Loading...
1/*
2 * Copyright (C) 1995 Linus Torvalds
3 *
4 * Pentium III FXSR, SSE support
5 * Gareth Hughes <gareth@valinux.com>, May 2000
6 *
7 * X86-64 port
8 * Andi Kleen.
9 *
10 * CPU hotplug support - ashok.raj@intel.com
11 */
12
13/*
14 * This file handles the architecture-dependent parts of process handling..
15 */
16
17#include <linux/cpu.h>
18#include <linux/errno.h>
19#include <linux/sched.h>
20#include <linux/sched/task.h>
21#include <linux/sched/task_stack.h>
22#include <linux/fs.h>
23#include <linux/kernel.h>
24#include <linux/mm.h>
25#include <linux/elfcore.h>
26#include <linux/smp.h>
27#include <linux/slab.h>
28#include <linux/user.h>
29#include <linux/interrupt.h>
30#include <linux/delay.h>
31#include <linux/export.h>
32#include <linux/ptrace.h>
33#include <linux/notifier.h>
34#include <linux/kprobes.h>
35#include <linux/kdebug.h>
36#include <linux/prctl.h>
37#include <linux/uaccess.h>
38#include <linux/io.h>
39#include <linux/ftrace.h>
40#include <linux/syscalls.h>
41
42#include <asm/pgtable.h>
43#include <asm/processor.h>
44#include <asm/fpu/internal.h>
45#include <asm/mmu_context.h>
46#include <asm/prctl.h>
47#include <asm/desc.h>
48#include <asm/proto.h>
49#include <asm/ia32.h>
50#include <asm/syscalls.h>
51#include <asm/debugreg.h>
52#include <asm/switch_to.h>
53#include <asm/xen/hypervisor.h>
54#include <asm/vdso.h>
55#include <asm/intel_rdt_sched.h>
56#include <asm/unistd.h>
57#ifdef CONFIG_IA32_EMULATION
58/* Not included via unistd.h */
59#include <asm/unistd_32_ia32.h>
60#endif
61
62__visible DEFINE_PER_CPU(unsigned long, rsp_scratch);
63
64/* Prints also some state that isn't saved in the pt_regs */
65void __show_regs(struct pt_regs *regs, int all)
66{
67 unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L, fs, gs, shadowgs;
68 unsigned long d0, d1, d2, d3, d6, d7;
69 unsigned int fsindex, gsindex;
70 unsigned int ds, cs, es;
71
72 show_iret_regs(regs);
73
74 if (regs->orig_ax != -1)
75 pr_cont(" ORIG_RAX: %016lx\n", regs->orig_ax);
76 else
77 pr_cont("\n");
78
79 printk(KERN_DEFAULT "RAX: %016lx RBX: %016lx RCX: %016lx\n",
80 regs->ax, regs->bx, regs->cx);
81 printk(KERN_DEFAULT "RDX: %016lx RSI: %016lx RDI: %016lx\n",
82 regs->dx, regs->si, regs->di);
83 printk(KERN_DEFAULT "RBP: %016lx R08: %016lx R09: %016lx\n",
84 regs->bp, regs->r8, regs->r9);
85 printk(KERN_DEFAULT "R10: %016lx R11: %016lx R12: %016lx\n",
86 regs->r10, regs->r11, regs->r12);
87 printk(KERN_DEFAULT "R13: %016lx R14: %016lx R15: %016lx\n",
88 regs->r13, regs->r14, regs->r15);
89
90 if (!all)
91 return;
92
93 asm("movl %%ds,%0" : "=r" (ds));
94 asm("movl %%cs,%0" : "=r" (cs));
95 asm("movl %%es,%0" : "=r" (es));
96 asm("movl %%fs,%0" : "=r" (fsindex));
97 asm("movl %%gs,%0" : "=r" (gsindex));
98
99 rdmsrl(MSR_FS_BASE, fs);
100 rdmsrl(MSR_GS_BASE, gs);
101 rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
102
103 cr0 = read_cr0();
104 cr2 = read_cr2();
105 cr3 = __read_cr3();
106 cr4 = __read_cr4();
107
108 printk(KERN_DEFAULT "FS: %016lx(%04x) GS:%016lx(%04x) knlGS:%016lx\n",
109 fs, fsindex, gs, gsindex, shadowgs);
110 printk(KERN_DEFAULT "CS: %04x DS: %04x ES: %04x CR0: %016lx\n", cs, ds,
111 es, cr0);
112 printk(KERN_DEFAULT "CR2: %016lx CR3: %016lx CR4: %016lx\n", cr2, cr3,
113 cr4);
114
115 get_debugreg(d0, 0);
116 get_debugreg(d1, 1);
117 get_debugreg(d2, 2);
118 get_debugreg(d3, 3);
119 get_debugreg(d6, 6);
120 get_debugreg(d7, 7);
121
122 /* Only print out debug registers if they are in their non-default state. */
123 if (!((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
124 (d6 == DR6_RESERVED) && (d7 == 0x400))) {
125 printk(KERN_DEFAULT "DR0: %016lx DR1: %016lx DR2: %016lx\n",
126 d0, d1, d2);
127 printk(KERN_DEFAULT "DR3: %016lx DR6: %016lx DR7: %016lx\n",
128 d3, d6, d7);
129 }
130
131 if (boot_cpu_has(X86_FEATURE_OSPKE))
132 printk(KERN_DEFAULT "PKRU: %08x\n", read_pkru());
133}
134
135void release_thread(struct task_struct *dead_task)
136{
137 if (dead_task->mm) {
138#ifdef CONFIG_MODIFY_LDT_SYSCALL
139 if (dead_task->mm->context.ldt) {
140 pr_warn("WARNING: dead process %s still has LDT? <%p/%d>\n",
141 dead_task->comm,
142 dead_task->mm->context.ldt->entries,
143 dead_task->mm->context.ldt->nr_entries);
144 BUG();
145 }
146#endif
147 }
148}
149
150enum which_selector {
151 FS,
152 GS
153};
154
155/*
156 * Saves the FS or GS base for an outgoing thread if FSGSBASE extensions are
157 * not available. The goal is to be reasonably fast on non-FSGSBASE systems.
158 * It's forcibly inlined because it'll generate better code and this function
159 * is hot.
160 */
161static __always_inline void save_base_legacy(struct task_struct *prev_p,
162 unsigned short selector,
163 enum which_selector which)
164{
165 if (likely(selector == 0)) {
166 /*
167 * On Intel (without X86_BUG_NULL_SEG), the segment base could
168 * be the pre-existing saved base or it could be zero. On AMD
169 * (with X86_BUG_NULL_SEG), the segment base could be almost
170 * anything.
171 *
172 * This branch is very hot (it's hit twice on almost every
173 * context switch between 64-bit programs), and avoiding
174 * the RDMSR helps a lot, so we just assume that whatever
175 * value is already saved is correct. This matches historical
176 * Linux behavior, so it won't break existing applications.
177 *
178 * To avoid leaking state, on non-X86_BUG_NULL_SEG CPUs, if we
179 * report that the base is zero, it needs to actually be zero:
180 * see the corresponding logic in load_seg_legacy.
181 */
182 } else {
183 /*
184 * If the selector is 1, 2, or 3, then the base is zero on
185 * !X86_BUG_NULL_SEG CPUs and could be anything on
186 * X86_BUG_NULL_SEG CPUs. In the latter case, Linux
187 * has never attempted to preserve the base across context
188 * switches.
189 *
190 * If selector > 3, then it refers to a real segment, and
191 * saving the base isn't necessary.
192 */
193 if (which == FS)
194 prev_p->thread.fsbase = 0;
195 else
196 prev_p->thread.gsbase = 0;
197 }
198}
199
200static __always_inline void save_fsgs(struct task_struct *task)
201{
202 savesegment(fs, task->thread.fsindex);
203 savesegment(gs, task->thread.gsindex);
204 save_base_legacy(task, task->thread.fsindex, FS);
205 save_base_legacy(task, task->thread.gsindex, GS);
206}
207
208#if IS_ENABLED(CONFIG_KVM)
209/*
210 * While a process is running,current->thread.fsbase and current->thread.gsbase
211 * may not match the corresponding CPU registers (see save_base_legacy()). KVM
212 * wants an efficient way to save and restore FSBASE and GSBASE.
213 * When FSGSBASE extensions are enabled, this will have to use RD{FS,GS}BASE.
214 */
215void save_fsgs_for_kvm(void)
216{
217 save_fsgs(current);
218}
219EXPORT_SYMBOL_GPL(save_fsgs_for_kvm);
220#endif
221
222static __always_inline void loadseg(enum which_selector which,
223 unsigned short sel)
224{
225 if (which == FS)
226 loadsegment(fs, sel);
227 else
228 load_gs_index(sel);
229}
230
231static __always_inline void load_seg_legacy(unsigned short prev_index,
232 unsigned long prev_base,
233 unsigned short next_index,
234 unsigned long next_base,
235 enum which_selector which)
236{
237 if (likely(next_index <= 3)) {
238 /*
239 * The next task is using 64-bit TLS, is not using this
240 * segment at all, or is having fun with arcane CPU features.
241 */
242 if (next_base == 0) {
243 /*
244 * Nasty case: on AMD CPUs, we need to forcibly zero
245 * the base.
246 */
247 if (static_cpu_has_bug(X86_BUG_NULL_SEG)) {
248 loadseg(which, __USER_DS);
249 loadseg(which, next_index);
250 } else {
251 /*
252 * We could try to exhaustively detect cases
253 * under which we can skip the segment load,
254 * but there's really only one case that matters
255 * for performance: if both the previous and
256 * next states are fully zeroed, we can skip
257 * the load.
258 *
259 * (This assumes that prev_base == 0 has no
260 * false positives. This is the case on
261 * Intel-style CPUs.)
262 */
263 if (likely(prev_index | next_index | prev_base))
264 loadseg(which, next_index);
265 }
266 } else {
267 if (prev_index != next_index)
268 loadseg(which, next_index);
269 wrmsrl(which == FS ? MSR_FS_BASE : MSR_KERNEL_GS_BASE,
270 next_base);
271 }
272 } else {
273 /*
274 * The next task is using a real segment. Loading the selector
275 * is sufficient.
276 */
277 loadseg(which, next_index);
278 }
279}
280
281int copy_thread_tls(unsigned long clone_flags, unsigned long sp,
282 unsigned long arg, struct task_struct *p, unsigned long tls)
283{
284 int err;
285 struct pt_regs *childregs;
286 struct fork_frame *fork_frame;
287 struct inactive_task_frame *frame;
288 struct task_struct *me = current;
289
290 childregs = task_pt_regs(p);
291 fork_frame = container_of(childregs, struct fork_frame, regs);
292 frame = &fork_frame->frame;
293 frame->bp = 0;
294 frame->ret_addr = (unsigned long) ret_from_fork;
295 p->thread.sp = (unsigned long) fork_frame;
296 p->thread.io_bitmap_ptr = NULL;
297
298 savesegment(gs, p->thread.gsindex);
299 p->thread.gsbase = p->thread.gsindex ? 0 : me->thread.gsbase;
300 savesegment(fs, p->thread.fsindex);
301 p->thread.fsbase = p->thread.fsindex ? 0 : me->thread.fsbase;
302 savesegment(es, p->thread.es);
303 savesegment(ds, p->thread.ds);
304 memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
305
306 if (unlikely(p->flags & PF_KTHREAD)) {
307 /* kernel thread */
308 memset(childregs, 0, sizeof(struct pt_regs));
309 frame->bx = sp; /* function */
310 frame->r12 = arg;
311 return 0;
312 }
313 frame->bx = 0;
314 *childregs = *current_pt_regs();
315
316 childregs->ax = 0;
317 if (sp)
318 childregs->sp = sp;
319
320 err = -ENOMEM;
321 if (unlikely(test_tsk_thread_flag(me, TIF_IO_BITMAP))) {
322 p->thread.io_bitmap_ptr = kmemdup(me->thread.io_bitmap_ptr,
323 IO_BITMAP_BYTES, GFP_KERNEL);
324 if (!p->thread.io_bitmap_ptr) {
325 p->thread.io_bitmap_max = 0;
326 return -ENOMEM;
327 }
328 set_tsk_thread_flag(p, TIF_IO_BITMAP);
329 }
330
331 /*
332 * Set a new TLS for the child thread?
333 */
334 if (clone_flags & CLONE_SETTLS) {
335#ifdef CONFIG_IA32_EMULATION
336 if (in_ia32_syscall())
337 err = do_set_thread_area(p, -1,
338 (struct user_desc __user *)tls, 0);
339 else
340#endif
341 err = do_arch_prctl_64(p, ARCH_SET_FS, tls);
342 if (err)
343 goto out;
344 }
345 err = 0;
346out:
347 if (err && p->thread.io_bitmap_ptr) {
348 kfree(p->thread.io_bitmap_ptr);
349 p->thread.io_bitmap_max = 0;
350 }
351
352 return err;
353}
354
355static void
356start_thread_common(struct pt_regs *regs, unsigned long new_ip,
357 unsigned long new_sp,
358 unsigned int _cs, unsigned int _ss, unsigned int _ds)
359{
360 WARN_ON_ONCE(regs != current_pt_regs());
361
362 if (static_cpu_has(X86_BUG_NULL_SEG)) {
363 /* Loading zero below won't clear the base. */
364 loadsegment(fs, __USER_DS);
365 load_gs_index(__USER_DS);
366 }
367
368 loadsegment(fs, 0);
369 loadsegment(es, _ds);
370 loadsegment(ds, _ds);
371 load_gs_index(0);
372
373 regs->ip = new_ip;
374 regs->sp = new_sp;
375 regs->cs = _cs;
376 regs->ss = _ss;
377 regs->flags = X86_EFLAGS_IF;
378 force_iret();
379}
380
381void
382start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
383{
384 start_thread_common(regs, new_ip, new_sp,
385 __USER_CS, __USER_DS, 0);
386}
387
388#ifdef CONFIG_COMPAT
389void compat_start_thread(struct pt_regs *regs, u32 new_ip, u32 new_sp)
390{
391 start_thread_common(regs, new_ip, new_sp,
392 test_thread_flag(TIF_X32)
393 ? __USER_CS : __USER32_CS,
394 __USER_DS, __USER_DS);
395}
396#endif
397
398/*
399 * switch_to(x,y) should switch tasks from x to y.
400 *
401 * This could still be optimized:
402 * - fold all the options into a flag word and test it with a single test.
403 * - could test fs/gs bitsliced
404 *
405 * Kprobes not supported here. Set the probe on schedule instead.
406 * Function graph tracer not supported too.
407 */
408__visible __notrace_funcgraph struct task_struct *
409__switch_to(struct task_struct *prev_p, struct task_struct *next_p)
410{
411 struct thread_struct *prev = &prev_p->thread;
412 struct thread_struct *next = &next_p->thread;
413 struct fpu *prev_fpu = &prev->fpu;
414 struct fpu *next_fpu = &next->fpu;
415 int cpu = smp_processor_id();
416 struct tss_struct *tss = &per_cpu(cpu_tss_rw, cpu);
417
418 WARN_ON_ONCE(IS_ENABLED(CONFIG_DEBUG_ENTRY) &&
419 this_cpu_read(irq_count) != -1);
420
421 switch_fpu_prepare(prev_fpu, cpu);
422
423 /* We must save %fs and %gs before load_TLS() because
424 * %fs and %gs may be cleared by load_TLS().
425 *
426 * (e.g. xen_load_tls())
427 */
428 save_fsgs(prev_p);
429
430 /*
431 * Load TLS before restoring any segments so that segment loads
432 * reference the correct GDT entries.
433 */
434 load_TLS(next, cpu);
435
436 /*
437 * Leave lazy mode, flushing any hypercalls made here. This
438 * must be done after loading TLS entries in the GDT but before
439 * loading segments that might reference them, and and it must
440 * be done before fpu__restore(), so the TS bit is up to
441 * date.
442 */
443 arch_end_context_switch(next_p);
444
445 /* Switch DS and ES.
446 *
447 * Reading them only returns the selectors, but writing them (if
448 * nonzero) loads the full descriptor from the GDT or LDT. The
449 * LDT for next is loaded in switch_mm, and the GDT is loaded
450 * above.
451 *
452 * We therefore need to write new values to the segment
453 * registers on every context switch unless both the new and old
454 * values are zero.
455 *
456 * Note that we don't need to do anything for CS and SS, as
457 * those are saved and restored as part of pt_regs.
458 */
459 savesegment(es, prev->es);
460 if (unlikely(next->es | prev->es))
461 loadsegment(es, next->es);
462
463 savesegment(ds, prev->ds);
464 if (unlikely(next->ds | prev->ds))
465 loadsegment(ds, next->ds);
466
467 load_seg_legacy(prev->fsindex, prev->fsbase,
468 next->fsindex, next->fsbase, FS);
469 load_seg_legacy(prev->gsindex, prev->gsbase,
470 next->gsindex, next->gsbase, GS);
471
472 switch_fpu_finish(next_fpu, cpu);
473
474 /*
475 * Switch the PDA and FPU contexts.
476 */
477 this_cpu_write(current_task, next_p);
478 this_cpu_write(cpu_current_top_of_stack, task_top_of_stack(next_p));
479
480 /* Reload sp0. */
481 update_sp0(next_p);
482
483 /*
484 * Now maybe reload the debug registers and handle I/O bitmaps
485 */
486 if (unlikely(task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT ||
487 task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV))
488 __switch_to_xtra(prev_p, next_p, tss);
489
490#ifdef CONFIG_XEN_PV
491 /*
492 * On Xen PV, IOPL bits in pt_regs->flags have no effect, and
493 * current_pt_regs()->flags may not match the current task's
494 * intended IOPL. We need to switch it manually.
495 */
496 if (unlikely(static_cpu_has(X86_FEATURE_XENPV) &&
497 prev->iopl != next->iopl))
498 xen_set_iopl_mask(next->iopl);
499#endif
500
501 if (static_cpu_has_bug(X86_BUG_SYSRET_SS_ATTRS)) {
502 /*
503 * AMD CPUs have a misfeature: SYSRET sets the SS selector but
504 * does not update the cached descriptor. As a result, if we
505 * do SYSRET while SS is NULL, we'll end up in user mode with
506 * SS apparently equal to __USER_DS but actually unusable.
507 *
508 * The straightforward workaround would be to fix it up just
509 * before SYSRET, but that would slow down the system call
510 * fast paths. Instead, we ensure that SS is never NULL in
511 * system call context. We do this by replacing NULL SS
512 * selectors at every context switch. SYSCALL sets up a valid
513 * SS, so the only way to get NULL is to re-enter the kernel
514 * from CPL 3 through an interrupt. Since that can't happen
515 * in the same task as a running syscall, we are guaranteed to
516 * context switch between every interrupt vector entry and a
517 * subsequent SYSRET.
518 *
519 * We read SS first because SS reads are much faster than
520 * writes. Out of caution, we force SS to __KERNEL_DS even if
521 * it previously had a different non-NULL value.
522 */
523 unsigned short ss_sel;
524 savesegment(ss, ss_sel);
525 if (ss_sel != __KERNEL_DS)
526 loadsegment(ss, __KERNEL_DS);
527 }
528
529 /* Load the Intel cache allocation PQR MSR. */
530 intel_rdt_sched_in();
531
532 return prev_p;
533}
534
535void set_personality_64bit(void)
536{
537 /* inherit personality from parent */
538
539 /* Make sure to be in 64bit mode */
540 clear_thread_flag(TIF_IA32);
541 clear_thread_flag(TIF_ADDR32);
542 clear_thread_flag(TIF_X32);
543 /* Pretend that this comes from a 64bit execve */
544 task_pt_regs(current)->orig_ax = __NR_execve;
545 current_thread_info()->status &= ~TS_COMPAT;
546
547 /* Ensure the corresponding mm is not marked. */
548 if (current->mm)
549 current->mm->context.ia32_compat = 0;
550
551 /* TBD: overwrites user setup. Should have two bits.
552 But 64bit processes have always behaved this way,
553 so it's not too bad. The main problem is just that
554 32bit childs are affected again. */
555 current->personality &= ~READ_IMPLIES_EXEC;
556}
557
558static void __set_personality_x32(void)
559{
560#ifdef CONFIG_X86_X32
561 clear_thread_flag(TIF_IA32);
562 set_thread_flag(TIF_X32);
563 if (current->mm)
564 current->mm->context.ia32_compat = TIF_X32;
565 current->personality &= ~READ_IMPLIES_EXEC;
566 /*
567 * in_compat_syscall() uses the presence of the x32 syscall bit
568 * flag to determine compat status. The x86 mmap() code relies on
569 * the syscall bitness so set x32 syscall bit right here to make
570 * in_compat_syscall() work during exec().
571 *
572 * Pretend to come from a x32 execve.
573 */
574 task_pt_regs(current)->orig_ax = __NR_x32_execve | __X32_SYSCALL_BIT;
575 current_thread_info()->status &= ~TS_COMPAT;
576#endif
577}
578
579static void __set_personality_ia32(void)
580{
581#ifdef CONFIG_IA32_EMULATION
582 set_thread_flag(TIF_IA32);
583 clear_thread_flag(TIF_X32);
584 if (current->mm)
585 current->mm->context.ia32_compat = TIF_IA32;
586 current->personality |= force_personality32;
587 /* Prepare the first "return" to user space */
588 task_pt_regs(current)->orig_ax = __NR_ia32_execve;
589 current_thread_info()->status |= TS_COMPAT;
590#endif
591}
592
593void set_personality_ia32(bool x32)
594{
595 /* Make sure to be in 32bit mode */
596 set_thread_flag(TIF_ADDR32);
597
598 if (x32)
599 __set_personality_x32();
600 else
601 __set_personality_ia32();
602}
603EXPORT_SYMBOL_GPL(set_personality_ia32);
604
605#ifdef CONFIG_CHECKPOINT_RESTORE
606static long prctl_map_vdso(const struct vdso_image *image, unsigned long addr)
607{
608 int ret;
609
610 ret = map_vdso_once(image, addr);
611 if (ret)
612 return ret;
613
614 return (long)image->size;
615}
616#endif
617
618long do_arch_prctl_64(struct task_struct *task, int option, unsigned long arg2)
619{
620 int ret = 0;
621 int doit = task == current;
622 int cpu;
623
624 switch (option) {
625 case ARCH_SET_GS:
626 if (arg2 >= TASK_SIZE_MAX)
627 return -EPERM;
628 cpu = get_cpu();
629 task->thread.gsindex = 0;
630 task->thread.gsbase = arg2;
631 if (doit) {
632 load_gs_index(0);
633 ret = wrmsrl_safe(MSR_KERNEL_GS_BASE, arg2);
634 }
635 put_cpu();
636 break;
637 case ARCH_SET_FS:
638 /* Not strictly needed for fs, but do it for symmetry
639 with gs */
640 if (arg2 >= TASK_SIZE_MAX)
641 return -EPERM;
642 cpu = get_cpu();
643 task->thread.fsindex = 0;
644 task->thread.fsbase = arg2;
645 if (doit) {
646 /* set the selector to 0 to not confuse __switch_to */
647 loadsegment(fs, 0);
648 ret = wrmsrl_safe(MSR_FS_BASE, arg2);
649 }
650 put_cpu();
651 break;
652 case ARCH_GET_FS: {
653 unsigned long base;
654
655 if (doit)
656 rdmsrl(MSR_FS_BASE, base);
657 else
658 base = task->thread.fsbase;
659 ret = put_user(base, (unsigned long __user *)arg2);
660 break;
661 }
662 case ARCH_GET_GS: {
663 unsigned long base;
664
665 if (doit)
666 rdmsrl(MSR_KERNEL_GS_BASE, base);
667 else
668 base = task->thread.gsbase;
669 ret = put_user(base, (unsigned long __user *)arg2);
670 break;
671 }
672
673#ifdef CONFIG_CHECKPOINT_RESTORE
674# ifdef CONFIG_X86_X32_ABI
675 case ARCH_MAP_VDSO_X32:
676 return prctl_map_vdso(&vdso_image_x32, arg2);
677# endif
678# if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
679 case ARCH_MAP_VDSO_32:
680 return prctl_map_vdso(&vdso_image_32, arg2);
681# endif
682 case ARCH_MAP_VDSO_64:
683 return prctl_map_vdso(&vdso_image_64, arg2);
684#endif
685
686 default:
687 ret = -EINVAL;
688 break;
689 }
690
691 return ret;
692}
693
694SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
695{
696 long ret;
697
698 ret = do_arch_prctl_64(current, option, arg2);
699 if (ret == -EINVAL)
700 ret = do_arch_prctl_common(current, option, arg2);
701
702 return ret;
703}
704
705#ifdef CONFIG_IA32_EMULATION
706COMPAT_SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
707{
708 return do_arch_prctl_common(current, option, arg2);
709}
710#endif
711
712unsigned long KSTK_ESP(struct task_struct *task)
713{
714 return task_pt_regs(task)->sp;
715}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * Pentium III FXSR, SSE support
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 *
8 * X86-64 port
9 * Andi Kleen.
10 *
11 * CPU hotplug support - ashok.raj@intel.com
12 */
13
14/*
15 * This file handles the architecture-dependent parts of process handling..
16 */
17
18#include <linux/cpu.h>
19#include <linux/errno.h>
20#include <linux/sched.h>
21#include <linux/sched/task.h>
22#include <linux/sched/task_stack.h>
23#include <linux/fs.h>
24#include <linux/kernel.h>
25#include <linux/mm.h>
26#include <linux/elfcore.h>
27#include <linux/smp.h>
28#include <linux/slab.h>
29#include <linux/user.h>
30#include <linux/interrupt.h>
31#include <linux/delay.h>
32#include <linux/export.h>
33#include <linux/ptrace.h>
34#include <linux/notifier.h>
35#include <linux/kprobes.h>
36#include <linux/kdebug.h>
37#include <linux/prctl.h>
38#include <linux/uaccess.h>
39#include <linux/io.h>
40#include <linux/ftrace.h>
41#include <linux/syscalls.h>
42
43#include <asm/processor.h>
44#include <asm/pkru.h>
45#include <asm/fpu/sched.h>
46#include <asm/mmu_context.h>
47#include <asm/prctl.h>
48#include <asm/desc.h>
49#include <asm/proto.h>
50#include <asm/ia32.h>
51#include <asm/debugreg.h>
52#include <asm/switch_to.h>
53#include <asm/xen/hypervisor.h>
54#include <asm/vdso.h>
55#include <asm/resctrl.h>
56#include <asm/unistd.h>
57#include <asm/fsgsbase.h>
58#ifdef CONFIG_IA32_EMULATION
59/* Not included via unistd.h */
60#include <asm/unistd_32_ia32.h>
61#endif
62
63#include "process.h"
64
65/* Prints also some state that isn't saved in the pt_regs */
66void __show_regs(struct pt_regs *regs, enum show_regs_mode mode,
67 const char *log_lvl)
68{
69 unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L, fs, gs, shadowgs;
70 unsigned long d0, d1, d2, d3, d6, d7;
71 unsigned int fsindex, gsindex;
72 unsigned int ds, es;
73
74 show_iret_regs(regs, log_lvl);
75
76 if (regs->orig_ax != -1)
77 pr_cont(" ORIG_RAX: %016lx\n", regs->orig_ax);
78 else
79 pr_cont("\n");
80
81 printk("%sRAX: %016lx RBX: %016lx RCX: %016lx\n",
82 log_lvl, regs->ax, regs->bx, regs->cx);
83 printk("%sRDX: %016lx RSI: %016lx RDI: %016lx\n",
84 log_lvl, regs->dx, regs->si, regs->di);
85 printk("%sRBP: %016lx R08: %016lx R09: %016lx\n",
86 log_lvl, regs->bp, regs->r8, regs->r9);
87 printk("%sR10: %016lx R11: %016lx R12: %016lx\n",
88 log_lvl, regs->r10, regs->r11, regs->r12);
89 printk("%sR13: %016lx R14: %016lx R15: %016lx\n",
90 log_lvl, regs->r13, regs->r14, regs->r15);
91
92 if (mode == SHOW_REGS_SHORT)
93 return;
94
95 if (mode == SHOW_REGS_USER) {
96 rdmsrl(MSR_FS_BASE, fs);
97 rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
98 printk("%sFS: %016lx GS: %016lx\n",
99 log_lvl, fs, shadowgs);
100 return;
101 }
102
103 asm("movl %%ds,%0" : "=r" (ds));
104 asm("movl %%es,%0" : "=r" (es));
105 asm("movl %%fs,%0" : "=r" (fsindex));
106 asm("movl %%gs,%0" : "=r" (gsindex));
107
108 rdmsrl(MSR_FS_BASE, fs);
109 rdmsrl(MSR_GS_BASE, gs);
110 rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
111
112 cr0 = read_cr0();
113 cr2 = read_cr2();
114 cr3 = __read_cr3();
115 cr4 = __read_cr4();
116
117 printk("%sFS: %016lx(%04x) GS:%016lx(%04x) knlGS:%016lx\n",
118 log_lvl, fs, fsindex, gs, gsindex, shadowgs);
119 printk("%sCS: %04lx DS: %04x ES: %04x CR0: %016lx\n",
120 log_lvl, regs->cs, ds, es, cr0);
121 printk("%sCR2: %016lx CR3: %016lx CR4: %016lx\n",
122 log_lvl, cr2, cr3, cr4);
123
124 get_debugreg(d0, 0);
125 get_debugreg(d1, 1);
126 get_debugreg(d2, 2);
127 get_debugreg(d3, 3);
128 get_debugreg(d6, 6);
129 get_debugreg(d7, 7);
130
131 /* Only print out debug registers if they are in their non-default state. */
132 if (!((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
133 (d6 == DR6_RESERVED) && (d7 == 0x400))) {
134 printk("%sDR0: %016lx DR1: %016lx DR2: %016lx\n",
135 log_lvl, d0, d1, d2);
136 printk("%sDR3: %016lx DR6: %016lx DR7: %016lx\n",
137 log_lvl, d3, d6, d7);
138 }
139
140 if (cpu_feature_enabled(X86_FEATURE_OSPKE))
141 printk("%sPKRU: %08x\n", log_lvl, read_pkru());
142}
143
144void release_thread(struct task_struct *dead_task)
145{
146 WARN_ON(dead_task->mm);
147}
148
149enum which_selector {
150 FS,
151 GS
152};
153
154/*
155 * Out of line to be protected from kprobes and tracing. If this would be
156 * traced or probed than any access to a per CPU variable happens with
157 * the wrong GS.
158 *
159 * It is not used on Xen paravirt. When paravirt support is needed, it
160 * needs to be renamed with native_ prefix.
161 */
162static noinstr unsigned long __rdgsbase_inactive(void)
163{
164 unsigned long gsbase;
165
166 lockdep_assert_irqs_disabled();
167
168 if (!cpu_feature_enabled(X86_FEATURE_XENPV)) {
169 native_swapgs();
170 gsbase = rdgsbase();
171 native_swapgs();
172 } else {
173 instrumentation_begin();
174 rdmsrl(MSR_KERNEL_GS_BASE, gsbase);
175 instrumentation_end();
176 }
177
178 return gsbase;
179}
180
181/*
182 * Out of line to be protected from kprobes and tracing. If this would be
183 * traced or probed than any access to a per CPU variable happens with
184 * the wrong GS.
185 *
186 * It is not used on Xen paravirt. When paravirt support is needed, it
187 * needs to be renamed with native_ prefix.
188 */
189static noinstr void __wrgsbase_inactive(unsigned long gsbase)
190{
191 lockdep_assert_irqs_disabled();
192
193 if (!cpu_feature_enabled(X86_FEATURE_XENPV)) {
194 native_swapgs();
195 wrgsbase(gsbase);
196 native_swapgs();
197 } else {
198 instrumentation_begin();
199 wrmsrl(MSR_KERNEL_GS_BASE, gsbase);
200 instrumentation_end();
201 }
202}
203
204/*
205 * Saves the FS or GS base for an outgoing thread if FSGSBASE extensions are
206 * not available. The goal is to be reasonably fast on non-FSGSBASE systems.
207 * It's forcibly inlined because it'll generate better code and this function
208 * is hot.
209 */
210static __always_inline void save_base_legacy(struct task_struct *prev_p,
211 unsigned short selector,
212 enum which_selector which)
213{
214 if (likely(selector == 0)) {
215 /*
216 * On Intel (without X86_BUG_NULL_SEG), the segment base could
217 * be the pre-existing saved base or it could be zero. On AMD
218 * (with X86_BUG_NULL_SEG), the segment base could be almost
219 * anything.
220 *
221 * This branch is very hot (it's hit twice on almost every
222 * context switch between 64-bit programs), and avoiding
223 * the RDMSR helps a lot, so we just assume that whatever
224 * value is already saved is correct. This matches historical
225 * Linux behavior, so it won't break existing applications.
226 *
227 * To avoid leaking state, on non-X86_BUG_NULL_SEG CPUs, if we
228 * report that the base is zero, it needs to actually be zero:
229 * see the corresponding logic in load_seg_legacy.
230 */
231 } else {
232 /*
233 * If the selector is 1, 2, or 3, then the base is zero on
234 * !X86_BUG_NULL_SEG CPUs and could be anything on
235 * X86_BUG_NULL_SEG CPUs. In the latter case, Linux
236 * has never attempted to preserve the base across context
237 * switches.
238 *
239 * If selector > 3, then it refers to a real segment, and
240 * saving the base isn't necessary.
241 */
242 if (which == FS)
243 prev_p->thread.fsbase = 0;
244 else
245 prev_p->thread.gsbase = 0;
246 }
247}
248
249static __always_inline void save_fsgs(struct task_struct *task)
250{
251 savesegment(fs, task->thread.fsindex);
252 savesegment(gs, task->thread.gsindex);
253 if (static_cpu_has(X86_FEATURE_FSGSBASE)) {
254 /*
255 * If FSGSBASE is enabled, we can't make any useful guesses
256 * about the base, and user code expects us to save the current
257 * value. Fortunately, reading the base directly is efficient.
258 */
259 task->thread.fsbase = rdfsbase();
260 task->thread.gsbase = __rdgsbase_inactive();
261 } else {
262 save_base_legacy(task, task->thread.fsindex, FS);
263 save_base_legacy(task, task->thread.gsindex, GS);
264 }
265}
266
267/*
268 * While a process is running,current->thread.fsbase and current->thread.gsbase
269 * may not match the corresponding CPU registers (see save_base_legacy()).
270 */
271void current_save_fsgs(void)
272{
273 unsigned long flags;
274
275 /* Interrupts need to be off for FSGSBASE */
276 local_irq_save(flags);
277 save_fsgs(current);
278 local_irq_restore(flags);
279}
280#if IS_ENABLED(CONFIG_KVM)
281EXPORT_SYMBOL_GPL(current_save_fsgs);
282#endif
283
284static __always_inline void loadseg(enum which_selector which,
285 unsigned short sel)
286{
287 if (which == FS)
288 loadsegment(fs, sel);
289 else
290 load_gs_index(sel);
291}
292
293static __always_inline void load_seg_legacy(unsigned short prev_index,
294 unsigned long prev_base,
295 unsigned short next_index,
296 unsigned long next_base,
297 enum which_selector which)
298{
299 if (likely(next_index <= 3)) {
300 /*
301 * The next task is using 64-bit TLS, is not using this
302 * segment at all, or is having fun with arcane CPU features.
303 */
304 if (next_base == 0) {
305 /*
306 * Nasty case: on AMD CPUs, we need to forcibly zero
307 * the base.
308 */
309 if (static_cpu_has_bug(X86_BUG_NULL_SEG)) {
310 loadseg(which, __USER_DS);
311 loadseg(which, next_index);
312 } else {
313 /*
314 * We could try to exhaustively detect cases
315 * under which we can skip the segment load,
316 * but there's really only one case that matters
317 * for performance: if both the previous and
318 * next states are fully zeroed, we can skip
319 * the load.
320 *
321 * (This assumes that prev_base == 0 has no
322 * false positives. This is the case on
323 * Intel-style CPUs.)
324 */
325 if (likely(prev_index | next_index | prev_base))
326 loadseg(which, next_index);
327 }
328 } else {
329 if (prev_index != next_index)
330 loadseg(which, next_index);
331 wrmsrl(which == FS ? MSR_FS_BASE : MSR_KERNEL_GS_BASE,
332 next_base);
333 }
334 } else {
335 /*
336 * The next task is using a real segment. Loading the selector
337 * is sufficient.
338 */
339 loadseg(which, next_index);
340 }
341}
342
343/*
344 * Store prev's PKRU value and load next's PKRU value if they differ. PKRU
345 * is not XSTATE managed on context switch because that would require a
346 * lookup in the task's FPU xsave buffer and require to keep that updated
347 * in various places.
348 */
349static __always_inline void x86_pkru_load(struct thread_struct *prev,
350 struct thread_struct *next)
351{
352 if (!cpu_feature_enabled(X86_FEATURE_OSPKE))
353 return;
354
355 /* Stash the prev task's value: */
356 prev->pkru = rdpkru();
357
358 /*
359 * PKRU writes are slightly expensive. Avoid them when not
360 * strictly necessary:
361 */
362 if (prev->pkru != next->pkru)
363 wrpkru(next->pkru);
364}
365
366static __always_inline void x86_fsgsbase_load(struct thread_struct *prev,
367 struct thread_struct *next)
368{
369 if (static_cpu_has(X86_FEATURE_FSGSBASE)) {
370 /* Update the FS and GS selectors if they could have changed. */
371 if (unlikely(prev->fsindex || next->fsindex))
372 loadseg(FS, next->fsindex);
373 if (unlikely(prev->gsindex || next->gsindex))
374 loadseg(GS, next->gsindex);
375
376 /* Update the bases. */
377 wrfsbase(next->fsbase);
378 __wrgsbase_inactive(next->gsbase);
379 } else {
380 load_seg_legacy(prev->fsindex, prev->fsbase,
381 next->fsindex, next->fsbase, FS);
382 load_seg_legacy(prev->gsindex, prev->gsbase,
383 next->gsindex, next->gsbase, GS);
384 }
385}
386
387unsigned long x86_fsgsbase_read_task(struct task_struct *task,
388 unsigned short selector)
389{
390 unsigned short idx = selector >> 3;
391 unsigned long base;
392
393 if (likely((selector & SEGMENT_TI_MASK) == 0)) {
394 if (unlikely(idx >= GDT_ENTRIES))
395 return 0;
396
397 /*
398 * There are no user segments in the GDT with nonzero bases
399 * other than the TLS segments.
400 */
401 if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
402 return 0;
403
404 idx -= GDT_ENTRY_TLS_MIN;
405 base = get_desc_base(&task->thread.tls_array[idx]);
406 } else {
407#ifdef CONFIG_MODIFY_LDT_SYSCALL
408 struct ldt_struct *ldt;
409
410 /*
411 * If performance here mattered, we could protect the LDT
412 * with RCU. This is a slow path, though, so we can just
413 * take the mutex.
414 */
415 mutex_lock(&task->mm->context.lock);
416 ldt = task->mm->context.ldt;
417 if (unlikely(!ldt || idx >= ldt->nr_entries))
418 base = 0;
419 else
420 base = get_desc_base(ldt->entries + idx);
421 mutex_unlock(&task->mm->context.lock);
422#else
423 base = 0;
424#endif
425 }
426
427 return base;
428}
429
430unsigned long x86_gsbase_read_cpu_inactive(void)
431{
432 unsigned long gsbase;
433
434 if (boot_cpu_has(X86_FEATURE_FSGSBASE)) {
435 unsigned long flags;
436
437 local_irq_save(flags);
438 gsbase = __rdgsbase_inactive();
439 local_irq_restore(flags);
440 } else {
441 rdmsrl(MSR_KERNEL_GS_BASE, gsbase);
442 }
443
444 return gsbase;
445}
446
447void x86_gsbase_write_cpu_inactive(unsigned long gsbase)
448{
449 if (boot_cpu_has(X86_FEATURE_FSGSBASE)) {
450 unsigned long flags;
451
452 local_irq_save(flags);
453 __wrgsbase_inactive(gsbase);
454 local_irq_restore(flags);
455 } else {
456 wrmsrl(MSR_KERNEL_GS_BASE, gsbase);
457 }
458}
459
460unsigned long x86_fsbase_read_task(struct task_struct *task)
461{
462 unsigned long fsbase;
463
464 if (task == current)
465 fsbase = x86_fsbase_read_cpu();
466 else if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
467 (task->thread.fsindex == 0))
468 fsbase = task->thread.fsbase;
469 else
470 fsbase = x86_fsgsbase_read_task(task, task->thread.fsindex);
471
472 return fsbase;
473}
474
475unsigned long x86_gsbase_read_task(struct task_struct *task)
476{
477 unsigned long gsbase;
478
479 if (task == current)
480 gsbase = x86_gsbase_read_cpu_inactive();
481 else if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
482 (task->thread.gsindex == 0))
483 gsbase = task->thread.gsbase;
484 else
485 gsbase = x86_fsgsbase_read_task(task, task->thread.gsindex);
486
487 return gsbase;
488}
489
490void x86_fsbase_write_task(struct task_struct *task, unsigned long fsbase)
491{
492 WARN_ON_ONCE(task == current);
493
494 task->thread.fsbase = fsbase;
495}
496
497void x86_gsbase_write_task(struct task_struct *task, unsigned long gsbase)
498{
499 WARN_ON_ONCE(task == current);
500
501 task->thread.gsbase = gsbase;
502}
503
504static void
505start_thread_common(struct pt_regs *regs, unsigned long new_ip,
506 unsigned long new_sp,
507 unsigned int _cs, unsigned int _ss, unsigned int _ds)
508{
509 WARN_ON_ONCE(regs != current_pt_regs());
510
511 if (static_cpu_has(X86_BUG_NULL_SEG)) {
512 /* Loading zero below won't clear the base. */
513 loadsegment(fs, __USER_DS);
514 load_gs_index(__USER_DS);
515 }
516
517 loadsegment(fs, 0);
518 loadsegment(es, _ds);
519 loadsegment(ds, _ds);
520 load_gs_index(0);
521
522 regs->ip = new_ip;
523 regs->sp = new_sp;
524 regs->cs = _cs;
525 regs->ss = _ss;
526 regs->flags = X86_EFLAGS_IF;
527}
528
529void
530start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
531{
532 start_thread_common(regs, new_ip, new_sp,
533 __USER_CS, __USER_DS, 0);
534}
535EXPORT_SYMBOL_GPL(start_thread);
536
537#ifdef CONFIG_COMPAT
538void compat_start_thread(struct pt_regs *regs, u32 new_ip, u32 new_sp, bool x32)
539{
540 start_thread_common(regs, new_ip, new_sp,
541 x32 ? __USER_CS : __USER32_CS,
542 __USER_DS, __USER_DS);
543}
544#endif
545
546/*
547 * switch_to(x,y) should switch tasks from x to y.
548 *
549 * This could still be optimized:
550 * - fold all the options into a flag word and test it with a single test.
551 * - could test fs/gs bitsliced
552 *
553 * Kprobes not supported here. Set the probe on schedule instead.
554 * Function graph tracer not supported too.
555 */
556__no_kmsan_checks
557__visible __notrace_funcgraph struct task_struct *
558__switch_to(struct task_struct *prev_p, struct task_struct *next_p)
559{
560 struct thread_struct *prev = &prev_p->thread;
561 struct thread_struct *next = &next_p->thread;
562 struct fpu *prev_fpu = &prev->fpu;
563 int cpu = smp_processor_id();
564
565 WARN_ON_ONCE(IS_ENABLED(CONFIG_DEBUG_ENTRY) &&
566 this_cpu_read(pcpu_hot.hardirq_stack_inuse));
567
568 if (!test_thread_flag(TIF_NEED_FPU_LOAD))
569 switch_fpu_prepare(prev_fpu, cpu);
570
571 /* We must save %fs and %gs before load_TLS() because
572 * %fs and %gs may be cleared by load_TLS().
573 *
574 * (e.g. xen_load_tls())
575 */
576 save_fsgs(prev_p);
577
578 /*
579 * Load TLS before restoring any segments so that segment loads
580 * reference the correct GDT entries.
581 */
582 load_TLS(next, cpu);
583
584 /*
585 * Leave lazy mode, flushing any hypercalls made here. This
586 * must be done after loading TLS entries in the GDT but before
587 * loading segments that might reference them.
588 */
589 arch_end_context_switch(next_p);
590
591 /* Switch DS and ES.
592 *
593 * Reading them only returns the selectors, but writing them (if
594 * nonzero) loads the full descriptor from the GDT or LDT. The
595 * LDT for next is loaded in switch_mm, and the GDT is loaded
596 * above.
597 *
598 * We therefore need to write new values to the segment
599 * registers on every context switch unless both the new and old
600 * values are zero.
601 *
602 * Note that we don't need to do anything for CS and SS, as
603 * those are saved and restored as part of pt_regs.
604 */
605 savesegment(es, prev->es);
606 if (unlikely(next->es | prev->es))
607 loadsegment(es, next->es);
608
609 savesegment(ds, prev->ds);
610 if (unlikely(next->ds | prev->ds))
611 loadsegment(ds, next->ds);
612
613 x86_fsgsbase_load(prev, next);
614
615 x86_pkru_load(prev, next);
616
617 /*
618 * Switch the PDA and FPU contexts.
619 */
620 raw_cpu_write(pcpu_hot.current_task, next_p);
621 raw_cpu_write(pcpu_hot.top_of_stack, task_top_of_stack(next_p));
622
623 switch_fpu_finish();
624
625 /* Reload sp0. */
626 update_task_stack(next_p);
627
628 switch_to_extra(prev_p, next_p);
629
630 if (static_cpu_has_bug(X86_BUG_SYSRET_SS_ATTRS)) {
631 /*
632 * AMD CPUs have a misfeature: SYSRET sets the SS selector but
633 * does not update the cached descriptor. As a result, if we
634 * do SYSRET while SS is NULL, we'll end up in user mode with
635 * SS apparently equal to __USER_DS but actually unusable.
636 *
637 * The straightforward workaround would be to fix it up just
638 * before SYSRET, but that would slow down the system call
639 * fast paths. Instead, we ensure that SS is never NULL in
640 * system call context. We do this by replacing NULL SS
641 * selectors at every context switch. SYSCALL sets up a valid
642 * SS, so the only way to get NULL is to re-enter the kernel
643 * from CPL 3 through an interrupt. Since that can't happen
644 * in the same task as a running syscall, we are guaranteed to
645 * context switch between every interrupt vector entry and a
646 * subsequent SYSRET.
647 *
648 * We read SS first because SS reads are much faster than
649 * writes. Out of caution, we force SS to __KERNEL_DS even if
650 * it previously had a different non-NULL value.
651 */
652 unsigned short ss_sel;
653 savesegment(ss, ss_sel);
654 if (ss_sel != __KERNEL_DS)
655 loadsegment(ss, __KERNEL_DS);
656 }
657
658 /* Load the Intel cache allocation PQR MSR. */
659 resctrl_sched_in();
660
661 return prev_p;
662}
663
664void set_personality_64bit(void)
665{
666 /* inherit personality from parent */
667
668 /* Make sure to be in 64bit mode */
669 clear_thread_flag(TIF_ADDR32);
670 /* Pretend that this comes from a 64bit execve */
671 task_pt_regs(current)->orig_ax = __NR_execve;
672 current_thread_info()->status &= ~TS_COMPAT;
673 if (current->mm)
674 current->mm->context.flags = MM_CONTEXT_HAS_VSYSCALL;
675
676 /* TBD: overwrites user setup. Should have two bits.
677 But 64bit processes have always behaved this way,
678 so it's not too bad. The main problem is just that
679 32bit children are affected again. */
680 current->personality &= ~READ_IMPLIES_EXEC;
681}
682
683static void __set_personality_x32(void)
684{
685#ifdef CONFIG_X86_X32_ABI
686 if (current->mm)
687 current->mm->context.flags = 0;
688
689 current->personality &= ~READ_IMPLIES_EXEC;
690 /*
691 * in_32bit_syscall() uses the presence of the x32 syscall bit
692 * flag to determine compat status. The x86 mmap() code relies on
693 * the syscall bitness so set x32 syscall bit right here to make
694 * in_32bit_syscall() work during exec().
695 *
696 * Pretend to come from a x32 execve.
697 */
698 task_pt_regs(current)->orig_ax = __NR_x32_execve | __X32_SYSCALL_BIT;
699 current_thread_info()->status &= ~TS_COMPAT;
700#endif
701}
702
703static void __set_personality_ia32(void)
704{
705#ifdef CONFIG_IA32_EMULATION
706 if (current->mm) {
707 /*
708 * uprobes applied to this MM need to know this and
709 * cannot use user_64bit_mode() at that time.
710 */
711 current->mm->context.flags = MM_CONTEXT_UPROBE_IA32;
712 }
713
714 current->personality |= force_personality32;
715 /* Prepare the first "return" to user space */
716 task_pt_regs(current)->orig_ax = __NR_ia32_execve;
717 current_thread_info()->status |= TS_COMPAT;
718#endif
719}
720
721void set_personality_ia32(bool x32)
722{
723 /* Make sure to be in 32bit mode */
724 set_thread_flag(TIF_ADDR32);
725
726 if (x32)
727 __set_personality_x32();
728 else
729 __set_personality_ia32();
730}
731EXPORT_SYMBOL_GPL(set_personality_ia32);
732
733#ifdef CONFIG_CHECKPOINT_RESTORE
734static long prctl_map_vdso(const struct vdso_image *image, unsigned long addr)
735{
736 int ret;
737
738 ret = map_vdso_once(image, addr);
739 if (ret)
740 return ret;
741
742 return (long)image->size;
743}
744#endif
745
746long do_arch_prctl_64(struct task_struct *task, int option, unsigned long arg2)
747{
748 int ret = 0;
749
750 switch (option) {
751 case ARCH_SET_GS: {
752 if (unlikely(arg2 >= TASK_SIZE_MAX))
753 return -EPERM;
754
755 preempt_disable();
756 /*
757 * ARCH_SET_GS has always overwritten the index
758 * and the base. Zero is the most sensible value
759 * to put in the index, and is the only value that
760 * makes any sense if FSGSBASE is unavailable.
761 */
762 if (task == current) {
763 loadseg(GS, 0);
764 x86_gsbase_write_cpu_inactive(arg2);
765
766 /*
767 * On non-FSGSBASE systems, save_base_legacy() expects
768 * that we also fill in thread.gsbase.
769 */
770 task->thread.gsbase = arg2;
771
772 } else {
773 task->thread.gsindex = 0;
774 x86_gsbase_write_task(task, arg2);
775 }
776 preempt_enable();
777 break;
778 }
779 case ARCH_SET_FS: {
780 /*
781 * Not strictly needed for %fs, but do it for symmetry
782 * with %gs
783 */
784 if (unlikely(arg2 >= TASK_SIZE_MAX))
785 return -EPERM;
786
787 preempt_disable();
788 /*
789 * Set the selector to 0 for the same reason
790 * as %gs above.
791 */
792 if (task == current) {
793 loadseg(FS, 0);
794 x86_fsbase_write_cpu(arg2);
795
796 /*
797 * On non-FSGSBASE systems, save_base_legacy() expects
798 * that we also fill in thread.fsbase.
799 */
800 task->thread.fsbase = arg2;
801 } else {
802 task->thread.fsindex = 0;
803 x86_fsbase_write_task(task, arg2);
804 }
805 preempt_enable();
806 break;
807 }
808 case ARCH_GET_FS: {
809 unsigned long base = x86_fsbase_read_task(task);
810
811 ret = put_user(base, (unsigned long __user *)arg2);
812 break;
813 }
814 case ARCH_GET_GS: {
815 unsigned long base = x86_gsbase_read_task(task);
816
817 ret = put_user(base, (unsigned long __user *)arg2);
818 break;
819 }
820
821#ifdef CONFIG_CHECKPOINT_RESTORE
822# ifdef CONFIG_X86_X32_ABI
823 case ARCH_MAP_VDSO_X32:
824 return prctl_map_vdso(&vdso_image_x32, arg2);
825# endif
826# if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
827 case ARCH_MAP_VDSO_32:
828 return prctl_map_vdso(&vdso_image_32, arg2);
829# endif
830 case ARCH_MAP_VDSO_64:
831 return prctl_map_vdso(&vdso_image_64, arg2);
832#endif
833
834 default:
835 ret = -EINVAL;
836 break;
837 }
838
839 return ret;
840}
841
842SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
843{
844 long ret;
845
846 ret = do_arch_prctl_64(current, option, arg2);
847 if (ret == -EINVAL)
848 ret = do_arch_prctl_common(option, arg2);
849
850 return ret;
851}
852
853#ifdef CONFIG_IA32_EMULATION
854COMPAT_SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
855{
856 return do_arch_prctl_common(option, arg2);
857}
858#endif
859
860unsigned long KSTK_ESP(struct task_struct *task)
861{
862 return task_pt_regs(task)->sp;
863}