sys_reg_desc(struct kvm_vcpu *vcpu, u64 id, const struct sys_reg_desc table[], unsigned int num) { const struct sys_reg_desc *r; /* We only do sys_reg for now. */ if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG) return NULL; r = get_reg_by_id(id, table, num); /* Not saved in the sys_reg array and not otherwise accessible? */ if (r && (!(r->reg || r->get_user) || sysreg_hidden(vcpu, r))) r = NULL; return r; } /* * These are the invariant sys_reg registers: we let the guest see the * host versions of these, so they're part of the guest state. * * A future CPU may provide a mechanism to present different values to * the guest, or a future kvm may trap them. */ #define FUNCTION_INVARIANT(reg) \ static u64 get_##reg(struct kvm_vcpu *v, \ const struct sys_reg_desc *r) \ { \ ((struct sys_reg_desc *)r)->val = read_sysreg(reg); \ return ((struct sys_reg_desc *)r)->val; \ } FUNCTION_INVARIANT(midr_el1) FUNCTION_INVARIANT(revidr_el1) FUNCTION_INVARIANT(aidr_el1) static u64 get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r) { ((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0); return ((struct sys_reg_desc *)r)->val; } /* ->val is filled in by kvm_sys_reg_table_init() */ static struct sys_reg_desc invariant_sys_regs[] __ro_after_init = { { SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 }, { SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 }, { SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 }, { SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 }, }; static int get_invariant_sys_reg(u64 id, u64 __user *uaddr) { const struct sys_reg_desc *r; r = get_reg_by_id(id, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)); if (!r) return -ENOENT; return put_user(r->val, uaddr); } static int set_invariant_sys_reg(u64 id, u64 __user *uaddr) { const struct sys_reg_desc *r; u64 val; r = get_reg_by_id(id, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)); if (!r) return -ENOENT; if (get_user(val, uaddr)) return -EFAULT; /* This is what we mean by invariant: you can't change it. */ if (r->val != val) return -EINVAL; return 0; } static int demux_c15_get(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr) { u32 val; u32 __user *uval = uaddr; /* Fail if we have unknown bits set. */ if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1))) return -ENOENT; switch (id & KVM_REG_ARM_DEMUX_ID_MASK) { case KVM_REG_ARM_DEMUX_ID_CCSIDR: if (KVM_REG_SIZE(id) != 4) return -ENOENT; val = (id & KVM_REG_ARM_DEMUX_VAL_MASK) >> KVM_REG_ARM_DEMUX_VAL_SHIFT; if (val >= CSSELR_MAX) return -ENOENT; return put_user(get_ccsidr(vcpu, val), uval); default: return -ENOENT; } } static int demux_c15_set(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr) { u32 val, newval; u32 __user *uval = uaddr; /* Fail if we have unknown bits set. */ if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1))) return -ENOENT; switch (id & KVM_REG_ARM_DEMUX_ID_MASK) { case KVM_REG_ARM_DEMUX_ID_CCSIDR: if (KVM_REG_SIZE(id) != 4) return -ENOENT; val = (id & KVM_REG_ARM_DEMUX_VAL_MASK) >> KVM_REG_ARM_DEMUX_VAL_SHIFT; if (val >= CSSELR_MAX) return -ENOENT; if (get_user(newval, uval)) return -EFAULT; return set_ccsidr(vcpu, val, newval); default: return -ENOENT; } } int kvm_sys_reg_get_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg, const struct sys_reg_desc table[], unsigned int num) { u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr; const struct sys_reg_desc *r; u64 val; int ret; r = id_to_sys_reg_desc(vcpu, reg->id, table, num); if (!r || sysreg_hidden_user(vcpu, r)) return -ENOENT; if (r->get_user) { ret = (r->get_user)(vcpu, r, &val); } else { val = __vcpu_sys_reg(vcpu, r->reg); ret = 0; } if (!ret) ret = put_user(val, uaddr); return ret; } int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) { void __user *uaddr = (void __user *)(unsigned long)reg->addr; int err; if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX) return demux_c15_get(vcpu, reg->id, uaddr); err = get_invariant_sys_reg(reg->id, uaddr); if (err != -ENOENT) return err; return kvm_sys_reg_get_user(vcpu, reg, sys_reg_descs, ARRAY_SIZE(sys_reg_descs)); } int kvm_sys_reg_set_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg, const struct sys_reg_desc table[], unsigned int num) { u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr; const struct sys_reg_desc *r; u64 val; int ret; if (get_user(val, uaddr)) return -EFAULT; r = id_to_sys_reg_desc(vcpu, reg->id, table, num); if (!r || sysreg_hidden_user(vcpu, r)) return -ENOENT; if (sysreg_user_write_ignore(vcpu, r)) return 0; if (r->set_user) { ret = (r->set_user)(vcpu, r, val); } else { __vcpu_sys_reg(vcpu, r->reg) = val; ret = 0; } return ret; } int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) { void __user *uaddr = (void __user *)(unsigned long)reg->addr; int err; if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX) return demux_c15_set(vcpu, reg->id, uaddr); err = set_invariant_sys_reg(reg->id, uaddr); if (err != -ENOENT) return err; return kvm_sys_reg_set_user(vcpu, reg, sys_reg_descs, ARRAY_SIZE(sys_reg_descs)); } static unsigned int num_demux_regs(void) { return CSSELR_MAX; } static int write_demux_regids(u64 __user *uindices) { u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX; unsigned int i; val |= KVM_REG_ARM_DEMUX_ID_CCSIDR; for (i = 0; i < CSSELR_MAX; i++) { if (put_user(val | i, uindices)) return -EFAULT; uindices++; } return 0; } static u64 sys_reg_to_index(const struct sys_reg_desc *reg) { return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM64_SYSREG | (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) | (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) | (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) | (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) | (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT)); } static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind) { if (!*uind) return true; if (put_user(sys_reg_to_index(reg), *uind)) return false; (*uind)++; return true; } static int walk_one_sys_reg(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, u64 __user **uind, unsigned int *total) { /* * Ignore registers we trap but don't save, * and for which no custom user accessor is provided. */ if (!(rd->reg || rd->get_user)) return 0; if (sysreg_hidden_user(vcpu, rd)) return 0; if (!copy_reg_to_user(rd, uind)) return -EFAULT; (*total)++; return 0; } /* Assumed ordered tables, see kvm_sys_reg_table_init. */ static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind) { const struct sys_reg_desc *i2, *end2; unsigned int total = 0; int err; i2 = sys_reg_descs; end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs); while (i2 != end2) { err = walk_one_sys_reg(vcpu, i2++, &uind, &total); if (err) return err; } return total; } unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu) { return ARRAY_SIZE(invariant_sys_regs) + num_demux_regs() + walk_sys_regs(vcpu, (u64 __user *)NULL); } int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices) { unsigned int i; int err; /* Then give them all the invariant registers' indices. */ for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) { if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices)) return -EFAULT; uindices++; } err = walk_sys_regs(vcpu, uindices); if (err < 0) return err; uindices += err; return write_demux_regids(uindices); } #define KVM_ARM_FEATURE_ID_RANGE_INDEX(r) \ KVM_ARM_FEATURE_ID_RANGE_IDX(sys_reg_Op0(r), \ sys_reg_Op1(r), \ sys_reg_CRn(r), \ sys_reg_CRm(r), \ sys_reg_Op2(r)) static bool is_feature_id_reg(u32 encoding) { return (sys_reg_Op0(encoding) == 3 && (sys_reg_Op1(encoding) < 2 || sys_reg_Op1(encoding) == 3) && sys_reg_CRn(encoding) == 0 && sys_reg_CRm(encoding) <= 7); } int kvm_vm_ioctl_get_reg_writable_masks(struct kvm *kvm, struct reg_mask_range *range) { const void *zero_page = page_to_virt(ZERO_PAGE(0)); u64 __user *masks = (u64 __user *)range->addr; /* Only feature id range is supported, reserved[13] must be zero. */ if (range->range || memcmp(range->reserved, zero_page, sizeof(range->reserved))) return -EINVAL; /* Wipe the whole thing first */ if (clear_user(masks, KVM_ARM_FEATURE_ID_RANGE_SIZE * sizeof(__u64))) return -EFAULT; for (int i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) { const struct sys_reg_desc *reg = &sys_reg_descs[i]; u32 encoding = reg_to_encoding(reg); u64 val; if (!is_feature_id_reg(encoding) || !reg->set_user) continue; /* * For ID registers, we return the writable mask. Other feature * registers return a full 64bit mask. That's not necessary * compliant with a given revision of the architecture, but the * RES0/RES1 definitions allow us to do that. */ if (is_id_reg(encoding)) { if (!reg->val || (is_aa32_id_reg(encoding) && !kvm_supports_32bit_el0())) continue; val = reg->val; } else { val = ~0UL; } if (put_user(val, (masks + KVM_ARM_FEATURE_ID_RANGE_INDEX(encoding)))) return -EFAULT; } return 0; } void kvm_init_sysreg(struct kvm_vcpu *vcpu) { struct kvm *kvm = vcpu->kvm; mutex_lock(&kvm->arch.config_lock); /* * In the absence of FGT, we cannot independently trap TLBI * Range instructions. This isn't great, but trapping all * TLBIs would be far worse. Live with it... */ if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS)) vcpu->arch.hcr_el2 |= HCR_TTLBOS; if (cpus_have_final_cap(ARM64_HAS_HCX)) { vcpu->arch.hcrx_el2 = HCRX_GUEST_FLAGS; if (kvm_has_feat(kvm, ID_AA64ISAR2_EL1, MOPS, IMP)) vcpu->arch.hcrx_el2 |= (HCRX_EL2_MSCEn | HCRX_EL2_MCE2); } if (test_bit(KVM_ARCH_FLAG_FGU_INITIALIZED, &kvm->arch.flags)) goto out; kvm->arch.fgu[HFGxTR_GROUP] = (HFGxTR_EL2_nAMAIR2_EL1 | HFGxTR_EL2_nMAIR2_EL1 | HFGxTR_EL2_nS2POR_EL1 | HFGxTR_EL2_nPOR_EL1 | HFGxTR_EL2_nPOR_EL0 | HFGxTR_EL2_nACCDATA_EL1 | HFGxTR_EL2_nSMPRI_EL1_MASK | HFGxTR_EL2_nTPIDR2_EL0_MASK); if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS)) kvm->arch.fgu[HFGITR_GROUP] |= (HFGITR_EL2_TLBIRVAALE1OS| HFGITR_EL2_TLBIRVALE1OS | HFGITR_EL2_TLBIRVAAE1OS | HFGITR_EL2_TLBIRVAE1OS | HFGITR_EL2_TLBIVAALE1OS | HFGITR_EL2_TLBIVALE1OS | HFGITR_EL2_TLBIVAAE1OS | HFGITR_EL2_TLBIASIDE1OS | HFGITR_EL2_TLBIVAE1OS | HFGITR_EL2_TLBIVMALLE1OS); if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, RANGE)) kvm->arch.fgu[HFGITR_GROUP] |= (HFGITR_EL2_TLBIRVAALE1 | HFGITR_EL2_TLBIRVALE1 | HFGITR_EL2_TLBIRVAAE1 | HFGITR_EL2_TLBIRVAE1 | HFGITR_EL2_TLBIRVAALE1IS| HFGITR_EL2_TLBIRVALE1IS | HFGITR_EL2_TLBIRVAAE1IS | HFGITR_EL2_TLBIRVAE1IS | HFGITR_EL2_TLBIRVAALE1OS| HFGITR_EL2_TLBIRVALE1OS | HFGITR_EL2_TLBIRVAAE1OS | HFGITR_EL2_TLBIRVAE1OS); if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, S1PIE, IMP)) kvm->arch.fgu[HFGxTR_GROUP] |= (HFGxTR_EL2_nPIRE0_EL1 | HFGxTR_EL2_nPIR_EL1); if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, AMU, IMP)) kvm->arch.fgu[HAFGRTR_GROUP] |= ~(HAFGRTR_EL2_RES0 | HAFGRTR_EL2_RES1); set_bit(KVM_ARCH_FLAG_FGU_INITIALIZED, &kvm->arch.flags); out: mutex_unlock(&kvm->arch.config_lock); } int __init kvm_sys_reg_table_init(void) { struct sys_reg_params params; bool valid = true; unsigned int i; int ret = 0; /* Make sure tables are unique and in order. */ valid &= check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false); valid &= check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true); valid &= check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true); valid &= check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true); valid &= check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true); valid &= check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false); valid &= check_sysreg_table(sys_insn_descs, ARRAY_SIZE(sys_insn_descs), false); if (!valid) return -EINVAL; /* We abuse the reset function to overwrite the table itself. */ for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]); /* Find the first idreg (SYS_ID_PFR0_EL1) in sys_reg_descs. */ params = encoding_to_params(SYS_ID_PFR0_EL1); first_idreg = find_reg(¶ms, sys_reg_descs, ARRAY_SIZE(sys_reg_descs)); if (!first_idreg) return -EINVAL; ret = populate_nv_trap_config(); for (i = 0; !ret && i < ARRAY_SIZE(sys_reg_descs); i++) ret = populate_sysreg_config(sys_reg_descs + i, i); for (i = 0; !ret && i < ARRAY_SIZE(sys_insn_descs); i++) ret = populate_sysreg_config(sys_insn_descs + i, i); return ret; } |