Linux Audio

Check our new training course

Loading...
v4.17
 
  1/*
  2 * Copyright (C) 2012,2013 - ARM Ltd
  3 * Author: Marc Zyngier <marc.zyngier@arm.com>
  4 *
  5 * Derived from arch/arm/kvm/guest.c:
  6 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
  7 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
  8 *
  9 * This program is free software; you can redistribute it and/or modify
 10 * it under the terms of the GNU General Public License version 2 as
 11 * published by the Free Software Foundation.
 12 *
 13 * This program is distributed in the hope that it will be useful,
 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 16 * GNU General Public License for more details.
 17 *
 18 * You should have received a copy of the GNU General Public License
 19 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 20 */
 21
 
 22#include <linux/errno.h>
 23#include <linux/err.h>
 
 24#include <linux/kvm_host.h>
 25#include <linux/module.h>
 
 
 26#include <linux/vmalloc.h>
 27#include <linux/fs.h>
 28#include <kvm/arm_psci.h>
 29#include <asm/cputype.h>
 30#include <linux/uaccess.h>
 
 31#include <asm/kvm.h>
 32#include <asm/kvm_emulate.h>
 33#include <asm/kvm_coproc.h>
 
 34
 35#include "trace.h"
 36
 37#define VM_STAT(x) { #x, offsetof(struct kvm, stat.x), KVM_STAT_VM }
 38#define VCPU_STAT(x) { #x, offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 39
 40struct kvm_stats_debugfs_item debugfs_entries[] = {
 41	VCPU_STAT(hvc_exit_stat),
 42	VCPU_STAT(wfe_exit_stat),
 43	VCPU_STAT(wfi_exit_stat),
 44	VCPU_STAT(mmio_exit_user),
 45	VCPU_STAT(mmio_exit_kernel),
 46	VCPU_STAT(exits),
 47	{ NULL }
 48};
 49
 50int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
 51{
 52	return 0;
 
 53}
 54
 55static u64 core_reg_offset_from_id(u64 id)
 56{
 57	return id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_ARM_CORE);
 58}
 59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 60static int get_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 61{
 62	/*
 63	 * Because the kvm_regs structure is a mix of 32, 64 and
 64	 * 128bit fields, we index it as if it was a 32bit
 65	 * array. Hence below, nr_regs is the number of entries, and
 66	 * off the index in the "array".
 67	 */
 68	__u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
 69	struct kvm_regs *regs = vcpu_gp_regs(vcpu);
 70	int nr_regs = sizeof(*regs) / sizeof(__u32);
 71	u32 off;
 72
 73	/* Our ID is an index into the kvm_regs struct. */
 74	off = core_reg_offset_from_id(reg->id);
 75	if (off >= nr_regs ||
 76	    (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
 77		return -ENOENT;
 78
 79	if (copy_to_user(uaddr, ((u32 *)regs) + off, KVM_REG_SIZE(reg->id)))
 
 
 
 
 80		return -EFAULT;
 81
 82	return 0;
 83}
 84
 85static int set_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 86{
 87	__u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
 88	struct kvm_regs *regs = vcpu_gp_regs(vcpu);
 89	int nr_regs = sizeof(*regs) / sizeof(__u32);
 90	__uint128_t tmp;
 91	void *valp = &tmp;
 92	u64 off;
 93	int err = 0;
 94
 95	/* Our ID is an index into the kvm_regs struct. */
 96	off = core_reg_offset_from_id(reg->id);
 97	if (off >= nr_regs ||
 98	    (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
 99		return -ENOENT;
100
 
 
 
 
101	if (KVM_REG_SIZE(reg->id) > sizeof(tmp))
102		return -EINVAL;
103
104	if (copy_from_user(valp, uaddr, KVM_REG_SIZE(reg->id))) {
105		err = -EFAULT;
106		goto out;
107	}
108
109	if (off == KVM_REG_ARM_CORE_REG(regs.pstate)) {
110		u32 mode = (*(u32 *)valp) & COMPAT_PSR_MODE_MASK;
111		switch (mode) {
112		case COMPAT_PSR_MODE_USR:
113		case COMPAT_PSR_MODE_FIQ:
114		case COMPAT_PSR_MODE_IRQ:
115		case COMPAT_PSR_MODE_SVC:
116		case COMPAT_PSR_MODE_ABT:
117		case COMPAT_PSR_MODE_UND:
 
 
 
 
 
 
 
 
 
 
 
118		case PSR_MODE_EL0t:
119		case PSR_MODE_EL1t:
120		case PSR_MODE_EL1h:
 
 
121			break;
122		default:
123			err = -EINVAL;
124			goto out;
125		}
126	}
127
128	memcpy((u32 *)regs + off, valp, KVM_REG_SIZE(reg->id));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
129out:
130	return err;
131}
132
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
133int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
134{
135	return -EINVAL;
136}
137
138int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
139{
140	return -EINVAL;
141}
142
143static unsigned long num_core_regs(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
144{
145	return sizeof(struct kvm_regs) / sizeof(__u32);
146}
147
148/**
149 * ARM64 versions of the TIMER registers, always available on arm64
150 */
 
 
 
 
 
151
152#define NUM_TIMER_REGS 3
153
154static bool is_timer_reg(u64 index)
155{
156	switch (index) {
157	case KVM_REG_ARM_TIMER_CTL:
158	case KVM_REG_ARM_TIMER_CNT:
159	case KVM_REG_ARM_TIMER_CVAL:
 
 
 
160		return true;
161	}
162	return false;
163}
164
165static int copy_timer_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
166{
167	if (put_user(KVM_REG_ARM_TIMER_CTL, uindices))
168		return -EFAULT;
169	uindices++;
170	if (put_user(KVM_REG_ARM_TIMER_CNT, uindices))
171		return -EFAULT;
172	uindices++;
173	if (put_user(KVM_REG_ARM_TIMER_CVAL, uindices))
174		return -EFAULT;
175
176	return 0;
177}
178
179static int set_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
180{
181	void __user *uaddr = (void __user *)(long)reg->addr;
182	u64 val;
183	int ret;
184
185	ret = copy_from_user(&val, uaddr, KVM_REG_SIZE(reg->id));
186	if (ret != 0)
187		return -EFAULT;
188
189	return kvm_arm_timer_set_reg(vcpu, reg->id, val);
190}
191
192static int get_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
193{
194	void __user *uaddr = (void __user *)(long)reg->addr;
195	u64 val;
196
197	val = kvm_arm_timer_get_reg(vcpu, reg->id);
198	return copy_to_user(uaddr, &val, KVM_REG_SIZE(reg->id)) ? -EFAULT : 0;
199}
200
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
201/**
202 * kvm_arm_num_regs - how many registers do we present via KVM_GET_ONE_REG
203 *
204 * This is for all registers.
205 */
206unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu)
207{
208	return num_core_regs() + kvm_arm_num_sys_reg_descs(vcpu)
209		+ kvm_arm_get_fw_num_regs(vcpu)	+ NUM_TIMER_REGS;
 
 
 
 
 
 
 
210}
211
212/**
213 * kvm_arm_copy_reg_indices - get indices of all registers.
214 *
215 * We do core registers right here, then we append system regs.
216 */
217int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
218{
219	unsigned int i;
220	const u64 core_reg = KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE;
221	int ret;
222
223	for (i = 0; i < sizeof(struct kvm_regs) / sizeof(__u32); i++) {
224		if (put_user(core_reg | i, uindices))
225			return -EFAULT;
226		uindices++;
227	}
 
 
 
 
228
229	ret = kvm_arm_copy_fw_reg_indices(vcpu, uindices);
230	if (ret)
231		return ret;
232	uindices += kvm_arm_get_fw_num_regs(vcpu);
233
234	ret = copy_timer_indices(vcpu, uindices);
235	if (ret)
236		return ret;
237	uindices += NUM_TIMER_REGS;
238
239	return kvm_arm_copy_sys_reg_indices(vcpu, uindices);
240}
241
242int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
243{
244	/* We currently use nothing arch-specific in upper 32 bits */
245	if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
246		return -EINVAL;
247
248	/* Register group 16 means we want a core register. */
249	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_CORE)
250		return get_core_reg(vcpu, reg);
251
252	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_FW)
253		return kvm_arm_get_fw_reg(vcpu, reg);
 
 
254
255	if (is_timer_reg(reg->id))
256		return get_timer_reg(vcpu, reg);
257
258	return kvm_arm_sys_reg_get_reg(vcpu, reg);
259}
260
261int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
262{
263	/* We currently use nothing arch-specific in upper 32 bits */
264	if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
265		return -EINVAL;
266
267	/* Register group 16 means we set a core register. */
268	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_CORE)
269		return set_core_reg(vcpu, reg);
270
271	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_FW)
272		return kvm_arm_set_fw_reg(vcpu, reg);
 
 
273
274	if (is_timer_reg(reg->id))
275		return set_timer_reg(vcpu, reg);
276
277	return kvm_arm_sys_reg_set_reg(vcpu, reg);
278}
279
280int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
281				  struct kvm_sregs *sregs)
282{
283	return -EINVAL;
284}
285
286int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
287				  struct kvm_sregs *sregs)
288{
289	return -EINVAL;
290}
291
292int __attribute_const__ kvm_target_cpu(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
293{
294	unsigned long implementor = read_cpuid_implementor();
295	unsigned long part_number = read_cpuid_part_number();
296
297	switch (implementor) {
298	case ARM_CPU_IMP_ARM:
299		switch (part_number) {
300		case ARM_CPU_PART_AEM_V8:
301			return KVM_ARM_TARGET_AEM_V8;
302		case ARM_CPU_PART_FOUNDATION:
303			return KVM_ARM_TARGET_FOUNDATION_V8;
304		case ARM_CPU_PART_CORTEX_A53:
305			return KVM_ARM_TARGET_CORTEX_A53;
306		case ARM_CPU_PART_CORTEX_A57:
307			return KVM_ARM_TARGET_CORTEX_A57;
308		};
309		break;
310	case ARM_CPU_IMP_APM:
311		switch (part_number) {
312		case APM_CPU_PART_POTENZA:
313			return KVM_ARM_TARGET_XGENE_POTENZA;
314		};
315		break;
316	};
317
318	/* Return a default generic target */
319	return KVM_ARM_TARGET_GENERIC_V8;
320}
321
322int kvm_vcpu_preferred_target(struct kvm_vcpu_init *init)
323{
324	int target = kvm_target_cpu();
325
326	if (target < 0)
327		return -ENODEV;
328
329	memset(init, 0, sizeof(*init));
330
331	/*
332	 * For now, we don't return any features.
333	 * In future, we might use features to return target
334	 * specific features available for the preferred
335	 * target type.
336	 */
337	init->target = (__u32)target;
338
339	return 0;
340}
341
342int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
343{
344	return -EINVAL;
345}
346
347int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
348{
349	return -EINVAL;
350}
351
352int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
353				  struct kvm_translation *tr)
354{
355	return -EINVAL;
356}
357
358#define KVM_GUESTDBG_VALID_MASK (KVM_GUESTDBG_ENABLE |    \
359			    KVM_GUESTDBG_USE_SW_BP | \
360			    KVM_GUESTDBG_USE_HW | \
361			    KVM_GUESTDBG_SINGLESTEP)
362
363/**
364 * kvm_arch_vcpu_ioctl_set_guest_debug - set up guest debugging
365 * @kvm:	pointer to the KVM struct
366 * @kvm_guest_debug: the ioctl data buffer
367 *
368 * This sets up and enables the VM for guest debugging. Userspace
369 * passes in a control flag to enable different debug types and
370 * potentially other architecture specific information in the rest of
371 * the structure.
372 */
373int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
374					struct kvm_guest_debug *dbg)
375{
376	int ret = 0;
377
378	trace_kvm_set_guest_debug(vcpu, dbg->control);
379
380	if (dbg->control & ~KVM_GUESTDBG_VALID_MASK) {
381		ret = -EINVAL;
382		goto out;
383	}
384
385	if (dbg->control & KVM_GUESTDBG_ENABLE) {
386		vcpu->guest_debug = dbg->control;
387
388		/* Hardware assisted Break and Watch points */
389		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW) {
390			vcpu->arch.external_debug_state = dbg->arch;
391		}
392
393	} else {
394		/* If not enabled clear all flags */
395		vcpu->guest_debug = 0;
 
396	}
397
398out:
399	return ret;
400}
401
402int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
403			       struct kvm_device_attr *attr)
404{
405	int ret;
406
407	switch (attr->group) {
408	case KVM_ARM_VCPU_PMU_V3_CTRL:
 
409		ret = kvm_arm_pmu_v3_set_attr(vcpu, attr);
 
410		break;
411	case KVM_ARM_VCPU_TIMER_CTRL:
412		ret = kvm_arm_timer_set_attr(vcpu, attr);
413		break;
 
 
 
414	default:
415		ret = -ENXIO;
416		break;
417	}
418
419	return ret;
420}
421
422int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
423			       struct kvm_device_attr *attr)
424{
425	int ret;
426
427	switch (attr->group) {
428	case KVM_ARM_VCPU_PMU_V3_CTRL:
429		ret = kvm_arm_pmu_v3_get_attr(vcpu, attr);
430		break;
431	case KVM_ARM_VCPU_TIMER_CTRL:
432		ret = kvm_arm_timer_get_attr(vcpu, attr);
433		break;
 
 
 
434	default:
435		ret = -ENXIO;
436		break;
437	}
438
439	return ret;
440}
441
442int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
443			       struct kvm_device_attr *attr)
444{
445	int ret;
446
447	switch (attr->group) {
448	case KVM_ARM_VCPU_PMU_V3_CTRL:
449		ret = kvm_arm_pmu_v3_has_attr(vcpu, attr);
450		break;
451	case KVM_ARM_VCPU_TIMER_CTRL:
452		ret = kvm_arm_timer_has_attr(vcpu, attr);
453		break;
 
 
 
454	default:
455		ret = -ENXIO;
456		break;
457	}
458
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
459	return ret;
460}
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2012,2013 - ARM Ltd
   4 * Author: Marc Zyngier <marc.zyngier@arm.com>
   5 *
   6 * Derived from arch/arm/kvm/guest.c:
   7 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
   8 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 
 
 
 
 
 
 
 
 
 
 
 
   9 */
  10
  11#include <linux/bits.h>
  12#include <linux/errno.h>
  13#include <linux/err.h>
  14#include <linux/nospec.h>
  15#include <linux/kvm_host.h>
  16#include <linux/module.h>
  17#include <linux/stddef.h>
  18#include <linux/string.h>
  19#include <linux/vmalloc.h>
  20#include <linux/fs.h>
  21#include <kvm/arm_hypercalls.h>
  22#include <asm/cputype.h>
  23#include <linux/uaccess.h>
  24#include <asm/fpsimd.h>
  25#include <asm/kvm.h>
  26#include <asm/kvm_emulate.h>
  27#include <asm/kvm_nested.h>
  28#include <asm/sigcontext.h>
  29
  30#include "trace.h"
  31
  32const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
  33	KVM_GENERIC_VM_STATS()
  34};
  35
  36const struct kvm_stats_header kvm_vm_stats_header = {
  37	.name_size = KVM_STATS_NAME_SIZE,
  38	.num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
  39	.id_offset =  sizeof(struct kvm_stats_header),
  40	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
  41	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
  42		       sizeof(kvm_vm_stats_desc),
  43};
  44
  45const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
  46	KVM_GENERIC_VCPU_STATS(),
  47	STATS_DESC_COUNTER(VCPU, hvc_exit_stat),
  48	STATS_DESC_COUNTER(VCPU, wfe_exit_stat),
  49	STATS_DESC_COUNTER(VCPU, wfi_exit_stat),
  50	STATS_DESC_COUNTER(VCPU, mmio_exit_user),
  51	STATS_DESC_COUNTER(VCPU, mmio_exit_kernel),
  52	STATS_DESC_COUNTER(VCPU, signal_exits),
  53	STATS_DESC_COUNTER(VCPU, exits)
  54};
  55
  56const struct kvm_stats_header kvm_vcpu_stats_header = {
  57	.name_size = KVM_STATS_NAME_SIZE,
  58	.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
  59	.id_offset = sizeof(struct kvm_stats_header),
  60	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
  61	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
  62		       sizeof(kvm_vcpu_stats_desc),
 
  63};
  64
  65static bool core_reg_offset_is_vreg(u64 off)
  66{
  67	return off >= KVM_REG_ARM_CORE_REG(fp_regs.vregs) &&
  68		off < KVM_REG_ARM_CORE_REG(fp_regs.fpsr);
  69}
  70
  71static u64 core_reg_offset_from_id(u64 id)
  72{
  73	return id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_ARM_CORE);
  74}
  75
  76static int core_reg_size_from_offset(const struct kvm_vcpu *vcpu, u64 off)
  77{
  78	int size;
  79
  80	switch (off) {
  81	case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
  82	     KVM_REG_ARM_CORE_REG(regs.regs[30]):
  83	case KVM_REG_ARM_CORE_REG(regs.sp):
  84	case KVM_REG_ARM_CORE_REG(regs.pc):
  85	case KVM_REG_ARM_CORE_REG(regs.pstate):
  86	case KVM_REG_ARM_CORE_REG(sp_el1):
  87	case KVM_REG_ARM_CORE_REG(elr_el1):
  88	case KVM_REG_ARM_CORE_REG(spsr[0]) ...
  89	     KVM_REG_ARM_CORE_REG(spsr[KVM_NR_SPSR - 1]):
  90		size = sizeof(__u64);
  91		break;
  92
  93	case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
  94	     KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
  95		size = sizeof(__uint128_t);
  96		break;
  97
  98	case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
  99	case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
 100		size = sizeof(__u32);
 101		break;
 102
 103	default:
 104		return -EINVAL;
 105	}
 106
 107	if (!IS_ALIGNED(off, size / sizeof(__u32)))
 108		return -EINVAL;
 109
 110	/*
 111	 * The KVM_REG_ARM64_SVE regs must be used instead of
 112	 * KVM_REG_ARM_CORE for accessing the FPSIMD V-registers on
 113	 * SVE-enabled vcpus:
 114	 */
 115	if (vcpu_has_sve(vcpu) && core_reg_offset_is_vreg(off))
 116		return -EINVAL;
 117
 118	return size;
 119}
 120
 121static void *core_reg_addr(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 122{
 123	u64 off = core_reg_offset_from_id(reg->id);
 124	int size = core_reg_size_from_offset(vcpu, off);
 125
 126	if (size < 0)
 127		return NULL;
 128
 129	if (KVM_REG_SIZE(reg->id) != size)
 130		return NULL;
 131
 132	switch (off) {
 133	case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
 134	     KVM_REG_ARM_CORE_REG(regs.regs[30]):
 135		off -= KVM_REG_ARM_CORE_REG(regs.regs[0]);
 136		off /= 2;
 137		return &vcpu->arch.ctxt.regs.regs[off];
 138
 139	case KVM_REG_ARM_CORE_REG(regs.sp):
 140		return &vcpu->arch.ctxt.regs.sp;
 141
 142	case KVM_REG_ARM_CORE_REG(regs.pc):
 143		return &vcpu->arch.ctxt.regs.pc;
 144
 145	case KVM_REG_ARM_CORE_REG(regs.pstate):
 146		return &vcpu->arch.ctxt.regs.pstate;
 147
 148	case KVM_REG_ARM_CORE_REG(sp_el1):
 149		return __ctxt_sys_reg(&vcpu->arch.ctxt, SP_EL1);
 150
 151	case KVM_REG_ARM_CORE_REG(elr_el1):
 152		return __ctxt_sys_reg(&vcpu->arch.ctxt, ELR_EL1);
 153
 154	case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_EL1]):
 155		return __ctxt_sys_reg(&vcpu->arch.ctxt, SPSR_EL1);
 156
 157	case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_ABT]):
 158		return &vcpu->arch.ctxt.spsr_abt;
 159
 160	case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_UND]):
 161		return &vcpu->arch.ctxt.spsr_und;
 162
 163	case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_IRQ]):
 164		return &vcpu->arch.ctxt.spsr_irq;
 165
 166	case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_FIQ]):
 167		return &vcpu->arch.ctxt.spsr_fiq;
 168
 169	case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
 170	     KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
 171		off -= KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]);
 172		off /= 4;
 173		return &vcpu->arch.ctxt.fp_regs.vregs[off];
 174
 175	case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
 176		return &vcpu->arch.ctxt.fp_regs.fpsr;
 177
 178	case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
 179		return &vcpu->arch.ctxt.fp_regs.fpcr;
 180
 181	default:
 182		return NULL;
 183	}
 184}
 185
 186static int get_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 187{
 188	/*
 189	 * Because the kvm_regs structure is a mix of 32, 64 and
 190	 * 128bit fields, we index it as if it was a 32bit
 191	 * array. Hence below, nr_regs is the number of entries, and
 192	 * off the index in the "array".
 193	 */
 194	__u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
 195	int nr_regs = sizeof(struct kvm_regs) / sizeof(__u32);
 196	void *addr;
 197	u32 off;
 198
 199	/* Our ID is an index into the kvm_regs struct. */
 200	off = core_reg_offset_from_id(reg->id);
 201	if (off >= nr_regs ||
 202	    (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
 203		return -ENOENT;
 204
 205	addr = core_reg_addr(vcpu, reg);
 206	if (!addr)
 207		return -EINVAL;
 208
 209	if (copy_to_user(uaddr, addr, KVM_REG_SIZE(reg->id)))
 210		return -EFAULT;
 211
 212	return 0;
 213}
 214
 215static int set_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 216{
 217	__u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
 218	int nr_regs = sizeof(struct kvm_regs) / sizeof(__u32);
 
 219	__uint128_t tmp;
 220	void *valp = &tmp, *addr;
 221	u64 off;
 222	int err = 0;
 223
 224	/* Our ID is an index into the kvm_regs struct. */
 225	off = core_reg_offset_from_id(reg->id);
 226	if (off >= nr_regs ||
 227	    (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
 228		return -ENOENT;
 229
 230	addr = core_reg_addr(vcpu, reg);
 231	if (!addr)
 232		return -EINVAL;
 233
 234	if (KVM_REG_SIZE(reg->id) > sizeof(tmp))
 235		return -EINVAL;
 236
 237	if (copy_from_user(valp, uaddr, KVM_REG_SIZE(reg->id))) {
 238		err = -EFAULT;
 239		goto out;
 240	}
 241
 242	if (off == KVM_REG_ARM_CORE_REG(regs.pstate)) {
 243		u64 mode = (*(u64 *)valp) & PSR_AA32_MODE_MASK;
 244		switch (mode) {
 245		case PSR_AA32_MODE_USR:
 246			if (!kvm_supports_32bit_el0())
 247				return -EINVAL;
 248			break;
 249		case PSR_AA32_MODE_FIQ:
 250		case PSR_AA32_MODE_IRQ:
 251		case PSR_AA32_MODE_SVC:
 252		case PSR_AA32_MODE_ABT:
 253		case PSR_AA32_MODE_UND:
 254			if (!vcpu_el1_is_32bit(vcpu))
 255				return -EINVAL;
 256			break;
 257		case PSR_MODE_EL2h:
 258		case PSR_MODE_EL2t:
 259			if (!vcpu_has_nv(vcpu))
 260				return -EINVAL;
 261			fallthrough;
 262		case PSR_MODE_EL0t:
 263		case PSR_MODE_EL1t:
 264		case PSR_MODE_EL1h:
 265			if (vcpu_el1_is_32bit(vcpu))
 266				return -EINVAL;
 267			break;
 268		default:
 269			err = -EINVAL;
 270			goto out;
 271		}
 272	}
 273
 274	memcpy(addr, valp, KVM_REG_SIZE(reg->id));
 275
 276	if (*vcpu_cpsr(vcpu) & PSR_MODE32_BIT) {
 277		int i, nr_reg;
 278
 279		switch (*vcpu_cpsr(vcpu)) {
 280		/*
 281		 * Either we are dealing with user mode, and only the
 282		 * first 15 registers (+ PC) must be narrowed to 32bit.
 283		 * AArch32 r0-r14 conveniently map to AArch64 x0-x14.
 284		 */
 285		case PSR_AA32_MODE_USR:
 286		case PSR_AA32_MODE_SYS:
 287			nr_reg = 15;
 288			break;
 289
 290		/*
 291		 * Otherwise, this is a privileged mode, and *all* the
 292		 * registers must be narrowed to 32bit.
 293		 */
 294		default:
 295			nr_reg = 31;
 296			break;
 297		}
 298
 299		for (i = 0; i < nr_reg; i++)
 300			vcpu_set_reg(vcpu, i, (u32)vcpu_get_reg(vcpu, i));
 301
 302		*vcpu_pc(vcpu) = (u32)*vcpu_pc(vcpu);
 303	}
 304out:
 305	return err;
 306}
 307
 308#define vq_word(vq) (((vq) - SVE_VQ_MIN) / 64)
 309#define vq_mask(vq) ((u64)1 << ((vq) - SVE_VQ_MIN) % 64)
 310#define vq_present(vqs, vq) (!!((vqs)[vq_word(vq)] & vq_mask(vq)))
 311
 312static int get_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 313{
 314	unsigned int max_vq, vq;
 315	u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
 316
 317	if (!vcpu_has_sve(vcpu))
 318		return -ENOENT;
 319
 320	if (WARN_ON(!sve_vl_valid(vcpu->arch.sve_max_vl)))
 321		return -EINVAL;
 322
 323	memset(vqs, 0, sizeof(vqs));
 324
 325	max_vq = vcpu_sve_max_vq(vcpu);
 326	for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
 327		if (sve_vq_available(vq))
 328			vqs[vq_word(vq)] |= vq_mask(vq);
 329
 330	if (copy_to_user((void __user *)reg->addr, vqs, sizeof(vqs)))
 331		return -EFAULT;
 332
 333	return 0;
 334}
 335
 336static int set_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 337{
 338	unsigned int max_vq, vq;
 339	u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
 340
 341	if (!vcpu_has_sve(vcpu))
 342		return -ENOENT;
 343
 344	if (kvm_arm_vcpu_sve_finalized(vcpu))
 345		return -EPERM; /* too late! */
 346
 347	if (WARN_ON(vcpu->arch.sve_state))
 348		return -EINVAL;
 349
 350	if (copy_from_user(vqs, (const void __user *)reg->addr, sizeof(vqs)))
 351		return -EFAULT;
 352
 353	max_vq = 0;
 354	for (vq = SVE_VQ_MIN; vq <= SVE_VQ_MAX; ++vq)
 355		if (vq_present(vqs, vq))
 356			max_vq = vq;
 357
 358	if (max_vq > sve_vq_from_vl(kvm_sve_max_vl))
 359		return -EINVAL;
 360
 361	/*
 362	 * Vector lengths supported by the host can't currently be
 363	 * hidden from the guest individually: instead we can only set a
 364	 * maximum via ZCR_EL2.LEN.  So, make sure the available vector
 365	 * lengths match the set requested exactly up to the requested
 366	 * maximum:
 367	 */
 368	for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
 369		if (vq_present(vqs, vq) != sve_vq_available(vq))
 370			return -EINVAL;
 371
 372	/* Can't run with no vector lengths at all: */
 373	if (max_vq < SVE_VQ_MIN)
 374		return -EINVAL;
 375
 376	/* vcpu->arch.sve_state will be alloc'd by kvm_vcpu_finalize_sve() */
 377	vcpu->arch.sve_max_vl = sve_vl_from_vq(max_vq);
 378
 379	return 0;
 380}
 381
 382#define SVE_REG_SLICE_SHIFT	0
 383#define SVE_REG_SLICE_BITS	5
 384#define SVE_REG_ID_SHIFT	(SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS)
 385#define SVE_REG_ID_BITS		5
 386
 387#define SVE_REG_SLICE_MASK					\
 388	GENMASK(SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS - 1,	\
 389		SVE_REG_SLICE_SHIFT)
 390#define SVE_REG_ID_MASK							\
 391	GENMASK(SVE_REG_ID_SHIFT + SVE_REG_ID_BITS - 1, SVE_REG_ID_SHIFT)
 392
 393#define SVE_NUM_SLICES (1 << SVE_REG_SLICE_BITS)
 394
 395#define KVM_SVE_ZREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_ZREG(0, 0))
 396#define KVM_SVE_PREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_PREG(0, 0))
 397
 398/*
 399 * Number of register slices required to cover each whole SVE register.
 400 * NOTE: Only the first slice every exists, for now.
 401 * If you are tempted to modify this, you must also rework sve_reg_to_region()
 402 * to match:
 403 */
 404#define vcpu_sve_slices(vcpu) 1
 405
 406/* Bounds of a single SVE register slice within vcpu->arch.sve_state */
 407struct sve_state_reg_region {
 408	unsigned int koffset;	/* offset into sve_state in kernel memory */
 409	unsigned int klen;	/* length in kernel memory */
 410	unsigned int upad;	/* extra trailing padding in user memory */
 411};
 412
 413/*
 414 * Validate SVE register ID and get sanitised bounds for user/kernel SVE
 415 * register copy
 416 */
 417static int sve_reg_to_region(struct sve_state_reg_region *region,
 418			     struct kvm_vcpu *vcpu,
 419			     const struct kvm_one_reg *reg)
 420{
 421	/* reg ID ranges for Z- registers */
 422	const u64 zreg_id_min = KVM_REG_ARM64_SVE_ZREG(0, 0);
 423	const u64 zreg_id_max = KVM_REG_ARM64_SVE_ZREG(SVE_NUM_ZREGS - 1,
 424						       SVE_NUM_SLICES - 1);
 425
 426	/* reg ID ranges for P- registers and FFR (which are contiguous) */
 427	const u64 preg_id_min = KVM_REG_ARM64_SVE_PREG(0, 0);
 428	const u64 preg_id_max = KVM_REG_ARM64_SVE_FFR(SVE_NUM_SLICES - 1);
 429
 430	unsigned int vq;
 431	unsigned int reg_num;
 432
 433	unsigned int reqoffset, reqlen; /* User-requested offset and length */
 434	unsigned int maxlen; /* Maximum permitted length */
 435
 436	size_t sve_state_size;
 437
 438	const u64 last_preg_id = KVM_REG_ARM64_SVE_PREG(SVE_NUM_PREGS - 1,
 439							SVE_NUM_SLICES - 1);
 440
 441	/* Verify that the P-regs and FFR really do have contiguous IDs: */
 442	BUILD_BUG_ON(KVM_REG_ARM64_SVE_FFR(0) != last_preg_id + 1);
 443
 444	/* Verify that we match the UAPI header: */
 445	BUILD_BUG_ON(SVE_NUM_SLICES != KVM_ARM64_SVE_MAX_SLICES);
 446
 447	reg_num = (reg->id & SVE_REG_ID_MASK) >> SVE_REG_ID_SHIFT;
 448
 449	if (reg->id >= zreg_id_min && reg->id <= zreg_id_max) {
 450		if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
 451			return -ENOENT;
 452
 453		vq = vcpu_sve_max_vq(vcpu);
 454
 455		reqoffset = SVE_SIG_ZREG_OFFSET(vq, reg_num) -
 456				SVE_SIG_REGS_OFFSET;
 457		reqlen = KVM_SVE_ZREG_SIZE;
 458		maxlen = SVE_SIG_ZREG_SIZE(vq);
 459	} else if (reg->id >= preg_id_min && reg->id <= preg_id_max) {
 460		if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
 461			return -ENOENT;
 462
 463		vq = vcpu_sve_max_vq(vcpu);
 464
 465		reqoffset = SVE_SIG_PREG_OFFSET(vq, reg_num) -
 466				SVE_SIG_REGS_OFFSET;
 467		reqlen = KVM_SVE_PREG_SIZE;
 468		maxlen = SVE_SIG_PREG_SIZE(vq);
 469	} else {
 470		return -EINVAL;
 471	}
 472
 473	sve_state_size = vcpu_sve_state_size(vcpu);
 474	if (WARN_ON(!sve_state_size))
 475		return -EINVAL;
 476
 477	region->koffset = array_index_nospec(reqoffset, sve_state_size);
 478	region->klen = min(maxlen, reqlen);
 479	region->upad = reqlen - region->klen;
 480
 481	return 0;
 482}
 483
 484static int get_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 485{
 486	int ret;
 487	struct sve_state_reg_region region;
 488	char __user *uptr = (char __user *)reg->addr;
 489
 490	/* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
 491	if (reg->id == KVM_REG_ARM64_SVE_VLS)
 492		return get_sve_vls(vcpu, reg);
 493
 494	/* Try to interpret reg ID as an architectural SVE register... */
 495	ret = sve_reg_to_region(&region, vcpu, reg);
 496	if (ret)
 497		return ret;
 498
 499	if (!kvm_arm_vcpu_sve_finalized(vcpu))
 500		return -EPERM;
 501
 502	if (copy_to_user(uptr, vcpu->arch.sve_state + region.koffset,
 503			 region.klen) ||
 504	    clear_user(uptr + region.klen, region.upad))
 505		return -EFAULT;
 506
 507	return 0;
 508}
 509
 510static int set_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 511{
 512	int ret;
 513	struct sve_state_reg_region region;
 514	const char __user *uptr = (const char __user *)reg->addr;
 515
 516	/* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
 517	if (reg->id == KVM_REG_ARM64_SVE_VLS)
 518		return set_sve_vls(vcpu, reg);
 519
 520	/* Try to interpret reg ID as an architectural SVE register... */
 521	ret = sve_reg_to_region(&region, vcpu, reg);
 522	if (ret)
 523		return ret;
 524
 525	if (!kvm_arm_vcpu_sve_finalized(vcpu))
 526		return -EPERM;
 527
 528	if (copy_from_user(vcpu->arch.sve_state + region.koffset, uptr,
 529			   region.klen))
 530		return -EFAULT;
 531
 532	return 0;
 533}
 534
 535int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
 536{
 537	return -EINVAL;
 538}
 539
 540int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
 541{
 542	return -EINVAL;
 543}
 544
 545static int copy_core_reg_indices(const struct kvm_vcpu *vcpu,
 546				 u64 __user *uindices)
 547{
 548	unsigned int i;
 549	int n = 0;
 550
 551	for (i = 0; i < sizeof(struct kvm_regs) / sizeof(__u32); i++) {
 552		u64 reg = KVM_REG_ARM64 | KVM_REG_ARM_CORE | i;
 553		int size = core_reg_size_from_offset(vcpu, i);
 554
 555		if (size < 0)
 556			continue;
 557
 558		switch (size) {
 559		case sizeof(__u32):
 560			reg |= KVM_REG_SIZE_U32;
 561			break;
 562
 563		case sizeof(__u64):
 564			reg |= KVM_REG_SIZE_U64;
 565			break;
 566
 567		case sizeof(__uint128_t):
 568			reg |= KVM_REG_SIZE_U128;
 569			break;
 570
 571		default:
 572			WARN_ON(1);
 573			continue;
 574		}
 575
 576		if (uindices) {
 577			if (put_user(reg, uindices))
 578				return -EFAULT;
 579			uindices++;
 580		}
 581
 582		n++;
 583	}
 584
 585	return n;
 586}
 587
 588static unsigned long num_core_regs(const struct kvm_vcpu *vcpu)
 589{
 590	return copy_core_reg_indices(vcpu, NULL);
 591}
 592
 593static const u64 timer_reg_list[] = {
 594	KVM_REG_ARM_TIMER_CTL,
 595	KVM_REG_ARM_TIMER_CNT,
 596	KVM_REG_ARM_TIMER_CVAL,
 597	KVM_REG_ARM_PTIMER_CTL,
 598	KVM_REG_ARM_PTIMER_CNT,
 599	KVM_REG_ARM_PTIMER_CVAL,
 600};
 601
 602#define NUM_TIMER_REGS ARRAY_SIZE(timer_reg_list)
 603
 604static bool is_timer_reg(u64 index)
 605{
 606	switch (index) {
 607	case KVM_REG_ARM_TIMER_CTL:
 608	case KVM_REG_ARM_TIMER_CNT:
 609	case KVM_REG_ARM_TIMER_CVAL:
 610	case KVM_REG_ARM_PTIMER_CTL:
 611	case KVM_REG_ARM_PTIMER_CNT:
 612	case KVM_REG_ARM_PTIMER_CVAL:
 613		return true;
 614	}
 615	return false;
 616}
 617
 618static int copy_timer_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
 619{
 620	for (int i = 0; i < NUM_TIMER_REGS; i++) {
 621		if (put_user(timer_reg_list[i], uindices))
 622			return -EFAULT;
 623		uindices++;
 624	}
 
 
 
 625
 626	return 0;
 627}
 628
 629static int set_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 630{
 631	void __user *uaddr = (void __user *)(long)reg->addr;
 632	u64 val;
 633	int ret;
 634
 635	ret = copy_from_user(&val, uaddr, KVM_REG_SIZE(reg->id));
 636	if (ret != 0)
 637		return -EFAULT;
 638
 639	return kvm_arm_timer_set_reg(vcpu, reg->id, val);
 640}
 641
 642static int get_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 643{
 644	void __user *uaddr = (void __user *)(long)reg->addr;
 645	u64 val;
 646
 647	val = kvm_arm_timer_get_reg(vcpu, reg->id);
 648	return copy_to_user(uaddr, &val, KVM_REG_SIZE(reg->id)) ? -EFAULT : 0;
 649}
 650
 651static unsigned long num_sve_regs(const struct kvm_vcpu *vcpu)
 652{
 653	const unsigned int slices = vcpu_sve_slices(vcpu);
 654
 655	if (!vcpu_has_sve(vcpu))
 656		return 0;
 657
 658	/* Policed by KVM_GET_REG_LIST: */
 659	WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
 660
 661	return slices * (SVE_NUM_PREGS + SVE_NUM_ZREGS + 1 /* FFR */)
 662		+ 1; /* KVM_REG_ARM64_SVE_VLS */
 663}
 664
 665static int copy_sve_reg_indices(const struct kvm_vcpu *vcpu,
 666				u64 __user *uindices)
 667{
 668	const unsigned int slices = vcpu_sve_slices(vcpu);
 669	u64 reg;
 670	unsigned int i, n;
 671	int num_regs = 0;
 672
 673	if (!vcpu_has_sve(vcpu))
 674		return 0;
 675
 676	/* Policed by KVM_GET_REG_LIST: */
 677	WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
 678
 679	/*
 680	 * Enumerate this first, so that userspace can save/restore in
 681	 * the order reported by KVM_GET_REG_LIST:
 682	 */
 683	reg = KVM_REG_ARM64_SVE_VLS;
 684	if (put_user(reg, uindices++))
 685		return -EFAULT;
 686	++num_regs;
 687
 688	for (i = 0; i < slices; i++) {
 689		for (n = 0; n < SVE_NUM_ZREGS; n++) {
 690			reg = KVM_REG_ARM64_SVE_ZREG(n, i);
 691			if (put_user(reg, uindices++))
 692				return -EFAULT;
 693			num_regs++;
 694		}
 695
 696		for (n = 0; n < SVE_NUM_PREGS; n++) {
 697			reg = KVM_REG_ARM64_SVE_PREG(n, i);
 698			if (put_user(reg, uindices++))
 699				return -EFAULT;
 700			num_regs++;
 701		}
 702
 703		reg = KVM_REG_ARM64_SVE_FFR(i);
 704		if (put_user(reg, uindices++))
 705			return -EFAULT;
 706		num_regs++;
 707	}
 708
 709	return num_regs;
 710}
 711
 712/**
 713 * kvm_arm_num_regs - how many registers do we present via KVM_GET_ONE_REG
 714 *
 715 * This is for all registers.
 716 */
 717unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu)
 718{
 719	unsigned long res = 0;
 720
 721	res += num_core_regs(vcpu);
 722	res += num_sve_regs(vcpu);
 723	res += kvm_arm_num_sys_reg_descs(vcpu);
 724	res += kvm_arm_get_fw_num_regs(vcpu);
 725	res += NUM_TIMER_REGS;
 726
 727	return res;
 728}
 729
 730/**
 731 * kvm_arm_copy_reg_indices - get indices of all registers.
 732 *
 733 * We do core registers right here, then we append system regs.
 734 */
 735int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
 736{
 
 
 737	int ret;
 738
 739	ret = copy_core_reg_indices(vcpu, uindices);
 740	if (ret < 0)
 741		return ret;
 742	uindices += ret;
 743
 744	ret = copy_sve_reg_indices(vcpu, uindices);
 745	if (ret < 0)
 746		return ret;
 747	uindices += ret;
 748
 749	ret = kvm_arm_copy_fw_reg_indices(vcpu, uindices);
 750	if (ret < 0)
 751		return ret;
 752	uindices += kvm_arm_get_fw_num_regs(vcpu);
 753
 754	ret = copy_timer_indices(vcpu, uindices);
 755	if (ret < 0)
 756		return ret;
 757	uindices += NUM_TIMER_REGS;
 758
 759	return kvm_arm_copy_sys_reg_indices(vcpu, uindices);
 760}
 761
 762int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 763{
 764	/* We currently use nothing arch-specific in upper 32 bits */
 765	if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
 766		return -EINVAL;
 767
 768	switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
 769	case KVM_REG_ARM_CORE:	return get_core_reg(vcpu, reg);
 770	case KVM_REG_ARM_FW:
 771	case KVM_REG_ARM_FW_FEAT_BMAP:
 
 772		return kvm_arm_get_fw_reg(vcpu, reg);
 773	case KVM_REG_ARM64_SVE:	return get_sve_reg(vcpu, reg);
 774	}
 775
 776	if (is_timer_reg(reg->id))
 777		return get_timer_reg(vcpu, reg);
 778
 779	return kvm_arm_sys_reg_get_reg(vcpu, reg);
 780}
 781
 782int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 783{
 784	/* We currently use nothing arch-specific in upper 32 bits */
 785	if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
 786		return -EINVAL;
 787
 788	switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
 789	case KVM_REG_ARM_CORE:	return set_core_reg(vcpu, reg);
 790	case KVM_REG_ARM_FW:
 791	case KVM_REG_ARM_FW_FEAT_BMAP:
 
 792		return kvm_arm_set_fw_reg(vcpu, reg);
 793	case KVM_REG_ARM64_SVE:	return set_sve_reg(vcpu, reg);
 794	}
 795
 796	if (is_timer_reg(reg->id))
 797		return set_timer_reg(vcpu, reg);
 798
 799	return kvm_arm_sys_reg_set_reg(vcpu, reg);
 800}
 801
 802int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
 803				  struct kvm_sregs *sregs)
 804{
 805	return -EINVAL;
 806}
 807
 808int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
 809				  struct kvm_sregs *sregs)
 810{
 811	return -EINVAL;
 812}
 813
 814int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
 815			      struct kvm_vcpu_events *events)
 816{
 817	events->exception.serror_pending = !!(vcpu->arch.hcr_el2 & HCR_VSE);
 818	events->exception.serror_has_esr = cpus_have_final_cap(ARM64_HAS_RAS_EXTN);
 819
 820	if (events->exception.serror_pending && events->exception.serror_has_esr)
 821		events->exception.serror_esr = vcpu_get_vsesr(vcpu);
 822
 823	/*
 824	 * We never return a pending ext_dabt here because we deliver it to
 825	 * the virtual CPU directly when setting the event and it's no longer
 826	 * 'pending' at this point.
 827	 */
 828
 829	return 0;
 830}
 831
 832int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
 833			      struct kvm_vcpu_events *events)
 834{
 835	bool serror_pending = events->exception.serror_pending;
 836	bool has_esr = events->exception.serror_has_esr;
 837	bool ext_dabt_pending = events->exception.ext_dabt_pending;
 838
 839	if (serror_pending && has_esr) {
 840		if (!cpus_have_final_cap(ARM64_HAS_RAS_EXTN))
 841			return -EINVAL;
 842
 843		if (!((events->exception.serror_esr) & ~ESR_ELx_ISS_MASK))
 844			kvm_set_sei_esr(vcpu, events->exception.serror_esr);
 845		else
 846			return -EINVAL;
 847	} else if (serror_pending) {
 848		kvm_inject_vabt(vcpu);
 849	}
 850
 851	if (ext_dabt_pending)
 852		kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
 853
 854	return 0;
 855}
 856
 857u32 __attribute_const__ kvm_target_cpu(void)
 858{
 859	unsigned long implementor = read_cpuid_implementor();
 860	unsigned long part_number = read_cpuid_part_number();
 861
 862	switch (implementor) {
 863	case ARM_CPU_IMP_ARM:
 864		switch (part_number) {
 865		case ARM_CPU_PART_AEM_V8:
 866			return KVM_ARM_TARGET_AEM_V8;
 867		case ARM_CPU_PART_FOUNDATION:
 868			return KVM_ARM_TARGET_FOUNDATION_V8;
 869		case ARM_CPU_PART_CORTEX_A53:
 870			return KVM_ARM_TARGET_CORTEX_A53;
 871		case ARM_CPU_PART_CORTEX_A57:
 872			return KVM_ARM_TARGET_CORTEX_A57;
 873		}
 874		break;
 875	case ARM_CPU_IMP_APM:
 876		switch (part_number) {
 877		case APM_CPU_PART_XGENE:
 878			return KVM_ARM_TARGET_XGENE_POTENZA;
 879		}
 880		break;
 881	}
 882
 883	/* Return a default generic target */
 884	return KVM_ARM_TARGET_GENERIC_V8;
 885}
 886
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 887int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
 888{
 889	return -EINVAL;
 890}
 891
 892int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
 893{
 894	return -EINVAL;
 895}
 896
 897int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
 898				  struct kvm_translation *tr)
 899{
 900	return -EINVAL;
 901}
 902
 
 
 
 
 
 903/**
 904 * kvm_arch_vcpu_ioctl_set_guest_debug - set up guest debugging
 905 * @kvm:	pointer to the KVM struct
 906 * @kvm_guest_debug: the ioctl data buffer
 907 *
 908 * This sets up and enables the VM for guest debugging. Userspace
 909 * passes in a control flag to enable different debug types and
 910 * potentially other architecture specific information in the rest of
 911 * the structure.
 912 */
 913int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
 914					struct kvm_guest_debug *dbg)
 915{
 916	int ret = 0;
 917
 918	trace_kvm_set_guest_debug(vcpu, dbg->control);
 919
 920	if (dbg->control & ~KVM_GUESTDBG_VALID_MASK) {
 921		ret = -EINVAL;
 922		goto out;
 923	}
 924
 925	if (dbg->control & KVM_GUESTDBG_ENABLE) {
 926		vcpu->guest_debug = dbg->control;
 927
 928		/* Hardware assisted Break and Watch points */
 929		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW) {
 930			vcpu->arch.external_debug_state = dbg->arch;
 931		}
 932
 933	} else {
 934		/* If not enabled clear all flags */
 935		vcpu->guest_debug = 0;
 936		vcpu_clear_flag(vcpu, DBG_SS_ACTIVE_PENDING);
 937	}
 938
 939out:
 940	return ret;
 941}
 942
 943int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
 944			       struct kvm_device_attr *attr)
 945{
 946	int ret;
 947
 948	switch (attr->group) {
 949	case KVM_ARM_VCPU_PMU_V3_CTRL:
 950		mutex_lock(&vcpu->kvm->arch.config_lock);
 951		ret = kvm_arm_pmu_v3_set_attr(vcpu, attr);
 952		mutex_unlock(&vcpu->kvm->arch.config_lock);
 953		break;
 954	case KVM_ARM_VCPU_TIMER_CTRL:
 955		ret = kvm_arm_timer_set_attr(vcpu, attr);
 956		break;
 957	case KVM_ARM_VCPU_PVTIME_CTRL:
 958		ret = kvm_arm_pvtime_set_attr(vcpu, attr);
 959		break;
 960	default:
 961		ret = -ENXIO;
 962		break;
 963	}
 964
 965	return ret;
 966}
 967
 968int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
 969			       struct kvm_device_attr *attr)
 970{
 971	int ret;
 972
 973	switch (attr->group) {
 974	case KVM_ARM_VCPU_PMU_V3_CTRL:
 975		ret = kvm_arm_pmu_v3_get_attr(vcpu, attr);
 976		break;
 977	case KVM_ARM_VCPU_TIMER_CTRL:
 978		ret = kvm_arm_timer_get_attr(vcpu, attr);
 979		break;
 980	case KVM_ARM_VCPU_PVTIME_CTRL:
 981		ret = kvm_arm_pvtime_get_attr(vcpu, attr);
 982		break;
 983	default:
 984		ret = -ENXIO;
 985		break;
 986	}
 987
 988	return ret;
 989}
 990
 991int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
 992			       struct kvm_device_attr *attr)
 993{
 994	int ret;
 995
 996	switch (attr->group) {
 997	case KVM_ARM_VCPU_PMU_V3_CTRL:
 998		ret = kvm_arm_pmu_v3_has_attr(vcpu, attr);
 999		break;
1000	case KVM_ARM_VCPU_TIMER_CTRL:
1001		ret = kvm_arm_timer_has_attr(vcpu, attr);
1002		break;
1003	case KVM_ARM_VCPU_PVTIME_CTRL:
1004		ret = kvm_arm_pvtime_has_attr(vcpu, attr);
1005		break;
1006	default:
1007		ret = -ENXIO;
1008		break;
1009	}
1010
1011	return ret;
1012}
1013
1014int kvm_vm_ioctl_mte_copy_tags(struct kvm *kvm,
1015			       struct kvm_arm_copy_mte_tags *copy_tags)
1016{
1017	gpa_t guest_ipa = copy_tags->guest_ipa;
1018	size_t length = copy_tags->length;
1019	void __user *tags = copy_tags->addr;
1020	gpa_t gfn;
1021	bool write = !(copy_tags->flags & KVM_ARM_TAGS_FROM_GUEST);
1022	int ret = 0;
1023
1024	if (!kvm_has_mte(kvm))
1025		return -EINVAL;
1026
1027	if (copy_tags->reserved[0] || copy_tags->reserved[1])
1028		return -EINVAL;
1029
1030	if (copy_tags->flags & ~KVM_ARM_TAGS_FROM_GUEST)
1031		return -EINVAL;
1032
1033	if (length & ~PAGE_MASK || guest_ipa & ~PAGE_MASK)
1034		return -EINVAL;
1035
1036	/* Lengths above INT_MAX cannot be represented in the return value */
1037	if (length > INT_MAX)
1038		return -EINVAL;
1039
1040	gfn = gpa_to_gfn(guest_ipa);
1041
1042	mutex_lock(&kvm->slots_lock);
1043
1044	while (length > 0) {
1045		kvm_pfn_t pfn = gfn_to_pfn_prot(kvm, gfn, write, NULL);
1046		void *maddr;
1047		unsigned long num_tags;
1048		struct page *page;
1049
1050		if (is_error_noslot_pfn(pfn)) {
1051			ret = -EFAULT;
1052			goto out;
1053		}
1054
1055		page = pfn_to_online_page(pfn);
1056		if (!page) {
1057			/* Reject ZONE_DEVICE memory */
1058			ret = -EFAULT;
1059			goto out;
1060		}
1061		maddr = page_address(page);
1062
1063		if (!write) {
1064			if (page_mte_tagged(page))
1065				num_tags = mte_copy_tags_to_user(tags, maddr,
1066							MTE_GRANULES_PER_PAGE);
1067			else
1068				/* No tags in memory, so write zeros */
1069				num_tags = MTE_GRANULES_PER_PAGE -
1070					clear_user(tags, MTE_GRANULES_PER_PAGE);
1071			kvm_release_pfn_clean(pfn);
1072		} else {
1073			/*
1074			 * Only locking to serialise with a concurrent
1075			 * set_pte_at() in the VMM but still overriding the
1076			 * tags, hence ignoring the return value.
1077			 */
1078			try_page_mte_tagging(page);
1079			num_tags = mte_copy_tags_from_user(maddr, tags,
1080							MTE_GRANULES_PER_PAGE);
1081
1082			/* uaccess failed, don't leave stale tags */
1083			if (num_tags != MTE_GRANULES_PER_PAGE)
1084				mte_clear_page_tags(maddr);
1085			set_page_mte_tagged(page);
1086
1087			kvm_release_pfn_dirty(pfn);
1088		}
1089
1090		if (num_tags != MTE_GRANULES_PER_PAGE) {
1091			ret = -EFAULT;
1092			goto out;
1093		}
1094
1095		gfn++;
1096		tags += num_tags;
1097		length -= PAGE_SIZE;
1098	}
1099
1100out:
1101	mutex_unlock(&kvm->slots_lock);
1102	/* If some data has been copied report the number of bytes copied */
1103	if (length != copy_tags->length)
1104		return copy_tags->length - length;
1105	return ret;
1106}