Linux Audio

Check our new training course

Loading...
v4.17
 
  1/*
  2 * Copyright (C) 2012,2013 - ARM Ltd
  3 * Author: Marc Zyngier <marc.zyngier@arm.com>
  4 *
  5 * Derived from arch/arm/kvm/guest.c:
  6 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
  7 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
  8 *
  9 * This program is free software; you can redistribute it and/or modify
 10 * it under the terms of the GNU General Public License version 2 as
 11 * published by the Free Software Foundation.
 12 *
 13 * This program is distributed in the hope that it will be useful,
 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 16 * GNU General Public License for more details.
 17 *
 18 * You should have received a copy of the GNU General Public License
 19 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 20 */
 21
 
 22#include <linux/errno.h>
 23#include <linux/err.h>
 
 24#include <linux/kvm_host.h>
 25#include <linux/module.h>
 
 
 26#include <linux/vmalloc.h>
 27#include <linux/fs.h>
 28#include <kvm/arm_psci.h>
 29#include <asm/cputype.h>
 30#include <linux/uaccess.h>
 
 31#include <asm/kvm.h>
 32#include <asm/kvm_emulate.h>
 33#include <asm/kvm_coproc.h>
 34
 35#include "trace.h"
 36
 37#define VM_STAT(x) { #x, offsetof(struct kvm, stat.x), KVM_STAT_VM }
 38#define VCPU_STAT(x) { #x, offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU }
 
 
 
 39
 40struct kvm_stats_debugfs_item debugfs_entries[] = {
 41	VCPU_STAT(hvc_exit_stat),
 42	VCPU_STAT(wfe_exit_stat),
 43	VCPU_STAT(wfi_exit_stat),
 44	VCPU_STAT(mmio_exit_user),
 45	VCPU_STAT(mmio_exit_kernel),
 46	VCPU_STAT(exits),
 47	{ NULL }
 48};
 49
 50int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 51{
 52	return 0;
 
 53}
 54
 55static u64 core_reg_offset_from_id(u64 id)
 56{
 57	return id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_ARM_CORE);
 58}
 59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 60static int get_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 61{
 62	/*
 63	 * Because the kvm_regs structure is a mix of 32, 64 and
 64	 * 128bit fields, we index it as if it was a 32bit
 65	 * array. Hence below, nr_regs is the number of entries, and
 66	 * off the index in the "array".
 67	 */
 68	__u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
 69	struct kvm_regs *regs = vcpu_gp_regs(vcpu);
 70	int nr_regs = sizeof(*regs) / sizeof(__u32);
 71	u32 off;
 72
 73	/* Our ID is an index into the kvm_regs struct. */
 74	off = core_reg_offset_from_id(reg->id);
 75	if (off >= nr_regs ||
 76	    (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
 77		return -ENOENT;
 78
 79	if (copy_to_user(uaddr, ((u32 *)regs) + off, KVM_REG_SIZE(reg->id)))
 
 
 
 
 80		return -EFAULT;
 81
 82	return 0;
 83}
 84
 85static int set_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 86{
 87	__u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
 88	struct kvm_regs *regs = vcpu_gp_regs(vcpu);
 89	int nr_regs = sizeof(*regs) / sizeof(__u32);
 90	__uint128_t tmp;
 91	void *valp = &tmp;
 92	u64 off;
 93	int err = 0;
 94
 95	/* Our ID is an index into the kvm_regs struct. */
 96	off = core_reg_offset_from_id(reg->id);
 97	if (off >= nr_regs ||
 98	    (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
 99		return -ENOENT;
100
 
 
 
 
101	if (KVM_REG_SIZE(reg->id) > sizeof(tmp))
102		return -EINVAL;
103
104	if (copy_from_user(valp, uaddr, KVM_REG_SIZE(reg->id))) {
105		err = -EFAULT;
106		goto out;
107	}
108
109	if (off == KVM_REG_ARM_CORE_REG(regs.pstate)) {
110		u32 mode = (*(u32 *)valp) & COMPAT_PSR_MODE_MASK;
111		switch (mode) {
112		case COMPAT_PSR_MODE_USR:
113		case COMPAT_PSR_MODE_FIQ:
114		case COMPAT_PSR_MODE_IRQ:
115		case COMPAT_PSR_MODE_SVC:
116		case COMPAT_PSR_MODE_ABT:
117		case COMPAT_PSR_MODE_UND:
 
 
 
 
 
 
118		case PSR_MODE_EL0t:
119		case PSR_MODE_EL1t:
120		case PSR_MODE_EL1h:
 
 
121			break;
122		default:
123			err = -EINVAL;
124			goto out;
125		}
126	}
127
128	memcpy((u32 *)regs + off, valp, KVM_REG_SIZE(reg->id));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
129out:
130	return err;
131}
132
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
133int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
134{
135	return -EINVAL;
136}
137
138int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
139{
140	return -EINVAL;
141}
142
143static unsigned long num_core_regs(void)
 
144{
145	return sizeof(struct kvm_regs) / sizeof(__u32);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
146}
147
148/**
149 * ARM64 versions of the TIMER registers, always available on arm64
150 */
151
152#define NUM_TIMER_REGS 3
153
154static bool is_timer_reg(u64 index)
155{
156	switch (index) {
157	case KVM_REG_ARM_TIMER_CTL:
158	case KVM_REG_ARM_TIMER_CNT:
159	case KVM_REG_ARM_TIMER_CVAL:
160		return true;
161	}
162	return false;
163}
164
165static int copy_timer_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
166{
167	if (put_user(KVM_REG_ARM_TIMER_CTL, uindices))
168		return -EFAULT;
169	uindices++;
170	if (put_user(KVM_REG_ARM_TIMER_CNT, uindices))
171		return -EFAULT;
172	uindices++;
173	if (put_user(KVM_REG_ARM_TIMER_CVAL, uindices))
174		return -EFAULT;
175
176	return 0;
177}
178
179static int set_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
180{
181	void __user *uaddr = (void __user *)(long)reg->addr;
182	u64 val;
183	int ret;
184
185	ret = copy_from_user(&val, uaddr, KVM_REG_SIZE(reg->id));
186	if (ret != 0)
187		return -EFAULT;
188
189	return kvm_arm_timer_set_reg(vcpu, reg->id, val);
190}
191
192static int get_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
193{
194	void __user *uaddr = (void __user *)(long)reg->addr;
195	u64 val;
196
197	val = kvm_arm_timer_get_reg(vcpu, reg->id);
198	return copy_to_user(uaddr, &val, KVM_REG_SIZE(reg->id)) ? -EFAULT : 0;
199}
200
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
201/**
202 * kvm_arm_num_regs - how many registers do we present via KVM_GET_ONE_REG
203 *
204 * This is for all registers.
205 */
206unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu)
207{
208	return num_core_regs() + kvm_arm_num_sys_reg_descs(vcpu)
209		+ kvm_arm_get_fw_num_regs(vcpu)	+ NUM_TIMER_REGS;
 
 
 
 
 
 
 
210}
211
212/**
213 * kvm_arm_copy_reg_indices - get indices of all registers.
214 *
215 * We do core registers right here, then we append system regs.
216 */
217int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
218{
219	unsigned int i;
220	const u64 core_reg = KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE;
221	int ret;
222
223	for (i = 0; i < sizeof(struct kvm_regs) / sizeof(__u32); i++) {
224		if (put_user(core_reg | i, uindices))
225			return -EFAULT;
226		uindices++;
227	}
 
 
 
 
228
229	ret = kvm_arm_copy_fw_reg_indices(vcpu, uindices);
230	if (ret)
231		return ret;
232	uindices += kvm_arm_get_fw_num_regs(vcpu);
233
234	ret = copy_timer_indices(vcpu, uindices);
235	if (ret)
236		return ret;
237	uindices += NUM_TIMER_REGS;
238
239	return kvm_arm_copy_sys_reg_indices(vcpu, uindices);
240}
241
242int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
243{
244	/* We currently use nothing arch-specific in upper 32 bits */
245	if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
246		return -EINVAL;
247
248	/* Register group 16 means we want a core register. */
249	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_CORE)
250		return get_core_reg(vcpu, reg);
251
252	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_FW)
253		return kvm_arm_get_fw_reg(vcpu, reg);
254
255	if (is_timer_reg(reg->id))
256		return get_timer_reg(vcpu, reg);
257
258	return kvm_arm_sys_reg_get_reg(vcpu, reg);
259}
260
261int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
262{
263	/* We currently use nothing arch-specific in upper 32 bits */
264	if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
265		return -EINVAL;
266
267	/* Register group 16 means we set a core register. */
268	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_CORE)
269		return set_core_reg(vcpu, reg);
270
271	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_FW)
272		return kvm_arm_set_fw_reg(vcpu, reg);
273
274	if (is_timer_reg(reg->id))
275		return set_timer_reg(vcpu, reg);
276
277	return kvm_arm_sys_reg_set_reg(vcpu, reg);
278}
279
280int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
281				  struct kvm_sregs *sregs)
282{
283	return -EINVAL;
284}
285
286int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
287				  struct kvm_sregs *sregs)
288{
289	return -EINVAL;
290}
291
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
292int __attribute_const__ kvm_target_cpu(void)
293{
294	unsigned long implementor = read_cpuid_implementor();
295	unsigned long part_number = read_cpuid_part_number();
296
297	switch (implementor) {
298	case ARM_CPU_IMP_ARM:
299		switch (part_number) {
300		case ARM_CPU_PART_AEM_V8:
301			return KVM_ARM_TARGET_AEM_V8;
302		case ARM_CPU_PART_FOUNDATION:
303			return KVM_ARM_TARGET_FOUNDATION_V8;
304		case ARM_CPU_PART_CORTEX_A53:
305			return KVM_ARM_TARGET_CORTEX_A53;
306		case ARM_CPU_PART_CORTEX_A57:
307			return KVM_ARM_TARGET_CORTEX_A57;
308		};
309		break;
310	case ARM_CPU_IMP_APM:
311		switch (part_number) {
312		case APM_CPU_PART_POTENZA:
313			return KVM_ARM_TARGET_XGENE_POTENZA;
314		};
315		break;
316	};
317
318	/* Return a default generic target */
319	return KVM_ARM_TARGET_GENERIC_V8;
320}
321
322int kvm_vcpu_preferred_target(struct kvm_vcpu_init *init)
323{
324	int target = kvm_target_cpu();
325
326	if (target < 0)
327		return -ENODEV;
328
329	memset(init, 0, sizeof(*init));
330
331	/*
332	 * For now, we don't return any features.
333	 * In future, we might use features to return target
334	 * specific features available for the preferred
335	 * target type.
336	 */
337	init->target = (__u32)target;
338
339	return 0;
340}
341
342int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
343{
344	return -EINVAL;
345}
346
347int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
348{
349	return -EINVAL;
350}
351
352int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
353				  struct kvm_translation *tr)
354{
355	return -EINVAL;
356}
357
358#define KVM_GUESTDBG_VALID_MASK (KVM_GUESTDBG_ENABLE |    \
359			    KVM_GUESTDBG_USE_SW_BP | \
360			    KVM_GUESTDBG_USE_HW | \
361			    KVM_GUESTDBG_SINGLESTEP)
362
363/**
364 * kvm_arch_vcpu_ioctl_set_guest_debug - set up guest debugging
365 * @kvm:	pointer to the KVM struct
366 * @kvm_guest_debug: the ioctl data buffer
367 *
368 * This sets up and enables the VM for guest debugging. Userspace
369 * passes in a control flag to enable different debug types and
370 * potentially other architecture specific information in the rest of
371 * the structure.
372 */
373int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
374					struct kvm_guest_debug *dbg)
375{
376	int ret = 0;
377
378	trace_kvm_set_guest_debug(vcpu, dbg->control);
379
380	if (dbg->control & ~KVM_GUESTDBG_VALID_MASK) {
381		ret = -EINVAL;
382		goto out;
383	}
384
385	if (dbg->control & KVM_GUESTDBG_ENABLE) {
386		vcpu->guest_debug = dbg->control;
387
388		/* Hardware assisted Break and Watch points */
389		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW) {
390			vcpu->arch.external_debug_state = dbg->arch;
391		}
392
393	} else {
394		/* If not enabled clear all flags */
395		vcpu->guest_debug = 0;
396	}
397
398out:
399	return ret;
400}
401
402int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
403			       struct kvm_device_attr *attr)
404{
405	int ret;
406
407	switch (attr->group) {
408	case KVM_ARM_VCPU_PMU_V3_CTRL:
409		ret = kvm_arm_pmu_v3_set_attr(vcpu, attr);
410		break;
411	case KVM_ARM_VCPU_TIMER_CTRL:
412		ret = kvm_arm_timer_set_attr(vcpu, attr);
413		break;
 
 
 
414	default:
415		ret = -ENXIO;
416		break;
417	}
418
419	return ret;
420}
421
422int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
423			       struct kvm_device_attr *attr)
424{
425	int ret;
426
427	switch (attr->group) {
428	case KVM_ARM_VCPU_PMU_V3_CTRL:
429		ret = kvm_arm_pmu_v3_get_attr(vcpu, attr);
430		break;
431	case KVM_ARM_VCPU_TIMER_CTRL:
432		ret = kvm_arm_timer_get_attr(vcpu, attr);
433		break;
 
 
 
434	default:
435		ret = -ENXIO;
436		break;
437	}
438
439	return ret;
440}
441
442int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
443			       struct kvm_device_attr *attr)
444{
445	int ret;
446
447	switch (attr->group) {
448	case KVM_ARM_VCPU_PMU_V3_CTRL:
449		ret = kvm_arm_pmu_v3_has_attr(vcpu, attr);
450		break;
451	case KVM_ARM_VCPU_TIMER_CTRL:
452		ret = kvm_arm_timer_has_attr(vcpu, attr);
453		break;
 
 
 
454	default:
455		ret = -ENXIO;
456		break;
457	}
458
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
459	return ret;
460}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2012,2013 - ARM Ltd
   4 * Author: Marc Zyngier <marc.zyngier@arm.com>
   5 *
   6 * Derived from arch/arm/kvm/guest.c:
   7 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
   8 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 
 
 
 
 
 
 
 
 
 
 
 
   9 */
  10
  11#include <linux/bits.h>
  12#include <linux/errno.h>
  13#include <linux/err.h>
  14#include <linux/nospec.h>
  15#include <linux/kvm_host.h>
  16#include <linux/module.h>
  17#include <linux/stddef.h>
  18#include <linux/string.h>
  19#include <linux/vmalloc.h>
  20#include <linux/fs.h>
  21#include <kvm/arm_psci.h>
  22#include <asm/cputype.h>
  23#include <linux/uaccess.h>
  24#include <asm/fpsimd.h>
  25#include <asm/kvm.h>
  26#include <asm/kvm_emulate.h>
  27#include <asm/sigcontext.h>
  28
  29#include "trace.h"
  30
  31const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
  32	KVM_GENERIC_VM_STATS()
  33};
  34static_assert(ARRAY_SIZE(kvm_vm_stats_desc) ==
  35		sizeof(struct kvm_vm_stat) / sizeof(u64));
  36
  37const struct kvm_stats_header kvm_vm_stats_header = {
  38	.name_size = KVM_STATS_NAME_SIZE,
  39	.num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
  40	.id_offset =  sizeof(struct kvm_stats_header),
  41	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
  42	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
  43		       sizeof(kvm_vm_stats_desc),
 
  44};
  45
  46const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
  47	KVM_GENERIC_VCPU_STATS(),
  48	STATS_DESC_COUNTER(VCPU, hvc_exit_stat),
  49	STATS_DESC_COUNTER(VCPU, wfe_exit_stat),
  50	STATS_DESC_COUNTER(VCPU, wfi_exit_stat),
  51	STATS_DESC_COUNTER(VCPU, mmio_exit_user),
  52	STATS_DESC_COUNTER(VCPU, mmio_exit_kernel),
  53	STATS_DESC_COUNTER(VCPU, exits)
  54};
  55static_assert(ARRAY_SIZE(kvm_vcpu_stats_desc) ==
  56		sizeof(struct kvm_vcpu_stat) / sizeof(u64));
  57
  58const struct kvm_stats_header kvm_vcpu_stats_header = {
  59	.name_size = KVM_STATS_NAME_SIZE,
  60	.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
  61	.id_offset = sizeof(struct kvm_stats_header),
  62	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
  63	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
  64		       sizeof(kvm_vcpu_stats_desc),
  65};
  66
  67static bool core_reg_offset_is_vreg(u64 off)
  68{
  69	return off >= KVM_REG_ARM_CORE_REG(fp_regs.vregs) &&
  70		off < KVM_REG_ARM_CORE_REG(fp_regs.fpsr);
  71}
  72
  73static u64 core_reg_offset_from_id(u64 id)
  74{
  75	return id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_ARM_CORE);
  76}
  77
  78static int core_reg_size_from_offset(const struct kvm_vcpu *vcpu, u64 off)
  79{
  80	int size;
  81
  82	switch (off) {
  83	case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
  84	     KVM_REG_ARM_CORE_REG(regs.regs[30]):
  85	case KVM_REG_ARM_CORE_REG(regs.sp):
  86	case KVM_REG_ARM_CORE_REG(regs.pc):
  87	case KVM_REG_ARM_CORE_REG(regs.pstate):
  88	case KVM_REG_ARM_CORE_REG(sp_el1):
  89	case KVM_REG_ARM_CORE_REG(elr_el1):
  90	case KVM_REG_ARM_CORE_REG(spsr[0]) ...
  91	     KVM_REG_ARM_CORE_REG(spsr[KVM_NR_SPSR - 1]):
  92		size = sizeof(__u64);
  93		break;
  94
  95	case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
  96	     KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
  97		size = sizeof(__uint128_t);
  98		break;
  99
 100	case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
 101	case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
 102		size = sizeof(__u32);
 103		break;
 104
 105	default:
 106		return -EINVAL;
 107	}
 108
 109	if (!IS_ALIGNED(off, size / sizeof(__u32)))
 110		return -EINVAL;
 111
 112	/*
 113	 * The KVM_REG_ARM64_SVE regs must be used instead of
 114	 * KVM_REG_ARM_CORE for accessing the FPSIMD V-registers on
 115	 * SVE-enabled vcpus:
 116	 */
 117	if (vcpu_has_sve(vcpu) && core_reg_offset_is_vreg(off))
 118		return -EINVAL;
 119
 120	return size;
 121}
 122
 123static void *core_reg_addr(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 124{
 125	u64 off = core_reg_offset_from_id(reg->id);
 126	int size = core_reg_size_from_offset(vcpu, off);
 127
 128	if (size < 0)
 129		return NULL;
 130
 131	if (KVM_REG_SIZE(reg->id) != size)
 132		return NULL;
 133
 134	switch (off) {
 135	case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
 136	     KVM_REG_ARM_CORE_REG(regs.regs[30]):
 137		off -= KVM_REG_ARM_CORE_REG(regs.regs[0]);
 138		off /= 2;
 139		return &vcpu->arch.ctxt.regs.regs[off];
 140
 141	case KVM_REG_ARM_CORE_REG(regs.sp):
 142		return &vcpu->arch.ctxt.regs.sp;
 143
 144	case KVM_REG_ARM_CORE_REG(regs.pc):
 145		return &vcpu->arch.ctxt.regs.pc;
 146
 147	case KVM_REG_ARM_CORE_REG(regs.pstate):
 148		return &vcpu->arch.ctxt.regs.pstate;
 149
 150	case KVM_REG_ARM_CORE_REG(sp_el1):
 151		return __ctxt_sys_reg(&vcpu->arch.ctxt, SP_EL1);
 152
 153	case KVM_REG_ARM_CORE_REG(elr_el1):
 154		return __ctxt_sys_reg(&vcpu->arch.ctxt, ELR_EL1);
 155
 156	case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_EL1]):
 157		return __ctxt_sys_reg(&vcpu->arch.ctxt, SPSR_EL1);
 158
 159	case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_ABT]):
 160		return &vcpu->arch.ctxt.spsr_abt;
 161
 162	case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_UND]):
 163		return &vcpu->arch.ctxt.spsr_und;
 164
 165	case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_IRQ]):
 166		return &vcpu->arch.ctxt.spsr_irq;
 167
 168	case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_FIQ]):
 169		return &vcpu->arch.ctxt.spsr_fiq;
 170
 171	case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
 172	     KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
 173		off -= KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]);
 174		off /= 4;
 175		return &vcpu->arch.ctxt.fp_regs.vregs[off];
 176
 177	case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
 178		return &vcpu->arch.ctxt.fp_regs.fpsr;
 179
 180	case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
 181		return &vcpu->arch.ctxt.fp_regs.fpcr;
 182
 183	default:
 184		return NULL;
 185	}
 186}
 187
 188static int get_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 189{
 190	/*
 191	 * Because the kvm_regs structure is a mix of 32, 64 and
 192	 * 128bit fields, we index it as if it was a 32bit
 193	 * array. Hence below, nr_regs is the number of entries, and
 194	 * off the index in the "array".
 195	 */
 196	__u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
 197	int nr_regs = sizeof(struct kvm_regs) / sizeof(__u32);
 198	void *addr;
 199	u32 off;
 200
 201	/* Our ID is an index into the kvm_regs struct. */
 202	off = core_reg_offset_from_id(reg->id);
 203	if (off >= nr_regs ||
 204	    (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
 205		return -ENOENT;
 206
 207	addr = core_reg_addr(vcpu, reg);
 208	if (!addr)
 209		return -EINVAL;
 210
 211	if (copy_to_user(uaddr, addr, KVM_REG_SIZE(reg->id)))
 212		return -EFAULT;
 213
 214	return 0;
 215}
 216
 217static int set_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 218{
 219	__u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
 220	int nr_regs = sizeof(struct kvm_regs) / sizeof(__u32);
 
 221	__uint128_t tmp;
 222	void *valp = &tmp, *addr;
 223	u64 off;
 224	int err = 0;
 225
 226	/* Our ID is an index into the kvm_regs struct. */
 227	off = core_reg_offset_from_id(reg->id);
 228	if (off >= nr_regs ||
 229	    (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
 230		return -ENOENT;
 231
 232	addr = core_reg_addr(vcpu, reg);
 233	if (!addr)
 234		return -EINVAL;
 235
 236	if (KVM_REG_SIZE(reg->id) > sizeof(tmp))
 237		return -EINVAL;
 238
 239	if (copy_from_user(valp, uaddr, KVM_REG_SIZE(reg->id))) {
 240		err = -EFAULT;
 241		goto out;
 242	}
 243
 244	if (off == KVM_REG_ARM_CORE_REG(regs.pstate)) {
 245		u64 mode = (*(u64 *)valp) & PSR_AA32_MODE_MASK;
 246		switch (mode) {
 247		case PSR_AA32_MODE_USR:
 248			if (!system_supports_32bit_el0())
 249				return -EINVAL;
 250			break;
 251		case PSR_AA32_MODE_FIQ:
 252		case PSR_AA32_MODE_IRQ:
 253		case PSR_AA32_MODE_SVC:
 254		case PSR_AA32_MODE_ABT:
 255		case PSR_AA32_MODE_UND:
 256			if (!vcpu_el1_is_32bit(vcpu))
 257				return -EINVAL;
 258			break;
 259		case PSR_MODE_EL0t:
 260		case PSR_MODE_EL1t:
 261		case PSR_MODE_EL1h:
 262			if (vcpu_el1_is_32bit(vcpu))
 263				return -EINVAL;
 264			break;
 265		default:
 266			err = -EINVAL;
 267			goto out;
 268		}
 269	}
 270
 271	memcpy(addr, valp, KVM_REG_SIZE(reg->id));
 272
 273	if (*vcpu_cpsr(vcpu) & PSR_MODE32_BIT) {
 274		int i, nr_reg;
 275
 276		switch (*vcpu_cpsr(vcpu)) {
 277		/*
 278		 * Either we are dealing with user mode, and only the
 279		 * first 15 registers (+ PC) must be narrowed to 32bit.
 280		 * AArch32 r0-r14 conveniently map to AArch64 x0-x14.
 281		 */
 282		case PSR_AA32_MODE_USR:
 283		case PSR_AA32_MODE_SYS:
 284			nr_reg = 15;
 285			break;
 286
 287		/*
 288		 * Otherwide, this is a priviledged mode, and *all* the
 289		 * registers must be narrowed to 32bit.
 290		 */
 291		default:
 292			nr_reg = 31;
 293			break;
 294		}
 295
 296		for (i = 0; i < nr_reg; i++)
 297			vcpu_set_reg(vcpu, i, (u32)vcpu_get_reg(vcpu, i));
 298
 299		*vcpu_pc(vcpu) = (u32)*vcpu_pc(vcpu);
 300	}
 301out:
 302	return err;
 303}
 304
 305#define vq_word(vq) (((vq) - SVE_VQ_MIN) / 64)
 306#define vq_mask(vq) ((u64)1 << ((vq) - SVE_VQ_MIN) % 64)
 307#define vq_present(vqs, vq) (!!((vqs)[vq_word(vq)] & vq_mask(vq)))
 308
 309static int get_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 310{
 311	unsigned int max_vq, vq;
 312	u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
 313
 314	if (!vcpu_has_sve(vcpu))
 315		return -ENOENT;
 316
 317	if (WARN_ON(!sve_vl_valid(vcpu->arch.sve_max_vl)))
 318		return -EINVAL;
 319
 320	memset(vqs, 0, sizeof(vqs));
 321
 322	max_vq = vcpu_sve_max_vq(vcpu);
 323	for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
 324		if (sve_vq_available(vq))
 325			vqs[vq_word(vq)] |= vq_mask(vq);
 326
 327	if (copy_to_user((void __user *)reg->addr, vqs, sizeof(vqs)))
 328		return -EFAULT;
 329
 330	return 0;
 331}
 332
 333static int set_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 334{
 335	unsigned int max_vq, vq;
 336	u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
 337
 338	if (!vcpu_has_sve(vcpu))
 339		return -ENOENT;
 340
 341	if (kvm_arm_vcpu_sve_finalized(vcpu))
 342		return -EPERM; /* too late! */
 343
 344	if (WARN_ON(vcpu->arch.sve_state))
 345		return -EINVAL;
 346
 347	if (copy_from_user(vqs, (const void __user *)reg->addr, sizeof(vqs)))
 348		return -EFAULT;
 349
 350	max_vq = 0;
 351	for (vq = SVE_VQ_MIN; vq <= SVE_VQ_MAX; ++vq)
 352		if (vq_present(vqs, vq))
 353			max_vq = vq;
 354
 355	if (max_vq > sve_vq_from_vl(kvm_sve_max_vl))
 356		return -EINVAL;
 357
 358	/*
 359	 * Vector lengths supported by the host can't currently be
 360	 * hidden from the guest individually: instead we can only set a
 361	 * maximum via ZCR_EL2.LEN.  So, make sure the available vector
 362	 * lengths match the set requested exactly up to the requested
 363	 * maximum:
 364	 */
 365	for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
 366		if (vq_present(vqs, vq) != sve_vq_available(vq))
 367			return -EINVAL;
 368
 369	/* Can't run with no vector lengths at all: */
 370	if (max_vq < SVE_VQ_MIN)
 371		return -EINVAL;
 372
 373	/* vcpu->arch.sve_state will be alloc'd by kvm_vcpu_finalize_sve() */
 374	vcpu->arch.sve_max_vl = sve_vl_from_vq(max_vq);
 375
 376	return 0;
 377}
 378
 379#define SVE_REG_SLICE_SHIFT	0
 380#define SVE_REG_SLICE_BITS	5
 381#define SVE_REG_ID_SHIFT	(SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS)
 382#define SVE_REG_ID_BITS		5
 383
 384#define SVE_REG_SLICE_MASK					\
 385	GENMASK(SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS - 1,	\
 386		SVE_REG_SLICE_SHIFT)
 387#define SVE_REG_ID_MASK							\
 388	GENMASK(SVE_REG_ID_SHIFT + SVE_REG_ID_BITS - 1, SVE_REG_ID_SHIFT)
 389
 390#define SVE_NUM_SLICES (1 << SVE_REG_SLICE_BITS)
 391
 392#define KVM_SVE_ZREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_ZREG(0, 0))
 393#define KVM_SVE_PREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_PREG(0, 0))
 394
 395/*
 396 * Number of register slices required to cover each whole SVE register.
 397 * NOTE: Only the first slice every exists, for now.
 398 * If you are tempted to modify this, you must also rework sve_reg_to_region()
 399 * to match:
 400 */
 401#define vcpu_sve_slices(vcpu) 1
 402
 403/* Bounds of a single SVE register slice within vcpu->arch.sve_state */
 404struct sve_state_reg_region {
 405	unsigned int koffset;	/* offset into sve_state in kernel memory */
 406	unsigned int klen;	/* length in kernel memory */
 407	unsigned int upad;	/* extra trailing padding in user memory */
 408};
 409
 410/*
 411 * Validate SVE register ID and get sanitised bounds for user/kernel SVE
 412 * register copy
 413 */
 414static int sve_reg_to_region(struct sve_state_reg_region *region,
 415			     struct kvm_vcpu *vcpu,
 416			     const struct kvm_one_reg *reg)
 417{
 418	/* reg ID ranges for Z- registers */
 419	const u64 zreg_id_min = KVM_REG_ARM64_SVE_ZREG(0, 0);
 420	const u64 zreg_id_max = KVM_REG_ARM64_SVE_ZREG(SVE_NUM_ZREGS - 1,
 421						       SVE_NUM_SLICES - 1);
 422
 423	/* reg ID ranges for P- registers and FFR (which are contiguous) */
 424	const u64 preg_id_min = KVM_REG_ARM64_SVE_PREG(0, 0);
 425	const u64 preg_id_max = KVM_REG_ARM64_SVE_FFR(SVE_NUM_SLICES - 1);
 426
 427	unsigned int vq;
 428	unsigned int reg_num;
 429
 430	unsigned int reqoffset, reqlen; /* User-requested offset and length */
 431	unsigned int maxlen; /* Maximum permitted length */
 432
 433	size_t sve_state_size;
 434
 435	const u64 last_preg_id = KVM_REG_ARM64_SVE_PREG(SVE_NUM_PREGS - 1,
 436							SVE_NUM_SLICES - 1);
 437
 438	/* Verify that the P-regs and FFR really do have contiguous IDs: */
 439	BUILD_BUG_ON(KVM_REG_ARM64_SVE_FFR(0) != last_preg_id + 1);
 440
 441	/* Verify that we match the UAPI header: */
 442	BUILD_BUG_ON(SVE_NUM_SLICES != KVM_ARM64_SVE_MAX_SLICES);
 443
 444	reg_num = (reg->id & SVE_REG_ID_MASK) >> SVE_REG_ID_SHIFT;
 445
 446	if (reg->id >= zreg_id_min && reg->id <= zreg_id_max) {
 447		if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
 448			return -ENOENT;
 449
 450		vq = vcpu_sve_max_vq(vcpu);
 451
 452		reqoffset = SVE_SIG_ZREG_OFFSET(vq, reg_num) -
 453				SVE_SIG_REGS_OFFSET;
 454		reqlen = KVM_SVE_ZREG_SIZE;
 455		maxlen = SVE_SIG_ZREG_SIZE(vq);
 456	} else if (reg->id >= preg_id_min && reg->id <= preg_id_max) {
 457		if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
 458			return -ENOENT;
 459
 460		vq = vcpu_sve_max_vq(vcpu);
 461
 462		reqoffset = SVE_SIG_PREG_OFFSET(vq, reg_num) -
 463				SVE_SIG_REGS_OFFSET;
 464		reqlen = KVM_SVE_PREG_SIZE;
 465		maxlen = SVE_SIG_PREG_SIZE(vq);
 466	} else {
 467		return -EINVAL;
 468	}
 469
 470	sve_state_size = vcpu_sve_state_size(vcpu);
 471	if (WARN_ON(!sve_state_size))
 472		return -EINVAL;
 473
 474	region->koffset = array_index_nospec(reqoffset, sve_state_size);
 475	region->klen = min(maxlen, reqlen);
 476	region->upad = reqlen - region->klen;
 477
 478	return 0;
 479}
 480
 481static int get_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 482{
 483	int ret;
 484	struct sve_state_reg_region region;
 485	char __user *uptr = (char __user *)reg->addr;
 486
 487	/* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
 488	if (reg->id == KVM_REG_ARM64_SVE_VLS)
 489		return get_sve_vls(vcpu, reg);
 490
 491	/* Try to interpret reg ID as an architectural SVE register... */
 492	ret = sve_reg_to_region(&region, vcpu, reg);
 493	if (ret)
 494		return ret;
 495
 496	if (!kvm_arm_vcpu_sve_finalized(vcpu))
 497		return -EPERM;
 498
 499	if (copy_to_user(uptr, vcpu->arch.sve_state + region.koffset,
 500			 region.klen) ||
 501	    clear_user(uptr + region.klen, region.upad))
 502		return -EFAULT;
 503
 504	return 0;
 505}
 506
 507static int set_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 508{
 509	int ret;
 510	struct sve_state_reg_region region;
 511	const char __user *uptr = (const char __user *)reg->addr;
 512
 513	/* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
 514	if (reg->id == KVM_REG_ARM64_SVE_VLS)
 515		return set_sve_vls(vcpu, reg);
 516
 517	/* Try to interpret reg ID as an architectural SVE register... */
 518	ret = sve_reg_to_region(&region, vcpu, reg);
 519	if (ret)
 520		return ret;
 521
 522	if (!kvm_arm_vcpu_sve_finalized(vcpu))
 523		return -EPERM;
 524
 525	if (copy_from_user(vcpu->arch.sve_state + region.koffset, uptr,
 526			   region.klen))
 527		return -EFAULT;
 528
 529	return 0;
 530}
 531
 532int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
 533{
 534	return -EINVAL;
 535}
 536
 537int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
 538{
 539	return -EINVAL;
 540}
 541
 542static int copy_core_reg_indices(const struct kvm_vcpu *vcpu,
 543				 u64 __user *uindices)
 544{
 545	unsigned int i;
 546	int n = 0;
 547
 548	for (i = 0; i < sizeof(struct kvm_regs) / sizeof(__u32); i++) {
 549		u64 reg = KVM_REG_ARM64 | KVM_REG_ARM_CORE | i;
 550		int size = core_reg_size_from_offset(vcpu, i);
 551
 552		if (size < 0)
 553			continue;
 554
 555		switch (size) {
 556		case sizeof(__u32):
 557			reg |= KVM_REG_SIZE_U32;
 558			break;
 559
 560		case sizeof(__u64):
 561			reg |= KVM_REG_SIZE_U64;
 562			break;
 563
 564		case sizeof(__uint128_t):
 565			reg |= KVM_REG_SIZE_U128;
 566			break;
 567
 568		default:
 569			WARN_ON(1);
 570			continue;
 571		}
 572
 573		if (uindices) {
 574			if (put_user(reg, uindices))
 575				return -EFAULT;
 576			uindices++;
 577		}
 578
 579		n++;
 580	}
 581
 582	return n;
 583}
 584
 585static unsigned long num_core_regs(const struct kvm_vcpu *vcpu)
 586{
 587	return copy_core_reg_indices(vcpu, NULL);
 588}
 589
 590/**
 591 * ARM64 versions of the TIMER registers, always available on arm64
 592 */
 593
 594#define NUM_TIMER_REGS 3
 595
 596static bool is_timer_reg(u64 index)
 597{
 598	switch (index) {
 599	case KVM_REG_ARM_TIMER_CTL:
 600	case KVM_REG_ARM_TIMER_CNT:
 601	case KVM_REG_ARM_TIMER_CVAL:
 602		return true;
 603	}
 604	return false;
 605}
 606
 607static int copy_timer_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
 608{
 609	if (put_user(KVM_REG_ARM_TIMER_CTL, uindices))
 610		return -EFAULT;
 611	uindices++;
 612	if (put_user(KVM_REG_ARM_TIMER_CNT, uindices))
 613		return -EFAULT;
 614	uindices++;
 615	if (put_user(KVM_REG_ARM_TIMER_CVAL, uindices))
 616		return -EFAULT;
 617
 618	return 0;
 619}
 620
 621static int set_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 622{
 623	void __user *uaddr = (void __user *)(long)reg->addr;
 624	u64 val;
 625	int ret;
 626
 627	ret = copy_from_user(&val, uaddr, KVM_REG_SIZE(reg->id));
 628	if (ret != 0)
 629		return -EFAULT;
 630
 631	return kvm_arm_timer_set_reg(vcpu, reg->id, val);
 632}
 633
 634static int get_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 635{
 636	void __user *uaddr = (void __user *)(long)reg->addr;
 637	u64 val;
 638
 639	val = kvm_arm_timer_get_reg(vcpu, reg->id);
 640	return copy_to_user(uaddr, &val, KVM_REG_SIZE(reg->id)) ? -EFAULT : 0;
 641}
 642
 643static unsigned long num_sve_regs(const struct kvm_vcpu *vcpu)
 644{
 645	const unsigned int slices = vcpu_sve_slices(vcpu);
 646
 647	if (!vcpu_has_sve(vcpu))
 648		return 0;
 649
 650	/* Policed by KVM_GET_REG_LIST: */
 651	WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
 652
 653	return slices * (SVE_NUM_PREGS + SVE_NUM_ZREGS + 1 /* FFR */)
 654		+ 1; /* KVM_REG_ARM64_SVE_VLS */
 655}
 656
 657static int copy_sve_reg_indices(const struct kvm_vcpu *vcpu,
 658				u64 __user *uindices)
 659{
 660	const unsigned int slices = vcpu_sve_slices(vcpu);
 661	u64 reg;
 662	unsigned int i, n;
 663	int num_regs = 0;
 664
 665	if (!vcpu_has_sve(vcpu))
 666		return 0;
 667
 668	/* Policed by KVM_GET_REG_LIST: */
 669	WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
 670
 671	/*
 672	 * Enumerate this first, so that userspace can save/restore in
 673	 * the order reported by KVM_GET_REG_LIST:
 674	 */
 675	reg = KVM_REG_ARM64_SVE_VLS;
 676	if (put_user(reg, uindices++))
 677		return -EFAULT;
 678	++num_regs;
 679
 680	for (i = 0; i < slices; i++) {
 681		for (n = 0; n < SVE_NUM_ZREGS; n++) {
 682			reg = KVM_REG_ARM64_SVE_ZREG(n, i);
 683			if (put_user(reg, uindices++))
 684				return -EFAULT;
 685			num_regs++;
 686		}
 687
 688		for (n = 0; n < SVE_NUM_PREGS; n++) {
 689			reg = KVM_REG_ARM64_SVE_PREG(n, i);
 690			if (put_user(reg, uindices++))
 691				return -EFAULT;
 692			num_regs++;
 693		}
 694
 695		reg = KVM_REG_ARM64_SVE_FFR(i);
 696		if (put_user(reg, uindices++))
 697			return -EFAULT;
 698		num_regs++;
 699	}
 700
 701	return num_regs;
 702}
 703
 704/**
 705 * kvm_arm_num_regs - how many registers do we present via KVM_GET_ONE_REG
 706 *
 707 * This is for all registers.
 708 */
 709unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu)
 710{
 711	unsigned long res = 0;
 712
 713	res += num_core_regs(vcpu);
 714	res += num_sve_regs(vcpu);
 715	res += kvm_arm_num_sys_reg_descs(vcpu);
 716	res += kvm_arm_get_fw_num_regs(vcpu);
 717	res += NUM_TIMER_REGS;
 718
 719	return res;
 720}
 721
 722/**
 723 * kvm_arm_copy_reg_indices - get indices of all registers.
 724 *
 725 * We do core registers right here, then we append system regs.
 726 */
 727int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
 728{
 
 
 729	int ret;
 730
 731	ret = copy_core_reg_indices(vcpu, uindices);
 732	if (ret < 0)
 733		return ret;
 734	uindices += ret;
 735
 736	ret = copy_sve_reg_indices(vcpu, uindices);
 737	if (ret < 0)
 738		return ret;
 739	uindices += ret;
 740
 741	ret = kvm_arm_copy_fw_reg_indices(vcpu, uindices);
 742	if (ret < 0)
 743		return ret;
 744	uindices += kvm_arm_get_fw_num_regs(vcpu);
 745
 746	ret = copy_timer_indices(vcpu, uindices);
 747	if (ret < 0)
 748		return ret;
 749	uindices += NUM_TIMER_REGS;
 750
 751	return kvm_arm_copy_sys_reg_indices(vcpu, uindices);
 752}
 753
 754int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 755{
 756	/* We currently use nothing arch-specific in upper 32 bits */
 757	if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
 758		return -EINVAL;
 759
 760	switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
 761	case KVM_REG_ARM_CORE:	return get_core_reg(vcpu, reg);
 762	case KVM_REG_ARM_FW:	return kvm_arm_get_fw_reg(vcpu, reg);
 763	case KVM_REG_ARM64_SVE:	return get_sve_reg(vcpu, reg);
 764	}
 
 765
 766	if (is_timer_reg(reg->id))
 767		return get_timer_reg(vcpu, reg);
 768
 769	return kvm_arm_sys_reg_get_reg(vcpu, reg);
 770}
 771
 772int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 773{
 774	/* We currently use nothing arch-specific in upper 32 bits */
 775	if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
 776		return -EINVAL;
 777
 778	switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
 779	case KVM_REG_ARM_CORE:	return set_core_reg(vcpu, reg);
 780	case KVM_REG_ARM_FW:	return kvm_arm_set_fw_reg(vcpu, reg);
 781	case KVM_REG_ARM64_SVE:	return set_sve_reg(vcpu, reg);
 782	}
 
 783
 784	if (is_timer_reg(reg->id))
 785		return set_timer_reg(vcpu, reg);
 786
 787	return kvm_arm_sys_reg_set_reg(vcpu, reg);
 788}
 789
 790int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
 791				  struct kvm_sregs *sregs)
 792{
 793	return -EINVAL;
 794}
 795
 796int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
 797				  struct kvm_sregs *sregs)
 798{
 799	return -EINVAL;
 800}
 801
 802int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
 803			      struct kvm_vcpu_events *events)
 804{
 805	events->exception.serror_pending = !!(vcpu->arch.hcr_el2 & HCR_VSE);
 806	events->exception.serror_has_esr = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
 807
 808	if (events->exception.serror_pending && events->exception.serror_has_esr)
 809		events->exception.serror_esr = vcpu_get_vsesr(vcpu);
 810
 811	/*
 812	 * We never return a pending ext_dabt here because we deliver it to
 813	 * the virtual CPU directly when setting the event and it's no longer
 814	 * 'pending' at this point.
 815	 */
 816
 817	return 0;
 818}
 819
 820int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
 821			      struct kvm_vcpu_events *events)
 822{
 823	bool serror_pending = events->exception.serror_pending;
 824	bool has_esr = events->exception.serror_has_esr;
 825	bool ext_dabt_pending = events->exception.ext_dabt_pending;
 826
 827	if (serror_pending && has_esr) {
 828		if (!cpus_have_const_cap(ARM64_HAS_RAS_EXTN))
 829			return -EINVAL;
 830
 831		if (!((events->exception.serror_esr) & ~ESR_ELx_ISS_MASK))
 832			kvm_set_sei_esr(vcpu, events->exception.serror_esr);
 833		else
 834			return -EINVAL;
 835	} else if (serror_pending) {
 836		kvm_inject_vabt(vcpu);
 837	}
 838
 839	if (ext_dabt_pending)
 840		kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
 841
 842	return 0;
 843}
 844
 845int __attribute_const__ kvm_target_cpu(void)
 846{
 847	unsigned long implementor = read_cpuid_implementor();
 848	unsigned long part_number = read_cpuid_part_number();
 849
 850	switch (implementor) {
 851	case ARM_CPU_IMP_ARM:
 852		switch (part_number) {
 853		case ARM_CPU_PART_AEM_V8:
 854			return KVM_ARM_TARGET_AEM_V8;
 855		case ARM_CPU_PART_FOUNDATION:
 856			return KVM_ARM_TARGET_FOUNDATION_V8;
 857		case ARM_CPU_PART_CORTEX_A53:
 858			return KVM_ARM_TARGET_CORTEX_A53;
 859		case ARM_CPU_PART_CORTEX_A57:
 860			return KVM_ARM_TARGET_CORTEX_A57;
 861		}
 862		break;
 863	case ARM_CPU_IMP_APM:
 864		switch (part_number) {
 865		case APM_CPU_PART_POTENZA:
 866			return KVM_ARM_TARGET_XGENE_POTENZA;
 867		}
 868		break;
 869	}
 870
 871	/* Return a default generic target */
 872	return KVM_ARM_TARGET_GENERIC_V8;
 873}
 874
 875int kvm_vcpu_preferred_target(struct kvm_vcpu_init *init)
 876{
 877	int target = kvm_target_cpu();
 878
 879	if (target < 0)
 880		return -ENODEV;
 881
 882	memset(init, 0, sizeof(*init));
 883
 884	/*
 885	 * For now, we don't return any features.
 886	 * In future, we might use features to return target
 887	 * specific features available for the preferred
 888	 * target type.
 889	 */
 890	init->target = (__u32)target;
 891
 892	return 0;
 893}
 894
 895int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
 896{
 897	return -EINVAL;
 898}
 899
 900int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
 901{
 902	return -EINVAL;
 903}
 904
 905int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
 906				  struct kvm_translation *tr)
 907{
 908	return -EINVAL;
 909}
 910
 
 
 
 
 
 911/**
 912 * kvm_arch_vcpu_ioctl_set_guest_debug - set up guest debugging
 913 * @kvm:	pointer to the KVM struct
 914 * @kvm_guest_debug: the ioctl data buffer
 915 *
 916 * This sets up and enables the VM for guest debugging. Userspace
 917 * passes in a control flag to enable different debug types and
 918 * potentially other architecture specific information in the rest of
 919 * the structure.
 920 */
 921int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
 922					struct kvm_guest_debug *dbg)
 923{
 924	int ret = 0;
 925
 926	trace_kvm_set_guest_debug(vcpu, dbg->control);
 927
 928	if (dbg->control & ~KVM_GUESTDBG_VALID_MASK) {
 929		ret = -EINVAL;
 930		goto out;
 931	}
 932
 933	if (dbg->control & KVM_GUESTDBG_ENABLE) {
 934		vcpu->guest_debug = dbg->control;
 935
 936		/* Hardware assisted Break and Watch points */
 937		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW) {
 938			vcpu->arch.external_debug_state = dbg->arch;
 939		}
 940
 941	} else {
 942		/* If not enabled clear all flags */
 943		vcpu->guest_debug = 0;
 944	}
 945
 946out:
 947	return ret;
 948}
 949
 950int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
 951			       struct kvm_device_attr *attr)
 952{
 953	int ret;
 954
 955	switch (attr->group) {
 956	case KVM_ARM_VCPU_PMU_V3_CTRL:
 957		ret = kvm_arm_pmu_v3_set_attr(vcpu, attr);
 958		break;
 959	case KVM_ARM_VCPU_TIMER_CTRL:
 960		ret = kvm_arm_timer_set_attr(vcpu, attr);
 961		break;
 962	case KVM_ARM_VCPU_PVTIME_CTRL:
 963		ret = kvm_arm_pvtime_set_attr(vcpu, attr);
 964		break;
 965	default:
 966		ret = -ENXIO;
 967		break;
 968	}
 969
 970	return ret;
 971}
 972
 973int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
 974			       struct kvm_device_attr *attr)
 975{
 976	int ret;
 977
 978	switch (attr->group) {
 979	case KVM_ARM_VCPU_PMU_V3_CTRL:
 980		ret = kvm_arm_pmu_v3_get_attr(vcpu, attr);
 981		break;
 982	case KVM_ARM_VCPU_TIMER_CTRL:
 983		ret = kvm_arm_timer_get_attr(vcpu, attr);
 984		break;
 985	case KVM_ARM_VCPU_PVTIME_CTRL:
 986		ret = kvm_arm_pvtime_get_attr(vcpu, attr);
 987		break;
 988	default:
 989		ret = -ENXIO;
 990		break;
 991	}
 992
 993	return ret;
 994}
 995
 996int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
 997			       struct kvm_device_attr *attr)
 998{
 999	int ret;
1000
1001	switch (attr->group) {
1002	case KVM_ARM_VCPU_PMU_V3_CTRL:
1003		ret = kvm_arm_pmu_v3_has_attr(vcpu, attr);
1004		break;
1005	case KVM_ARM_VCPU_TIMER_CTRL:
1006		ret = kvm_arm_timer_has_attr(vcpu, attr);
1007		break;
1008	case KVM_ARM_VCPU_PVTIME_CTRL:
1009		ret = kvm_arm_pvtime_has_attr(vcpu, attr);
1010		break;
1011	default:
1012		ret = -ENXIO;
1013		break;
1014	}
1015
1016	return ret;
1017}
1018
1019long kvm_vm_ioctl_mte_copy_tags(struct kvm *kvm,
1020				struct kvm_arm_copy_mte_tags *copy_tags)
1021{
1022	gpa_t guest_ipa = copy_tags->guest_ipa;
1023	size_t length = copy_tags->length;
1024	void __user *tags = copy_tags->addr;
1025	gpa_t gfn;
1026	bool write = !(copy_tags->flags & KVM_ARM_TAGS_FROM_GUEST);
1027	int ret = 0;
1028
1029	if (!kvm_has_mte(kvm))
1030		return -EINVAL;
1031
1032	if (copy_tags->reserved[0] || copy_tags->reserved[1])
1033		return -EINVAL;
1034
1035	if (copy_tags->flags & ~KVM_ARM_TAGS_FROM_GUEST)
1036		return -EINVAL;
1037
1038	if (length & ~PAGE_MASK || guest_ipa & ~PAGE_MASK)
1039		return -EINVAL;
1040
1041	gfn = gpa_to_gfn(guest_ipa);
1042
1043	mutex_lock(&kvm->slots_lock);
1044
1045	while (length > 0) {
1046		kvm_pfn_t pfn = gfn_to_pfn_prot(kvm, gfn, write, NULL);
1047		void *maddr;
1048		unsigned long num_tags;
1049		struct page *page;
1050
1051		if (is_error_noslot_pfn(pfn)) {
1052			ret = -EFAULT;
1053			goto out;
1054		}
1055
1056		page = pfn_to_online_page(pfn);
1057		if (!page) {
1058			/* Reject ZONE_DEVICE memory */
1059			ret = -EFAULT;
1060			goto out;
1061		}
1062		maddr = page_address(page);
1063
1064		if (!write) {
1065			if (test_bit(PG_mte_tagged, &page->flags))
1066				num_tags = mte_copy_tags_to_user(tags, maddr,
1067							MTE_GRANULES_PER_PAGE);
1068			else
1069				/* No tags in memory, so write zeros */
1070				num_tags = MTE_GRANULES_PER_PAGE -
1071					clear_user(tags, MTE_GRANULES_PER_PAGE);
1072			kvm_release_pfn_clean(pfn);
1073		} else {
1074			num_tags = mte_copy_tags_from_user(maddr, tags,
1075							MTE_GRANULES_PER_PAGE);
1076
1077			/*
1078			 * Set the flag after checking the write
1079			 * completed fully
1080			 */
1081			if (num_tags == MTE_GRANULES_PER_PAGE)
1082				set_bit(PG_mte_tagged, &page->flags);
1083
1084			kvm_release_pfn_dirty(pfn);
1085		}
1086
1087		if (num_tags != MTE_GRANULES_PER_PAGE) {
1088			ret = -EFAULT;
1089			goto out;
1090		}
1091
1092		gfn++;
1093		tags += num_tags;
1094		length -= PAGE_SIZE;
1095	}
1096
1097out:
1098	mutex_unlock(&kvm->slots_lock);
1099	/* If some data has been copied report the number of bytes copied */
1100	if (length != copy_tags->length)
1101		return copy_tags->length - length;
1102	return ret;
1103}