Loading...
1/*
2 * Copyright (C) 1995 Linus Torvalds
3 *
4 * Pentium III FXSR, SSE support
5 * Gareth Hughes <gareth@valinux.com>, May 2000
6 *
7 * X86-64 port
8 * Andi Kleen.
9 *
10 * CPU hotplug support - ashok.raj@intel.com
11 */
12
13/*
14 * This file handles the architecture-dependent parts of process handling..
15 */
16
17#include <linux/cpu.h>
18#include <linux/errno.h>
19#include <linux/sched.h>
20#include <linux/sched/task.h>
21#include <linux/sched/task_stack.h>
22#include <linux/fs.h>
23#include <linux/kernel.h>
24#include <linux/mm.h>
25#include <linux/elfcore.h>
26#include <linux/smp.h>
27#include <linux/slab.h>
28#include <linux/user.h>
29#include <linux/interrupt.h>
30#include <linux/delay.h>
31#include <linux/export.h>
32#include <linux/ptrace.h>
33#include <linux/notifier.h>
34#include <linux/kprobes.h>
35#include <linux/kdebug.h>
36#include <linux/prctl.h>
37#include <linux/uaccess.h>
38#include <linux/io.h>
39#include <linux/ftrace.h>
40#include <linux/syscalls.h>
41
42#include <asm/pgtable.h>
43#include <asm/processor.h>
44#include <asm/fpu/internal.h>
45#include <asm/mmu_context.h>
46#include <asm/prctl.h>
47#include <asm/desc.h>
48#include <asm/proto.h>
49#include <asm/ia32.h>
50#include <asm/syscalls.h>
51#include <asm/debugreg.h>
52#include <asm/switch_to.h>
53#include <asm/xen/hypervisor.h>
54#include <asm/vdso.h>
55#include <asm/intel_rdt_sched.h>
56#include <asm/unistd.h>
57#ifdef CONFIG_IA32_EMULATION
58/* Not included via unistd.h */
59#include <asm/unistd_32_ia32.h>
60#endif
61
62__visible DEFINE_PER_CPU(unsigned long, rsp_scratch);
63
64/* Prints also some state that isn't saved in the pt_regs */
65void __show_regs(struct pt_regs *regs, int all)
66{
67 unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L, fs, gs, shadowgs;
68 unsigned long d0, d1, d2, d3, d6, d7;
69 unsigned int fsindex, gsindex;
70 unsigned int ds, cs, es;
71
72 show_iret_regs(regs);
73
74 if (regs->orig_ax != -1)
75 pr_cont(" ORIG_RAX: %016lx\n", regs->orig_ax);
76 else
77 pr_cont("\n");
78
79 printk(KERN_DEFAULT "RAX: %016lx RBX: %016lx RCX: %016lx\n",
80 regs->ax, regs->bx, regs->cx);
81 printk(KERN_DEFAULT "RDX: %016lx RSI: %016lx RDI: %016lx\n",
82 regs->dx, regs->si, regs->di);
83 printk(KERN_DEFAULT "RBP: %016lx R08: %016lx R09: %016lx\n",
84 regs->bp, regs->r8, regs->r9);
85 printk(KERN_DEFAULT "R10: %016lx R11: %016lx R12: %016lx\n",
86 regs->r10, regs->r11, regs->r12);
87 printk(KERN_DEFAULT "R13: %016lx R14: %016lx R15: %016lx\n",
88 regs->r13, regs->r14, regs->r15);
89
90 if (!all)
91 return;
92
93 asm("movl %%ds,%0" : "=r" (ds));
94 asm("movl %%cs,%0" : "=r" (cs));
95 asm("movl %%es,%0" : "=r" (es));
96 asm("movl %%fs,%0" : "=r" (fsindex));
97 asm("movl %%gs,%0" : "=r" (gsindex));
98
99 rdmsrl(MSR_FS_BASE, fs);
100 rdmsrl(MSR_GS_BASE, gs);
101 rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
102
103 cr0 = read_cr0();
104 cr2 = read_cr2();
105 cr3 = __read_cr3();
106 cr4 = __read_cr4();
107
108 printk(KERN_DEFAULT "FS: %016lx(%04x) GS:%016lx(%04x) knlGS:%016lx\n",
109 fs, fsindex, gs, gsindex, shadowgs);
110 printk(KERN_DEFAULT "CS: %04x DS: %04x ES: %04x CR0: %016lx\n", cs, ds,
111 es, cr0);
112 printk(KERN_DEFAULT "CR2: %016lx CR3: %016lx CR4: %016lx\n", cr2, cr3,
113 cr4);
114
115 get_debugreg(d0, 0);
116 get_debugreg(d1, 1);
117 get_debugreg(d2, 2);
118 get_debugreg(d3, 3);
119 get_debugreg(d6, 6);
120 get_debugreg(d7, 7);
121
122 /* Only print out debug registers if they are in their non-default state. */
123 if (!((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
124 (d6 == DR6_RESERVED) && (d7 == 0x400))) {
125 printk(KERN_DEFAULT "DR0: %016lx DR1: %016lx DR2: %016lx\n",
126 d0, d1, d2);
127 printk(KERN_DEFAULT "DR3: %016lx DR6: %016lx DR7: %016lx\n",
128 d3, d6, d7);
129 }
130
131 if (boot_cpu_has(X86_FEATURE_OSPKE))
132 printk(KERN_DEFAULT "PKRU: %08x\n", read_pkru());
133}
134
135void release_thread(struct task_struct *dead_task)
136{
137 if (dead_task->mm) {
138#ifdef CONFIG_MODIFY_LDT_SYSCALL
139 if (dead_task->mm->context.ldt) {
140 pr_warn("WARNING: dead process %s still has LDT? <%p/%d>\n",
141 dead_task->comm,
142 dead_task->mm->context.ldt->entries,
143 dead_task->mm->context.ldt->nr_entries);
144 BUG();
145 }
146#endif
147 }
148}
149
150enum which_selector {
151 FS,
152 GS
153};
154
155/*
156 * Saves the FS or GS base for an outgoing thread if FSGSBASE extensions are
157 * not available. The goal is to be reasonably fast on non-FSGSBASE systems.
158 * It's forcibly inlined because it'll generate better code and this function
159 * is hot.
160 */
161static __always_inline void save_base_legacy(struct task_struct *prev_p,
162 unsigned short selector,
163 enum which_selector which)
164{
165 if (likely(selector == 0)) {
166 /*
167 * On Intel (without X86_BUG_NULL_SEG), the segment base could
168 * be the pre-existing saved base or it could be zero. On AMD
169 * (with X86_BUG_NULL_SEG), the segment base could be almost
170 * anything.
171 *
172 * This branch is very hot (it's hit twice on almost every
173 * context switch between 64-bit programs), and avoiding
174 * the RDMSR helps a lot, so we just assume that whatever
175 * value is already saved is correct. This matches historical
176 * Linux behavior, so it won't break existing applications.
177 *
178 * To avoid leaking state, on non-X86_BUG_NULL_SEG CPUs, if we
179 * report that the base is zero, it needs to actually be zero:
180 * see the corresponding logic in load_seg_legacy.
181 */
182 } else {
183 /*
184 * If the selector is 1, 2, or 3, then the base is zero on
185 * !X86_BUG_NULL_SEG CPUs and could be anything on
186 * X86_BUG_NULL_SEG CPUs. In the latter case, Linux
187 * has never attempted to preserve the base across context
188 * switches.
189 *
190 * If selector > 3, then it refers to a real segment, and
191 * saving the base isn't necessary.
192 */
193 if (which == FS)
194 prev_p->thread.fsbase = 0;
195 else
196 prev_p->thread.gsbase = 0;
197 }
198}
199
200static __always_inline void save_fsgs(struct task_struct *task)
201{
202 savesegment(fs, task->thread.fsindex);
203 savesegment(gs, task->thread.gsindex);
204 save_base_legacy(task, task->thread.fsindex, FS);
205 save_base_legacy(task, task->thread.gsindex, GS);
206}
207
208#if IS_ENABLED(CONFIG_KVM)
209/*
210 * While a process is running,current->thread.fsbase and current->thread.gsbase
211 * may not match the corresponding CPU registers (see save_base_legacy()). KVM
212 * wants an efficient way to save and restore FSBASE and GSBASE.
213 * When FSGSBASE extensions are enabled, this will have to use RD{FS,GS}BASE.
214 */
215void save_fsgs_for_kvm(void)
216{
217 save_fsgs(current);
218}
219EXPORT_SYMBOL_GPL(save_fsgs_for_kvm);
220#endif
221
222static __always_inline void loadseg(enum which_selector which,
223 unsigned short sel)
224{
225 if (which == FS)
226 loadsegment(fs, sel);
227 else
228 load_gs_index(sel);
229}
230
231static __always_inline void load_seg_legacy(unsigned short prev_index,
232 unsigned long prev_base,
233 unsigned short next_index,
234 unsigned long next_base,
235 enum which_selector which)
236{
237 if (likely(next_index <= 3)) {
238 /*
239 * The next task is using 64-bit TLS, is not using this
240 * segment at all, or is having fun with arcane CPU features.
241 */
242 if (next_base == 0) {
243 /*
244 * Nasty case: on AMD CPUs, we need to forcibly zero
245 * the base.
246 */
247 if (static_cpu_has_bug(X86_BUG_NULL_SEG)) {
248 loadseg(which, __USER_DS);
249 loadseg(which, next_index);
250 } else {
251 /*
252 * We could try to exhaustively detect cases
253 * under which we can skip the segment load,
254 * but there's really only one case that matters
255 * for performance: if both the previous and
256 * next states are fully zeroed, we can skip
257 * the load.
258 *
259 * (This assumes that prev_base == 0 has no
260 * false positives. This is the case on
261 * Intel-style CPUs.)
262 */
263 if (likely(prev_index | next_index | prev_base))
264 loadseg(which, next_index);
265 }
266 } else {
267 if (prev_index != next_index)
268 loadseg(which, next_index);
269 wrmsrl(which == FS ? MSR_FS_BASE : MSR_KERNEL_GS_BASE,
270 next_base);
271 }
272 } else {
273 /*
274 * The next task is using a real segment. Loading the selector
275 * is sufficient.
276 */
277 loadseg(which, next_index);
278 }
279}
280
281int copy_thread_tls(unsigned long clone_flags, unsigned long sp,
282 unsigned long arg, struct task_struct *p, unsigned long tls)
283{
284 int err;
285 struct pt_regs *childregs;
286 struct fork_frame *fork_frame;
287 struct inactive_task_frame *frame;
288 struct task_struct *me = current;
289
290 childregs = task_pt_regs(p);
291 fork_frame = container_of(childregs, struct fork_frame, regs);
292 frame = &fork_frame->frame;
293 frame->bp = 0;
294 frame->ret_addr = (unsigned long) ret_from_fork;
295 p->thread.sp = (unsigned long) fork_frame;
296 p->thread.io_bitmap_ptr = NULL;
297
298 savesegment(gs, p->thread.gsindex);
299 p->thread.gsbase = p->thread.gsindex ? 0 : me->thread.gsbase;
300 savesegment(fs, p->thread.fsindex);
301 p->thread.fsbase = p->thread.fsindex ? 0 : me->thread.fsbase;
302 savesegment(es, p->thread.es);
303 savesegment(ds, p->thread.ds);
304 memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
305
306 if (unlikely(p->flags & PF_KTHREAD)) {
307 /* kernel thread */
308 memset(childregs, 0, sizeof(struct pt_regs));
309 frame->bx = sp; /* function */
310 frame->r12 = arg;
311 return 0;
312 }
313 frame->bx = 0;
314 *childregs = *current_pt_regs();
315
316 childregs->ax = 0;
317 if (sp)
318 childregs->sp = sp;
319
320 err = -ENOMEM;
321 if (unlikely(test_tsk_thread_flag(me, TIF_IO_BITMAP))) {
322 p->thread.io_bitmap_ptr = kmemdup(me->thread.io_bitmap_ptr,
323 IO_BITMAP_BYTES, GFP_KERNEL);
324 if (!p->thread.io_bitmap_ptr) {
325 p->thread.io_bitmap_max = 0;
326 return -ENOMEM;
327 }
328 set_tsk_thread_flag(p, TIF_IO_BITMAP);
329 }
330
331 /*
332 * Set a new TLS for the child thread?
333 */
334 if (clone_flags & CLONE_SETTLS) {
335#ifdef CONFIG_IA32_EMULATION
336 if (in_ia32_syscall())
337 err = do_set_thread_area(p, -1,
338 (struct user_desc __user *)tls, 0);
339 else
340#endif
341 err = do_arch_prctl_64(p, ARCH_SET_FS, tls);
342 if (err)
343 goto out;
344 }
345 err = 0;
346out:
347 if (err && p->thread.io_bitmap_ptr) {
348 kfree(p->thread.io_bitmap_ptr);
349 p->thread.io_bitmap_max = 0;
350 }
351
352 return err;
353}
354
355static void
356start_thread_common(struct pt_regs *regs, unsigned long new_ip,
357 unsigned long new_sp,
358 unsigned int _cs, unsigned int _ss, unsigned int _ds)
359{
360 WARN_ON_ONCE(regs != current_pt_regs());
361
362 if (static_cpu_has(X86_BUG_NULL_SEG)) {
363 /* Loading zero below won't clear the base. */
364 loadsegment(fs, __USER_DS);
365 load_gs_index(__USER_DS);
366 }
367
368 loadsegment(fs, 0);
369 loadsegment(es, _ds);
370 loadsegment(ds, _ds);
371 load_gs_index(0);
372
373 regs->ip = new_ip;
374 regs->sp = new_sp;
375 regs->cs = _cs;
376 regs->ss = _ss;
377 regs->flags = X86_EFLAGS_IF;
378 force_iret();
379}
380
381void
382start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
383{
384 start_thread_common(regs, new_ip, new_sp,
385 __USER_CS, __USER_DS, 0);
386}
387
388#ifdef CONFIG_COMPAT
389void compat_start_thread(struct pt_regs *regs, u32 new_ip, u32 new_sp)
390{
391 start_thread_common(regs, new_ip, new_sp,
392 test_thread_flag(TIF_X32)
393 ? __USER_CS : __USER32_CS,
394 __USER_DS, __USER_DS);
395}
396#endif
397
398/*
399 * switch_to(x,y) should switch tasks from x to y.
400 *
401 * This could still be optimized:
402 * - fold all the options into a flag word and test it with a single test.
403 * - could test fs/gs bitsliced
404 *
405 * Kprobes not supported here. Set the probe on schedule instead.
406 * Function graph tracer not supported too.
407 */
408__visible __notrace_funcgraph struct task_struct *
409__switch_to(struct task_struct *prev_p, struct task_struct *next_p)
410{
411 struct thread_struct *prev = &prev_p->thread;
412 struct thread_struct *next = &next_p->thread;
413 struct fpu *prev_fpu = &prev->fpu;
414 struct fpu *next_fpu = &next->fpu;
415 int cpu = smp_processor_id();
416 struct tss_struct *tss = &per_cpu(cpu_tss_rw, cpu);
417
418 WARN_ON_ONCE(IS_ENABLED(CONFIG_DEBUG_ENTRY) &&
419 this_cpu_read(irq_count) != -1);
420
421 switch_fpu_prepare(prev_fpu, cpu);
422
423 /* We must save %fs and %gs before load_TLS() because
424 * %fs and %gs may be cleared by load_TLS().
425 *
426 * (e.g. xen_load_tls())
427 */
428 save_fsgs(prev_p);
429
430 /*
431 * Load TLS before restoring any segments so that segment loads
432 * reference the correct GDT entries.
433 */
434 load_TLS(next, cpu);
435
436 /*
437 * Leave lazy mode, flushing any hypercalls made here. This
438 * must be done after loading TLS entries in the GDT but before
439 * loading segments that might reference them, and and it must
440 * be done before fpu__restore(), so the TS bit is up to
441 * date.
442 */
443 arch_end_context_switch(next_p);
444
445 /* Switch DS and ES.
446 *
447 * Reading them only returns the selectors, but writing them (if
448 * nonzero) loads the full descriptor from the GDT or LDT. The
449 * LDT for next is loaded in switch_mm, and the GDT is loaded
450 * above.
451 *
452 * We therefore need to write new values to the segment
453 * registers on every context switch unless both the new and old
454 * values are zero.
455 *
456 * Note that we don't need to do anything for CS and SS, as
457 * those are saved and restored as part of pt_regs.
458 */
459 savesegment(es, prev->es);
460 if (unlikely(next->es | prev->es))
461 loadsegment(es, next->es);
462
463 savesegment(ds, prev->ds);
464 if (unlikely(next->ds | prev->ds))
465 loadsegment(ds, next->ds);
466
467 load_seg_legacy(prev->fsindex, prev->fsbase,
468 next->fsindex, next->fsbase, FS);
469 load_seg_legacy(prev->gsindex, prev->gsbase,
470 next->gsindex, next->gsbase, GS);
471
472 switch_fpu_finish(next_fpu, cpu);
473
474 /*
475 * Switch the PDA and FPU contexts.
476 */
477 this_cpu_write(current_task, next_p);
478 this_cpu_write(cpu_current_top_of_stack, task_top_of_stack(next_p));
479
480 /* Reload sp0. */
481 update_sp0(next_p);
482
483 /*
484 * Now maybe reload the debug registers and handle I/O bitmaps
485 */
486 if (unlikely(task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT ||
487 task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV))
488 __switch_to_xtra(prev_p, next_p, tss);
489
490#ifdef CONFIG_XEN_PV
491 /*
492 * On Xen PV, IOPL bits in pt_regs->flags have no effect, and
493 * current_pt_regs()->flags may not match the current task's
494 * intended IOPL. We need to switch it manually.
495 */
496 if (unlikely(static_cpu_has(X86_FEATURE_XENPV) &&
497 prev->iopl != next->iopl))
498 xen_set_iopl_mask(next->iopl);
499#endif
500
501 if (static_cpu_has_bug(X86_BUG_SYSRET_SS_ATTRS)) {
502 /*
503 * AMD CPUs have a misfeature: SYSRET sets the SS selector but
504 * does not update the cached descriptor. As a result, if we
505 * do SYSRET while SS is NULL, we'll end up in user mode with
506 * SS apparently equal to __USER_DS but actually unusable.
507 *
508 * The straightforward workaround would be to fix it up just
509 * before SYSRET, but that would slow down the system call
510 * fast paths. Instead, we ensure that SS is never NULL in
511 * system call context. We do this by replacing NULL SS
512 * selectors at every context switch. SYSCALL sets up a valid
513 * SS, so the only way to get NULL is to re-enter the kernel
514 * from CPL 3 through an interrupt. Since that can't happen
515 * in the same task as a running syscall, we are guaranteed to
516 * context switch between every interrupt vector entry and a
517 * subsequent SYSRET.
518 *
519 * We read SS first because SS reads are much faster than
520 * writes. Out of caution, we force SS to __KERNEL_DS even if
521 * it previously had a different non-NULL value.
522 */
523 unsigned short ss_sel;
524 savesegment(ss, ss_sel);
525 if (ss_sel != __KERNEL_DS)
526 loadsegment(ss, __KERNEL_DS);
527 }
528
529 /* Load the Intel cache allocation PQR MSR. */
530 intel_rdt_sched_in();
531
532 return prev_p;
533}
534
535void set_personality_64bit(void)
536{
537 /* inherit personality from parent */
538
539 /* Make sure to be in 64bit mode */
540 clear_thread_flag(TIF_IA32);
541 clear_thread_flag(TIF_ADDR32);
542 clear_thread_flag(TIF_X32);
543 /* Pretend that this comes from a 64bit execve */
544 task_pt_regs(current)->orig_ax = __NR_execve;
545 current_thread_info()->status &= ~TS_COMPAT;
546
547 /* Ensure the corresponding mm is not marked. */
548 if (current->mm)
549 current->mm->context.ia32_compat = 0;
550
551 /* TBD: overwrites user setup. Should have two bits.
552 But 64bit processes have always behaved this way,
553 so it's not too bad. The main problem is just that
554 32bit childs are affected again. */
555 current->personality &= ~READ_IMPLIES_EXEC;
556}
557
558static void __set_personality_x32(void)
559{
560#ifdef CONFIG_X86_X32
561 clear_thread_flag(TIF_IA32);
562 set_thread_flag(TIF_X32);
563 if (current->mm)
564 current->mm->context.ia32_compat = TIF_X32;
565 current->personality &= ~READ_IMPLIES_EXEC;
566 /*
567 * in_compat_syscall() uses the presence of the x32 syscall bit
568 * flag to determine compat status. The x86 mmap() code relies on
569 * the syscall bitness so set x32 syscall bit right here to make
570 * in_compat_syscall() work during exec().
571 *
572 * Pretend to come from a x32 execve.
573 */
574 task_pt_regs(current)->orig_ax = __NR_x32_execve | __X32_SYSCALL_BIT;
575 current_thread_info()->status &= ~TS_COMPAT;
576#endif
577}
578
579static void __set_personality_ia32(void)
580{
581#ifdef CONFIG_IA32_EMULATION
582 set_thread_flag(TIF_IA32);
583 clear_thread_flag(TIF_X32);
584 if (current->mm)
585 current->mm->context.ia32_compat = TIF_IA32;
586 current->personality |= force_personality32;
587 /* Prepare the first "return" to user space */
588 task_pt_regs(current)->orig_ax = __NR_ia32_execve;
589 current_thread_info()->status |= TS_COMPAT;
590#endif
591}
592
593void set_personality_ia32(bool x32)
594{
595 /* Make sure to be in 32bit mode */
596 set_thread_flag(TIF_ADDR32);
597
598 if (x32)
599 __set_personality_x32();
600 else
601 __set_personality_ia32();
602}
603EXPORT_SYMBOL_GPL(set_personality_ia32);
604
605#ifdef CONFIG_CHECKPOINT_RESTORE
606static long prctl_map_vdso(const struct vdso_image *image, unsigned long addr)
607{
608 int ret;
609
610 ret = map_vdso_once(image, addr);
611 if (ret)
612 return ret;
613
614 return (long)image->size;
615}
616#endif
617
618long do_arch_prctl_64(struct task_struct *task, int option, unsigned long arg2)
619{
620 int ret = 0;
621 int doit = task == current;
622 int cpu;
623
624 switch (option) {
625 case ARCH_SET_GS:
626 if (arg2 >= TASK_SIZE_MAX)
627 return -EPERM;
628 cpu = get_cpu();
629 task->thread.gsindex = 0;
630 task->thread.gsbase = arg2;
631 if (doit) {
632 load_gs_index(0);
633 ret = wrmsrl_safe(MSR_KERNEL_GS_BASE, arg2);
634 }
635 put_cpu();
636 break;
637 case ARCH_SET_FS:
638 /* Not strictly needed for fs, but do it for symmetry
639 with gs */
640 if (arg2 >= TASK_SIZE_MAX)
641 return -EPERM;
642 cpu = get_cpu();
643 task->thread.fsindex = 0;
644 task->thread.fsbase = arg2;
645 if (doit) {
646 /* set the selector to 0 to not confuse __switch_to */
647 loadsegment(fs, 0);
648 ret = wrmsrl_safe(MSR_FS_BASE, arg2);
649 }
650 put_cpu();
651 break;
652 case ARCH_GET_FS: {
653 unsigned long base;
654
655 if (doit)
656 rdmsrl(MSR_FS_BASE, base);
657 else
658 base = task->thread.fsbase;
659 ret = put_user(base, (unsigned long __user *)arg2);
660 break;
661 }
662 case ARCH_GET_GS: {
663 unsigned long base;
664
665 if (doit)
666 rdmsrl(MSR_KERNEL_GS_BASE, base);
667 else
668 base = task->thread.gsbase;
669 ret = put_user(base, (unsigned long __user *)arg2);
670 break;
671 }
672
673#ifdef CONFIG_CHECKPOINT_RESTORE
674# ifdef CONFIG_X86_X32_ABI
675 case ARCH_MAP_VDSO_X32:
676 return prctl_map_vdso(&vdso_image_x32, arg2);
677# endif
678# if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
679 case ARCH_MAP_VDSO_32:
680 return prctl_map_vdso(&vdso_image_32, arg2);
681# endif
682 case ARCH_MAP_VDSO_64:
683 return prctl_map_vdso(&vdso_image_64, arg2);
684#endif
685
686 default:
687 ret = -EINVAL;
688 break;
689 }
690
691 return ret;
692}
693
694SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
695{
696 long ret;
697
698 ret = do_arch_prctl_64(current, option, arg2);
699 if (ret == -EINVAL)
700 ret = do_arch_prctl_common(current, option, arg2);
701
702 return ret;
703}
704
705#ifdef CONFIG_IA32_EMULATION
706COMPAT_SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
707{
708 return do_arch_prctl_common(current, option, arg2);
709}
710#endif
711
712unsigned long KSTK_ESP(struct task_struct *task)
713{
714 return task_pt_regs(task)->sp;
715}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * Pentium III FXSR, SSE support
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 *
8 * X86-64 port
9 * Andi Kleen.
10 *
11 * CPU hotplug support - ashok.raj@intel.com
12 */
13
14/*
15 * This file handles the architecture-dependent parts of process handling..
16 */
17
18#include <linux/cpu.h>
19#include <linux/errno.h>
20#include <linux/sched.h>
21#include <linux/sched/task.h>
22#include <linux/sched/task_stack.h>
23#include <linux/fs.h>
24#include <linux/kernel.h>
25#include <linux/mm.h>
26#include <linux/elfcore.h>
27#include <linux/smp.h>
28#include <linux/slab.h>
29#include <linux/user.h>
30#include <linux/interrupt.h>
31#include <linux/delay.h>
32#include <linux/export.h>
33#include <linux/ptrace.h>
34#include <linux/notifier.h>
35#include <linux/kprobes.h>
36#include <linux/kdebug.h>
37#include <linux/prctl.h>
38#include <linux/uaccess.h>
39#include <linux/io.h>
40#include <linux/ftrace.h>
41#include <linux/syscalls.h>
42#include <linux/iommu.h>
43
44#include <asm/processor.h>
45#include <asm/pkru.h>
46#include <asm/fpu/sched.h>
47#include <asm/mmu_context.h>
48#include <asm/prctl.h>
49#include <asm/desc.h>
50#include <asm/proto.h>
51#include <asm/ia32.h>
52#include <asm/debugreg.h>
53#include <asm/switch_to.h>
54#include <asm/xen/hypervisor.h>
55#include <asm/vdso.h>
56#include <asm/resctrl.h>
57#include <asm/unistd.h>
58#include <asm/fsgsbase.h>
59#ifdef CONFIG_IA32_EMULATION
60/* Not included via unistd.h */
61#include <asm/unistd_32_ia32.h>
62#endif
63
64#include "process.h"
65
66/* Prints also some state that isn't saved in the pt_regs */
67void __show_regs(struct pt_regs *regs, enum show_regs_mode mode,
68 const char *log_lvl)
69{
70 unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L, fs, gs, shadowgs;
71 unsigned long d0, d1, d2, d3, d6, d7;
72 unsigned int fsindex, gsindex;
73 unsigned int ds, es;
74
75 show_iret_regs(regs, log_lvl);
76
77 if (regs->orig_ax != -1)
78 pr_cont(" ORIG_RAX: %016lx\n", regs->orig_ax);
79 else
80 pr_cont("\n");
81
82 printk("%sRAX: %016lx RBX: %016lx RCX: %016lx\n",
83 log_lvl, regs->ax, regs->bx, regs->cx);
84 printk("%sRDX: %016lx RSI: %016lx RDI: %016lx\n",
85 log_lvl, regs->dx, regs->si, regs->di);
86 printk("%sRBP: %016lx R08: %016lx R09: %016lx\n",
87 log_lvl, regs->bp, regs->r8, regs->r9);
88 printk("%sR10: %016lx R11: %016lx R12: %016lx\n",
89 log_lvl, regs->r10, regs->r11, regs->r12);
90 printk("%sR13: %016lx R14: %016lx R15: %016lx\n",
91 log_lvl, regs->r13, regs->r14, regs->r15);
92
93 if (mode == SHOW_REGS_SHORT)
94 return;
95
96 if (mode == SHOW_REGS_USER) {
97 rdmsrl(MSR_FS_BASE, fs);
98 rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
99 printk("%sFS: %016lx GS: %016lx\n",
100 log_lvl, fs, shadowgs);
101 return;
102 }
103
104 asm("movl %%ds,%0" : "=r" (ds));
105 asm("movl %%es,%0" : "=r" (es));
106 asm("movl %%fs,%0" : "=r" (fsindex));
107 asm("movl %%gs,%0" : "=r" (gsindex));
108
109 rdmsrl(MSR_FS_BASE, fs);
110 rdmsrl(MSR_GS_BASE, gs);
111 rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
112
113 cr0 = read_cr0();
114 cr2 = read_cr2();
115 cr3 = __read_cr3();
116 cr4 = __read_cr4();
117
118 printk("%sFS: %016lx(%04x) GS:%016lx(%04x) knlGS:%016lx\n",
119 log_lvl, fs, fsindex, gs, gsindex, shadowgs);
120 printk("%sCS: %04lx DS: %04x ES: %04x CR0: %016lx\n",
121 log_lvl, regs->cs, ds, es, cr0);
122 printk("%sCR2: %016lx CR3: %016lx CR4: %016lx\n",
123 log_lvl, cr2, cr3, cr4);
124
125 get_debugreg(d0, 0);
126 get_debugreg(d1, 1);
127 get_debugreg(d2, 2);
128 get_debugreg(d3, 3);
129 get_debugreg(d6, 6);
130 get_debugreg(d7, 7);
131
132 /* Only print out debug registers if they are in their non-default state. */
133 if (!((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
134 (d6 == DR6_RESERVED) && (d7 == 0x400))) {
135 printk("%sDR0: %016lx DR1: %016lx DR2: %016lx\n",
136 log_lvl, d0, d1, d2);
137 printk("%sDR3: %016lx DR6: %016lx DR7: %016lx\n",
138 log_lvl, d3, d6, d7);
139 }
140
141 if (cpu_feature_enabled(X86_FEATURE_OSPKE))
142 printk("%sPKRU: %08x\n", log_lvl, read_pkru());
143}
144
145void release_thread(struct task_struct *dead_task)
146{
147 WARN_ON(dead_task->mm);
148}
149
150enum which_selector {
151 FS,
152 GS
153};
154
155/*
156 * Out of line to be protected from kprobes and tracing. If this would be
157 * traced or probed than any access to a per CPU variable happens with
158 * the wrong GS.
159 *
160 * It is not used on Xen paravirt. When paravirt support is needed, it
161 * needs to be renamed with native_ prefix.
162 */
163static noinstr unsigned long __rdgsbase_inactive(void)
164{
165 unsigned long gsbase;
166
167 lockdep_assert_irqs_disabled();
168
169 if (!cpu_feature_enabled(X86_FEATURE_XENPV)) {
170 native_swapgs();
171 gsbase = rdgsbase();
172 native_swapgs();
173 } else {
174 instrumentation_begin();
175 rdmsrl(MSR_KERNEL_GS_BASE, gsbase);
176 instrumentation_end();
177 }
178
179 return gsbase;
180}
181
182/*
183 * Out of line to be protected from kprobes and tracing. If this would be
184 * traced or probed than any access to a per CPU variable happens with
185 * the wrong GS.
186 *
187 * It is not used on Xen paravirt. When paravirt support is needed, it
188 * needs to be renamed with native_ prefix.
189 */
190static noinstr void __wrgsbase_inactive(unsigned long gsbase)
191{
192 lockdep_assert_irqs_disabled();
193
194 if (!cpu_feature_enabled(X86_FEATURE_XENPV)) {
195 native_swapgs();
196 wrgsbase(gsbase);
197 native_swapgs();
198 } else {
199 instrumentation_begin();
200 wrmsrl(MSR_KERNEL_GS_BASE, gsbase);
201 instrumentation_end();
202 }
203}
204
205/*
206 * Saves the FS or GS base for an outgoing thread if FSGSBASE extensions are
207 * not available. The goal is to be reasonably fast on non-FSGSBASE systems.
208 * It's forcibly inlined because it'll generate better code and this function
209 * is hot.
210 */
211static __always_inline void save_base_legacy(struct task_struct *prev_p,
212 unsigned short selector,
213 enum which_selector which)
214{
215 if (likely(selector == 0)) {
216 /*
217 * On Intel (without X86_BUG_NULL_SEG), the segment base could
218 * be the pre-existing saved base or it could be zero. On AMD
219 * (with X86_BUG_NULL_SEG), the segment base could be almost
220 * anything.
221 *
222 * This branch is very hot (it's hit twice on almost every
223 * context switch between 64-bit programs), and avoiding
224 * the RDMSR helps a lot, so we just assume that whatever
225 * value is already saved is correct. This matches historical
226 * Linux behavior, so it won't break existing applications.
227 *
228 * To avoid leaking state, on non-X86_BUG_NULL_SEG CPUs, if we
229 * report that the base is zero, it needs to actually be zero:
230 * see the corresponding logic in load_seg_legacy.
231 */
232 } else {
233 /*
234 * If the selector is 1, 2, or 3, then the base is zero on
235 * !X86_BUG_NULL_SEG CPUs and could be anything on
236 * X86_BUG_NULL_SEG CPUs. In the latter case, Linux
237 * has never attempted to preserve the base across context
238 * switches.
239 *
240 * If selector > 3, then it refers to a real segment, and
241 * saving the base isn't necessary.
242 */
243 if (which == FS)
244 prev_p->thread.fsbase = 0;
245 else
246 prev_p->thread.gsbase = 0;
247 }
248}
249
250static __always_inline void save_fsgs(struct task_struct *task)
251{
252 savesegment(fs, task->thread.fsindex);
253 savesegment(gs, task->thread.gsindex);
254 if (static_cpu_has(X86_FEATURE_FSGSBASE)) {
255 /*
256 * If FSGSBASE is enabled, we can't make any useful guesses
257 * about the base, and user code expects us to save the current
258 * value. Fortunately, reading the base directly is efficient.
259 */
260 task->thread.fsbase = rdfsbase();
261 task->thread.gsbase = __rdgsbase_inactive();
262 } else {
263 save_base_legacy(task, task->thread.fsindex, FS);
264 save_base_legacy(task, task->thread.gsindex, GS);
265 }
266}
267
268/*
269 * While a process is running,current->thread.fsbase and current->thread.gsbase
270 * may not match the corresponding CPU registers (see save_base_legacy()).
271 */
272void current_save_fsgs(void)
273{
274 unsigned long flags;
275
276 /* Interrupts need to be off for FSGSBASE */
277 local_irq_save(flags);
278 save_fsgs(current);
279 local_irq_restore(flags);
280}
281#if IS_ENABLED(CONFIG_KVM)
282EXPORT_SYMBOL_GPL(current_save_fsgs);
283#endif
284
285static __always_inline void loadseg(enum which_selector which,
286 unsigned short sel)
287{
288 if (which == FS)
289 loadsegment(fs, sel);
290 else
291 load_gs_index(sel);
292}
293
294static __always_inline void load_seg_legacy(unsigned short prev_index,
295 unsigned long prev_base,
296 unsigned short next_index,
297 unsigned long next_base,
298 enum which_selector which)
299{
300 if (likely(next_index <= 3)) {
301 /*
302 * The next task is using 64-bit TLS, is not using this
303 * segment at all, or is having fun with arcane CPU features.
304 */
305 if (next_base == 0) {
306 /*
307 * Nasty case: on AMD CPUs, we need to forcibly zero
308 * the base.
309 */
310 if (static_cpu_has_bug(X86_BUG_NULL_SEG)) {
311 loadseg(which, __USER_DS);
312 loadseg(which, next_index);
313 } else {
314 /*
315 * We could try to exhaustively detect cases
316 * under which we can skip the segment load,
317 * but there's really only one case that matters
318 * for performance: if both the previous and
319 * next states are fully zeroed, we can skip
320 * the load.
321 *
322 * (This assumes that prev_base == 0 has no
323 * false positives. This is the case on
324 * Intel-style CPUs.)
325 */
326 if (likely(prev_index | next_index | prev_base))
327 loadseg(which, next_index);
328 }
329 } else {
330 if (prev_index != next_index)
331 loadseg(which, next_index);
332 wrmsrl(which == FS ? MSR_FS_BASE : MSR_KERNEL_GS_BASE,
333 next_base);
334 }
335 } else {
336 /*
337 * The next task is using a real segment. Loading the selector
338 * is sufficient.
339 */
340 loadseg(which, next_index);
341 }
342}
343
344/*
345 * Store prev's PKRU value and load next's PKRU value if they differ. PKRU
346 * is not XSTATE managed on context switch because that would require a
347 * lookup in the task's FPU xsave buffer and require to keep that updated
348 * in various places.
349 */
350static __always_inline void x86_pkru_load(struct thread_struct *prev,
351 struct thread_struct *next)
352{
353 if (!cpu_feature_enabled(X86_FEATURE_OSPKE))
354 return;
355
356 /* Stash the prev task's value: */
357 prev->pkru = rdpkru();
358
359 /*
360 * PKRU writes are slightly expensive. Avoid them when not
361 * strictly necessary:
362 */
363 if (prev->pkru != next->pkru)
364 wrpkru(next->pkru);
365}
366
367static __always_inline void x86_fsgsbase_load(struct thread_struct *prev,
368 struct thread_struct *next)
369{
370 if (static_cpu_has(X86_FEATURE_FSGSBASE)) {
371 /* Update the FS and GS selectors if they could have changed. */
372 if (unlikely(prev->fsindex || next->fsindex))
373 loadseg(FS, next->fsindex);
374 if (unlikely(prev->gsindex || next->gsindex))
375 loadseg(GS, next->gsindex);
376
377 /* Update the bases. */
378 wrfsbase(next->fsbase);
379 __wrgsbase_inactive(next->gsbase);
380 } else {
381 load_seg_legacy(prev->fsindex, prev->fsbase,
382 next->fsindex, next->fsbase, FS);
383 load_seg_legacy(prev->gsindex, prev->gsbase,
384 next->gsindex, next->gsbase, GS);
385 }
386}
387
388unsigned long x86_fsgsbase_read_task(struct task_struct *task,
389 unsigned short selector)
390{
391 unsigned short idx = selector >> 3;
392 unsigned long base;
393
394 if (likely((selector & SEGMENT_TI_MASK) == 0)) {
395 if (unlikely(idx >= GDT_ENTRIES))
396 return 0;
397
398 /*
399 * There are no user segments in the GDT with nonzero bases
400 * other than the TLS segments.
401 */
402 if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
403 return 0;
404
405 idx -= GDT_ENTRY_TLS_MIN;
406 base = get_desc_base(&task->thread.tls_array[idx]);
407 } else {
408#ifdef CONFIG_MODIFY_LDT_SYSCALL
409 struct ldt_struct *ldt;
410
411 /*
412 * If performance here mattered, we could protect the LDT
413 * with RCU. This is a slow path, though, so we can just
414 * take the mutex.
415 */
416 mutex_lock(&task->mm->context.lock);
417 ldt = task->mm->context.ldt;
418 if (unlikely(!ldt || idx >= ldt->nr_entries))
419 base = 0;
420 else
421 base = get_desc_base(ldt->entries + idx);
422 mutex_unlock(&task->mm->context.lock);
423#else
424 base = 0;
425#endif
426 }
427
428 return base;
429}
430
431unsigned long x86_gsbase_read_cpu_inactive(void)
432{
433 unsigned long gsbase;
434
435 if (boot_cpu_has(X86_FEATURE_FSGSBASE)) {
436 unsigned long flags;
437
438 local_irq_save(flags);
439 gsbase = __rdgsbase_inactive();
440 local_irq_restore(flags);
441 } else {
442 rdmsrl(MSR_KERNEL_GS_BASE, gsbase);
443 }
444
445 return gsbase;
446}
447
448void x86_gsbase_write_cpu_inactive(unsigned long gsbase)
449{
450 if (boot_cpu_has(X86_FEATURE_FSGSBASE)) {
451 unsigned long flags;
452
453 local_irq_save(flags);
454 __wrgsbase_inactive(gsbase);
455 local_irq_restore(flags);
456 } else {
457 wrmsrl(MSR_KERNEL_GS_BASE, gsbase);
458 }
459}
460
461unsigned long x86_fsbase_read_task(struct task_struct *task)
462{
463 unsigned long fsbase;
464
465 if (task == current)
466 fsbase = x86_fsbase_read_cpu();
467 else if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
468 (task->thread.fsindex == 0))
469 fsbase = task->thread.fsbase;
470 else
471 fsbase = x86_fsgsbase_read_task(task, task->thread.fsindex);
472
473 return fsbase;
474}
475
476unsigned long x86_gsbase_read_task(struct task_struct *task)
477{
478 unsigned long gsbase;
479
480 if (task == current)
481 gsbase = x86_gsbase_read_cpu_inactive();
482 else if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
483 (task->thread.gsindex == 0))
484 gsbase = task->thread.gsbase;
485 else
486 gsbase = x86_fsgsbase_read_task(task, task->thread.gsindex);
487
488 return gsbase;
489}
490
491void x86_fsbase_write_task(struct task_struct *task, unsigned long fsbase)
492{
493 WARN_ON_ONCE(task == current);
494
495 task->thread.fsbase = fsbase;
496}
497
498void x86_gsbase_write_task(struct task_struct *task, unsigned long gsbase)
499{
500 WARN_ON_ONCE(task == current);
501
502 task->thread.gsbase = gsbase;
503}
504
505static void
506start_thread_common(struct pt_regs *regs, unsigned long new_ip,
507 unsigned long new_sp,
508 unsigned int _cs, unsigned int _ss, unsigned int _ds)
509{
510 WARN_ON_ONCE(regs != current_pt_regs());
511
512 if (static_cpu_has(X86_BUG_NULL_SEG)) {
513 /* Loading zero below won't clear the base. */
514 loadsegment(fs, __USER_DS);
515 load_gs_index(__USER_DS);
516 }
517
518 reset_thread_features();
519
520 loadsegment(fs, 0);
521 loadsegment(es, _ds);
522 loadsegment(ds, _ds);
523 load_gs_index(0);
524
525 regs->ip = new_ip;
526 regs->sp = new_sp;
527 regs->cs = _cs;
528 regs->ss = _ss;
529 regs->flags = X86_EFLAGS_IF;
530}
531
532void
533start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
534{
535 start_thread_common(regs, new_ip, new_sp,
536 __USER_CS, __USER_DS, 0);
537}
538EXPORT_SYMBOL_GPL(start_thread);
539
540#ifdef CONFIG_COMPAT
541void compat_start_thread(struct pt_regs *regs, u32 new_ip, u32 new_sp, bool x32)
542{
543 start_thread_common(regs, new_ip, new_sp,
544 x32 ? __USER_CS : __USER32_CS,
545 __USER_DS, __USER_DS);
546}
547#endif
548
549/*
550 * switch_to(x,y) should switch tasks from x to y.
551 *
552 * This could still be optimized:
553 * - fold all the options into a flag word and test it with a single test.
554 * - could test fs/gs bitsliced
555 *
556 * Kprobes not supported here. Set the probe on schedule instead.
557 * Function graph tracer not supported too.
558 */
559__no_kmsan_checks
560__visible __notrace_funcgraph struct task_struct *
561__switch_to(struct task_struct *prev_p, struct task_struct *next_p)
562{
563 struct thread_struct *prev = &prev_p->thread;
564 struct thread_struct *next = &next_p->thread;
565 struct fpu *prev_fpu = &prev->fpu;
566 int cpu = smp_processor_id();
567
568 WARN_ON_ONCE(IS_ENABLED(CONFIG_DEBUG_ENTRY) &&
569 this_cpu_read(pcpu_hot.hardirq_stack_inuse));
570
571 if (!test_thread_flag(TIF_NEED_FPU_LOAD))
572 switch_fpu_prepare(prev_fpu, cpu);
573
574 /* We must save %fs and %gs before load_TLS() because
575 * %fs and %gs may be cleared by load_TLS().
576 *
577 * (e.g. xen_load_tls())
578 */
579 save_fsgs(prev_p);
580
581 /*
582 * Load TLS before restoring any segments so that segment loads
583 * reference the correct GDT entries.
584 */
585 load_TLS(next, cpu);
586
587 /*
588 * Leave lazy mode, flushing any hypercalls made here. This
589 * must be done after loading TLS entries in the GDT but before
590 * loading segments that might reference them.
591 */
592 arch_end_context_switch(next_p);
593
594 /* Switch DS and ES.
595 *
596 * Reading them only returns the selectors, but writing them (if
597 * nonzero) loads the full descriptor from the GDT or LDT. The
598 * LDT for next is loaded in switch_mm, and the GDT is loaded
599 * above.
600 *
601 * We therefore need to write new values to the segment
602 * registers on every context switch unless both the new and old
603 * values are zero.
604 *
605 * Note that we don't need to do anything for CS and SS, as
606 * those are saved and restored as part of pt_regs.
607 */
608 savesegment(es, prev->es);
609 if (unlikely(next->es | prev->es))
610 loadsegment(es, next->es);
611
612 savesegment(ds, prev->ds);
613 if (unlikely(next->ds | prev->ds))
614 loadsegment(ds, next->ds);
615
616 x86_fsgsbase_load(prev, next);
617
618 x86_pkru_load(prev, next);
619
620 /*
621 * Switch the PDA and FPU contexts.
622 */
623 raw_cpu_write(pcpu_hot.current_task, next_p);
624 raw_cpu_write(pcpu_hot.top_of_stack, task_top_of_stack(next_p));
625
626 switch_fpu_finish();
627
628 /* Reload sp0. */
629 update_task_stack(next_p);
630
631 switch_to_extra(prev_p, next_p);
632
633 if (static_cpu_has_bug(X86_BUG_SYSRET_SS_ATTRS)) {
634 /*
635 * AMD CPUs have a misfeature: SYSRET sets the SS selector but
636 * does not update the cached descriptor. As a result, if we
637 * do SYSRET while SS is NULL, we'll end up in user mode with
638 * SS apparently equal to __USER_DS but actually unusable.
639 *
640 * The straightforward workaround would be to fix it up just
641 * before SYSRET, but that would slow down the system call
642 * fast paths. Instead, we ensure that SS is never NULL in
643 * system call context. We do this by replacing NULL SS
644 * selectors at every context switch. SYSCALL sets up a valid
645 * SS, so the only way to get NULL is to re-enter the kernel
646 * from CPL 3 through an interrupt. Since that can't happen
647 * in the same task as a running syscall, we are guaranteed to
648 * context switch between every interrupt vector entry and a
649 * subsequent SYSRET.
650 *
651 * We read SS first because SS reads are much faster than
652 * writes. Out of caution, we force SS to __KERNEL_DS even if
653 * it previously had a different non-NULL value.
654 */
655 unsigned short ss_sel;
656 savesegment(ss, ss_sel);
657 if (ss_sel != __KERNEL_DS)
658 loadsegment(ss, __KERNEL_DS);
659 }
660
661 /* Load the Intel cache allocation PQR MSR. */
662 resctrl_sched_in(next_p);
663
664 return prev_p;
665}
666
667void set_personality_64bit(void)
668{
669 /* inherit personality from parent */
670
671 /* Make sure to be in 64bit mode */
672 clear_thread_flag(TIF_ADDR32);
673 /* Pretend that this comes from a 64bit execve */
674 task_pt_regs(current)->orig_ax = __NR_execve;
675 current_thread_info()->status &= ~TS_COMPAT;
676 if (current->mm)
677 __set_bit(MM_CONTEXT_HAS_VSYSCALL, ¤t->mm->context.flags);
678
679 /* TBD: overwrites user setup. Should have two bits.
680 But 64bit processes have always behaved this way,
681 so it's not too bad. The main problem is just that
682 32bit children are affected again. */
683 current->personality &= ~READ_IMPLIES_EXEC;
684}
685
686static void __set_personality_x32(void)
687{
688#ifdef CONFIG_X86_X32_ABI
689 if (current->mm)
690 current->mm->context.flags = 0;
691
692 current->personality &= ~READ_IMPLIES_EXEC;
693 /*
694 * in_32bit_syscall() uses the presence of the x32 syscall bit
695 * flag to determine compat status. The x86 mmap() code relies on
696 * the syscall bitness so set x32 syscall bit right here to make
697 * in_32bit_syscall() work during exec().
698 *
699 * Pretend to come from a x32 execve.
700 */
701 task_pt_regs(current)->orig_ax = __NR_x32_execve | __X32_SYSCALL_BIT;
702 current_thread_info()->status &= ~TS_COMPAT;
703#endif
704}
705
706static void __set_personality_ia32(void)
707{
708#ifdef CONFIG_IA32_EMULATION
709 if (current->mm) {
710 /*
711 * uprobes applied to this MM need to know this and
712 * cannot use user_64bit_mode() at that time.
713 */
714 __set_bit(MM_CONTEXT_UPROBE_IA32, ¤t->mm->context.flags);
715 }
716
717 current->personality |= force_personality32;
718 /* Prepare the first "return" to user space */
719 task_pt_regs(current)->orig_ax = __NR_ia32_execve;
720 current_thread_info()->status |= TS_COMPAT;
721#endif
722}
723
724void set_personality_ia32(bool x32)
725{
726 /* Make sure to be in 32bit mode */
727 set_thread_flag(TIF_ADDR32);
728
729 if (x32)
730 __set_personality_x32();
731 else
732 __set_personality_ia32();
733}
734EXPORT_SYMBOL_GPL(set_personality_ia32);
735
736#ifdef CONFIG_CHECKPOINT_RESTORE
737static long prctl_map_vdso(const struct vdso_image *image, unsigned long addr)
738{
739 int ret;
740
741 ret = map_vdso_once(image, addr);
742 if (ret)
743 return ret;
744
745 return (long)image->size;
746}
747#endif
748
749#ifdef CONFIG_ADDRESS_MASKING
750
751#define LAM_U57_BITS 6
752
753static int prctl_enable_tagged_addr(struct mm_struct *mm, unsigned long nr_bits)
754{
755 if (!cpu_feature_enabled(X86_FEATURE_LAM))
756 return -ENODEV;
757
758 /* PTRACE_ARCH_PRCTL */
759 if (current->mm != mm)
760 return -EINVAL;
761
762 if (mm_valid_pasid(mm) &&
763 !test_bit(MM_CONTEXT_FORCE_TAGGED_SVA, &mm->context.flags))
764 return -EINVAL;
765
766 if (mmap_write_lock_killable(mm))
767 return -EINTR;
768
769 if (test_bit(MM_CONTEXT_LOCK_LAM, &mm->context.flags)) {
770 mmap_write_unlock(mm);
771 return -EBUSY;
772 }
773
774 if (!nr_bits) {
775 mmap_write_unlock(mm);
776 return -EINVAL;
777 } else if (nr_bits <= LAM_U57_BITS) {
778 mm->context.lam_cr3_mask = X86_CR3_LAM_U57;
779 mm->context.untag_mask = ~GENMASK(62, 57);
780 } else {
781 mmap_write_unlock(mm);
782 return -EINVAL;
783 }
784
785 write_cr3(__read_cr3() | mm->context.lam_cr3_mask);
786 set_tlbstate_lam_mode(mm);
787 set_bit(MM_CONTEXT_LOCK_LAM, &mm->context.flags);
788
789 mmap_write_unlock(mm);
790
791 return 0;
792}
793#endif
794
795long do_arch_prctl_64(struct task_struct *task, int option, unsigned long arg2)
796{
797 int ret = 0;
798
799 switch (option) {
800 case ARCH_SET_GS: {
801 if (unlikely(arg2 >= TASK_SIZE_MAX))
802 return -EPERM;
803
804 preempt_disable();
805 /*
806 * ARCH_SET_GS has always overwritten the index
807 * and the base. Zero is the most sensible value
808 * to put in the index, and is the only value that
809 * makes any sense if FSGSBASE is unavailable.
810 */
811 if (task == current) {
812 loadseg(GS, 0);
813 x86_gsbase_write_cpu_inactive(arg2);
814
815 /*
816 * On non-FSGSBASE systems, save_base_legacy() expects
817 * that we also fill in thread.gsbase.
818 */
819 task->thread.gsbase = arg2;
820
821 } else {
822 task->thread.gsindex = 0;
823 x86_gsbase_write_task(task, arg2);
824 }
825 preempt_enable();
826 break;
827 }
828 case ARCH_SET_FS: {
829 /*
830 * Not strictly needed for %fs, but do it for symmetry
831 * with %gs
832 */
833 if (unlikely(arg2 >= TASK_SIZE_MAX))
834 return -EPERM;
835
836 preempt_disable();
837 /*
838 * Set the selector to 0 for the same reason
839 * as %gs above.
840 */
841 if (task == current) {
842 loadseg(FS, 0);
843 x86_fsbase_write_cpu(arg2);
844
845 /*
846 * On non-FSGSBASE systems, save_base_legacy() expects
847 * that we also fill in thread.fsbase.
848 */
849 task->thread.fsbase = arg2;
850 } else {
851 task->thread.fsindex = 0;
852 x86_fsbase_write_task(task, arg2);
853 }
854 preempt_enable();
855 break;
856 }
857 case ARCH_GET_FS: {
858 unsigned long base = x86_fsbase_read_task(task);
859
860 ret = put_user(base, (unsigned long __user *)arg2);
861 break;
862 }
863 case ARCH_GET_GS: {
864 unsigned long base = x86_gsbase_read_task(task);
865
866 ret = put_user(base, (unsigned long __user *)arg2);
867 break;
868 }
869
870#ifdef CONFIG_CHECKPOINT_RESTORE
871# ifdef CONFIG_X86_X32_ABI
872 case ARCH_MAP_VDSO_X32:
873 return prctl_map_vdso(&vdso_image_x32, arg2);
874# endif
875# if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
876 case ARCH_MAP_VDSO_32:
877 return prctl_map_vdso(&vdso_image_32, arg2);
878# endif
879 case ARCH_MAP_VDSO_64:
880 return prctl_map_vdso(&vdso_image_64, arg2);
881#endif
882#ifdef CONFIG_ADDRESS_MASKING
883 case ARCH_GET_UNTAG_MASK:
884 return put_user(task->mm->context.untag_mask,
885 (unsigned long __user *)arg2);
886 case ARCH_ENABLE_TAGGED_ADDR:
887 return prctl_enable_tagged_addr(task->mm, arg2);
888 case ARCH_FORCE_TAGGED_SVA:
889 if (current != task)
890 return -EINVAL;
891 set_bit(MM_CONTEXT_FORCE_TAGGED_SVA, &task->mm->context.flags);
892 return 0;
893 case ARCH_GET_MAX_TAG_BITS:
894 if (!cpu_feature_enabled(X86_FEATURE_LAM))
895 return put_user(0, (unsigned long __user *)arg2);
896 else
897 return put_user(LAM_U57_BITS, (unsigned long __user *)arg2);
898#endif
899 case ARCH_SHSTK_ENABLE:
900 case ARCH_SHSTK_DISABLE:
901 case ARCH_SHSTK_LOCK:
902 case ARCH_SHSTK_UNLOCK:
903 case ARCH_SHSTK_STATUS:
904 return shstk_prctl(task, option, arg2);
905 default:
906 ret = -EINVAL;
907 break;
908 }
909
910 return ret;
911}
912
913SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
914{
915 long ret;
916
917 ret = do_arch_prctl_64(current, option, arg2);
918 if (ret == -EINVAL)
919 ret = do_arch_prctl_common(option, arg2);
920
921 return ret;
922}
923
924#ifdef CONFIG_IA32_EMULATION
925COMPAT_SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
926{
927 return do_arch_prctl_common(option, arg2);
928}
929#endif
930
931unsigned long KSTK_ESP(struct task_struct *task)
932{
933 return task_pt_regs(task)->sp;
934}